A new approach for modeling composite materials
NASA Astrophysics Data System (ADS)
Alcaraz de la Osa, R.; Moreno, F.; Saiz, J. M.
2013-03-01
The increasing use of composite materials is due to their ability to tailor materials for special purposes, with applications evolving day by day. This is why predicting the properties of these systems from their constituents, or phases, has become so important. However, assigning macroscopical optical properties for these materials from the bulk properties of their constituents is not a straightforward task. In this research, we present a spectral analysis of three-dimensional random composite typical nanostructures using an Extension of the Discrete Dipole Approximation (E-DDA code), comparing different approaches and emphasizing the influences of optical properties of constituents and their concentration. In particular, we hypothesize a new approach that preserves the individual nature of the constituents introducing at the same time a variation in the optical properties of each discrete element that is driven by the surrounding medium. The results obtained with this new approach compare more favorably with the experiment than previous ones. We have also applied it to a non-conventional material composed of a metamaterial embedded in a dielectric matrix. Our version of the Discrete Dipole Approximation code, the EDDA code, has been formulated specifically to tackle this kind of problem, including materials with either magnetic and tensor properties.
Precision measurement of the electromagnetic dipole strengths in Be11
NASA Astrophysics Data System (ADS)
Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finlay, A.; Garnsworthy, A. B.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Quaglioni, S.; Svensson, C. E.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.
2014-05-01
The electromagnetic dipole strength in Be11 between the bound states has been measured using low-energy projectile Coulomb excitation at bombarding energies of 1.73 and 2.09 MeV/nucleon on a Pt196 target. An electric dipole transition probability B(E1;1/2-→1/2+)=0.102(2) e2fm was determined using the semi-classical code Gosia, and a value of 0.098(4) e2fm was determined using the Extended Continuum Discretized Coupled Channels method with the quantum mechanical code FRESCO. These extracted B(E1) values are consistent with the average value determined by a model-dependent analysis of intermediate energy Coulomb excitation measurements and are approximately 14% lower than that determined by a lifetime measurement. The much-improved precisions of 2% and 4% in the measured B(E1) values between the bound states deduced using Gosia and the Extended Continuum Discretized Coupled Channels method, respectively, compared to the previous accuracy of ˜10% will help in our understanding of and better improve the realistic inter-nucleon interactions.
NASA Astrophysics Data System (ADS)
Iwamoto, C.; Utsunomiya, H.; Tamii, A.; Akimune, H.; Nakada, H.; Shima, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Shimbara, Y.; Nagashima, M.; Suzuki, T.; Fujita, H.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Bilgier, B.; Kozer, H. C.; Lui, Y.-W.; Hatanaka, K.
2012-06-01
A high-resolution measurement of inelastic proton scattering off Zr90 near 0° was performed at 295 MeV with a focus on a pronounced strength previously reported in the low-energy tail of giant dipole resonance. A forest of fine structure was observed in the excitation energy region 7-12 MeV. A multipole decomposition analysis of the angular distribution for the forest was carried out using the ECIS95 distorted-wave Born approximation code with the Hartree-Fock plus random-phase approximation model of E1 and M1 transition densities and inclusion of E1 Coulomb excitation. The analysis separated pygmy dipole and M1 resonances in the forest at EPDR=9.15±0.18MeV with ΓPDR=2.91±0.64MeV and at EM1=9.53±0.06MeV with ΓM1=2.70±0.17MeV in the Lorentzian function, respectively. The B(E1)↑ value for pygmy dipole resonance over 7-11 MeV is 0.75±0.08e2fm2, which corresponds to 2.1±0.2% of the Thomas-Reiche-Kuhn sum rule.
NASA Astrophysics Data System (ADS)
Shao, Hongbing
Software testing with scientific software systems often suffers from test oracle problem, i.e., lack of test oracles. Amsterdam discrete dipole approximation code (ADDA) is a scientific software system that can be used to simulate light scattering of scatterers of various types. Testing of ADDA suffers from "test oracle problem". In this thesis work, I established a testing framework to test scientific software systems and evaluated this framework using ADDA as a case study. To test ADDA, I first used CMMIE code as the pseudo oracle to test ADDA in simulating light scattering of a homogeneous sphere scatterer. Comparable results were obtained between ADDA and CMMIE code. This validated ADDA for use with homogeneous sphere scatterers. Then I used experimental result obtained for light scattering of a homogeneous sphere to validate use of ADDA with sphere scatterers. ADDA produced light scattering simulation comparable to the experimentally measured result. This further validated the use of ADDA for simulating light scattering of sphere scatterers. Then I used metamorphic testing to generate test cases covering scatterers of various geometries, orientations, homogeneity or non-homogeneity. ADDA was tested under each of these test cases and all tests passed. The use of statistical analysis together with metamorphic testing is discussed as a future direction. In short, using ADDA as a case study, I established a testing framework, including use of pseudo oracles, experimental results and the metamorphic testing techniques to test scientific software systems that suffer from test oracle problems. Each of these techniques is necessary and contributes to the testing of the software under test.
KIC 3240411 - the hottest known SPB star with the asymptotic g-mode period spacing
NASA Astrophysics Data System (ADS)
Szewczuk, Wojciech; Daszyńska-Daszkiewicz, Jadwiga
2018-05-01
We report the discovery of the hottest hybrid B-type pulsator, KIC 3240411, that exhibits the period spacing in the low-frequency range. This pattern is associated with asymptotic properties of high-order gravity (g-) modes. Our seismic modelling made simultaneously with the mode identification shows that dipole axisymmetric modes best fit the observations. Evolutionary models are computed with MESA code and pulsational models with the linear non-adiabatic code employing the traditional approximation to include the effects of rotation. The problem of mode excitation is discussed. We confirm that significant modification is indispensable to explain an instability of both pressure and gravity modes in the observed frequency ranges of KIC 3240411.
The Dipole Segment Model for Axisymmetrical Elongated Asteroids
NASA Astrophysics Data System (ADS)
Zeng, Xiangyuan; Zhang, Yonglong; Yu, Yang; Liu, Xiangdong
2018-02-01
Various simplified models have been investigated as a way to understand the complex dynamical environment near irregular asteroids. A dipole segment model is explored in this paper, one that is composed of a massive straight segment and two point masses at the extremities of the segment. Given an explicitly simple form of the potential function that is associated with the dipole segment model, five topological cases are identified with different sets of system parameters. Locations, stabilities, and variation trends of the system equilibrium points are investigated in a parametric way. The exterior potential distribution of nearly axisymmetrical elongated asteroids is approximated by minimizing the acceleration error in a test zone. The acceleration error minimization process determines the parameters of the dipole segment. The near-Earth asteroid (8567) 1996 HW1 is chosen as an example to evaluate the effectiveness of the approximation method for the exterior potential distribution. The advantages of the dipole segment model over the classical dipole and the traditional segment are also discussed. Percent error of acceleration and the degree of approximation are illustrated by using the dipole segment model to approximate four more asteroids. The high efficiency of the simplified model over the polyhedron is clearly demonstrated by comparing the CPU time.
NASA Technical Reports Server (NTRS)
Draine, B. T.; Goodman, Jeremy
1993-01-01
We derive the dispersion relation for electromagnetic waves propagating on a lattice of polarizable points. From this dispersion relation we obtain a prescription for choosing dipole polarizabilities so that an infinite lattice with finite lattice spacing will mimic a continuum with dielectric constant. The discrete dipole approximation is used to calculate scattering and absorption by a finite target by replacing the target with an array of point dipoles. We compare different prescriptions for determining the dipole polarizabilities. We show that the most accurate results are obtained when the lattice dispersion relation is used to set the polarizabilities.
On the dipole approximation with error estimates
NASA Astrophysics Data System (ADS)
Boßmann, Lea; Grummt, Robert; Kolb, Martin
2018-01-01
The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.
Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.
2017-09-29
In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problemmore » at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.« less
NASA Astrophysics Data System (ADS)
He, Xiao; Hu, Hengshan; Wang, Xiuming
2013-01-01
Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.
Equivalent source modeling of the core magnetic field using magsat data
NASA Technical Reports Server (NTRS)
Mayhew, M. A.; Estes, R. H.
1983-01-01
Experiments are carried out on fitting the main field using different numbers of equivalent sources arranged in equal area at fixed radii at and inside the core-mantle boundary. In fixing the radius for a given series of runs, the convergence problems that result from the extreme nonlinearity of the problem when dipole positions are allowed to vary are avoided. Results are presented from a comparison between this approach and the standard spherical harmonic approach for modeling the main field in terms of accuracy and computational efficiency. The modeling of the main field with an equivalent dipole representation is found to be comparable to the standard spherical harmonic approach in accuracy. The 32 deg dipole density (42 dipoles) corresponds approximately to an eleventh degree/order spherical harmonic expansion (143 parameters), whereas the 21 dipole density (92 dipoles) corresponds to approximately a seventeenth degree and order expansion (323 parameters). It is pointed out that fixing the dipole positions results in rapid convergence of the dipole solutions for single-epoch models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strengthmore » can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.« less
Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
NASA Astrophysics Data System (ADS)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong
2015-12-01
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region
NASA Astrophysics Data System (ADS)
Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.
2014-11-01
The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.
Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation
NASA Astrophysics Data System (ADS)
Cao, Li-Gang; Ma, Zhong-Yu
2005-03-01
The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syrkin, M.I.
1996-02-01
In collisions of Rydberg atoms with charged projectiles at velocities approximately matching the speed of the Rydberg electron {ital v}{sub {ital n}} (matching velocity), {ital n} being the principal quantum number of the Rydberg level, the dipole-forbidden transitions with large angular-momentum transfer {Delta}{ital l}{gt}1 substantially dominate over dipole-allowed transitions {Delta}{ital l}=1, although both are induced by the dipole interaction. Here it is shown that as the projectile velocity decreases the adiabatic character of the depopulation depends on the energy distribution of states in the vicinity of the initial level. If the spectrum is close to degeneracy (as for high-{ital l}more » levels) the dipole-forbidden depopulation prevails practically over the entire low-velocity region, down to velocities {approximately}{ital n}{sup 3}[{Delta}{ital E}/Ry]{ital v}{sub {ital n}}, where {Delta}{ital E} is the energy spacing adjoining to the level due to either a quantum defect or the relevant level width or splitting, whichever is greater. If the energy gaps are substantial (as for strongly nonhydrogenic {ital s} and {ital p} levels in alkali-metal atoms), then the fraction of dipole transitions in the total depopulation reaches a flat minimum just below the matching velocity and then grows again, making the progressively increasing contribution to the low-velocity depopulation. The analytic models based on the first-order Born amplitudes (rather than the two-level adiabatic approximation) furnish reasonable estimates of the fractional dipole-allowed and dipole-forbidden depopulations. {copyright} {ital 1996 The American Physical Society.}« less
Coupled multipolar interactions in small-particle metallic clusters.
Pustovit, Vitaly N; Sotelo, Juan A; Niklasson, Gunnar A
2002-03-01
We propose a new formalism for computing the optical properties of small clusters of particles. It is a generalization of the coupled dipole-dipole particle-interaction model and allows one in principle to take into account all multipolar interactions in the long-wavelength limit. The method is illustrated by computations of the optical properties of N = 6 particle clusters for different multipolar approximations. We examine the effect of separation between particles and compare the optical spectra with the discrete-dipole approximation and the generalized Mie theory.
Jahn-Teller transition in TiF3 investigated using density-functional theory
NASA Astrophysics Data System (ADS)
Perebeinos, Vasili; Vogt, Tom
2004-03-01
We use first-principles density-functional theory to calculate the electronic and magnetic properties of TiF3 using the full-potential-linearized augmented-plane-wave method. The local density approximation (LDA) predicts a fully saturated ferromagnetic metal and finds degenerate energy minima for high- and low-symmetry structures. The experimentally observed Jahn-Teller phase transition at Tc=370 K cannot be driven by the electron-phonon interaction alone, which is usually described accurately by the LDA. Electron correlations beyond the LDA are essential to lift the degeneracy of the singly occupied Ti t2g orbital. Although the on-site Coulomb correlations are important, the direction of the t2g-level splitting is determined by dipole-dipole interactions. The LDA+U functional predicts an aniferromagnetic insulator with an orbitally ordered ground state. The input parameters U=8.1 eV and J=0.9 eV for the Ti 3d orbital were found by varying the total charge on the TiF2-6 ion using the molecular NRLMOL code. We estimate the Heisenberg exchange constant for spin 1/2 on a cubic lattice to be approximately 24 K. The symmetry lowering energy in LDA+U is about 900 K per TiF3 formula unit.
The visible extinction peaks of Ag nanohelixes: A periodic effective dipole model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.-Y.; Zhao, Y.-P.
2011-02-21
Using the discrete dipole approximation method, two visible extinction peaks are found for Ag nanohelixes. Both of them redshift periodically in an approximate half pitch with the helix height and redshift linearly with the helix diameter and pitch height. At the two absorbance peaks, an integer number of E-field maxima occur along the helix. These field maxima could be treated as results of collective electron oscillations by periodic effective dipoles within a half pitch along the helix. The wavelengths of the absorbance peaks are found to scale with the effective dipole length, which is consistent with the periodic structure ofmore » the helix.« less
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2004-05-01
In some situations, evanescent waves can be an important component of the acoustic field within the sea bottom. For this reason (as well as to advance the understanding of scattering processes) it can be helpful to examine the modifications to scattering theory resulting from evanescence. Modifications to ray theory were examined in a prior approximation [P. L. Marston, J. Acoust. Soc. Am. 113, 2320 (2003)]. The new research concerns the modifications to the low-frequency Born approximation and confirmation by comparison with the exact two-dimensional scattering by a fluid cylinder. In the case of a circular cylinder having the same density as the surroundings but having a compressibility contrast with the surroundings, the Born approximation with a nonevanescent incident wave gives only monopole scattering. When the cylinder has a density contrast and the same compressibility as the surroundings the regular Born approximation gives only dipole scattering (with the dipole oriented along to the incident wavevector). In both cases when the Born approximation is modified to include the evanescence of the incident wave, an additional dipole scattering term is evident. In each case the new dipole is oriented along to the decay axis of the evanescent wave. [Research supported by ONR.
NASA Astrophysics Data System (ADS)
Yurkin, Maxim A.; Hoekstra, Alfons G.
2016-03-01
The review [1] is still widely used as a general reference to the discrete dipole approximation, which motivates keeping it as accurate as possible. In the following we correct several errors, mostly typographical ones, which were uncovered over the years.
Strong Field Theories beyond Dipole Approximations in Nonrelativistic Regimes
NASA Astrophysics Data System (ADS)
He, Pei-Lun; Lao, Di; He, Feng
2017-04-01
The exact nondipole Volkov solutions to the Schrödinger equation and Pauli equation are found, based on which a strong field theory beyond the dipole approximation is built for describing the nondipole effects in nonrelativistic laser driven electron dynamics. This theory is applied to investigate momentum partition laws for multiphoton and tunneling ionization and explicitly shows that the complex interplay of a laser field and Coulomb action may reverse the expected photoelectron momentum along the laser propagation direction. The magnetic-spin coupling does not bring observable effects on the photoelectron momentum distribution and can be neglected. Compared to the strong field approximation within the dipole approximation, this theory works in a much wider range of laser parameters and lays a solid foundation for describing nonrelativistic electron dynamics in both short wavelength and midinfrared regimes where nondipole effects are unavoidable.
Spontaneous light emission by atomic hydrogen: Fermi's golden rule without cheating
NASA Astrophysics Data System (ADS)
Debierre, V.; Durt, T.; Nicolet, A.; Zolla, F.
2015-10-01
Focusing on the 2 p- 1 s transition in atomic hydrogen, we investigate through first order perturbation theory the time evolution of the survival probability of an electron initially taken to be in the excited (2 p) state. We examine both the results yielded by the standard dipole approximation for the coupling between the atom and the electromagnetic field - for which we propose a cutoff-independent regularisation - and those yielded by the exact coupling function. In both cases, Fermi's golden rule is shown to be an excellent approximation for the system at hand: we found its maximal deviation from the exact behaviour of the system to be of order 10-8 /10-7. Our treatment also yields a rigorous prescription for the choice of the optimal cutoff frequency in the dipole approximation. With our cutoff, the predictions of the dipole approximation are almost indistinguishable at all times from the exact dynamics of the system.
Light-scattering efficiency of starch acetate pigments as a function of size and packing density.
Penttilä, Antti; Lumme, Kari; Kuutti, Lauri
2006-05-20
We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 microm.
Light-scattering efficiency of starch acetate pigments as a function of size and packing density
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Lumme, Kari; Kuutti, Lauri
2006-05-01
We study theoretically the light-scattering efficiency of paper coatings made of starch acetate pigments. For the light-scattering code we use a discrete dipole approximation method. The coating layer is assumed to consists of roughly equal-sized spherical pigments packed either at a packing density of 50% (large cylindrical slabs) or at 37% or 57% (large spheres). Because the scanning electron microscope images of starch acetate samples show either a particulate or a porous structure, we model the coatings in two complementary ways. The material can be either inside the constituent spheres (particulate case) or outside of those (cheeselike, porous medium). For the packing of our spheres we use either a simulated annealing or a dropping code. We can estimate, among other things, that the ideal sphere diameter is in the range 0.25-0.4 μm.
Radiative loss and charge exchange in low energy Na - Ca+ collisions
NASA Astrophysics Data System (ADS)
McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.
2016-05-01
Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.
High-order above-threshold ionization beyond the electric dipole approximation
NASA Astrophysics Data System (ADS)
Brennecke, Simon; Lein, Manfred
2018-05-01
Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.
López-Tarifa, P; Liguori, Nicoletta; van den Heuvel, Naudin; Croce, Roberta; Visscher, Lucas
2017-07-19
The light harvesting complex II (LHCII), is a pigment-protein complex responsible for most of the light harvesting in plants. LHCII harvests sunlight and transfers excitation energy to the reaction centre of the photo-system, where the water oxidation process takes place. The energetics of LHCII can be modulated by means of conformational changes allowing a switch from a harvesting to a quenched state. In this state, the excitation energy is no longer transferred but converted into thermal energy to prevent photooxidation. Based on molecular dynamics simulations at the microsecond time scale, we have recently proposed that the switch between different fluorescent states can be probed by correlating shifts in the chromophore-chromophore Coulomb interactions to particular protein movements. However, these findings are based upon calculations in the ideal point dipole approximation (IDA) where the Coulomb couplings are simplified as first order dipole-dipole interactions, also assuming that the chromophore transition dipole moments lay in particular directions of space with constant moduli (FIX-IDA). In this work, we challenge this approximation using the time-dependent density functional theory (TDDFT) combined with the frozen density embedding (FDE) approach. Our aim is to establish up to which limit FIX-IDA can be applied and which chromophore types are better described under this approximation. For that purpose, we use the classical trajectories of solubilised light harvesting complex II (LHCII) we have recently reported [Liguori et al., Sci. Rep., 2015, 5, 15661] and selected three pairs of chromophores containing chlorophyll and carotenoids (Chl and Car): Chla611-Chla612, Chlb606-Chlb607 and Chla612-Lut620. Using the FDE in the Tamm-Dancoff approximation (FDEc-TDA), we show that IDA is accurate enough for predicting Chl-Chl Coulomb couplings. However, the FIX-IDA largely overestimates Chl-Car interactions mainly because the transition dipole for the Cars is not trivially oriented on the polyene chain.
NASA Astrophysics Data System (ADS)
Bruhwiler, D. L.; Cary, J. R.; Shasharina, S.
1998-04-01
The MAPA accelerator modeling code symplectically advances the full nonlinear map, tangent map and tangent map derivative through all accelerator elements. The tangent map and its derivative are nonlinear generalizations of Browns first- and second-order matrices(K. Brown, SLAC-75, Rev. 4 (1982), pp. 107-118.), and they are valid even near the edges of the dynamic aperture, which may be beyond the radius of convergence for a truncated Taylor series. In order to avoid truncation of the map and its derivatives, the Hamiltonian is split into pieces for which the map can be obtained analytically. Yoshidas method(H. Yoshida, Phys. Lett. A 150 (1990), pp. 262-268.) is then used to obtain a symplectic approximation to the map, while the tangent map and its derivative are appropriately composed at each step to obtain them with equal accuracy. We discuss our splitting of the quadrupole and combined-function dipole Hamiltonians and show that typically few steps are required for a high-energy accelerator.
A simulation assessment of the thermodynamics of dense ion-dipole mixtures with polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastea, Sorin, E-mail: sbastea@llnl.gov
Molecular dynamics (MD) simulations are employed to ascertain the relative importance of various electrostatic interaction contributions, including induction interactions, to the thermodynamics of dense, hot ion-dipole mixtures. In the absence of polarization, we find that an MD-constrained free energy term accounting for the ion-dipole interactions, combined with well tested ionic and dipolar contributions, yields a simple, fairly accurate free energy form that may be a better option for describing the thermodynamics of such mixtures than the mean spherical approximation (MSA). Polarization contributions induced by the presence of permanent dipoles and ions are found to be additive to a good approximation,more » simplifying the thermodynamic modeling. We suggest simple free energy corrections that account for these two effects, based in part on standard perturbative treatments and partly on comparisons with MD simulation. Even though the proposed approximations likely need further study, they provide a first quantitative assessment of polarization contributions at high densities and temperatures and may serve as a guide for future modeling efforts.« less
Higher-order force moments of active particles
NASA Astrophysics Data System (ADS)
Nasouri, Babak; Elfring, Gwynn J.
2018-04-01
Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.
QCD dipole model and k T factorization
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
2001-01-01
It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k T factorization at the leading logarithm approximation (in - logx Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.
The Crossed-Dipole Structure of Aircraft in an Electromagnetic Pulse Environment
1974-09-01
The crossed-dipole receiving antenna has been used as a representative model to approximate electromagnetic pulse effects on aircraft. This paper...receiving antenna is excited by a broad spectrum electromagnetic pulse , certain important electrical resonances occur: that is, at specific single...dipole are presented which give insight into methods of analyzing aircraft in an electromagnetic pulse environment.
Jun, James Jaeyoon; Longtin, André; Maler, Leonard
2013-01-01
In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source localization. PMID:23805244
Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2003-02-01
We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...
2015-04-01
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca
Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less
Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.
Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan
2009-10-01
We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.
GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.
Groß, Lynn; Herrmann, Carmen
2016-09-30
Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce GenLocDip, a program for calculating and visualizing local dipole moments of molecular subsystems. GenLocDip currently uses the Atoms-In-Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three-dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin-independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non-covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dipole and nondipole photoionization of molecular hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, B.; McKoy, V.; Southworth, S. H.
2015-05-01
We describe a theoretical approach to molecular photoionization that includes first-order corrections to the dipole approximation. The theoretical formalism is presented and applied to photoionization of H-2 over the 20-to 180-eV photon energy range. The angle-integrated cross section sigma, the electric dipole anisotropy parameter beta(e), the molecular alignment anisotropy parameter beta(m), and the first-order nondipole asymmetry parameters gamma and delta were calculated within the single-channel, static-exchange approximation. The calculated parameters are compared with previous measurements of sigma and beta(m) and the present measurements of beta(e) and gamma + 3 delta. The dipole and nondipole angular distribution parameters were determined simultaneouslymore » using an efficient, multiangle measurement technique. Good overall agreement is observed between the magnitudes and spectral variations of the calculated and measured parameters. The nondipole asymmetries of He 1s and Ne 2p photoelectrons were also measured in the course of this work.« less
Low-lying dipole resonance in neutron-rich Ne isotopes
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi; van Giai, Nguyen
2008-07-01
Microscopic structure of the low-lying isovector dipole excitation mode in neutron-rich Ne26,28,30 is investigated by performing deformed quasiparticle-random-phase-approximation (QRPA) calculations. The particle-hole residual interaction is derived from a Skyrme force through a Landau-Migdal approximation. We obtain the low-lying resonance in Ne26 at around 8.6 MeV. It is found that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule. This excitation mode is composed of several QRPA eigenmodes, one is generated by a ν(2s1/2-12p3/2) transition dominantly and the other mostly by a ν(2s1/2-12p1/2) transition. The neutron excitations take place outside of the nuclear surface reflecting the spatially extended structure of the 2s1/2 wave function. In Ne30, the deformation splitting of the giant resonance is large, and the low-lying resonance overlaps with the giant resonance.
NASA Astrophysics Data System (ADS)
Shesterikov, A. V.; Gubin, M. Yu.; Karpov, S. N.; Prokhorov, A. V.
2018-04-01
The problem of controlling the quantum dynamics of localized plasmons has been considered in the model of a four-particle spaser composed of metallic nanoparticles and semiconductor quantum dots. Conditions for the observation of stable steady-state regimes of the formation of surface plasmons in this model have been determined in the mean-field approximation. It has been shown that the presence of strong dipole-dipole interactions between metallic nanoparticles of the spaser system leads to a considerable change in the quantum statistics of plasmons generated on the nanoparticles.
Podsiadlo, Paul; Kaushik, Amit K; Shim, Bong Sup; Agarwal, Ashish; Tang, Zhiyong; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A
2008-11-20
The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.
Comparison of evolutionary algorithms for LPDA antenna optimization
NASA Astrophysics Data System (ADS)
Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.
2016-08-01
A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.
Observation of isoscalar and isovector dipole excitations in neutron-rich 20O
NASA Astrophysics Data System (ADS)
Nakatsuka, N.; Baba, H.; Aumann, T.; Avigo, R.; Banerjee, S. R.; Bracco, A.; Caesar, C.; Camera, F.; Ceruti, S.; Chen, S.; Derya, V.; Doornenbal, P.; Giaz, A.; Horvat, A.; Ieki, K.; Inakura, T.; Imai, N.; Kawabata, T.; Kobayashi, N.; Kondo, Y.; Koyama, S.; Kurata-Nishimura, M.; Masuoka, S.; Matsushita, M.; Michimasa, S.; Million, B.; Motobayashi, T.; Murakami, T.; Nakamura, T.; Ohnishi, T.; Ong, H. J.; Ota, S.; Otsu, H.; Ozaki, T.; Saito, A.; Sakurai, H.; Scheit, H.; Schindler, F.; Schrock, P.; Shiga, Y.; Shikata, M.; Shimoura, S.; Steppenbeck, D.; Sumikama, T.; Syndikus, I.; Takeda, H.; Takeuchi, S.; Tamii, A.; Taniuchi, R.; Togano, Y.; Tscheuschner, J.; Tsubota, J.; Wang, H.; Wieland, O.; Wimmer, K.; Yamaguchi, Y.; Yoneda, K.; Zenihiro, J.
2017-05-01
The isospin characters of low-energy dipole excitations in neutron-rich unstable nucleus 20O were investigated, for the first time in unstable nuclei. Two spectra obtained from a dominant isovector probe (20O + Au) and a dominant isoscalar probe (20O + α) were compared and analyzed by the distorted-wave Born approximation to extract independently the isovector and isoscalar dipole strengths. Two known 1- states with large isovector dipole strengths at energies of 5.36(5) MeV (11-) and 6.84(7) MeV (12-) were also excited by the isoscalar probe. These two states were found to have different isoscalar dipole strengths, 2.70(32)% (11-) and 0.67(12)% (12-), respectively, in exhaustion of the isoscalar dipole-energy-weighted sum rule. The difference in isoscalar strength indicated that they have different underlying structures.
Simultaneous Inversion of UXO Parameters and Background Response
2012-03-01
11. SUPPLEMENTARY NO TES 12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified/Unlimited 12b. DISTRIBUTIO N CODE 13. ABSTRACT (Maximum 200...demonstrated an ability to accurate recover dipole parameters using the simultaneous inversion method. Numerical modeling code for solving Maxwell’s...magnetics 15. NUMBER O F PAGES 160 16. PRICE CODE 17. SECURITY CLASSIFICATIO N OF REPORT Unclassified 18. SECURITY
An Exact Form of Lilley's Equation with a Velocity Quadrupole/Temperature Dipole Source Term
NASA Technical Reports Server (NTRS)
Goldstein, Marvin E.
2001-01-01
There have been several attempts to introduce approximations into the exact form of Lilley's equation in order to express the source term as the sum of a quadrupole whose strength is quadratic in the fluctuating velocities and a dipole whose strength is proportional to the temperature fluctuations. The purpose of this note is to show that it is possible to choose the dependent (i.e., the pressure) variable so that this type of result can be derived directly from the Euler equations without introducing any additional approximations.
Theoretical and observational analysis of spacecraft fields
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Schatten, K. H.
1972-01-01
In order to investigate the nondipolar contributions of spacecraft magnetic fields a simple magnetic field model is proposed. This model consists of randomly oriented dipoles in a given volume. Two sets of formulas are presented which give the rms-multipole field components, for isotropic orientations of the dipoles at given positions and for isotropic orientations of the dipoles distributed uniformly throughout a cube or sphere. The statistical results for an 8 cu m cube together with individual examples computed numerically show the following features: Beyond about 2 to 3 m distance from the center of the cube, the field is dominated by an equivalent dipole. The magnitude of the magnetic moment of the dipolar part is approximated by an expression for equal magnetic moments or generally by the Pythagorean sum of the dipole moments. The radial component is generally greater than either of the transverse components for the dipole portion as well as for the nondipolar field contributions.
Cooling without contact in bilayer dipolar Fermi gases
NASA Astrophysics Data System (ADS)
Tanatar, Bilal; Renklioglu, Basak; Oktel, M. Ozgur
2016-05-01
We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modelled within the Euler-Lagrange Fermi-hypernetted chain approximation. The random-phase approximation is employed for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer proceeds via the long-range dipole-dipole interactions. A simple thermal model is developed to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process. Supported by TUBA and TUBITAK (112T974).
NASA Astrophysics Data System (ADS)
Gang, Yin; Yingtang, Zhang; Hongbo, Fan; Zhining, Li; Guoquan, Ren
2016-05-01
We have developed a method for automatic detection, localization and classification (DLC) of multiple dipole sources using magnetic gradient tensor data. First, we define modified tilt angles to estimate the approximate horizontal locations of the multiple dipole-like magnetic sources simultaneously and detect the number of magnetic sources using a fixed threshold. Secondly, based on the isotropy of the normalized source strength (NSS) response of a dipole, we obtain accurate horizontal locations of the dipoles. Then the vertical locations are calculated using magnitude magnetic transforms of magnetic gradient tensor data. Finally, we invert for the magnetic moments of the sources using the measured magnetic gradient tensor data and forward model. Synthetic and field data sets demonstrate effectiveness and practicality of the proposed method.
NASA Astrophysics Data System (ADS)
Dzuba, V. A.; Flambaum, V. V.; Porsev, S. G.
2009-09-01
Electric dipole moments of diamagnetic atoms of experimental interest are calculated using the relativistic Hartree-Fock and random-phase approximation methods, the many-body perturbation theory, and the configuration-interaction technique. We consider (P,T) -odd interactions, which give rise to atomic electric dipole moment in the second order of the perturbation theory. These include nuclear Schiff moment, (P,T) -odd electron-nucleon interaction, and electron electric dipole moment. Interpretation of an experimental constraint of a permanent electric dipole moment of H199g [W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, Phys. Rev. Lett. 102, 101601 (2009)] is discussed.
Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions
NASA Astrophysics Data System (ADS)
Chen, Xing-You; Chuang, You-Lin; Lin, Chun-Yan; Wu, Chien-Ming; Li, Yongyao; Malomed, Boris A.; Lee, Ray-Kuang
2017-10-01
In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary angle θ relative to the direction normal to the system's plane. Using numerical methods and the variational approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval θcr<θ ≤π /2 . The stability boundary θcr weakly depends on the relative strength of the DDI, remaining close to the magic angle θm=arccos(1 /√{3 }) . The results suggest that DDIs provide a generic mechanism for the creation of stable BEC solitons in higher dimensions.
NASA Astrophysics Data System (ADS)
Gambacurta, D.; Grasso, M.; Vasseur, O.
2018-02-01
The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.
Atom-Pair Kinetics with Strong Electric-Dipole Interactions.
Thaicharoen, N; Gonçalves, L F; Raithel, G
2016-05-27
Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.
NLO evolution of color dipoles in N=4 SYM
Chirilli, Giovanni A.; Balitsky, Ian
2009-07-04
Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformalmore » $${\\cal N}$$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.« less
A path integral approach to the full Dicke model with dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Aparicio Alcalde, M.; Stephany, J.; Svaiter, N. F.
2011-12-01
We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature β-1, we compute the free energy in the thermodynamic limit N → ∞ in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature.
A Comprehensive Comparison of Relativistic Particle Integrators
NASA Astrophysics Data System (ADS)
Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.
2018-03-01
We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.
360° deterministic magnetization rotation in a three-ellipse magnetoelectric heterostructure
NASA Astrophysics Data System (ADS)
Kundu, Auni A.; Chavez, Andres C.; Keller, Scott M.; Carman, Gregory P.; Lynch, Christopher S.
2018-03-01
A magnetic dipole-coupled magnetoelectric heterostructure comprised of three closely spaced ellipse shapes was designed and shown to be capable of achieving deterministic in-plane magnetization rotation. The design approach used a combination of conventional micromagnetic simulations to obtain preliminary configurations followed by simulations using a fully strain-coupled, time domain micromagnetic code for a detailed assessment of performance. The conventional micromagnetic code has short run times and was used to refine the ellipse shape and orientation, but it does not accurately capture the effects of the strain gradients present in the piezoelectric and magnetostrictive layers that contribute to magnetization reorientation. The fully coupled code was used to assess the effects of strain and magnetic field gradients on precessional switching in the side ellipses and on the resulting dipole-field driven magnetization reorientation in the center ellipse. The work led to a geometry with a CoFeB ellipse (125 nm × 95 nm × 4 nm) positioned between two smaller CoFeB ellipses (75 nm × 50 nm × 4 nm) on a 500 nm PZT-5H film substrate clamped at its bottom surface. The smaller ellipses were oriented at 45° and positioned at 70° and 250° about the central ellipse due to the film deposition on a thick substrate. A 7.3 V pulse applied to the PZT for 0.22 ns produced 180° switching of the magnetization in the outer ellipses that then drove switching in the center ellipse through dipole-dipole coupling. Full 360° deterministic rotation was achieved with a second pulse. The temporal response of the resulting design is discussed.
Circular current loops, magnetic dipoles and spherical harmonic analysis.
Alldredge, L.R.
1980-01-01
Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author
Half wavelength dipole antennas over stratified media
NASA Technical Reports Server (NTRS)
Latorraca, G. A.
1972-01-01
Theoretical solutions of the fields induced by half-wavelength, horizontal, electric field dipoles (HEDS) are determined based on studies of infinitesimal, horizontal, electric field dipoles over low loss plane-stratified media. To determine these solutions, an approximation to the current distribution of a half-wavelength HED is derived and experimentally verified. Traverse and antenna measurements obtained on the Athabasca Glacier in the summer of 1971 are related to the characteristics of the transmitting antenna design, and the measurement techniques and field equipment used in the glacier trials are described and evaluated.
Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions
NASA Astrophysics Data System (ADS)
Seydi, I.; Abedinpour, S. H.; Tanatar, B.
2017-06-01
We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.
Gyrokinetic simulations of turbulent transport in a ring dipole plasma.
Kobayashi, Sumire; Rogers, Barrett N; Dorland, William
2009-07-31
Gyrokinetic flux-tube simulations of turbulent transport due to small-scale entropy modes are presented in a ring-dipole magnetic geometry relevant to the Columbia-MIT levitated dipole experiment (LDX) [J. Kesner, Plasma Phys. J. 23, 742 (1997)]. Far from the current ring, the dipolar magnetic field leads to strong parallel variations, while close to the ring the system becomes nearly uniform along circular magnetic field lines. The transport in these two limits are found to be quantitatively similar given an appropriate normalization based on the local out-board parameters. The transport increases strongly with the density gradient, and for small eta=L(n)/L(T)<1, T(i) approximately T(e), and typical LDX parameters, can reach large levels. Consistent with linear theory, temperature gradients are stabilizing, and for T(i) approximately T(e) can completely cut off the transport when eta greater or similar to 0.6.
Relativistic Coulomb Excitation within the Time Dependent Superfluid Local Density Approximation
NASA Astrophysics Data System (ADS)
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-01
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. The one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; ...
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less
Multi-configuration Dirac-Hartree-Fock (MCDHF) calculations for Ni XXV
NASA Astrophysics Data System (ADS)
Singh, Narendra; Aggarwal, Sunny
2018-03-01
We present accurate 165 fine-structure energy levels related to the configurations 1s22s2, 1s22p2, 1s2nƖn‧l‧ (n = 2, n‧ = 2, 3, 4, 5, Ɩ = s,p Ɩ‧ = s, p, d, f, g) of Ni XXV which may be useful ion for astrophysical and fusion plasma. For the calculations of energy levels and radiative rates, we have used the multiconfiguration Dirac-Hartree-Fock (MCDHF) method employed in GRASP2K code. The calculations are carried out in the active space approximation with the inclusion of the Breit interaction, the finite nuclear size effect, and quantum electrodynamic corrections. The transition wavelengths, transition probabilities, line strengths, and absorption oscillator strengths are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), magnetic quadrupole (M2) transitions from the ground state. We have compared our calculated results with available theoretical and experimental data and good agreement is achieved. We predict new energy levels, oscillator strengths, line strengths and transition probabilities, where no other experimental or theoretical results are available. The present complete set of results should be of great help in line identification and the interpretation of spectra, as well as in the modelling and diagnostics of astrophysical and fusion plasmas.
Continuous millennial decrease of the Earth's magnetic axial dipole
NASA Astrophysics Data System (ADS)
Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe
2018-01-01
Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.
Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi
2009-10-01
We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1971-01-01
Expressions for the excitation cross section of the highly excited states of the hydrogenlike atoms by fast charged particles have been derived in the dipole approximation of the semiclassical impact parameter and the Born approximations, making use of a formula for the asymptotic expansion of the oscillator strength of the hydrogenlike atoms given by Menzel. When only the leading term in the asymptotic expansion is retained, the expression for the cross section becomes identical to the expression obtained by the method of the classical collision and correspondence principle given by Percival and Richards. Comparisons are made between the Bethe coefficients obtained here and the Bethe coefficients of the Born approximation for transitions where the Born calculation is available. Satisfactory agreement is obtained only for n yields n + 1 transitions, with n the principal quantum number of the excited state.
Polymer chain collapse induced by many-body dipole correlations.
Budkov, Yu A; Kalikin, N N; Kolesnikov, A L
2017-04-01
We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.
Modification of the band offset in boronitrene
NASA Astrophysics Data System (ADS)
Obodo, K. O.; Andrew, R. C.; Chetty, N.
2011-10-01
Using density functional methods within the generalized gradient approximation implemented in the Quantum Espresso codes, we modify the band offset in a single layer of boronitrene by substituting a double line of carbon atoms. This effectively introduces a line of dipoles at the interface. We considered various junctions of this system within the zigzag and armchair orientations. Our results show that the “zigzag-short” structure is energetically most stable, with a formation energy of 0.502 eV and with a band offset of 1.51 eV. The “zigzag-long” structure has a band offset of 1.99 eV. The armchair structures are nonpolar, while the zigzag-single structures show a charge accumulation for the C-substituted B and charge depletion for the C-substituted N at the junction. Consequently there is no shifting of the bands.
NASA Astrophysics Data System (ADS)
Bonfà, Pietro; Onuorah, Ifeanyi John; De Renzi, Roberto
The estimation of the magnetic field generated at a given point by magnetic dipoles is an undergraduate exercise. However, under certain approximation, this is all that is needed to evaluate the local field at the muon site once the interstitial position of the muon in the unit cell is known. The development of an application to specifically solve this problem may therefore seem an excessive effort. At the same time, the lack of a general solution leads to the development of small ad hoc codes that are generally rewritten or re-adapted for different experiments and are poorly optimized. This and other motivations led to the development of MuESR, a python+C tool to perform dipolar field simulations. In this manuscript we will describe the tool, its features and its development strategies.
Non-perturbative theory of dispersion interactions
NASA Astrophysics Data System (ADS)
Boström, M.; Thiyam, P.; Persson, C.; Parsons, D. F.; Buhmann, S. Y.; Brevik, I.; Sernelius, Bo E.
2015-03-01
Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here, we present a full non-perturbative theory. In addition, we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.
NASA Technical Reports Server (NTRS)
Herbst, E.; Leung, C. M.
1986-01-01
In order to incorporate large ion-polar neutral rate coefficients into existing gas phase reaction networks, it is necessary to utilize simplified theoretical treatments because of the significant number of rate coefficients needed. The authors have used two simple theoretical treatments: the locked dipole approach of Moran and Hamill for linear polar neutrals and the trajectory scaling approach of Su and Chesnavich for nonlinear polar neutrals. The former approach is suitable for linear species because in the interstellar medium these are rotationally relaxed to a large extent and the incoming charged reactants can lock their dipoles into the lowest energy configuration. The latter approach is a better approximation for nonlinear neutral species, in which rotational relaxation is normally less severe and the incoming charged reactants are not as effective at locking the dipoles. The treatments are in reasonable agreement with more detailed long range theories and predict an inverse square root dependence on kinetic temperature for the rate coefficient. Compared with the locked dipole method, the trajectory scaling approach results in rate coefficients smaller by a factor of approximately 2.5.
Non-free gas of dipoles of non-singular screw dislocations and the shear modulus near the melting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Cyril, E-mail: malyshev@pdmi.ras.ru
2014-12-15
The behavior of the shear modulus caused by proliferation of dipoles of non-singular screw dislocations with finite-sized core is considered. The representation of two-dimensional Coulomb gas with smoothed-out coupling is used, and the stress–stress correlation function is calculated. A convolution integral expressed in terms of the modified Bessel function K{sub 0} is derived in order to obtain the shear modulus in approximation of interacting dipoles. Implications are demonstrated for the shear modulus near the melting transition which are due to the singularityless character of the dislocations. - Highlights: • Thermodynamics of dipoles of non-singular screw dislocations is studied below themore » melting. • The renormalization of the shear modulus is obtained for interacting dipoles. • Dependence of the shear modulus on the system scales is presented near the melting.« less
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, A. N.; Gryzlova, E. V.; Kuzmina, E. I.; Chetverkina, A. S.; Strakhova, S. I.
2015-04-01
Two nonlinear atomic photoprocesses are theoretically considered with the emphasis on the photoelectron angular distributions and their modifications due to violation of the dipole approximation: sequential two-photon double ionization and two-color above threshold ionization. These reactions are now accessible with X-ray free electron lasers. Both processes are exemplified by the ionization of krypton: from the 4p shell in the sequential two-photon double ionization and from the 2s shell in the two-color above-threshold ionization, which are compared to the Ar(3p) and Ne(1s) ionization, respectively. Noticeable nondipole effects are predicted.
Influence of complex configurations on properties of pygmy dipole resonances
NASA Astrophysics Data System (ADS)
Arsenyev, N. N.; Severyukhin, A. P.; Voronov, V. V.; Van Giai, Nguyen
2018-05-01
Starting from the quasiparticle random phase approximation based on the Skyrme interaction SLy5, we study the effects of phonon-phonon coupling (PPC) on the low-energy electric dipole responses in some spherical nuclei. The inclusion of the PPC results in the formation of low-energy 1‑ states. There is an impact of the PPC effect on low-energy E1 strength. The PPC effect on the electric dipole polarizability is discussed. We predict a strong increase of the summed E1 strength below 10 MeV, with increasing neutron number from 48Ca till 58Ca.
Arapiraca, A F C; Jonsson, Dan; Mohallem, J R
2011-12-28
We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.
Balitsky, Ian; Chirilli, Giovanni A.
2008-09-01
The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leading order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities.
Sum Rule for a Schiff-Like Dipole Moment
NASA Astrophysics Data System (ADS)
Raduta, A. A.; Budaca, R.
The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurationsmore » improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.« less
Einstein coefficients and oscillator strengths for low lying state of CO molecules
NASA Astrophysics Data System (ADS)
Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.
2018-04-01
Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.
NASA Astrophysics Data System (ADS)
Oranj, Leila Mokhtari; Lee, Hee-Seock; Leitner, Mario Santana
2017-12-01
In Korea, a heavy ion accelerator facility (RAON) has been designed for production of rare isotopes. The 90° bending section of this accelerator includes a 1.3- μm-carbon stripper followed by two dipole magnets and other devices. An incident beam is 18.5 MeV/n 238U33+,34+ ions passing through the carbon stripper at the beginning of the section. The two dipoles are tuned to transport 238U ions with specific charge states of 77+, 78+, 79+, 80+ and 81+. Then other ions will be deflected at the bends and cause beam losses. These beam losses are a concern to the devices of transport/beam line. The absorbed dose in devices and prompt dose in the tunnel were calculated using the FLUKA code in order to estimate radiation damage of such devices located at the 90° bending section and for the radiation protection. A novel method to transport multi-charged 238U ions beam was applied in the FLUKA code by using charge distribution of 238U ions after the stripper obtained from LISE++ code. The calculated results showed that the absorbed dose in the devices is influenced by the geometrical arrangement. The maximum dose was observed at the coils of first, second, fourth and fifth quadruples placed after first dipole magnet. The integrated doses for 30 years of operation with 9.5 p μA 238U ions were about 2 MGy for those quadrupoles. In conclusion, the protection of devices particularly, quadruples would be necessary to reduce the damage to devices. Moreover, results showed that the prompt radiation penetrated within the first 60 - 120 cm of concrete.
Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.
1994-01-01
The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.
Extinction efficiencies from DDA calculations solved for finite circular cylinders and disks
NASA Technical Reports Server (NTRS)
Withrow, J. R.; Cox, S. K.
1993-01-01
One of the most commonly noted uncertainties with respect to the modeling of cirrus clouds and their effect upon the planetary radiation balance is the disputed validity of the use of Mie scattering results as an approximation to the scattering results of the hexagonal plates and columns found in cirrus clouds. This approximation has historically been a kind of default, a result of the lack of an appropriate analytical solution of Maxwell's equations to particles other than infinite cylinders and spheroids. Recently, however, the use of such approximate techniques as the Discrete Dipole Approximation has made scattering solutions on such particles a computationally intensive but feasible possibility. In this study, the Discrete Dipole Approximation (DDA) developed by Flatau (1992) is used to find such solutions for homogeneous, circular cylinders and disks. This can serve to not only assess the validity of the current radiative transfer schemes which are available for the study of cirrus but also to extend the current approximation of equivalent spheres to an approximation of second order, homogeneous finite circular cylinders and disks. The results will be presented in the form of a single variable, the extinction efficiency.
Parallel computation of transverse wakes in linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Xiaowei; Ko, Kwok
1996-11-01
SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DSmore » on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.« less
Core-core and core-valence correlation
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
The effect of 1s core correlation on properties and energy separations are analyzed using full configuration-interaction (FCI) calculations. The Be1S - 1P, the C 3P - 5S,m and CH(+) 1Sigma(+) - 1Pi separations, and CH(+) spectroscopic constants, dipole moment, and 1Sigma(+) - 1Pi transition dipole moment have been studied. The results of the FCI calculations are compared to those obtained using approximate methods.
Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation
NASA Astrophysics Data System (ADS)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-01
The low-lying dipole strength distributions of 40CaCa and 48Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.
China, Swarup; Scarnato, Barbara; Owen, Robert C.; ...
2015-01-14
The radiative properties of soot particles depend on their morphology and mixing state, but their evolution during transport is still elusive. In this paper, we report observations from an electron microscopy analysis of individual particles transported in the free troposphere over long distances to the remote Pico Mountain Observatory in the Azores in the North Atlantic. Approximately 70% of the soot particles were highly compact and of those 26% were thinly coated. Discrete dipole approximation simulations indicate that this compaction results in an increase in soot single scattering albedo by a factor of ≤2.17. The top of the atmosphere directmore » radiative forcing is typically smaller for highly compact than mass-equivalent lacy soot. Lastly, the forcing estimated using Mie theory is within 12% of the forcing estimated using the discrete dipole approximation for a high surface albedo, implying that Mie calculations may provide a reasonable approximation for compact soot above remote marine clouds.« less
Yu, Hua-Gen
2015-01-28
We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less
Fingering instabilities and pattern formation in a two-component dipolar Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Xi, Kui-Tian; Byrnes, Tim; Saito, Hiroki
2018-02-01
We study fingering instabilities and pattern formation at the interface of an oppositely polarized two-component Bose-Einstein condensate with strong dipole-dipole interactions in three dimensions. It is shown that the rotational symmetry is spontaneously broken by fingering instability when the dipole-dipole interactions are strengthened. Frog-shaped and mushroom-shaped patterns emerge during the dynamics due to the dipolar interactions. We also demonstrate the spontaneous density modulation and domain growth of a two-component dipolar BEC in the dynamics. Bogoliubov analyses in the two-dimensional approximation are performed, and the characteristic lengths of the domains are estimated analytically. Patterns resembling those in magnetic classical fluids are modulated when the number ratio of atoms, the trap ratio of the external potential, or tilted polarization with respect to the z direction is varied.
Improvement of solar-cycle prediction: Plateau of solar axial dipole moment
NASA Astrophysics Data System (ADS)
Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.
2017-11-01
Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.
In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problemmore » at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.« less
NASA Astrophysics Data System (ADS)
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.
Low-energy isovector and isoscalar dipole response in neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Vretenar, D.; Niu, Y. F.; Paar, N.; Meng, J.
2012-04-01
The self-consistent random-phase approximation, based on the framework of relativistic energy density functionals, is employed in the study of isovector and isoscalar dipole response in 68Ni,132Sn, and 208Pb. The evolution of pygmy dipole states (PDSs) in the region of low excitation energies is analyzed as a function of the density dependence of the symmetry energy for a set of relativistic effective interactions. The occurrence of PDSs is predicted in the response to both the isovector and the isoscalar dipole operators, and its strength is enhanced with the increase in the symmetry energy at saturation and the slope of the symmetry energy. In both channels, the PDS exhausts a relatively small fraction of the energy-weighted sum rule but a much larger percentage of the inverse energy-weighted sum rule. For the isovector dipole operator, the reduced transition probability B(E1) of the PDSs is generally small because of pronounced cancellation of neutron and proton partial contributions. The isoscalar-reduced transition amplitude is predominantly determined by neutron particle-hole configurations, most of which add coherently, and this results in a collective response of the PDSs to the isoscalar dipole operator.
Large-scale anisotropy of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1981-01-01
Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.
Continuous approximation for interaction energy of adamantane encapsulated inside carbon nanotubes
NASA Astrophysics Data System (ADS)
Baowan, Duangkamon; Hill, James M.; Bacsa, Wolfgang
2018-02-01
The interaction energy for two adjacent adamantane molecules and that of adamantane molecules encapsulated inside carbon nanotubes are investigated considering only dipole-dipole induced interaction. The Lennard-Jones potential and the continuous approximation are utilised to derive analytical expressions for these interaction energies. The equilibrium distance 3.281 Å between two adamantane molecules is determined. The smallest carbon nanotube radius b0 that can encapsulate the adamantane molecule and the radius of the tube bmax that gives the maximum suction energy, linearly depend on the adamantane radius, are calculated. For larger diameter tubes, the off axis position has been calculated, and equilibrium distance between molecule and tube wall is found to be close to the interlayer spacing in graphene.
Interactions of bright and dark solitons with localized PT-symmetric potentials.
Karjanto, N; Hanif, W; Malomed, B A; Susanto, H
2015-02-01
We study collisions of moving nonlinear-Schrödinger solitons with a PT-symmetric dipole embedded into the one-dimensional self-focusing or defocusing medium. Accurate analytical results are produced for bright solitons, and, in a more qualitative form, for dark ones. In the former case, an essential aspect of the approximation is that it must take into regard the intrinsic chirp of the soliton, thus going beyond the framework of the simplest quasi-particle description of the soliton's dynamics. Critical velocities separating reflection and transmission of the incident bright solitons are found by means of numerical simulations, and in the approximate semi-analytical form. An exact solution for the dark soliton pinned by the complex PT-symmetric dipole is produced too.
Oscillator strengths and collision strengths for S v
NASA Technical Reports Server (NTRS)
Van Wyngaarden, W. L.; Henry, R. J. W.
1981-01-01
Observations of the optical extreme-ultraviolet spectrum of the Jupiter planetary system during the Voyager space mission revealed bright emission lines of some sulfur ions. The spectra of the torus at the orbit of Io are likely to contain S V lines. The described investigation provides oscillator strengths and collision strengths for the first four UV lines. The collision strengths from the ground state to four other excited states are also obtained. Use is made of a two-state calculation which is checked for convergence for some transitions by employing a three-state or a four-state approximation. Target wave functions for S V are calculated so that the oscillator strengths calculated in dipole length and dipole velocity approximations agree within 5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-20
The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transitionmore » densities.« less
Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu; Department of Physics, Boston University, Boston, Massachusetts 02215
We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits amore » linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.« less
Reduction of noise radiated from open pipe terminations
NASA Astrophysics Data System (ADS)
Davis, M. R.
1989-07-01
A modified Quincke tube has been tested to determine the extent to which sound radiation from an open tube end can be reduced by conversion of the monopole source into a dipole form. It has been found that directivity patterns of the dipole with approximately 20 dB variation can be achieved provided that the out-of-phase tube ends are not too closely spaced. Very large spacings also reduce the effectiveness of the arrangement in reducing radiated power since the source system does not then approximate a simple dipole. Consideration has been given to compact designs which achieve path length differentials by the use of four concentric tubes. The relative size of the two acoustic paths has to be adjusted to allow for the size effect on radiation, requiring a somewhat larger area for the smaller tube. Through flow would require an opposite adjustment of the smaller tube area in this case if the smaller tube presented a smaller resistance to flow, as is likely since it involves straight-through flow. Flow through the system would increase the tuned operating frequency.
NASA Astrophysics Data System (ADS)
Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.
2018-02-01
Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.
Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime
NASA Astrophysics Data System (ADS)
Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.
2017-10-01
We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.
NASA Astrophysics Data System (ADS)
Nichols, Albert L., III; Calef, Daniel F.
A new method to solve the reference HNC equations is developed to treat systems with both asymmetric short-range and long-range interactions. This method is motivated by the work of Patey and co-workers and uses Lado's free-energy minimizing optimization criteria for the reference HNC approximation. The properties of several fluids composed of linear triatomic molecules with various dipole moments or hard-sphere molecules with different-length dipoles are investigated.
TOSCA calculations and measurements for the SLAC SLC damping ring dipole magnet
NASA Astrophysics Data System (ADS)
Early, R. A.; Cobb, J. K.
1985-04-01
The SLAC damping ring dipole magnet was originally designed with removable nose pieces at the ends. Recently, a set of magnetic measurements was taken of the vertical component of induction along the center of the magnet for four different pole-end configurations and several current settings. The three dimensional computer code TOSCA, which is currently installed on the National Magnetic Fusion Energy Computer Center's Cray X-MP, was used to compute field values for the four configurations at current settings near saturation. Comparisons were made for magnetic induction as well as effective magnetic lengths for the different configurations.
Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.
2013-01-01
We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561
Magnetic design and field optimization of a superferric dipole for the RISP fragment separator
NASA Astrophysics Data System (ADS)
Zaghloul, A.; Kim, J. Y.; Kim, D. G.; Jo, H. C.; Kim, M. J.
2015-10-01
The in-flight fragment separator of the Rare Isotope Science Project requires eight dipole magnets to produce a gap field of 1.7 T in a deflection sector of 30 degree with a 6-m central radius. If the beam-optics requirements are to be met, an integral field homogeneity of a few units (1 unit = 10-4) must be achieved. A superferric dipole magnet has been designed by using the Low-Temperature Superconducting wire NbTi and soft iron of grade SAE1010. The 3D magnetic design and field optimization have been performed using the Opera code. The length and the width of the air slots in the poles have been determined in an optimization process that considered not only the uniformity of the field in the straight section but also the field errors in the end regions. The field uniformity has also been studied for a range of operation of the dipole magnet from 0.4 T to 1.7 T. The magnetic design and field uniformity are discussed.
Isospin properties of electric dipole excitations in 48Ca
NASA Astrophysics Data System (ADS)
Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.
2014-03-01
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
Excitonic effects in dense media: breakdown of intrinsic optical bistability
NASA Astrophysics Data System (ADS)
Yudson, V. I.; Reineker, P.
1994-12-01
The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.
Excitonic effects in dense media: breakdown of intrinsic optical bistability
NASA Astrophysics Data System (ADS)
Yudson, V. I.; Reineker, P.
The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.
The study of dielectric properties of the endohedral fullerenes
NASA Astrophysics Data System (ADS)
Bhusal, Shusil
Dielectric response of the metal nitride fullerenes is studied using the density functional theory at the all-electron level using generalized gradient approximation. The dielectric response is studied by computing the static dipole polarizabilities using the finite field method, i.e. by numerically differentiating the dipole moments with respect to electric field. The endohedral fullerenes studied in this work are Sc3N C68(6140), Sc3N C68(6146), Sc3N C70(7854), Sc3N C70(7960), Sc3N C76(17490), Sc3N C78(22010), Sc3N C80(31923), Sc3N C80(31924), Sc3N C82(39663), Sc3N C90(43), Sc3N C90(44), Sc3N C92(85), Sc3N C94(121), Sc3N C96(186), Sc3N C98(166). Using the Voronoi and Hirschfield approaches as implemented in our NRLMOL code, we determine the atomic contributions to the total polarizability. The site-specific contributions to the polarizability of endohedral fullerenes allowed us to determine the polarizability of two subsystems: the fullerene shell and the encapsulated Sc3N unit. Our results showed that the contributions to the total polarizability from the encapsulated Sc3N units are vanishingly small. Thus, the total polarizability of the endohedral fullerene is almost entirely due to the outer fullerene shell. These fullerenes are excellent molecular models of a Faraday cage.
NASA Astrophysics Data System (ADS)
Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J. G.; Gottlöber, S.
2018-04-01
We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen-Zatsepin-Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory.
Symplectic orbit and spin tracking code for all-electric storage rings
NASA Astrophysics Data System (ADS)
Talman, Richard M.; Talman, John D.
2015-07-01
Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap." At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen," for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10-29e -cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial "symplectification"). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to "resurrect," or reverse engineer, the "AGS-analog" all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM's. The companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.
The reversed and normal flux contributions to axial dipole decay for 1880-2015
NASA Astrophysics Data System (ADS)
Metman, M. C.; Livermore, P. W.; Mound, J. E.
2018-03-01
The axial dipole component of Earth's internal magnetic field has been weakening since at least 1840, an effect widely believed to be attributed to the evolution of reversed flux patches (RFPs). These are regions on the core-mantle boundary (CMB) where the sign of radial flux deviates from that of the dominant sign of hemispheric radial flux. We study dipole change over the past 135 years using the field models gufm1, COV-OBS.x1 and CHAOS-6; we examine the impact of the choice of magnetic equator on the identification of reversed flux, the contribution of reversed and normal flux to axial dipole decay, and how reversed and normal field evolution has influenced the axial dipole. We show that a magnetic equator defined as a null-flux curve of the magnetic field truncated at spherical harmonic degree 3 allows us to robustly identify reversed flux, which we demonstrate is a feature of at least degree 4 or 5. Additionally, our results indicate that the evolution of reversed flux accounts for approximately two-thirds of the decay of the axial dipole, while one third of the decay is attributed to the evolution of the normal field. We find that the decay of the axial dipole over the 20th century is associated with both the expansion and poleward migration of reversed flux patches. In contrast to this centennial evolution, changes in the structure of secular variation since epoch 2000 indicate that poleward migration currently plays a much reduced role in the ongoing dipole decay.
Geomagnetic cutoffs: A review for space dosimetry applications
NASA Astrophysics Data System (ADS)
Smart, D. F.; Shea, M. A.
1994-10-01
The earth's magnetic field acts as a shield against charged particle radiation from interplanetary space, technically described as the geomagnetic cutoff. The cutoff rigidity problem (except for the dipole special case) has 'no solution in closed form'. The dipole case yields the Stormer equation which has been repeatedly applied to the earth in hopes of providing useful approximations of cutoff rigidities. Unfortunately the earth's magnetic field has significant deviations from dipole geometry, and the Stormer cutoffs are not adequate for most applications. By application of massive digital computer power it is possible to determine realistic geomagnetic cutoffs derived from high order simulation of the geomagnetic field. Using this technique, 'world-grids' of directional cutoffs for the earth's surface and for a limited number of satellite altitudes have been derived. However, this approach is so expensive and time comsuming it is impractical for most spacecraft orbits, and approximations must be used. The world grids of cutoff rigidities are extensively used as lookup tables, normalization points and interpolation aids to estimate the effective geomagnetic cutoff rigidity of a specific location in space. We review the various options for estimating the cutoff rigidity for earth-orbiting satellites.
Elastic dipoles of point defects from atomistic simulations
NASA Astrophysics Data System (ADS)
Varvenne, Céline; Clouet, Emmanuel
2017-12-01
The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.
Bound states of dipolar bosons in one-dimensional systems
NASA Astrophysics Data System (ADS)
Volosniev, A. G.; Armstrong, J. R.; Fedorov, D. V.; Jensen, A. S.; Valiente, M.; Zinner, N. T.
2013-04-01
We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-body structures in this geometry are determined as a function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three-, four- and five-body problems in two or more tubes. Our results indicate that in the weakly coupled limit the intertube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom. This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known.
Far-field potentials in cylindrical and rectangular volume conductors.
Dumitru, D; King, J C; Rogers, W E
1993-07-01
The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, K.M.; Keenan, F.P.; Lawson, K.D.
Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n {<=} 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been notedmore » and explained.« less
A novel background field removal method for MRI using projection onto dipole fields (PDF).
Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi
2011-11-01
For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.
Evidence of Soft Dipole Resonance in
NASA Astrophysics Data System (ADS)
Kanungo, R.; Sanetullaev, A.; Tanaka, J.; Ishimoto, S.; Hagen, G.; Myo, T.; Suzuki, T.; Andreoiu, C.; Bender, P.; Chen, A. A.; Davids, B.; Fallis, J.; Fortin, J. P.; Galinski, N.; Gallant, A. T.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jansen, G.; Keefe, M.; Krücken, R.; Lighthall, J.; McNeice, E.; Miller, D.; Otsuka, T.; Purcell, J.; Randhawa, J. S.; Roger, T.; Rojas, A.; Savajols, H.; Shotter, A.; Tanihata, I.; Thompson, I. J.; Unsworth, C.; Voss, P.; Wang, Z.
2015-05-01
The first conclusive evidence of a dipole resonance in
Zeroth order regular approximation approach to electric dipole moment interactions of the electron.
Gaul, Konstantin; Berger, Robert
2017-07-07
A quasi-relativistic two-component approach for an efficient calculation of P,T-odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.
Zeroth order regular approximation approach to electric dipole moment interactions of the electron
NASA Astrophysics Data System (ADS)
Gaul, Konstantin; Berger, Robert
2017-07-01
A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.
Nikitin, E E; Troe, J
2010-09-16
Approximate analytical expressions are derived for the low-energy rate coefficients of capture of two identical dipolar polarizable rigid rotors in their lowest nonresonant (j(1) = 0 and j(2) = 0) and resonant (j(1) = 0,1 and j(2) = 1,0) states. The considered range extends from the quantum, ultralow energy regime, characterized by s-wave capture, to the classical regime described within fly wheel and adiabatic channel approaches, respectively. This is illustrated by the table of contents graphic (available on the Web) that shows the scaled rate coefficients for the mutual capture of rotors in the resonant state versus the reduced wave vector between the Bethe zero-energy (left arrows) and classical high-energy (right arrow) limits for different ratios δ of the dipole-dipole to dispersion interaction.
Angle-resolved Wigner time delay in atomic photoionization: The 4 d subshell of free and confined Xe
NASA Astrophysics Data System (ADS)
Mandal, A.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.
2017-11-01
The angular dependence of photoemission time delay for the inner n d3 /2 and n d5 /2 subshells of free and confined Xe is studied in the dipole relativistic random phase approximation. A finite spherical annular well potential is used to model the confinement due to fullerene C60 cage. Near cancellations in a variety of the dipole amplitudes, Cooper-like minima, are found. The effects of confinement on the angular dependence, primarily confinement resonances, are demonstrated and detailed.
Ultracold collisions between spin-orbit-coupled dipoles: General formalism and universality
NASA Astrophysics Data System (ADS)
Wang, Jia; Hougaard, Christiaan R.; Mulkerin, Brendan C.; Liu, Xia-Ji
2018-04-01
A theoretical study of the low-energy scattering properties of two aligned identical bosonic and fermionic dipoles in the presence of isotropic spin-orbit coupling is presented. A general treatment of particles with arbitrary (pseudo)spin is given in the framework of multichannel scattering. At ultracold temperatures and away from shape resonances or closed-channel dominated resonances, the cross section can be well described within the Born approximation to within corrections due to the s -wave scattering. We compare our findings with numerical calculations and find excellent agreement.
NASA Technical Reports Server (NTRS)
Tsang, L.; Brown, R.; Kong, J. A.; Simmons, G.
1974-01-01
Two numerical methods are used to evaluate the integrals that express the em fields due to dipole antennas radiating in the presence of a stratified medium. The first method is a direct integration by means of Simpson's rule. The second method is indirect and approximates the kernel of the integral by means of the fast Fourier transform. In contrast to previous analytical methods that applied only to two-layer cases the numerical methods can be used for any arbitrary number of layers with general properties.
Modeling the global positioning system signal propagation through the ionosphere
NASA Technical Reports Server (NTRS)
Bassiri, S.; Hajj, G. A.
1992-01-01
Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.
The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database.
Takashima, S; Yamaoka, K
1999-08-30
Electric birefringence measurements indicated the presence of a large permanent dipole moment in HU protein-DNA complex. In order to substantiate this observation, numerical computation of the dipole moment of HU protein homodimer was carried out by using NMR protein databases. The dipole moments of globular proteins have hitherto been calculated with X-ray databases and NMR data have never been used before. The advantages of NMR databases are: (a) NMR data are obtained, unlike X-ray databases, using protein solutions. Accordingly, this method eliminates the bothersome question as to the possible alteration of the protein structure due to the transition from the crystalline state to the solution state. This question is particularly important for proteins such as HU protein which has some degree of internal flexibility; (b) the three-dimensional coordinates of hydrogen atoms in protein molecules can be determined with a sufficient resolution and this enables the N-H as well as C = O bond moments to be calculated. Since the NMR database of HU protein from Bacillus stearothermophilus consists of 25 models, the surface charge as well as the core dipole moments were computed for each of these structures. The results of these calculations show that the net permanent dipole moments of HU protein homodimer is approximately 500-530 D (1 D = 3.33 x 10(-30) Cm) at pH 7.5 and 600-630 D at the isoelectric point (pH 10.5). These permanent dipole moments are unusually large for a small protein of the size of 19.5 kDa. Nevertheless, the result of numerical calculations is compatible with the electro-optical observation, confirming a very large dipole moment in this protein.
NASA Astrophysics Data System (ADS)
da Silva, C. L.; Wu, S.; Denton, R. E.; Hudson, M. K.; Millan, R. M.
2017-01-01
In this work we present a methodology for simulating whistler-mode waves self-consistently generated by electron temperature anisotropy in the inner magnetosphere. We present simulation results using a hybrid fluid/particle-in-cell code that treats the hot, anisotropic (i.e., ring current) electron population as particles and the background (i.e., the cold and inertialess) electrons as fluid. Since the hot electrons are only a small fraction of the total population, warm (and isotropic) particle electrons are added to the simulation to increase the fraction of particles with mass, providing a more accurate characterization of the wave dispersion relation. Ions are treated as a fixed background of positive charge density. The plasma transport equations are coupled to Maxwell's equations and solved in a meridional plane (a 2-D simulation with 3-D fields). We use a curvilinear coordinate system that follows the topological curvature of Earth's geomagnetic field lines, based on an analytic expression for a compressed dipole magnetic field. Hence, we are able to simulate whistler wave generation at dawn (pure dipole field lines) and dayside (compressed dipole) by simply adjusting one scalar quantity. We demonstrate how, on the dayside, whistler-mode waves can be locally generated at a range of high latitudes, within pockets of minimum magnetic field, and propagate equatorward. The obtained dayside waves (in a compressed dipole field) have similar amplitude and frequency content to their dawn sector counterparts (in a pure dipole field) but tend to propagate more field aligned.
Stagnancy of the pygmy dipole resonance
NASA Astrophysics Data System (ADS)
Sun, Xu-Wei; Chen, Jing; Lu, Ding-Hui
2018-01-01
The pygmy dipole resonance (PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm-1. However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei 70-78Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section. Supported by National Science Foundation of China
Giant Dipole Resonance in light and heavy nuclei beyond selfconsistent mean field theory
NASA Astrophysics Data System (ADS)
Krewald, Siegfried; Lyutorovich, Nikolay; Tselyaev, Victor; Speth, Josef; Gruemmer, Frank; Reinhard, Paul-Gerhard
2012-10-01
While bulk properties of stable nuclei are successfully reproduced by mean-field theories employing effective interactions, the dependence of the centroid energy of the electric giant dipole resonance on the nucleon number A is not. This problem is cured by considering many-particle correlations beyond mean-field theory, which we do within a selfconsistent generalization of the Quasiparticle Time Blocking Approximation [1,2]. The electric giant dipole resonances in ^16O, ^40Ca, and ^208Pb are calculated using two new Skyrme interactions. Perspectives for an extension to effective field theories[3] are discussed.[4pt] [1] V. Tselyaev et al., Phys.Rev.C75, 014315(2007).[0pt] [2] N. Lyutorovich et al., submitted to Phys.Rev.Lett.[0pt] [3] S. Krewald et al., Prog.Part.Nucl.Phys.67, 322(2012).
Studies of singlet Rydberg series of LiH derived from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4
NASA Astrophysics Data System (ADS)
Gim, Yeongrok; Lee, Chun-Woo
2014-10-01
The 50 singlet states of LiH composed of 49 Rydberg states and one non-Rydberg ionic state derivable from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4, are studied using the multi-reference configuration interaction method combined with the Stuttgart/Köln group's effective core potential/core polarization potential method. Basis functions that can yield energy levels up to the 6g orbital of Li have been developed, and they are used with a huge number of universal Kaufmann basis functions for Rydberg states. The systematics and regularities of the physical properties such as potential energies, quantum defects, permanent dipole moments, transition dipole moments, and nonadiabatic coupling matrix elements of the Rydberg series are studied. The behaviors of potential energy curves and quantum defect curves are explained using the Fermi approximation. The permanent dipole moments of the Rydberg series reveal that they are determined by the sizes of the Rydberg orbitals, which are proportional to n2. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, with the rule Δl = ±1, except for s-d mixing, which is also accompanied by n-mixing. The members of the l-mixed Rydberg series have dipole moments with opposite directions. The first derivatives of the dipole moment curves, which show the charge-transfer component, clearly show not only mirror relationships in terms of direction but also oscillations. The transition dipole moment matrix elements of the Rydberg series are determined by the small-r region, with two consequences. One is that the transition dipole moment matrix elements show n-3/2 dependence. The other is that the magnitudes of the transition dipole moment matrix elements decrease rapidly as l increases.
NASA Astrophysics Data System (ADS)
Lyutyy, T. V.; Reva, V. V.
2018-05-01
Ferrofluid heating by an external alternating field is studied based on the rigid dipole model, where the magnetization of each particle in a fluid is supposed to be firmly fixed in the crystal lattice. Equations of motion, employing Newton's second law for rotational motion, the condition of rigid body rotation, and the assumption that the friction torque is proportional to angular velocity are used. This oversimplification permits us to expand the model easily: to take into account the thermal noise and interparticle interaction that allows us to estimate from unified positions the role of thermal activation and dipole interaction in the heating process. Our studies are conducted in three stages. The exact expressions for the average power loss of a single particle are obtained within the dynamical approximation. Then, in the stochastic case, the power loss of a single particle is estimated analytically using the Fokker-Planck equation and numerically using the effective Langevin equation. Finally, the power loss for the particle ensemble is obtained using the molecular dynamics method. Here, the local dipole fields are calculated approximately based on the Barnes-Hut algorithm. The revealed trends in the behavior of both a single particle and the particle ensemble suggest the way of choosing the conditions for obtaining the maximum heating efficiency. The competitiveness character of the interparticle interaction and thermal noise is investigated in detail. Two situations, when the thermal noise rectifies the power loss reduction caused by the interaction, are described. The first of them is related to the complete destruction of dense clusters at high noise intensity. The second one originates from the rare switching of the particles in clusters due to thermal activation, when the noise intensity is relatively weak. In this way, the constructive role of noise appears in the system.
A Lenz's law experiment revisited
NASA Astrophysics Data System (ADS)
Sawicki, Charles A.
2000-10-01
A dipole magnet model predicts a terminal velocity VT proportional to 1/n for n attached identical cylindrical magnets dropped down a copper pipe. Experiments show that VT increases approximately linearly with n. The explanation for this difference is presented.
Zak, Emil J; Tennyson, Jonathan
2017-09-07
A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃ 1 B 2 ← X̃ 1 A 1 ro-vibronic transitions of SO 2 . Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.
2010-01-01
We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002)]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small. PMID:20672062
Theoretical evaluation of the radiative lifetimes of LiCs and NaCs in the A1Σ+ state
NASA Astrophysics Data System (ADS)
Mabrouk, N.; Berriche, H.
2017-08-01
Calculations of the adiabatic potential energy curves and the transition dipole moments between the ground (A1Σ+) and the first excited (A1Σ+) states have been determined for the LiCs and NaCs molecules. The calculations are performed using an ab initio approach based on non-empirical pseudopotentials for Cs+, Li+ and Na+ cores, parameterized l-dependent polarization potentials and full configuration interaction calculations. The potential energy curves and the transition dipole moment are used to estimate the radiative lifetimes of the vibrational levels of the A+Σ+ state using the Franck-Condon (FC) approximation and the approximate sum rule method. The radiative lifetimes associated with the A+Σ+ state are presented here for the first time. These data can help experimentalists to optimize photoassociative formation of ultracold molecules and their longevity in a trap or in an optical lattice.
Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII XXVIII)
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.
2008-05-01
Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n ⩽ 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.
Iterative electromagnetic Born inversion applied to earth conductivity imaging
NASA Astrophysics Data System (ADS)
Alumbaugh, D. L.
1993-08-01
This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (less than 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.
α +d →6Li+γ astrophysical S factor and its implications for Big Bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Grassi, A.; Mangano, G.; Marcucci, L. E.; Pisanti, O.
2017-10-01
The α +d →6Li +γ radiative capture is studied in order to predict the 6Li primordial abundance. Within a two-body framework, the α particle and the deuteron are considered the structureless constituents of 6Li. Five α +d potentials are used to solve the two-body problem: four of them are taken from the literature, only one having also a tensor component. A fifth model is here constructed in order to reproduce, besides the 6Li static properties as binding energy, magnetic dipole, and electric quadrupole moments, also the S -state asymptotic normalization coefficient (ANC). The two-body bound and scattering problem is solved with different techniques, in order to minimize the numerical uncertainty of the present results. The long-wavelength approximation is used, and therefore only the electric dipole and quadrupole operators are retained. The astrophysical S factor is found to be significantly sensitive to the ANC, but in all the cases in good agreement with the available experimental data. The theoretical uncertainty has been estimated of the order of few percent when the potentials which reproduce the ANC are considered, but increases up to ≃20 % when all five potential models are retained. The effect of this S -factor prediction on the 6Li primordial abundance is studied, using the public code PArthENoPE. For the five models considered here we find 6Li/H=(0.9 -1.8 ) ×10-14 , with the baryon density parameter in the 3-σ range of Planck 2015 analysis, Ωbh2=0.022 26 ±0.000 23 .
X-Antenna: A graphical interface for antenna analysis codes
NASA Technical Reports Server (NTRS)
Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.
1995-01-01
This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.
List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
O'Brien, Daniel B; Massari, Aaron M
2015-01-14
In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.
Schwarz, G; Savko, P
1982-01-01
Dielectric constant and loss of the membrane-active peptide alamethicin in octanol/dioxane mixtures have been measured at frequencies between 5 kHz and 50 MHz. On the basis of a rotational mechanism of dipolar orientation, the observed dispersion provides information regarding size, shape, and dipole moment of the structural entities which the solute may assume in media of diverse lipophilicity. Particularly detailed results are obtained in a pure octanol solvent where an apparent molecular weight of alamethicin could be determined. It turns out that in this quite lipophilic medium most of the peptide material exists as a monomer particle that has approximate length and diameter of 35 and 13 A, respectively. It carries a dipole moment of approximately 75 Debye units (directed nearly parallel to the long axis). At our concentrations of a few milligrams per milliliters, appreciable formation of dimers by head-to-tail linkage is indicated. When the octanol content is reduced by adding greater amounts of dioxane, larger particles are encountered. This is accompanied by a decrease of the effective polarity. The inherent increase of hydrophilicity in the dioxane-enriched solvent apparently favors another monomer conformation that has a low dipole moment and easily aggregates to some kind of micelle. PMID:7115881
Ab initio calculation of the rotational spectrum of methane vibrational ground state
NASA Astrophysics Data System (ADS)
Cassam-Chenaï, P.; Liévin, J.
2012-05-01
In a previous article we have introduced an alternative perturbation scheme to the traditional one starting from the harmonic oscillator, rigid rotator Hamiltonian, to find approximate solutions of the spectral problem for rotation-vibration molecular Hamiltonians. The convergence of our method for the methane vibrational ground state rotational energy levels was quicker than that of the traditional method, as expected, and our predictions were quantitative. In this second article, we study the convergence of the ab initio calculation of effective dipole moments for methane within the same theoretical frame. The first order of perturbation when applied to the electric dipole moment operator of a spherical top gives the expression used in previous spectroscopic studies. Higher orders of perturbation give corrections corresponding to higher centrifugal distortion contributions and are calculated accurately for the first time. Two potential energy surfaces of the literature have been used for solving the anharmonic vibrational problem by means of the vibrational mean field configuration interaction approach. Two corresponding dipole moment surfaces were calculated in this work at a high level of theory. The predicted intensities agree better with recent experimental values than their empirical fit. This suggests that our ab initio dipole moment surface and effective dipole moment operator are both highly accurate.
Laarne, P H; Tenhunen-Eskelinen, M L; Hyttinen, J K; Eskola, H J
2000-01-01
The effect of number of EEG electrodes on the dipole localization was studied by comparing the results obtained using the 10-20 and 10-10 electrode systems. Two anatomically detailed models with resistivity values of 177.6 omega m and 67.0 omega m for the skull were applied. Simulated potential values generated by current dipoles were applied to different combinations of the volume conductors and electrode systems. High and low resistivity models differed slightly in favour of the lower skull resistivity model when dipole localization was based on noiseless data. The localization errors were approximately three times larger using low resistivity model for generating the potentials, but applying high resistivity model for the inverse solution. The difference between the two electrode systems was minor in favour of the 10-10 electrode system when simulated, noiseless potentials were used. In the presence of noise the dipole localization algorithm operated more accurately using the denser electrode system. In conclusion, increasing the number of recording electrodes seems to improve the localization accuracy in the presence of noise. The absolute skull resistivity value also affects the accuracy, but using an incorrect value in modelling calculations seems to be the most serious source of error.
Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.
Simmen, Benjamin; Mátyus, Edit; Reiher, Markus
2014-10-21
This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.
Fabrication of a prototype dipole for the SSC Low Energy Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, C.M.
1993-12-01
The Low Energy Booster of the Superconducting Super Collider (SSC) will be a synchrotron containing 96 dipoles operating between 0.13 T and 1.35 T at 10 Hz. Each dipole`s 1.865 m-long core is made from {approximately}2900 steel laminations (lams), each 52 {times} 66 cm and 0.635 mm thick. A need to minimize power supply costs and stringent field specifications led to a straight core with very tight mechanical tolerances of the order of 0.05 mm. To satisfy these tolerances, we decided to stack the core in a vertical position; i.e., with the laminations laid horizontally. We designed and built anmore » unusual vertical stacking fixture that pivots into a horizontal position after all the laminations have been stacked and compressed and four support angles welded onto the laminations. The stacking fixture, our experience using it, and conclusions as to the merits of stacking such a long core vertically will be described. The methods of insulating and potting the pancake coils and their installation into the unsplittable core is also described.« less
Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.
Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert
2015-11-01
In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.
2017-11-01
Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.
Radiative rates and electron impact excitation rate coefficients for Ne-like selenium, Se XXV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, K.; Chen, C.Y., E-mail: chychen@fudan.edu.cn; Huang, M.
2011-07-15
In this article we report calculations of energy levels, radiative rates, electron impact collision strengths, and effective collision strengths for transitions among the 241 fine-structure levels arising from 2l{sup 8} and 2l{sup 7}n{sup '}l{sup '} (n{sup '{<=}}6 and l{sup '{<=}}n{sup '}-1) configurations of Ne-like Se XXV using the Flexible Atomic Code. Energy levels and radiative rates are calculated within the relativistic configuration-interaction method. Direct excitation collision strengths are calculated using the relativistic distorted-wave approximation and high-energy collision strengths are obtained in the relativistic plane-wave approximation. Resonance contributions through the relevant Na-like doubly-excited configurations 2l{sup 7}n'l'n''l'' (3{<=}n'{<=}7, l'{<=}n'-1, n'{<=}n''{<=}50, and l''{<=}8)more » are explicitly taken into account via the independent-process and isolated-resonance approximation using distorted waves. Resonant stabilizing transitions and possibly important radiative decays from the resonances toward low-lying autoionizing levels are considered. In addition, the resonance contributions from Na-like 2l{sup 6}3l'3l'''n''' (n'''=3-6) configurations are included and found to be predominant for many transitions among the singly-excited states in Ne-like Se XXV. We present the radiative rates, oscillator strengths, and line strengths for all electric dipole, magnetic dipole, electric quadrupole, magnetic quadrupole, electric octopole, and magnetic octopole transitions among the 241 levels. The effective collision strengths are reported for all 28920 transitions among the 241 levels over a wide temperature range up to 10 keV. To assess the reliability and accuracy of the present collisional data, we have performed a 27-state close-coupling calculation, employing the Dirac R-matrix theory. The results from the close-coupling calculation and the independent-process calculation for the identical target states are found to be in good agreement. - Highlights: {yields} Radiative and collisional atomic data are presented for the lowest 241 fine-structure levels in Ne-like Se. {yields} Calculations are performed using the FAC package. {yields} Resonances enhance significantly a large amount of transitions. {yields} Radiative damping effects are significant for many transitions. {yields} Close-coupling effects are small in Ne-like Se.« less
SYMBMAT: Symbolic computation of quantum transition matrix elements
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Kirchner, T.
2012-08-01
We have developed a set of Mathematica notebooks to compute symbolically quantum transition matrices relevant for atomic ionization processes. The utilization of a symbolic language allows us to obtain analytical expressions for the transition matrix elements required in charged-particle and laser induced ionization of atoms. Additionally, by using a few simple commands, it is possible to export these symbolic expressions to standard programming languages, such as Fortran or C, for the subsequent computation of differential cross sections or other observables. One of the main drawbacks in the calculation of transition matrices is the tedious algebraic work required when initial states other than the simple hydrogenic 1s state need to be considered. Using these notebooks the work is dramatically reduced and it is possible to generate exact expressions for a large set of bound states. We present explicit examples of atomic collisions (in First Born Approximation and Distorted Wave Theory) and laser-matter interactions (within the Dipole and Strong Field Approximations and different gauges) using both hydrogenic wavefunctions and Slater-Type Orbitals with arbitrary nlm quantum numbers as initial states. Catalogue identifier: AEMI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 71 628 No. of bytes in distributed program, including test data, etc.: 444 195 Distribution format: tar.gz Programming language: Mathematica Computer: Single machines using Linux or Windows (with cores with any clock speed, cache memory and bits in a word) Operating system: Any OS that supports Mathematica. The notebooks have been tested under Windows and Linux and with versions 6.x, 7.x and 8.x Classification: 2.6 Nature of problem: The notebooks generate analytical expressions for quantum transition matrix elements required in diverse atomic processes: ionization by ion, electron, or photon impact and ionization within the framework of strong field physics. In charged-particle collisions approaches based on perturbation theory enjoy widespread utilization. Accordingly, we have chosen the First Born Approximation and Distorted Wave theories as examples. In light-matter interactions, the main ingredient for many types of calculations is the dipole transition matrix in its different formulations, i.e. length, velocity, and acceleration gauges. In all these cases the transitions of interest occur between a bound state and a continuum state which can be described in different ways. With the notebooks developed in the present work it is possible to calculate transition matrix elements analytically for any set of quantum numbers nlm of initial hydrogenic states or Slater-Type Orbitals and for plane waves or Coulomb waves as final continuum states. Solution method: The notebooks employ symbolic computation to generate analytical expressions for transition matrix elements used in both collision and light-matter interaction physics. fba_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the First Born Approximation (FBA). The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a plane wave (PW) or a Coulomb wave (CW). distorted_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in Distorted Wave (DW) theories. The transitions considered are from a (distorted) bound hydrogenic state with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the Strong Field Approximation (SFA)) or a CW (the Coulomb-Volkov Approximation (CVA)). dipoleVelocity_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). For the case of the CVA we only include the transition from the 1s state to a continuum state represented by a CW. fba_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the FBA. The transitions considered are from a Slater-Type Orbital (STO) with arbitrary quantum numbers nlm to a continuum state represented by a PW or a CW. distorted_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in DW theories. The transitions considered are from a (distorted) STO with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleVelocity_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). The symbolic expressions obtained within each notebook can be exported to standard programming languages such as Fortran or C using the Format.m package (see the text and Ref. Sofroniou (1993) [16] for details). Running time: Computational times vary according to the transition matrix selected and quantum numbers nlm of the initial state used. The typical running time is several minutes, but it will take longer for large values of nlm.
Symplectic orbit and spin tracking code for all-electric storage rings
Talman, Richard M.; Talman, John D.
2015-07-22
Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10 –29e–cm or greater will produce a statisticallymore » significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial “symplectification”). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to “resurrect,” or reverse engineer, the “AGS-analog” all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM’s. As a result, the companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen-Christandl, Katharina; Copsey, Bert D.
2011-02-15
The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular,more » for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.« less
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1985-01-01
Analytical solutions for the three dimensional inhomogeneous wave equation with flow in a hardwall rectangular wind tunnel and in the free field are presented for a stationary monopole noise source. Dipole noise sources are calculated by combining two monopoles 180 deg out of phase. Numerical calculations for the modal content, spectral response and directivity for both monopole and dipole sources are presented. In addition, the effect of tunnel alterations, such as the addition of a mounting plate, on the tunnels reverberant response are considered. In the frequency range of practical importance for the turboprop response, important features of the free field directivity can be approximated in a hardwall wind tunnel with flow if the major lobe of the noise source is not directed upstream. However, for an omnidirectional source, such as a monopole, the hardwall wind tunnel and free field response are not comparable.
Testing the anisotropy of cosmic acceleration from Pantheon supernovae sample
NASA Astrophysics Data System (ADS)
Sun, Z. Q.; Wang, F. Y.
2018-05-01
In this paper, we study the anisotropy of cosmic acceleration the using Pantheon sample, which includes 1049 spectroscopically confirmed type Ia supernovae (SNe Ia) covering the redshift range 0.01 < z < 2.3. In hemisphere comparison method, we find the dipole direction is (l = 110 ± 11°, b = 15 ± 19°) with the maximum anisotropy level of δ =0.105 {}^{+0.002}_{-0.005}. From the dipole fitting method, we find that the magnitude of anisotropy is A = (2.6 ± 2.6) × 10-4, and the direction of the dipole (l = 108.2°+43.0°-76.9°, b = 7.1°+41.2°-77.5°) in the galactic coordinate system. The result is weakly dependent on redshift from the redshift tomography analysis. The anisotropy is small and the isotropic cosmological model is an excellent approximation.
Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface
NASA Astrophysics Data System (ADS)
Kosobukin, V. A.; Korotchenkov, A. V.
2016-12-01
A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.
Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo
2018-04-16
We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.
Medium-induced change of the optical response of metal clusters in rare-gas matrices
NASA Astrophysics Data System (ADS)
Xuan, Fengyuan; Guet, Claude
2017-10-01
Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.
Demonstration of current drive by a rotating magnetic dipole field
NASA Astrophysics Data System (ADS)
Giersch, L.; Slough, J. T.; Winglee, R.
2007-04-01
Abstract.A dipole-like rotating magnetic field was produced by a pair of circular, orthogonal coils inside a metal vacuum chamber. When these coils were immersed in plasma, large currents were driven outside the coils: the currents in the plasma were generated and sustained by the rotating magnetic dipole (RMD) field. The peak RMD-driven current was at roughly two RMD coil radii, and this current (60 kA m-) was sufficient to reverse the ambient magnetic field (33 G). Plasma density, electron temperature, magnetic field and current probes indicated that plasma formed inside the coils, then expanded outward until the plasma reached equilibrium. This equilibrium configuration was adequately described by single-fluid magnetohydrodynamic equilibrium, wherein the cross product of the driven current and magnetic filed was approximately equal to the pressure gradient. The ratio of plasma pressure to magnetic field pressure, β, was locally greater than unity.
Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions
NASA Astrophysics Data System (ADS)
Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.
2014-07-01
The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.
The influence of train leakage currents on the LEP dipole field
NASA Astrophysics Data System (ADS)
Bravin, E.; Brun, G.; Dehning, B.; Drees, A.; Galbraith, P.; Geitz, M.; Henrichsen, K.; Koratzinos, M.; Mugnai, G.; Tonutti, M.
The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 km, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or ≈ 20 ppm. Due to its size, the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect on the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP vacuum chamber, affecting the LEP dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented.
Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions
Onufriev, Alexey V.
2013-01-01
We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790
Subtraction method in the Second Random Phase Approximation
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo
2018-02-01
We discuss the subtraction method applied to the Second Random Phase Approximation (SRPA). This method has been proposed to overcome double counting and stability issues appearing in beyond mean-field calculations. We show that the subtraction procedure leads to a considerable reduction of the SRPA downwards shift with respect to the random phase approximation (RPA) spectra and to results that are weakly cutoff dependent. Applications to the isoscalar monopole and quadrupole response in 16O and to the low-lying dipole response in 48Ca are shown and discussed.
Studies of singlet Rydberg series of LiH derived from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gim, Yeongrok; Department of Chemistry, Ajou University, Suwon 443-749; Lee, Chun-Woo, E-mail: clee@ajou.ac.kr
2014-10-14
The 50 singlet states of LiH composed of 49 Rydberg states and one non-Rydberg ionic state derivable from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4, are studied using the multi-reference configuration interaction method combined with the Stuttgart/Köln group's effective core potential/core polarization potential method. Basis functions that can yield energy levels up to the 6g orbital of Li have been developed, and they are used with a huge number of universal Kaufmann basis functions for Rydberg states. The systematics and regularities of the physical properties such as potential energies, quantum defects, permanent dipole moments, transition dipolemore » moments, and nonadiabatic coupling matrix elements of the Rydberg series are studied. The behaviors of potential energy curves and quantum defect curves are explained using the Fermi approximation. The permanent dipole moments of the Rydberg series reveal that they are determined by the sizes of the Rydberg orbitals, which are proportional to n{sup 2}. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, with the rule Δl = ±1, except for s–d mixing, which is also accompanied by n-mixing. The members of the l-mixed Rydberg series have dipole moments with opposite directions. The first derivatives of the dipole moment curves, which show the charge-transfer component, clearly show not only mirror relationships in terms of direction but also oscillations. The transition dipole moment matrix elements of the Rydberg series are determined by the small-r region, with two consequences. One is that the transition dipole moment matrix elements show n{sup −3/2} dependence. The other is that the magnitudes of the transition dipole moment matrix elements decrease rapidly as l increases.« less
Kramers–Henneberger Form of Strong Field Theory with the Correction of Dipole Approximation
NASA Astrophysics Data System (ADS)
Huo, Yi-Ning; Li, Jian; Ma, Feng-Cai
2018-04-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11274149 and 11304185, and the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology under Grant No F12-254-1-00.
Magnetic quenching of photonic activity in Fe3O4-elastomer composite
NASA Astrophysics Data System (ADS)
Ma, Danhao; Hess, Dustin T.; Shetty, Pralav P.; Adu, Kofi W.; Bell, Richard C.; Terrones, Mauricio
2016-01-01
We report a quenching phenomenon within the visible region of the electromagnetic spectrum in the photonic response of a passive Fe3O4-silicone elastomer composite film due to magnetically aligned Fe3O4 nanoparticles. We performed systematic studies of the polarization dependence, the effect of particle size, and an in- and out-of-plane particle alignment on the optical response of the Fe3O4-silicone elastomer composites using a UV/vis/NIR spectrometer. We observed systematic redshifts in the response of the out-of-plane composite films with increasing particle alignment and weight that are attributed to dipole-induced effects. There were no observable shifts in the spectra of the in-plane films, suggesting the orientation of the magnetic dipole and the induced electric dipole play a crucial role in the optical response. A dramatic suppression to near quenching of the photonic response occurred in films containing moderate concentrations of the aligned nanoparticles. This is attributed to the interplay between the intra- and the interparticle dipoles. This occurred even when low magnetic fields were used during the curing process, suggesting that particle alignment and particle size limitation are critical in the manipulation of the photonic properties. A dipole approximation model is used to explain the quenching phenomenon. An active system of such a composite has a potential application in magneto-optic switches.
Wang, Hanfu; Bell, Richard C; Iedema, Martin J; Schenter, Gregory K; Wu, Kai; Cowin, James P
2008-05-22
Water ice usually is thought to have zero pyroelectricity by symmetry. However, biasing it with ions breaks the symmetry because of the induced partial dipole alignment. This unmasks a large pyroelectricity. Ions were soft-landed upon 1 mum films of water ice at temperatures greater than 160 K. When cooled below 140-150 K, the dipole alignment locks in. Work function measurements of these films then show high and reversible pyroelectric activity from 30 to 150 K. For an initial approximately 10 V induced by the deposited ions at 160 K, the observed bias below 150 K varies approximately as 10 Vx(T/150 K)2. This implies that water has pyroelectric coefficients as large as that of many commercial pyroelectrics, such as lead zirconate titanate (PZT). The pyroelectricity of water ice, not previously reported, is in reasonable agreement with that predicted using harmonic analysis of a model system of SPC ice. The pyroelectricity is observed in crystalline and compact amorphous ice, deuterated or not. This implies that for water ice between 0 and 150 K (such as astrophysical ices), temperature changes can induce strong electric fields (approximately 10 MV/m) that can influence their chemistry, ion trajectories, or binding.
Parity-violating electric-dipole transitions in helium
NASA Technical Reports Server (NTRS)
Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.
1980-01-01
The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question
Cheng, J L; Vermeulen, N; Sipe, J E
2017-03-06
We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response.
Molecular ub figure-of-merit studies of solid solutions
NASA Astrophysics Data System (ADS)
Healy, David; Thomas, Philip R.; Szablewski, Marek; Cross, Graham H.
1995-10-01
The dipole moments ((mu) ) of a series of zwitterionic nonlinear optical chromophores doped into poly(methyl methacrylate) have been determined. Values of between 34 D and 38 D have been measured through the fitting of a uncurtailed Langevin function to the incidence angle dependence of the p-p second harmonic intensity generated from corona poled films. It is shown that accurate values of dipole moment can only be determined when the poling fields are lower than approximately 100 MVm-1 above which existing electric field poling models appear to be inadequate. The reasons for this are as yet unknown, possible mechanisms of the effect are presented.
Geoid Anomalies and the Near-Surface Dipole Distribution of Mass
NASA Technical Reports Server (NTRS)
Turcotte, D. L.; Ockendon, J. R.
1978-01-01
Although geoid or surface gravity anomalies cannot be uniquely related to an interior distribution of mass, they can be related to a surface mass distribution. However, over horizontal distances greater than about 100 km, the condition of isostatic equilibrium above the asthenosphere is a good approximation and the total mass per unit column is zero. Thus the surface distribution of mass is also zero. For this case we show that the surface gravitational potential anomaly can be uniquely related to a surface dipole distribution of mass. Variations in the thickness of the crust and lithosphere can be expected to produce undulations in the geoid.
Auzinsh, M; Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J
2013-08-28
The rate coefficients for capture of charged particles by dipolar polarizable symmetric top molecules in the quantum collision regime are calculated within an axially nonadiabatic channel approach. It uses the adiabatic approximation with respect to rotational transitions of the target within first-order charge-dipole interaction and takes into account the gyroscopic effect that decouples the intrinsic angular momentum from the collision axis. The results are valid for a wide range of collision energies (from single-wave capture to the classical limit) and dipole moments (from the Vogt-Wannier and fly-wheel to the adiabatic channel limit).
Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R
2010-07-14
The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard; Kauczor, Joanna
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure ofmore » the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.« less
Lidar cross-sections of soot fractal aggregates: Assessment of equivalent-sphere models
NASA Astrophysics Data System (ADS)
Ceolato, Romain; Gaudfrin, Florian; Pujol, Olivier; Riviere, Nicolas; Berg, Matthew J.; Sorensen, Christopher M.
2018-06-01
This work assesses the ability of equivalent-sphere models to reproduce the optical properties of soot aggregates relevant for lidar remote sensing, i.e. the backscattering and extinction cross sections. Lidar cross-sections are computed with a spectral discrete dipole approximation model over the visible-to-infrared (400-5000 nm) spectrum and compared with equivalent-sphere approximations. It is shown that the equivalent-sphere approximation, applied to fractal aggregates, has a limited ability to calculate such cross-sections well. The approximation should thus be used with caution for the computation of broadband lidar cross-sections, especially backscattering, at small and intermediate wavelengths (e.g. UV to visible).
The UAH Spinning Terrella Experiment: A Laboratory Analog for the Earth's Magnetosphere
NASA Technical Reports Server (NTRS)
Sheldon, R. B.; Gallagher, D. L.; Craven, P. D.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The UAH Spinning Terrella Experiment has been modified to include the effect of a second magnet. This is a simple laboratory demonstration of the well-known double-dipole approximation to the Earth's magnetosphere. In addition, the magnet has been biassed $\\sim$-400V which generates a DC glow discharge and traps it in a ring current around the magnet. This ring current is easily imaged with a digital camera and illustrates several significant topological properties of a dipole field. In particular, when the two dipoles are aligned, and therefore repel, they emulate a northward IMF Bz magnetosphere. Such a geometry traps plasma in the high latitude cusps as can be clearly seen in the movies. Likewise, when the two magnets are anti-aligned, they emulate a southward IMF Bz magnetosphere with direct feeding of plasma through the x-line. We present evidence for trapping and heating of the plasma, comparing the dipole-trapped ring current to the cusp-trapped population. We also present a peculiar asymmetric ring current produced in by the plasma at low plasma densities. We discuss the similarities and dissimilarities of the laboratory analog to the collisionless Earth plasma, and implications for the interpretation of IMAGE data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, M. E., E-mail: gloriouslair@gmail.com, E-mail: galfimov@yahoo.com; Alfimov, G. L., E-mail: gloriouslair@gmail.com, E-mail: galfimov@yahoo.com; Malomed, Boris A., E-mail: malomed@post.tau.ac.il
We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate thatmore » one branch of the DS family (namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.« less
Transition properties from the Hermitian formulation of the coupled cluster polarization propagator
NASA Astrophysics Data System (ADS)
Tucholska, Aleksandra M.; Modrzejewski, Marcin; Moszynski, Robert
2014-09-01
Theory of one-electron transition density matrices has been formulated within the time-independent coupled cluster method for the polarization propagator [R. Moszynski, P. S. Żuchowski, and B. Jeziorski, Coll. Czech. Chem. Commun. 70, 1109 (2005)]. Working expressions have been obtained and implemented with the coupled cluster method limited to single, double, and linear triple excitations (CC3). Selected dipole and quadrupole transition probabilities of the alkali earth atoms, computed with the new transition density matrices are compared to the experimental data. Good agreement between theory and experiment is found. The results obtained with the new approach are of the same quality as the results obtained with the linear response coupled cluster theory. The one-electron density matrices for the ground state in the CC3 approximation have also been implemented. The dipole moments for a few representative diatomic molecules have been computed with several variants of the new approach, and the results are discussed to choose the approximation with the best balance between the accuracy and computational efficiency.
Code comparison for accelerator design and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
1988-01-01
We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary inmore » these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs.« less
NASA Astrophysics Data System (ADS)
Schmidt, V.; Lehrach, A.
2017-07-01
The Jülich Electric Dipole moment Investigations (JEDI) collaboration in Julich is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. Ensuring a precise measurement, various beam and spin manipulating effects have to be considered and investigated. A distortion of the closed orbit is one of the major sources for systematic uncertainties. Therefore misalignments of magnets and residual power supply oscillations are simulated using the MAD-X code in order to analyse their effect on the orbit. The underlying model for all simulations includes the dipoles, quadrupoles and sextupoles at COSY as well as the corrector magnets and BPMs (Beam Position Monitors). Since most sextupoles are only used during beam extraction, the sextupole strengths are set to zero resulting in a linear machine. The optics is adjusted in a way that the dispersion is zero in the straight sections. The closed orbit studies are performed for deuterons with a momentum of 970 MeV/c.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talman, Richard M.; Talman, John D.
Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10 –29e–cm or greater will produce a statisticallymore » significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial “symplectification”). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to “resurrect,” or reverse engineer, the “AGS-analog” all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM’s. As a result, the companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.« less
Planck 2015 results: V. LFI calibration
Ade, P. A. R.; Aghanim, N.; Ashdown, M.; ...
2016-09-20
In this paper, we present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% inmore » amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. Finally, we provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release.« less
Planck 2015 results: V. LFI calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Ashdown, M.
In this paper, we present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% inmore » amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. Finally, we provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release.« less
Planck 2015 results. V. LFI calibration
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% in amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. We provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release.
NASA Technical Reports Server (NTRS)
Shambayati, Shervin
2001-01-01
In order to evaluate performance of strong channel codes in presence of imperfect carrier phase tracking for residual carrier BPSK modulation in this paper an approximate 'brick wall' model is developed which is independent of the channel code type for high data rates. It is shown that this approximation is reasonably accurate (less than 0.7dB for low FERs for (1784,1/6) code and less than 0.35dB for low FERs for (5920,1/6) code). Based on the approximation's accuracy, it is concluded that the effects of imperfect carrier tracking are more or less independent of the channel code type for strong channel codes. Therefore, the advantage that one strong channel code has over another with perfect carrier tracking translates to nearly the same advantage under imperfect carrier tracking conditions. This will allow the link designers to incorporate projected channel code performance of strong channel codes into their design tables without worrying about their behavior in the face of imperfect carrier phase tracking.
Nuclear Deformation and Neutron Excess as Competing Effects for Dipole Strength in the Pygmy Region
NASA Astrophysics Data System (ADS)
Massarczyk, R.; Schwengner, R.; Dönau, F.; Frauendorf, S.; Anders, M.; Bemmerer, D.; Beyer, R.; Bhatia, C.; Birgersson, E.; Butterling, M.; Elekes, Z.; Ferrari, A.; Gooden, M. E.; Hannaske, R.; Junghans, A. R.; Kempe, M.; Kelley, J. H.; Kögler, T.; Matic, A.; Menzel, M. L.; Müller, S.; Reinhardt, T. P.; Röder, M.; Rusev, G.; Schilling, K. D.; Schmidt, K.; Schramm, G.; Tonchev, A. P.; Tornow, W.; Wagner, A.
2014-02-01
The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A =124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.
Shape-Independent Limits to Near-Field Radiative Heat Transfer
NASA Astrophysics Data System (ADS)
Miller, Owen D.; Johnson, Steven G.; Rodriguez, Alejandro W.
2015-11-01
We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ |2/Im χ , optimally mediated by near-field photon transfer proportional to 1 /d2 across a separation distance d . Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures.
Nuclear deformation and neutron excess as competing effects for dipole strength in the pygmy region.
Massarczyk, R; Schwengner, R; Dönau, F; Frauendorf, S; Anders, M; Bemmerer, D; Beyer, R; Bhatia, C; Birgersson, E; Butterling, M; Elekes, Z; Ferrari, A; Gooden, M E; Hannaske, R; Junghans, A R; Kempe, M; Kelley, J H; Kögler, T; Matic, A; Menzel, M L; Müller, S; Reinhardt, T P; Röder, M; Rusev, G; Schilling, K D; Schmidt, K; Schramm, G; Tonchev, A P; Tornow, W; Wagner, A
2014-02-21
The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.
Pelloni, S; Provasi, P F; Pagola, G I; Ferraro, M B; Lazzeretti, P
2017-12-07
The trace of tensors that account for chiroptical response of the H 2 O 2 molecule is a function of the HO-OH dihedral angle. It vanishes at 0° and 180°, due to the presence of molecular symmetry planes, but also for values in the range 90-100° of this angle, in which the molecule is unquestionably chiral. Such an atypical effect is caused by counterbalancing contributions of diagonal tensor components with nearly maximal magnitude but opposite sign, determined by electron flow in open or closed helical paths, and associated with induced electric and magnetic dipole moments and anapole moments. For values of dihedral angle external to the 90-100° interval, the helical paths become smaller in size, thus reducing the amount of cancellation among diagonal components. Shrinking of helical paths determines the appearance of extremum values of tensor traces approximately at 50° and 140° dihedral angles.
The Ba 4d-4f giant dipole resonance in complex Ba/Si compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahle, Ch. J.; Sternemann, C.; Sternemann, H.
2014-08-06
The shape of the Ba 4d–4f giant dipole resonance is studied for Ba atoms embedded inside complex Si networks covering structures consisting of Si nanocages and nanotubes, i.e. the clathrate Ba 8Si 46, the complex compound BaSi 6, and the semiconducting BaSi 2. Here, non-resonant x-ray Raman scattering is used to investigate confinement effects on the shape of the giant resonance in the vicinity of the Ba NIV, V-edge. The distinct momentum transfer dependence of the spectra is analyzed and discussed. The measurements are compared to calculations of the giant resonance within time-dependent local density approximation in the dipole limit.more » No modulation of the giant resonance's shape for Ba atoms confined in different local environments was observed, in contrast to the calculations. The absence of such shape modulation for complex Ba/Si compounds is discussed providing important implications for further studies of giant resonance phenomena utilizing both theory and experiment.« less
The Ba 4d-4f giant dipole resonance in complex Ba/Si compounds
NASA Astrophysics Data System (ADS)
Sahle, Ch J.; Sternemann, C.; Sternemann, H.; Tse, J. S.; Gordon, R. A.; Desgreniers, S.; Maekawa, S.; Yamanaka, S.; Lehmkühler, F.; Wieland, D. C. F.; Mende, K.; Huotari, S.; Tolan, M.
2014-02-01
The shape of the Ba 4d-4f giant dipole resonance is studied for Ba atoms embedded inside complex Si networks covering structures consisting of Si nanocages and nanotubes, i.e. the clathrate Ba8Si46, the complex compound BaSi6, and the semiconducting BaSi2. Here, non-resonant x-ray Raman scattering is used to investigate confinement effects on the shape of the giant resonance in the vicinity of the Ba NIV, V-edge. The distinct momentum transfer dependence of the spectra is analyzed and discussed. The measurements are compared to calculations of the giant resonance within time-dependent local density approximation in the dipole limit. No modulation of the giant resonance’s shape for Ba atoms confined in different local environments was observed, in contrast to the calculations. The absence of such shape modulation for complex Ba/Si compounds is discussed providing important implications for further studies of giant resonance phenomena utilizing both theory and experiment.
Can nonadditive dispersion forces explain chain formation of nanoparticles?
NASA Astrophysics Data System (ADS)
Kwaadgras, Bas W.; Verdult, Maarten W. J.; Dijkstra, Marjolein; van Roij, René
2013-03-01
We study to what extent dielectric nanoparticles prefer to self-assemble into linear chains or into more compact structures. To calculate the Van der Waals (VdW) attraction between the clusters we use the Coupled Dipole Method (CDM), which treats each atom in the nanoparticle as an inducible oscillating point dipole. The VdW attraction then results from the full many-body interactions between the dipoles. For non-capped nanoparticles, we calculate in which configuration the VdW attraction is maximal. We find that in virtually all cases we studied, many-body effects only result in local potential minima at the linear configuration, as opposed to global ones, and that these metastable minima are in most cases rather shallow compared to the thermal energy. In this work, we also compare the CDM results with those from Hamaker-de Boer and Axilrod-Teller theory to investigate the influence of the many-body effects and the accuracy of these two approximate methods.
Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.
NASA Astrophysics Data System (ADS)
Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li
2017-11-01
In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Zhiwei; Halle, Bertil, E-mail: bertil.halle@bpc.lu.se
2016-07-21
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with amore » single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued (“imaginary”) part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.« less
Modification of LAMPF's magnet-mapping code for offsets of center coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, J.W.; Gomulka, S.; Merrill, F.
1991-01-01
One of the magnet measurements performed at LAMPF is the determination of the cylindrical harmonics of a quadrupole magnet using a rotating coil. The data are analyzed with the code HARMAL to derive the amplitudes of the harmonics. Initially, the origin of the polar coordinate system is the axis of the rotating coil. A new coordinate system is found by a simple translation of the old system such that the dipole moment in the new system is zero. The origin of this translated system is referred to as the magnetic center. Given this translation, the code calculates the coefficients ofmore » the cylindrical harmonics in the new system. The code has been modified to use an analytical calculation to determine these new coefficients. The method of calculation is described and some implications of this formulation are presented. 8 refs., 2 figs.« less
Computer simulations of equilibrium magnetization and microstructure in magnetic fluids
NASA Astrophysics Data System (ADS)
Rosa, A. P.; Abade, G. C.; Cunha, F. R.
2017-09-01
In this work, Monte Carlo and Brownian Dynamics simulations are developed to compute the equilibrium magnetization of a magnetic fluid under action of a homogeneous applied magnetic field. The particles are free of inertia and modeled as hard spheres with the same diameters. Two different periodic boundary conditions are implemented: the minimum image method and Ewald summation technique by replicating a finite number of particles throughout the suspension volume. A comparison of the equilibrium magnetization resulting from the minimum image approach and Ewald sums is performed by using Monte Carlo simulations. The Monte Carlo simulations with minimum image and lattice sums are used to investigate suspension microstructure by computing the important radial pair-distribution function go(r), which measures the probability density of finding a second particle at a distance r from a reference particle. This function provides relevant information on structure formation and its anisotropy through the suspension. The numerical results of go(r) are compared with theoretical predictions based on quite a different approach in the absence of the field and dipole-dipole interactions. A very good quantitative agreement is found for a particle volume fraction of 0.15, providing a validation of the present simulations. In general, the investigated suspensions are dominated by structures like dimmer and trimmer chains with trimmers having probability to form an order of magnitude lower than dimmers. Using Monte Carlo with lattice sums, the density distribution function g2(r) is also examined. Whenever this function is different from zero, it indicates structure-anisotropy in the suspension. The dependence of the equilibrium magnetization on the applied field, the magnetic particle volume fraction, and the magnitude of the dipole-dipole magnetic interactions for both boundary conditions are explored in this work. Results show that at dilute regimes and with moderate dipole-dipole interactions, the standard method of minimum image is both accurate and computationally efficient. Otherwise, lattice sums of magnetic particle interactions are required to accelerate convergence of the equilibrium magnetization. The accuracy of the numerical code is also quantitatively verified by comparing the magnetization obtained from numerical results with asymptotic predictions of high order in the particle volume fraction, in the presence of dipole-dipole interactions. In addition, Brownian Dynamics simulations are used in order to examine magnetization relaxation of a ferrofluid and to calculate the magnetic relaxation time as a function of the magnetic particle interaction strength for a given particle volume fraction and a non-dimensional applied field. The simulations of magnetization relaxation have shown the existence of a critical value of the dipole-dipole interaction parameter. For strength of the interactions below the critical value at a given particle volume fraction, the magnetic relaxation time is close to the Brownian relaxation time and the suspension has no appreciable memory. On the other hand, for strength of dipole interactions beyond its critical value, the relaxation time increases exponentially with the strength of dipole-dipole interaction. Although we have considered equilibrium conditions, the obtained results have far-reaching implications for the analysis of magnetic suspensions under external flow.
XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms
NASA Astrophysics Data System (ADS)
Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.
2017-12-01
Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höche, Stefan; Reichelt, Daniel; Siegert, Frank
We present a systematic study of differences between NLL resummation and parton showers. We first construct a Markovian Monte-Carlo algorithm for resummation of additive observables in electron-positron annihilation. Approximations intrinsic to the pure NLL result are then removed, in order to obtain a traditional, momentum and probability conserving parton shower based on the coherent branching formalism. The impact of each approximation is studied, and an overall comparison is made between the parton shower and pure NLL resummation. Differences compared to modern parton-shower algorithms formulated in terms of color dipoles are analyzed.
A database of microwave and sub-millimetre ice particle single scattering properties
NASA Astrophysics Data System (ADS)
Ekelund, Robin; Eriksson, Patrick
2016-04-01
Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric Radiative Transfer Simulator) project.
NASA Astrophysics Data System (ADS)
Martin-Belda, D.; Cameron, R. H.
2016-02-01
Aims: We aim to determine the effect of converging flows on the evolution of a bipolar magnetic region (BMR), and to investigate the role of these inflows in the generation of poloidal flux. We also discuss whether the flux dispersal due to turbulent flows can be described as a diffusion process. Methods: We developed a simple surface flux transport model based on point-like magnetic concentrations. We tracked the tilt angle, the magnetic flux and the axial dipole moment of a BMR in simulations with and without inflows and compared the results. To test the diffusion approximation, simulations of random walk dispersal of magnetic features were compared against the predictions of the diffusion treatment. Results: We confirm the validity of the diffusion approximation to describe flux dispersal on large scales. We find that the inflows enhance flux cancellation, but at the same time affect the latitudinal separation of the polarities of the bipolar region. In most cases the latitudinal separation is limited by the inflows, resulting in a reduction of the axial dipole moment of the BMR. However, when the initial tilt angle of the BMR is small, the inflows produce an increase in latitudinal separation that leads to an increase in the axial dipole moment in spite of the enhanced flux destruction. This can give rise to a tilt of the BMR even when the BMR was originally aligned parallel to the equator.
NASA Astrophysics Data System (ADS)
Zakharov, Yuri P.; Nikitin, Sergei A.; Ponomarenko, Arnold G.; Minami, Shigeyuki
1997-05-01
This paper discusses the possible consequences to the Earth's magnetosphere, when due to too short an advanced warning, attempts at mitigation of a near-Earth object (NEO) must be made in close proximity to the Earth. The energy Eo, and explosive plasma release during impact may be compared with the kinetic energy Ek of the NEO and with the energy, Ee (Ee approximately Ek), needed for NEO deflection by a strong (protective force) explosive, at distances close to the scale of the magnetosphere. If the energy, Em, of the Earth's dipole field latter is relatively small (Em is less than Eo for a NEO size approximately 1 km), global or even catastrophic disturbances could occur. These ecologically important magnetospheric aspects of the NEO impact problem have been discussed recently; particularly in the context of the comet SL-9/Jupiter impact. In the latter case, the effect on Jupiter's magnetosphere of the 'NEO' explosions was very small (x equals Eo/Em approximately 0.001, where Em is the 'outer' magnetic energy of the planetary dipole field) and the corresponding model of its 'fireball' development could be simulated numerically in 'zero' approximation, with the assumption of an undisturbed magnetospheric media as a whole. However, in general, and, in the rather probable case of NEO impacts with values x approximately 1, the development of such 3D, nonstationary MHD or PIC-models at this time. Such information can be obtained from new kinds of simulation experiments with the laboratory magnetosphere, the so-called 'terrella'.
Project DIPOLE WEST - Multiburst Environment (Non-Simultaneous Detonations)
1976-09-01
PAGE (WIMn Dat• Bntered) Unclassified SECURITY CLASSIFICATION OP’ THIS PAGE(ft• Data .Bnt......, 20. Abstract Purpose of the series was to obtain...HULL hydrodynamic air blast code show good correlation. UNCLASSIFIED SECUFUTY CLASSIFICATION OF THIS PA.GE(When Date Bntered) • • 1...supervision. Contributions were also made by Dr. John Dewey, University of Victoria; Mr. A. P. R. Lambert, Canadian General Electric; Mr. Charles Needham
Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, D.; Firpo, Marie-Christine
2002-11-01
We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Cho, Minhaeng
2013-05-01
The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.
A new discrete dipole kernel for quantitative susceptibility mapping.
Milovic, Carlos; Acosta-Cabronero, Julio; Pinto, José Miguel; Mattern, Hendrik; Andia, Marcelo; Uribe, Sergio; Tejos, Cristian
2018-09-01
Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines. Copyright © 2018 Elsevier Inc. All rights reserved.
Energy levels and radiative rates for Ne-like ions from Cu to Ga
NASA Astrophysics Data System (ADS)
Singh, Narendra; Aggarwal, Sunny
2017-11-01
Energy levels, lifetimes and wave function compositions are computed for 127 fine structural levels in Ne-like ions (Z=29{-}31). Configuration interaction has been included among 51 configurations (generating 1016 levels) and multiconfigurational Dirac-Fock method is used to generate the wave functions. Similar calculations have also been performed using the fully relativistic flexible atomic code (FAC). Transition wavelength, oscillator strength, transition probabilities and line strength are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions from the ground level. We compared our calculated results with the available data in the literature. The calculated results are found to be in close agreement with the previous results. Further, we predict some new atomic data which may be important for plasma diagnostics.
NASA Astrophysics Data System (ADS)
Modarres, M.; Masouminia, M. R.; Hosseinkhani, H.; Olanj, N.
2016-01-01
In the spirit of performing a complete phenomenological investigation of the merits of Kimber-Martin-Ryskin (KMR) and Martin-Ryskin-Watt (MRW) unintegrated parton distribution functions (UPDF), we have computed the longitudinal structure function of the proton, FL (x ,Q2), from the so-called dipole approximation, using the LO and the NLO-UPDF, prepared in the respective frameworks. The preparation process utilizes the PDF of Martin et al., MSTW2008-LO and MSTW2008-NLO, as the inputs. Afterwards, the numerical results are undergone a series of comparisons against the exact kt-factorization and the kt-approximate results, derived from the work of Golec-Biernat and Stasto, against each other and the experimental data from ZEUS and H1 Collaborations at HERA. Interestingly, our results show a much better agreement with the exact kt-factorization, compared to the kt-approximate outcome. In addition, our results are completely consistent with those prepared from embedding the KMR and MRW UPDF directly into the kt-factorization framework. One may point out that the FL, prepared from the KMR UPDF shows a better agreement with the exact kt-factorization. This is despite the fact that the MRW formalism employs a better theoretical description of the DGLAP evolution equation and has an NLO expansion. Such unexpected consequence appears, due to the different implementation of the angular ordering constraint in the KMR approach, which automatically includes the resummation of ln (1 / x), BFKL logarithms, in the LO-DGLAP evolution equation.
Restoring the Pauli principle in the random phase approximation ground state
NASA Astrophysics Data System (ADS)
Kosov, D. S.
2017-12-01
Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.
Buried Object Classification using a Sediment Volume Imaging SAS and Electromagnetic Gradiometer
2006-09-01
field data with simulated RTG data using AST’s in-house magnetic modeling tool EMAGINE . Given a set of input dipole moments, or pa- rameters to...approximate a moment by assuming the object is a prolate ellipsoid shell, EMAGINE uses Green’s func- tion formulations to generate three-component
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
NASA Astrophysics Data System (ADS)
Martínez-Casado, R.; Vega, J. L.; Sanz, A. S.; Miret-Artés, S.
2007-08-01
The study of diffusion and low-frequency vibrational motions of particles on metal surfaces is of paramount importance; it provides valuable information on the nature of the adsorbate-substrate and substrate-substrate interactions. In particular, the experimental broadening observed in the diffusive peak with increasing coverage is usually interpreted in terms of a dipole-dipole-like interaction among adsorbates via extensive molecular dynamics calculations within the Langevin framework. Here we present an alternative way to interpret this broadening by means of a purely stochastic description, namely the interacting single-adsorbate approximation, where two noise sources are considered: (1) a Gaussian white noise accounting for the surface friction and temperature, and (2) a white shot noise replacing the interaction potential between adsorbates. Standard Langevin numerical simulations for flat and corrugated surfaces (with a separable potential) illustrate the dynamics of Na atoms on a Cu(100) surface which fit fairly well to the analytical expressions issued from simple models (free particle and anharmonic oscillator) when the Gaussian approximation is assumed. A similar broadening is also expected for the frustrated translational mode peaks.
Glass-Glass Transitions by Means of an Acceptor-Donor Percolating Electric-Dipole Network
NASA Astrophysics Data System (ADS)
Zhang, Le; Lou, Xiaojie; Wang, Dong; Zhou, Yan; Yang, Yang; Kuball, Martin; Carpenter, Michael A.; Ren, Xiaobing
2017-11-01
We report the ferroelectric glass-glass transitions in KN (K+/Nb5 +) -doped BaTiO3 ferroelectric ceramics, which have been proved by x-ray diffraction profile and Raman spectra data. The formation of glass-glass transitions can be attributed to the existence of cubic (C )-tetragonal (T )-orthorhombic (O )-rhombohedral (R ) ferroelectric transitions in short-range order. These abnormal glass-glass transitions can perform very small thermal hysteresis (approximately 1.0 K ) with a large dielectric constant (approximately 3000), small remanent polarization Pr , and relative high maximum polarization Pm remaining over a wide temperature range (220-350 K) under an electrical stimulus, indicating the potential applications in dielectric recoverable energy-storage devices with high thermal reliability. Further phase field simulations suggest that these glass-glass transitions are induced by the formation of a percolating electric defect-dipole network (PEDN). This proper PEDN breaks the long-range ordered ferroelectric domain pattern and results in the local phase transitions at the nanoscale. Our work may further stimulate the fundamental physical theory and accelerate the development of dielectric energy-storing devices.
NASA Technical Reports Server (NTRS)
Burch, J. L.
1972-01-01
Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Atefeh; Miri, MirFaez
2018-01-01
We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E 0 cos ( ω t ) . The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.
Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation.
Neuman, Tomáš; Esteban, Ruben; Casanova, David; García-Vidal, Francisco J; Aizpurua, Javier
2018-04-11
As the size of a molecular emitter becomes comparable to the dimensions of a nearby optical resonator, the standard approach that considers the emitter to be a point-like dipole breaks down. By adoption of a quantum description of the electronic transitions of organic molecular emitters, coupled to a plasmonic electromagnetic field, we are able to accurately calculate the position-dependent coupling strength between a plasmon and an emitter. The spatial distribution of excitonic and photonic quantum states is found to be a key aspect in determining the dynamics of molecular emission in ultrasmall cavities both in the weak and strong coupling regimes. Moreover, we show that the extreme localization of plasmonic fields leads to the selection rule breaking of molecular excitations.
Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface.
LeBard, David N; Matyushov, Dmitry V
2010-07-22
Numerical simulations of hydrated proteins show that protein hydration shells are polarized into a ferroelectric layer with large values of the average dipole moment magnitude and the dipole moment variance. The emergence of the new polarized mesophase dramatically alters the statistics of electrostatic fluctuations at the protein-water interface. The linear response relation between the average electrostatic potential and its variance breaks down, with the breadth of the electrostatic fluctuations far exceeding the expectations of the linear response theories. The dynamics of these non-Gaussian electrostatic fluctuations are dominated by a slow (approximately = 1 ns) component that freezes in at the temperature of the dynamical transition of proteins. The ferroelectric shell propagates 3-5 water diameters into the bulk.
Enhanced directional second harmonic radiation via nonlinear interference in 1D metamaterials
NASA Astrophysics Data System (ADS)
Guo, B. S.; Loo, Y. L.; Zhao, Q.; Ong, C. K.
2018-06-01
By using a one-dimensional nonlinear metamaterial in the experiment, we achieve a directional second harmonic radiation via nonlinear interference at approximately 2.5 GHz. Each meta-atom has the structure of coupled split-ring resonators and two varactors arranged parallel (symmetric) or antiparallel (antisymmetric) to each other. With an incident power of approximately ‑2.7 dBm, the power of the emitted directional wave from the sample is at the scale of nanowatt. This relatively high magnitude of directional nonlinear power is the result of the 1D metamaterial abilities in exhibiting nonlinear magnetoelectric coupling, as well as supporting an electric dipole or magnetic dipole resonance within a narrow second harmonic frequency range.
Study of a Flexible Low Profile Tunable Dipole Antenna Using Barium Strontium Titanate Varactors
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas; Miranda, Felix A.
2014-01-01
In this paper a flexible low profile dipole antenna using a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells is presented. The varactor chips were placed only along one dimension of the FSS to avoid the use of vias and simplify the DC bias network. The antenna uses overlapping metallic plates that resemble fish scales as a ground plane to improve the flexibility of the multi-material stack structure. The measured data of the antenna demonstrate tunability from 2.42 GHz to 2.66 GHz and 1.3 dB gain drop when using overlapping metallic plates instead of continuous ground plane. The total antenna thickness is approximately lambda/24.
Satellite sweeping of electrons at Neptune and Uranus
NASA Technical Reports Server (NTRS)
Cooper, John F.
1990-01-01
Knowledge of satellite sweeping parameters at Neptune and Uranus, and of their functional dependences on particle energy and pitch angle, can be critical in the proper identification of parent absorbers for observed absorption signatures in regions where OTD (offset, tilted dipole) models are valid representations of the measured magnetic fields. In this paper, critical electron energies are calculated for longitudinal drift resonance, snowplow (i.e., strong) absorption, leapfrog, and corkscrew effects, using a reduced version of OTD that neglects nonaxial dipole offsets. Earlier analytic work on sweeping rates is extended to give the radial dependence of these rates within the minimum-L region and to set limits on diffusion of electrons with the simplifying approximation that leapfrog effects are ignored.
Distributed magnetic field positioning system using code division multiple access
NASA Technical Reports Server (NTRS)
Prigge, Eric A. (Inventor)
2003-01-01
An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intravaia, F.; Behunin, R. O.; Henkel, C.
Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.
Violation of the zero-force theorem in the time-dependent Krieger-Li-Iafrate approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundt, Michael; Kuemmel, Stephan; Leeuwen, Robert van
2007-05-15
We demonstrate that the time-dependent Krieger-Li-Iafrate approximation in combination with the exchange-only functional violates the zero-force theorem. By analyzing the time-dependent dipole moment of Na{sub 5} and Na{sub 9}{sup +}, we furthermore show that this can lead to an unphysical self-excitation of the system depending on the system properties and the excitation strength. Analytical aspects, especially the connection between the zero-force theorem and the generalized-translation invariance of the potential, are discussed.
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Ruiz-Martínez, E.; López-Hernández, O.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2018-01-01
An advanced undergraduate experiment to study the 5 P 3 / 2 → 6 P 3 / 2 electric quadrupole transition in rubidium atoms is presented. The experiment uses two external cavity diode lasers, one operating at the D2 rubidium resonance line and the other built with commercial parts to emit at 911 nm. The lasers produce the 5 s → 5 p → 6 p excitation sequence in which the second step is the forbidden transition. Production of atoms in the 6 P 3 / 2 state is observed by detection of the 420 nm fluorescence that results from electric dipole decay into the ground state. Lines whose widths are significantly narrower than the Doppler width are used to study the hyperfine structure of the 6 P 3 / 2 state in rubidium. The spectra illustrate characteristics unique to electric dipole forbidden transitions, like the electric quadrupole selection rules; they are also used to show general aspects of two-color laser spectroscopy such as velocity selection and hyperfine pumping.
Individual Low-Energy Toroidal Dipole State in
NASA Astrophysics Data System (ADS)
Nesterenko, V. O.; Repko, A.; Kvasil, J.; Reinhard, P.-G.
2018-05-01
The low-energy dipole excitations in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement.more » These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.« less
Low frequency oscillations in total ozone measurements
NASA Technical Reports Server (NTRS)
Gao, X. H.; Stanford, J. L.
1989-01-01
Low frequency oscillations with periods of approximately one to two months are found in eight years of global grids of total ozone data from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The low frequency oscillations corroborate earlier analyses based on four years of data. In addition, both annual and seasonal one-point correlation maps based on the 8-year TOMS data are presented. The results clearly show a standing dipole in ozone perturbations, oscillating with 35 to 50 day periods over the equatorial Indian Ocean-west Pacific region. This contrasts with the eastward moving dipole reported in other data sets. The standing ozone dipole appears to be a dynamical feature associated with vertical atmospheric motions. Consistent with prior analyses based on lower stratospheric temperature fields, large-scale standing patterns are also found in the extratropics of both hemispheres, correlated with ozone fluctuations over the equatorial west Pacific. In the Northern Hemisphere, a standing pattern is observed extending from the tropical Indian Ocean to the north Pacific, across North America, and down to the equatorial Atlantic Ocean region. This feature is most pronounced in the NH summer.
Yao, Dezhong
2017-03-01
Currently, average reference is one of the most widely adopted references in EEG and ERP studies. The theoretical assumption is the surface potential integral of a volume conductor being zero, thus the average of scalp potential recordings might be an approximation of the theoretically desired zero reference. However, such a zero integral assumption has been proved only for a spherical surface. In this short communication, three counter-examples are given to show that the potential integral over the surface of a dipole in a volume conductor may not be zero. It depends on the shape of the conductor and the orientation of the dipole. This fact on one side means that average reference is not a theoretical 'gold standard' reference, and on the other side reminds us that the practical accuracy of average reference is not only determined by the well-known electrode array density and its coverage but also intrinsically by the head shape. It means that reference selection still is a fundamental problem to be fixed in various EEG and ERP studies.
On Geomagnetism and Paleomagnetism I
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
2000-01-01
A partial description of Earth's broad scale, core-source magnetic field has been developed and tested three ways. The description features an expected, or mean, spatial magnetic power spectrum that is approximately inversely proportional to horizontal wavenumber atop Earth's core. This multipole spectrum describes a magnetic energy range; it is not steep enough for Gubbins' magnetic dissipation range. Temporal variations of core multipole powers about mean values are to be expected and are described statistically, via trial probability distribution functions, instead of deterministically, via trial solution of closed transport equations. The distributions considered here are closed and neither require nor prohibit magnetic isotropy. The description is therefore applicable to, and tested against, both dipole and low degree non-dipole fields. In Part 1, a physical basis for an expectation spectrum is developed and checked. The description is then combined with main field models of twentieth century satellite and surface geomagnetic field measurements to make testable predictions of the radius of Earth's core. The predicted core radius is 0.7% above the 3480 km seismological value. Partial descriptions of other planetary dipole fields are noted.
NASA Technical Reports Server (NTRS)
1982-01-01
Experiments in Curie depth estimation from long wavelength magnetic anomalies are summarized. The heart of the work is equivalent-layer-type magnetization models derived by inversion of high-elevation, long wavelength magnetic anomaly data. The methodology is described in detail in the above references. A magnetization distribution in a thin equivalent layer at the Earth's surface having maximum detail while retaining physical significance, and giving rise to a synthetic anomaly field which makes a best fit to the observed field in a least squares sense is discussed. The apparent magnetization contrast in the equivalent layer is approximated using an array of dipoles distributed in equal area at the Earth's surface. The dipoles are pointed in the direction of the main magnetic field, which carries the implicit assumption that crustal magnetization is dominantly induced or viscous. The determination of the closest possible dipole spacing giving a stable inversion to a solution having physical significance is accomplished by plotting the standard deviation of the solution parameters against their spatial separation for a series of solutions.
Boundary Between Stable and Unstable Regimes of Accretion
NASA Astrophysics Data System (ADS)
Blinova, A. A.; Lovelace, R. V. E.; Romanova, M. M.
2014-01-01
We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a "cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction), which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk) and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star). For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41
Global Hybrid Simulation of Alfvenic Waves Associated with Magnetotail Reconnection and Fast Flows
NASA Astrophysics Data System (ADS)
Cheng, L.; Lin, Y.; Wang, X.; Perez, J. D.
2017-12-01
Alfvenic fluctuations have been observed near the magnetotail plasma sheet boundary layer associated with fast flows. In this presentation, we use the Auburn 3-D Global Hybrid code (ANGIE3D) to investigate the generation and propagation of Alfvenic waves in the magnetotail. Shear Alfven waves and kinetic Alfven waves (KAWs) are found to be generated in magnetic reconnection in the plasma sheet as well as in the dipole-like field region of the magnetosphere, carrying Poynting flux along magnetic field lines toward the ionosphere, and the wave structure is strongly altered by the flow braking in the tail. The 3-D structure of the wave electromagnetic field and the associated parallel currents in reconnection and the dipole-like field region is presented. The Alfvenic waves exhibit a turbulence spectrum. The roles of these Alfvenic waves in ion heating is discussed.
The Atomic Origin of the Reflection Law
ERIC Educational Resources Information Center
Prytz, Kjell
2016-01-01
It will be demonstrated how the reflection law may be derived on an atomic basis using the plane wave approximation together with Huygens' principle. The model utilized is based on the electric dipole character of matter originating from its molecular constituents. This approach is not new but has, since it was first introduced by Ewald and Oseen…
Shelton, David; Boreman, Glenn; D'Archangel, Jeffrey
2015-11-10
Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 .mu.m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.
A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.
2004-01-01
The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.
Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation
NASA Astrophysics Data System (ADS)
Pinilla, Samuel; Poveda, Juan; Arguello, Henry
2018-03-01
Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.
NASA Technical Reports Server (NTRS)
Padial, N.; Csanak, G.; Mckoy, B. V.; Langhoff, P. W.
1981-01-01
Vertical-electronic static-exchange photoexcitation and ionization cross sections are reported which provide a first approximation to the complete dipole spectrum of CO2. Separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths, and Stieltjes-Chebyshev moment methods were used in the development. Detailed comparisons were made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e, 2e) photoelectron spectroscopy. Results show that the separate-channel static-exchange approximation is generally satisfactory in CO2.
Dynamically assisted Schwinger effect beyond the spatially-uniform-field approximation
NASA Astrophysics Data System (ADS)
Aleksandrov, I. A.; Plunien, G.; Shabaev, V. M.
2018-06-01
We investigate the phenomenon of electron-positron pair production from vacuum in the presence of a strong electric field superimposed by a weak but fast varying pulse which substantially increases the total particle yield. We employ a nonperturbative numerical technique and perform the calculations beyond the spatially-uniform-field approximation, i.e., dipole approximation, taking into account the coordinate dependence of the fast component. The analysis of the main characteristics of the pair-production process (momentum spectra of particles and total amount of pairs) reveals a number of important features which are absent within the previously used approximation. In particular, the structure of the momentum distribution is modified both qualitatively and quantitatively, and the total number of pairs created as well as the enhancement factor due to dynamical assistance become significantly smaller.
Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, Diego
We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Oleg V.; Smirnov, Mikhail S.; Kondratenko, Tamara S.; Ambrosevich, Sergey A.; Metlin, Mikhail T.; Grevtseva, Irina G.; Perepelitsa, Aleksey S.
2017-12-01
Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β = 0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29-0.41.
The permanent electric dipole moment of thorium sulfide, ThS.
Le, Anh; Heaven, Michael C; Steimle, Timothy C
2014-01-14
Numerous rotational lines of the {18.26}1-X(1)Σ(+) band system of thorium sulfide, ThS, were recorded near 547.6 nm at a resolution of approximately 30 MHz. Measurements were made under field-free conditions, and in the presence of a static electric field. The field-free spectrum was analyzed to produce rotational and Λ-doubling parameters. The Stark shifts induced by the electric field were analyzed to determine permanent electric dipole moments, μ⃗el, of 4.58(10) D and 6.72(5) D for the X(1)Σ(+) (v = 0) and {18.26}1 states, respectively. The results are compared with the predictions of previous and new electronic structure calculations for ThS, and the properties of isovalent ThO.
Rotational dynamics of a diatomic molecular ion in a Paul trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemloo, A.; Dion, C. M., E-mail: claude.dion@umu.se
We present models for a heteronuclear diatomic molecular ion in a linear Paul trap in a rigid-rotor approximation, one purely classical and the other where the center-of-mass motion is treated classically, while rotational motion is quantized. We study the rotational dynamics and their influence on the motion of the center-of-mass, in the presence of the coupling between the permanent dipole moment of the ion and the trapping electric field. We show that the presence of the permanent dipole moment affects the trajectory of the ion and that it departs from the Mathieu equation solution found for atomic ions. For themore » case of quantum rotations, we also evidence the effect of the above-mentioned coupling on the rotational states of the ion.« less
Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.
2012-06-01
The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-β (local β ˜ 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-β confinement.
Nuclear dipole polarizability from mean-field modeling constrained by chiral effective field theory
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Lim, Yeunhwan; Holt, Jeremy W.; Ko, Che Ming
2018-02-01
We construct a new Skyrme interaction Skχm* by fitting the equation of state and nucleon effective masses in asymmetric nuclear matter from chiral two- and three-body forces as well as the binding energies of finite nuclei. Employing this interaction to study the electric dipole polarizabilities of 48Ca, 68Ni, 120Sn, and 208Pb in the random-phase approximation, we find that the theoretical predictions are in good agreement with experimentally measured values without additional fine tuning of the Skyrme interaction, thus confirming the usefulness of the new Skyrme interaction in studying the properties of nuclei. We further use this interaction to study the neutron skin thicknesses of 48Ca and 208Pb, and they are found to be consistent with the experimental data.
NASA Astrophysics Data System (ADS)
Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.
2011-07-01
Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.
Asada, Toshio; Ando, Kanta; Sakurai, Koji; Koseki, Shiro; Nagaoka, Masataka
2015-10-28
An efficient approach to evaluate free energy gradients (FEGs) within the quantum mechanical/molecular mechanical (QM/MM) framework has been proposed to clarify reaction processes on the free energy surface (FES) in molecular assemblies. The method is based on response kernel approximations denoted as the charge and the atom dipole response kernel (CDRK) model that include explicitly induced atom dipoles. The CDRK model was able to reproduce polarization effects for both electrostatic interactions between QM and MM regions and internal energies in the QM region obtained by conventional QM/MM methods. In contrast to charge response kernel (CRK) models, CDRK models could be applied to various kinds of molecules, even linear or planer molecules, without using imaginary interaction sites. Use of the CDRK model enabled us to obtain FEGs on QM atoms in significantly reduced computational time. It was also clearly demonstrated that the time development of QM forces of the solvated propylene carbonate radical cation (PC˙(+)) provided reliable results for 1 ns molecular dynamics (MD) simulation, which were quantitatively in good agreement with expensive QM/MM results. Using FEG and nudged elastic band (NEB) methods, we found two optimized reaction paths on the FES for decomposition reactions to generate CO2 molecules from PC˙(+), whose reaction is known as one of the degradation mechanisms in the lithium-ion battery. Two of these reactions proceed through an identical intermediate structure whose molecular dipole moment is larger than that of the reactant to be stabilized in the solvent, which has a high relative dielectric constant. Thus, in order to prevent decomposition reactions, PC˙(+) should be modified to have a smaller dipole moment along two reaction paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brindza, Paul; Lassiter, Steven; Sun, Eric
Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less
NASA Astrophysics Data System (ADS)
Na, Xieyu; Poirier, Michel
2017-06-01
This paper is devoted to the analysis of transition arrays of magnetic-dipole (M1) type in highly charged ions. Such transitions play a significant role in highly ionized plasmas, for instance in the tungsten plasma present in tokamak devices. Using formulas recently published and their implementation in the Flexible Atomic Code for M1-transition array shifts and widths, absorption and emission spectra arising from transitions inside the 3*n complex of highly-charged tungsten ions are analyzed. A comparison of magnetic-dipole transitions with electric-dipole (E1) transitions shows that, while the latter are better described by transition array formulas, M1 absorption and emission structures reveal some insufficiency of these formulas. It is demonstrated that the detailed spectra account for significantly richer structures than those predicted by the transition array formalism. This is due to the fact that M1 transitions may occur between levels inside the same relativistic configuration, while such inner configuration transitions are not accounted for by the currently available averaging expression. In addition, because of configuration interaction, transition processes involving more than one electron jump, such as 3p1/23d5/2 → 3p3/23d3/2, are possible but not accounted for in the transition array formulas. These missing transitions are collected in pseudo-arrays using a post-processing method described in this paper. The relative influence of inner- and inter-configuration transitions is carefully analyzed in cases of tungsten ions with net charge around 50. The need for an additional theoretical development is emphasized.
Brindza, Paul; Lassiter, Steven; Sun, Eric; ...
2017-06-01
Jefferson Lab is constructing an 11 Gev/c electron spectrometer called the Super High Momentum Spectrometer (SHMS) as part of the 12 GeV JLAB upgrade for experimental Hall C. Three of the five superconducting(SC) SHMS magnets are under construction at SigmaPhi in Vannes France as a result of an international competition for design and fabrication. The three magnets Q2 and Q3 60 cm bore quadrupoles and the 60 cm warm bore dipole are complete or near complete and have many design features in common. All three magnets share a common superconductor, collaring system, cryostat design, cold to warm support, cryogenic interface,more » burnout resistant current leads, DC power supply, quench protection, instrumentation and controls. The three magnets are collared, installed in cryostats and welded up and in various stages of final testing. The Q2 quadrupole is due to ship from France to America in August arriving during this ASC conference and has passed all final hipot, leak and pressure tests. The dipole is in leak and pressure testing as of July 2016 while the Q3 quadrupole requires some outer vacuum vessel assembly. Delivery of the Q3 and Dipole magnets will follow the Q2 at about 1 month intervals. Lastly, factory testing have included hipot and electrical tests, magnetic tests at low field, mechanical alignments to center the coils, leak tests and ASME Code required pressure tests. Upon installation in Hall C at JLAB cold testing will commence.« less
Galbraith, G C; Jhaveri, S P; Kuo, J
1997-01-01
Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Shamus A.; Thakkar, Ajit J., E-mail: ajit@unb.ca
2014-08-21
Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.
Blair, Shamus A; Thakkar, Ajit J
2014-08-21
Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.
Strong coupling in the optical spectra of polymorphs of a squarylium dye
NASA Astrophysics Data System (ADS)
Tristani-Kendra, M.; Eckhardt, C. J.; Bernstein, J.; Goldstein, E.
1983-06-01
The X-ray structure and single-crystal spectra of monoclinic and triclinic dimorphs of a squarylium dye are reported. Crystal polymorphism is shown to be an effective approach for studying excitation energy transfer in crystals. The long-axis-polarized transition leads to quasi-metallic reflection bands which cannot be fitted by molecular polariton calculations in the point-dipole approximation.
Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip
2018-01-28
We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.
NASA Astrophysics Data System (ADS)
Maksimenko, V. V.; Zagaynov, V. A.; Semina, P. N.; Zheltova, A. V.; Maslenkova, E. V.; Smolyanskiy, A. S.
2018-05-01
The photon propagator describing the interaction of light with a monolayer of metal particles (island film) is calculated in the coherent potential approximation. It is shown that the shift in the frequency peak of a dipole surface plasmon for a monolayer particle relative to the analogous frequency of the plasma resonance for an isolated particle is not the only manifestation of the influence of neighboring particles. Neighboring particles also produce a bimodal structure in the spectrum line of the plasmon resonance. The possibility of fine structure in the plasmon resonance spectrum lines is predicted.
Non-Markovianity in atom-surface dispersion forces
Intravaia, F.; Behunin, R. O.; Henkel, C.; ...
2016-10-18
Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.
Momentum conservation and unitarity in parton showers and NLL resummation
Höche, Stefan; Reichelt, Daniel; Siegert, Frank
2018-01-23
We present a systematic study of differences between NLL resummation and parton showers. We first construct a Markovian Monte-Carlo algorithm for resummation of additive observables in electron-positron annihilation. Approximations intrinsic to the pure NLL result are then removed, in order to obtain a traditional, momentum and probability conserving parton shower based on the coherent branching formalism. The impact of each approximation is studied, and an overall comparison is made between the parton shower and pure NLL resummation. Differences compared to modern parton-shower algorithms formulated in terms of color dipoles are analyzed.
Non-Markovianity in atom-surface dispersion forces
NASA Astrophysics Data System (ADS)
Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.
2016-10-01
We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. In particular, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance of non-Markovian effects in dispersion interactions.
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.
2014-03-01
Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)
2002-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on an Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, reside at:
Meher, J K; Meher, P K; Dash, G N; Raval, M K
2012-01-01
The first step in gene identification problem based on genomic signal processing is to convert character strings into numerical sequences. These numerical sequences are then analysed spectrally or using digital filtering techniques for the period-3 peaks, which are present in exons (coding areas) and absent in introns (non-coding areas). In this paper, we have shown that single-indicator sequences can be generated by encoding schemes based on physico-chemical properties. Two new methods are proposed for generating single-indicator sequences based on hydration energy and dipole moments. The proposed methods produce high peak at exon locations and effectively suppress false exons (intron regions having greater peak than exon regions) resulting in high discriminating factor, sensitivity and specificity.
Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1981-01-01
Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Federico J.; INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba; Brice, Joseph T.
2015-10-28
Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing amore » 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.« less
Anomalously large capacitance of an ionic liquid described by the restricted primitive model
NASA Astrophysics Data System (ADS)
Loth, M. S.; Skinner, Brian; Shklovskii, B. I.
2010-11-01
We use Monte Carlo simulations to examine the simplest model of a room-temperature ionic liquid (RTIL), called the “restricted primitive model,” at a metal surface. We find that at moderately low temperatures the capacitance of the metal-RTIL interface is so large that the effective thickness of the electrostatic double layer is up to three times smaller than the ion radius. To interpret these results we suggest an approach which is based on the interaction between discrete ions and their image charges in the metal surface and which therefore goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the insertion of an additional dipole does not require much energy. This leads to a large capacitance C that decreases monotonically with voltage V , producing a “bell-shaped” curve C(V) . We also consider what happens when the electrode is made from a semimetal rather than a perfect metal. In this case, the finite screening radius of the electrode shifts the reflection plane for image charges to the interior of the electrode, and we arrive at a “camel-shaped” C(V) . These predictions seem to be in qualitative agreement with experiment.
NASA Astrophysics Data System (ADS)
Daněk, J.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Willenberg, B.; Maurer, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Keller, U.
2018-06-01
We study strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation with elliptically polarized mid-IR laser pulses. Full three-dimensional photoelectron momentum distributions (PMDs) measured with velocity map imaging and tomographic reconstruction revealed an unexpected sharp ridge structure in the polarization plane (2018 Phys. Rev. A 97 013404). This thin line-shaped ridge structure for low-energy photoelectrons is correlated with the ellipticity-dependent asymmetry of the PMD along the beam propagation direction. The peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values when the sharp ridge fades away with increasing ellipticity. With classical trajectory Monte Carlo simulations and analytical analysis, we study the underlying physics of this feature. The underlying physics is based on the interplay between the lateral drift of the ionized electron, the laser magnetic field induced drift in the laser propagation direction, and Coulomb focusing. To apply our observations to emerging techniques relying on strong-field ionization processes, including time-resolved holography and molecular imaging, we present a detailed classical trajectory-based analysis of our observations. The analysis leads to the explanation of the fine structure of the ridge and its non-dipole behavior upon rescattering while introducing restrictions on the ellipticity. These restrictions as well as the ionization and recollision phases provide additional observables to gain information on the timing of the ionization and recollision process and non-dipole properties of the ionization process.
Orientation sensors by defocused imaging of single gold nano-bipyramids
NASA Astrophysics Data System (ADS)
Zhang, Fanwei; Li, Qiang; Rao, Wenye; Hu, Hongjin; Gao, Ye; Wu, Lijun
2018-01-01
Optical probes for nanoscale orientation sensing have attracted much attention in the field of single-molecule detections. Noble metal especially Au nanoparticles (NPs) exhibit extraordinary plasmonic properties, great photostability, excellent biocompatibility and nontoxicity, and thereby could be alternative labels to conventional applied organic dyes or quantum dots. One type of the most interesting metallic NPs is Au nanorods (AuNRs). Its anisotropic emission accompanied with anisotropic shape is potentially applicable in orientation sensing. Recently, we resolved the 3D orientation of single AuNRs within one frame by deliberately introducing an aberration (slight shift of the dipole away from the focal plane) to the imaging system1 . This defocused imaging technique is based on the electron transition dipole approximation and the fact that the dipole radiation exhibits an angular anisotropy. Since the photoluminescence quantum yield (PLQY) can be enhanced by the "lightning rod effect" (at a sharp angled surface) and localized SPR modes, that of the single Au nano-bipyramid (AuNB) with more sharp tips or edges was found to be doubled comparing to AuNRs with a same effective size2. Here, with a 532 nm excitation, we find that the PL properties of individual AuNBs can be described by three perpendicularly-arranged dipoles (with different ratios). Their PL defocused images are bright, clear and exhibit obvious anisotropy. These properties suggest that AuNBs are excellent candidates for orientation sensing labels in single molecule detections.
Quasi-three-dimensional particle imaging with digital holography.
Kemppinen, Osku; Heinson, Yuli; Berg, Matthew
2017-05-01
In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.
Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo
2012-11-01
In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.
2-vertex Lorentzian spin foam amplitudes for dipole transitions
NASA Astrophysics Data System (ADS)
Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.
2018-04-01
We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.
Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field
NASA Astrophysics Data System (ADS)
Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.
2018-02-01
The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.
NASA Astrophysics Data System (ADS)
Karpuškienė, R.; Bogdanovich, P.; Kisielius, R.
2017-05-01
The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions was used to derive transition data for the tungsten ion W34+. The configuration interaction method was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit-Pauli approximation. The level energies, radiative lifetimes τ, Landé g-factors are determined for the ground configuration 4p64d4 and two excited configurations 4p64d34f and 4p54d5. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the levels of these configurations are produced.
NASA Technical Reports Server (NTRS)
Harvey, Karen L.
1993-01-01
Using NSO/KP magnetograms, the pattern and rate of the emergence of magnetic flux and the development of the large-scale patterns of unipolar fields are considered in terms of the solar magnetic cycle. Magnetic flux emerges in active regions at an average rate of 2 x 10(exp 21) Mx/day, approximately 10 times the estimated rate in ephemeral regions. Observations are presented that demonstrate that the large-scale unipolar fields originate in active regions and activity nests. For cycle 21, the net contribution of ephemeral regions to the axial dipole moment of the Sun is positive, and is of opposite sign to that of active regions. Its amplitude is smaller by a factor of 6, assuming an average lifetime of ephemeral regions of 8 hours. Active regions larger than 4500 Mm(sup 2) are the primary contributor to the cycle variation of Sun's axial dipole moment.
Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H
2004-01-22
Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.
Strop, P.; Marinescu, A. M.; Mayo, S. L.
2000-01-01
Six helix surface positions of protein G (Gbeta1) were redesigned using a computational protein design algorithm, resulting in the five fold mutant Gbeta1m2. Gbeta1m2 is well folded with a circular dichroism spectrum nearly identical to that of Gbeta1, and a melting temperature of 91 degrees C, approximately 6 degrees C higher than that of Gbeta1. The crystal structure of Gbeta1m2 was solved to 2.0 A resolution by molecular replacement. The absence of hydrogen bond or salt bridge interactions between the designed residues in Gbeta1m2 suggests that the increased stability of Gbeta1m2 is due to increased helix propensity and more favorable helix dipole interactions. PMID:10933505
Computational Spectroscopy of Polycyclic Aromatic Hydrocarbons In Support of Laboratory Astrophysics
NASA Technical Reports Server (NTRS)
Tan, Xiaofeng; Salama, Farid
2006-01-01
Polycyclic aromatic hydrocarbons (PAHs) are strong candidates for the molecular carriers of the unidentified infrared bands (UIR) and the diffuse interstellar bands (DIBs). In order to test the PAH hypothesis, we have systematically measured the vibronic spectra of a number of jet-cooled neutral and ionized PAHs in the near ultraviolet (UV) to visible spectral ranges using the cavity ring-down spectroscopy. To support this experimental effort, we have carried out theoretical studies of the spectra obtained in our measurements. Ab initio and (time-dependent) density.functiona1 theory calculations are performed to obtain the geometries, energetics, vibrational frequencies, transition dipole moments, and normal coordinates of these PAH molecules. Franck-Condon (FC) calculations and/or vibronic calculations are then performed using the calculated normal coordinates and vibrational frequencies to simulate the vibronic spectra. It is found that vibronic interactions in these conjugated pi electron systems are often strong enough to cause significant deviations from the Born-Oppenheimer (BO) approximation. For vibronic transitions that are well described by the BO approximation, the vibronic band profiles are simulated by calculating the rotational structure of the vibronic transitions. Vibronic oscillator strength factors are calculated in the frame of the FC approximation from the electronic transition dipole moments and the FC factors. This computational effort together with our experimental measurements provides, for the first time, powerful tools for comparison with space-based data and, hence, a powerful approach to understand the spectroscopy of interstellar PAH analogs and the nature of the UIR and DIBs.
Lim, Ivan S; Schwerdtfeger, Peter; Metz, Bernhard; Stoll, Hermann
2005-03-08
Two-component and scalar relativistic energy-consistent pseudopotentials for the group 1 elements from K to element 119 are presented using nine electrons for the valence space definition. The accuracy of such an approximation is discussed for dipole polarizabilities and ionization potentials obtained at the coupled-cluster level as compared to experimental and all-electron Douglas-Kroll results.
Photoionization research on atomic radiation. 3: The ionization cross section of atomic nitrogen
NASA Technical Reports Server (NTRS)
Comes, F. J.; Elzer, A.
1982-01-01
The photoionization cross section of atomic nitrogen was measured between the ionization limit and 432 A. The experimental values are well fitted by those from a calculation of HENRY due to the dipole velocity approximation. A Rydberg series converging to the 5S-state of the ion is clearly identified from the ionization measurements and is shown to ionize.
1991-09-01
12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Vector spherical harmonic expansions are...electric and magnetic field vectors from E rand B - r alone. Genural expressions are given relating the scattered field expansion coefficients to the source...Prescnbed by ANSI Std. Z39-18 29W-102 NCSC TR 426-90 CONTENTS Pag o INTRODUCTION 1 BACKGROUND 1 ANGULAR MOMENTUM OPERATOR AND VECTOR SPHERICAL
Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun
1996-01-01
In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.
Dipole strength in 80Se below the neutron-separation energy for the nuclear transmutation of 79Se
NASA Astrophysics Data System (ADS)
Makinaga, Ayano; Massarczyk, Ralph; Beard, Mary; Schwengner, Ronald; Otsu, Hideaki; Müller, Stefan; Röder, Marko; Schmidt, Konrad; Wagner, Andreas
2017-09-01
The γ-ray strength function (γSF) in 80Se is an important parameter to estimate the neutron-capture cross section of 79Se which is one of the long-lived fission products (LLFPs). Until now, the γSF method was applied for 80Se only above the neutron-separation energy (Sn) and the evaluated 79Se(n,γ) cross section has an instability caused by the GSF below Sn. We studied the dipole-strength distribution of 80Se in a photon-scattering experiment using bremsstrahlung produced by an electron beam of an energy of 11.5 MeV at the linear accelerator ELBE at HZDR. The present photoabsorption cross section of 80Se was combined with results of (γ,n) experiments and are compared with predictions usinmg the TALYS code. We also estimated the 79Se(n,γ) cross sections and compare them with TALYS predictionms and earlier work by other groups.
NASA Technical Reports Server (NTRS)
Datla, R. U.; Roberts, J. R.; Bhatia, A. K.
1991-01-01
Populations of 3p2 1D2, 3P1, 3P2 levels in Si-like Cu, Zn, Ge, and Se ions have been deduced from the measurements of absolute intensities of magnetic dipole transitions within the 3s2 3p2 ground configuration. The measured population ratios are compared with theoretical calculations based on the distorted-wave approximation for the electron collisions and a semiclassical approximation for the proton collisions. The observed deviation from the statistical distribution for the excited-level populations within the ground configuration along the silicon isoelectronic sequence is in agreement with theoretical prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbanas, G; Dietrich, F S; Kerman, A K
A method for computing direct-semidirect (DSD) neutron radiative capture is presented and applied to thermal neutron capture on {sup 19}F, {sup 27}Al, {sup 28,29.30}Si, {sup 35,37}Cl, {sup 39,41}K, {sup 56}Fe, and {sup 238}U, in support of data evaluation effort at the O.R.N.L. The DSD method includes both direct and semidirect capture; the latter is a core-polarization term in which the giant dipole resonance is formed. We study the effects of a commonly used ''density'' approximation to the EM operator and find it to be unsatisfactory for the nuclei considered here. We also study the magnitude of semidirect capture relative tomore » the pure direct capture. Furthermore, we compare our results with those obtained from another direct capture code (Tedca [17]). We also compare our results with those obtained from analytical expression for external capture derived by Lane and Lynn [3], and its extension to include internal capture [7]. To estimate the effect of nuclear deformation on direct capture, we computed direct thermal capture on {sup 238}U with and without imposition of spherical symmetry. Direct capture for a spherically symmetric {sup 238}U was approximately 6 mb, while a quadrupole deformation of 0.215 on the shape of {sup 238}U lowers this cross section down to approximately 2 mb. This result suggests that effects of nuclear deformation on direct capture warrant a further study. We also find out that contribution to the direct capture on {sup 238}U from the nuclear interior significantly cancels that coming from the exterior region, and hence both contributions must be taken into account. We reproduced a well known discrepancy between the computed and observed branching ratios in {sup 56}Fe(n,{gamma}). This will lead us to revisit the concept of doorway states in the particle-hole model.« less
Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August
2016-09-13
Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with thismore » code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.« less
Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai
2015-12-01
Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
Polarizabilities of highly ionized atoms
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Wolf, M. L.
1979-01-01
An extrapolation method based on a screening approximation, applied to available initial values of polarizability for low stages of ionization, is used to obtain dipole and quadrupole polarizabilities for more highly ionized members of many isoelectronic sequences. It is suggested that the derived screening constants x sub L and limiting ratios F sub L may have significant physical meaning, especially the latter which may have an interpretation in terms of hydrogenic polarizabilities.
Man Portable Vector EMI Sensor for Full UXO Characterization
2012-05-01
with project management and coordination. Drs. Laurens Beran, Leonard Pasion , and Stephen Billings advised on technical aspects and Dr. Gregory Schultz...approximated as a point dipole (e.g., Bell et al., 2001; Pasion and Oldenburg, 2001; Gasperikova et al., 2009). The process of estimating the target...39, 1286–1293. Bell, T. 2005. Geo-location Requirements for UXO Discrimination. SERDP Geo-location Workshop. Billings, S., L. Pasion , N. Lhomme
Yurkin, Maxim A; Semyanov, Konstantin A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P
2005-09-01
Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed by use of the discrete dipole approximation (DDA) and scanning flow cytometry (SFC), respectively. SFC permits measurement of the angular dependence of the light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the light incident upon the indicatrix. Numerical calculations of indicatrices for several axis ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e., face-on and rim-on incidence, relative to the direction of the incident beam. Only the oblate spheroid model for rim-on incidence gives results similar to those of the rigorous biconcave disk model.
NASA Astrophysics Data System (ADS)
Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.
2018-02-01
Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.
Mellow, Tim; Kärkkäinen, Leo
2014-03-01
An acoustic curtain is an array of microphones used for recording sound which is subsequently reproduced through an array of loudspeakers in which each loudspeaker reproduces the signal from its corresponding microphone. Here the sound originates from a point source on the axis of symmetry of the circular array. The Kirchhoff-Helmholtz integral for a plane circular curtain is solved analytically as fast-converging expansions, assuming an ideal continuous array, to speed up computations and provide insight. By reversing the time sequence of the recording (or reversing the direction of propagation of the incident wave so that the point source becomes an "ideal" point sink), the curtain becomes a time reversal mirror and the analytical solution for this is given simultaneously. In the case of an infinite planar array, it is demonstrated that either a monopole or dipole curtain will reproduce the diverging sound field of the point source on the far side. However, although the real part of the sound field of the infinite time-reversal mirror is reproduced, the imaginary part is an approximation due to the missing singularity. It is shown that the approximation may be improved by using the appropriate combination of monopole and dipole sources in the mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zobov, V. E., E-mail: rsa@iph.krasn.ru; Kucherov, M. M.
2017-01-15
The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components aremore » described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.« less
Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M
1986-07-04
The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.
NASA Astrophysics Data System (ADS)
Stork, Martina; Tavan, Paul
2007-04-01
In the preceding paper by Stork and Tavan, [J. Chem. Phys. 126, 165105 (2007)], the authors have reformulated an electrostatic theory which treats proteins surrounded by dielectric solvent continua and approximately solves the associated Poisson equation [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)]. The resulting solution comprises analytical expressions for the electrostatic reaction field (RF) and potential, which are generated within the protein by the polarization of the surrounding continuum. Here the field and potential are represented in terms of Gaussian RF dipole densities localized at the protein atoms. Quite like in a polarizable force field, also the RF dipole at a given protein atom is induced by the partial charges and RF dipoles at the other atoms. Based on the reformulated theory, the authors have suggested expressions for the RF forces, which obey Newton's third law. Previous continuum approaches, which were also built on solutions of the Poisson equation, used to violate the reactio principle required by this law, and thus were inapplicable to molecular dynamics (MD) simulations. In this paper, the authors suggest a set of techniques by which one can surmount the few remaining hurdles still hampering the application of the theory to MD simulations of soluble proteins and peptides. These techniques comprise the treatment of the RF dipoles within an extended Lagrangian approach and the optimization of the atomic RF polarizabilities. Using the well-studied conformational dynamics of alanine dipeptide as the simplest example, the authors demonstrate the remarkable accuracy and efficiency of the resulting RF-MD approach.
Yulikov, Maxim; Lueders, Petra; Warsi, Muhammad Farooq; Chechik, Victor; Jeschke, Gunnar
2012-08-14
Nanosized gold particles were functionalised with two types of paramagnetic surface tags, one having a nitroxide radical and the other one carrying a DTPA complex loaded with Gd(3+). Selective measurements of nitroxide-nitroxide, Gd(3+)-nitroxide and Gd(3+)-Gd(3+) distances were performed on this system and information on the distance distribution in the three types of spin pairs was obtained. A numerical analysis of the dipolar frequency distributions is presented for Gd(3+) centres with moderate magnitudes of zero-field splitting, in the range of detection frequencies and resonance fields where the high-field approximation is only roughly valid. The dipolar frequency analysis confirms the applicability of DEER for distance measurements in such complexes and gives an estimate for the magnitudes of possible systematic errors due to the non-ideality of the measurement of the dipole-dipole interaction.
NASA Astrophysics Data System (ADS)
Donaldson, L. M.; Bertulani, C. A.; Carter, J.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Ponomarev, V. Yu.; Reinhard, P.-G.; Usman, I. T.; Adsley, P.; Brummer, J. W.; Buthelezi, E. Z.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; Jingo, M.; Kleinig, W.; Kureba, C. O.; Kvasil, J.; Latif, M.; Li, K. C. W.; Mira, J. P.; Nemulodi, F.; Papka, P.; Pellegri, L.; Pietralla, N.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.
2018-01-01
Proton inelastic scattering experiments at energy Ep = 200 MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.
Thermally activated phase slips of one-dimensional Bose gases in shallow optical lattices
NASA Astrophysics Data System (ADS)
Kunimi, Masaya; Danshita, Ippei
2017-03-01
We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation rate of a thermally activated phase slip for various values of the filling factor and flow velocity in the absence of a harmonic trapping potential. Within the local density approximation, we derive a formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare our theory with the recent experiment done by the LENS group [L. Tanzi et al., Sci. Rep. 6, 25965 (2016), 10.1038/srep25965]. From the comparison, the observed damping of dipole oscillations in a weakly correlated and small velocity regime is attributed dominantly to thermally activated phase slips rather than quantum phase slips.
Line Lists for LiF and LiCl in the X^{1}Σ^{+} State
NASA Astrophysics Data System (ADS)
Bittner, Dror M.; Bernath, Peter F.
2017-06-01
Alkali-containing molecules are expected to be present in the atmospheres of exoplanets such as rocky super-Earths as well as in cool dwarf stars. Line lists for LiF and LiCl in their X^{1}Σ^{+} ground states have been calculated using LeRoy's LEVEL program. The potential energy functions, including the effects of the breakdown of the Born-Oppenheimer approximation, are obtained by direct fitting the experimental infrared vibration-rotation and microwave pure rotation data with extended Morse oscillator potentials using LeRoy's dPotFit program. The transition dipole matrix elements and line intensities were obtained with LEVEL using a dipole moment function from a high level ab initio calculation. Phil. Trans. R. Soc. A 372, 20130087 (2014) Astrophys. J. 519, 793 (1999) J. Quant. Spectrosc. Radiat. Transfer 186, 167 (2017) J. Quant. Spectrosc. Radiat. Transfer 186, 179 (2017)
Origin of fine structure of the giant dipole resonance in s d -shell nuclei
NASA Astrophysics Data System (ADS)
Fearick, R. W.; Erler, B.; Matsubara, H.; von Neumann-Cosel, P.; Richter, A.; Roth, R.; Tamii, A.
2018-04-01
A set of high-resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the giant dipole resonance (GDR) in s d -shell nuclei. Understanding is achieved by comparison with random phase approximation calculations for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows one to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement for scales in the range of a few hundred keV supports the surmise that the fine structure arises from ground-state deformation driven by α clustering.
Electric dipole moment of the deuteron in the standard model with NN - ΛN - ΣN coupling
NASA Astrophysics Data System (ADS)
Yamanaka, Nodoka
2017-07-01
We calculate the electric dipole moment (EDM) of the deuteron in the standard model with | ΔS | = 1 interactions by taking into account the NN - ΛN - ΣN channel coupling, which is an important nuclear level systematics. The two-body problem is solved with the Gaussian Expansion Method using the realistic Argonne v18 nuclear force and the YN potential which can reproduce the binding energies of Λ3H, Λ3He, and Λ4He. The | ΔS | = 1 interbaryon potential is modeled by the one-meson exchange process. It is found that the deuteron EDM is modified by less than 10%, and the main contribution to this deviation is due to the polarization of the hyperon-nucleon channels. The effect of the YN interaction is small, and treating ΛN and ΣN channels as free is a good approximation for the EDM of the deuteron.
Effect of transition dipole phase on high-order-harmonic generation in solid materials
NASA Astrophysics Data System (ADS)
Jiang, Shicheng; Wei, Hui; Chen, Jigen; Yu, Chao; Lu, Ruifeng; Lin, C. D.
2017-11-01
High-order harmonic spectra from solid materials driven by single-color multicycle laser fields sometimes contain even harmonics. In this work we attribute the appearance of even harmonics to the nonzero transition dipole phase (TDP) when the solid system has broken symmetry. By calculating the harmonic efficiency from graphene and gapped graphene by using the semiconductor Bloch equations under the tight-binding approximation, we demonstrate the role of the TDP, which has been ignored for a long time. When the crystal has inversion symmetry, or reflection symmetry with the symmetry plane perpendicular to the laser polarization direction, the TDP can be neglected. Without such symmetry, however, the TDP will lead to the appearance of even harmonics. We further show that the TDP is sensitive to the crystal geometry. To extract the structure information from the harmonic spectra of a solid the TDP cannot be ignored.
An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states
NASA Astrophysics Data System (ADS)
Souissi, Hanen; Jellali, Soulef; Maha, Chaieb; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier
2017-10-01
Via ab-initio approximations, we investigate the electronic and structural features of the CsRb molecule. Adiabatic potential energy curves of 261,3Σ+, 181,3Π and 61,3Δ electronic states with their derived spectroscopic constants as well as vibrational levels spacing have been carried out and well explained. Our approach is founded on an Effective Core Potential (ECP) describing the valence electrons of the system. Using a large Gaussian basis set, the full valence Configuration Interaction can be applied easily on the two-effective valence electrons of the CsRb system. Furthermore, a detailed analysis of the electric dipolar properties has been made through the investigation of both permanent and transition dipole moments (PDM and TDM). It is significant that the ionic character connected with electron transfer that is linked to Cs+ Rb- state has been clearly illustrated in the adiabatic permanent dipole moment.
Theoretical studies of photoexcitation and ionization in H2O
NASA Technical Reports Server (NTRS)
Diercksen, G. H. F.; Kraemer, W. P.; Rescigno, T. N.; Bender, C. F.; Mckoy, B. V.; Langhoff, S. R.; Langhoff, P. W.
1982-01-01
Theoretical studies using Franck-Condon and static-exchange approximations are reported for the complete dipole excitation and ionization spectrum in H2O, where (1) large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground state equilibrium geometry, and (2) previously devised moment-theory techniques are employed in constructing the continuum oscillator-strength densities from the calculated spectra. Comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact-excitation cross sections, and dipole and synchrotron-radiation studies of partial-channel photoionization cross sections. The calculated partial-channel cross sections are found to be atomic-like, and dominated by 2p-kd components. It is suggested that the latter transition couples with the underlying 1b(1)-kb(1) channel, accounting for a prominent feature in recent synchrotron-radiation measurements.
Core-core and core-valence correlation
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.
Top down electroweak dipole operators
NASA Astrophysics Data System (ADS)
Fuyuto, Kaori; Ramsey-Musolf, Michael
2018-06-01
We derive present constraints on, and prospective sensitivity to, the electric dipole moment (EDM) of the top quark (dt) implied by searches for the EDMs of the electron and nucleons. Above the electroweak scale v, the dt arises from two gauge invariant operators generated at a scale Λ ≫ v that also mix with the light fermion EDMs under renormalization group evolution at two-loop order. Bounds on the EDMs of first generation fermion systems thus imply bounds on |dt |. Working in the leading log-squared approximation, we find that the present upper bound on |dt | is 10-19 e cm for Λ = 1 TeV, except in regions of finely tuned cancellations that allow for |dt | to be up to fifty times larger. Future de and dn probes may yield an order of magnitude increase in dt sensitivity, while inclusion of a prospective proton EDM search may lead to an additional increase in reach.
Vacuum electron acceleration by coherent dipole radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troha, A.L.; Van Meter, J.R.; Landahl, E.C.
1999-07-01
The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a planemore » wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}« less
NASA Technical Reports Server (NTRS)
Jin, R. S.
1975-01-01
Power spectral density analysis using Burg's maximum entropy method was applied to the geomagnetic dipole field and its rate of change for the years 1901 to 1969. Both spectra indicate relative maxima at 0.015 cycles/year and its harmonics. These maxima correspond approximately to 66, 33, 22, 17, 13, 11, and 9-year spectral lines. The application of the same analysis techniques to the length-of-day (l.o.d) fluctuations for the period 1865 to 1961 reveal similar spectral characteristics. Although peaks were observed at higher harmonics of the fundamental frequency, the 22-year and 11-year lines are not attributed unambiguously to the solar magnetic cycle and the solar cycle. It is suggested that the similarity in the l.o.d fluctuations and the dipole field variations is related to the motion within the earth's fluid core during the past one hundred years.
NASA Astrophysics Data System (ADS)
Vázquez-Quesada, A.; Franke, T.; Ellero, M.
2017-03-01
In this work, an analytical model for the behavior of superparamagnetic chains under the effect of a rotating magnetic field is presented. It is postulated that the relevant mechanisms for describing the shape and breakup of the chains into smaller fragments are the induced dipole-dipole magnetic force on the external beads, their translational and rotational drag forces, and the tangential lubrication between particles. Under this assumption, the characteristic S-shape of the chain can be qualitatively understood. Furthermore, based on a straight chain approximation, a novel analytical expression for the critical frequency for the chain breakup is obtained. In order to validate the model, the analytical expressions are compared with full three-dimensional smoothed particle hydrodynamics simulations of magnetic beads showing excellent agreement. Comparison with previous theoretical results and experimental data is also reported.
The MCUCN simulation code for ultracold neutron physics
NASA Astrophysics Data System (ADS)
Zsigmond, G.
2018-02-01
Ultracold neutrons (UCN) have very low kinetic energies 0-300 neV, thereby can be stored in specific material or magnetic confinements for many hundreds of seconds. This makes them a very useful tool in probing fundamental symmetries of nature (for instance charge-parity violation by neutron electric dipole moment experiments) and contributing important parameters for the Big Bang nucleosynthesis (neutron lifetime measurements). Improved precision experiments are in construction at new and planned UCN sources around the world. MC simulations play an important role in the optimization of such systems with a large number of parameters, but also in the estimation of systematic effects, in benchmarking of analysis codes, or as part of the analysis. The MCUCN code written at PSI has been extensively used for the optimization of the UCN source optics and in the optimization and analysis of (test) experiments within the nEDM project based at PSI. In this paper we present the main features of MCUCN and interesting benchmark and application examples.
Polarizability tensor retrieval for magnetic and plasmonic antenna design
NASA Astrophysics Data System (ADS)
Bernal Arango, Felipe; Femius Koenderink, A.
2013-07-01
A key quantity in the design of plasmonic antennas and metasurfaces, as well as metamaterials, is the electrodynamic polarizability of a single scattering building block. In particular, in the current merging of plasmonics and metamaterials, subwavelength scatterers are judged by their ability to present a large, generally anisotropic electric and magnetic polarizability, as well as a bi-anisotropic magnetoelectric polarizability. This bi-anisotropic response, whereby a magnetic dipole is induced through electric driving, and vice versa, is strongly linked to the optical activity and chiral response of plasmonic metamolecules. We present two distinct methods to retrieve the polarizibility tensor from electrodynamic simulations. As a basis for both, we use the surface integral equation (SIE) method to solve for the scattering response of arbitrary objects exactly. In the first retrieval method, we project scattered fields onto vector spherical harmonics with the aid of an exact discrete spherical harmonic Fourier transform on the unit sphere. In the second, we take the effective current distributions generated by SIE as a basis to calculate dipole moments. We verify that the first approach holds for scatterers of any size, while the second is only approximately correct for small scatterers. We present benchmark calculations, revisiting the zero-forward scattering paradox of Kerker et al (1983 J. Opt. Soc. Am. 73 765-7) and Alù and Engheta (2010 J. Nanophoton. 4 041590), relevant in dielectric scattering cancelation and sensor cloaking designs. Finally, we report the polarizability tensor of split rings, and show that split rings will strongly influence the emission of dipolar single emitters. In the context of plasmon-enhanced emission, split rings can imbue their large magnetic dipole moment on the emission of simple electric dipole emitters. We present a split ring antenna array design that is capable of converting the emission of a single linear dipole emitter in forward and backward beams of directional emission of opposite handedness. This design can, for instance, find application in the spin angular momentum encoding of quantum information.
Microwave absorption in powders of small conducting particles for heating applications.
Porch, Adrian; Slocombe, Daniel; Edwards, Peter P
2013-02-28
In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.
NASA Astrophysics Data System (ADS)
Kotko, P.; Kutak, K.; Sapeta, S.; Stasto, A. M.; Strikman, M.
2017-05-01
Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or kT) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb-Pb collisions at CM energy 5.1 TeV per nucleon pair. The formalism is applicable when the average transverse momentum of the dijet system PT is much bigger than the saturation scale Qs, PT≫ Qs, while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to the Weizsäcker-Williams (WW) unintegrated gluon distribution, which is far less known from experimental data than the most common dipole gluon distribution appearing in inclusive small- x processes. We have calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL + DGLAP evolution equation. The saturation effects are visible but rather weak for realistic pT cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. We find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotko, P.; Kutak, K.; Sapeta, S.
Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or k T ) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb–Pb collisions atCMenergy 5.1 TeV per nucleon pair. The formalism is applicablewhen the average transversemomentum of the dijet system P T is much bigger than the saturation scale Q s , P T >> Qs , while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to theWeizsäcker–Williams (WW) unintegrated gluon distribution, which is far less known frommore » experimental data than the most common dipole gluon distribution appearing in inclusive small-x processes. We also calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL+DGLAP evolution equation. The saturation effects are visible but rather weak for realistic p T cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. Finally, we find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.« less
Phloretin-induced changes of lipophilic ion transport across the plasma membrane of mammalian cells.
Sukhorukov, V L; Kürschner, M; Dilsky, S; Lisec, T; Wagner, B; Schenk, W A; Benz, R; Zimmermann, U
2001-01-01
The adsorption of the hydrophobic anion [W(CO)(5)CN](-) to human lymphoid Jurkat cells gave rise to an additional anti-field peak in the rotational spectra of single cells, indicating that the cell membrane displayed a strong dielectric dispersion in the kilohertz to megahertz frequency range. The surface concentration of the adsorbed anion and its translocation rate constant between the two membrane boundaries could be evaluated from the rotation spectra of cells by applying the previously proposed mobile charge model. Similar single-cell electrorotation experiments were performed to examine the effect of phloretin, a dipolar molecule known to influence the dipole potential of membranes, on the transport of [W(CO)(5)CN](-) across the plasma membrane of mammalian cells. The adsorption of [W(CO)(5)CN](-) was significantly reduced by phloretin, which is in reasonable agreement with the known phloretin-induced effects on artificial and biological membranes. The IC(50) for the effect of phloretin on the transport parameters of the lipophilic ion was approximately 10 microM. The results of this study are consistent with the assumption that the binding of phloretin reduces the intrinsic dipole potential of the plasma membrane. The experimental approach developed here allows the quantification of intrinsic dipole potential changes within the plasma membrane of living cells. PMID:11463642
Dissipation-induced dipole blockade and antiblockade in driven Rydberg systems
NASA Astrophysics Data System (ADS)
Young, Jeremy T.; Boulier, Thomas; Magnan, Eric; Goldschmidt, Elizabeth A.; Wilson, Ryan M.; Rolston, Steven L.; Porto, James V.; Gorshkov, Alexey V.
2018-02-01
We study theoretically and experimentally the competing blockade and antiblockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg population's dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model to the experimental observations [E. A. Goldschmidt et al., Phys. Rev. Lett. 116, 113001 (2016), 10.1103/PhysRevLett.116.113001] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drives.
Tsiaousis, D; Munn, R W
2004-04-15
Calculations for the acetanilide crystal yield the effective polarizability (16.6 A(3)), local electric field tensor, effective dipole moment (5.41 D), and dipole-dipole energy (-12.8 kJ/mol). Fourier-transform techniques are used to calculate the polarization energy P for a single charge in the perfect crystal (-1.16 eV); the charge-dipole energy W(D) is zero if the crystal carries no bulk dipole moment. Polarization energies for charge-transfer (CT) pairs combine with the Coulomb energy E(C) to give the screened Coulomb energy E(scr); screening is nearly isotropic, with E(scr) approximately E(C)/2.7. For CT pairs W(D) reduces to a term deltaW(D) arising from the interaction of the charge on each ion with the change in dipole moment on the other ion relative to the neutral molecule. The dipole moments calculated by density-functional theory methods with the B3LYP functional at the 6-311++G(**) level are 3.62 D for the neutral molecule, changing to 7.13 D and 4.38 D for the anion and cation, relative to the center of mass. Because of the large change in the anion, deltaW(D) reaches -0.9 eV and modifies the sequence of CT energies markedly from that of E(scr), giving the lowest two CT pairs at -1.98 eV and -1.41 eV. The changes in P and W(D) near a vacancy are calculated; W(D) changes for the individual charges because the vacancy removes a dipole moment and modifies the crystal dielectric response, but deltaW(D) and E(C) do not change. A vacancy yields a positive change DeltaP that scatters a charge or CT pair, but the change DeltaW(D) can be negative and large enough to outweigh DeltaP, yielding traps with depths that can exceed 150 meV for single charges and for CT pairs. Divacancies yield traps with depths nearly equal to the sum of those produced by the separate vacancies and so they can exceed 300 meV. These results are consistent with a mechanism of optical damage in which vacancies trap optically generated CT pairs that recombine and release energy; this can disrupt the lattice around the vacancy, thereby favoring trapping and recombination of CT pairs generated by subsequent photon absorption, leading to further lattice disruption. Revisions to previous calculations on trapping of CT pairs in anthracene are reported. (c) 2004 American Institute of Physics.
Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.
2007-01-01
Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.
Finite element approximation of the fields of bulk and interfacial line defects
NASA Astrophysics Data System (ADS)
Zhang, Chiqun; Acharya, Amit; Puri, Saurabh
2018-05-01
A generalized disclination (g.disclination) theory (Acharya and Fressengeas, 2015) has been recently introduced that goes beyond treating standard translational and rotational Volterra defects in a continuously distributed defects approach; it is capable of treating the kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. In this work, a numerical method is developed to solve for the stress and distortion fields of g.disclination systems. Problems of small and finite deformation theory are considered. The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle inclusion are approximated. It is demonstrated that while the far-field topological identity of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation comprising a disconnection are the same, the latter microstructure is energetically favorable. This underscores the complementary importance of all of topology, geometry, and energetics in understanding defect mechanics. It is established that finite element approximations of fields of interfacial and bulk line defects can be achieved in a systematic and routine manner, thus contributing to the study of intricate defect microstructures in the scientific understanding and predictive design of materials. Our work also represents one systematic way of studying the interaction of (g.)disclinations and dislocations as topological defects, a subject of considerable subtlety and conceptual importance (Aharoni et al., 2017; Mermin, 1979).
New Class of Quantum Error-Correcting Codes for a Bosonic Mode
NASA Astrophysics Data System (ADS)
Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.
2016-07-01
We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
NASA Technical Reports Server (NTRS)
Chambers, Lin Hartung
1994-01-01
The theory for radiation emission, absorption, and transfer in a thermochemical nonequilibrium flow is presented. The expressions developed reduce correctly to the limit at equilibrium. To implement the theory in a practical computer code, some approximations are used, particularly the smearing of molecular radiation. Details of these approximations are presented and helpful information is included concerning the use of the computer code. This user's manual should benefit both occasional users of the Langley Optimized Radiative Nonequilibrium (LORAN) code and those who wish to use it to experiment with improved models or properties.
Trellis Coding of Non-coherent Multiple Symbol Full Response M-ary CPFSK with Modulation Index 1/M
NASA Technical Reports Server (NTRS)
Lee, H.; Divsalar, D.; Weber, C.
1994-01-01
This paper introduces a trellis coded modulation (TCM) scheme for non-coherent multiple full response M-ary CPFSK with modulation index 1/M. A proper branch metric for the trellis decoder is obtained by employing a simple approximation of the modified Bessel function for large signal to noise ratio (SNR). Pairwise error probability of coded sequences is evaluated by applying a linear approximation to the Rician random variable.
Calculation of the energy loss for an electron passing near giant fullerenes
NASA Astrophysics Data System (ADS)
Henrard, L.; Lambin, Ph
1996-11-01
We present a theoretical analysis of the electron energy-loss spectra of isolated giant fullerenes. We use a macroscopic dielectric description of spherical onion-like fullerenes and a discrete dipole approximation (DDA) framework for tubular fullerenes. In the DDA model, an anisotropic dynamical polarizability is assigned to each carbon site. We stress the fundamental importance of the hollow character of giant fullerenes in the electron energy-loss resonances.
Density-dependent covariant energy density functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalazissis, G. A.
2012-10-20
Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.
Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F.; Harger, Matthew; Torabifard, Hedieh; Cisneros, G. Andrés; Schnieders, Michael J.; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y.; Ponder, Jay W.
2017-01-01
We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed. PMID:29732110
Spin Resonances for Stored Deuteron Beams in COSY. Vector Polarization. Tracking with Spink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luccio,A.; Lehrach, A.
2008-04-01
Results of measurements of vector and tensor polarization of a deuteron beam in the storage ring COSY have been published by the SPIN{at}COSY collaboration. In this experiment a RF Dipole was used that produced spin flip. The strength of the RFD-induced depolarizing resonance was calculated from the amount of spin flipping and the results shown in the figures of the cited paper. In this note we present the simulation of the experimental data (vector polarization) with the spin tracking code Spink.
Three-dimensional analytic model of the magnetic field for the Chalk River Superconducting Cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, W.G.; Lee-Whiting, G.E.; Douglas, S.R.
1994-07-01
A three-dimensional analytic model of the magnetic field for the TASCC cyclotron that satisfies Maxwell`s equations exactly has been constructed for use with the new differential-algebra orbit-dynamics code. The model includes: (1) the superconducting coils; (2) the saturated iron poles; (3) the partially saturated yoke; (4) the saturated-iron trim rods. Lines of dipole density along the edges of the hills account for the non-uniformities and edge effects and along with three yoke constants constitute the only free parameters.
Electroencephalography in ellipsoidal geometry with fourth-order harmonics.
Alcocer-Sosa, M; Gutierrez, D
2016-08-01
We present a solution to the electroencephalographs (EEG) forward problem of computing the scalp electric potentials for the case when the head's geometry is modeled using a four-shell ellipsoidal geometry and the brain sources with an equivalent current dipole (ECD). The proposed solution includes terms up to the fourth-order ellipsoidal harmonics and we compare this new approximation against those that only considered up to second- and third-order harmonics. Our comparisons use as reference a solution in which a tessellated volume approximates the head and the forward problem is solved through the boundary element method (BEM). We also assess the solution to the inverse problem of estimating the magnitude of an ECD through different harmonic approximations. Our results show that the fourth-order solution provides a better estimate of the ECD in comparison to lesser order ones.
Phase transition studies of BiMnO3: Mean field theory approximations
NASA Astrophysics Data System (ADS)
Priya K. B, Lakshmi; Natesan, Baskaran
2015-06-01
We studied the phase transition and magneto-electric coupling effect of BiMnO3 by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO3, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports. Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO3.
Low-cost coding of directivity information for the recording of musical instruments
NASA Astrophysics Data System (ADS)
Braasch, Jonas; Martens, William L.; Woszczyk, Wieslaw
2004-05-01
Most musical instruments radiate sound according to characteristic spatial directivity patterns. These patterns are usually not only strongly frequency dependent, but also time-variant functions of various parameters of the instrument, such as pitch and the playing technique applied (e.g., plucking versus bowing of string instruments). To capture the directivity information when recording an instrument, Warusfel and Misdariis (2001) proposed to record an instrument using four channels, one for the monopole and the others for three orthogonal dipole parts. In the new recording setup presented here, it is proposed to store one channel at a high sampling frequency, along with directivity information that is updated only every few milliseconds. Taking the binaural sluggishness of the human auditory system into account in this way provides a low-cost coding scheme for subsequent reproduction of time-variant directivity patterns.
Two- and three-photon ionization in the noble gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, E.J.
1981-08-01
By using a characteristic Green's function for an exactly solvable Schroedinger equation with an approximation to the central potential of Hermann and Skillman, the cross section for nonresonant two- and three-photon ionization of Ne, Ar, Kr, and Xe were calculated in jl coupling. Expressions for cross sections in jl coupling are given. Comparison with the Ar two-photon cross section of Pindzola and Kelly, calculated using the many-body theory, the dipole-length approximation, and LS coupling shows a disagreement of as much as a factor of 2. The disagreement appears to arise from distortion introduced by shifting the Green's-function resonances to experimentalmore » values.« less
Electromagnetic wave scattering from some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.
1988-01-01
For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.
NEQAIR96,Nonequilibrium and Equilibrium Radiative Transport and Spectra Program: User's Manual
NASA Technical Reports Server (NTRS)
Whiting, Ellis E.; Park, Chul; Liu, Yen; Arnold, James O.; Paterson, John A.
1996-01-01
This document is the User's Manual for a new version of the NEQAIR computer program, NEQAIR96. The program is a line-by-line and a line-of-sight code. It calculates the emission and absorption spectra for atomic and diatomic molecules and the transport of radiation through a nonuniform gas mixture to a surface. The program has been rewritten to make it easy to use, run faster, and include many run-time options that tailor a calculation to the user's requirements. The accuracy and capability have also been improved by including the rotational Hamiltonian matrix formalism for calculating rotational energy levels and Hoenl-London factors for dipole and spin-allowed singlet, doublet, triplet, and quartet transitions. Three sample cases are also included to help the user become familiar with the steps taken to produce a spectrum. A new user interface is included that uses check location, to select run-time options and to enter selected run data, making NEQAIR96 easier to use than the older versions of the code. The ease of its use and the speed of its algorithms make NEQAIR96 a valuable educational code as well as a practical spectroscopic prediction and diagnostic code.
atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination
NASA Astrophysics Data System (ADS)
Kholupenko, E. E.; Ivanchik, A. V.; Balashev, S. A.; Varshalovich, D. A.
2011-10-01
atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine" physical effects of cosmological recombination simultaneously with using fudge factors.
Approximate Green's function methods for HZE transport in multilayered materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.
Fast instability caused by electron cloud in combined function magnets
Antipov, S. A.; Adamson, P.; Burov, A.; ...
2017-04-10
One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. The high rate of the instability suggest that its cause is electron cloud. Here, we studied the phenomena by observing the dynamics of stable and unstable beam, simulating numerically the build-up of the electron cloud, and developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function di-poles. We also found that beam motion can be stabilized by a clearingmore » bunch, which confirms the electron cloud nature of the instability. The clearing suggest electron cloud trapping in Recycler combined function mag-nets. Numerical simulations show that up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. Furthermore, in a Recycler combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated resulting instability growth rate of about 30 revolutions and the mode fre-quency of 0.4 MHz are consistent with experimental observations and agree with the simulation in the PEI code. The created instability model allows investigating the beam stability for the future intensity upgrades.« less
Fast instability caused by electron cloud in combined function magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, S. A.; Adamson, P.; Burov, A.
One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. The high rate of the instability suggest that its cause is electron cloud. Here, we studied the phenomena by observing the dynamics of stable and unstable beam, simulating numerically the build-up of the electron cloud, and developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function di-poles. We also found that beam motion can be stabilized by a clearingmore » bunch, which confirms the electron cloud nature of the instability. The clearing suggest electron cloud trapping in Recycler combined function mag-nets. Numerical simulations show that up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. Furthermore, in a Recycler combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated resulting instability growth rate of about 30 revolutions and the mode fre-quency of 0.4 MHz are consistent with experimental observations and agree with the simulation in the PEI code. The created instability model allows investigating the beam stability for the future intensity upgrades.« less
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Interaction—Induced Spectroscopy of H2 in the Fullerenes
NASA Astrophysics Data System (ADS)
Lewis, John Courtenay; Herman, Roger M.
2006-11-01
Carbon nanostructures of various sorts have been the subject of intensive research since their discoveries in the latter part of the 20th century. Much of this research has been motivated by the intrinsic interest of these structures, though their potential as hydrogen storage media has also attracted attention. It was realized that the carbon-hydrogen interactions in these media would induce dipole moments which might lead to observable absorption of infrared spectra, and this work will be reviewed and extended in this paper. The fundamental vibration-rotation spectrum, of H2 in a fcc C60 lattice (fullerite) at room temperature was first observed by S. A. FitzGerald and coworkers, who have subsequently extended their observations to near liquid nitrogen temperatures. Herman and Lewis have discussed the theoretical aspects of H2 in carbon nanotube bundles and in fullerite. We have developed a detailed theory for the spectrum of H2 in fullerite. This theory assumes that the H2 - C potential can be accurately approximated by an exp-6 potential, the parameters of which are then obtained by fitting the line frequencies in FitzGerald's spectra. We have also obtained a model for the H2 induced dipole moment based on the calculations of Frommhold and coworkers on the induced dipole in H2 - He. With one adjustable parameter this model gives a good account of the observed intensities. In work to date the line width has been taken as an empirical parameter. However, the line width is in principal determinable from the H2 - C potential and induced dipole moment, together with the known properties of the phonon modes in fullerite. We conclude this paper with a discussion of the line width problem for H2 in fullerite.
Dipole-dipole resonance line shapes in a cold Rydberg gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2016-04-01
We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.
Subcritical-Water Extraction of Organics from Solid Matrices
NASA Technical Reports Server (NTRS)
Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles
2009-01-01
An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.
Investigation of a playa lake bed using geophysical electrical methods
NASA Astrophysics Data System (ADS)
Herrmenn, M.; Gurrola, H.; William, R.; Montalvo, R.; Horton, S.; Homberg, J.; Allen, T.; Bribiesca, E.; Lindsey, C.; Anderson, H.; Seshadri, S.; Manns, S.; Hassan, A.; Loren, C.
2005-12-01
The 2005 undergraduate applied geophysical class of Texas Tech University conducted a geophysical survey of a playa lake approximately 10 miles northwest of Lubbock Texas. The playa lake is primarily used as grazing land for two llamas and a hand full of sheep, and has been recently used as a dump for broken down sheds and barrels. Our goal was to model the subsurface of the transition from the playa to plains geology and investigate the possible contamination, of the soil and the data, by the metal dumped at the surface. We conducted our survey with and EM31 and homemade D.C. resistivity and SP equipment that allowed students to grasp the theories more clearly. SP readings were collected using clay pots constructed from terracotta pots and copper tubing purchased at the local hardware store and voltage measurements collected with handle held multi-meters. D.C. resistivity data were collected in a dipole-dipole array using 20 nine volt batteries connected in series with a large enough variable resistor and amp meter to regulate steady current flow. A multi meter was used to collect voltage readings. Wenner array data were collected using a home-made multi-filament cable connected switch box to allow a central user to regulate current and take voltage reading. A map of conductivity produced from a 10 m of EM31 reading show that conductivity anomalies mirror topography. The SP profiles show high values in the playa lake that drop off as we move from the clay rich lake bed to normal grassland. Analysis of both the Dipole-Dipole and Wenner array data support a model with 3 flat layers increasing in resistivity with depth. It appears that these remain flat passing beneath the playa and the playa is eroded into these layers.
Vertical length scale selection for pancake vortices in strongly stratified viscous fluids
NASA Astrophysics Data System (ADS)
Godoy-Diana, Ramiro; Chomaz, Jean-Marc; Billant, Paul
2004-04-01
The evolution of pancake dipoles of different aspect ratio is studied in a stratified tank experiment. Two cases are reported here for values of the dipole initial aspect ratio alpha_0 = L_v/L_h (where L_v and L_h are vertical and horizontal length scales, respectively) of alpha_0 = 0.4 (case I) and alpha_0 = 1.2 (case II). In the first case, the usual decay scenario is observed where the dipole diffuses slowly with a growing thickness and a decaying circulation. In case II, we observed a regime where the thickness of the dipole decreases and the circulation in the horizontal mid-plane of the vortices remains constant. We show that this regime where the vertical length scale decreases can be explained by the shedding of two boundary layers at the top and bottom of the dipole that literally peel off vorticity layers. Horizontal advection and vertical diffusion cooperate in this regime and the decrease towards the viscous vertical length scale delta = L_hRe(-1/2) occurs on a time scale alpha_0 Re(1/2) T_A, T_A being the advection time L_h/U. From a scaling analysis of the equations for a stratified viscous fluid in the Boussinesq approximation, two dominant balances depending on the parameter R = ReF_h(2) are discussed, where F_h = U/NL_h is the horizontal Froude number and Re = UL_h/nu is the Reynolds number, U, N and nu being, respectively, the translation speed of the dipole, the Brunt Väisälä frequency and the kinematic viscosity. When R≫ 1 the vertical length scale is determined by buoyancy effects to be of order L_b = U/N. The experiments presented in this paper pertain to the case of small R, where viscous effects govern the selection of the vertical length scale. We show that if initially L_v ≤ delta, the flow diffuses on the vertical (case I), while if L_v ≫ delta (case II), vertically sheared horizontal advection decreases the vertical length scale down to delta. This viscous regime may explain results from experiments and numerical simulations on the late evolution of stratified flows where the decay is observed to be independent of the buoyancy frequency N.
A new estimate of average dipole field strength for the last five million years
NASA Astrophysics Data System (ADS)
Cromwell, G.; Tauxe, L.; Halldorsson, S. A.
2013-12-01
The Earth's ancient magnetic field can be approximated by a geocentric axial dipole (GAD) where the average field intensity is twice as strong at the poles than at the equator. The present day geomagnetic field, and some global paleointensity datasets, support the GAD hypothesis with a virtual axial dipole moment (VADM) of about 80 ZAm2. Significant departures from GAD for 0-5 Ma are found in Antarctica and Iceland where paleointensity experiments on massive flows (Antarctica) (1) and volcanic glasses (Iceland) produce average VADM estimates of 41.4 ZAm2 and 59.5 ZAm2, respectively. These combined intensities are much closer to a lower estimate for long-term dipole field strength, 50 ZAm2 (2), and some other estimates of average VADM based on paleointensities strictly from volcanic glasses. Proposed explanations for the observed non-GAD behavior, from otherwise high-quality paleointensity results, include incomplete temporal sampling, effects from the tangent cylinder, and hemispheric asymmetry. Differences in estimates of average magnetic field strength likely arise from inconsistent selection protocols and experiment methodologies. We address these possible biases and estimate the average dipole field strength for the last five million years by compiling measurement level data of IZZI-modified paleointensity experiments from lava flows around the globe (including new results from Iceland and the HSDP-2 Hawaii drill core). We use the Thellier Gui paleointensity interpreter (3) in order to apply objective criteria to all specimens, ensuring consistency between sites. Specimen level selection criteria are determined from a recent paleointensity investigation of modern Hawaiian lava flows where the expected magnetic field strength was accurately recovered when following certain selection parameters. Our new estimate of average dipole field strength for the last five million years incorporates multiple paleointensity studies on lava flows with diverse global and temporal distributions, and objectively constrains site level estimates by applying uniform selection requirements on measurement level data. (1) Lawrence, K.P., L. Tauxe, H. Staudigel, C.G. Constable, A. Koppers, W. McIntosh, C.L. Johnson, Paleomagnetic field properties at high southern latitude, Geochemistry Geophysics Geosystems, 10, 2009. (2) Selkin, P.A., L. Tauxe, Long-term variations in palaeointensity, Phil. Trans. R. Soc. Lond., 358, 1065-1088, 2000. (3) Shaar, R., L. Tauxe, Thellier GUI: An integrated tool for analyzing paleointensity data from Thellier-type experiments, Geochemistry Geophysics Geosystems, 14, 2013
Bulemela, E; Tremaine, Peter R
2008-05-08
Apparent molar volumes of dilute aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N,N-dimethylethanolamine (DMEA), ethylethanolamine (EAE), 2-diethylethanolamine (2-DEEA), and 3-methoxypropylamine (3-MPA) and their salts were measured at temperatures from 150 to 325 degrees C and pressures as high as 15 MPa. The results were corrected for the ionization and used to obtain the standard partial molar volumes, Vo2. A three-parameter equation of state was used to describe the temperature and pressure dependence of the standard partial molar volumes. The fitting parameters were successfully divided into functional group contributions at all temperatures to obtain the standard partial molar volume contributions. Including literature results for alcohols, carboxylic acids, and hydroxycarboxylic acids yielded the standard partial molar volume contributions of the functional groups >CH-, >CH2, -CH3, -OH, -COOH, -O-, -->N, >NH, -NH2, -COO-Na+, -NH3+Cl-, >NH2+Cl-, and -->NH+Cl- over the range (150 degrees C
Modeling of light scattering by icy bodies
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Mackowski, D.; Pitman, K.; Verbiscer, A.; Buratti, B.; Momary, T.
2014-07-01
As a result of ground-based, space-based, and in-situ spacecraft mission observations, a great amount of photometric, polarimetric, and spectroscopic data of icy bodies (satellites of giant planets, Kuiper Belt objects, comet nuclei, and icy particles in cometary comae and rings) has been accumulated. These data have revealed fascinating light-scattering phenomena, such as the opposition surge resulting from coherent backscattering and shadow hiding and the negative polarization associated with them. Near-infrared (NIR) spectra of these bodies are especially informative as the depth, width, and shape of the absorption bands of ice are sensitive not only to the ice abundance but also to the size of icy grains. Numerous NIR spectra obtained by Cassini's Visual and Infrared Mapping Spectrometer (VIMS) have been used to map the microcharacteristics of the icy satellites [1] and rings of Saturn [2]. VIMS data have also permitted a study of the opposition surge for icy satellites of Saturn [3], showing that coherent backscattering affects not only brightness and polarization of icy bodies but also their spectra [4]. To study all of the light-scattering phenomena that affect the photopolarimetric and spectroscopic characteristics of icy bodies, including coherent backscattering, requires computer modeling that rigorously considers light scattering by a large number of densely packed small particles that form either layers (in the case of regolith) or big clusters (ring and comet particles) . Such opportunity has appeared recently with a development of a new version MSTM4 of the Multi-Sphere T-Matrix code [5]. Simulations of reflectance and absorbance spectra of a ''target'' (particle layer or cluster) require that the dimensions of the target be significantly larger than the wavelength, sphere radius, and layer thickness. For wavelength-sized spheres and packing fractions typical of regolith, targets can contain dozens of thousands of spheres that, with the original MSTM code, would require enormous computer RAM and CPU. MSTM4 adopts a discrete Fourier convolution (DFC), implemented using a fast Fourier transform (FFT), for the evaluation of the exciting field. This approach is very similar to that used in the discrete-dipole approximation (DDA) codes, with the difference that it considers multipole nature of the translation operators, and does not require that the sphere origins be located on a regular lattice. The MSTM4 code not only allows us to consider a larger number of constituent particles but also is about 100 times faster in wall-clock time than the original version of the MSTM code. Example of MSTM4 modeling is shown in the Figure.
New class of photonic quantum error correction codes
NASA Astrophysics Data System (ADS)
Silveri, Matti; Michael, Marios; Brierley, R. T.; Salmilehto, Juha; Albert, Victor V.; Jiang, Liang; Girvin, S. M.
We present a new class of quantum error correction codes for applications in quantum memories, communication and scalable computation. These codes are constructed from a finite superposition of Fock states and can exactly correct errors that are polynomial up to a specified degree in creation and destruction operators. Equivalently, they can perform approximate quantum error correction to any given order in time step for the continuous-time dissipative evolution under these errors. The codes are related to two-mode photonic codes but offer the advantage of requiring only a single photon mode to correct loss (amplitude damping), as well as the ability to correct other errors, e.g. dephasing. Our codes are also similar in spirit to photonic ''cat codes'' but have several advantages including smaller mean occupation number and exact rather than approximate orthogonality of the code words. We analyze how the rate of uncorrectable errors scales with the code complexity and discuss the unitary control for the recovery process. These codes are realizable with current superconducting qubit technology and can increase the fidelity of photonic quantum communication and memories.
University Researchers Approach to Providing Computer Simulations to Industry.
NASA Astrophysics Data System (ADS)
Birdsall, Charles
1996-05-01
University researchers perform in an exploratory mode in developing and applying computer simulations to their research problems. Post-docs and students make codes suited to their problems, and to thesis and article writing, with little code use planned beyond such. Industry product developers want well tested, cleanly applicable simulation codes, with freedom to go to the code developers for bug fixing and improvements (and not to have to hunt for a student who has graduated). Hence, these different modes clash; some cushion of understanding and new elements are needed to effect broader, continuing use of university developed codes. We and others have evolved approaches that appear to work, including providing free software, but with follow-ups done by small companies. (See Ref. 1 for more.) We will present our development of plasma device codes over 15 years, evolving into free distribution on the Internet (Ref. 2) with short courses and workshops; follow-ups are done by a small company (of former students, the code writers). In addition, an example of university code development will be given, that of application of the series (or dipole) resonance to providing plasma surface wave generated plasmas, drawing on decades old research; potential applications will be given. We will present what other university groups are doing and reflections on these modes by modelers and designers in the plasma processing industry (semiconductor manufacturing equipment companies), which is highly empirical at present. All of this interaction is still evolving. 9 Brown J. Browning, Sci.Am. Jan 1996, p.35 www See Internet address http://ptsg.eecs.berkeley.edu thebibliography
Vitale, Valerio; Dziedzic, Jacek; Dubois, Simon M-M; Fangohr, Hans; Skylaris, Chris-Kriton
2015-07-14
Density functional theory molecular dynamics (DFT-MD) provides an efficient framework for accurately computing several types of spectra. The major benefit of DFT-MD approaches lies in the ability to naturally take into account the effects of temperature and anharmonicity, without having to introduce any ad hoc or a posteriori corrections. Consequently, computational spectroscopy based on DFT-MD approaches plays a pivotal role in the understanding and assignment of experimental peaks and bands at finite temperature, particularly in the case of floppy molecules. Linear-scaling DFT methods can be used to study large and complex systems, such as peptides, DNA strands, amorphous solids, and molecules in solution. Here, we present the implementation of DFT-MD IR spectroscopy in the ONETEP linear-scaling code. In addition, two methods for partitioning the dipole moment within the ONETEP framework are presented. Dipole moment partitioning allows us to compute spectra of molecules in solution, which fully include the effects of the solvent, while at the same time removing the solvent contribution from the spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamasha, Safeia, E-mail: safeia@hu.edu.jo
2013-11-15
The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are consideredmore » by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.« less
Study of Water Absorption Lines in the Near Infrared
1975-02-17
the absorption coefficient is better approximated by the sum of Matcha -N«. oec short range contribution and W-BB dispersion contribution. The...and W. Byers Brown, Molecular Physics 2S, 1105 (1973). 5. R. L. Matcha and R. K. Nesbet, Phys. Rev. 1_6_0, 72 (1967). I H. B. Levine, Phys. Rev...reasurcrents of Ouren, ^eltqen Gaide, Helbing and Pauly. The dipole moment function is taken from ab initio 9 calculations of Matcha and Nesbet. With
Probing plasmon resonances of individual aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi
2018-01-01
The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.
Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System.
Pidlisecky, A; Moran, T; Hansen, B; Knight, R
2016-03-01
We use electrical resistivity tomography to obtain a 6.8-km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater- and freshwater-saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole-dipole, Wenner, Wenner-gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south. © 2015, National Ground Water Association.
Kohn's theorem in a superfluid Fermi gas with a Feshbach resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Y.
2004-12-01
We investigate the dipole mode in a superfluid gas of Fermi atoms trapped in a harmonic potential. According to Kohn's theorem, the frequency of this collective mode is not affected by an interaction between the atoms and is always equal to the trap frequency. This remarkable property, however, does not necessarily hold in an approximate theory. We explicitly prove that the Hartree-Fock-Bogoliubov generalized random phase approximation (HFB-GRPA), including a coupling between fluctuations in the density and Cooper channels, is consistent with both Kohn's theorem as well as Goldstone's theorem. This proof can be immediately extended to the strong-coupling superfluid theorymore » developed by Nozieres and Schmitt-Rink (NSR), where the effect of superfluid fluctuations is included within the Gaussian level. As a result, the NSR-GRPA formalism can be used to study collective modes in the BCS-BEC crossover region in a manner which is consistent with Kohn's theorem. We also include the effect of a Feshbach resonance and a condensate of the associated molecular bound states. A detailed discussion is given of the unusual nature of the Kohn mode eigenfunctions in a Fermi superfluid, in the presence and absence of a Feshbach resonance. When the molecular bosons feel a different trap frequency from the Fermi atoms, the dipole frequency is shown to depend on the strength of effective interaction associated with the Feshbach resonance.« less
Cup Cylindrical Waveguide Antenna
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
Magnetic field evolution in white dwarfs: The hall effect and complexity of the field
NASA Technical Reports Server (NTRS)
Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.
1995-01-01
We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.
The 3-D effects in the long-term solar wind speed rise observed by Voyager 2 in early 1994
NASA Technical Reports Server (NTRS)
Pizzo, V. J.; Paularena, K. I.; Richardson, J. D.; Lazarus, A. J.; Belcher, J. W.
1995-01-01
In early 1994, Voyager 2 at 42-43 AU near heliolatitude 10 deg S observed over a period of approximately 100 days a remarkable sequence of quasi-recurrent stream fronts, wherein the background (ambient) speed rose steadily from approximately 450 to approximately 550 km/s while the mean period of the streams decreased from the usual 25 days down to approximately 20 days. A qualitative explanation for this effect can be derived from IMP observations, which show that the amplitude of the stream structure at 1 AU increased monotonically in late 1993, concurrent with major secular evolution in the corona. The reduction in period, then, amounts to a doppler shift due to the progressive overtaking of successively faster streams in the sequence. Attempts to model this process quantitatively with 1-D dynamic simulations falter on three accounts: (1) the reduction in period is overestimated, (2) the simulation predicts many more fronts surviving to 43 AU than are observed by Voyager; (3) the density variations are much too large. It is argued that inclusion of the 3-D geometry in the simulation would resolve most all these shortcomings. Using a series of calculations executed with 1-D, 2-D, and 3-D MHD models of hypothetical tilted-dipole flows, we show that: (1) the radial propagation velocities of 3-D fronts are less than those of 1-D or 2-D fronts, owing to the tilt of (and increased shearing across) the interaction surfaces hence the overtaking rate of successive streams is reduced; (2) in a tilted-dipole geometry, the reverse fronts should largely disappear from the equatorial plane by 43 AU, effectively halving the number of fronts to be observed (see companion paper on predominance of forward fronts at Voyager); and (3) the density enhancements would be much smaller than predicted by a 1-D model.
Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing
2018-06-01
We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.
Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics
NASA Astrophysics Data System (ADS)
Hickey, M. S.; Trevino, S., III; Everett, M. E.
2017-12-01
Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.
A code for optically thick and hot photoionized media
NASA Astrophysics Data System (ADS)
Dumont, A.-M.; Abrassart, A.; Collin, S.
2000-05-01
We describe a code designed for hot media (T >= a few 104 K), optically thick to Compton scattering. It computes the structure of a plane-parallel slab of gas in thermal and ionization equilibrium, illuminated on one or on both sides by a given spectrum. Contrary to the other photoionization codes, it solves the transfer of the continuum and of the lines in a two stream approximation, without using the local escape probability formalism to approximate the line transfer. We stress the importance of taking into account the returning flux even for small column densities (1022 cm-2), and we show that the escape probability approximation can lead to strong errors in the thermal and ionization structure, as well as in the emitted spectrum, for a Thomson thickness larger than a few tenths. The transfer code is coupled with a Monte Carlo code which allows to take into account Compton and inverse Compton diffusions, and to compute the spectrum emitted up to MeV energies, in any geometry. Comparisons with cloudy show that it gives similar results for small column densities. Several applications are mentioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walla, P.J.; Yom, J.; Krueger, B.P.
2000-05-18
The two-photon excitation (TPE) spectrum of light-harvesting complex II (LHC II) has been measured in the spectral region of 1,000--1,600 nm, corresponding to one-photon wavelengths of 500--800 nm. The authors observed a band with an origin at {approximately}2 x 660 nm (ca. 15,100 {+-} 300 cm{sup {minus}1}) and a maximum at {approximately}2 x 600 nm. The line shape and origin of this band strongly suggest that the observed signal is due to the two-photon-allowed S{sub 1} state of the energy-transferring carotenoids (Car ) in LHC II. The authors also report the time dependence of the upconverted chlorophyll (Chl) fluorescence aftermore » TPE at the maximum of the observed band. Surprisingly, a fast rise of 250 {+-} 50 fs followed by a multiexponential decay on the picosecond time scale was observed. This result provides strong indication that there is a fast energy transfer even from the dipole-forbidden Car S{sub 1} state to the Chl's. The sub picosecond energy transfer from the Car S{sub 1} state is likely a consequence of the large number of energy-accepting Chls in van der Waals contact with the central Car's in LHC II. They also present upconversion data of the Car S{sub 2}, Chl a, and Chl b fluorescence observed after one-photon excitation into the dipole-allowed Car S{sub 2} state. The lifetime of the Car S{sub 2} state is {approximately}120 {+-} 30 fs. With the observed time constants they are able to calculate quantum yields for the different possible pathways contributing to the overall Car to Chl energy transfer in LHC II.« less
NASA Astrophysics Data System (ADS)
Quinet, Pascal; Fivet, Vanessa; Bautista, Manuel
2015-08-01
The knowledge of accurate and reliable atomic data for lowly ionized iron peak elements, from scandium to copper, is of paramount importance for the analysis of the high resolution spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly ionized species have been little investigated so far and radiative rates for those lines remain sparse or inexistent.In the present contribution, we report on the recent study we have performed concerning the determination of magnetic dipole (M1) and electric quadrupole (E2) transition probabilities in those ions. For the calculations, we have extensively used the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allowed us to check the consistency and to assess the accuracy of the results obtained.[1] Mesa-Delgado A. et al., MNRAS 395, 855 (2009)[2] Johansson S. et al., A&A 361, 977 (2000)[3] Cowan R.D., The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley (1981)[4] Badnell N.R., J. Phys. B: At. Mol. Opt. Phys. 30, 1 (1997)
Babak, Valery G; Baros, Francis; Boulanouar, Omar; Boury, Frank; Fromm, Michel; Kildeeva, Nathalie R; Ubrich, Nathalie; Maincent, Philippe
2007-10-01
The emulsifying and stabilizing ability of several hydrophobic (insoluble in water and soluble in volatile organic solvents) polymers, such as Eudragit RL, Eudragit RS, PLGA, PCL, and their mixtures, with regard to the methylene chloride (MC)-in-water mini-emulsions, has been compared to the viscosity of MC solutions and to the properties of adsorption and spread monolayers of these polymers. Eudragits RS and RL contain approximately 2.5 and approximately 5 mol% of pendent cationic trimethylammonium (TMA) groups per approximately 164 g/mol segments, whereas PLGA and PCL contain 1 and 2 polar carbonyl groups per 130 and 114 g/mol, respectively. The electrostatic attraction between the dipoles, formed by TMA groups and the condensed counter ions in the MC solutions, leads to the contraction of macromolecular coils of Eudragits, whereas the PLGA and PCL macromolecules, interacting by low polar carbonyl groups (with dipole moment mu = 2.7 D) retain more extended conformation in MC. This explains why the characteristic viscosities [eta] of MC solutions are much lower for the former polymers ( approximately 0.1 dL/g) with regard to PLGA and PCL solutions whose [eta] is equal to 0.3 and 0.6 dL/g, respectively. The ionization of TMA groups in contact with the water phase leads to the irreversible adsorption of Eudragits at the MC/water interface and to high decrease of the interfacial tension gamma (down to 4 mN/m for the 5% MC solutions). Whereas PLGA and PCL possessing low polar carbonyl groups adsorb poorly at the MC/water interface exhibiting gamma congruent with 28 mN/m. Higher stability of spread monolayers of Eudragits (pi* approximately 40 mN/m) with regard to PLGA and PCL (pi* < 20 mN/m) correlates well with higher interfacial activity of the former with regard to the later. The higher surface potential DeltaV of Eudragits (0.9 V) with regard to PLGA (0.3 V) and PCL (0.4V) is explained by the formation of electric double layer (DL) by the former, whereas the later contribute to the DeltaV only by cumulative dipole moments of carbonyl groups. The experimental values of surface potentials correlate well with the Gouy-Chapman model of the DL and the Helmholtz model of the monolayer. The ensemble of experimental results leads to the conclusion that higher emulsifying and stabilizing ability of Eudragits with regard to PLGA and PCL is due to higher adsorption activity of the former which form the corona of polymeric chains with ionized TMA groups around the droplets. It can be postulated that Eudragit polymers have good surface active properties which may allow manufacturing of biocompatible nanoparticles by emulsification-solvent evaporation method without surfactants.
Kotko, P.; Kutak, K.; Sapeta, S.; ...
2017-05-27
Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or k T ) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb–Pb collisions atCMenergy 5.1 TeV per nucleon pair. The formalism is applicablewhen the average transversemomentum of the dijet system P T is much bigger than the saturation scale Q s , P T >> Qs , while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to theWeizsäcker–Williams (WW) unintegrated gluon distribution, which is far less known frommore » experimental data than the most common dipole gluon distribution appearing in inclusive small-x processes. We also calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL+DGLAP evolution equation. The saturation effects are visible but rather weak for realistic p T cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. Finally, we find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.« less
Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A
2017-01-19
The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).
Enhanced and tunable electric dipole-dipole interactions near a planar metal film
NASA Astrophysics Data System (ADS)
Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen
2017-08-01
We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.
Phase transition studies of BiMnO{sub 3}: Mean field theory approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmi Priya, K. B.; Natesan, Baskaran, E-mail: nbaski@nitt.edu
We studied the phase transition and magneto-electric coupling effect of BiMnO{sub 3} by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO{sub 3}, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports.more » Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO{sub 3}.« less
Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin
2017-06-01
We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Rozendaal, H. L.
1977-01-01
A rapid mission analysis code based on the use of approximate flight path equations of motion is presented. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed characteristics were specified in tabular form. The code also contains extensive flight envelope performance mapping capabilities. Approximate take off and landing analyses were performed. At high speeds, centrifugal lift effects were accounted for. Extensive turbojet and ramjet engine scaling procedures were incorporated in the code.
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.
1997-01-01
The use of statistical techniques to build approximations of expensive computer analysis codes pervades much of todays engineering design. These statistical approximations, or metamodels, are used to replace the actual expensive computer analyses, facilitating multidisciplinary, multiobjective optimization and concept exploration. In this paper we review several of these techniques including design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We survey their existing application in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of statistical approximation techniques in given situations and how common pitfalls can be avoided.
Transfer of dipolar gas through the discrete localized mode.
Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui
2013-12-01
By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.
On some Aspects of Gravitomagnetism and Correction for Perihelion Advance
NASA Astrophysics Data System (ADS)
Rocha, F.; Malheiro, M.; Marinho, R., Jr.
2016-04-01
In 1918 Joseph Lense and Hans Thirring, discovered the gravitomagnetic effect when studied solutions to the Einstein field equations using the weak field and slow motion approximation of rotating systems. They noted that when a body falls towards a massive object in rotation it feels a force perpendicular to its movement. The equations that they obtained were similar to Maxwell’s equations of electromagnetism, now known as Maxwell’s equations for gravitomagnetism. Some authors affirm that the gravitomagnetic effect can cause precession then in this paper we calculate the precession that gravitomagnetic effect cause in Mercury’s perihelion advance. To make this we calculate the field between dipoles to measure the influence that the Sun has on Mercury, taking into account the gravitomagnetic field that the Sun and Mercury produces when they rotate around themselves. In addition, we calculate the ratio of the dipole force (of all solar system planet’s) and the Newton’s gravitational force to see how much is smaller.
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
NASA Astrophysics Data System (ADS)
Zhu, Daoyun; Liao, Min; Mu, Zhongfei; Wu, Fugen
2018-05-01
Dy3+-doped Ca9NaZn(PO4)7 has been synthesized by high-temperature solid-state reaction. X-ray diffraction analysis revealed that the obtained phosphors existed as single phase. Doping with Dy3+ at low concentration had no obvious effect on the crystal structure of the host. Dy3+-doped samples showed strong emission at approximately 480 nm and 571 nm under excitation at 350 nm. The blue and yellow emissions showed almost the peak intensity. The combination of blue and yellow light formed white light. The color coordinates (0.323, 0.372) of the composite light are located in the white light region. The optimum doping concentration of Dy3+ ions was experimentally determined to be 10 mol.%. The concentration quenching mechanism was ascertained to be electric dipole-dipole interaction among Dy3+ ions. The obtained phosphors exhibited good thermal stability. These results indicate potential applications as single-phase white light-emitting phosphors.
Structural phase transitions in isotropic magnetic elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meilikhov, E. Z., E-mail: meilikhov@yandex.ru; Farzetdinova, R. M.
Magnetic elastomers represent a new type of materials that are “soft” matrices with “hard” magnetic granules embedded in them. The elastic forces of the matrix and the magnetic forces acting between granules are comparable in magnitude even under small deformations. As a result, these materials acquire a number of new properties; in particular, their mechanical and/or magnetic characteristics can depend strongly on the polymer matrix filling with magnetic particles and can change under the action of an external magnetic field, pressure, and temperature. To describe the properties of elastomers, we use a model in which the interaction of magnetic granulesmore » randomly arranged in space with one another is described in the dipole approximation by the distribution function of dipole fields, while their interaction with the matrix is described phenomenologically. A multitude of deformation, magnetic-field, and temperature effects that are described in this paper and are quite accessible to experimental observation arise within this model.« less
Guarendi, Andrew N.; Chandy, Abhilash J.
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antušek, A., E-mail: andrej.antusek@stuba.sk; Holka, F., E-mail: filip.holka@stuba.sk
2015-08-21
We present coupled cluster calculations of NMR shielding constants of aluminum, gallium, and indium in water-ion clusters. In addition, relativistic and dynamical corrections and the influence of the second solvation shell are evaluated. The final NMR shielding constants define new absolute shielding scales, 600.0 ± 4.1 ppm, 2044.4 ± 31.4 ppm, and 4507.7 ± 63.7 ppm for aluminum, gallium, and indium, respectively. The nuclear magnetic dipole moments for {sup 27}Al, {sup 69}Ga, {sup 71}Ga, {sup 113}In, and {sup 115}In isotopes are corrected by combining the computed shielding constants with experimental NMR frequencies. The absolute magnitude of the correction increases alongmore » the series and for indium isotopes it reaches approximately −8.0 × 10{sup −3} of the nuclear magneton.« less
Quantifying the influence of flow asymmetries on glottal sound sources in speech
NASA Astrophysics Data System (ADS)
Erath, Byron; Plesniak, Michael
2008-11-01
Human speech is made possible by the air flow interaction with the vocal folds. During phonation, asymmetries in the glottal flow field may arise from flow phenomena (e.g. the Coanda effect) as well as from pathological vocal fold motion (e.g. unilateral paralysis). In this study, the effects of flow asymmetries on glottal sound sources were investigated. Dynamically-programmable 7.5 times life-size vocal fold models with 2 degrees-of-freedom (linear and rotational) were constructed to provide a first-order approximation of vocal fold motion. Important parameters (Reynolds, Strouhal, and Euler numbers) were scaled to physiological values. Normal and abnormal vocal fold motions were synthesized, and the velocity field and instantaneous transglottal pressure drop were measured. Variability in the glottal jet trajectory necessitated sorting of the data according to the resulting flow configuration. The dipole sound source is related to the transglottal pressure drop via acoustic analogies. Variations in the transglottal pressure drop (and subsequently the dipole sound source) arising from flow asymmetries are discussed.
Thermal helium clusters at 3.2 Kelvin in classical and semiclassical simulations
NASA Astrophysics Data System (ADS)
Schulte, J.
1993-03-01
The thermodynamic stability of4He4-13 at 3.2 K is investigated with the classical Monte Carlo method, with the semiclassical path-integral Monte Carlo (PIMC) method, and with the semiclassical all-order many-body method. In the all-order many-body simulation the dipole-dipole approximation including short-range correction is used. The resulting stability plots are discussed and related to recent TOF experiments by Stephens and King. It is found that with classical Monte Carlo of course the characteristics of the measured mass spectrum cannot be resolved. With PIMC, switching on more and more quantum mechanics. by raising the number of virtual time steps results in more structure in the stability plot, but this did not lead to sufficient agreement with the TOF experiment. Only the all-order many-body method resolved the characteristic structures of the measured mass spectrum, including magic numbers. The result shows the influence of quantum statistics and quantum mechanics on the stability of small neutral helium clusters.
Doppler-Zeeman mapping of the magnetic CP star HD 215441
NASA Astrophysics Data System (ADS)
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Tsymbal, V. V.
1997-07-01
The method of Vasilchenko et al. (1996) is used to obtain a Doppler-Zeeman map of the magnetic CP star HD 215441. The magnetic field is approximated by a magnetic dipole that is arbitrarily shifted from the star center. The solution of the inverse problem yields the dipole parameters and the maps of Si, Ti, Cr, and Fe abundance anomalies; the coordinates of local magnetic vectors on the star surface are computed. A comparison of the distribution of abundance anomalies and the magnetic-field configuration reveals that in the region where the magnetic-field lines are vertical (near the magnetic pole), Si, Ti and Cr are highly deficient, while the Fe enhancement is strongest. In the regions where the magnetic-field lines are horizontal (near the magnetic equator), Si, Ti and Cr show the greatest overabundance. In these regions, the Fe abundance is also slightly enhanced and exhibits, as it were, a secondary maximum. The factors that limit the accuracy of Doppler-Zeeman mapping are reviewed.
Electromagnetic surveying of seafloor mounds in the northern Gulf of Mexico
Ellis, M.; Evans, R.L.; Hutchinson, D.; Hart, P.; Gardner, J.; Hagen, R.
2008-01-01
Seafloor controlled source electromagnetic data, probing the uppermost 30 m of seafloor sediments, have been collected with a towed magnetic dipole-dipole system across two seafloor mounds at approximately 1300 m water depth in the northern Gulf of Mexico. One of these mounds was the focus of??a recent gas hydrate research drilling program. Rather than the highly resistive response expected of massive gas hydrate within the confines of the mounds, the EM data are dominated by the effects of raised temperatures and pore fluid salinities that result in an electrically conductive seafloor. This structure suggests that fluid advection towards the seafloor is taking place beneath both mounds. Similar responses are seen at discrete locations away from the mounds in areas that might be associated with faults, further suggesting substantial shallow fluid circulation. Raised temperatures and salinities may inhibit gas hydrate formation at depth as has been suggested at other similar locations in the Gulf of Mexico.
Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer
NASA Astrophysics Data System (ADS)
Urzhumov, Yaroslav; Smith, David R.
2011-05-01
Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio.
Waveguide quantum electrodynamics in squeezed vacuum
NASA Astrophysics Data System (ADS)
You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail
2018-02-01
We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.
Split-orientation-modulated plasmon coupling in disk/sector dimers
NASA Astrophysics Data System (ADS)
Zhu, Xupeng; Chen, Yiqin; Shi, Huimin; Zhang, Shi; Liu, Quanhui; Duan, Huigao
2017-06-01
The coupled asymmetric plasmonic nanostructures allow more compact nanophotonics integration and easier optical control in practical applications, such as directional scattering and near-field control. Here, we carried out a systematic and in-depth study on the plasmonic coupling of an asymmetric gold disk/sector dimer, and investigated the light-matter interaction in such an asymmetric coupled complex nanostructures. The results demonstrated that the positions and the intensity of plasmon resonance peak as well as the spatial distribution of electric fields around the surface in the coupled disk/sector dimer can be tuned by changing the azimuth angle of the gold sector. Based on Simpson-Peterson approximation, we proposed a model to understand the obtained plasmon properties of asymmetric coupled disk/sector dimers by introducing an offset parameter between the geometry center and dipole center of the sector. The experimental results agree well with the simulations. Our study provides an insight to tune the plasmon coupling behavior via adjusting the plasmon dipole center position in coupling systems.
Radiating dipole model of interference induced in spacecraft circuitry by surface discharges
NASA Technical Reports Server (NTRS)
Metz, R. N.
1984-01-01
Spacecraft in geosynchronous orbit can be charged electrically to high voltages by interaction with the space plasma. Differential charging of spacecraft surfaces leads to arc and blowoff discharging. The discharges are thought to upset interior, computer-level circuitry. In addition to capacitive or electrostatic effects, significant inductive and less significant radiative effects of these discharges exist and can be modeled in a dipole approximation. Flight measurements suggest source frequencies of 5 to 50 MHz. Laboratory tests indicate source current strengths of several amperes. Electrical and magnetic fields at distances of many centimeters from such sources can be as large as tens of volts per meter and meter squared, respectively. Estimates of field attenuation by spacecraft walls and structures suggest that interior fields may be appreciable if electromagnetic shielding is much thinner than about 0.025 mm (1 mil). Pickup of such fields by wires and cables interconnecting circuit components could be a source of interference signals of several volts amplitude.
NASA Astrophysics Data System (ADS)
Maier, Matthias; Margetis, Dionisios; Luskin, Mitchell
2017-06-01
We formulate and validate a finite element approach to the propagation of a slowly decaying electromagnetic wave, called surface plasmon-polariton, excited along a conducting sheet, e.g., a single-layer graphene sheet, by an electric Hertzian dipole. By using a suitably rescaled form of time-harmonic Maxwell's equations, we derive a variational formulation that enables a direct numerical treatment of the associated class of boundary value problems by appropriate curl-conforming finite elements. The conducting sheet is modeled as an idealized hypersurface with an effective electric conductivity. The requisite weak discontinuity for the tangential magnetic field across the hypersurface can be incorporated naturally into the variational formulation. We carry out numerical simulations for an infinite sheet with constant isotropic conductivity embedded in two spatial dimensions; and validate our numerics against the closed-form exact solution obtained by the Fourier transform in the tangential coordinate. Numerical aspects of our treatment such as an absorbing perfectly matched layer, as well as local refinement and a posteriori error control are discussed.
Turbofan Duct Propagation Model
NASA Technical Reports Server (NTRS)
Lan, Justin H.; Posey, Joe W. (Technical Monitor)
2001-01-01
The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.
NASA Astrophysics Data System (ADS)
Shkuratov, Yuriy G.; Zubko, Evgenij S.
2008-04-01
We show that the mechanism called "near-field effect" [e.g., Petrova, E.V., Tishkovets, V.P., Jockers, K., 2007. Icarus 188, 233-245], which is used to explain wide-phase-angle negative polarization branch observed for planetary regoliths and cometary comas, is not realistic as it contradicts laboratory experiments and results of modeling with discrete dipole approximation calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Tanja; Engel, Dieter; Ehresmann, Arno
2008-12-15
A quantitative analysis of magnetic force microscopy (MFM) images taken in external in-plane magnetic fields is difficult because of the influence of the magnetic field on the magnetization state of the magnetic probe tip. We prepared calibration samples by ion bombardment induced magnetic patterning with a topographically flat magnetic pattern magnetically stable in a certain external magnetic field range for a quantitative characterization of the MFM probe tip magnetization in point-dipole approximation.
NASA Technical Reports Server (NTRS)
Lederer. S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Cintala, M. J.; Nakamura-Messenger, K.; Keller, L. P.
2012-01-01
Impacts into forsterite and orthoenstatite at speeds typically encountered by comets demonstrate that shock imparted by collisions is detectable in the infrared signatures of their dust. The spectral signatures can be traced to physical alterations in their crystalline structures, as observed in TEM imaging and modeled using a dipole approximation. These results yield tantalizing insights into the collisional history of our solar system, as well as the history of individual comets and Trojan asteroids.
NASA Technical Reports Server (NTRS)
Kong, J. A.; Tsang, L.
1974-01-01
The radiation fields due to a horizontal electric dipole laid on the surface of a stratified medium were calculated using a geometrical optics approximation, a modal approach, and direct numerical integration. The solutions were obtained from the reflection coefficient formulation and written in integral forms. The calculated interference patterns are compared in terms of the usefulness of the methods used to obtain them. Scattering effects are also discussed and all numerical results for anisotropic and isotropic cases are presented.
Nuclear magnetic shielding in boronlike ions
NASA Astrophysics Data System (ADS)
Volchkova, A. M.; Varentsova, A. S.; Zubova, N. A.; Agababaev, V. A.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.
2017-10-01
The relativistic treatment of the nuclear magnetic shielding effect in boronlike ions is presented. The leading-order contribution of the magnetic-dipole hyperfine interaction is calculated. Along with the standard second-order perturbation theory expression, the solutions of the Dirac equation in the presence of magnetic field are employed. All methods are found to be in agreement with each other and with the previous calculations for hydrogenlike and lithiumlike ions. The effective screening potential is used to account approximately for the interelectronic interaction.
Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography.
Liusman, Cipto; Li, Shuzhou; Chen, Xiaodong; Wei, Wei; Zhang, Hua; Schatz, George C; Boey, Freddy; Mirkin, Chad A
2010-12-28
This paper describes a new strategy for synthesizing free-standing bimetallic nanorings and nanoring arrays based upon on-wire lithography and a galvanic replacement reaction. The strategy allows one to tune the diameter, length, and therefore aspect ratio of the nanorings. In addition, it can be used to produce arrays of nanorings in high yield with control over number and spacing. Spectroscopic studies and discrete dipole approximation calculations show that nanoring dimers exhibit greater surface enhanced Raman scattering than the analogous nanodisk dimers.
Computational aeroacoustics of propeller noise in the near and far field
NASA Technical Reports Server (NTRS)
Forsyth, D. W.; Korkan, K. D.
1987-01-01
Techniques for applying the NASPROP-E computer code (Bober et al., 1983) to characterize the acoustic field of a transonic propfan are described and demonstrated for the case of the SR-3 propfan. It is pointed out that NASPROP E accounts for the nonlinear quadrupole, monopole, and dipole noise sources. The approach used, based on that of White (1984) and Korkan et al. (1985 and 1986), is described in detail, and the results of simulations employing different (reflective and nonreflective) inflow-outflow boundary conditions and azimuthal mesh spacings are presented in graphs and briefly discussed.
HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous
1993-01-01
Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.
Bauer, Brad A; Warren, G Lee; Patel, Sandeep
2009-02-10
We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.(1) that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å(3) and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm(3) at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed.
Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep
2012-01-01
We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.1 that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å3 and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm3 at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are anticipated in regions with both liquid and vapor character, interfacial simulations of TIP4P-QDP were performed and compared to TIP4P-FQ, a static polarizability analog. Despite similar features in density profiles such as the position of the GDS and interfacial width, enhanced dipole moments are observed for the TIP4P-QDP interface and onset of the vapor phase. Water orientational profiles show an increased preference (over TIP4P-FQ) in the orientation of the permanent dipole vector of the molecule within the interface; an enhanced z-induced dipole moment directly results from this preference. Hydrogen bond formation is lower, on average, in the bulk for TIP4P-QDP than TIP4P-FQ. However, the average number of hydrogen bonds formed by TIP4P-QDP in the interface exceeds that of TIP4P-FQ, and observed hydrogen bond networks extend further into the gaseous region. The TIP4P-QDP interfacial potential, calculated to be -11.98(±0.08) kcal/mol, is less favorable than that for TIP4P-FQ by approximately 2% as a result of a diminished quadrupole contribution. Surface tension is calculated within a 1.3% reduction from the experimental value. Results reported demonstrate TIP4P-QDP as a model comparable to the popular TIP4P-FQ while accounting for a physical effect previously neglected by other water models. Further refinements to this model, as well as future applications are discussed. PMID:23133341
The Continual Intercomparison of Radiation Codes: Results from Phase I
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Mlawer, Eli; Delamere, Jennifer; Shippert, Timothy; Cole, Jason; Iacono, Michael; Jin, Zhonghai; Li, Jiangnan; Manners, James; Raisanen, Petri;
2011-01-01
The computer codes that calculate the energy budget of solar and thermal radiation in Global Climate Models (GCMs), our most advanced tools for predicting climate change, have to be computationally efficient in order to not impose undue computational burden to climate simulations. By using approximations to gain execution speed, these codes sacrifice accuracy compared to more accurate, but also much slower, alternatives. International efforts to evaluate the approximate schemes have taken place in the past, but they have suffered from the drawback that the accurate standards were not validated themselves for performance. The manuscript summarizes the main results of the first phase of an effort called "Continual Intercomparison of Radiation Codes" (CIRC) where the cases chosen to evaluate the approximate models are based on observations and where we have ensured that the accurate models perform well when compared to solar and thermal radiation measurements. The effort is endorsed by international organizations such as the GEWEX Radiation Panel and the International Radiation Commission and has a dedicated website (i.e., http://circ.gsfc.nasa.gov) where interested scientists can freely download data and obtain more information about the effort's modus operandi and objectives. In a paper published in the March 2010 issue of the Bulletin of the American Meteorological Society only a brief overview of CIRC was provided with some sample results. In this paper the analysis of submissions of 11 solar and 13 thermal infrared codes relative to accurate reference calculations obtained by so-called "line-by-line" radiation codes is much more detailed. We demonstrate that, while performance of the approximate codes continues to improve, significant issues still remain to be addressed for satisfactory performance within GCMs. We hope that by identifying and quantifying shortcomings, the paper will help establish performance standards to objectively assess radiation code quality, and will guide the development of future phases of CIRC
Modified Coulomb-Dipole Theory for 2e Photoionization
NASA Technical Reports Server (NTRS)
2004-01-01
In the light of recent experiment on 2e photoionization of Li near threshold, we have considered a modification of the Coulomb-dipole theory, retaining the basic assumption that the threshold is dominated by asymmetric events in phase space [implies r(sub 1), k(sub 1)) greater than or equal to 2(r(sub 2), k(sub )]. In this region [in a collinear model, 2/r(sub 12) approached + 2/(r(sub 1)+r(sub 2)] the interaction reduces to V(rIsub 1) is greater than or equal to 2r(sub 2) is identically equal to [(-Z/r(sub 2)-(A-1)/r(sub 1)] + [(-2r(sub 2)/r(sub 1 exp 2)] is identically equal to V(sub c)+[V(sub d)]. For two electron emission Z = 2, thus both electrons see a Coulomb potential (V(sub c)) asymptotically, albeit each seeing a different charge. The residual potential (V(sub d)) is dipole in character. Writing the total psi = psi (sub c) + psi(sub d) = delta psi, and noting that. (T+V(sub c)-E)psy(sub c) = 0 and (T+V(sub c))psi(sub d) = 0 can be solved exactly, we find, substituting psi into the complete Schrod. Eq., that delta psi = -(H-E)(exp -1)(V(sub d) psi(sub 0)+V(sub c psi (sub 1). Using the fact that the absolute value of V(sub c) is much more than the absolute value of V(sub d) in almost all of configuration space, we can replace H by H(sub 0) in 9H-E)(exp -1) to obtain an improved approximation psi (improved) = psi(sub c) + psi(sub d) -(H(sub 0)-E)(exp -1) (V(sub c) psi (sub 0) + V(sub c) psi(sub 1). Here's the Green's function (H(sub 0)-E)(exp -1), can be exhibited explicitly, but the last term in psi (improved) is small, compared to the first two terms. Inserting them into the transition matrix element, which one handles in the usual way, we obtain in the limit E approaches 0, the threshold law: Q(E) alpha E + M(E)E(exp 5/4) + higher order (Eq. 1a). The modulation function, M(E), is a well-defined (but very non-trivial integral, but it is expected to be well approximated by a sinusoidal function containing a dipole phase term (M(E) = c sin[alpha log (E) + micron] (Eq. 1b). Experimental results show definite modulations, and are well fitted by Eqs (1).
Response surface method in geotechnical/structural analysis, phase 1
NASA Astrophysics Data System (ADS)
Wong, F. S.
1981-02-01
In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.
Probability Quantization for Multiplication-Free Binary Arithmetic Coding
NASA Technical Reports Server (NTRS)
Cheung, K. -M.
1995-01-01
A method has been developed to improve on Witten's binary arithmetic coding procedure of tracking a high value and a low value. The new method approximates the probability of the less probable symbol, which improves the worst-case coding efficiency.
3DHZETRN: Inhomogeneous Geometry Issues
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.
2017-01-01
Historical methods for assessing radiation exposure inside complicated geometries for space applications were limited by computational constraints and lack of knowledge associated with nuclear processes occurring over a broad range of particles and energies. Various methods were developed and utilized to simplify geometric representations and enable coupling with simplified but efficient particle transport codes. Recent transport code development efforts, leading to 3DHZETRN, now enable such approximate methods to be carefully assessed to determine if past exposure analyses and validation efforts based on those approximate methods need to be revisited. In this work, historical methods of representing inhomogeneous spacecraft geometry for radiation protection analysis are first reviewed. Two inhomogeneous geometry cases, previously studied with 3DHZETRN and Monte Carlo codes, are considered with various levels of geometric approximation. Fluence, dose, and dose equivalent values are computed in all cases and compared. It is found that although these historical geometry approximations can induce large errors in neutron fluences up to 100 MeV, errors on dose and dose equivalent are modest (<10%) for the cases studied here.
NASA Astrophysics Data System (ADS)
Azadegan, B.
2013-03-01
The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion of charged particles in a continuous planar potential which is formed by the spatially and thermally averaged action of the individual electrostatic potentials of the crystal atoms of the corresponding plane. Classically, the motion of channeled particles through the crystal resembles transverse oscillations being the source of radiation emission. For electrons of energy less than 100 MeV considered here, planar channeling has to be treated quantum mechanically by a one-dimensional Schrödinger equation for the transverse motion. Hence, this motion of the channeled electrons is restricted to a number of discrete (bound) channeling states in the planar continuum potential, and the emission of channeling radiation is caused by spontaneous electron transitions between these eigenstates. Due to relativistic and Doppler effects, the energy of the emitted photons directed into a narrow forward cone is typically shifted up by about three to five orders of magnitude. Consequently, the observed energy spectrum of channeling radiation is characterized by a number of radiation lines in the energy domain of hard X-rays. Channeling radiation may, therefore, be applied as an intense, tunable, quasi-monochromatic X-ray source. Solution method: The problem consists in finding the electron wave function for the planar continuum potential. Both the wave functions and corresponding energies of channeling states solve the Schrödinger equation of transverse electron motion. In the framework of the so-called many-beam formalism, solving the Schrödinger equation reduces to a eigenvector-eigenvalue problem of a Hermitian matrix. For that the program employs the mathematical tools allocated in the commercial computation software Mathematica. The electric field of the atomic planes in the crystal forces dipole oscillations of the channeled charged particles. In the quantum mechanical approach, the dipole approximation is also valid for spontaneous transitions between bound states. The transition strength for dedicated states depends on the magnitude of the corresponding dipole matrix element. The photon energy correlates with the particle energy, and the spectral width of radiation lines is a function of the life times of the channeling states. Running time: The program has been tested on a PC AMD Athlon X2 245 processor 2.9 GHz with 2 GB RAM. Depending on electron energy and crystal thickness, the running time of the program amounts to 5-10 min.
NASA Astrophysics Data System (ADS)
Finley, Adam J.; Matt, Sean P.
2018-02-01
During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the combined winds to be more complex than a simple sum of winds with these individual components. This work follows the same method as Paper I, including the octupole geometry, which not only increases the field complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields, with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque. Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries and under most conditions for real stars. We present a general torque formulation that includes the effects of complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority to within ≈5%. This can be used as an input for rotational evolution calculations in cases where the individual magnetic components are known.
On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.
1997-01-01
Perhaps the most prevalent use of statistics in engineering design is through Taguchi's parameter and robust design -- using orthogonal arrays to compute signal-to-noise ratios in a process of design improvement. In our view, however, there is an equally exciting use of statistics in design that could become just as prevalent: it is the concept of metamodeling whereby statistical models are built to approximate detailed computer analysis codes. Although computers continue to get faster, analysis codes always seem to keep pace so that their computational time remains non-trivial. Through metamodeling, approximations of these codes are built that are orders of magnitude cheaper to run. These metamodels can then be linked to optimization routines for fast analysis, or they can serve as a bridge for integrating analysis codes across different domains. In this paper we first review metamodeling techniques that encompass design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We discuss their existing applications in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of metamodeling techniques in given situations and how common pitfalls can be avoided.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Rozendaal, H. L.
1977-01-01
A rapid mission analysis code based on the use of approximate flight path equations of motion is described. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form. In addition to its mission performance calculation capabilities, the code also contains extensive flight envelop performance mapping capabilities. Approximate take off and landing analyses can be performed. At high speeds, centrifugal lift effects are taken into account. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code.
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir
2009-11-01
Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.
Improving Estimated Optical Constants With MSTM and DDSCAT Modeling
NASA Astrophysics Data System (ADS)
Pitman, K. M.; Wolff, M. J.
2015-12-01
We present numerical experiments to determine quantitatively the effects of mineral particle clustering on Mars spacecraft spectral signatures and to improve upon the values of refractive indices (optical constants n, k) derived from Mars dust laboratory analog spectra such as those from RELAB and MRO CRISM libraries. Whereas spectral properties for Mars analog minerals and actual Mars soil are dominated by aggregates of particles smaller than the size of martian atmospheric dust, the analytic radiative transfer (RT) solutions used to interpret planetary surfaces assume that individual, well-separated particles dominate the spectral signature. Both in RT models and in the refractive index derivation methods that include analytic RT approximations, spheres are also over-used to represent nonspherical particles. Part of the motivation is that the integrated effect over randomly oriented particles on quantities such as single scattering albedo and phase function are relatively less than for single particles. However, we have seen in previous numerical experiments that when varying the shape and size of individual grains within a cluster, the phase function changes in both magnitude and slope, thus the "relatively less" effect is more significant than one might think. Here we examine the wavelength dependence of the forward scattering parameter with multisphere T-matrix (MSTM) and discrete dipole approximation (DDSCAT) codes that compute light scattering by layers of particles on planetary surfaces to see how albedo is affected and integrate our model results into refractive index calculations to remove uncertainties in approximations and parameters that can lower the accuracy of optical constants. By correcting the single scattering albedo and phase function terms in the refractive index determinations, our data will help to improve the understanding of Mars in identifying, mapping the distributions, and quantifying abundances for these minerals and will address long-standing questions on fundamental physics in the martian surface (e.g., what is the fundamental scattering unit for closely packed dust or regolith grains?). This work was supported by NASA's Mars Fundamental Research Program and performed with the Pleiades cluster courtesy of NASA's Advanced Supercomputing Division.
Image gathering and coding for digital restoration: Information efficiency and visual quality
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; John, Sarah; Mccormick, Judith A.; Narayanswamy, Ramkumar
1989-01-01
Image gathering and coding are commonly treated as tasks separate from each other and from the digital processing used to restore and enhance the images. The goal is to develop a method that allows us to assess quantitatively the combined performance of image gathering and coding for the digital restoration of images with high visual quality. Digital restoration is often interactive because visual quality depends on perceptual rather than mathematical considerations, and these considerations vary with the target, the application, and the observer. The approach is based on the theoretical treatment of image gathering as a communication channel (J. Opt. Soc. Am. A2, 1644(1985);5,285(1988). Initial results suggest that the practical upper limit of the information contained in the acquired image data range typically from approximately 2 to 4 binary information units (bifs) per sample, depending on the design of the image-gathering system. The associated information efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from approximately 0.3 to 0.5 bif per bit without coding to approximately 0.5 to 0.9 bif per bit with lossless predictive compression and Huffman coding. The visual quality that can be attained with interactive image restoration improves perceptibly as the available information increases to approximately 3 bifs per sample. However, the perceptual improvements that can be attained with further increases in information are very subtle and depend on the target and the desired enhancement.
Dipole oscillator strengths, dipole properties and dispersion energies for SiF4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.
Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng
2014-03-05
In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. Copyright © 2013 Wiley Periodicals, Inc.
Pavanello, Michele; Neugebauer, Johannes
2011-10-07
Marcus theory of electron transfer (ET) and Förster theory of excitation energy transfer (EET) rely on the Condon approximation and the theoretical availability of initial and final states of ET and EET reactions, often called diabatic states. Recently [Subotnik et al., J. Chem. Phys. 130, 234102 (2009)], diabatic states for practical calculations of ET and EET reactions were defined in terms of their interactions with the surrounding environment. However, from a purely theoretical standpoint, the definition of diabatic states must arise from the minimization of the dynamic couplings between the trial diabatic states. In this work, we show that if the Condon approximation is valid, then a minimization of the derived dynamic couplings leads to corresponding diabatic states for ET reactions taking place in solution by diagonalization of the dipole moment matrix, which is equivalent to a Boys localization algorithm; while for EET reactions in solution, diabatic states are found through the Edmiston-Ruedenberg localization algorithm. In the derivation, we find interesting expressions for the environmental contribution to the dynamic coupling of the adiabatic states in condensed-phase processes. In one of the cases considered, we find that such a contribution is trivially evaluable as a scalar product of the transition dipole moment with a quantity directly derivable from the geometry arrangement of the nuclei in the molecular environment. Possibly, this has applications in the evaluation of dynamic couplings for large scale simulations. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.
2014-09-01
In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.
Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation
NASA Astrophysics Data System (ADS)
Wu, Q.; Hu, B. S.; Xu, F. R.; Ma, Y. Z.; Dai, S. J.; Sun, Z. H.; Jansen, G. R.
2018-05-01
We study nuclear multipole resonances in the framework of the random-phase approximation by using the chiral potential NNLOsat. This potential includes two- and three-body terms that have been simultaneously optimized to low-energy nucleon-nucleon scattering data and selected nuclear structure data. Our main focuses have been the isoscalar monopole, isovector dipole, and isoscalar quadrupole resonances of the closed-shell nuclei, 4He,
Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions
NASA Astrophysics Data System (ADS)
Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik
1997-12-01
Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.
NASA Astrophysics Data System (ADS)
Sahoo, B. K.; Singh, Yashpal
2017-06-01
The parity and time-reversal violating electric dipole moment (EDM) of 171Yb is calculated accounting for the electron-correlation effects over the Dirac-Hartree-Fock method in the relativistic Rayleigh-Schrödinger many-body perturbation theory, with the second- [MBPT(2) method] and third-order [MBPT(3) method] approximations, and two variants of all-order relativistic many-body approaches, in the random phase approximation (RPA) and coupled-cluster (CC) method with singles and doubles (CCSD method) framework. We consider electron-nucleus tensor-pseudotensor (T-PT) and nuclear Schiff moment (NSM) interactions as the predominant sources that induce EDM in a diamagnetic atomic system. Our results from the CCSD method to EDM (da) of 171Yb due to the T-PT and NSM interactions are found to be da=4.85 (6 ) ×10-20<σ > CT|e | cm and da=2.89 (4 ) ×10-17S /(|e |fm3) , respectively, where CT is the T-PT coupling constant and S is the NSM. These values differ significantly from the earlier calculations. The reason for the same has been attributed to large correlation effects arising through non-RPA type of interactions among the electrons in this atom that are observed by analyzing the differences in the RPA and CCSD results. This has been further scrutinized from the MBPT(2) and MBPT(3) results and their roles have been demonstrated explicitly.
The exact solution of a four-body Coulomb problem
NASA Astrophysics Data System (ADS)
Ray, Hasi
2018-03-01
The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps-Ps, Ps-Mu, Ps-H, Ps-D, Ps-T, Mu-Mu, Mu-H, Mu-D, Mu-T, H-H, H-D, H-T, D-D, D-T, T-T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)-H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
Inelastic losses in X-ray absorption theory
NASA Astrophysics Data System (ADS)
Campbell, Luke Whalin
There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a projection operator to calculate deviations from the final state rule and edge singularities.
Regularized quasinormal modes for plasmonic resonators and open cavities
NASA Astrophysics Data System (ADS)
Kamandar Dezfouli, Mohsen; Hughes, Stephen
2018-03-01
Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.
Adimensional theory of shielding in ultracold collisions of dipolar rotors
NASA Astrophysics Data System (ADS)
González-Martínez, Maykel L.; Bohn, John L.; Quéméner, Goulven
2017-09-01
We investigate the electric field shielding of ultracold collisions of dipolar rotors, initially in their first rotational excited state, using an adimensional approach. We establish a map of good and bad candidates for efficient evaporative cooling based on this shielding mechanism, by presenting the ratio of elastic over quenching processes as a function of a rescaled rotational constant B ˜=B /sE3 and a rescaled electric field F ˜=d F /B . B ,d ,F ,andsE 3 are respectively the rotational constant, the full electric dipole moment of the molecules, the applied electric field, and a characteristic dipole-dipole energy. We identify two groups of bi-alkali-metal dipolar molecules. The first group, including RbCs, NaK, KCs, LiK, NaRb, LiRb, NaCs, and LiCs, is favorable with a ratio over 1000 at collision energies equal to (or even higher than) their characteristic dipolar energy. The second group, including LiNa and KRb, is not favorable. More generally, for molecules well described by Hund's case b, our adimensional study provides the conditions of efficient evaporative cooling. The range of appropriate rescaled rotational constant and rescaled field is approximately B ˜≥108 and 3.25 ≤F ˜≤3.8 , with a maximum ratio reached for F ˜≃3.4 for a given B ˜. We also discuss the importance of the electronic van der Waals interaction on the adimensional character of our study.
NASA Technical Reports Server (NTRS)
Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.
2014-01-01
We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.
Spin-flip isovector giant resonances from the 90Zr(n,p)90Y reaction at 198 MeV
NASA Astrophysics Data System (ADS)
Raywood, K. J.; Spicer, B. M.; Yen, S.; Long, S. A.; Moinester, M. A.; Abegg, R.; Alford, W. P.; Celler, A.; Drake, T. E.; Frekers, D.; Green, P. E.; Häusser, O.; Helmer, R. L.; Henderson, R. S.; Hicks, K. H.; Jackson, K. P.; Jeppesen, R. G.; King, J. D.; King, N. S.; Miller, C. A.; Officer, V. C.; Schubank, R.; Shute, G. G.; Vetterli, M.; Watson, J.; Yavin, A. I.
1990-06-01
Doubly differential cross sections of the reaction 90Zr(n,p)90Y have been measured at 198 MeV for excitations up to 38 MeV in the residual nucleus. An overall resolution of 1.3 MeV was achieved. The spectra show qualitative agreement in shape and magnitude with recent random phase approximation calculations; however, all of the calculations underestimate the high excitation region of the spectra. A multipole decomposition of the data has been performed using differential cross sections calculated in the distorted-wave impulse approximation. An estimate of the Gamow-Teller strength in the reaction is given. The isovector spin-flip dipole giant resonance has been identified and there is also an indication of isovector monopole strength.
Electron-impact excitation of diatomic hydride cations II: OH+ and SH+
NASA Astrophysics Data System (ADS)
Hamilton, James R.; Faure, Alexandre; Tennyson, Jonathan
2018-05-01
R-matrix calculations combined with the adiabatic-nuclei-rotation and Coulomb-Born approximations are used to compute electron-impact rotational rate coefficients for two open-shell diatomic cations of astrophysical interest: the hydoxyl and sulphanyl ions, OH+ and SH+. Hyperfine resolved rate coefficients are deduced using the infinite-order-sudden approximation. The propensity rule ΔF = Δj = ΔN = ±1 is observed, as is expected for cations with a large dipole moment. A model for OH+ excitation in the Orion Bar photon-dominated region is presented which nicely reproduces Herschel observations for an electron fraction xe = 10-4 and an OH+ column density of 3 × 1013 cm-2. Electron-impact electronic excitation cross-sections and rate coefficients for the ions are also presented.
The rollup of a vortex layer near a wall
NASA Technical Reports Server (NTRS)
Jimenez, Javier; Orlandi, Paolo
1993-01-01
The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorovich, S V; Protsenko, I E
We report the results of numerical modelling of emission of a two-level atom near a metal nanoparticle under resonant interaction of light with plasmon modes of the particle. Calculations have been performed for different polarisations of light by a dipole approximation method and a complex multipole method. Depending on the distance between a particle and an atom, the contribution of the nonradiative process of electron tunnelling from a two-level atom into a particle, which is calculated using the quasi-classical approximation, has been taken into account and assessed. We have studied spherical gold and silver particles of different diameters (10 –more » 100 nm). The rates of electron tunnelling and of spontaneous decay of the excited atomic state are found. The results can be used to develop nanoscale plasmonic emitters, lasers and photodetectors. (nanooptics)« less
Interaction between two point-like charges in nonlinear electrostatics
NASA Astrophysics Data System (ADS)
Breev, A. I.; Shabad, A. E.
2018-01-01
We consider two point-like charges in electrostatic interaction within the framework of a nonlinear model, associated with QED, that provides finiteness of their field energy. We find the common field of the two charges in a dipole-like approximation, where the separation between them R is much smaller than the observation distance r : with the linear accuracy with respect to the ratio R / r, and in the opposite approximation, where R≫ r, up to the term quadratic in the ratio r / R. The consideration proposes the law a+b R^{1/3} for the energy, when the charges are close to one another, R→ 0. This leads to the singularity of the force between them to be R^{-2/3}, which is weaker than the Coulomb law, R^{-2}.
Time-dependent local density approximation study of iodine photoionization delay
NASA Astrophysics Data System (ADS)
Magrakvelidze, Maia; Chakraborty, Himadri
2017-04-01
We investigate dipole quantum phases and Wigner-Smith (WS) time delays in the photoionization of iodine using Kohn-Sham time-dependent local density approximation (TDLDA) with the Leeuwen and Baerends exchange-correlation functional. Study of the effects of electron correlations on the absolute as well as relative delays in emissions from both valence 5p and 5s, and core 4d, 4p and 4s levels has been carried out. Particular emphasis is paid to unravel the role of correlations to induce structures in the delay as a function of energy at resonances and Cooper minima. The results should encourage attosecond measurements of iodine photoemission and probe the WS-temporal landscape of an open-shell atomic system. This work was supported by the U.S. National Science Foundation.
1,2-Diiodo-4,5-dimethylbenzene
Hathaway, Bruce A.; Kilgore, Uriah J.; Bond, Marcus R.
2009-01-01
The structure of the title compound, C8H8I2, conforms closely to the mm2 symmetry expected for the free molecule and is the first reported structure of a diiododimethylbenzene. Repulsion by neighboring I atoms and the neighboring methyl groups opposite to them results in a slight elongation of the molecule along the approximate twofold rotation axis that bisects the ring between the two I atoms. In the extended structure, the molecules form inversion-related pairs which are organized in approximately hexagonal close-packed layers and the layers then stacked so that molecules in neighboring layers abut head-to-tail in a manner that optimizes dipole–dipole interactions. PMID:21583089
Constraints on exotic dipole-dipole couplings between electrons at the micron scale
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek
2015-05-01
Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.
NASA Astrophysics Data System (ADS)
Martorana, N. S.; Cardella, G.; Lanza, E. G.; Acosta, L.; Andrés, M. V.; Auditore, L.; Catara, F.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Santonocito, D.; Trifirò, A.; Trimarchi, M.; Vigilante, M.; Vitturi, A.
2018-07-01
The excitation of the Pygmy Dipole Resonance (PDR) in the 68Ni nucleus, above the neutron emission threshold, via an isoscalar probe has been observed for the first time. The excitation has been produced in reactions where a 68Ni beam, obtained by the fragmentation of a 70Zn primary beam at INFN-LNS, impinged on a 12C target. The γ-ray decay was detected using the CsI(Tl) detectors of the CHIMERA multidetector sphere. The 68Ni isotope as well as other heavy ion fragments were detected using the FARCOS array. The population of the PDR was evidenced by comparing the detected γ-ray energy spectra with statistical code calculations. The isotopic resolution of the detection system allows also to directly compare neutron decay channels with the 68Ni channel, better evidencing the PDR decay response function. This comparison allows also the extraction of the PDR cross section and the relative γ-ray angular distribution. The measured γ-ray angular distribution confirms the E1 character of the transition. The γ decay cross section for the excitation of the PDR was measured to be 0.32 mb with a 18% of statistical error.
Swimming of a linear chain with a cargo in an incompressible viscous fluid with inertia
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2017-01-01
An approximation to the added mass matrix of an assembly of spheres is constructed on the basis of potential flow theory for situations where one sphere is much larger than the others. In the approximation, the flow potential near a small sphere is assumed to be dipolar, but near the large sphere it involves all higher order multipoles. The analysis is based on an exact result for the potential of a magnetic dipole in the presence of a superconducting sphere. Subsequently, the approximate added mass hydrodynamic interactions are used in a calculation of the swimming velocity and rate of dissipation of linear chain structures consisting of a number of small spheres and a single large one, with account also of frictional hydrodynamic interactions. The results derived for periodic swimming on the basis of a kinematic approach are compared with the bilinear theory, valid for small amplitude of stroke, and with the numerical solution of the approximate equations of motion. The calculations interpolate over the whole range of scale number between the friction-dominated Stokes limit and the inertia-dominated regime.
Riordan, Rick
2013-01-01
Background/Aims With the implementation of ICD 10 CM and ICD 10 PCS less than two years away, there are still unanswered questions as to how research teams will effectively translate or use ICD 10 codes in research. Approximately 84% of the ICD 10 codes have only approximate matches with 10% having multiple matches and only 5% have exact one-to-one matches between ICD 9 and ICD 10. With the number of codes increasing five-fold, this offers additional opportunities and risks when pulling data. Methods Besides looking at the General Equivalency Mappings and other tools that are used to translate ICD 9 codes to ICD 10 codes, we will examine some common research areas where only approximate matches between ICD 9 and ICD 10 exist. We will also discuss how the finer level of detail that ICD 10 gives allows research teams to pinpoint exactly what type of asthma, Crohn’s disease, and diabetic retinopathy they wish to study without including some of the other cases that do not meet their research criteria. Results There are significant ambiguities and irregularity in several common areas such as diabetes, mental health, asthma, and gastroenterology due to approximate, multiple, or combination matches. Even in the case of exact matches such as an old myocardial infarction where there is an exact match, the definition of when a myocardial infarction becomes “old” is different. Conclusions ICD 10 offers a finer level of detail and a higher level of specificity, thereby allowing research teams to be more targeted when pulling data. On the other hand, research teams need to exercise caution when using GEMs and other tools to translate ICD 9 codes into ICD 10 codes and vice versa, especially if they are looking at data that overlaps the implementation date of October 1, 2014.
Tetsassi Feugmo, Conrard Giresse; Liégeois, Vincent; Champagne, Benoît
2017-11-15
The first vibrational sum frequency generation (SFG) spectra based on molecular properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation have been simulated for interfacial model alkyl chains, providing benchmark data for comparisons with approximate methods, including density functional theory (DFT). The approach proceeds in three steps. In the first two steps, the molecular spectral properties are determined: the vibrational normal modes and frequencies and then the derivatives of the dipole moment and of the polarizability with respect to the normal coordinates. These derivatives are evaluated with a numerical differentiation approach, of which the accuracy was monitored using Romberg's procedure. Then, in the last step, a three-layer model is employed to evaluate the macroscopic second-order nonlinear optical responses and thereby the simulated SFG spectra of the alkyl interface. Results emphasize the following facts: (i) the dipole and polarizability derivatives calculated at the DFT level with the B3LYP exchange-correlation functional can differ, with respect to CCSD, by as much as ±10 to 20% and ±20 to 50% for the CH 3 and CH 2 vibrations, respectively; (ii) these differences are enhanced when considering the SFG intensities as well as their variations as a function of the experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles, defining the orientation of the alkyl chain at the interface; (iii) these differences originate from both the vibrational normal coordinates and the Cartesian derivatives of the dipole moment and polarizability; (iv) freezing the successive fragments of the alkyl chain strongly modifies the SFG spectrum and enables highlighting the delocalization effects between the terminal CH 3 group and its neighboring CH 2 units; and finally (v) going from the free chain to the free methyl model, and further to C 3v constraints on leads to large variations of two ratios that are frequently used to probe the molecular orientation at the interface, the (r + r)/r + ratio for both antisymmetric and symmetric CH 3 vibrations and the I ppp /I ssp ratio.
ERIC Educational Resources Information Center
Yamamoto, Kentaro; He, Qiwei; Shin, Hyo Jeong; von Davier, Mattias
2017-01-01
Approximately a third of the Programme for International Student Assessment (PISA) items in the core domains (math, reading, and science) are constructed-response items and require human coding (scoring). This process is time-consuming, expensive, and prone to error as often (a) humans code inconsistently, and (b) coding reliability in…
An MHD Code for the Study of Magnetic Structures in the Solar Wind
NASA Technical Reports Server (NTRS)
Allred, J. C.; MacNeice, P. J.
2015-01-01
We have developed a 2.5D MHD code designed to study how the solar wind influences the evolution of transient events in the solar corona and inner heliosphere. The code includes thermal conduction, coronal heating and radiative cooling. Thermal conduction is assumed to be magnetic field-aligned in the inner corona and transitions to a collisionless formulation in the outer corona. We have developed a stable method to handle field-aligned conduction around magnetic null points. The inner boundary is placed in the upper transition region, and the mass flux across the boundary is determined from 1D field-aligned characteristics and a 'radiative energy balance' condition. The 2.5D nature of this code makes it ideal for parameter studies not yet possible with 3D codes. We have made this code publicly available as a tool for the community. To this end we have developed a graphical interface to aid in the selection of appropriate options and a graphical interface that can process and visualize the data produced by the simulation. As an example, we show a simulation of a dipole field stretched into a helmet streamer by the solar wind. Plasmoids periodically erupt from the streamer, and we perform a parameter study of how the frequency and location of these eruptions changed in response to different levels of coronal heating. As a further example, we show the solar wind stretching a compact multi-polar flux system. This flux system will be used to study breakout coronal mass ejections in the presence of the solar wind.
Ideal Magnetic Dipole Scattering
NASA Astrophysics Data System (ADS)
Feng, Tianhua; Xu, Yi; Zhang, Wei; Miroshnichenko, Andrey E.
2017-04-01
We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters light as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Such a possibility was recently demonstrated for the so-called anapole mode, which is associated with zero electric dipole scattering. By spectrally overlapping the magnetic dipole resonance with the anapole mode, we achieve ideal magnetic dipole scattering in the far field with tunable strong scattering resonances in the near infrared spectrum. We demonstrate that such a condition can be realized at least for two subwavelength geometries. One of them is a core-shell nanosphere consisting of a Au core and silicon shell. It can be also achieved in other geometries, including nanodisks, which are compatible with current nanofabrication technology.
Bender, Güneş; Poyner, Russell R; Reed, George H
2008-10-28
Rapid-mix freeze-quench (RMFQ) methods and electron paramagnetic resonance (EPR) spectroscopy have been used to characterize the steady-state radical in the deamination of ethanolamine catalyzed by adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL). EPR spectra of the radical intermediates formed with the substrates, [1-13C]ethanolamine, [2-13C]ethanolamine, and unlabeled ethanolamine were acquired using RMFQ trapping methods from 10 ms to completion of the reaction. Resolved 13C hyperfine splitting in EPR spectra of samples prepared with [1-13C]ethanolamine and the absence of such splitting in spectra of samples prepared with [2-13C]ethanolamine show that the unpaired electron is localized on C1 (the carbinol carbon) of the substrate. The 13C splitting from C1 persists from 10 ms throughout the time course of substrate turnover, and there was no evidence of a detectable amount of a product like radical having unpaired spin on C2. These results correct an earlier assignment for this radical intermediate [Warncke, K., et al. (1999) J. Am. Chem. Soc. 121, 10522-10528]. The EPR signals of the substrate radical intermediate are altered by electron spin coupling to the other paramagnetic species, cob(II)alamin, in the active site. The dipole-dipole and exchange interactions as well as the 1-13C hyperfine splitting tensor were analyzed via spectral simulations. The sign of the isotropic exchange interaction indicates a weak ferromagnetic coupling of the two unpaired electrons. A Co2+-radical distance of 8.7 A was obtained from the magnitude of the dipole-dipole interaction. The orientation of the principal axes of the 13C hyperfine splitting tensor shows that the long axis of the spin-bearing p orbital on C1 of the substrate radical makes an angle of approximately 98 degrees with the unique axis of the d(z2) orbital of Co2+.
Rainey, R C T
2012-01-28
For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.
Temperature Dependence of the Thermal Conductivity of a Trapped Dipolar Bose-Condensed Gas
NASA Astrophysics Data System (ADS)
Yavari, H.
2018-02-01
The thermal conductivity of a trapped dipolar Bose condensed gas is calculated as a function of temperature in the framework of linear response theory. The contributions of the interactions between condensed and noncondensed atoms and between noncondensed atoms in the presence of both contact and dipole-dipole interactions are taken into account to the thermal relaxation time, by evaluating the self-energies of the system in the Beliaev approximation. We will show that above the Bose-Einstein condensation temperature ( T > T BEC ) in the absence of dipole-dipole interaction, the temperature dependence of the thermal conductivity reduces to that of an ideal Bose gas. In a trapped Bose-condensed gas for temperature interval k B T << n 0 g B , E p << k B T ( n 0 is the condensed density and g B is the strength of the contact interaction), the relaxation rates due to dipolar and contact interactions between condensed and noncondensed atoms change as {τ}_{dd12}^{-1}∝ {e}^{-E/{k}_BT} and τ c12 ∝ T -5, respectively, and the contact interaction plays the dominant role in the temperature dependence of the thermal conductivity, which leads to the T -3 behavior of the thermal conductivity. In the low-temperature limit, k B T << n 0 g B , E p >> k B T, since the relaxation rate {τ}_{c12}^{-1} is independent of temperature and the relaxation rate due to dipolar interaction goes to zero exponentially, the T 2 temperature behavior for the thermal conductivity comes from the thermal mean velocity of the particles. We will also show that in the high-temperature limit ( k B T > n 0 g B ) and low momenta, the relaxation rates {τ}_{c12}^{-1} and {τ}_{dd12}^{-1} change linearly with temperature for both dipolar and contact interactions and the thermal conductivity scales linearly with temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceglio, N.M.; George, E.V.; Brooks, K.M.
The first successful demonstration of high resolution, tomographic imaging of a laboratory plasma using coded imaging techniques is reported. ZPCI has been used to image the x-ray emission from laser compressed DT filled microballoons. The zone plate camera viewed an x-ray spectral window extending from below 2 keV to above 6 keV. It exhibited a resolution approximately 8 ..mu..m, a magnification factor approximately 13, and subtended a radiation collection solid angle at the target approximately 10/sup -2/ sr. X-ray images using ZPCI were compared with those taken using a grazing incidence reflection x-ray microscope. The agreement was excellent. In addition,more » the zone plate camera produced tomographic images. The nominal tomographic resolution was approximately 75 ..mu..m. This allowed three dimensional viewing of target emission from a single shot in planar ''slices''. In addition to its tomographic capability, the great advantage of the coded imaging technique lies in its applicability to hard (greater than 10 keV) x-ray and charged particle imaging. Experiments involving coded imaging of the suprathermal x-ray and high energy alpha particle emission from laser compressed microballoon targets are discussed.« less
Energy flow of electric dipole radiation in between parallel mirrors
NASA Astrophysics Data System (ADS)
Xu, Zhangjin; Arnoldus, Henk F.
2017-11-01
We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.
Magnetic Field of a Dipole and the Dipole-Dipole Interaction
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…
Geometrical Simplification of the Dipole-Dipole Interaction Formula
ERIC Educational Resources Information Center
Kocbach, Ladislav; Lubbad, Suhail
2010-01-01
Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…
Measuring the Forces between Magnetic Dipoles
ERIC Educational Resources Information Center
Gayetsky, Lisa E.; Caylor, Craig L.
2007-01-01
We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.
NASA Astrophysics Data System (ADS)
Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.
2012-03-01
The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.
Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong
2011-02-15
Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.
Dipole oscillator strength properties and dispersion energies for SiH 4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH 4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH 4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C 6, for the interaction of silane with itself and with forty-four other species, and the triple-dipole dispersion energy coefficient C 9 for (SiH 4) 3.
VAVUQ, Python and Matlab freeware for Verification and Validation, Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Courtney, J. E.; Zamani, K.; Bombardelli, F. A.; Fleenor, W. E.
2015-12-01
A package of scripts is presented for automated Verification and Validation (V&V) and Uncertainty Quantification (UQ) for engineering codes that approximate Partial Differential Equations (PDFs). The code post-processes model results to produce V&V and UQ information. This information can be used to assess model performance. Automated information on code performance can allow for a systematic methodology to assess the quality of model approximations. The software implements common and accepted code verification schemes. The software uses the Method of Manufactured Solutions (MMS), the Method of Exact Solution (MES), Cross-Code Verification, and Richardson Extrapolation (RE) for solution (calculation) verification. It also includes common statistical measures that can be used for model skill assessment. Complete RE can be conducted for complex geometries by implementing high-order non-oscillating numerical interpolation schemes within the software. Model approximation uncertainty is quantified by calculating lower and upper bounds of numerical error from the RE results. The software is also able to calculate the Grid Convergence Index (GCI), and to handle adaptive meshes and models that implement mixed order schemes. Four examples are provided to demonstrate the use of the software for code and solution verification, model validation and uncertainty quantification. The software is used for code verification of a mixed-order compact difference heat transport solver; the solution verification of a 2D shallow-water-wave solver for tidal flow modeling in estuaries; the model validation of a two-phase flow computation in a hydraulic jump compared to experimental data; and numerical uncertainty quantification for 3D CFD modeling of the flow patterns in a Gust erosion chamber.
Calculating far-field radiated sound pressure levels from NASTRAN output
NASA Technical Reports Server (NTRS)
Lipman, R. R.
1986-01-01
FAFRAP is a computer program which calculates far field radiated sound pressure levels from quantities computed by a NASTRAN direct frequency response analysis of an arbitrarily shaped structure. Fluid loading on the structure can be computed directly by NASTRAN or an added-mass approximation to fluid loading on the structure can be used. Output from FAFRAP includes tables of radiated sound pressure levels and several types of graphic output. FAFRAP results for monopole and dipole sources compare closely with an explicit calculation of the radiated sound pressure level for those sources.
Survival of Rydberg atoms in intense laser fields and the role of nondipole effects
NASA Astrophysics Data System (ADS)
Klaiber, Michael; Dimitrovski, Darko
2015-02-01
We consider the interaction of Rydberg atoms with strong infrared laser pulses using an approach based on the Magnus expansion of the time evolution operator. First-order corrections beyond the electric dipole approximation are also included in the theory. We illustrate the dynamics of the interaction at the parameters of the experiment [Eichmann et al., Phys. Rev. Lett. 110, 203002 (2013), 10.1103/PhysRevLett.110.203002]. It emerges that the depletion of Rydberg atoms in this regime comes predominantly from the nondipole effects.
Design Study of an MBA Lattice for the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, Glenn
2014-11-02
Recent interest in ultra-low-emittance designs for storage-ring-based synchrotron light sources has spurred a focused design effort on a multi-bend achromat (MBA) storage ring replacement for the Advanced Photon Source (APS). The APS is relatively large (1104 m circumference) and, as such, an upgrade to a fourth-generation storage ring holds the potential for a two to three order of magnitude enhancement of X-ray brightness due to the approximate inverse cubic scaling of emittance with the number of dipole bend magnets.
Density Functional Approach to Superfluid Phonon in Inner Crust of Neutron Stars
NASA Astrophysics Data System (ADS)
Inakura, Tsunenori; Matsuo, Masayuki
We investigate superfluid phonon emerging in inner crust of neutron stars by means of the nuclear density functional theory. Adopting the Wigner-Seitz approximation and a single spherical cell, we describe low-lying collective excitation with the dipole multipolarity. It is found that the superfluid phonon standing on the low-density neutron superfluid does not penetrate into the interior of the nuclear cluster. This suggests that the coupling between the superfluid phonon and the lattice phonon could be weak, and it may affect the thermal conductivity of inner crust.
NASA Astrophysics Data System (ADS)
Hao, Qingzhen; Zeng, Yong; Wang, Xiande; Zhao, Yanhui; Wang, Bei; Chiang, I.-Kao; Werner, Douglas H.; Crespi, Vincent; Huang, Tony Jun
2010-11-01
An efficient technique is developed to fabricate optically thin metallic films with subwavelength patterns and their complements simultaneously. By comparing the spectra of the complementary films, we show that Babinet's principle nearly holds for these structures in the optical domain. Rigorous full-wave simulations are employed to verify the experimental observations. It is further demonstrated that a discrete-dipole approximation can qualitatively describe the spectral dependence of the metallic membranes on the geometry of the constituent particles as well as the illuminating polarization.
Multipole Plasmon Resonances in Gold Nanorods
Payne, Emma Kathryn; Shuford, Kevin L.; Park, Sungho; Schatz, George C.
2011-01-01
The optical properties of gold rods electrochemically deposited in anodic aluminum oxide templates have been investigated. Homogeneous suspensions of rods with average diameter of 85 nm and varying lengths of 96, 186, 321, 465, 495, 578, 641, 735, and 1175 nm were fabricated. The purity and dimensions of these rod nanostructures allowed us to observe higher order multipole resonances for the first time in a colloidal suspension. The experimental optical spectra agree with discrete dipole approximation calculations that have been modeled from the dimensions of the gold nanorods. PMID:16471797
Electric fields and vector potentials of thin cylindrical antennas
NASA Astrophysics Data System (ADS)
King, Ronold W. P.
1990-09-01
The vector potential and electric field generated by the current in a center-driven or parasitic dipole antenna that extends from z = -h to z = h are investigated for each of the several components of the current. These include sin k(h - absolute value of z), sin k (absolute value of z) - sin kh, cos kz - cos kh, and cos kz/2 - cos kh/2. Of special interest are the interactions among the variously spaced elements in parallel nonstaggered arrays. These depend on the mutual vector potentials. It is shown that at a radial distance rho approximately = h and in the range z = -h to h, the vector potentials due to all four components become alike and have an approximately plane-wave form. Simple approximate formulas for the electric fields and vector potentials generated by each of the four distributions are derived and compared with the exact results. The application of the new formulas to large arrays is discussed.
Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach
NASA Astrophysics Data System (ADS)
Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.
2015-10-01
We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.
Multipolar second harmonic generation in a symmetric nonlinear metamaterial
Wolf, Omri; Campione, Salvatore; Yang, Yuanmu; ...
2017-08-14
Optical nonlinearities are intimately related to the spatial symmetry of the nonlinear media. For example, the second order susceptibility vanishes for centrosymmetric materials under the dipole approximation. The latter concept has been naturally extended to the metamaterials’ realm, sometimes leading to the (erroneous) hypothesis that second harmonic (SH) generation is negligible in highly symmetric meta-atoms. In this work we aim to show that such symmetric meta-atoms can radiate SH light efficiently. In particular, we investigate in-plane centrosymmetric meta-atom designs where the approximation for meta-atoms breaks down. In a periodic array this building block allows us to control the directionality ofmore » the SH radiation. We conclude by showing that the use of symmetry considerations alone allows for the manipulation of the nonlinear multipolar response of a meta-atom, resulting in e.g. dipolar, quadrupolar, or multipolar emission on demand. This is because the size of the meta-atom is comparable with the free-space wavelength, thus invalidating the dipolar approximation for meta-atoms.« less
NASA Astrophysics Data System (ADS)
Eriçok, Ozan Burak; Ertürk, Hakan
2018-07-01
Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.
Integral representation of channel flow with interacting particles
NASA Astrophysics Data System (ADS)
Fouxon, Itzhak; Ge, Zhouyang; Brandt, Luca; Leshansky, Alexander
2017-12-01
We construct a boundary integral representation for the low-Reynolds-number flow in a channel in the presence of freely suspended particles (or droplets) of arbitrary size and shape. We demonstrate that lubrication theory holds away from the particles at horizontal distances exceeding the channel height and derive a multipole expansion of the flow which is dipolar to the leading approximation. We show that the dipole moment of an arbitrary particle is a weighted integral of the stress and the flow at the particle surface, which can be determined numerically. We introduce the equation of motion that describes hydrodynamic interactions between arbitrary, possibly different, distant particles, with interactions determined by the product of the mobility matrix and the dipole moment. Further, the problem of three identical interacting spheres initially aligned in the streamwise direction is considered and the experimentally observed "pair exchange" phenomenon is derived analytically and confirmed numerically. For nonaligned particles, we demonstrate the formation of a configuration with one particle separating from a stable pair. Our results suggest that in a dilute initially homogenous particulate suspension flowing in a channel the particles will eventually separate into singlets and pairs.
Gyroscopic effect in low-energy classical capture of a rotating quadrupolar diatom by an ion.
Dashevskaya, Elena; Litvin, Iliya; Nikitin, Evgueni
2006-03-09
The low-energy capture of homonuclear diatoms by ions is due mainly to the long-range part of the interpartner potential with leading terms that correspond to charge-quadrupole interaction and charge-induced dipole interaction. The capture dynamics is described by the perturbed-rotor adiabatic potentials and the Coriolis interaction between manifold of states that belong to a given value of the intrinsic angular momentum. When the latter is large enough, it can noticeably affect the capture cross section calculated in the adiabatic channel approximation due to the gyroscopic property of a rotating diatom. This paper presents the low-energy (low-temperature) state-selected partial and mean capture cross sections (rate coefficients) for the charge-quadrupole interaction that include the gyroscopic effect (decoupling of intrinsic angular momentum from the collision axis), quantum correction for the diatom rotation, and the correction for the charge-induced dipole interaction. These results complement recent studies on the gyroscopic effect in the quantum regime of diatom-ion capture (Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J. J. Chem. Phys. 2004, 120, 9989-9997).
Optical absorption of zigzag single walled boron nitride nanotubes in axial magnetic field
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2013-11-01
We have investigated the effect of axial magnetic field on the band structure, dipole matrix elements and absorption spectrum in different energy ranges, using tight binding approximation. It is found that magnetic field breaks the degeneracy in the band structure and creates new allowed transitions in the dipole matrix which leads to creation of new peaks in the absorption spectrum. It is found that, unlike to CNTs which show metallic-semiconductor transition, the BNNTs remain semiconductor in any magnetic field strength. By calculation the diameter dependence of peak positions, we found that the positions of three first peaks in the lower energy region (E <5.3 eV) are proportional to n-2. In the middle energy region (7 < E < 7.5 eV) all (n, 0) zigzag BNNTs, with even and odd nanotube index, have two distinct peaks in the absence of magnetic field which these peaks may be used to identify zigzag BNNTs from other tube chiralities. For odd (even) tubes, in the middle energy region, applying the magnetic field leads to splitting of these two peaks into three (five) distinct peaks.
Assessment of the amide-I local modes in gamma- and beta-turns of peptides.
Wang, Jianping
2009-07-14
The amide-I local modes, mainly the C[double bond, length as m-dash]O stretching vibrations, form the structural basis of femtosecond 2D IR spectroscopy in characterizing backbone structures and dynamics of peptides and proteins. In this work, a density functional theory (DFT) level of computational assessment of the amide-I local modes in oligomers mostly in the turn conformations was carried out. It is shown that local mode properties, including transition frequencies and transition dipole magnitudes and orientations, are slightly conformational dependent. However, the distributions of these properties in the peptide oligomers are narrow and have mean values almost identical to those from an isolated peptide monomer, justifying the prevalent use of a uniform local mode in modeling the 1D and 2D IR spectra. In addition, it is shown that the transition dipole magnitude and orientation of the peptide monomer predicted by the DFT calculations can be well approximated by electrostatic potential-based transition charge schemes, e.g. Merz-Singh-Kollman, CHELP, as well as CHELPG.
Isoscalar compression modes within fluid dynamic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolomietz, V. M.; Cyclotron Institute, Texas A and M University, College Station, Texas 77843-3366; Shlomo, S.
2000-06-01
We study the nuclear isoscalar monopole and dipole compression modes in nuclei within the fluid dynamic approach (FDA) with and without the effect of relaxation. For a wide region of the medium and heavy nuclei, the FDA predicts that the isoscalar giant monopole resonance (ISGMR) and the isoscalar giant dipole resonance (ISGDR) exhaust about 90% of the corresponding model-independent sum rules. In the case of neglecting the effect of relaxation, the FDA, when adjusted to reproduce the centroid energy E0 of the ISGMR, results with centroid energy E1 of the ISGDR which is in agreement with the predictions of themore » self-consistent Hartree-Fock random-phase approximation calculations and the scaling model but significantly larger than the experimental value. We also show that the FDA leads to the correct hydrodynamic limit for the ratio (E1/E0){sub FDA}. We find that the ratio (E1/E0){sub FDA} depends on the relaxation time and approaches the preliminary experimental value (E1/E0){sub exp}=1.5{+-}0.1 in a short relaxation time limit. (c) 2000 The American Physical Society.« less
Plasmon resonances on opto-capacitive nanostructures
NASA Astrophysics Data System (ADS)
Shahcheraghi, N.; Dowd, A.; Arnold, M. D.; Cortie, M. B.
2015-12-01
Silver is considered as one of the most desirable materials for plasmonic devices due to it having low loss, low epsilon2, across the visible spectrum. In addition, silver nanotriangles can self-assemble into complex structures that can include tip-totip or base-to-base arrangements. While the optical properties of tip-to-tip dimers of nanotriangles have been quite intensively studied, the geometric inverse, the base-to-base configuration, has received much less attention. Here we report the results of a computational study of the optical response of this latter configuration. Calculations were performed using the discrete dipole approximation. The effect of gap size and substrate are considered. The results indicate that the base-to-base configuration can sustain a strong coupled dipole and various multimode resonances. The pairing of the parallel triangle edges produces a strongly capacitive configuration and very intense electric fields over an extended volume of space. Therefore, the base-to-base configuration could be suitable for a range of plasmonic applications that require a strong and uniform concentration of electric field. Examples include refractometeric sensing or metal-enhanced fluorescence.
Testing the cosmic anisotropy with supernovae data: Hemisphere comparison and dipole fitting
NASA Astrophysics Data System (ADS)
Deng, Hua-Kai; Wei, Hao
2018-06-01
The cosmological principle is one of the cornerstones in modern cosmology. It assumes that the universe is homogeneous and isotropic on cosmic scales. Both the homogeneity and the isotropy of the universe should be tested carefully. In the present work, we are interested in probing the possible preferred direction in the distribution of type Ia supernovae (SNIa). To our best knowledge, two main methods have been used in almost all of the relevant works in the literature, namely the hemisphere comparison (HC) method and the dipole fitting (DF) method. However, the results from these two methods are not always approximately coincident with each other. In this work, we test the cosmic anisotropy by using these two methods with the joint light-curve analysis (JLA) and simulated SNIa data sets. In many cases, both methods work well, and their results are consistent with each other. However, in the cases with two (or even more) preferred directions, the DF method fails while the HC method still works well. This might shed new light on our understanding of these two methods.
Hercules X-1: Spectral Variability of an X-Ray Pulsar in a Stellar Binary System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Pravdo, S. H.
1976-01-01
A cosmic X-ray spectroscopy experiment onboard the Orbiting Solar Observatory 8 (OSO-8), observed Her x-1 continuously for approximately 8 days. Spectral-temporal correlations of the X-ray emission were obtained. The major results concern observations of: (1) iron band emission, (2) spectral hardening (increase in effective x-ray temperature) within the X-ray pulse, and (3) a transition from an X-ray low state to a high state. The spectrum obtained prior to the high state can be interpreted as reflected emission from a hot coronal gas surrounding an accretion disk, which itself shields the primary X-ray source from the line of sight during the low state. The spectral hardening within the X-ray pulse was indicative of the beaming mechanism at the neutron star surface. The hardest spectrum by pulse phase was identified with the line of sight close to the Her x-1 magnetic dipole axis, and the X-ray pencil beam become harder with decreasing angle between the line of sight and the dipole axis.
NASA Astrophysics Data System (ADS)
Kim, Paul Seung Soo; Becker, Aaron; Ou, Yan; Julius, Anak Agung; Kim, Min Jun
2015-03-01
Tetrahymena pyriformis is a single cell eukaryote that can be modified to respond to magnetic fields, a response called magnetotaxis. Naturally, this microorganism cannot respond to magnetic fields, but after modification using iron oxide nanoparticles, cells are magnetized and exhibit a constant magnetic dipole strength. In experiments, a rotating field is applied to cells using a two-dimensional approximate Helmholtz coil system. Using rotating magnetic fields, we characterize discrete cells' swarm swimming which is affected by several factors. The behavior of the cells under these fields is explained in detail. After the field is removed, relatively straight swimming is observed. We also generate increased heterogeneity within a population of cells to improve controllability of a swarm, which is explored in a cell model. By exploiting this straight swimming behavior, we propose a method to control discrete cells utilizing a single global magnetic input. Successful implementation of this swarm control method would enable teams of microrobots to perform a variety of in vitro microscale tasks impossible for single microrobots, such as pushing objects or simultaneous micromanipulation of discrete entities.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2011-11-01
Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.
Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements
NASA Astrophysics Data System (ADS)
Fivet, Vanessa; Quinet, P.; Bautista, M.
2012-05-01
Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189
Alkali Halide Opacity in Brown Dwarf and Cool Stellar Atmospheres: A Study of Lithium Chloride
NASA Astrophysics Data System (ADS)
Kirby, K.; Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.
2003-12-01
Recent thermochemical equilibrium calculations have revealed the important role played by lithium chloride in the lithium chemistry of cool dwarf atmospheres (K. Lodders 1999, ApJ 519, 793). Indeed, LiCl appears to be the dominant Li-bearing gas over an extended domain of the (P,T) diagram, typically for temperatures below 1500 K. LiCl has a large dipole moment in its ground electronic state which can give rise to intense rovibrational line spectra. In addition, LiCl can make dipole transitions to several low-lying unbound excited states, causing dissociation of the molecule. For these reasons, LiCl may be a significant source of line and continuum opacity in brown dwarf and cool stellar atmospheres. In this work, we report calculations of complete lists of line oscillator strengths and photodissociation cross sections for the low-lying electronic states of LiCl. We have performed single- and double-excitation configuration interaction calculations using the ALCHEMY ab initio package (Mc Lean et al. 1991, MOTECC 91, Elsevier, Leiden) and obtained the potential curves and the corresponding dipole transition moment functions between the X 1Σ ^+ ground state and the B 1Σ ^+ and A 1Π excited states. The resulting line oscillator strengths and molecular photodissociation cross sections have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999, J. Comput. App. Math. 102, 41). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state (EOS). This work was supported in part by NSF grants AST-9720704 and AST-0086246, NASA grants NAG5-8425, NAG5-9222, and NAG5-10551 as well as NASA/JPL grant 961582.
Active shield technology for space craft protection revisited in new laboratory results and analysis
NASA Astrophysics Data System (ADS)
Bamford, R.; Gibson, K. J.; Thornton, A. T.; Bradford, J.; Bingham, R.; Gargate, L.; Silva, L. O.; Fonseca, R. A.; Hapgood, M.; Norberg, C.; Todd, T.; Stamper, R.
2009-04-01
Energetic ions in the solar wind plasma are a known hazard to both spacecraft electronics and to astronaut's health. Of primary concern is the exposure to keV--MeV protons on manned space flights to the Moon and Mars that extend over long periods of time. Attempts to protect the spacecraft include active shields that are reminiscent of Star Trek "deflector" shields. Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding the spacecraft forming a "mini magnetosphere". Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the Solar Wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity, and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small "hole" in a Solar Wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared to a 3D particle-in-cell ‘hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers. [1] [1] R Bamford et al., "The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection." 2008 Plasma Phys. Control. Fusion 50 124025 (11pp) doi: 10.1088/0741-3335/50/12/124025
NASA Technical Reports Server (NTRS)
Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)
2000-01-01
This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor-noise correlation model was developed from engine acoustic test results. This work provided several insights on potential approaches to reducing aircraft engine noise. Code development is described in this report, and those insights are discussed.
The kinematic dipole in galaxy redshift surveys
NASA Astrophysics Data System (ADS)
Maartens, Roy; Clarkson, Chris; Chen, Song
2018-01-01
In the concordance model of the Universe, the matter distribution—as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) —should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.
Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions
Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping
2012-01-01
The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954
Zhang, Z; Jewett, D L
1994-01-01
Due to model misspecification, currently-used Dipole Source Localization (DSL) methods may contain Multiple-Generator Errors (MulGenErrs) when fitting simultaneously-active dipoles. The size of the MulGenErr is a function of both the model used, and the dipole parameters, including the dipoles' waveforms (time-varying magnitudes). For a given fitting model, by examining the variation of the MulGenErrs (or the fit parameters) under different waveforms for the same generating-dipoles, the accuracy of the fitting model for this set of dipoles can be determined. This method of testing model misspecification can be applied to evoked potential maps even when the parameters of the generating-dipoles are unknown. The dipole parameters fitted in a model should only be accepted if the model can be shown to be sufficiently accurate.
NASA Astrophysics Data System (ADS)
Talman, Richard M.; Talman, John D.
2015-07-01
There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well as unpublished notes of Courant describing machine studies performed in 1954-1955. This paper describes the practical application of the eteapot code and provides sample results, with emphasis on emulating lattice optics in the AGS analog ring for comparison with the historical machine studies and to predict the electron spin evolution they would have measured if they had polarized electrons and electron polarimetry. Of greater present day interest is the performance to be expected for a proton storage ring experiment. To exhibit the eteapot code performance and confirm its symplecticity, results are also given for 30 million turn proton spin tracking in an all-electric lattice that would be appropriate for a present day measurement of the proton EDM. The accompanying paper "Symplectic orbit and spin tracking code for all-electric storage rings" documents in detail the theoretical formulation implemented in eteapot, which is a new module in the Unified Accelerator Libraries (ual) environment.
Polarized Continuum Radiation from Stellar Atmospheres
NASA Astrophysics Data System (ADS)
Harrington, J. Patrick
2015-10-01
Continuum scattering by free electrons can be significant in early type stars, while in late type stars Rayleigh scattering by hydrogen atoms or molecules may be important. Computer programs used to construct models of stellar atmospheres generally treat the scattering of the continuum radiation as isotropic and unpolarized, but this scattering has a dipole angular dependence and will produce polarization. We review an accurate method for evaluating the polarization and limb darkening of the radiation from model stellar atmospheres. We use this method to obtain results for: (i) Late type stars, based on the MARCS code models (Gustafsson et al. 2008), and (ii) Early type stars, based on the NLTE code TLUSTY (Lanz and Hubeny 2003). These results are tabulated at http://www.astro.umd.edu/~jph/Stellar_Polarization.html. While the net polarization vanishes for an unresolved spherical star, this symmetry is broken by rapid rotation or by the masking of part of the star by a binary companion or during the transit of an exoplanet. We give some numerical results for these last cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter.
The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, andmore » post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.« less
SPECTROPOLARIMETRY OF THE CLASSICAL T TAURI STAR BP TAU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; Johns-Krull, Christopher M., E-mail: wc2@rice.edu, E-mail: cmj@rice.edu
We implement a least-squares deconvolution (LSD) code to study magnetic fields on cool stars. We first apply our code to high-resolution optical echelle spectra of 53 Cam (a magnetic Ap star) and three well-studied cool stars (Arcturus, 61 Cyg A, and ξ Boo A) as well as the Sun (by observing the asteroid Vesta) as tests of the code and the instrumentation. Our analysis is based on several hundred photospheric lines spanning the wavelength range 5000 Å to 9000 Å. We then apply our LSD code to six nights of data on the Classical T Tauri Star BP Tau. Amore » maximum longitudinal field of 370 ± 80 G is detected from the photospheric lines on BP Tau. A 1.8 kG dipole tilted at 129° with respect to the rotation axis and a 1.4 kG octupole tilted at 104° with respect to the rotation axis, both with a filling factor of 0.25, best fit our LSD Stokes V profiles. Measurements of several emission lines (He I 5876 Å, Ca II 8498 Å, and 8542 Å) show the presence of strong magnetic fields in the line formation regions of these lines, which are believed to be the base of the accretion footpoints. The field strength measured from these lines shows night-to-night variability consistent with rotation of the star.« less
Takashima, S
2001-04-05
The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and electro-optical methods. The search for the origin of these dipolemoments, however, must be based on the detailed knowledge on protein structure with atomic resolutions. At present, we have two sources of information on the structure of protein molecules: (1) x-ray databases obtained in crystalline state; (2) NMR databases obtained in solution state. While x-ray databases consist of only one model, NMR databases, because of the fluctuation of the protein folding in solution, consist of a number of models, thus enabling the computation of dipole moment repeated for all these models. The aim of this work, using these databases, is the detailed investigation on the interdependence between the structure and dipole moment of protein molecules. The dipole moment of protein molecules has roughly two components: one dipole moment is due to surface charges and the other, core dipole moment, is due to polar groups such as N--H and C==O bonds. The computation of surface charge dipole moment consists of two steps: (A) calculation of the pK shifts of charged groups for electrostatic interactions and (B) calculation of the dipole moment using the pK corrected for electrostatic shifts. The dipole moments of several proteins were computed using both NMR and x-ray databases. The dipole moments of these two sets of calculations are, with a few exceptions, in good agreement with one another and also with measured dipole moments.
Imaging Radar Studies of Atmospheric Winds and Waves
1993-09-02
3*ZAWindow - ZASpread(dir) do 10004 ant - 1,3 0 C "c Test #1: Reject this Doppler frequency if both quadrature "c components are too small on any...dipole) - pd23(dir,dipole) - 2*pi If (pd23(dir,dipole) .At. -pi) 1 pd23(dir,dipole) - pd23(dir,dipole) + 2*pi c "c Tests #2,3,6,&7: The two zenith...thetal+theta2)/2 10098 continue c "c Tests #4 and #8: Both dipoles have separately determined zenith "c angles for one direction. Do these two values
Approximate maximum likelihood decoding of block codes
NASA Technical Reports Server (NTRS)
Greenberger, H. J.
1979-01-01
Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.
NASA Astrophysics Data System (ADS)
Rolke, J.; Brion, C. E.
1996-06-01
The spherically averaged momentum profiles for the highest occupied molecular orbitals of PF 3 and P(CH 3) 3 have been obtained by electron momentum spectroscopy. The measurements provide a stringent test of basis set effects and the quality of ab-initio methods in the description of these larger molecular systems. As in previous work on the methyl-substituted amines, intuitive arguments fail to predict the correct amount of s- and p-type contributions to the momentum profile while delocalized molecular orbital concepts provide a more adequate description of the HOMOs. The experimental momentum profiles have been compared with theoretical momentum profiles calculated at the level of the target Hartree-Fock approximation with a range of basis sets. New Hartree-Fock calculations are also presented for the HOMO of PH 3 and compared to previously published experimental and theoretical momentum profiles. The experimental momentum profiles have further been compared to calculations at the level of the target Kohn-Sham approximation using density functional theory with the local density approximation and also with gradient corrected (non-local) exchange correlation potentials. In addition, total energies and dipole moments have been calculated for all three molecules by the various theoretical methods and compared to experimental values. Calculated 'density difference maps' show the regions where the HOMO momentum and position electron densities of PF 3 and P(CH 3) 3 change relative to the corresponding HOMO density of PH 3. The results suggest that methyl groups have an electron-attracting effect (relative to H) on the HOMO charge density in trimethyl phosphines. These conclusions are supported by a consideration of dipole moments and the 31P NMR chemical shifts for PH 3, PF 3 and P(CH 3) 3.
A gaussian model for simulated geomagnetic field reversals
NASA Astrophysics Data System (ADS)
Wicht, Johannes; Meduri, Domenico G.
2016-10-01
Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.
Electromagnetic toroidal excitations in matter and free space.
Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I
2016-03-01
The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.
Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators
Liu, Sheng; Vaskin, Aleksandr; Campione, Salvatore; ...
2017-06-07
Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. Here in this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrallymore » overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.« less
Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna
NASA Technical Reports Server (NTRS)
Tulintseff, Ann N. (Inventor)
1995-01-01
An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.
NASA Technical Reports Server (NTRS)
Rosenberg, R. L.; Winge, C. R., Jr.
1974-01-01
The motion of spacecraft following the earth's orbit occurs within the solar latitude range of 7 deg 15 min N on approximately September 7 to 7 deg 15 min S on approximately March 6. The latitude dependencies so far detected within this range have shown that the photospheric dipole-like field of the sun makes very important contributions to the interplanetary magnetic field (IMF) observed near the ecliptic. Changes in geomagnetic activity from even to odd numbered 11-year solar cycles are related to changes in the sun's dipolar field. The north-south IMF component and meridional, nonradial flow are important to a complete understanding of steady-state solar wind dynamics. Coronal conditions must be latitude-dependent in a way that accounts for the observed latitude dependence of the velocity and density of the solar wind.
NASA Astrophysics Data System (ADS)
Doorn, Stephen; Duque, Juan; Telg, Hagen; Chen, Hang; Swan, Anna; Haroz, Erik; Kono, Junichiro; Tu, Xiaomin; Zheng, Ming
2012-02-01
DNA wrapping-based ion exchange chromatography and density gradient ultracentrifugation provide nanotube samples highly enriched in single chiralities. We present resonance Raman excitation profiles for the G-band of several single chirality semiconducting and metallic species. The expected incoming and outgoing resonance peaks are observed in the profiles, but contrary to long-held assumptions, the outgoing resonance is always significantly weaker than the ingoing resonance peak. This strong asymmetry in the profiles arises from a violation of the Condon approximation [1]. Results will be discussed in the context of theoretical models that suggest significant coordinate dependence in the transition dipole (non-Condon effects). The generality of the behavior across semiconducting and metallic types, nanotube family, phonon mode, and Eii will be demonstrated. [4pt] [1] J. Duque et. al., ACS Nano, 5, 5233 (2011).
Nuclear shell model code CRUNCHER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resler, D.A.; Grimes, S.M.
1988-05-01
A new nuclear shell model code CRUNCHER, patterned after the code VLADIMIR, has been developed. While CRUNCHER and VLADIMIR employ the techniques of an uncoupled basis and the Lanczos process, improvements in the new code allow it to handle much larger problems than the previous code and to perform them more efficiently. Tests involving a moderately sized calculation indicate that CRUNCHER running on a SUN 3/260 workstation requires approximately one-half the central processing unit (CPU) time required by VLADIMIR running on a CRAY-1 supercomputer.
Electric dipole polarizability from first principles calculations
Miorelli, M.; Bacca, S.; Barnea, N.; ...
2016-09-19
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for themore » 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.« less
Errors from approximation of ODE systems with reduced order models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevska, Tanya
2016-12-30
This is a code to calculate the error from approximation of systems of ordinary differential equations (ODEs) by using Proper Orthogonal Decomposition (POD) Reduced Order Models (ROM) methods and to compare and analyze the errors for two POD ROM variants. The first variant is the standard POD ROM, the second variant is a modification of the method using the values of the time derivatives (a.k.a. time-derivative snapshots). The code compares the errors from the two variants under different conditions.
Gravitational dynamos and the low-frequency geomagnetic secular variation.
Olson, P
2007-12-18
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.
Gravitational dynamos and the low-frequency geomagnetic secular variation
Olson, P.
2007-01-01
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345
Photoabsorption in sodium clusters: first principles configuration interaction calculations
NASA Astrophysics Data System (ADS)
Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok
2017-05-01
We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2009-03-01
The disk instability mechanism for giant planet formation is based on the formation of clumps in a marginally gravitationally unstable protoplanetary disk, which must lose thermal energy through a combination of convection and radiative cooling if they are to survive and contract to become giant protoplanets. While there is good observational support for forming at least some giant planets by disk instability, the mechanism has become theoretically contentious, with different three-dimensional radiative hydrodynamics codes often yielding different results. Rigorous code testing is required to make further progress. Here we present two new analytical solutions for radiative transfer in spherical coordinates, suitable for testing the code employed in all of the Boss disk instability calculations. The testing shows that the Boss code radiative transfer routines do an excellent job of relaxing to and maintaining the analytical results for the radial temperature and radiative flux profiles for a spherical cloud with high or moderate optical depths, including the transition from optically thick to optically thin regions. These radial test results are independent of whether the Eddington approximation, diffusion approximation, or flux-limited diffusion approximation routines are employed. The Boss code does an equally excellent job of relaxing to and maintaining the analytical results for the vertical (θ) temperature and radiative flux profiles for a disk with a height proportional to the radial distance. These tests strongly support the disk instability mechanism for forming giant planets.
NASA Astrophysics Data System (ADS)
Heid, Esther; Harringer, Sophia; Schröder, Christian
2016-10-01
The influence of the partial charge distribution obtained from quantum mechanics of the solute 1-methyl-6-oxyquinolinium betaine in the ground- and first excited state on the time-dependent Stokes shift is studied via molecular dynamics computer simulation. Furthermore, the effect of the employed solvent model — here the non-polarizable SPC, TIP4P and TIP4P/2005 and the polarizable SWM4 water model — on the solvation dynamics of the system is investigated. The use of different functionals and calculation methods influences the partial charge distribution and the magnitude of the dipole moment of the solute, but not the orientation of the dipole moment. Simulations based on the calculated charge distributions show nearly the same relaxation behavior. Approximating the whole solute molecule by a dipole results in the same relaxation behavior, but lower solvation energies, indicating that the time scale of the Stokes shift does not depend on peculiarities of the solute. However, the SPC and TIP4P water models show too fast dynamics which can be ascribed to a too large diffusion coefficient and too low viscosity. The calculated diffusion coefficient and viscosity for the SWM4 and TIP4P/2005 models coincide well with experimental values and the corresponding relaxation behavior is comparable to experimental values. Furthermore we found that for a quantitative description of the Stokes shift of the applied system at least two solvation shells around the solute have to be taken into account.
Powering of an HTS dipole insert-magnet operated standalone in helium gas between 5 and 85 K
NASA Astrophysics Data System (ADS)
van Nugteren, J.; Kirby, G.; Bajas, H.; Bajko, M.; Ballarino, A.; Bottura, L.; Chiuchiolo, A.; Contat, P.-A.; Dhallé, M.; Durante, M.; Fazilleau, P.; Fontalva, A.; Gao, P.; Goldacker, W.; ten Kate, H.; Kario, A.; Lahtinen, V.; Lorin, C.; Markelov, A.; Mazet, J.; Molodyk, A.; Murtomäki, J.; Long, N.; Perez, J.; Petrone, C.; Pincot, F.; de Rijk, G.; Rossi, L.; Russenschuck, S.; Ruuskanen, J.; Schmitz, K.; Stenvall, A.; Usoskin, A.; Willering, G.; Yang, Y.
2018-06-01
This paper describes the standalone magnet cold testing of the high temperature superconducting (HTS) magnet Feather-M2.1-2. This magnet was constructed within the European funded FP7-EUCARD2 collaboration to test a Roebel type HTS cable, and is one of the first high temperature superconducting dipole magnets in the world. The magnet was operated in forced flow helium gas with temperatures ranging between 5 and 85 K. During the tests a magnetic dipole field of 3.1 T was reached inside the aperture at a current of 6.5 kA and a temperature of 5.7 K. These values are in agreement with the self-field critical current of the used SuperOx cable assembled with Sunam tapes (low-performance batch), thereby confirming that no degradation occurred during winding, impregnation, assembly and cool-down of the magnet. The magnet was quenched many tens of times by ramping over the critical current and no degradation nor training was evident. During the tests the voltage over the coil was monitored in the microvolt range. An inductive cancellation wire was used to remove the inductive component, thereby significantly reducing noise levels. Close to the quench current, drift was detected both in temperature and voltage over the coil. This drifting happens in a time scale of minutes and is a clear indication that the magnet has reached its limit. All quenches happened approximately at the same average electric field and thus none of the quenches occurred unexpectedly.
NASA Astrophysics Data System (ADS)
Loi, Shyeh Tjing; Papaloizou, John C. B.
2018-07-01
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.