Recent advances in discrete dipole approximation
NASA Astrophysics Data System (ADS)
Flatau, P. J.
2012-12-01
I will describe recent advances and results related to Discrete Dipole Approximation. I will concentrate on Discrete Dipole Scattering (DDSCAT) code which has been jointly developed by myself and Bruce T. Draine. Discussion will concentrate on calculation of scattering and absorption by isolated particles (e.g., dust grains, ice crystals), calculations of scattering by periodic structures with applications to studies of scattering and absorption by periodic arrangement of finite cylinders, cubes, etc), very fast near field calculation, ways to display scattering targets and their composition using three dimensional graphical codes. I will discuss possible extensions. References Flatau, P. J. and Draine, B. T., 2012, Fast near field calculations in the discrete dipole approximation for regular rectilinear grids, Optics Express, 20, 1247-1252. Draine B. T. and Flatau P. J., 2008, Discrete-dipole approximation for periodic targets: theory and tests , J. Opt. Soc. Am. A., 25, 2693-2703. Draine BT and Flatau PJ, 2012, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2, arXiv:1202.3424v3.ear field calculations (Fast near field calculations in the discrete dipole approximation for regular rectilinear grids P. J. Flatau and B. T. Draine, Optics Express, Vol. 20, Issue 2, pp. 1247-1252 (2012))
Photoelectron spectroscopy and the dipole approximation
Hemmers, O.; Hansen, D.L.; Wang, H.
1997-04-01
Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.
Yurkin, Maxim A; Min, Michiel; Hoekstra, Alfons G
2010-09-01
We compared three formulations of the discrete dipole approximation (DDA) for simulation of light scattering by particles with refractive indices m=10+10i , 0.1+i , and 1.6+0.01i . These formulations include the filtered coupled dipoles (FCD), the lattice dispersion relation (LDR) and the radiative reaction correction. We compared the number of iterations required for the convergence of the iterative solver (proportional to simulation time) and the accuracy of final results. We showed that the LDR performance for m=10+10i is especially bad, while the FCD is a good option for all cases studied. Moreover, we analyzed the detailed structure of DDA errors and the spectrum of the DDA interaction matrix to understand the performance of the FCD. In particular, this spectrum, obtained with the FCD for particles smaller than the wavelength, falls into the bounds, physically implied for the spectrum of the infinite-dimensional integral scattering operator, contrary to two other DDA formulations. Finally, such extreme refractive indices can now be routinely simulated using modern desktop computers using the publicly available ADDA code, which includes an efficient implementation of the FCD.
Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor
NASA Astrophysics Data System (ADS)
Arif, Khalid Mahmood
2016-08-01
We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations.
Approximate maximum likelihood decoding of block codes
NASA Technical Reports Server (NTRS)
Greenberger, H. J.
1979-01-01
Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.
On the Mean Spherical Approximation for Hard Ions and Dipoles
1991-11-09
OFFICE OF NAVAL RESEARCH AD-A243 271 Grant No. N00014-90-J-1263 -~’r 1 RCT Project 4133002---05 Technical Report #15 ON THE MEAN SPHERICAL...de Ingenieria Universidad Nacional de La Plata, La Plata, Argentina ***Department of Chemistry, University of California Davis, CA 95616 Reproduction...jREMENT INSTRUMENT IDENTIFICATION N ,MBER ORGANIZATION Chemi stry (if applicable) Office of Naval Research Code 472 RCT Project 4133002---05 8c. ADDRESS
NASA Astrophysics Data System (ADS)
Moteki, N.
2015-12-01
Black carbon (BC) is a light-absorbing carbonaceous aerosol emitted from combustions of fossil fuels and biomasses and is estimated as the second most important contributor to positive climate forcing after the carbon dioxide. In the atmosphere, the fractal aggregate of BC-spherules may be mixed with non-absorbing (or weakly absorbing) compounds that forms morphologically complex "BC-containing particle". A reliable scattering code for BC-containing particles is necessary for predicting mass absorption efficiency of BC and designing/evaluating optical techniques for estimating microphysical properties (i.e., size distribution, mixing state, shape, refractive index) of BC-containing particles. The computational methods that derived from the volume-integral form of the Maxwell equation, such as discrete dipole approximation (DDA), are method of choice for morphologically complex object like BC-containing particles. In ordinary DDA, the entire particle volume is approximated as a collection of tiny cubical dipoles (with side length d) placed on a 3D cubic lattice. For several model BC-containing particles, the comparisons with numerically exact T-matrix method reveals that the ordinary DDA suffered from persistent positive systematic error (up to +30%) in absorption even under d <<λ. The cause of this DDA error is identified to be the shape error in BC-spherules. To eliminate the shape error in BC-spherules, we propose a new DDA methodology which may be called hybrid DDA (h-DDA): each primary BC sphere is assumed as a spherical dipole, while remaining particle volume of coating material is approximated by a collection of tiny cubical dipoles on a 3D cubic lattice. Positive absorption bias up to +30% in ordinary DDA is suppressed to within 3% in h-DDA. In h-DDA code, an efficient FFT-based algorithm for solving the matrix equation has been implemented, by utilizing the multilevel block-Toeplitz property of the submatrix corresponding to inter-dipole interaction within
NASA Astrophysics Data System (ADS)
Draine, Bruce T.; Flatau, Piotr J.
2000-08-01
DDSCAT is a freely available software package which applies the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The DDA approximates the target by an array of polarizable points. DDSCAT.5a requires that these polarizable points be located on a cubic lattice. DDSCAT allows accurate calculations of electromagnetic scattering from targets with "size parameters" 2 pi a/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 1). The DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into the code, and relatively straightforward to add new target generation capability to the package. DDSCAT automatically calculates total cross sections for absorption and scattering and selected elements of the Mueller scattering intensity matrix for specified orientation of the target relative to the incident wave, and for specified scattering directions. This User Guide explains how to use DDSCAT to carry out EM scattering calculations. CPU and memory requirements are described.
NASA Astrophysics Data System (ADS)
Shao, Hongbing
Software testing with scientific software systems often suffers from test oracle problem, i.e., lack of test oracles. Amsterdam discrete dipole approximation code (ADDA) is a scientific software system that can be used to simulate light scattering of scatterers of various types. Testing of ADDA suffers from "test oracle problem". In this thesis work, I established a testing framework to test scientific software systems and evaluated this framework using ADDA as a case study. To test ADDA, I first used CMMIE code as the pseudo oracle to test ADDA in simulating light scattering of a homogeneous sphere scatterer. Comparable results were obtained between ADDA and CMMIE code. This validated ADDA for use with homogeneous sphere scatterers. Then I used experimental result obtained for light scattering of a homogeneous sphere to validate use of ADDA with sphere scatterers. ADDA produced light scattering simulation comparable to the experimentally measured result. This further validated the use of ADDA for simulating light scattering of sphere scatterers. Then I used metamorphic testing to generate test cases covering scatterers of various geometries, orientations, homogeneity or non-homogeneity. ADDA was tested under each of these test cases and all tests passed. The use of statistical analysis together with metamorphic testing is discussed as a future direction. In short, using ADDA as a case study, I established a testing framework, including use of pseudo oracles, experimental results and the metamorphic testing techniques to test scientific software systems that suffer from test oracle problems. Each of these techniques is necessary and contributes to the testing of the software under test.
Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation
Aldarmaa, Ch. E-mail: l-xemee@yahoo.com; Khenmedekh, L. E-mail: l-xemee@yahoo.com; Lkhagva, O.
2014-03-24
It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (−τ/2
NASA Astrophysics Data System (ADS)
Egorova, Irina A.; Litvinova, Elena
2016-09-01
New results for electric dipole strength in the chain of even-even calcium isotopes with the mass numbers A =40 -54 are presented. Starting from the covariant Lagrangian of quantum hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for J ≤6 and natural parity were computed in a self-consistent relativistic quasiparticle random-phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2 q ⊗phonon ) formed the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation. The calculations in the latter approach were performed for the giant dipole resonance (GDR) and compared to those obtained with the RQRPA and to available data. The evolution of the dipole strength with the neutron number is investigated for both high-frequency GDRs and low-lying strengths. The development of a pygmy resonant structure on the low-energy shoulder of the GDR is traced and analyzed in terms of transition densities. A dependence of the pygmy dipole strength on the isospin asymmetry parameter is extracted.
Progressive Image Coding by Hierarchical Linear Approximation.
ERIC Educational Resources Information Center
Wu, Xiaolin; Fang, Yonggang
1994-01-01
Proposes a scheme of hierarchical piecewise linear approximation as an adaptive image pyramid. A progressive image coder comes naturally from the proposed image pyramid. The new pyramid is semantically more powerful than regular tessellation but syntactically simpler than free segmentation. This compromise between adaptability and complexity…
NASA Astrophysics Data System (ADS)
Karamanos, Theodosios; Papadimopoulos, Athanasios; Kantartzis, Nikolaos; Tsiboukis, Theodoros
2017-01-01
The computation of the reflection/transmission coefficients from normally illuminated bianisotropic metamaterial slabs through a rigorous method is presented in this paper. The bianisotropic particles that compose finite slabs are approximated as electric and magnetic dipoles. Modeling these slabs as a succession of 2D arrays, the interaction of all dipoles is described via Green's function series, for a given wave illumination on each array, and the excited dipole moments are obtained by the resulting linear system. Finally, the reflection/transmission coefficients are derived in terms of summing the scattering from the equivalent surfaces that comprise the slab. The new algorithm is applied to a bianisotropic and a complicated chiral particle, while all results are compared to numerically simulated ones.
Point dipole and quadrupole scattering approximation to collectively responding resonator systems
NASA Astrophysics Data System (ADS)
Watson, Derek W.; Jenkins, Stewart D.; Ruostekoski, Janne
2017-07-01
We develop a theoretical formalism for collectively responding point scatterers where the radiating electromagnetic fields from each emitter are considered in the electric dipole, magnetic dipole, and electric quadrupole approximation. The contributions of the electric quadrupole moment to electromagnetically-mediated interactions between the scatterers are derived in detail for a system where each scatterer represents a linear R L C circuit resonator, representing common metamaterial resonators in radiofrequency, microwave, and optical regimes. The resulting theory includes a closed set of equations for an ensemble of discrete resonators that are radiatively coupled to each other by propagating electromagnetic fields, incorporating potentially strong interactions and recurrent scattering processes. The effective model is illustrated and tested for examples of pairs of interacting point electric dipoles, where each pair can be qualitatively replaced by a model point emitter with different multipole radiation moments.
NASA Astrophysics Data System (ADS)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong
2015-12-01
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
Lindsay, Sean S.; Wooden, Diane H.; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R. E-mail: diane.h.wooden@nasa.gov E-mail: msk@astro.umd.edu E-mail: murphy@nmsu.edu
2013-03-20
We compute the absorption efficiency (Q{sub abs}) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {mu}m wavelength range. Using the DDSCAT code, we compute Q{sub abs} for non-spherical polyhedral grain shapes with a{sub eff} = 0.1 {mu}m. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {mu}m) shifts the 10 and 11 {mu}m features systematically toward longer wavelengths and relative to the 11 {mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 {mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.
Effective restoration of dipole sum rules within the renormalized random-phase approximation
NASA Astrophysics Data System (ADS)
Hung, N. Quang; Dang, N. Dinh; Hao, T. V. Nhan; Phuc, L. Tan
2016-12-01
The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in 48,52,58Ca and 90,96,110Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, causing the violation of the corresponding energy-weighted sum rules (EWSR). It is shown that this sum rule violation can be eliminated by taking into account the contribution of the particle-particle and hole-hole excitations together with the particle-hole ones in a simple and perturbative way. Consequently, the ratio of the energy-weighted sum of strengths of the pygmy dipole resonance to that of the giant dipole resonance increases.
Coulomb-corrected strong-field quantum trajectories beyond dipole approximation
NASA Astrophysics Data System (ADS)
Keil, Th; Bauer, D.
2017-10-01
Non-dipole effects in strong-field photoelectron momentum spectra have been revealed experimentally (Smeenk et al 2011 Phys. Rev. Lett. 106 193002; Ludwig et al 2014 Phys. Rev. Lett. 113 243001). For certain laser parameters and photoelectron momenta the spectra were found to be shifted against the laser propagation direction whereas one would naively assume that the radiation pressure due to the {\\boldsymbol{v}}× {\\boldsymbol{B}}-force pushes electrons always in the propagation direction. Only the interplay between Lorentz and Coulomb forces may give rise to such counterintuitive dynamics. In this work, we calculate the momentum-dependent shift in and against the propagation direction by extending the quantum trajectory-based Coulomb-corrected strong-field approximation beyond the dipole approximation. A semi-analytical treatment where both magnetic and Coulomb forces are treated perturbatively but simultaneously reproduces the results from the full numerical solution of the equations of motion.
Chambers, F.W.; Masamitsu, J.A.; Lee, E.P.
1982-05-24
RINGBEARER II is a linearized monopole/dipole particle simulation code for studying intense relativistic electron beam propagation in gas. In this report the mathematical models utilized for beam particle dynamics and pinch field computation are delineated. Difficulties encountered in code operations and some remedies are discussed. Sample output is presented detailing the diagnostics and the methods of display and analysis utilized.
Horigome, H; Shiono, J; Shigemitsu, S; Asaka, M; Matsui, A; Kandori, A; Miyashita, T; Tsukada, K
2001-08-01
To determine the developmental changes in the myocardial current during fetal life, and to evaluate the clinical usefulness of magnetocardiography for prenatal diagnosis of cardiac hypertrophy or enlargement, we approximated the magnitude of the one-current dipole of the fetal heart using fetal magnetocardiography (fMCG). A total of 95 fetuses with gestational age of 20-40 wk were included in this study. fMCG was recorded with a nine-channel superconducting quantum interference device system in a magnetically shielded room. The magnitude of the dipole (Q) was calculated using an equation based on the fMCG amplitude obtained on the maternal abdomen and the distance between the maternal surface and fetal heart measured ultrasonographically. In uncomplicated pregnancies, the Q value correlated significantly with gestational age, reflecting an increase in the amount of myocardial current, i.e. myocardial mass. Moreover, the Q values in fetuses with cardiomegaly caused by various cardiovascular abnormalities tended to be higher than the normal values. Although there are some limitations of the methodology based on the half-space model, and fetal orientation may influence the magnitude of the dipole, making it smaller, fMCG recorded with a multichannel superconducting quantum interference device system is a clinically useful tool for noninvasive, prenatal, and electrical evaluation of fetal cardiac hypertrophy.
Accelerated Broadband Spectra Using Transition Dipole Decomposition and Padé Approximants.
Bruner, Adam; LaMaster, Daniel; Lopata, Kenneth
2016-08-09
We present a method for accelerating the computation of UV-visible and X-ray absorption spectra in large molecular systems using real-time time-dependent density functional theory (TDDFT). This approach is based on deconvolution of the dipole into molecular orbital dipole pairs developed by Repisky, et al. [Repisky et al., J. Chem. Theory Comput. 2015, 11, 980-911] followed by Padé approximants to their Fourier transforms. By combining these two techniques, the required simulation time is reduced by a factor of 5 or more, and moreover, the transition dipoles yield the molecular orbital contributions to each transition, akin to the coefficients in linear-response TDDFT. We validate this method on valence and core-level spectra of gas-phase water and nickel porphyrin, where the results are essentially equivalent to conventional linear response. This approach makes real-time TDDFT competitive against linear response for large molecular and material systems with a high density of states.
Tretiak, Sergei
2008-01-01
Single-walled carbon nanotubes (SWNTs) are highly conjugated carbon tubes that are a few nanometers in diameter and can be up to millimeters in length. The excited electronic states of semiconductor-type SWNTs are quasi-1D excitons. It is known that these spatially-extended electronic excitations can migrate among SWNTs that are bundled together, thus quenching the fluorescence owing to the presence of metallic SWNTs. Recent advances in purification and isolation have enabled studies of electronic energy transfer (EET) between SWNTs and molecular chromophores. Here we examine the electronic coupling among SWNTs in order to understand EET involving SWNTs. There are two main difficulties that need to be addressed when studying SWNT EET. The first is to obtain the electronic coupling matrix element that promotes EET. The most common method to calculate the electronic coupling between two molecules is the point dipole approximation (PDA) method, where the electronic coupling is described as the Coulombic interaction between transition dipole moments of D and A. In this approximation, each molecule is represented by a single dipole located at the center of mass for each molecule. It is well known that the PDA method fails at small separations in molecular systems. Owing to the size of SWNTs compared to typical donor-acceptor separations, it is likely that the PDA method will fail. Even when using the PDA method, however, it is difficult to obtain the dipole strength of the transition because the radiative lifetime is obscured by thermal population of dark states in the exciton band. The second difficulty is that there are a few closely spaced states associated with the lowest bright exciton transition (E{sub 11}), and each of these states might act as energy donors or acceptors. Here we will focus on the first of these challenges: the evaluation of electronic couplings between SWNTs, overcoming the limitations of the PDA method. In the last decade, sophisticated quantum
Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results
NASA Astrophysics Data System (ADS)
Kurz, F. T.; Buschle, L. R.; Kampf, T.; Zhang, K.; Schlemmer, H. P.; Heiland, S.; Bendszus, M.; Ziener, C. H.
2016-12-01
We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7 T.
Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results.
Kurz, F T; Buschle, L R; Kampf, T; Zhang, K; Schlemmer, H P; Heiland, S; Bendszus, M; Ziener, C H
2016-12-01
We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7T.
Three-dimensional inelastic approximate analysis code (MOMM)
NASA Technical Reports Server (NTRS)
Meister, Jeffrey P.
1988-01-01
The Mechanics of Materials Model (MOMM) is one of a series of new stand-alone three dimensional nonlinear structural analysis codes. Incorporation of a general purpose finite element computer code into the hot section design process was severely limited by the high costs involved. MOMM is a stiffness method finite element code that uses an internally generated network of beams to characterize hot section component behavior. The method was proposed as a fast, easy to use, computationally efficient tool for approximate analyses. MOMM incorporates a wide variety of analysis capabilities, material models, and load type specifiers instrumental for the analysis of hot section components.
Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation
NASA Astrophysics Data System (ADS)
Cao, Li-Gang; Ma, Zhong-Yu
2005-03-01
The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.
NASA Astrophysics Data System (ADS)
Lindsay, Sean Stephen
The shape, size, and composition of crystalline silicates observed in comet comae and external proto-planetary disks are indicative of the formation and evolution of the dust grains during the processes of planetary formation. In this dissertation, I present the 3 -- 40 mum absorption efficiencies( Qabs) of irregularly shaped forsterite crystals computed with the discrete dipole approximation (DDA) code DDSCAT developed by Draine and Flatau and run on the NASA Advanced Supercomputing facility Pleiades. An investigation of grain shapes ranging from spheroidal to irregular indicate that the strong spectral features from forsterite are sensitive to grain shape and are potentially degenerate with the effects of crystal solid state composition (Mg-content). The 10, 11, 18, 23, and 33.5 mum features are found to be the most crystal shape sensitive and should be avoided in determining Mg-content. The distinct spectral features for the three shape classes are connected with crystal formation environment using a condensation experiment by (Kobatake et al., 2008). The condensation experiment demonstrates that condensed forsterite crystal shapes are dependent on the condensation environmental temperature. I generate DDSCAT target analog shapes to the condensed crystal shapes. These analog shapes are represented by the three shape classes: 1) equant, 2) a, c-columns, and 3) b-shortened platelets. Each of these shape classes exhibit distinct spectral features that can be used to interpret grain shape characteristics from 8 --- 40 mum spectroscopy of astronomical objects containing crystalline silicates. Synthetic spectral energy distributions (SEDs) of the coma of Hale-Bopp at rh = 2.8 AU are generated by thermally modeling the flux contributions of 5 mineral species present in comets. The synthetic SEDs are constrained using a chi2- minimization technique. The mineral species are amorphous carbon, amorphous pyroxene, amorphous olivine, crystalline enstatite, and crystalline
Zeroth order regular approximation approach to electric dipole moment interactions of the electron
NASA Astrophysics Data System (ADS)
Gaul, Konstantin; Berger, Robert
2017-07-01
A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.
Error bounded conic spline approximation for NC code
NASA Astrophysics Data System (ADS)
Shen, Liyong
2012-01-01
Curve fitting is an important preliminary work for data compression and path interpolator in numerical control (NC). The paper gives a simple conic spline approximation algorithm for G01 code. The algorithm is mainly formed by three steps: divide the G01 code to subsets by discrete curvature detection, find the polygon line segment approximation for each subset within a given error and finally, fit each polygon line segment approximation with a conic Bezier spline. Naturally, B-spline curve can be obtained by proper knots selection. The algorithm is designed straightforward and efficient without solving any global equation system or optimal problem. It is complete with the selection of curve's weight. To design the curve more suitable for NC, we present an interval for the weight selection and the error is then computed.
Error bounded conic spline approximation for NC code
NASA Astrophysics Data System (ADS)
Shen, Liyong
2011-12-01
Curve fitting is an important preliminary work for data compression and path interpolator in numerical control (NC). The paper gives a simple conic spline approximation algorithm for G01 code. The algorithm is mainly formed by three steps: divide the G01 code to subsets by discrete curvature detection, find the polygon line segment approximation for each subset within a given error and finally, fit each polygon line segment approximation with a conic Bezier spline. Naturally, B-spline curve can be obtained by proper knots selection. The algorithm is designed straightforward and efficient without solving any global equation system or optimal problem. It is complete with the selection of curve's weight. To design the curve more suitable for NC, we present an interval for the weight selection and the error is then computed.
The DEPOSIT computer code based on the low rank approximations
NASA Astrophysics Data System (ADS)
Litsarev, Mikhail S.; Oseledets, Ivan V.
2014-10-01
We present a new version of the DEPOSIT computer code based on the low rank approximations. This approach is based on the two dimensional cross decomposition of matrices and separated representations of analytical functions. The cross algorithm is available in the distributed package and can be used independently. All integration routines related to the computation of the deposited energy T(b) are implemented in a new way (low rank separated representation format on homogeneous meshes). By using this approach a bug in integration routines of previous version of the code was found and fixed in the current version. The total computational time was significantly accelerated and is about several minutes.
NASA Astrophysics Data System (ADS)
Modarres, M.; Masouminia, M. R.; Hosseinkhani, H.; Olanj, N.
2016-01-01
In the spirit of performing a complete phenomenological investigation of the merits of Kimber-Martin-Ryskin (KMR) and Martin-Ryskin-Watt (MRW) unintegrated parton distribution functions (UPDF), we have computed the longitudinal structure function of the proton, FL (x ,Q2), from the so-called dipole approximation, using the LO and the NLO-UPDF, prepared in the respective frameworks. The preparation process utilizes the PDF of Martin et al., MSTW2008-LO and MSTW2008-NLO, as the inputs. Afterwards, the numerical results are undergone a series of comparisons against the exact kt-factorization and the kt-approximate results, derived from the work of Golec-Biernat and Stasto, against each other and the experimental data from ZEUS and H1 Collaborations at HERA. Interestingly, our results show a much better agreement with the exact kt-factorization, compared to the kt-approximate outcome. In addition, our results are completely consistent with those prepared from embedding the KMR and MRW UPDF directly into the kt-factorization framework. One may point out that the FL, prepared from the KMR UPDF shows a better agreement with the exact kt-factorization. This is despite the fact that the MRW formalism employs a better theoretical description of the DGLAP evolution equation and has an NLO expansion. Such unexpected consequence appears, due to the different implementation of the angular ordering constraint in the KMR approach, which automatically includes the resummation of ln (1 / x), BFKL logarithms, in the LO-DGLAP evolution equation.
Discrete Dipole Approximation for Low-Energy Photoelectron Emission from NaCl Nanoparticles
Berg, Matthew J.; Wilson, Kevin R.; Sorensen, Chris; Chakrabarti, Amit; Ahmed, Musahid
2011-09-22
This work presents a model for the photoemission of electrons from sodium chloride nanoparticles 50-500 nm in size, illuminated by vacuum ultraviolet light with energy ranging from 9.4-10.9 eV. The discrete dipole approximation is used to calculate the electromagnetic field inside the particles, from which the two-dimensional angular distribution of emitted electrons is simulated. The emission is found to favor the particle?s geometrically illuminated side, and this asymmetry is compared to previous measurements performed at the Lawrence Berkeley National Laboratory. By modeling the nanoparticles as spheres, the Berkeley group is able to semi-quantitatively account for the observed asymmetry. Here however, the particles are modeled as cubes, which is closer to their actual shape, and the interaction of an emitted electron with the particle surface is also considered. The end result shows that the emission asymmetry for these low-energy electrons is more sensitive to the particle-surface interaction than to the specific particle shape, i.e., a sphere or cube.
Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation.
Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Zhu, Nan; Chábera, Pavel; Lenngren, Nils; Chi, Qijin; Pullerits, Tõnu
2014-04-30
Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of QDs, so that the simple point-dipole approximation, widely used in the conventional approach, can no longer offer quantitative description of the FRET dynamics in such systems. Here, we report the investigations of the FRET dynamics in densely packed films composed of multisized CdSe QDs using ultrafast transient absorption spectroscopy and theoretical modeling. Pairwise interdot transfer time was determined in the range of 1.5 to 2 ns by spectral analyses which enable separation of the FRET contribution from intrinsic exciton decay. A rational model is suggested by taking into account the distribution of the electronic transition densities in the dots and using the film morphology revealed by AFM images. The FRET dynamics predicted by the model are in good quantitative agreement with experimental observations without adjustable parameters. Finally, we use our theoretical model to calculate dynamics of directed energy transfer in ordered multilayer QD films, which we also observe experimentally. The Monte Carlo simulations reveal that three ideal QD monolayers can provide exciton funneling efficiency above 80% from the most distant layer. Thereby, utilization of directed energy transfer can significantly improve light harvesting efficiency of QD devices.
Resonance fluorescence beyond the dipole approximation of a quantum dot in a plasmonic nanostructure
NASA Astrophysics Data System (ADS)
Yang, Chun-Jie; An, Jun-Hong
2016-05-01
The mesoscopic characteristics of a quantum dot (QD), which make the dipole approximation (DA) break down, provide a new dimension to manipulate light-matter interaction [M. L. Andersen et al., Nat. Phys. 7, 215 (2011)], 10.1038/nphys1870. Here we investigate the power spectrum and the second-order correlation property of the fluorescence from a resonantly driven QD placed on a planar metal. It is revealed that due to the pronounced QD spatial extension and the dramatic variation of the triggered surface plasmon near the metal, the fluorescence has a notable contribution from the quadrupole moment. The π -rotation symmetry of the fluorescence to the QD orientation under the DA is broken. By manipulating the QD orientation and quadrupole moment, the spectrum can be switched between the Mollow triplet and a single peak, and the fluorescence characterized by the antibunching in the second-order correlation function can be changed from the weak to the strong radiation regime. Our result is instructive for utilizing the unique mesoscopic effects to develop nanophotonic devices.
NASA Astrophysics Data System (ADS)
Daoutidis, I.; Goriely, S.
2012-09-01
Large-scale calculations of the E1 strength are performed within the random phase approximation (RPA) based on the relativistic point-coupling mean field approach in order to derive the radiative neutron capture cross sections for all nuclei of astrophysical interest. While the coupling to the single-particle continuum is taken into account in an explicit and self-consistent way, additional corrections like the coupling to complex configurations and the temperature and deformation effects are included in a phenomenological way to account for a complete description of the nuclear dynamical problem. It is shown that the resulting E1-strength function based on the PCF1 force is in close agreement with photoabsorption data as well as the available experimental E1 strength data at low energies. For neutron-rich nuclei, as well as light neutron-deficient nuclei, a low-lying so-called pygmy resonance is found systematically in the 5-10 MeV region. The corresponding strength can reach 10% of the giant dipole strength in the neutron-rich region and about 5% in the neutron-deficient region, and is found to be reduced in the vicinity of the shell closures. Finally, the neutron capture reaction rates of neutron-rich nuclei is found to be about 2-5 times larger than those predicted on the basis of the nonrelativistic RPA calculation and about a factor 50 larger than obtained with traditional Lorentzian-type approaches.
Johnson, Mikala; Bowen, Patrick; Kundtz, Nathan; Bily, Adam
2014-09-01
Since the discovery of materials with negative refractive index, widely known as metamaterials, it has been possible to develop new devices that utilize a metamaterial's ability to control the path of electromagnetic energy. Of particular promise, and already under intensive development for commercial applications, are metamaterial antennas for satellite communications. Using reconfigurable metamaterials in conjunction with the principles of holography, these new antennas can electronically steer the high gain antenna beam required for broadband communications while not having any moving parts, being thinner, lighter weight, and less expensive, and requiring less power to operate than conventional alternatives. Yet, the promise of these devices will not be realized without efficient and effective control and optimization. Toward this end, in this paper a discrete-dipole approximation (DDA) model of a waveguide-fed planar metamaterial antenna is derived. The proposed model is demonstrated to accurately predict the radiation of a two-dimensional metamaterial at a much reduced computational cost to full-wave simulation and at much greater fidelity than simpler models typically used in the field. The predictive capabilities of the derived DDA model opens possibilities for model-based control design for optimal beam steering.
NASA Astrophysics Data System (ADS)
Lindsay, Sean; Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Murphy, J. R.
2012-10-01
In cometary comae, the crystalline silicate forsterite (Mg2SiO4) is the dominant crystalline component. Within the 8 - 40 micron spectral range, the crystal shape has been demonstrated to have a measurable effect on the crystalline features’ shape and peak wavelength locations. We present discrete dipole approximation (DDA) absorption efficiencies for a variety of forsterite grain shapes to demonstrate: a) that the 10, 11, 19, 23, and 33.5 micron resonances are sensitive to grain shape; b) spectral trends are associated with variations in crystallographic axial ratios; and c) that groups of similar grain shapes (shape classes) have distinct spectral features. These computations are performed using DDSCAT v7.0 run on the NASA Advanced Supercomputing (NAS) facility Pleiades. We generate synthetic spectral energy distribution (SED) fits to the Infrared Space Observatory (ISO) SWS spectra for the coma of comet C/1995 O1 (Hale-Bopp) at a heliocentric distance of 2.8 AU. Hale-Bopp is best fit by equant grain shapes whereas rounded grain shapes fit significantly poorer than crystals with sharp edges with well-defined faces. Moreover, crystals that are not significantly elongated along a crystallographic axis fit better. By comparison with Kobatake et al. (2008) condensation experiments and Takigawa et al. (2009) evaporation experiments, our analyses suggest that the forsterite crystals in the coma of Hale-Bopp predominantly are high temperature condensates. The laboratory experiments show that grain shape and grain formation temperature, and hence disk environment, are causally linked. Specifically, the Kobatake et al. (2008) condensation experiment reveals three shape classes associated with temperature: 1) ‘Bulky’ grains (1300 K < T < 1700 K), 2) ‘Platy’ grains (1000 K < T < 1300 K), and 3) columnar/needle grains (T < 1000 K). We construct DDA grain shape analogs to these shape classes to connect grain shapes to distinguishable spectral signatures and crystal
NASA Astrophysics Data System (ADS)
Skorupski, Krzysztof
2015-06-01
Black carbon particles soon after emission interact with organic and inorganic matter. The primary goal of this work was to approximate the accuracy of the DDA method in determining the optical properties of such composites. For the light scattering simulations the ADDA code was selected and the superposition T-Matrix code by Mackowski was used as the reference algorithm. The first part of the study was to compare alternative models of a single primary particle. When only one material is considered the largest averaged relative extinction error is associated with black carbon (δCext ≍ 2.8%). However, for inorganic and organic matter it is lowered to δCext ≍ 0.75%. There is no significant difference between spheres and ellipsoids with the same volume, and therefore, both of them can be used interchangeably. The next step was to investigate aggregates composed of Np = 50 primary particles. When the coating is omitted, the averaged relative extinction error is δCext ≍ 2.6%. Otherwise, it can be lower than δCext < 0.2%.
NASA Astrophysics Data System (ADS)
Xuan, Fengyuan; Guet, Claude
2016-10-01
The surface plasmon in silver clusters is red shifted with respect to standard jellium random-phase approximation (RPA) predictions that work well for simple metal clusters. The reason for the deviation arises primarily from the non-negligible polarization interaction between the valence electrons and ionic cores. In order to quantify this effect in the jellium approximation we introduce a modified RPAE (RPA with exact exchange). The jellium background of Ag cores is treated as a polarizable sphere. This model predicts a dipole surface resonance in excellent agreement with published experimental data. Moreover it yields the blue shift (red shift) with decreasing sizes for cationic (anionic) Ag clusters as observed experimentally.
Barbieri, C.; Martinez-Pinedo, G.; Caurier, E.; Langanke, K.
2008-02-15
The occurrence of a pygmy dipole resonance in proton rich {sup 32,34}Ar is studied using the unitary correlator operator method interaction V{sub UCOM}, based on Argonne V18. Predictions from the random-phase approximation (RPA) and the shell model in a no-core basis are compared. It is found that the inclusion of configuration mixing up to two-particles-two-holes broadens the pygmy strength slightly and reduces sensibly its strength, as compared to the RPA predictions. For {sup 32}Ar, a clear peak associated with a pygmy resonance is found. For {sup 34}Ar, the pygmy states are obtained close to the giant dipole resonance and mix with it.
NASA Technical Reports Server (NTRS)
Draine, B. T.; Goodman, Jeremy
1993-01-01
We derive the dispersion relation for electromagnetic waves propagating on a lattice of polarizable points. From this dispersion relation we obtain a prescription for choosing dipole polarizabilities so that an infinite lattice with finite lattice spacing will mimic a continuum with dielectric constant. The discrete dipole approximation is used to calculate scattering and absorption by a finite target by replacing the target with an array of point dipoles. We compare different prescriptions for determining the dipole polarizabilities. We show that the most accurate results are obtained when the lattice dispersion relation is used to set the polarizabilities.
Laidman, S.; Pangilinan, J.; Guillemin, R.; Yu, S.U.; Ohrwall, G.; Lindle, D.; Hemmers, O.
2002-01-01
Understanding the electronic structure of atoms and molecules is fundamental in determining their basic properties as well as the interactions that occur with different particles such as light. One such interaction is single photoionization; a process in which a photon collides with an atom or molecule and an electron with a certain kinetic energy is emitted, leaving behind a residual ion. Theoretical models of electronic structures use the dipole approximation to simplify x-ray interactions by assuming that the electromagnetic field of the radiation, expressed as a Taylor-series expansion, can be simplified by using only the first term. It has been known for some time that the dipole approximation becomes inaccurate at high photon energies, but the threshold at which this discrepancy begins is ambiguous. In order to enhance our understanding of these limitations, we measured the electron emissions of nitrogen. Beamline 8.0.1 at the Advanced Light Source was used with an electron Time-of-Flight (TOF) end station, which measures the time required for electrons emitted to travel a fixed distance. Data were collected over a broad range of photon energies (413 - 664 eV) using five analyzers rotated to 15 chamber angles. Preliminary analysis indicates that these results confirm the breakdown of the dipole approximation at photon energies well below 1 keV and that this breakdown is greatly enhanced in molecules just above the core-level ionization threshold. As a result, new theoretical models must be made that use higher order terms that were previously truncated.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1971-01-01
Expressions for the excitation cross section of the highly excited states of the hydrogenlike atoms by fast charged particles have been derived in the dipole approximation of the semiclassical impact parameter and the Born approximations, making use of a formula for the asymptotic expansion of the oscillator strength of the hydrogenlike atoms given by Menzel. When only the leading term in the asymptotic expansion is retained, the expression for the cross section becomes identical to the expression obtained by the method of the classical collision and correspondence principle given by Percival and Richards. Comparisons are made between the Bethe coefficients obtained here and the Bethe coefficients of the Born approximation for transitions where the Born calculation is available. Satisfactory agreement is obtained only for n yields n + 1 transitions, with n the principal quantum number of the excited state.
NASA Astrophysics Data System (ADS)
Skorupski, Krzysztof
2015-05-01
Black carbon (BC) particles are a product of incomplete combustion of carbon-based fuels. One of the possibilities of studying the optical properties of BC structures is to use the DDA (Discrete Dipole Approximation) method. The main goal of this work was to investigate its accuracy and to approximate the most reliable simulation parameters. For the light scattering simulations the ADDA code was used and for the reference program the superposition T-Matrix code by Mackowski was selected. The study was divided into three parts. First, DDA simulations for a single particle (sphere) were performed. The results proved that the meshing algorithm can significantly affect the particle shape, and therefore, the extinction diagrams. The volume correction procedure is recommended for sparse or asymmetrical meshes. In the next step large fractal-like aggregates were investigated. When sparse meshes are used, the impact of the volume correction procedure cannot be easily predicted. In some cases it can even lead to more erroneous results. Finally, the optical properties of fractal-like aggregates composed of spheres in point contact were compared to much more realistic structures made up of connected, non-spherical primary particles.
NASA Astrophysics Data System (ADS)
Maier, Matthias; Margetis, Dionisios; Luskin, Mitchell
2017-06-01
We formulate and validate a finite element approach to the propagation of a slowly decaying electromagnetic wave, called surface plasmon-polariton, excited along a conducting sheet, e.g., a single-layer graphene sheet, by an electric Hertzian dipole. By using a suitably rescaled form of time-harmonic Maxwell's equations, we derive a variational formulation that enables a direct numerical treatment of the associated class of boundary value problems by appropriate curl-conforming finite elements. The conducting sheet is modeled as an idealized hypersurface with an effective electric conductivity. The requisite weak discontinuity for the tangential magnetic field across the hypersurface can be incorporated naturally into the variational formulation. We carry out numerical simulations for an infinite sheet with constant isotropic conductivity embedded in two spatial dimensions; and validate our numerics against the closed-form exact solution obtained by the Fourier transform in the tangential coordinate. Numerical aspects of our treatment such as an absorbing perfectly matched layer, as well as local refinement and a posteriori error control are discussed.
NASA Astrophysics Data System (ADS)
Haiwei, Mu; Jingwei, Lv; Zhaoting, Liu; Shijie, Zheng; Lin, Yang; Tao, Sun; Qiang, Liu; Chao, Liu
2016-04-01
Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing.
NASA Astrophysics Data System (ADS)
Abraham Ekeroth, R. M.; García-Martín, A.; Cuevas, J. C.
2017-06-01
We present here a generalization of the thermal discrete dipole approximation (TDDA) that allows us to describe the near-field radiative heat transfer between finite objects of arbitrary shape that exhibit magneto-optical (MO) activity. We also extend the TDDA approach to describe the thermal emission of a finite object with and without MO activity. Our method is also valid for optically anisotropic materials described by an arbitrary permittivity tensor and we provide simple closed formulas for the basic thermal quantities that considerably simplify the implementation of the TDDA method. Moreover, we show that by employing our TDDA approach one can rigorously demonstrate Kirchhoff's radiation law relating the emissivity and absorptivity of an arbitrary MO object. Our work paves the way for the theoretical study of the active control of emission and radiative heat transfer between MO systems of arbitrary size and shape.
Calculation of electric dipole hypershieldings at the nuclei in the Hellmann-Feynman approximation.
Soncini, Alessandro; Lazzeretti, Paolo; Bakken, Vebjørn; Helgaker, Trygve
2004-02-15
The third-rank electric hypershieldings at the nuclei of four small molecules have been evaluated at the Hartree-Fock level of theory in the Hellmann-Feynman approximation. The nuclear electric hypershieldings are closely related to molecular vibrational absorption intensities and a generalization of the atomic polar tensors (expanded in powers of the electric field strength) is proposed to rationalize these intensities. It is shown that the sum rules for rototranslational invariance and the constraints imposed by the virial theorem provide useful criteria for basis-set completeness and for near Hartree-Fock quality of nuclear shieldings and hypershieldings evaluated in the Hellmann-Feynman approximation. Twelve basis sets of different size and quality have been employed for the water molecule in an extended numerical test on the practicality of the proposed scheme. The best results are obtained with the R12 and R12+ basis sets, designed for the calculation of electronic energies by the explicitly correlated R12 method. The R12 basis set is subsequently used to investigate three other molecules, CO, N2, and NH3, verifying that the R12 basis consistently performs very well.
NASA Astrophysics Data System (ADS)
Palade, D. I.; Baran, V.
2016-09-01
We generalize the schematic model based on the Random Phase Approximation (RPA) with separable interaction, to a collection of subspaces of ph excitations which interact with different coupling constants. This ansatz notably lowers the numerical effort involved, by reducing the RPA eigenvalue problem to a finite small dimensional system of equation. We derive the associated dispersion relation and the normalization condition for the newly defined unknowns of the system. In contrast with the standard separable approach, the present formalism is able to describe more than one collective excitation even in the degenerate limit, giving also access to the nature of the resonance. The theoretical framework is tested investigating the dipolar oscillations in various neutral and singly charged sodium clusters and C 60 fullerene with results in good agreement with full RPA calculations and experimental data. It is proven that the 40 eV resonance present in photoabsorption spectra of C 60 is a localized surface plasmon.
NASA Astrophysics Data System (ADS)
Asenchik, O. D.
2017-02-01
A method of approximate calculation of the interaction inverse matrix in the method of discrete dipoles is proposed. The knowledge of this matrix makes it possible to determine the optical response of a system to the action of an electromagnetic wave with an arbitrary shape, which can be represented as a combination of vector spherical wave functions. The number of calculation operations of the matrix in the proposed method is considerably smaller than in the case of its direct calculation. In the case of a change in the refractive index of scattering particles, two methods of approximate calculation of the interaction inverse matrix are also proposed. This makes it possible to calculate the optical response of systems with new characteristics without direct solving equations of a system with a large dimension. The accuracy of the methods is numerically determined for particles with spherical and cubic shapes. It is shown that the methods are computationally efficient and can be used to calculate the values of polarization vectors inside particles and extinction and absorption cross sections of systems.
NASA Astrophysics Data System (ADS)
Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.
2015-10-01
The open-source beam-splitting code is described which implements the geometric-optics approximation to light scattering by convex faceted particles. This code is written in C++ as a library which can be easy applied to a particular light scattering problem. The code uses only standard components, that makes it to be a cross-platform solution and provides its compatibility to popular Integrated Development Environments (IDE's). The included example of solving the light scattering by a randomly oriented ice crystal is written using Qt 5.1, consequently it is a cross-platform solution, too. Both physical and computational aspects of the beam-splitting algorithm are discussed. Computational speed of the beam-splitting code is obviously higher compared to the conventional ray-tracing codes. A comparison of the phase matrix as computed by our code with the ray-tracing code by A. Macke shows excellent agreement.
NASA Astrophysics Data System (ADS)
Scarnato, B. V.; Vahidinia, S.; Richard, D. T.; Kirchstetter, T. W.
2013-05-01
According to recent studies, internal mixing of black carbon (BC) with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl) using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT). DDSCAT is flexible in simulating the geometry and refractive index of particle aggregates. DDSCAT predicts a higher mass absorption coefficient (MAC), lower single scattering albedo (SSA), and higher absorption Angstrom exponent (AAE) for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.16 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. The MAC of BC (averaged over the 200-1000 nm range) is amplified when internally mixed with NaCl (100-300 nm in radius) by factors ranging from 1.0 for lacy BC aggregates partially immersed in NaCl to 2.2 for compact BC aggregates fully immersed in NaCl. The SSA of BC internally mixed with NaCl is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200-400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle size and morphology. This study shows that DDSCAT predicts complex morphology and mixing state dependent aerosol optical properties that have been reported
NASA Astrophysics Data System (ADS)
Scarnato, B.; Vahidinia, S.; Richard, D. T.; Kirchstetter, T. W.
2012-10-01
According to recent studies, internal mixing of black carbon (BC) with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl) using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT). DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA), and higher absorption Angstrom exponent (AAE) for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100-300 nm in radius) is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200-400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm) presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation). When BC is internally mixed with NaCl (100-300 nm in radius), strong depolarization features for near-VIS incident radiation are evident, such as a decrease
NASA Astrophysics Data System (ADS)
Rusydi, Febdian; Shukri, Ganes; Saputro, Adithya G.; Agusta, Mohammad K.; Dipojono, Hermawan K.; Suprijadi, Suprijadi
2017-04-01
We study the Q/B-band dipole strength of zinc tetrabenzoporphyrin (ZnTBP) using density functional theory (DFT) in various solvents. The solvents are modeled using the polarized continuum model (PCM). The dipole strength calculations are approached by a two-level system, where the Q-band is described by the HOMO → LUMO electronic transition and the B-band by the HOMO-1 → LUMO electronic transition. We compare the results with the experimental data of the Q/B-band intensity ratio. We also perform time-dependent DFT coupled with PCM to calculate the Q/B-band oscillator strength ratio of ZnTBP. The results of both methods show a general trend with respect to the experimental Q/B-band intensity ratio in solvents, except for the calculation in the water solvent. Even so, the approximation is a good starting point for studying the UV-vis spectrum based on DFT study alone.
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1972-01-01
Derivation of expressions for the excitation cross section in the dipole approximation of the semiclassical impact parameter and the Born approximations, making use of a formula given by Menzel (1968, 1969) for the asymptotic expansion of the oscillator strength of the hydrogen-like atoms. When only the leading term in the asymptotic expansion is retained, the expression for the cross section becomes identical with the expression obtained by the method of the classical collision and correspondence principle given by Percival and Richards (1970). Comparisons are made between the Bethe coefficients obtained by the author and the Bethe coefficients of the Born approximation for transitions where the Born calculation is available. Satisfactory agreement is obtained only for n yields n + 1 transitions, where n is the principal quantum number of the excited state.
Converter of rotating-transformer signals to code of successive-approximation angle
NASA Astrophysics Data System (ADS)
Domrachev, V. G.; Podolyan, V. A.
1986-01-01
A cyclic converter of signals from a rotating sine-cosine resolver transformer to a binary code of the angle through successive approximation was designed with large to small scale circuit integration. Its two channels yield informative outputs of 12-bit word length. The conversion process is conventional, with mismatch signals being formed in accordance with the algorithms and then reduced to zero digit by digit by the method of successive approximations. Variable input signals are converted into constant ones with the aid of a sampler-storage device. Other converter components are a read-only memory with synchronous pulse energizing and synchronous code recording, a digital to analog converter, four sign-inverting analog switches, a comparator with summation of products at the input and a trigger transmitting the somparator output signal to a successive approximations register, as well as analog switches for channel commutation and function commutation, operational amplifier, and resistor banks. Functions are recorded in the memory without deficiency, owing to addition of a modified memory which records codes with excess.
Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code
Liu, J.C.; Nelson, W.R.; Kase, K.R.; Mao, X.S.
1995-10-01
The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons (< 2.5 MeV) are emitted isotropically and the fast neutrons are emitted anisotropically in the form of 1+Csin{sup 2}{theta}, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range.
BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations
McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.
1980-10-01
The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.
NASA Astrophysics Data System (ADS)
Abdi, Fatemeh; Siabi-Gerjan, Araz; Savaloni, Hadi
2012-07-01
The use of glancing angle deposition technique provides opportunities for the deposition of sculptured nanostructures of different shape. The optical properties of such nanostructures that are a function of the shape of these nanostructures may be investigated, using the discrete dipole approximation theory which is an appropriate method for solving the light scattering problem from objects of different shape and geometry. In this paper, the extinction spectra of Ag/glass-sculptured nano-flowers with threefold symmetry are modeled and calculated, while the results are compared with similar experimental observations. In modeling the nano-flower-shaped sculptured thin films, it is proposed that the nano-flower is formed as a combination of two chiral thin films with different dimensions. This structure was replaced with 1,405 electrical dipoles, and its extinction spectrum was calculated as a function of incident light angle and azimuthal angle. The extinction spectrum consists of both transverse and longitudinal modes of oscillations. The results showed that by increasing the incident angle, due to increase of amplitude of electrical oscillations, transverse oscillations shift towards longer wavelengths. It was also observed that at azimuthal angles close to nano-flower petals, where sharp points or recesses may exist, the intensity of extinction spectrum for longitudinal mode (long wavelengths in the extinction spectrum) increases.
NASA Astrophysics Data System (ADS)
List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick
2015-06-01
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
List, Nanna Holmgaard Jensen, Hans Jørgen Aagaard; Kauczor, Joanna; Norman, Patrick; Saue, Trond
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
O'Brien, Daniel B; Massari, Aaron M
2015-01-14
In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.
O’Brien, Daniel B.; Massari, Aaron M.
2015-01-14
In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.
Martini, M.; Peru, S.; Dupuis, M.
2011-03-15
Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones {sup 24}O, {sup 26}Ne, {sup 28}Mg, and {sup 30}Si are characterized by a similar behavior. The occupation of the 2s{sub 1/2} neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of {sup 28}Ne and {sup 30}Ne, characterized by transitions involving the {nu}1d{sub 3/2} state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is identified in the {sup 18}Ne nucleus.
Keightley, Peter D; Eöry, Lél; Halligan, Daniel L; Kirkpatrick, Mark
2011-04-01
We develop an inference method that uses approximate Bayesian computation (ABC) to simultaneously estimate mutational parameters and selective constraint on the basis of nucleotide divergence for protein-coding genes between pairs of species. Our simulations explicitly model CpG hypermutability and transition vs. transversion mutational biases along with negative and positive selection operating on synonymous and nonsynonymous sites. We evaluate the method by simulations in which true mean parameter values are known and show that it produces reasonably unbiased parameter estimates as long as sequences are not too short and sequence divergence is not too low. We show that the use of quadratic regression within ABC offers an improvement over linear regression, but that weighted regression has little impact on the efficiency of the procedure. We apply the method to estimate mutational and selective constraint parameters in data sets of protein-coding genes extracted from the genome sequences of primates, murids, and carnivores. Estimates of CpG hypermutability are substantially higher in primates than murids and carnivores. Nonsynonymous site selective constraint is substantially higher in murids and carnivores than primates, and autosomal nonsynonymous constraint is higher than X-chromsome constraint in all taxa. We detect significant selective constraint at synonymous sites in primates, carnivores, and murid rodents. Synonymous site selective constraint is weakest in murids, a surprising result, considering that murid effective population sizes are likely to be considerably higher than the other two taxa.
Non-uniform Neutron Source Approximation for Iterative Reconstruction of Coded Source Images
Gregor, Jens; Bingham, Philip R
2016-01-01
X-ray and neutron optics both lack ray focusing capabilities. An x-ray source can be made small and powerful enough to facilitate high-resolution imaging while providing adequate flux. This is not yet possible for neutrons. One remedy is to employ a computational imaging technique such as magnified coded source imaging. The greatest challenge associated with successful reconstruction of high-resolution images from such radiographs is to precisely model the flux distribution for complex non-uniform neutron sources. We have developed a framework based on Monte Carlo simulation and iterative reconstruction that facilitates high- resolution coded source neutron imaging. In this paper, we define a methodology to empirically measure and approximate the flux profile of a non-uniform neutron source, and we show how to incorporate the result within the forward model of an iterative reconstruction algorithm. We assess improvement in image quality by comparing reconstructions based respectively on the new empirical forward model and our previous analytic models.
Determination of recombination radius in Si for binary collision approximation codes
Vizkelethy, Gyorgy; Foiles, Stephen M.
2015-09-11
Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.
Determination of recombination radius in Si for binary collision approximation codes
Vizkelethy, Gyorgy; Foiles, Stephen M.
2015-09-11
Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets,more » such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.« less
NASA Astrophysics Data System (ADS)
Short, Mitchell R.
Nanotechnology has become so widely used it can be found in every aspect of life, from cell-phones and computers, to cars, and even athletic socks. As it permeates so many markets, the need for supplemental technologies has also increased. One such needed technology is in the area of nanoscale characterization. Current imaging methods are advanced; however, they do not have the capabilities to characterize the size, shape, composition, and arrangement of nanostructures and nanoparticles in a real-time, unobtrusive manner. The Polarized-Surface-Wave-Scattering system (PSWSS) is a method being researched at the University of Utah that can provide such characterization, although in order for the PSWSS to function accurately through inversion techniques, a predictive forward model must be developed and validated. This work explores the discrete dipole approximation with surface interaction (DDA-SI), an open source MATLAB toolbox, as a predictive model to calculate electromagnetic scattering by objects on a surface illuminated by an evanescent wave generated by total internal reflection (TIR). Far-field scattering predictions via DDA-SI are validated against scaled microwave experimental results for two objects on a surface: a sphere with a diameter of lambda/1.92 and a cube with a side length of lambda/1.785, where lambda refers to the wavelength. A good agreement between experiments and simulations is observed, especially when modified Fresnel reflection coefficients are employed by DDA-SI. Programs to calculate the amplitude scattering matrix and Mueller matrix elements have been also been created. Additionally, the sensitivity of four Mueller matrix elements (M11, M12, M21, and M22) to the particle size, material (gold and silver), shape (sphere and cube), and interparticle spacing, is analyzed. It is found that these four elements are sensitive to changes in shape and interparticle spacing, whereas prove insufficient to difference in material and sizes smaller than
NASA Technical Reports Server (NTRS)
Schmit, L. A.; Miura, H.
1975-01-01
The creation of an efficient automated capability for minimum weight design of structures is reported. The ACCESS 1 computer program combines finite element analysis techniques and mathematical programming algorithms using an innovative collection of approximation concepts. Design variable linking, constraint deletion techniques and approximate analysis methods are used to generate a sequence of small explicit mathematical programming problems which retain the essential features of the design problem. Organization of the finite element analysis is carefully matched to the design optimization task. The efficiency of the ACCESS 1 program is demonstrated by giving results for several example problems.
ACCESS-2: Approximation Concepts Code for Efficient Structural Synthesis, user's guide
NASA Technical Reports Server (NTRS)
Miura, H.; Schmit, L. A., Jr.
1978-01-01
A user's guide is presented for the ACCESS-2 computer program. ACCESS-2 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure.
Pygmy dipole resonance and dipole polarizability in {sup 90}Zr
Iwamoto, C.; Tamii, A.; Shima, T.; Hashimoto, T.; Suzuki, T.; Fujita, H.; Hatanaka, K.; Utsunomiya, H.; Akimune, H.; Yamagata, T.; Okamoto, A.; Kondo, T.; Nakada, H.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; and others
2014-05-02
Electric dipole (E1) reduced transition probability B(E1) of {sup 90}Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability α{sub D} which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.
Pygmy dipole resonance and dipole polarizability in 90Zr
NASA Astrophysics Data System (ADS)
Iwamoto, C.; Tamii, A.; Utsunomiya, H.; Akimune, H.; Nakada, H.; Shima, T.; Hashimoto, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Suzuki, T.; Fujita, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Lui, T.-W.; Bilgier, B.; Kozer, H. C.; Hatanaka, K.
2014-05-01
Electric dipole (E1) reduced transition probability B(E1) of 90Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability αD which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.
ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included.
NASA Technical Reports Server (NTRS)
Miura, H.; Schmit, L. A., Jr.
1976-01-01
The program documentation and user's guide for the ACCESS-1 computer program is presented. ACCESS-1 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. Implementation of the computer program, preparation of input data and basic program structure are described, and three illustrative examples are given.
NASA Astrophysics Data System (ADS)
Okita, Taishi; Takagi, Toshiyuki
2010-01-01
We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequeny excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems.
NASA Astrophysics Data System (ADS)
Curreli, Davide; Lindquist, Kyle; Ruzic, David N.
2013-10-01
Techniques based on Monte Carlo Binary Collision Approximation (BCA) are widely used for the evaluation of particle interactions with matter, but rarely coupled with a consistent kinetic plasma solver like a Particle-in-Cell. The TRIM code [Eckstein; Biersack and Haggmark, 1980] and its version including dynamic-composition TRIDYN [Moller and Eckstein, 1984] are two popular implementations of BCA, where single-particle projectiles interact with a target of amorphous material according to the classical Carbon-Krypton interaction potential. The effect of surface roughness can be included as well, thanks to the Fractal-TRIM method [Ruzic and Chiu, 1989]. In the present study we couple BCA codes with Particles-in-Cells. The Lagrangian treatment of particle motion usually implemented in PiC codes suggests a natural coupling of PiC's with BCA's, even if a number of caveats has to be taken into account, related to the discrete nature of computational particles, to the difference between the two approaches and most important to the multiple spatial and temporal scales involved. The break down of BCA at low energies (unless the projectiles are channeling through an oriented crystal layer [Hobler and Betz, 2001]) has been supplemented by Yamamura's semi-empirical relations.
Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab
2007-06-01
The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.
NASA Astrophysics Data System (ADS)
Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.
2011-07-01
Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.
Whittington, James C. R.; Bogacz, Rafal
2017-01-01
To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583
NASA Astrophysics Data System (ADS)
Protsenko, I. E.; Uskov, A. V.; Zaimidoroga, O. A.; Samoilov, V. N.; O'Reilly, E. P.
2005-06-01
A “dipole” laser is proposed consisting of a nanoparticle and a two-level system with population inversion. If the threshold conditions are fulfilled, the dipole interaction between the two-level system and the nanoparticle leads to coherent oscillations in the polarization of the particles, even in the absence of an external electromagnetic field. The emitted radiation has a dipolar distribution. It does not need an optical cavity, and has a very small volume, ˜0.1μm3 , which can be important for applications in microelectronics. Estimates of the threshold conditions are carried out for a dipole laser composed of a quantum dot and a silver nanoparticle.
Sukhovoj, A. M. Furman, W. I. Khitrov, V. A.
2008-06-15
The sums of radiative strength functions for primary dipole gamma transitions, k(E1) + k(M1), are approximated to a high precision by a superposition of two functional dependences in the energy range 0.5 < E{sub 1} < B{sub n} - 0.5 MeV for the {sup 40}K, {sup 60}Co, {sup 71,74}Ge, {sup 80}Br, {sup 114}Cd, {sup 118}Sn, {sup 124,125}Te, {sup 128}I, {sup 137,138,139}Ba, {sup 140}La, {sup 150}Sm, {sup 156,158}Gd, {sup 160}Tb, {sup 163,164,165}Dy, {sup 166}Ho, {sup 168}Er, {sup 170}Tm, {sup 174}Yb, {sup 176,177}Lu, {sup 181}Hf, {sup 182}Ta, {sup 183,184,185,187}W, {sup 188,190,191,193}Os, {sup 192}Ir, {sup 196}Pt, {sup 198}Au, and {sup 200}Hg nuclei. It is shown that, in any nuclei, radiative strength functions are a dynamical quantity and that the values of k(E1) + k(M1) for specific energies of gamma transitions and specific nuclei are determined by the structure of decaying and excited levels, at least up to the neutron binding energy B{sub n}.
NASA Astrophysics Data System (ADS)
Sukhovoj, A. M.; Furman, W. I.; Khitrov, V. A.
2008-06-01
The sums of radiative strength functions for primary dipole gamma transitions, k( E1) + k( M1), are approximated to a high precision by a superposition of two functional dependences in the energy range 0.5 < E 1 < B n - 0.5 MeV for the 40K, 60Co, 71,74Ge, 80Br, 114Cd, 118Sn, 124,125Te, 128I, 137,138,139Ba, 140La, 150Sm, 156,158Gd, 160Tb, 163,164,165Dy, 166Ho, 168Er, 170Tm, 174Yb, 176,177Lu, 181Hf, 182Ta, 183,184,185,187W, 188,190,191,193Os, 192Ir, 196Pt, 198Au, and 200Hg nuclei. It is shown that, in any nuclei, radiative strength functions are a dynamical quantity and that the values of k( E1) + k( M1) for specific energies of gamma transitions and specific nuclei are determined by the structure of decaying and excited levels, at least up to the neutron binding energy B n .
NASA Astrophysics Data System (ADS)
Lu, Weihua; Chen, Xinjian; Zhu, Weifang; Yang, Lei; Cao, Zhaoyuan; Chen, Haoyu
2015-03-01
In this paper, we proposed a method based on the Freeman chain code to segment and count rhesus choroid-retinal vascular endothelial cells (RF/6A) automatically for fluorescence microscopy images. The proposed method consists of four main steps. First, a threshold filter and morphological transform were applied to reduce the noise. Second, the boundary information was used to generate the Freeman chain codes. Third, the concave points were found based on the relationship between the difference of the chain code and the curvature. Finally, cells segmentation and counting were completed based on the characteristics of the number of the concave points, the area and shape of the cells. The proposed method was tested on 100 fluorescence microscopic cell images, and the average true positive rate (TPR) is 98.13% and the average false positive rate (FPR) is 4.47%, respectively. The preliminary results showed the feasibility and efficiency of the proposed method.
Berke, Ethan M; Shi, Xun
2009-04-29
Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
Lithium electric dipole polarizability
Puchalski, M.; KePdziera, D.; Pachucki, K.
2011-11-15
The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and quantum electrodynamics corrections. The obtained result {alpha}{sub E}=164.0740(5) a.u. is in good agreement with the less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 3 parts per 10{sup 6} comes from the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered as a benchmark for more general atomic structure methods and may serve as a reference value for the relative measurement of polarizabilities of the other alkali-metal atoms.
NASA Astrophysics Data System (ADS)
Lanti, E.; Dominski, J.; Brunner, S.; McMillan, B. F.; Villard, L.
2016-11-01
This work aims at completing the implementation of a solver for the quasineutrality equation using a Padé approximation in the global gyrokinetic code ORB5. Initially [Dominski, Ph.D. thesis, 2016], the Pade approximation was only implemented for the kinetic electron model. To enable runs with adiabatic or hybrid electron models while using a Pade approximation to the polarization response, the adiabatic response term of the quasi-neutrality equation must be consistently modified. It is shown that the Pade solver is in good agreement with the arbitrary wavelength solver of ORB5 [Dominski, Ph.D. thesis, 2016]. To perform this verification, the linear dispersion relation of an ITG-TEM transition is computed for both solvers and the linear growth rates and frequencies are compared.
Remote Sensing of Dipole Rings
NASA Technical Reports Server (NTRS)
Hooker, Stanford B.; Mied, Richard P.; Brown, James W.; Kirwan, A. D., Jr.
1997-01-01
Historical satellite-derived sea surface temperature (SST) data are reanalyzed with a zebra color palette and a thermal separatrix method. The new results from this reanalysis are as follows: (a) Thirteen observational sequences of six rings from the Gulf Stream and the Brazil Current, which have historically been interpreted as solitary vortices or monopoles are shown to have a dipolar character; (b) some of these dipole rings have been observed in the open ocean, thereby eliminating the possibility that they are sustained by topographic interactions with the continental slope; (c) whether interacting with other features or evolving as isolated circulations, dipoles are seen to rotate within a relatively narrow range of approximately 4-8 deg/day (interacting) and 10-11 deg/day (isolated); and (d) feature tracking delineates energetic fluid in both vortices and eliminates the possibility of interpreting dipole rings as transient features produced by active monopoles and patches of entrained fluid.
Color dipole cross section and inelastic structure function
NASA Astrophysics Data System (ADS)
Jeong, Yu Seon; Kim, C. S.; Luu, Minh Vu; Reno, Mary Hall
2014-11-01
Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the parametrizations of F 2(ξ = x or W 2 , Q 2) by Donnachie-Landshoff and Block et al., we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way reproduces the original structure function within about 10% for 0 .1 GeV2 ≤ Q 2 ≤10 GeV2. We discuss the dipole cross section at large and small dipole sizes and compare our results with other parametrizations.
NASA Astrophysics Data System (ADS)
Gedney, Stephen D.
1987-09-01
The Electromagnetic Pulse (EMP) produced by a high-altitude nuclear blast presents a severe threat to electronic systems due to its extreme characteristics. To test the vulnerability of large systems, such as airplanes, missiles, or satellites, they must be subjected to a simulated EMP environment. One type of simulator that has been used to approximate the EMP environment is the Large Parallel-Plate Bounded-Wave Simulator. It is a guided wave simulator which has properties of transmission line and supports a single TEM model at sufficiently low frequencies. This type of simulator consists of finite-width parallel-plate waveguides, which are excited by a wave launcher and terminated by a wave receptor. This study addresses the field distribution within a finite-width parallel-plate waveguide that is matched to a conical tapered waveguide at either end. Characteristics of a parallel-plate bounded-wave EMP simulator were developed using scattering theory, thin-wire mesh approximation of the conducting surfaces, and the Numerical Electronics Code (NEC). Background is provided for readers to use the NEC as a tool in solving thin wire scattering problems.
On the dipole moment of CO/+/.
NASA Technical Reports Server (NTRS)
Certain, P. R.; Woods, R. C.
1973-01-01
Results of self-consistent field calculations on neutral CO, its positive ion, and on neutral CN to verify an earlier estimate of the dipole moment of CO(+) in its ground super 2 Sigma state. Based on the above-mentioned calculations, direct evidence is obtained that the dipole moment (relative to the center of mass) is approximately 2.5 plus or minus 0.5 C, as previously determined by Kopelman and Klemperer (1962).
Efficient treatment of induced dipoles
Simmonett, Andrew C.; Pickard, Frank C.; Shao, Yihan; Cheatham, Thomas E.; Brooks, Bernard R.
2015-01-01
Most existing treatments of induced dipoles in polarizable molecular mechanics force field calculations use either the self-consistent variational method, which is solved iteratively, or the “direct” approximation that is non-iterative as a result of neglecting coupling between induced dipoles. The variational method is usually implemented using assumptions that are only strictly valid under tight convergence of the induced dipoles, which can be computationally demanding to enforce. In this work, we discuss the nature of the errors that result from insufficient convergence and suggest a strategy that avoids such problems. Using perturbation theory to reintroduce the mutual coupling into the direct algorithm, we present a computationally efficient method that combines the precision of the direct approach with the accuracy of the variational approach. By analyzing the convergence of this perturbation series, we derive a simple extrapolation formula that delivers a very accurate approximation to the infinite order solution at the cost of only a few iterations. We refer to the new method as extrapolated perturbation theory. Finally, we draw connections to our previously published permanent multipole algorithm to develop an efficient implementation of the electric field and Thole terms and also derive some necessary, but not sufficient, criteria that force field parameters must obey. PMID:26298123
Effects of dipole magnet inhomogeneities on the beam ellipsoid
Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.
1986-01-01
The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields.
NASA Astrophysics Data System (ADS)
Sharipov, Alexander S.; Loukhovitski, Boris I.; Starik, Alexander M.
2017-08-01
Dipole moment and static dipole polarizability surfaces for 50 polyatomic molecules, that are important for material science, combustion, and atmospheric chemistry, are explored in the vicinity of their equilibrium nuclear configurations by using density functional theory. The effective values of dipole moment and static polarizability of these molecules in individual vibrational states are determined using the calculated data on the electric properties and potential energy surfaces. Special attention is paid to the effect of the zero-point vibrations on the electric properties. The simple approximation scheme, allowing low-cost estimation of the zero-point vibrational corrections to polarizability, applicable for wide range of polyatomic compounds, are developed on the basis of the obtained data. The influence of the excitation of vibrational states on the dipole moment and dipole polarizability of polyatomic molecules are discussed with respect to the possible change of some important properties of molecular gases, such as refractive index, diffusion coefficients, and rates of chemical reactions.
NASA Astrophysics Data System (ADS)
Afanasyev, Y. D.
2006-03-01
Evolution of a two-dimensional flow induced by a jet ejected from a nozzle of finite size is studied experimentally. Vortex dipole forms at the front of the developing flow while a trailing jet establishes behind the dipole. The dynamics of the flow is discussed on the basis of detailed measurements of vorticity and velocity fields which are obtained using particle image velocimetry. It is found that dipoles do not separate (pinch-off) from the trailing jet for values of the stroke ratio up to 15, which fact can be contrasted with the behavior of vortex rings reported previously by other authors. A characteristic time scale that is defined differently from the formation time of vortex rings can be introduced. This time scale (startup time) indicates the moment when the dipole starts translating after an initial period when it mainly grows absorbing the jet from the nozzle. A simple model that considers the competing effects of expansion and translation is developed to obtain an estimate of the dimensionless startup time. The dynamics of a dipole after the formation is characterized by a reduced flux of vorticity from the jet. The dipole moves forward with constant speed such that a value of the ratio of the speed of propagation of the dipole to the mean velocity of the jet is found to be 0.5. A universality of this ratio is explained in the framework of a model based on conservation of mass and momentum for the moving dipole.
Precision measurement of the electromagnetic dipole strengths in Be11
NASA Astrophysics Data System (ADS)
Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finlay, A.; Garnsworthy, A. B.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Quaglioni, S.; Svensson, C. E.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.
2014-05-01
The electromagnetic dipole strength in Be11 between the bound states has been measured using low-energy projectile Coulomb excitation at bombarding energies of 1.73 and 2.09 MeV/nucleon on a Pt196 target. An electric dipole transition probability B(E1;1/2-→1/2+)=0.102(2) e2fm was determined using the semi-classical code Gosia, and a value of 0.098(4) e2fm was determined using the Extended Continuum Discretized Coupled Channels method with the quantum mechanical code FRESCO. These extracted B(E1) values are consistent with the average value determined by a model-dependent analysis of intermediate energy Coulomb excitation measurements and are approximately 14% lower than that determined by a lifetime measurement. The much-improved precisions of 2% and 4% in the measured B(E1) values between the bound states deduced using Gosia and the Extended Continuum Discretized Coupled Channels method, respectively, compared to the previous accuracy of ˜10% will help in our understanding of and better improve the realistic inter-nucleon interactions.
Relativistic Dipole Matrix Element Zeros
NASA Astrophysics Data System (ADS)
Lajohn, L. A.; Pratt, R. H.
2002-05-01
There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).
Olson, Peter; Amit, Hagay
2006-11-01
The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.
NLO evolution of color dipoles
Ian Balitsky; Giovanni Chirilli
2008-01-01
The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leaing order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities. We calculate the gluon contribution to small-x evolution of Wilson lines (the quark part was obtained earlier).
NASA Astrophysics Data System (ADS)
Engel, D.; Klews, M.; Wunner, G.
2009-02-01
We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap
Laboratory Dipole Plasma Physics
NASA Astrophysics Data System (ADS)
Kesner, Jay
2011-10-01
Modern laboratory studies of plasma confined by a strong dipole magnet originated twenty years ago when it was learned that planetary magnetospheres have centrally-peaked plasma pressure profiles that form naturally when solar wind drives plasma circulation and heating. Unlike other internal rings devices, like spherators and octupoles, the magnetic flux tubes of the dipole field expand rapidly with radius. Unlike plasma confinement devices that obtain stability from magnetic shear and average good curvature, like tokamaks and levitrons, the dipole-confined plasma obtains stability from plasma compressibility. These two geometric characteristics of the dipole field have profound consequences: (i) plasma can be stable with local beta exceeding unity, (ii) fluctuations can drive either heat or particles inward to create stationary profiles that are strongly peaked, and (iii) the confinement of particles and energy can decouple. During the past decade, several laboratory dipole experiments and modeling efforts have lead to new understanding of interchange, centrifugal and entropy modes, nonlinear gyrokinetics, and plasma transport. Two devices, the LDX experiment at MIT and RT-1 at the University of Tokyo, operate with levitated superconducting dipole magnets. With a levitated dipole, not only is very high-beta plasma confined in steady state but, also, levitation produces high-temperature at low input power and demonstrates that toroidal magnetic confinement of plasma does not require a toroidal field. Modeling has explained many of the processes operative in these experiments, including the observation of a strong inward particle pinch. Turbulent low-frequency fluctuations in dipole confined plasma cause adiabatic transport and form a fundamental linkage between the radial variation of flux-tube volume and the centrally peaked density and pressure profiles. In collaboration with M.E. Mauel and D.T. Garnier; supported by DoE FG02-98ER54458.
Confidence limits of dipole source reconstruction results.
Fuchs, Manfred; Wagner, Michael; Kastner, Jörn
2004-06-01
Equivalent dipole models are widely used in electro-encephalo-graphic (EEG) and magneto-encephalo-graphic (MEG) source reconstruction. Despite their point-like definition, the best-fit solutions have a certain probability volume depending on the source position and orientation as well as on the actually used sensor set-up and the signal-to-noise ratio (SNR). In order to avoid the misleading impression of exact localization results, a measure of the SD of the dipole localization is desirable. This measure can be obtained by performing a deviation scan around the best-fit positions, where the explainable field is determined and compared to the best-fit field. Using a linear approximation, confidence ellipsoids can then be computed and their axes and volumes can be determined by relating the field differences to the noise of the measured data. Test-dipoles inside of a 3 spherical shells volume conductor model were used to simulate EEG- and MEG-data with sources of known positions, orientations, and noise levels. Confidence ellipsoids were computed for these test-dipole solutions and deviation scans around the best-fit dipole positions were performed in order to compare the size and the shape of the confidence ellipsoids with the real error-hypersurface. SDs of repeated dipole localizations at different depths were computed to show the validity of the linear approximation over the whole eccentricity range. The size of the axes of the confidence ellipsoids is inversely proportional to the SNR of the measured data, thus the confidence volume is inversely proportional to the third power of the SNR. Good agreement between SDs of repeated dipole localizations and the confidence ellipsoids was found for both EEG- and MEG-cases. The new method adds a new and important dimension to dipole source reconstruction results by characterizing their reliability. It is also very helpful in deciding how many dipoles are necessary to explain the measured data, since superfluous dipoles
Comparison between discrete dipole implementations and exact techniques
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Zubko, Evgenij; Lumme, Kari; Muinonen, Karri; Yurkin, Maxim A.; Draine, Bruce; Rahola, Jussi; Hoekstra, Alfons G.; Shkuratov, Yuri
2007-07-01
The use of the discrete dipole approximation (DDA) method in wave optical scattering simulations is growing quite fast. This is due to the fact that the current computing resources allow to apply DDA to sufficiently large scattering systems. The advantage of DDA is that it is applicable to arbitrary particle shape and configuration of particles. There are several computer implementations of the DDA method, and in this article we will compare four of such implementations in terms of their accuracy, speed and usability. The accuracy is studied by comparing the DDA results against results from either Mie, T-matrix or cluster T-Matrix codes with suitable geometries. It is found that the relative accuracy for intensity is between 2% and 6% for ice and silicate type refractive indices and the absolute accuracy for linear polarization ratio is roughly from 1% to 3%.
Half wavelength dipole antennas over stratified media
NASA Technical Reports Server (NTRS)
Latorraca, G. A.
1972-01-01
Theoretical solutions of the fields induced by half-wavelength, horizontal, electric field dipoles (HEDS) are determined based on studies of infinitesimal, horizontal, electric field dipoles over low loss plane-stratified media. To determine these solutions, an approximation to the current distribution of a half-wavelength HED is derived and experimentally verified. Traverse and antenna measurements obtained on the Athabasca Glacier in the summer of 1971 are related to the characteristics of the transmitting antenna design, and the measurement techniques and field equipment used in the glacier trials are described and evaluated.
NASA Astrophysics Data System (ADS)
Bacon, Allan Mclain
1995-01-01
Optical dipole fluctuations in atoms play an important role in diverse physical phenomena: they limit the signal to background ratio in spectroscopic measurements, and thus limit the accuracy of atomic clocks; they determine the minimum temperature that can be obtained in laser cooling and in optical traps; and, they place a limit on squeezed state experiments. Although there have been many theoretical and experimental studies of noise in radiating atomic systems, the previous work has not provided a complete physical picture of the distinct sources of optical dipole noise. Hence, a detailed study of optical dipole fluctuations in a simple radiating system is of fundamental and pedagogical value. This dissertation presents measurements of optical dipole noise in a particularly simple system consisting of long-lived, coherently driven two-level atoms in an atomic beam. We use atoms with a long radiative lifetime, because the small spontaneous emission rate permits analysis of the noise spectra in terms of a simple fluctuating Bloch vector picture, without decay. The observed noise spectra exhibit manifestly different structure for radiation which is in-phase or out-of-phase with the driving field. The spectra and corresponding analysis afford clear insights into the roles played by three distinct sources of atomic noise: Spontaneous emission, phase-dependent Bloch vector projection noise, and phase-dependent mean dipole Poisson noise. Spontaneous emission and phase-dependent Bloch vector projection noise arise from quantum fluctuations in the optical dipole moment of single atoms. Phase-dependent mean dipole Poisson noise arises from fluctuations in the number of radiating atoms. Two novel experimental techniques permit sensitive measurement of optical dipole noise. First, the signals from two identically prepared experimental regions are subtracted. This method cancels the excess noise in the measured quadrature signal in addition to canceling the excess noise in
Clinical coding. Code breakers.
Mathieson, Steve
2005-02-24
--The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships.
Thermodynamics of systems of aligned dipoles
NASA Astrophysics Data System (ADS)
Daily, K. M.; Blume, D.
2013-05-01
The high-temperature thermodynamics of two-component Fermi gases with interspecies s-wave scattering length is well described by the virial equation of state. This work determines the virial equation of state of weakly-interacting dipolar Bose and Fermi gases under external spherically symmetric confinement. The second-order virial coefficients for two identical dipolar bosons, two identical dipolar fermions and two distinguishable dipoles are calculated from the trap energy spectra. Away from resonance, we employ the Born approximation and find that the virial coefficient for two identical fermions depends quadratically on the dipole length. This suggests that dipolar effects are suppressed in the high temperature limit. Fine tuning the scattering properties of two identical fermions, we identify conditions in which the second-order virial coefficient depends linearly on the dipole length. Analytical expressions are derived and corroborated by numerical calculations. We acknowledge support from the NSF.
Sound scattering by a vortex dipole.
Naugolnykh, Konstantin
2013-04-01
Sound scattering by a system of two counter-rotating vortices (Lamb dipole) is considered, using the effective approach of Pitaevskii [J. Exp. Theor. Phys (USSR) 35, 1271-1275 (1958); Sov. Phys. JETP 85, 888-890 (1959)], based on application of the asymptotic representation of the scattering Green function, the Dirac delta function modeling of the vortex, and the Fourier transformation of the vector of scattering. The sound frequency is supposed to be low. The directivity pattern of the radiation, scattered by the Lamb dipole is obtained. There is no singularity in scattering field in this case as it must be for the vorticity with zero circulation, so the dipole is a more appropriate object for the approximation used.
Variable-field permanent magnet dipole
Barlow, D.B.; Kraus, R.H. Jr.; Meyer, R.E.
1993-10-01
A new concept for a variable-field permanent-magnet dipole (VFPMD) has been designed, fabricated, and tested at Los Alamos. The VFPMD is a C-shaped sector magnet with iron poles separated by a large block of magnet material (SmCo). The central field can be continuously varied from 0.07 T to 0.3 T by moving an iron shunt closer or further away from the back of the magnet. The shunt is specially shaped to make the dependence of the dipole field strength on the shunt position as linear as possible. The dipole has a 2.8 cm high by 8 cm wide aperture with {approximately}10 cm long poles.
Dipole-dipole dispersion interactions between neutrons
NASA Astrophysics Data System (ADS)
Babb, James F.; Higa, Renato; Hussein, Mahir S.
2017-06-01
We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J^{π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ˜ 50 fm up to ˜ 103 fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed.
Experiments with Dipole Antennas
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2009-01-01
Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…
Kartashov, Yaroslav V; Ferrando, Albert; García-March, Miguel-Angel
2007-08-01
On universal symmetry grounds, we analyze the existence of a new type of discrete-symmetry vortex solitons that can be considered as coherent states of dipole solitons carrying a nonzero topological charge. Remarkably, they can be also interpreted as excited angular Bloch states. The stability of new soliton states is elucidated numerically.
Experiments with Dipole Antennas
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2009-01-01
Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…
Geometrical Simplification of the Dipole-Dipole Interaction Formula
ERIC Educational Resources Information Center
Kocbach, Ladislav; Lubbad, Suhail
2010-01-01
Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…
Geometrical Simplification of the Dipole-Dipole Interaction Formula
ERIC Educational Resources Information Center
Kocbach, Ladislav; Lubbad, Suhail
2010-01-01
Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…
NASA Astrophysics Data System (ADS)
Deloncle, I.; Péru, S.; Martini, M.
2017-08-01
In this paper we present theoretical results on the dipole response in the proton spin-saturated 90-94Zr isotopes. The electric and magnetic dipole excitations are obtained in Hartree-Fock-Bogolyubov plus Quasi-particle Random Phase Approximation (QRPA) calculations performed with the D1M Gogny force. A pnQRPA charge exchange code is used to study the Gamow-Teller response. The results on the pygmy, the giant dipole resonances as well as those on the magnetic nuclear spin-flip excitation and the Gamow-Teller transitions are compared with available experimental or theoretical information. In our approach, the proton pairing plays a role in the phonon excitations, in particular in the M1 nuclear spin-flip resonance.
DALI: Derivative Approximation for LIkelihoods
NASA Astrophysics Data System (ADS)
Sellentin, Elena
2015-07-01
DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.
Plasma expansion in the presence of a dipole magnetic field
Winske, D.; Omidi, N.
2005-07-15
Simulations of the initial expansion of a plasma injected into a stationary magnetized background plasma in the presence of a dipole magnetic field are carried out in two dimensions with a kinetic ion, massless fluid electron (hybrid) electromagnetic code. For small values of the magnetic dipole, the injected ions have large gyroradii compared to the scale length of the dipole field and are essentially unmagnetized. As a result, these ions expand, excluding the ambient magnetic field and plasma to form a diamagnetic cavity. However, for stronger magnetic dipoles, the ratio of the gyroradii of the injected ions to the dipole field scale length is small so that they remain magnetized, and hence trapped in the dipole field, as they expand. The trapping and expansion then lead to additional plasma currents and resulting magnetic fields that not only exclude the background field but also interact with the dipole field in a more complex manner that stretches the closed dipole field lines. A criterion to distinguish between the two regimes is derived and is then briefly discussed in the context of applying the results to the plasma sail scheme for the propulsion of small spacecraft in the solar wind.
Giant dipole resonance in very hot nuclei of mass A~=115
NASA Astrophysics Data System (ADS)
Suomijärvi, T.; Blumenfeld, Y.; Piattelli, P.; Le Faou, J. H.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.
1996-05-01
Gamma rays, light charged particles, and evaporation residues emitted from hot nuclei formed in the 36Ar+90Zr reaction at 27 MeV/nucleon have been measured at the GANIL facility with the 4π barium fluoride multidetector MEDEA. The combination of the residue and particle measurements shows that nuclei with masses around 115 and excitation energies between 350 and 550 MeV are produced. The γ spectra measured in coincidence with the evaporation residues exhibit three components: a low-energy statistical component, a high-energy contribution due to nucleon-nucleon bremsstrahlung during the initial stages of the collision, and a contribution from the decay of the giant dipole resonance built on highly excited states. The characteristics of the bremsstrahlung component are in agreement with previously published systematics. The γ yield from the decay of the giant dipole resonance remains constant over the excitation energy range studied. A comparison with other experiments shows that the N/Z asymmetry in the entrance channel does not affect the γ yield. Statistical calculations performed using the code CASCADE and supposing a fixed width and full sum rule strength for the dipole resonance strongly overpredict the data. The hypothesis of a continuously increasing width of the resonance with temperature gives a better agreement with experiment near the centroid of the resonance but overpredicts the γ spectra at higher energies. The best account of the data is given by assuming a cutoff of γ emission from the resonance above an excitation energy of approximately 250 MeV. This cutoff is discussed in terms of the time necessary to equilibrate the dipole oscillations with the hot compound nucleus. Finally, some evidence is given for a possible new low-energy component of the dipole strength at very high temperatures.
Optical characterization of electrically charged particles using discrete dipole approximation
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav; Kundracik, František; Videen, Gorden
2016-11-01
The dependence of the electric potential on the absorption and scattering of light by small particles has emerged as an interesting research topic, as the unexpected amplified optical signatures of a system of electrically charged particles were satisfactory predicted recently for homogeneous, uniformly charged spheres. However, natural particles are rarely of spherical shape. A comprehensive understanding of how arbitrarily shaped, charged particles interact with electromagnetic radiation has been missing. The approach we present here attempts to fill this gap by introducing a numerical formulation of the electromagnetic scattering problem for these particles. The first results from the intercomparison of numerical and analytical solutions for a pseudosphere show that the resonance features found are largely consistent, except for the magnitude and width of the peak amplitude, which may be due to inherent differences in the approaches used.
Giant Primeval Magnetic Dipoles
NASA Astrophysics Data System (ADS)
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
NASA Astrophysics Data System (ADS)
Holanda, B. A.; Cordeiro, R. C.; Blak, A. R.
2010-11-01
Dipole defects in gamma irradiated and thermally treated beryl (Be3Al2Si6O18) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.
NASA Astrophysics Data System (ADS)
Girwidz, Raimund V.
2016-11-01
The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures.
Simulation of Whistler Chorus in a Compressed Dipole Field
NASA Astrophysics Data System (ADS)
Wu, S.; Denton, R. E.; Hudson, M.
2015-12-01
Earth's dipole magnetic field is constantly compressed by the solar wind and the compression is enhanced during magnetic storm. We simulate whistler chorus in a compressed dipole field using a hybrid code. The hybrid code uses the particle-in-cell technique in generalized orthogonal coordinates. In the hybrid code, a small fraction of electrons are treated as particles with anisotropic temperature that leads to the whistler instability. Other electrons are treated as a cold fluid without mass. The density of the fluid electrons is large such that the plasma frequency exceeds the electron gyro frequency. Ions serve as a fixed background. We model the compressed dipole field by adding a constant magnetic field component to the dipole field. The direction of the compressed component is the same as that of the dipole field at the equator. This model of the compressed dipole field yields a magnetic field with off-equator minima and smaller inhomogeneity than the dipole field near the equator. The distribution of hot anisotropic electrons along the magnetic field is a function of adiabatic invariants that satisfies MHD force balance. In the compressed dipole field, the hot electron anisotropy, hot electron density and plasma beta in the direction parallel to the background magnetic field are the maximum at the minimum magnetic field. In our simulation, whistler chorus are generated at the minimum magnetic field with a peak frequency in agreement with the prediction by WHAMP, a local dispersion relation solver. The waves propagate in both directions along the magnetic field. Waves that propagate to higher magnetic latitude are damped at the boundary by the artificial resistive layers, while waves that propagate to lower latitude towards the equator continue to grow.
NLO evolution of color dipoles in N=4 SYM
Chirilli, Giovanni A.; Balitsky, Ian
2009-07-04
Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformal ${\\cal N}$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.
Genetic algorithms for dipole location of fetal magnetocardiography.
Escalona-Vargas, D; Murphy, P; Lowery, C L; Eswaran, H
2016-08-01
In this paper, we explore the use of Maximum Likelihood (ML) method with Genetic Algorithms (GA) as global optimization procedure for source reconstruction in fetal magnetocardiography (fMCG) data. A multiple equivalent current dipole (ECD) model was used for sources active in different time samples. Inverse solutions across time were obtained for a single-dipole approximation to estimate the trajectory of the dipole position. We compared the GA and SIMPLEX methods in a simulation environment under noise conditions. Methods are applied on a real fMCG data. Results show robust estimators of the cardiac sources when GA is used as optimization technique.
Deuteron dipole polarizabilities and sum rules
Friar, J.L.; Payne, G.L.
2005-07-01
The scalar, vector, and tensor components of the (generalized) deuteron electric dipole polarizability are calculated, as well as their logarithmic modifications. Several of these quantities arise in the treatment of the nuclear corrections to the deuterium Lamb shift and the deuterium hyperfine structure. A variety of second-generation potential models are used, and a (subjective) error is assigned to the calculations. The zero-range approximation is used to analyze a subset of the results, and a simple relativistic version of this approximation is developed.
Retardation effects in induced atomic dipole-dipole interactions
NASA Astrophysics Data System (ADS)
Graham, S. D.; McGuirk, J. M.
2017-02-01
We present mean-field calculations of azimuthally averaged retarded dipole-dipole interactions in a Bose-Einstein condensate induced by a laser, at both long and short wavelengths. Our calculations demonstrate that dipole-dipole interactions become significantly stronger at shorter wavelengths, by as much as 30-fold, due to retardation effects. This enhancement, along with the inclusion of the dynamic polarizability, indicate a method of inducing long-range interatomic interactions in neutral atom condensates at significantly lower intensities than previously realized.
Superconducting dipole electromagnet
Purcell, John R.
1977-07-26
A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.
Dipole angular entropy techniques for intron-exon segregation in DNA
NASA Astrophysics Data System (ADS)
Subramanian, Nithya; Bose, R.
2012-04-01
We propose techniques for computing the angular entropies of DNA sequences, based on the orientations of the dipole moments of the nucleotide bases. The angles of the dipole moment vectors of the bases are used to compute the dipole angular entropy and the Fourier harmonics of the angles are used to compute the dipole angular spectral entropy for a given sequence. We also show that the coding (exons) and noncoding (introns) regions of the DNA can be segregated based on their dipole angular entropies and dipole angular spectral entropies. Segregation using these techniques is found to be computationally faster and more accurate than the previously reported methods. The proposed techniques can also be improvised to use the magnitude of the dipole moments of the bases in addition to the angles.
NASA Astrophysics Data System (ADS)
Hoffman, Yehuda; Pomarède, Daniel; Tully, R. Brent; Courtois, Hélène M.
2017-01-01
Our Local Group of galaxies is moving with respect to the cosmic microwave background (CMB) with a velocity 1 of V CMB = 631 ± 20 km s‑1 and participates in a bulk flow that extends out to distances of ~20,000 km s‑1 or more 2-4 . There has been an implicit assumption that overabundances of galaxies induce the Local Group motion 5-7 . Yet underdense regions push as much as overdensities attract 8 , but they are deficient in light and consequently difficult to chart. It was suggested a decade ago that an underdensity in the northern hemisphere roughly 15,000 km s‑1 away contributes significantly to the observed flow 9 . We show here that repulsion from an underdensity is important and that the dominant influences causing the observed flow are a single attractor — associated with the Shapley concentration — and a single previously unidentified repeller, which contribute roughly equally to the CMB dipole. The bulk flow is closely anti-aligned with the repeller out to 16,000 ± 4,500 km s‑1. This 'dipole repeller' is predicted to be associated with a void in the distribution of galaxies.
Treatment of small wire loops in the method of moments code NEC (Numerical Electromagnetics Code)
NASA Astrophysics Data System (ADS)
Burke, G. J.
1987-10-01
The Numerical Electromagnetics code (NEC) is generally an accurate and versatile method-of-moments code for modeling wire antennas. NEC has been found to suffer loss of accuracy in VLF applications involving electrically small antennas, however. Some of these problems were discussed previously and corrections demonstrated to improve accuracy for open wire antennas such as dipoles. This report covers the special problems of modeling small wire loops. To model small loops the method-of-moments solution now used in NEC, with point matching and spline basis functions, was modified to use a constant loop basis function and a loop weighting function on each loop. The need for loop basis and weighting functions on small loops has been noted previously for a Galerkin method-of-moments code similar to MININEC. This treatment is implemented in the NEC solution with an approximation of the loop weighting. Also, an algorithm was developed for finding and labeling loops on which the new basis and weighting functions should be applied. The option for loop basis and weighting functions has been incorporated into the code NEC3 VLF which resulted from the previous VLF enhancement described. The improvement in solution accuracy and stability is demonstrated for loop antennas, loops coupled to dipoles and wire grids.
Approximate symmetries of Hamiltonians
NASA Astrophysics Data System (ADS)
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Ferrofluid Photonic Dipole Contours
NASA Astrophysics Data System (ADS)
Snyder, Michael; Frederick, Jonathan
2008-03-01
Understanding magnetic fields is important to facilitate magnetic applications in diverse fields in industry, commerce, and space exploration to name a few. Large electromagnets can move heavy loads of metal. Magnetic materials attached to credit cards allow for fast, accurate business transactions. And the Earth's magnetic field gives us the colorful auroras observed near the north and south poles. Magnetic fields are not visible, and therefore often hard to understand or characterize. This investigation describes and demonstrates a novel technique for the visualization of magnetic fields. Two ferrofluid Hele-Shaw cells have been constructed to facilitate the imaging of magnetic field lines [1,2,3,4]. We deduce that magnetically induced photonic band gap arrays similar to electrostatic liquid crystal operation are responsible for the photographed images and seek to mathematically prove the images are of exact dipole nature. We also note by comparison that our photographs are very similar to solar magnetic Heliosphere photographs.
Highly Automated Dipole EStimation (HADES)
Campi, C.; Pascarella, A.; Sorrentino, A.; Piana, M.
2011-01-01
Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset. PMID:21437232
Highly Automated Dipole EStimation (HADES).
Campi, C; Pascarella, A; Sorrentino, A; Piana, M
2011-01-01
Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset.
Structure of the pygmy dipole resonance in 124Sn
NASA Astrophysics Data System (ADS)
Endres, J.; Savran, D.; Butler, P. A.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Krücken, R.; Lagoyannis, A.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Popescu, L.; Ring, P.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.
2012-06-01
Background: In atomic nuclei, a concentration of electric dipole strength around the particle threshold, commonly denoted as pygmy dipole resonance, may have a significant impact on nuclear structure properties and astrophysical scenarios. A clear identification of these states and the structure of this resonance is still under discussion.Purpose: We present an experimental and theoretical study of the isospin character of the pygmy dipole resonance and investigation of a splitting of the electric dipole strength previously observed in experiments on N=82 nuclei.Method: The pygmy dipole resonance has been studied in the semi-magic Z=50 nucleus 124Sn by means of the (α,α'γ) coincidence method at Eα=136MeV using the Big-Bite Spectrometer at the Kernfysisch Versneller Instituut in Groningen, The Netherlands.Results: A splitting of the low-energy part of the electric dipole strength was identified in 124Sn by comparing the differential cross sections measured in (α,α'γ) to results stemming from (γ,γ') photon-scattering experiments. While an energetically lower-lying group of states is observed in both kinds of experiments, a higher-lying group of states is only excited in the (γ,γ') reaction. In addition, theoretical calculations using the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle-phonon model have been performed. Both calculations show a qualitative agreement with the experimental data and predict a low-lying isoscalar component that is dominated by neutron-skin oscillations as expected for the pygmy dipole resonance. Furthermore, the states at higher energies show a pronounced isovector component and a different radial dependence of the corresponding transition densities as expected for the tail of the giant dipole resonance.Conclusions: An experimental signature of the neutron-skin oscillation of the pygmy dipole resonance has been corroborated. The combination of the presented reactions might make it
Magnetic Field of a Dipole and the Dipole-Dipole Interaction
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…
Magnetic Field of a Dipole and the Dipole-Dipole Interaction
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…
Observation of Stueckelberg oscillations in dipole-dipole interactions
Ditzhuijzen, C. S. E. van; Tauschinsky, Atreju; Van Linden van den Heuvell, H. B.
2009-12-15
We have observed Stueckelberg oscillations in the dipole-dipole interaction between Rydberg atoms with an externally applied radio-frequency field. The oscillating rf field brings the interaction between cold Rydberg atoms in two separated volumes into resonance. We observe multiphoton transitions when varying the amplitude of the rf field and the static electric field offset. The angular momentum states we use show a quadratic Stark shift, which leads to a fundamentally different behavior than linearly shifting states. Both cases are studied theoretically using the Floquet approach and are compared. The amplitude of the sidebands, related to the interaction strength, is given by the Bessel function in the linearly shifting case and by the generalized Bessel function in the quadratically shifting case. The oscillatory behavior of both functions corresponds to Stueckelberg oscillations, an interference effect described by the semiclassical Landau-Zener-Stueckelberg model. The measurements prove coherent dipole-dipole interaction during at least 0.6 mus.
Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.
1997-01-01
Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525
Fermion dipole moment and holography
NASA Astrophysics Data System (ADS)
Kulaxizi, Manuela; Rahman, Rakibur
2015-12-01
In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.
Dipole-dipole interaction between rubidium Rydberg atoms
Altiere, Emily; Fahey, Donald P.; Noel, Michael W.; Smith, Rachel J.; Carroll, Thomas J.
2011-11-15
Ultracold Rydberg atoms in a static electric field can exchange energy via the dipole-dipole interaction. The Stark effect shifts the energy levels of the atoms which tunes the energy exchange into resonance at specific values of the electric field (Foerster resonances). We excite rubidium atoms to Rydberg states by focusing either a 480 nm beam from a tunable dye laser or a pair of diode lasers into a magneto-optical trap. The trap lies at the center of a configuration of electrodes. We scan the electric field by controlling the voltage on the electrodes while measuring the fraction of atoms that interact. Dipole-dipole interaction spectra are presented for initially excited rubidium nd states for n=31 to 46 and for four different pairs of initially excited rubidium ns states. We also present the dipole-dipole interaction spectra for individual rubidium 32d (j, m{sub j}) fine structure levels that have been selectively excited. The data are compared to calculated spectra.
Dipole-dipole interaction in electronic article surveillance system
NASA Astrophysics Data System (ADS)
Pan, H. L.; Li, X.; Zhang, Q.; Wang, J. T.; Xie, W. H.; Zhao, Z. J.
2017-08-01
The dipole-dipole interaction in electronic article surveillance system is studied in this paper. The acoustic magnetic properties investigations were performed on amorphous ribbon Fe24Co11.82Ni47.3Si1.47B15 with a size of 38.5 mm × 6 mm × 0.03 mm at room temperature. The results showed that the dependence of resonance amplitude and frequency on the external magnetic field varied with the number of ribbons. To understand the mechanism, hysteresis loops in arrays of N ribbons with and without a bias magnet have been performed. A theoretical model was used to calculate the dipolar fields among the ribbons and the magnet. The ribbons without a bias magnet exhibited a higher anisotropy field as the number of ribbons increased, which arises from the dipole-dipole interaction between them. The plateau and kink in hysteresis loops with bias magnets also change with the number of ribbons because of the dipole-dipole interactions among the ribbons themselves, and the interaction between the ribbons and the bias magnet also. The superimposed dipolar field affects the acoustic magnetic properties of the ribbons in electronic article surveillance system.
RHIC VERTICAL AC DIPOLE COMMISSIONING.
BAI,M.; DELONG,J.; HOFF,L.; PAI,C.; PEGGS,S.; PIACENTINO,J.; OERTER,B.; ODDO,P.; ROSER,T.; SATOGATA,T.; TRBOJEVIC,D.; ZALTSMAN,A.
2002-06-02
The RHIC vertical ac dipole was installed in the summer of 2001. The magnet is located in the interaction region between sector 3 and sector 4 common to both beams. The resonant frequency of the ac dipole was first configured to be around half of the beam revolution frequency to act as a spin flipper. At the end of the RHIC 2002 run, the ac dipole frequency was reconfigured for linear optics studies. A 0.35 mm driven betatron oscillation was excited with the vertical ac dipole and the vertical betatron functions and phase advances at each beam position monitor (BPM) around the RHIC yellow ring were measured using the excited coherence. We also recorded horizontal turn-by-turn beam positions at each BPM location to investigate coupling effects. Analysis algorithms and measurement results are presented.
NONLINEAR DIAGNOSTICS USING AC DIPOLES.
PEGGS,S.
1999-03-29
There are three goals in the accurate nonlinear diagnosis of a storage ring. First, the beam must be moved to amplitudes many times the natural beam size. Second, strong and long lasting signals must be generated. Third, the measurement technique should be non-destructive. Conventionally, a single turn kick moves the beam to large amplitudes, and turn-by-turn data are recorded from multiple beam position monitors (BPMs) [1-6]. Unfortunately, tune spread across the beam causes the center of charge beam signal to ''decohere'' on a time scale often less than 100 turns. Filamentation also permanently destroys the beam emittance (in a hadron ring). Thus, the ''strong single turn kick'' technique successfully achieves only one out of the three goals. AC dipole techniques can achieve all three. Adiabatically excited AC dipoles slowly move the beam out to large amplitudes. The coherent signals then recorded last arbitrarily long. The beam maintains its original emittance if the AC dipoles are also turned off adiabatically, ready for further use. The AGS already uses an RF dipole to accelerate polarized proton beams through depolarizing resonances with minimal polarization loss [7]. Similar AC dipoles will be installed in the horizontal and vertical planes of both rings in RHIC [8]. The RHIC AC dipoles will also be used as spin flippers, and to measure linear optical functions [9].
Investigation of pygmy dipole resonance in 154Sm
NASA Astrophysics Data System (ADS)
Quliyev, Huseynqulu; Zenginerler, Zemine; Guliyev, Ekber; Kuliev, Ali Akbar
2017-02-01
In this paper, an investigation of the pygmy dipole resonance (PDR) in 154Sm nucleus has been performed using quasi particle random-phase approximation (QRPA). Analysis of the numerical results indicates that both ΔK=1 and ΔK=0 branches plays significant role in formation of PDR.
Measuring the Forces between Magnetic Dipoles
ERIC Educational Resources Information Center
Gayetsky, Lisa E.; Caylor, Craig L.
2007-01-01
We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.
Simulation studies of the transverse dipole mode multibunch instability for the SSC Collider
Chen, S.; Lopez, G.
1993-01-01
A computer program that assumes a point-like structure of the bunches, called TADIMMI, has been devised to study the dipole mode multibunch instability in the Superconducting Super Collider (SSC) Collider ring due to a single Positron-Electron Project (PEP) test rf cavity and the resistive wall. For the rf cavity, the following cases are considered: symmetric filling, where good agreement is obtained with ZAP code; nonsymmetric filling; elimination of the most dangerous mode of the cavity; De-Q of the cavity, where a damping ratio is obtained for the cavity; and the feedback system, where it is verified that the proposed system for the Collider will work. For the resistive wall, a resonator impedance model approximation is used, which allows use of the same computer program to study the instabilities and the associated feedback system. Comparison with the analytical approach (ZAP) is also made.
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Iwamoto, Y.; Sato, T.; Niita, K.; Boudard, A.; Cugnon, J.; David, J.-C.; Leray, S.; Mancusi, D.
2014-08-01
A new approach to describing neutron spectra of deuteron-induced reactions in the Monte Carlo simulation for particle transport has been developed by combining the Intra-Nuclear Cascade of Liège (INCL) and the Distorted Wave Born Approximation (DWBA) calculation. We incorporated this combined method into the Particle and Heavy Ion Transport code System (PHITS) and applied it to estimate (d,xn) spectra on natLi, 9Be, and natC targets at incident energies ranging from 10 to 40 MeV. Double differential cross sections obtained by INCL and DWBA successfully reproduced broad peaks and discrete peaks, respectively, at the same energies as those observed in experimental data. Furthermore, an excellent agreement was observed between experimental data and PHITS-derived results using the combined method in thick target neutron yields over a wide range of neutron emission angles in the reactions. We also applied the new method to estimate (d,xp) spectra in the reactions, and discussed the validity for the proton emission spectra.
Circular current loops, magnetic dipoles and spherical harmonic analysis.
Alldredge, L.R.
1980-01-01
Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author
On the dipole polarisability and dipole sum rules of ozone
NASA Astrophysics Data System (ADS)
Kalugina, Yulia N.; Thakkar, Ajit J.
2015-10-01
Ab initio calculations of the dipole polarisability and other Cauchy moments of the dipole oscillator strength distribution (DOSD) of ozone are reported to help resolve discrepancies between theory and experiment. A number of coupled-cluster methods based on a Hartree-Fock reference function, multiconfiguration-reference configuration interaction methods, and perturbatively corrected, complete-active-space self-consistent field methods are used. The C DOSD of Kumar and Thakkar is probably preferable to their B1 distribution. Our best estimate of the mean polarisability is ? atomic units.
NASA Astrophysics Data System (ADS)
Zhelyazkova, V.; Hogan, S. D.
2015-07-01
Dipole-dipole interactions between helium atoms in Rydberg-Stark states with principal quantum number n =53 and approximately linear Stark energy shifts, resulting from induced electric dipole moments of approximately 7900 D, have been investigated experimentally. The experiments were performed in pulsed supersonic metastable helium beams, with particle number densities of up to ˜109cm-3 . In the presence of amplitude-modulated, radio-frequency electric fields, changes in the spectral intensity distributions associated with the transitions to these states that are attributed to dipole-dipole interactions within the ensembles of excited atoms have been observed. The experimental results are in excellent agreement with calculations of the Rydberg energy level structure carried out using Floquet methods, and excitations shared by up to four atoms. The use of these Rydberg-Stark states as sensors for nonresonant broadband radio-frequency electrical noise is also discussed.
Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region
NASA Astrophysics Data System (ADS)
Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.
2014-11-01
The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.
Atom-Pair Kinetics with Strong Electric-Dipole Interactions.
Thaicharoen, N; Gonçalves, L F; Raithel, G
2016-05-27
Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.
NLO evolution of color dipoles in N=4 SYM
Chirilli, Giovanni A.; Balitsky, Ian
2009-07-04
Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformalmore » $${\\cal N}$$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.« less
NLO evolution of color dipoles in N=4 SYM
Balitsky, Ian; Chirilli, Giovanni
2009-01-01
High-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformal ${\\cal N}$=4 SYM theory. We define the ``composite dipole operator' with the rapidity cutoff preserving conformal invariance. The resulting M\\"obius invariant kernel agrees with the forward NLO BFKL calculation of Ref. 1
Torney, D. C.
2001-01-01
We have begun to characterize a variety of codes, motivated by potential implementation as (quaternary) DNA n-sequences, with letters denoted A, C The first codes we studied are the most reminiscent of conventional group codes. For these codes, Hamming similarity was generalized so that the score for matched letters takes more than one value, depending upon which letters are matched [2]. These codes consist of n-sequences satisfying an upper bound on the similarities, summed over the letter positions, of distinct codewords. We chose similarity 2 for matches of letters A and T and 3 for matches of the letters C and G, providing a rough approximation to double-strand bond energies in DNA. An inherent novelty of DNA codes is 'reverse complementation'. The latter may be defined, as follows, not only for alphabets of size four, but, more generally, for any even-size alphabet. All that is required is a matching of the letters of the alphabet: a partition into pairs. Then, the reverse complement of a codeword is obtained by reversing the order of its letters and replacing each letter by its match. For DNA, the matching is AT/CG because these are the Watson-Crick bonding pairs. Reversal arises because two DNA sequences form a double strand with opposite relative orientations. Thus, as will be described in detail, because in vitro decoding involves the formation of double-stranded DNA from two codewords, it is reasonable to assume - for universal applicability - that the reverse complement of any codeword is also a codeword. In particular, self-reverse complementary codewords are expressly forbidden in reverse-complement codes. Thus, an appropriate distance between all pairs of codewords must, when large, effectively prohibit binding between the respective codewords: to form a double strand. Only reverse-complement pairs of codewords should be able to bind. For most applications, a DNA code is to be bi-partitioned, such that the reverse-complementary pairs are separated
Dipole oscillations in fermionic mixtures
Chiacchiera, S.; Macri, T.; Trombettoni, A.
2010-03-15
We study dipole oscillations in a general fermionic mixture. Starting from the Boltzmann equation, we classify the different solutions in the parameter space through the number of real eigenvalues of the small oscillations matrix. We discuss how this number can be computed using the Sturm algorithm and its relation with the properties of the Laplace transform of the experimental quantities. After considering two components in harmonic potentials having different trapping frequencies, we study dipole oscillations in three-component mixtures. Explicit computations are done for realistic experimental setups using the classical Boltzmann equation without intraspecies interactions. A brief discussion of the application of this classification to general collective oscillations is also presented.
Coherent and incoherent dipole-dipole interactions between atoms
NASA Astrophysics Data System (ADS)
Robicheaux, Francis
2016-05-01
Results will be presented on the collective interaction between atoms due to the electric dipole-dipole coupling between states of different parity on two different atoms. A canonical example of this effect is when the electronic state of one atom has S-character and the state of another atom has P-character. The energy difference between the two states plays an important role in the interaction since the change in energy determines the wave number of a photon that would cause a transition between the states. If the atoms are much closer than the wave length of this photon, then the dipole-dipole interaction is in the near field and has a 1 /r3 dependence on atomic separation. If the atoms are farther apart than the wave length, then the interaction is in the far field and has a 1 / r dependence. When many atoms interact, collective effects can dominate the system with the character of the collective effect depending on whether the atomic separation leads to near field or far field coupling. As an example of the case where the atoms are in the far field, the line broadening of transitions and strong deviations from the Beer-Lambert law in a diffuse gas will be presented. As an example of near field collective behavior, the radiative properties of a Rydberg gas will be presented. Based upon work supported by the National Science Foundation under Grant No. 1404419-PHY in collaboration with R.T. Sutherland.
Radiation from an off-centred rotating dipole in vacuum
NASA Astrophysics Data System (ADS)
Pétri, J.
2016-12-01
When a neutron star forms, after the collapse of its progenitor, a strong magnetic field survives in its interior. This magnetic topology is usually assumed to be well approximated by a dipole located right at the centre of the star. However, there is no particular reason why this dipole should be attached to this very special point. A slight shift from the stellar centre could have strong implications for the surrounding electromagnetic field configuration leading to clear observational signatures. We study the effect of the most general off-centred dipole anchored in the neutron star interior. Exact analytical solutions are given in vacuum outside the star to any order of accuracy in the small parameter ɛ = d/R, where d is the displacement of the dipole from the stellar centre and R the neutron star radius. As a simple diagnostic of this decentred dipole, the spin-down luminosity and the torque exerted on its crust are computed to the lowest leading order in ɛ. Results are compared to earlier works and a discussion on repercussions on pulsar braking index and multiwavelength light curves is proposed.
NASA Astrophysics Data System (ADS)
Iwamoto, C.; Utsunomiya, H.; Tamii, A.; Akimune, H.; Nakada, H.; Shima, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Shimbara, Y.; Nagashima, M.; Suzuki, T.; Fujita, H.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Bilgier, B.; Kozer, H. C.; Lui, Y.-W.; Hatanaka, K.
2012-06-01
A high-resolution measurement of inelastic proton scattering off Zr90 near 0° was performed at 295 MeV with a focus on a pronounced strength previously reported in the low-energy tail of giant dipole resonance. A forest of fine structure was observed in the excitation energy region 7-12 MeV. A multipole decomposition analysis of the angular distribution for the forest was carried out using the ECIS95 distorted-wave Born approximation code with the Hartree-Fock plus random-phase approximation model of E1 and M1 transition densities and inclusion of E1 Coulomb excitation. The analysis separated pygmy dipole and M1 resonances in the forest at EPDR=9.15±0.18MeV with ΓPDR=2.91±0.64MeV and at EM1=9.53±0.06MeV with ΓM1=2.70±0.17MeV in the Lorentzian function, respectively. The B(E1)↑ value for pygmy dipole resonance over 7-11 MeV is 0.75±0.08e2fm2, which corresponds to 2.1±0.2% of the Thomas-Reiche-Kuhn sum rule.
Induced dipole-dipole interactions in light diffusion from point dipoles
NASA Astrophysics Data System (ADS)
Cherroret, Nicolas; Delande, Dominique; van Tiggelen, Bart A.
2016-07-01
We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order 2 in the atomic density and accounts for the vector character of light. It is applied to the calculations of the electromagnetic energy stored in the atomic cloud, which modifies the energy transport velocity, and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.
Dipole polarizabilities of charged pions
NASA Astrophysics Data System (ADS)
Fil'kov, L. V.; Kashevarov, V. L.
2017-01-01
We discuss main experimental works, where dipole polarizabilities of charged pions have been determined. Possible reasons for the differences between the experimental data are discussed. In particular, it is shown that the account of the -meson gives a significant correction to the value of the polarizability obtained in the latest experiment of the COMPASS collaboration.
NASA Astrophysics Data System (ADS)
Schildknecht, Dieter
2017-03-01
We give a brief representation of the theoretical results from the color dipole picture, covering the total photoabsorption cross section, high-energy J/ψ photoproduction with respect to recent experimental data from the LHCb Collaboration at CERN, and ultra-high energy neutrino scattering, relevant for the ICE-CUBE experiment.
Garcia-Ripoll; Perez-Garcia; Ostrovskaya; Kivshar
2000-07-03
We find a new type of optical vector soliton that originates from trapping of a dipole mode by the soliton-induced waveguides. These solitons, which appear as a consequence of the vector nature of the two-component system, are more stable than the previously found optical vortex solitons and represent a new type of extremely robust nonlinear vector structure.
Li, Xin; Pierce, Donna M; Arnoldus, Henk F
2011-05-01
When a circular electric dipole moment, rotating in the x-y plane, is embedded in a material with relative permittivity ε(r) and relative permeability μ(r), the field lines of energy flow of the emitted radiation are dramatically influenced by the surrounding material. For emission in free space, the field lines swirl around the z axis and lie on a cone. The direction of rotation of the field lines around the z axis is the same as the direction of rotation of the dipole moment. We found that when the real part of ε(r) is negative, the rotation of the field lines changes direction, and hence the energy counter-rotates the dipole moment. When there is damping in the material, due to an imaginary part of ε(r), the cone turns into a funnel, and the density of the field lines diminishes near the location of the source. In addition, all radiation is emitted along the z axis and the x-y plane, whereas for emission in free space, the radiation is emitted in all directions. It is also shown that the displacement of the dipole image in the far field depends on the material parameters and that the shift can be much larger than the shift of the image in free space.
Dipole rescattering and the nuclear structure function
Carvalho, F.; Goncalves, V. P.; Navarra, F. S.; Oliveira, E. G.
2013-03-25
In the framework of the dipole model, we study the effects of the dipole multiple scatterings in a nuclear target and compute the nuclear structure function. We compare different unitarization schemes and confront our results with the E665 data.
Quench propagation in the SSC dipole magnets
Lopez, G.; Snitchler, G.
1990-09-01
The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab.
Nadykto, Alexey B; Yu, Fangqun
2008-08-07
Sulfuric acid is a primary atmospheric nucleation precursor, with the ability to form stable aqueous hydrogen-bonded clusters/complexes. The electrical dipole moment of such clusters/complexes is important for ion-induced nucleation, largely controlled by dipole-charge interaction of airborne ions with vapor monomers and pre-existing clusters. Although experiments typically trace a single lowest energy conformer at low temperatures, the present study shows that the immediate vicinity (<1 kcal mol (-1)) of the global minima may be populated with a number of isomers of nearly identical spectral characteristics and drastically different dipole moments. The difference in the dipole moment of mono-, di-, and trihydrates of the sulfuric acid exceeds 1.3-1.5 Debyes ( approximately 50-60%), 1.4-2.6 Debyes ( approximately 50-90%), and 3.8-4.2 Debyes ( approximately 370-550%), respectively. Being driven by the temperature dependence of the Boltzmann distribution, the difference between the Boltzmann-Gibbs average dipole moment and the dipole moment of the most stable isomer increases with the ambient temperature, leading to large variations in the dipole-ion interaction strength, which may have important implications for the ion-mediated production of ultrafine aerosol particles associated with various climatic and health impacts.
Acoustic dispersion in a two-dimensional dipole system
Golden, Kenneth I.; Kalman, Gabor J.; Donko, Zoltan; Hartmann, Peter
2008-07-15
We calculate the full density response function and from it the long-wavelength acoustic dispersion for a two-dimensional system of strongly coupled point dipoles interacting through a 1/r{sup 3} potential at arbitrary degeneracy. Such a system has no random-phase-approximation (RPA) limit and the calculation has to include correlations from the outset. We follow the quasilocalized charge (QLC) approach, accompanied by molecular-dynamics (MD) simulations. Similarly to what has been recently reported for the closely spaced classical electron-hole bilayer [G. J. Kalman et al., Phys. Rev. Lett. 98, 236801 (2007)] and in marked contrast to the RPA, we report a long-wavelength acoustic phase velocity that is wholly maintained by particle correlations and varies linearly with the dipole moment p. The oscillation frequency, calculated both in an extended QLC approximation and in the Singwi-Tosi-Land-Sjolander approximation [Phys. Rev. 176, 589 (1968)], is invariant in form over the entire classical to quantum domains all the way down to zero temperature. Based on our classical MD-generated pair distribution function data and on ground-state energy data generated by recent quantum Monte Carlo simulations on a bosonic dipole system [G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405 (2007)], there is a good agreement between the QLC approximation kinetic sound speeds and the standard thermodynamic sound speeds in both the classical and quantum domains.
Observation of isoscalar and isovector dipole excitations in neutron-rich 20O
NASA Astrophysics Data System (ADS)
Nakatsuka, N.; Baba, H.; Aumann, T.; Avigo, R.; Banerjee, S. R.; Bracco, A.; Caesar, C.; Camera, F.; Ceruti, S.; Chen, S.; Derya, V.; Doornenbal, P.; Giaz, A.; Horvat, A.; Ieki, K.; Inakura, T.; Imai, N.; Kawabata, T.; Kobayashi, N.; Kondo, Y.; Koyama, S.; Kurata-Nishimura, M.; Masuoka, S.; Matsushita, M.; Michimasa, S.; Million, B.; Motobayashi, T.; Murakami, T.; Nakamura, T.; Ohnishi, T.; Ong, H. J.; Ota, S.; Otsu, H.; Ozaki, T.; Saito, A.; Sakurai, H.; Scheit, H.; Schindler, F.; Schrock, P.; Shiga, Y.; Shikata, M.; Shimoura, S.; Steppenbeck, D.; Sumikama, T.; Syndikus, I.; Takeda, H.; Takeuchi, S.; Tamii, A.; Taniuchi, R.; Togano, Y.; Tscheuschner, J.; Tsubota, J.; Wang, H.; Wieland, O.; Wimmer, K.; Yamaguchi, Y.; Yoneda, K.; Zenihiro, J.
2017-05-01
The isospin characters of low-energy dipole excitations in neutron-rich unstable nucleus 20O were investigated, for the first time in unstable nuclei. Two spectra obtained from a dominant isovector probe (20O + Au) and a dominant isoscalar probe (20O + α) were compared and analyzed by the distorted-wave Born approximation to extract independently the isovector and isoscalar dipole strengths. Two known 1- states with large isovector dipole strengths at energies of 5.36(5) MeV (11-) and 6.84(7) MeV (12-) were also excited by the isoscalar probe. These two states were found to have different isoscalar dipole strengths, 2.70(32)% (11-) and 0.67(12)% (12-), respectively, in exhaustion of the isoscalar dipole-energy-weighted sum rule. The difference in isoscalar strength indicated that they have different underlying structures.
Matsumoto, E.; Nakayama, S.; Hayami, R.; Fushimi, K.; Kawasuso, H.; Yasuda, K.; Yamagata, T.; Akimune, H.; Ikemizu, H.; Fujiwara, M.; Yosoi, M.; Nakanishi, K.; Kawase, K.; Hashimoto, H.; Oota, T.; Sagara, K.; Kudoh, T.; Asaji, S.; Ishida, T.; Tanaka, M.
2007-02-26
We investigated the analogs of the giant dipole resonance (GDR) and spin-dipole resonance (SDR) of 4He by using the 4He(7Li,7Be) reaction at an incident energy of 455 MeV and at forward scattering angles. The {delta}S=0 and {delta}S=1 spectra for 4He were obtained by measuring the 0.43-MeV 7Be {gamma}-ray in coincidence with the scattered 7Be. From the {delta}S=0 and {delta}S=1 spectra thus obtained, the strength distributions of the GDR and SDR in 4He can be derived and the results are compared with the previous data.
Monolayer patterning using ketone dipoles.
Kim, Min Kyoung; Xue, Yi; Pašková, Tereza; Zimmt, Matthew B
2013-08-14
The self-assembly of multi-component monolayers with designed patterns requires molecular recognition among components. Dipolar interactions have been found to influence morphologies of self-assembled monolayers and can affect molecular recognition functions. Ketone groups have large dipole moments (2.6 D) and are easily incorporated into molecules. The potential of ketone groups for dipolar patterning has been evaluated through synthesis of two 1,5-disubstituted anthracenes bearing mono-ketone side chains, STM characterization of monolayers self-assembled from their single and two component solutions and molecular mechanics simulations to determine their self-assembly energetics. The results reveal that (i) anthracenes bearing self-repulsive mono-ketone side chains assemble in an atypical monolayer morphology that establishes dipolar attraction, instead of repulsion, between ketones in adjacent side chains; (ii) pairs of anthracene molecules whose self-repulsive ketone side chains are dipolar complementary spontaneously assemble compositionally patterned monolayers, in which the two components segregate into neighboring, single component columns, driven by side chain dipolar interactions; (iii) compositionally patterned monolayers also assemble from dipolar complementary anthracene pairs that employ different dipolar groups (ketones or CF2 groups) in their side chains; (iv) the ketone group, with its larger dipole moment and size, provides comparable driving force for patterned monolayer formation to that of the smaller dipole, and smaller size, CF2 group.
Ennis, J.F.
1984-01-01
While cluster models have had by far their greatest use, apart from natural radioactivity, in light nuclei in the region from YBe to UCa, Iachello and Jackson recently suggested that even in heavy nuclei, just above closed shells, four valence nucleons could form a valence alpha particle cluster orbiting the remaining core. In heavy nuclei, as opposed to light, reflecting the neutron excess (N > Z), such cluster separation results in a separation of the centers of charge and mass and thus generate a static electric dipole moment. The author has undertaken a detailed experimental study of this question using a wide range of techniques and focussing upon the S YRa nucleus. Using a SYPb target and a TC beam at Yale and the reverse reaction at GSI, the author has identified the quadrupole and dipole band members in the level spectrum of this nucleus. From measurements of the absolute lifetimes of many states ranging up to that having J = 15h, the author has shown that the electromagnetic deexcitation matrix elements are indeed enhanced and that they exhaust as much as 15% of molecular sum rule appropriate for these cluster configurations. Having measured many of the pertinent parameters, the author has shown that the Iachello-Jackson dipole model can reproduce what the author has found in S YRa. The new data also provides a stringent test of the spectrum generating algebraic and other approaches to this understanding.
The Olsen Rotating Dipole, Revisited
NASA Astrophysics Data System (ADS)
Svalgaard, L.; Gough, D. O.; Scherrer, P. H.
2016-12-01
Olsen (1948) and Wilcox & Gonzales (1971) reported evidence of a solar equatorial magnetic dipole with a stable (synodic) rotation period of 26 7/8 days maintaining its phase over 15 years (1926-1941, Olsen) and possibly to 1968 as well (1963-1968, Wilcox & Gonzales). Using a composite series of Interplanetary Magnetic Sector Polarities covering the interval 1844-2016 (derived from geomagnetic data before the space age and direct measurements during 1963-2016) we find that 1) the response of geomagnetic activity to passage (at Earth) of a sector boundary has been consistently the same in every solar cycle from 9 through 24, thus validating the inferred times of sector boudary passages over the past 173 years, and 2) the 'Olsen' dipole can be traced back the 16 cycles to the year 1844, albeit with a slightly different synodic rotation period of 26.86 days (431 nHz). Olsen ended his paper with "The persistence of a fixed period during 15 years points to the possibility that the origin of the effect is to be found in a layer on the Sun with a fixed rotation-period during a long time" and Wilcox & Gonzales noted that "A rotating magnetic dipole may be lurking within the sun". We compare the Olsen-period with other evidence for rotation periods in the deep interior and for the existence of a relic magnetic field.
Sum Rule for a Schiff-Like Dipole Moment
NASA Astrophysics Data System (ADS)
Raduta, A. A.; Budaca, R.
The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.
A skull-based multiple dipole phantom for EEG and MEG studies
Spencer, M.E.; Leahy, R.M.; Mosher, J.C.
1996-07-01
A versatile phantom for use in evaluating forward and inverse methods for MEG and EEG has been designed and is currently being constructed. The phantom consists of three major components: (i) a 32-element cur- rent dipole array, (ii) a PC-controlled dipole driver with 32 isolated channels allowing independent control of each dipole, (iii) spherical and human-skull mounts in which the dipole array is placed. Materials were selected throughout the phantom to produce minimal field distortions and artifacts to enable acquisition of high quality EEG and MEG data. The dipoles are made from a rigid narrow (0.84 mm) stainless steel coax cable. The dipole drivers can be configured as either current or voltage sources, are independently programmable and fully isolated, and are capable of producing arbitrary bipolar waveforms up to a 200 Hz bandwidth. The spherical mount is a single shell sphere filled with conductive gelatin. The human skull mount has three shells: ``brain`` (conducting gelatin), ``skull`` (the skull is impregnated with a low conductivity conducting gelatin), and ``scalp`` (a thin layer of rubber latex mixed with NaCl to achieve a conductivity matched to the brain). The conductivities will be adjusted to achieve approximately an 80:1:80 ratio. Data collected to date from the spherical phantom shows excellent agreement between measured surface potentials and that predicted from theory (27 of the 32 dipoles give better than 99.9% rms fit) and negligible leakage between dipoles. We are currently completing construction of the skull mount.
Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.
Wilke, Josefin; Wilke, Martin; Schmitt, Michael; Meerts, W. Leo
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.
Nature of low-lying electric dipole resonance excitations in 74Ge
NASA Astrophysics Data System (ADS)
Negi, D.; Wiedeking, M.; Lanza, E. G.; Litvinova, E.; Vitturi, A.; Bark, R. A.; Bernstein, L. A.; Bleuel, D. L.; Bvumbi, S.; Bucher, T. D.; Daub, B. H.; Dinoko, T. S.; Easton, J. L.; Görgen, A.; Guttormsen, M.; Jones, P.; Kheswa, B. V.; Khumalo, N. A.; Larsen, A. C.; Lawrie, E. A.; Lawrie, J. J.; Majola, S. N. T.; Masiteng, L. P.; Nchodu, M. R.; Ndayishimye, J.; Newman, R. T.; Noncolela, S. P.; Orce, J. N.; Papka, P.; Pellegri, L.; Renstrøm, T.; Roux, D. G.; Schwengner, R.; Shirinda, O.; Siem, S.
2016-08-01
Isospin properties of dipole excitations in 74Ge are investigated using the (α ,α'γ ) reaction and compared to (γ ,γ' ) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E 1 strength with an increase in excitation energy, which is consistent with the measurement.
Microwaves Probe Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas
NASA Astrophysics Data System (ADS)
Teixeira, R. Celistrino; Hermann-Avigliano, C.; Nguyen, T. L.; Cantat-Moltrecht, T.; Raimond, J. M.; Haroche, S.; Gleyzes, S.; Brune, M.
2015-07-01
We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.
Collectivity of dipole bands in {sup 196}Pb
Carpenter, M.P.; Liang, Y.; Janssens, R.V.F.
1995-08-01
The region of nuclei with mass {approximately} 190 was studied extensively over the last few years following the discovery of superdeformation in {sup 190}Hg. More recently, considerable interest in the neutron-deficient Pb isotopes developed with the discover of a number of bands at high spin connected by dipole transitions in both even {sup 192-200}Pb and odd {sup 197-201}Pb nuclei. The majority of the dipole bands are regular in character (i.e. transition energies increase smoothly with spin) while the remaining bands are referred to as irregular in character, due to the fact that the transition energies do not increase smoothly with spin. The properties of the dipole bands were interpreted in terms of high-K, moderately-deformed oblate states built on configurations involving high-J, shape-driving quasiproton excitations coupled to rotation-aligned quasineutrons. It was suggested that the difference between the regular and irregular dipole sequences is related to the deformation where the irregular sequences are thought to be less collective than their regular counterparts.
Cholesterol effect on the dipole potential of lipid membranes.
Starke-Peterkovic, Thomas; Turner, Nigel; Vitha, Mark F; Waller, Mark P; Hibbs, David E; Clarke, Ronald J
2006-06-01
The effect of cholesterol removal by methyl-beta-cyclodextrin on the dipole potential, psi(d), of membrane vesicles composed of natural membrane lipids extracted from the kidney and brain of eight vertebrate species was investigated using the voltage-sensitive fluorescent probe di-8-ANEPPS. Cyclodextrin treatment reduced cholesterol levels by on average 80% and this was associated with an average reduction in psi(d) of 50 mV. Measurements of the effect of a range of cholesterol derivatives on the psi(d) of DMPC lipid vesicles showed that the magnitude of the effect correlated with the component of the sterol's dipole moment perpendicular to the membrane surface. The changes in psi(d) observed could not be accounted for solely by the electric field originating from the sterols' dipole moments. Additional factors must arise from sterol-induced changes in lipid packing, which changes the density of dipoles in the membrane, and changes in water penetration into the membrane, which changes the effective dielectric constant of the interfacial region. In DMPC membranes, the cholesterol-induced change in psi(d) was biphasic, i.e., a maximum in psi(d) was observed at approximately 35-45 mol %, after which psi(d) started to decrease. We suggest that this could be associated with a maximum in the strength of DMPC-cholesterol intermolecular forces at this composition.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br
2014-08-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
NASA Astrophysics Data System (ADS)
Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.
2014-08-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
RHIC spin flipper AC dipole controller
Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.
2011-03-28
The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.
The sign of the dipole-dipole potential by axion exchange
NASA Astrophysics Data System (ADS)
Daido, Ryuji; Takahashi, Fuminobu
2017-09-01
We calculate a dipole-dipole potential between fermions mediated by a light pseudoscalar, axion, paying a particular attention to the overall sign. While the sign of the potential is physical and important for experiments to discover or constrain the axion coupling to fermions, there is often a sign error in the literature. The purpose of this short note is to clarify the sign issue of the axion-mediated dipole-dipole potential. As a by-product, we find a sign change of the dipole-dipole potenital due to the different spin of the mediating particle.
Chalasani, P.; Saias, I.; Jha, S.
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Rotating Vortex Dipoles in Ferromagnets
Komineas, S.
2007-09-14
Vortex-antivortex pairs are spontaneously created in magnetic elements. In the case of opposite vortex polarities the pair has a nonzero topological charge, and it behaves as a rotating vortex dipole. We find theoretically and confirm numerically its energy as a function of angular momentum and the associated rotation frequencies. The annihilation process of the pair changes the topological charge while the energy is monotonically decreasing. The change of topological charge affects the dynamics profoundly. We finally discuss the implications of our results for Bloch point dynamics.
Rotating vortex dipoles in ferromagnets.
Komineas, S
2007-09-14
Vortex-antivortex pairs are spontaneously created in magnetic elements. In the case of opposite vortex polarities the pair has a nonzero topological charge, and it behaves as a rotating vortex dipole. We find theoretically and confirm numerically its energy as a function of angular momentum and the associated rotation frequencies. The annihilation process of the pair changes the topological charge while the energy is monotonically decreasing. The change of topological charge affects the dynamics profoundly. We finally discuss the implications of our results for Bloch point dynamics.
Electric dipole polarizability from first principles calculations
NASA Astrophysics Data System (ADS)
Miorelli, M.; Bacca, S.; Barnea, N.; Hagen, G.; Jansen, G. R.; Orlandini, G.; Papenbrock, T.
2016-09-01
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In this paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. We find good agreement with data for the 4He,40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.
Electric dipole polarizability from first principles calculations
Miorelli, M.; Bacca, S.; Barnea, N.; ...
2016-09-19
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for themore » 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.« less
Electric dipole polarizability from first principles calculations
Miorelli, M.; Bacca, S.; Barnea, N.; Hagen, G.; Jansen, G. R.; Orlandini, G.; Papenbrock, T.
2016-09-19
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the ^{4}He, ^{40}Ca, and ^{16}O nuclei, and predict the dipole polarizability for the rare nucleus ^{22}O.
Electric dipole polarizability from first principles calculations
Miorelli, M.; Bacca, S.; Barnea, N.; Hagen, G.; Jansen, G. R.; Orlandini, G.; Papenbrock, T.
2016-09-19
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the ^{4}He, ^{40}Ca, and ^{16}O nuclei, and predict the dipole polarizability for the rare nucleus ^{22}O.
Nanophotonic control of circular dipole emission
NASA Astrophysics Data System (ADS)
Le Feber, B.; Rotenberg, N.; Kuipers, L.
2015-04-01
Controlling photon emission by single emitters with nanostructures is crucial for scalable on-chip information processing. Nowadays, nanoresonators can affect the lifetime of linear dipole emitters, while nanoantennas can steer the emission direction. Expanding this control to the emission of orbital angular momentum-changing transitions would enable a future coupling between solid state and photonic qubits. As these transitions are associated with circular dipoles, such control requires knowledge of the interaction of a complex dipole with optical eigenstates containing local helicity. We experimentally map the coupling of classical, circular dipoles to photonic modes in a photonic crystal waveguide. We show that, depending on the combination of the local helicity of the mode and the dipole helicity, circular dipoles can couple to left- or rightwards propagating modes with a near-unity directionality. The experimental maps are in excellent agreement with calculations. Our measurements, therefore, demonstrate the possibility of coupling the spin to photonic pathway.
Electric dipole radiation near a mirror
Li Xin; Arnoldus, Henk F.
2010-05-15
The emission of radiation by a linearly oscillating electric dipole is drastically altered when the dipole is close to the surface of a mirror. The energy is not emitted along optical rays, as for a free dipole, but as a set of four optical vortices. The field lines of energy flow spiral around a set of two lines through the dipole. At a larger distance from the dipole, singularities and isolated vortices appear. It is shown that these interference vortices are due to the vanishing of the magnetic field at their centers. In the plane of the mirror there is a singular circle with a diameter which is proportional to the distance between the dipole and the mirror. Inside this circle, all energy flows to a singularity on the mirror surface.
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1985-01-01
A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.
On Dipole Moment of Impurity Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Konobeeva, N. N.; Ten, A. V.; Belonenko, M. B.
2017-04-01
Propagation of a two-dimensional electromagnetic pulse in an array of semiconductor carbon nanotubes with impurities is investigated. The parameters of dipole moments of impurities are determined. The Maxwell equation and the equation of motion for dipole polarization are jointly solved. The dynamics of the electromagnetic pulse is examined as a function of the dipole moment. It is shown that taking polarization into account does not have a substantial effect on the propagation process, but alters the optical pulse shape.
Spectral Distortions of the CMB Dipole
NASA Astrophysics Data System (ADS)
Balashev, S. A.; Kholupenko, E. E.; Chluba, J.; Ivanchik, A. V.; Varshalovich, D. A.
2015-09-01
We consider the distortions of the cosmic microwave background (CMB) dipole anisotropy related to primordial recombination radiation (PRR) and primordial y- and μ-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of the CMB dipole does not depend on the particular observation directions and reaches the level of 10-6 for the PRR- and μ-distortions and 10-5 for the y-distortion in the frequency range 1-700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on the observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences due to the PRR- and μ-dipole anisotropy attain values {{Δ }}T≃ 10 {nK} in the considered range. The temperature difference arising from the y-dipole anisotropy may reach values of up to 1 μ {{K}}. The key features of the considered effect are as follow: (i) an observation of the effect does not require absolute calibration; (ii) patches of sky with minimal foreground contamination can be chosen. Future measurements of the CMB dipole distortion thus will provide an alternative method for direct detection of the PRR-, y-, and μ-distortions. The y-distortion dipole may be detectable with PIXIE at a few standard deviations.
Which dipole are you studying in lab?
NASA Astrophysics Data System (ADS)
Binder, P.-M.; Tate, Reuben B.; Crowder, Callie K.
2017-01-01
We explore the similarities and differences between the electric dipole studied in introductory physics and the purportedly equivalent elementary experiment in which the electric potential is measured on a conductive sheet as a current flows. The former is a three-dimensional electrostatic dipole while the latter is a two-dimensional steady-state dipole. In spite of these differences, and as shown in this work, the potentials due to these dipoles look very similar. This may be misleading to either students or unaware instructors.
Spin dephasing in a magnetic dipole field.
Ziener, C H; Kampf, T; Reents, G; Schlemmer, H-P; Bauer, W R
2012-05-01
Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.
Spin dephasing in a magnetic dipole field
NASA Astrophysics Data System (ADS)
Ziener, C. H.; Kampf, T.; Reents, G.; Schlemmer, H.-P.; Bauer, W. R.
2012-05-01
Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.
Enhanced and tunable electric dipole-dipole interactions near a planar metal film
NASA Astrophysics Data System (ADS)
Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen
2017-08-01
We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.
Probing weak dipole-dipole interaction using phase-modulated nonlinear spectroscopy
NASA Astrophysics Data System (ADS)
Li, Zeng-Zhao; Bruder, Lukas; Stienkemeier, Frank; Eisfeld, Alexander
2017-05-01
Phase-modulated nonlinear spectroscopy with higher harmonic demodulation has recently been suggested to provide information on many-body excitations. In the present work we theoretically investigate the application of this method to infer the interaction strength between two particles that interact via weak dipole-dipole interaction. To this end we use a full numerical solution of the Schrödinger equation with time-dependent pulses. For interpretation purposes we also derive analytical expressions in perturbation theory. We find one can detect dipole-dipole interaction via peak intensities (in contrast to line-shifts which typically are used in conventional spectroscopy). We provide a detailed study on the dependence of these intensities on the parameters of the laser pulse and the dipole-dipole interaction strength. Interestingly, we find that there is a phase between the first and second harmonic demodulated signal whose value depends on the sign of the dipole-dipole interaction.
Hyperfine dipole-dipole broadening of selective reflection spectroscopy at the gas-solid interface
NASA Astrophysics Data System (ADS)
Meng, Tengfei; Ji, Zhonghua; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang
2016-09-01
We theoretically and experimentally investigate hyperfine dipole-dipole broadening in the selective reflection (SR) spectroscopy at the gas-solid interface with the atomic density of 1014-1015 cm-3. The two-level SR theory considering pump beam and dipole-dipole interaction between excited-state atom and ground-state atom is presented. The numerical simulation of the SR spectrum is in agreement with experimental results. The reduction of spectral width is observed by introducing a pump beam which is an effective technique to improve the resolution of spectroscopy. We analyze the dependence of dipole-dipole broadening on atomic density and pump beam power. This study is helpful for the description of the SR spectroscopy at the gas-solid interface where the Doppler broadening is comparable with dipole-dipole broadening.
Isospin properties of electric dipole excitations in 48Ca
NASA Astrophysics Data System (ADS)
Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.
2014-03-01
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
Probing surface quantum flows in deformed pygmy dipole modes
NASA Astrophysics Data System (ADS)
Wang, Kai; Kortelainen, M.; Pei, J. C.
2017-09-01
To explore the nature of collective modes in weakly bound nuclei, we have investigated deformation effects and surface flow patterns of isovector dipole modes in a shape-coexisting nucleus, 40Mg. The calculations were done in a fully self-consistent continuum finite-amplitude quasiparticle random phase approximation in a large deformed spatial mesh. An unexpected result of pygmy and giant dipole modes having disproportionate deformation splittings in strength functions was obtained. Furthermore, the transition current densities demonstrate that the long-sought core-halo oscillation in pygmy resonances is collective and compressional, corresponding to the lowest excitation energy and the simplest quantum flow topology. Our calculations show that surface flow patterns become more complicated as excitation energies increase.
Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure
Zlobin, Alexander; Andreev, Nicolai; Barzi, Emanuela; Chlachidze, Guram; Kashikhin, Vadim; Nobrega, Alfred; Novitski, Igor; Turrioni, Daniele; Karppinen, Mikko; Smekens, David
2014-07-01
FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.
Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances
NASA Astrophysics Data System (ADS)
Thompson, I. J.; Escher, J. E.; Arbanas, G.
2014-04-01
Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5-20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,γ)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,γ)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.
Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances
Thompson, I J; Escher, Jutta E; Arbanas, Goran
2013-01-01
Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.
Whistler choruswaves: Linear theory and nonlinear simulations in dipole geometry
NASA Astrophysics Data System (ADS)
Wu, Shuo
2015-12-01
Whistler-mode chorus waves have recently drawn tremendous attention as an important mechanism for controlling the energetic electron flux in Earth's radiation belt. This dissertation aims to answer questions about whistler-mode chorus waves, such as "What is the effect of cold plasma density on the linear whistler instability? How do whistler mode chorus waves evolve in a meridional plane? How would chorus waves occur if the magnetosphere is compressed?" First, we derive the real dispersion relation and linear growth rate of whistler mode in mixed hot and cold plasma. We find that there is a peak in the temporal and convective growth rates with respect to cold plasma density. We model the relation between the linear growth rate and various plasma parameters and use this model to explain the observed modulation of chorus intensity by cold plasma density. Second, we simulate the nonlinear growth of whistler-mode chorus waves in a dipole field using a hybrid code. The hybrid code uses the particle-in-cell technique in generalized orthogonal coordinates. A small fraction of electrons is treated as particles with anisotropic temperature that leads to the whistler instability. Other electrons are treated as a cold fluid without mass. The rough validity of our model is confirmed by comparing results from our hybrid code and a full dynamics particle in cell code. Our 1-D simulations along the dipole field line reproduce chorus generation in agreement with observations and past studies. We find that it is easier to simulate temporal frequency variation in a scaled down system with greater magnetic field inhomogeneity. Our 2-D simulations reveal features of chorus propagation in a meridional plane and the effects of background plasma density on that propagation. These are the first 2-D first principles simulations of whistler-mode chorus waves in Earth's dipole field. Our preliminary simulation in a 1-D compressed dipole field is the first attempt to self
Heat pipe transient response approximation.
Reid, R. S.
2001-01-01
A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper.
Dipole Engineering for Conducting Polymers
NASA Astrophysics Data System (ADS)
McClain, William Edward
A method for the growth of a TiO2 adhesion layer on PEDOT:PSS (poly[3,4- ethylenedioxythiophene]: poly[styrenesulfonate]) and for further functionalization with self-assembled monolayers of phosphonates (SAMPs) was developed. The TiO2 adhesion layer was grown via chemical vapor deposition using a titanium(IV) t-butoxide precursor, and was characterized by goniometry and X-ray photoelectron spectroscopy. TiO 2 grown on a model system, H-terminated silicon, indicated that the surface was t-butoxide terminated. Phenylphosphonic acids were synthesized with a variety of molecular dipoles and were used to change the work function of PEDOT:PSS through the formation of an aggregate surface dipole. Good correlation was found between the z-component of the molecular dipole and the change in work function, indicating that the film was well-ordered and dense. The magnitude of the changes in work function and goniometry measurements were similar to measurements on ITO, a substrate on which phosphonates form well-ordered monolayers. As-grown PEDOT:PSS/TiO 2 electrodes showed a lower work function compared to PEDOT:PSS, which is attributed to residual t-butoxide groups on the TiO 2 surface. UPS measurements revealed that reductions in work function in the modified electrodes lowered the difference in energy between the Fermi energy (EF) of the conducting polymer and the LUMO of PCBM ([6,6]-phenyl-C 61-butyric acid methyl ester). A reduction of this energy difference should translate into increased electron injection in electron-only diodes; however, devices with modified electrodes showed decreased current densities. UPS/IPES measurements show that TiO2 grown using this method has a much larger band gap than bulk or nanocrystalline TiO2, which is likely responsible for this decrease in device currents. At high bias, device currents increase dramatically, and the effects of the phosphonates or t-butoxide terminated TiO2 vanish. This is attributed to a reduction of the TiO2 to
Dipole-induced electromagnetic transparency.
Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric
2014-10-17
We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.
Radiating dipoles in photonic crystals
Busch; Vats; John; Sanders
2000-09-01
The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.
Final Report: Levitated Dipole Experiment
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m^{-3}. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.
Dipole Relaxation in an Electric Field.
ERIC Educational Resources Information Center
Neumann, Richard M.
1980-01-01
Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)
Classical and quantum interaction of the dipole
Anandan
2000-08-14
A unified and fully relativistic treatment of the interaction of the electric and magnetic dipole moments of a particle with the electromagnetic field is given. New forces on the particle due to the combined effect of electric and magnetic dipoles are obtained. Several new experiments are proposed, which include observation of topological phase shifts.
Dipole Relaxation in an Electric Field.
ERIC Educational Resources Information Center
Neumann, Richard M.
1980-01-01
Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)
How to Introduce the Magnetic Dipole Moment
ERIC Educational Resources Information Center
Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…
How to Introduce the Magnetic Dipole Moment
ERIC Educational Resources Information Center
Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…
Analytic evaluation of the dipole Hessian matrix in coupled-cluster theory
NASA Astrophysics Data System (ADS)
Jagau, Thomas-C.; Gauss, Jürgen; Ruud, Kenneth
2013-10-01
The general theory required for the calculation of analytic third energy derivatives at the coupled-cluster level of theory is presented and connected to preceding special formulations for hyperpolarizabilities and polarizability gradients. Based on our theory, we have implemented a scheme for calculating the dipole Hessian matrix in a fully analytical manner within the coupled-cluster singles and doubles approximation. The dipole Hessian matrix is the second geometrical derivative of the dipole moment and thus a third derivative of the energy. It plays a crucial role in IR spectroscopy when taking into account anharmonic effects and is also essential for computing vibrational corrections to dipole moments. The superior accuracy of the analytic evaluation of third energy derivatives as compared to numerical differentiation schemes is demonstrated in some pilot calculations.
Jun, James Jaeyoon; Longtin, André; Maler, Leonard
2013-01-01
In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source
Jun, James Jaeyoon; Longtin, André; Maler, Leonard
2013-01-01
In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source
Graphene-based optically transparent dipole antenna
NASA Astrophysics Data System (ADS)
Kosuga, Shohei; Suga, Ryosuke; Hashimoto, Osamu; Koh, Shinji
2017-06-01
We fabricated an optically transparent dipole antenna based on chemical vapor deposition (CVD)-grown monolayer graphene on an optically transparent quartz substrate and characterized its properties in microwave bands. The measurements of the reflection coefficients for the dipole antenna revealed that ˜90% of the microwave power transmitted to the CVD monolayer graphene of the antenna element. By measuring transmission coefficients, we demonstrated that the graphene dipole antenna radiated microwave power around the operational frequency (˜20.7 GHz). The operational frequency of the graphene dipole antenna (˜20.7 GHz) shifted to a higher frequency than that of the Au dipole antenna with the same structure (˜9.2 GHz), which suggests that monolayer graphene behaves not as a metal but as a dielectric material.
High-field dipoles for future accelerators
Wipf, S.L.
1984-09-01
This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.
Dipole spectrum structure of nonresonant nonpertubative driven two-level atoms
Picon, A.; Mompart, J.; Corbalan, R.; Roso, L.; Varela, O.; Plaja, L.; Ahufinger, V.
2010-03-15
We analyze the dipole spectrum of a two-level atom excited by a nonresonant intense monochromatic field under the electric dipole approximation and beyond the rotating wave approximation. We show that the apparently complex spectral structure can be completely described by two families: harmonic frequencies of the driving field and field-induced nonlinear fluorescence. Our formulation of the problem provides quantitative laws for the most relevant spectral features: harmonic ratios and phases, nonperturbative Stark shift, and frequency limits of the harmonic plateau. In particular, we demonstrate the locking of the harmonic phases at the wings of the plateau opening the possibility of ultrashort pulse generation through harmonic filtering.
Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions
Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping
2012-01-01
The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954
Dipole oscillator strengths, dipole properties and dispersion energies for SiF4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.
Photoconductive dipole antennas for efficient terahertz receiver
NASA Astrophysics Data System (ADS)
Nguyen, Truong Khang; Kim, Won Tae; Kang, Bong Joo; Bark, Hyeon Sang; Kim, Kangho; Lee, Jaejin; Park, Ikmo; Jeon, Tae-In; Rotermund, Fabian
2017-01-01
We designed various photoconductive antennas applicable to efficient terahertz (THz) receivers and experimentally investigated their detection characteristics. Three different antennas based on Grischkowsky (H-), I-, and bowtie shapes were fabricated on a 1.2-μm-thick low-temperature GaAs layer that was grown on a semi-insulating GaAs substrate and subsequently attached to extended hemispherical silicon lenses. The experimental results showed different characteristics for detection responsivity and agreed well with the theoretical prediction. Measurements of the peak-to-peak amplitudes of the detected THz photocurrent were approximately 67, 42, and 59 nA for the H-shaped, I-shaped, and bowtie-shaped antennas, respectively. The I- and bowtie-shaped antennas provided higher THz detection sensitivities than the H-shaped antenna in the low-frequency region, i.e., below 0.6 THz. At a frequency of 0.2 THz, the I- and bowtie-shaped antennas offered an approximately 3.6-fold and 6-fold enhancement, respectively, in THz detection sensitivity compared to the H-shaped antenna. The bowtie-shaped antenna produced better peak amplitude and a wider spectral bandwidth than the I-shaped antenna. The observed detection peak frequencies of the I-shaped and bowtie-shaped antennas possessing very long dipole arms indicate that the lowest limit of the frequency detected in a typical THz-TDS using a GaAs photoconductive antenna as emitter/detector is around 0.2 THz.
Interpolation and Approximation Theory.
ERIC Educational Resources Information Center
Kaijser, Sten
1991-01-01
Introduced are the basic ideas of interpolation and approximation theory through a combination of theory and exercises written for extramural education at the university level. Topics treated are spline methods, Lagrange interpolation, trigonometric approximation, Fourier series, and polynomial approximation. (MDH)
Dumbbell dipole model and its application in UXO discrimination
NASA Astrophysics Data System (ADS)
Sun, K.; O'Neill, K.; Barrowes, B. E.; Fernández, J. P.; Shubitidze, F.; Shamatava, I.; Paulsen, K. D.
2006-05-01
Electromagnetic Induction (EMI) is one of the most promising techniques for UXO discrimination. Target discrimination is usually formulated as an inverse problem typically requiring fast forward models for efficiency. The most successful and widely applied EMI forward model is the simple dipole model, which works well for simple objects when the observation points are not close to the target. For complicated cases, a single dipole is not sufficient and a number of dipoles (displaced dipoles) has been suggested. However, once more than one dipole is needed, it is difficult to infer a unique set of model parameters from measurement data, which is usually limited. Inspired by the displaced dipole model, we developed the dumbbell dipole model, which consists of a special combination of dipoles. We placed a center dipole and two anti-symmetric side dipoles on the target axis. The center dipole functions like the traditional single dipole model and the two side dipoles provide the non-symmetric response of the target. When the distance between dipoles is small, this model is essentially a dipole plus a quadrupole. The advantage of the dumbbell model is that the model parameters can be inferred more easily from measurement data. The center dipole represents the main response of the target, the side dipoles act as additional backup in case a simple dipole is not sufficient. Regularization terms are applied so that the dumbbell dipole model automatically reduces to the simple dipole model in degenerate cases. Preliminary test shows that the dumbbell model can fit the measurement data better than the simple dipole model, and the inferred model parameters are unique for a given UXO. This suggests that the model parameters can be used as a discriminator for UXO. In this paper the dumbbell dipole model is introduced and its performance is compared with that of both the simple dipole model and the displaced dipole model.
Final Report: Levitated Dipole Experiment
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross
The ROSAT X-ray background dipole
NASA Astrophysics Data System (ADS)
Plionis, M.; Georgantopoulos, I.
1999-06-01
We estimate the dipole of the diffuse 1.5-keV X-ray background from the ROSAT all-sky survey map of Snowden et al. We first subtract the diffuse Galactic emission by fitting an exponential scaleheight, finite-radius, disc model to the data. We further exclude regions of low galactic latitudes, of local X-ray emission (e.g. the North Polar Spur) and model them using two different methods. We find that the ROSAT X-ray background dipole points towards (l,b) ~ (288 deg 25 deg) +/- 19 deg in consistency with the cosmic microwave background (within ~ 30 deg) its direction is also in good agreement with the HEAO-1 X-ray dipole at harder energies. The normalized amplitude of the ROSAT XRB dipole is ~ 1.7 per cent. Subtracting from the ROSAT map the expected X-ray background dipole resulting from the reflex motion of the observer with respect to the cosmic rest frame (Compton-Getting effect) we find the large-scale dipole of the X-ray emitting extragalactic sources having an amplitude D_LSS ~ 0.9 D_XRB, in general agreement with the predictions of Lahav et al. We finally estimate that the Virgo cluster is responsible for ~ 20 per cent of the total measured XRB dipole amplitude.
Dipole strength from first principles calculations
NASA Astrophysics Data System (ADS)
Miorelli, Mirko; Bacca, Sonia; Barnea, Nir; Hagen, Gaute; Jansen, Gustav R.; Papenbrock, Thomas; Orlandini, Giuseppina
2016-09-01
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength. It is related to the proton and neutron distributions of the nucleus, and thereby can be used to constrain the neutron equation of state and the physics of neutron stars. Only recently however, new developments in ab initio methods finally allowed first principles studies of the dipole strength in medium-mass nuclei. Using the Lorentz integral transform coupled cluster method with the newly developed chiral interaction NNLOsat we study the low energy behavior of the dipole strength in 4He, 16O and 22O. For the exotic 22O we observe large contributions to the dipole strength at very low energy, indicating the presence of a pygmy dipole resonance, in agreement with what experimentally found by Leistenschneider et al.. We then study correlations between the electric dipole polarizability and the charge radius in 16O and 40Ca using a variety of realistic Hamiltonians, showing the importance of three-nucleon forces. We aknowledge NRC and NSERC.
Dipole-dipole resonance line shapes in a cold Rydberg gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2016-04-01
We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.
On magnetic dipole-dipole interactions of nanoparticles in magnetic particle imaging
NASA Astrophysics Data System (ADS)
Them, Kolja
2017-07-01
Magnetic dipole-dipole (MDD) interactions between iron oxide nanoparticles can influence the sensitivity, image resolution and quantification of magnetic particle imaging (MPI). For the first time, the Landau-Lifshitz-Gilbert equation (LLG) for MDD interactions has been solved to investigate the effect of MDD interactions on the MPI spectrum. It was found that at concentrations above 39 mmol(Fe) l-1, MDD interactions significantly influence MPI spectra. This influence increases with increasing harmonics, which means first harmonics should be preferred for iron quantification. Since ≈1018 particles are neglected in the LLG compared to in an MPI experiment, the calculated limit below which MDD interactions can be neglected is only a bound. The true limit is therefore below the calculated limit of 39 mmol(Fe) l-1, because all other neglected particles also contribute to deviations in the MPI spectra via MDD interactions. Therefore, a quantum mechanical bound on the influence of MDD interactions is calculated, including up to 1015 particles. Analysis of the bound as a function of the particle number provides a valuable insight into the influence of the large number of particles neglected in numerical simulations. Both results are compared with concentrations in biomedical MPI experiments. We conclude that the standard approximation of an absence of MDD interactions in MPI experiments must be handled more carefully. Our method of incorporating MDD interactions into the LLG can be easily implemented as part of model-based reconstruction to increase the sensitivity, image resolution and quantitative tracer detection during MPI.
Parity-violating electric-dipole transitions in helium
NASA Technical Reports Server (NTRS)
Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.
1980-01-01
The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question
Reappraisal of the Electric Dipole Moment Enhancement Factor for Thallium
Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.
2011-05-20
The electric dipole moment (EDM) enhancement factor of atomic Tl is of considerable interest as it has been used in determining the most accurate limit on the electron EDM to date. However, its value varies from -179 to -1041 in different approximations. In view of the large uncertainties associated with many of these calculations, we perform an accurate calculation employing the relativistic coupled-cluster theory and obtain -466, which in combination with the most accurate measurement of Tl EDM [Phys. Rev. Lett. 88, 071805 (2002)] yields a new limit for the electron EDM: |d{sub e}|<2.0x10{sup -27}e cm.
Polarization gradient cooling of single atoms in optical dipole traps
NASA Astrophysics Data System (ADS)
Chin, Yue-Sum; Steiner, Matthias; Kurtsiefer, Christian
2017-09-01
We experimentally investigate σ+-σ- polarization gradient cooling (PGC) of a single 87Rb atom in a tightly focused dipole trap and show that the cooling limit strongly depends on the polarization of the trapping field. For optimized cooling light power, the temperature of the atom reaches 10.4 (6 )μ K in a linearly polarized trap, approximately five times lower than in a circularly polarized trap. The inhibition of PGC is qualitatively explained by the fictitious magnetic fields induced by the trapping field. We further demonstrate that switching the trap polarization from linear to circular after PGC induces only minor heating.
Constraints on exotic dipole-dipole couplings between electrons at the micron scale
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek
2015-05-01
Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.
NASA Astrophysics Data System (ADS)
Tonchev, A. P.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.; Hammond, S.; Kelley, J. H.; Tsoneva, N.; Lenske, H.
2013-03-01
In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies around the neutron separation energy. This clustering of strong dipole states has been named the pygmy dipole resonance in contrast to the giant dipole resonance that dominates the E1 response. Understanding the pygmy resonance is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in N=82 nuclei using the quasi monoenergetic and 100% linearly-polarized photon beams from High-Intensity-Gamma-Ray Source facility is presented. The nuclear dipole-strength distribution of the pygmy resonance has been measured and novel information about the character of this mode of excitation has been obtained. The data are compared with predictions from statistical and quasiparticle random-phase approximation models.
Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles
Ashida, Y.; Yamakawa, H.; Usui, H.; Miyake, Y.; Shinohara, I.; Funaki, I.; Nakamura, M.
2014-12-15
We examined the plasma flow response to meso- and microscale magnetic dipoles by performing three-dimensional full particle-in-cell simulations. We particularly focused on the formation of a magnetosphere and its dependence on the intensity of the magnetic moment. The size of a magnetic dipole immersed in a plasma flow can be characterized by a distance L from the dipole center to the position where the pressure of the local magnetic field becomes equal to the dynamic pressure of the plasma flow under the magnetohydrodynamics (MHD) approximation. In this study, we are interested in a magnetic dipole whose L is smaller than the Larmor radius of ions r{sub iL} calculated with the unperturbed dipole field at the distance L from the center. In the simulation results, we confirmed the clear formation of a magnetosphere consisting of a magnetopause and a tail region in the density profile, although the spatial scale is much smaller than the MHD scale. One of the important findings in this study is that the spatial profiles of the plasma density as well as the current flows are remarkably affected by the finite Larmor radius effect of the plasma flow, which is different from the Earth's magnetosphere. The magnetopause found in the upstream region is located at a position much closer to the dipole center than L. In the equatorial plane, we also found an asymmetric density profile with respect to the plasma flow direction, which is caused by plasma gyration in the dipole field region. The ion current layers are created in the inner region of the dipole field, and the electron current also flows in the region beyond the ion current layer because ions with a large inertia can closely approach the dipole center. Unlike the ring current structure of the Earth's magnetosphere, the current layers in the microscale dipole fields are not circularly closed around the dipole center. Since the major current is caused by the particle gyrations, the current is independently determined
Formation number for vortex dipoles
NASA Astrophysics Data System (ADS)
Sadri, Vahid; Krueger, Paul S.
2016-11-01
This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.
Collisional blockade in microscopic optical dipole traps.
Schlosser, N; Reymond, G; Grangier, P
2002-07-08
We analyze the operating regimes of a very small optical dipole trap, loaded from a magneto-optical trap, as a function of the atom loading rate, i.e., the number of atoms per second entering the dipole trap. We show that, when the dipole trap volume is small enough, a "collisional blockade" mechanism locks the average number of trapped atoms on the value 0.5 over a large range of loading rates. We also discuss the "weak loading" and "strong loading" regimes outside the blockade range, and we demonstrate experimentally the existence of these three regimes.
Axion induced oscillating electric dipole moments
Hill, Christopher T.
2015-06-24
In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.
Axion induced oscillating electric dipole moments
Hill, Christopher T.
2015-06-24
In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency m_{a} and strength ~ 10^{-32} e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.
NASA Astrophysics Data System (ADS)
Li, Yongyao; Liu, Jingfeng; Pang, Wei; Malomed, Boris A.
2013-11-01
We demonstrate the existence of one- and two-dimensional (1D and 2D, respectively) bright solitons in the Bose-Einstein condensate with repulsive dipole-dipole interactions induced by a combination of dc and ac polarizing fields, oriented perpendicular to the plane in which the BEC is trapped, assuming that the strength of the fields grows in the radial (r) direction faster than r3. Stable tightly confined 1D and 2D fundamental solitons, twisted solitons in 1D, and solitary vortices in 2D are found in a numerical form. The fundamental solitons remain robust under the action of an expulsive potential, which is induced by the interaction of the dipoles with the polarizing field. The confinement and scaling properties of the soliton families are explained analytically. The Thomas-Fermi approximation is elaborated for fundamental solitons. The mobility of the fundamental solitons is limited to the central area. Stable 1D even and odd solitons are also found in the setting with a double-well modulation function, along with a regime of Josephson oscillations.
Design of undercuts and dipole stabilizer rods for the CPHS RFQ accelerator
NASA Astrophysics Data System (ADS)
Cai, Jin-Chi; Xing, Qing-Zi; Guan, Xia-Ling; Du, Lei
2012-05-01
As part of the design and machining of the RFQ accelerator in the Compact Pulsed Hadron Source (CPHS) project at Tsinghua University, the design process of the undercuts and dipole stabilizer rods is presented in this paper. In particular, the relationship between the inter-vane voltage slope and the local frequency of the undercut section is described quantitatively. With the identification of modes existing in the cavity, the specific parameters are optimized by the SUPERFISH and MAFIA codes. In addition, the water-cooling requirement of the dipole stabilizer rods is briefly discussed.
Mathematical algorithms for approximate reasoning
NASA Technical Reports Server (NTRS)
Murphy, John H.; Chay, Seung C.; Downs, Mary M.
1988-01-01
Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away
Relativistic Random Phase Approximation At Finite Temperature
Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.
2009-08-26
The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.
Coupled and uncoupled dipole models of nonlinear scattering.
Balla, Naveen K; Yew, Elijah Y S; Sheppard, Colin J R; So, Peter T C
2012-11-05
Dipole models are one of the simplest numerical models to understand nonlinear scattering. Existing dipole model for second harmonic generation, third harmonic generation and coherent anti-Stokes Raman scattering assume that the dipoles which make up a scatterer do not interact with one another. Thus, this dipole model can be called the uncoupled dipole model. This dipole model is not sufficient to describe the effects of refractive index of a scatterer or to describe scattering at the edges of a scatterer. Taking into account the interaction between dipoles overcomes these short comings of the uncoupled dipole model. Coupled dipole model has been primarily used for linear scattering studies but it can be extended to predict nonlinear scattering. The coupled and uncoupled dipole models have been compared to highlight their differences. Results of nonlinear scattering predicted by coupled dipole model agree well with previously reported experimental results.
NASA Astrophysics Data System (ADS)
Nguyen, Thanh Long; Celistrino Teixeira, Raul; Hermann Avigliano, Carla; Cantat Moltrecht, Tigrane; Raimond, Jean Michel; Haroche, Serge; Gleyzes, Sebastiens; Brune, Michel
2016-05-01
Dipole-dipole interactions between Rydberg atoms are a flourishing tool for quantum information processing and for quantum simulation of complex many-body problems. Microwave spectroscopy of a dense Rydberg gas trapped close to a superconducting atom chip in the strong dipole blockade regime reveals directly the many-body atomic interaction spectrum. We present here a direct measurement of the interaction energy distribution in the strong dipole blockade regime, based on microwave spectroscopy. We first apply this method to the observation of the excitation dynamics of the Rydberg gas, conditioned by dipole-dipole interactions, in either the strong blockade regime or the so-called facilitation regime. We also observe with this method the atomic cloud expansion driven by the repulsive Van der Waals interaction after excitation. This measurement, in good agreement with Monte Carlo simulations of the excitation process and of the cloud dynamics, reveals the limits of the frozen gas approximation. This method can help investigate self-organization and dynamical phase transitions in Rydberg-atom based quantum simulators. This study thus opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atom.
Two-dimensional solitary kinetic Alfven waves and dipole vortex structures
Wu, D.J.; Wang, D.Y.; Huang, G.L.
1997-03-01
A new type of density soliton, which we call {open_quotes}dipole density soliton,{close_quotes} is discovered in data from the Freja satellite. Like the dip or hump density solitons that were recently discovered in the Freja data [D.-J. Wu, G.-L. Huang, and D.-Y. Wang, Phys. Plasmas {bold 3}, 2879 (1996)], the dipole density solitons are also associated with strong electric spikes ({approximately} a few 100 mV/m) and have a spatial scale length of a few 100 m. This indicates that the three types of density solitons (dip, hump, and dipole) probably have the same physical nature. In this paper, a two-dimensional solitary kinetic Alfven wave (SKAW) model with a dipole vortex structure is proposed to account for the three kinds of density solitons (dip, hump, and dipole), in which the differences in their appearances can naturally be attributed to differences in the positions and directions at which the satellite crosses dipole vortex structures. Some features of this two-dimensional SKAW model are discussed, and the results are compared to the one-dimensional cases. {copyright} {ital 1997 American Institute of Physics.}
Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi
2009-10-01
We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.
Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes
NASA Astrophysics Data System (ADS)
Atakaramians, Shaghik; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Monro, Tanya M.; Kivshar, Yuri S.; Afshar, Shahraam V.
2015-12-01
We study the radiation patterns produced by a dipole placed at the surface of a nanofiber and oriented perpendicular to it, either along the radial (r-oriented) or azimuthal (Φ-oriented) directions. We find that the dipole induces an effective circular cavity-like leaky mode in the nanofiber. The first radiation peak of the Φ-oriented dipole contributes only to TE radiation modes, while the radiation of the r-oriented dipole is composed of both TE and TM radiation modes, with relative contribution depending on the refractive index of the nanofiber. We reveal that the field pattern of the first resonance of a Φ-oriented dipole is associated with a magnetic dipole mode and strong magnetic response of an optical nanofiber.
Elastic dipole response of spherical nuclei
Bastrukov, S.I.
1992-10-01
Within the framework of the nuclear fluid-dynamics the isoscalar dipole response of spherical nuclei is studied. Two kinds of elastic-like transverse oscillations of incompressible nucleus are found to be result in E1, T = 0 and M1, T = 0 spin-independent resonances. The isoscalar electric mode is accompanied by excitation in the nucleus volume of the torus-like current structure, known in the continuum theory as a poloidal dipole or spherical vortex of Hill. The dipole magnetic resonance belongs to the excitation of axially symmetric differential rotations. These motions are described by the toroidal dipole field harmonic in time. The estimates of energies and PWBA-computed form-factors for these modes are presented. 28 refs., 3 figs.
Tevatron optics measurements using an AC dipole
Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab
2007-06-01
The AC dipole is a device to study beam optics of hadron synchrotrons. It can produce sustained large amplitude oscillations with virtually no emittance growth. A vertical AC dipole for the Tevatron is recently implemented and a maximum oscillation amplitude of 2{sigma} (4{sigma}) at 980 GeV (150 GeV) is achieved [1]. When such large oscillations are measured with the BPM system of the Tevatron (20 {micro}m resolution), not only linear but even nonlinear optics can be directly measured. This paper shows how to measure {beta} function using an AC dipole and the result is compared to the other measurement. The paper also shows a test to detect optics changes when small changes are made in the Tevatron. Since an AC dipole is nondestructive, it allows frequent measurements of the optics which is necessary for such an test.
Testing the dipole modulation model in CMBR
Rath, Pranati K.; Jain, Pankaj E-mail: pkjain@iitk.ac.in
2013-12-01
The hemispherical power asymmetry, observed in the CMBR data, has generally been interpreted in terms of the dipole modulation model for the temperature fluctuations. Here we point out that this model leads to several predictions, which can be directly tested in the current data. We suggest tests of the hemispherical power asymmetry both in real and multipole space. We find a significant signal of the dipole modulation model in WMAP and PLANCK data with our tests. The dipole amplitude and direction also agrees, within errors, with earlier results based on hemispherical analysis in multipole space. We also find evidence that the effective dipole modulation amplitude increases with the multipole l in the range l = 2−64.
Magnetic dipole interactions in crystals
Johnston, David
2016-01-13
The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ → i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices,more » 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic
Magnetic dipole interactions in crystals
Johnston, David
2016-01-13
The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ ^{→}_{ i} for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB _{4} with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins
Magnetic dipole interactions in crystals
NASA Astrophysics Data System (ADS)
Johnston, David C.
2016-01-01
The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ⃗i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ̂ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c /a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120∘ AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic transition
Isotropic polarizability of ozone from double-hybrid approximations
NASA Astrophysics Data System (ADS)
Alipour, Mojtaba
2016-01-01
Literature survey on the electric response properties of ozone reveals that the accurate prediction of its dipole polarizability and resolving the discrepancies in this context is a challenging case to current structure theories. In this Letter, we report the results of approximations from the highest rung of Jacob's ladder, double-hybrid (DH) functionals, for dipole polarizability of ozone. Benchmarking the two families of DHs, parameterized and parameter-free models, we find that the functionals B2Ͽ-PLYP and PBE0-DH as empirical and nonempirical DHs, respectively, provide the results in line with those obtained from the high correlated ab initio approaches.
Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.
2011-10-28
High spin states in {sup 196}Hg have been populated in the {sup 198}Pt({alpha},6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.
Magnetic dipole moments for composite dark matter
Aranda, Alfredo; Barajas, Luis; Cembranos, Jose A.R. E-mail: luisedua@buffalo.edu
2016-03-01
We study neutral dark matter candidates with a nonzero magnetic dipole moment. We assume that they are composite states of new fermions related to the strong phase of a new gauge interaction. In particular, invoking a dark flavor symmetry, we analyze the composition structure of viable candidates depending on the assignations of hypercharge and the multiplets associated to the fundamental constituents of the extended sector. We determine the magnetic dipole moments for the neutral composite states in terms of their constituents masses.
LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS
The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the...antenna which has a simplified feeding configuration. The result is a log periodic antenna design that can be used from high frequencies through microwave frequencies.
Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock
Chang, D.E.; Lukin, M.D.; Ye Jun
2004-02-01
Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock transition frequency. These interactions are mediated by the dipole fields associated with the optically excited atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appropriately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.
electric dipole superconductor in bilayer exciton system
NASA Astrophysics Data System (ADS)
Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.
Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.
Dipole-moment-driven cooperative supramolecular polymerization.
Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J
2015-03-25
While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers.
A Dipole Assisted IEC Neutron Source
Prajakti Joshi Shrestha
2005-11-28
A potential opportunity to enhance Inertial Electrostatic Confinement (IEC) fusion exists by augmenting it with a magnetic dipole configuration. The theory is that the dipole fields will enhance the plasma density in the center region of the IEC and the combined IEC and dipole confinement properties will reduce plasma losses. To demonstrate that a hybrid Dipole-IEC configuration can provide an improved neutron source vs. a stand alone IEC, a first model Dipole-IEC experiment was benchmarked against a reference IEC. A triple Langmuir probe was used to find the electron temperature and density. It was found that the magnetic field increases the electron density by a factor of 16, the electron temperature decreases in the presence of a magnetic field, the discharge voltage decreases in the presence of a magnetic field, the potential of the dipole strongly influences the densities obtained in the center. The experimental set-up and plasma diagnostics are discussed in detail, as well as the results, and the developmental issues.
Radiation patterns of interfacial dipole antennas
NASA Technical Reports Server (NTRS)
Engheta, N.; Papas, C. H.; Elachi, C.
1982-01-01
The radiation pattern of an infinitesimal electric dipole is calculated for the case where the dipole is vertically located on the plane interface of two dielectric half spaces and for the case where the dipole is lying horizontally along the interface. For the vertical case, it is found that the radiation pattern has nulls at the interface and along the dipole axis. For the horizontal case, it is found that the pattern has a null at the interface; that the pattern in the upper half space, whose index of refraction is taken to be less than that of the lower half space, has a single lobe whose maximum is normal to the interface; and that in the lower half space, in the plane normal to the interface and containing the dipole, the pattern has three lobes, whereas in the plane normal to the interface and normally bisecting the dipole, the pattern has two maxima located symmetrically about a minimum. Interpretation of these results in terms of the Cerenkov effect is given.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Bayesian smoothing of dipoles in Magneto-/Electro-encephalography
NASA Astrophysics Data System (ADS)
Vivaldi, Valentina; Sorrentino, Alberto
2016-02-01
We describe a novel method for dynamic estimation of multi-dipole states from Magneto/Electro-encephalography (M/EEG) time series. The new approach builds on the recent development of particle filters for M/EEG; these algorithms approximate, with samples and weights, the posterior distribution of the neural sources at time t given the data up to time t. However, for off-line inference purposes it is preferable to work with the smoothing distribution, i.e. the distribution for the neural sources at time t conditioned on the whole time series. In this study, we use a Monte Carlo algorithm to approximate the smoothing distribution for a time-varying set of current dipoles. We show, using numerical simulations, that the estimates provided by the smoothing distribution are more accurate than those provided by the filtering distribution, particularly at the appearance of the source. We validate the proposed algorithm using an experimental dataset recorded from an epileptic patient. Improved localization of the source onset can be particularly relevant in source modeling of epileptic patients, where the source onset brings information on the epileptogenic zone.
Bayesian smoothing of dipoles in magneto-/electroencephalography
NASA Astrophysics Data System (ADS)
Vivaldi, Valentina; Sorrentino, Alberto
2016-04-01
We describe a novel method for dynamic estimation of multi-dipole states from magneto-/electroencephalography (M/EEG) time series. The new approach builds on the recent development of particle filters for M/EEG; these algorithms approximate, with samples and weights, the posterior distribution of the neural sources at time t given the data up to time t. However, for off-line inference purposes it is preferable to work with the smoothing distribution, i.e. the distribution for the neural sources at time t conditioned on the whole time series. In this study, we use a Monte Carlo algorithm to approximate the smoothing distribution for a time-varying set of current dipoles. We show, using numerical simulations, that the estimates provided by the smoothing distribution are more accurate than those provided by the filtering distribution, particularly at the appearance of the source. We validate the proposed algorithm using an experimental data set recorded from an epileptic patient. Improved localization of the source onset can be particularly relevant in source modeling of epileptic patients, where the source onset brings information on the epileptogenic zone.
NASA Astrophysics Data System (ADS)
Niiniluoto, Ilkka
2014-03-01
Approximation of laws is an important theme in the philosophy of science. If we can make sense of the idea that two scientific laws are "close" to each other, then we can also analyze such methodological notions as approximate explanation of laws, approximate reduction of theories, approximate empirical success of theories, and approximate truth of laws. Proposals for measuring the distance between quantitative scientific laws were given in Niiniluoto (1982, 1987). In this paper, these definitions are reconsidered as a response to the interesting critical remarks by Liu (1999).
Reexamination of Lunar Exospheric Dust Estimates Using Discrete Dipole Scattering Simulations
NASA Astrophysics Data System (ADS)
Stubbs, T. J.; Glenar, D. A.; Richard, D. T.; Feldman, P. D.; Retherford, K. D.
2014-12-01
Analysis of Apollo regolith samples showed that lunar dust grains consist of a diverse set of shapes. Consequently, the optical scattering properties of these grains will differ from those predicted using the Mie approximation, which strictly applies only for spheres. Because it is analytically convenient and without shape ambiguity, Mie theory has been used routinely to estimate the concentration of dust or it's upper limits in the lunar exosphere from brightness measurements acquired during orbital dust searches. Utilizing the Discrete Dipole Approximation (DDA), we have computed a more realistic set of scattering parameters for a collection of sub-micron grain shapes that represents the ultra-fine fraction of lunar soil. Included in this suite are spheroids (oblate and prolate) and irregular geometries resembling isolated grains observed in Apollo samples. A subset of these models includes the addition of nanophase iron, in order to examine the influence of space weathering. Wavelength coverage of the DDA scattering computations extends from far-UV to near-IR. This range is diagnostic of grain size and shape, since scattering efficiency depends on both of these parameters. This collection of grain scattering models is used, together with an observing simulation code, to reexamine some prior estimates of exospheric dust concentration derived from Apollo-era limb brightness measurements (e.g., Apollo 15 coronal photography), as well as the subsequent Clementine star tracker search and a search for lunar horizon glow by LRO Lyman Alpha Mapping Project (LAMP). We compare our revised estimates of exospheric dust abundance with the results of these previous dust searches.
Microscopic nature of the pygmy dipole resonance: the stable Ca isotopes.
Hartmann, T; Babilon, M; Kamerdzhiev, S; Litvinova, E; Savran, D; Volz, S; Zilges, A
2004-11-05
The electric dipole strength distribution in 44Ca has been measured up to 10 MeV in high resolution photon scattering experiments for the first time. The data obtained have been compared to earlier measurements on (40,48)Ca in order to view the evolution of the electric pygmy dipole resonance (PDR). Calculations that were performed within the framework of the microscopic extended theory of finite Fermi systems, which adds contributions of the quasiparticle-phonon coupling to random phase approximation calculations, give a qualitative agreement with the experimental data for all three isotopes. We have shown that it is necessary to include this coupling to describe the PDR.
Towards a nonperturbative foundation of the dipole picture: I. Functional methods
NASA Astrophysics Data System (ADS)
Ewerz, Carlo; Nachtmann, Otto
2007-07-01
This is the first of two papers in which we study real and virtual photon-proton scattering in a nonperturbative framework. We classify different contributions to this process and identify the leading contributions at high energies. We then study the renormalisation of the photon-quark-antiquark vertex that occurs in the leading contributions. We find something like the dipole picture in one of these contributions but also find two correction terms which can potentially become large at small photon virtualities. In the second paper we will discuss the additional approximations and assumptions that are necessary to obtain the dipole model of high energy scattering from the results found here.
Direct summation of dipole-dipole interactions using the Wolf formalism.
Stenqvist, Björn; Trulsson, Martin; Abrikosov, Alexei I; Lund, Mikael
2015-07-07
We present an expanded Wolf formalism for direct summation of long-range dipole-dipole interactions and rule-of-thumbs how to choose optimal spherical cutoff (Rc) and damping parameter (α). This is done by comparing liquid radial distribution functions, dipole-dipole orientation correlations, particle energies, and dielectric constants, with Ewald sums and the Reaction field method. The resulting rule states that ασ < 1 and αRc > 3 for reduced densities around ρ(∗) = 1 where σ is the particle size. Being a pair potential, the presented approach scales linearly with system size and is applicable to simulations involving point dipoles such as the Stockmayer fluid and polarizable water models.
Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism
NASA Astrophysics Data System (ADS)
Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang
Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.
NASA Astrophysics Data System (ADS)
Roostaei, B.; Ermler, W. C.
2012-03-01
A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.
JIMWLK evolution in the Gaussian approximation
NASA Astrophysics Data System (ADS)
Iancu, E.; Triantafyllopoulos, D. N.
2012-04-01
We demonstrate that the Balitsky-JIMWLK equations describing the high-energy evolution of the n-point functions of the Wilson lines (the QCD scattering amplitudes in the eikonal approximation) admit a controlled mean field approximation of the Gaussian type, for any value of the number of colors N c . This approximation is strictly correct in the weak scattering regime at relatively large transverse momenta, where it re-produces the BFKL dynamics, and in the strong scattering regime deeply at saturation, where it properly describes the evolution of the scattering amplitudes towards the respective black disk limits. The approximation scheme is fully specified by giving the 2-point function (the S-matrix for a color dipole), which in turn can be related to the solution to the Balitsky-Kovchegov equation, including at finite N c . Any higher n-point function with n ≥ 4 can be computed in terms of the dipole S-matrix by solving a closed system of evolution equations (a simplified version of the respective Balitsky-JIMWLK equations) which are local in the transverse coordinates. For simple configurations of the projectile in the transverse plane, our new results for the 4-point and the 6-point functions coincide with the high-energy extrapolations of the respective results in the McLerran-Venugopalan model. One cornerstone of our construction is a symmetry property of the JIMWLK evolution, that we notice here for the first time: the fact that, with increasing energy, a hadron is expanding its longitudinal support symmetrically around the light-cone. This corresponds to invariance under time reversal for the scattering amplitudes.
Resnik, Barry I
2009-01-01
It is ethical, legal, and proper for a dermatologist to maximize income through proper coding of patient encounters and procedures. The overzealous physician can misinterpret reimbursement requirements or receive bad advice from other physicians and cross the line from aggressive coding to coding fraud. Several of the more common problem areas are discussed.
IONIS: Approximate atomic photoionization intensities
NASA Astrophysics Data System (ADS)
Heinäsmäki, Sami
2012-02-01
A program to compute relative atomic photoionization cross sections is presented. The code applies the output of the multiconfiguration Dirac-Fock method for atoms in the single active electron scheme, by computing the overlap of the bound electron states in the initial and final states. The contribution from the single-particle ionization matrix elements is assumed to be the same for each final state. This method gives rather accurate relative ionization probabilities provided the single-electron ionization matrix elements do not depend strongly on energy in the region considered. The method is especially suited for open shell atoms where electronic correlation in the ionic states is large. Program summaryProgram title: IONIS Catalogue identifier: AEKK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1149 No. of bytes in distributed program, including test data, etc.: 12 877 Distribution format: tar.gz Programming language: Fortran 95 Computer: Workstations Operating system: GNU/Linux, Unix Classification: 2.2, 2.5 Nature of problem: Photoionization intensities for atoms. Solution method: The code applies the output of the multiconfiguration Dirac-Fock codes Grasp92 [1] or Grasp2K [2], to compute approximate photoionization intensities. The intensity is computed within the one-electron transition approximation and by assuming that the sum of the single-particle ionization probabilities is the same for all final ionic states. Restrictions: The program gives nonzero intensities for those transitions where only one electron is removed from the initial configuration(s). Shake-type many-electron transitions are not computed. The ionized shell must be closed in the initial state. Running time: Few seconds for a
Analytic Approximation to Randomly Oriented Spheroid Extinction
1993-12-01
104 times faster than by the T - matrix code . Since the T-matrix scales as at least the cube of the optical size whereas the analytic approximation is...coefficient estimate, and with the Rayleigh formula. Since it is difficult estimate the accuracy near the limit of stability of the T - matrix code some...additional error due to the T - matrix code could be present. UNCLASSIFIED 30 Max Ret Error, Analytic vs T-Mat, r= 1/5 0.0 20 25 10 ~ 0.5 100 . 7.5 S-1.0
Bunched beam longitudinal instability: Coherent dipole motion
Zhang, S.Y.; Weng, W.T.
1993-04-23
In this paper, the authors present a new formulation for the longitudinal coherent dipole motion, where a quadrature response of the environmental impedance is shown to be the effective longitudinal impedance for the beam instability. The Robinson-Pedersen formulation for the longitudinal dipole motion is also presented, the difference of the two approaches is discussed in the comparison. The results by using the Sacherer integral equation for the coherent dipole motion can generate the same results as by using the other two approaches, except for a scaling difference. The formulation is further generalized to the rigid bunch motion using signal analysis method, where a form factor shows up naturally. Finally, the formulation is applied to solve the coupled bunch instabilities. Examples of the AGS Booster and the AGS coupled bunch instabilities are used to illustrate the applications of the formulation.
Dipole antenna in space - Time periodic media.
NASA Technical Reports Server (NTRS)
Elachi, C.
1972-01-01
Study and solution of the problem of dipole radiation in sinusoidally space-time periodic media. The space-time periodicity can be considered as due to a strong pump wave and is expressed as a traveling-wave type change in the dielectric constant or the plasma density. The solution also covers the limit case of a sinusoidally stratified medium. The solution is formulated in a matrix form such that the basic results and diagrams apply, with minor changes, to the different cases studied: electric and magnetic dipole in a dielectric, plasma, and uniaxial plasma. The wave-vector diagram is used extensively in studying and presenting the different properties of the solution: caustics, effect of the disturbance (pump wave) motion, harmonics, radiation outside the allowed cone in a uniaxial plasma. Many dipole radiation patterns are given, and their features are explained physically. Finally, the solution and results obtained are extended to certain generally space-time periodic media.
Dipole hearing measurements in elasmobranch fishes.
Casper, Brandon M; Mann, David A
2007-01-01
The hearing thresholds of the horn shark Heterodontus francisci and the white-spotted bamboo shark Chiloscyllium plagiosum were measured using auditory evoked potentials (AEP) in response to a dipole sound stimulus. The audiograms were similar between the two species with lower frequencies yielding lower particle acceleration thresholds. The particle acceleration audiograms showed more sensitive hearing at low frequencies than previous elasmobranch audiograms, except for the lemon shark Negaprion brevirsotris. Auditory evoked potential signals were also recorded while the dipole stimulus was moved to different locations above the head and body. The strongest AEP signals were recorded from the area around the parietal fossa, supporting previous experiments that suggested this region is important for elasmobranch hearing. This is the first time that hearing experiments have been conducted using a dipole stimulus with elasmobranchs, which more closely mimics the natural sounds of swimming prey.
NASA Technical Reports Server (NTRS)
Pollara, Fabrizio; Hamkins, Jon; Dolinar, Sam; Andrews, Ken; Divsalar, Dariush
2006-01-01
This viewgraph presentation reviews uplink coding. The purpose and goals of the briefing are (1) Show a plan for using uplink coding and describe benefits (2) Define possible solutions and their applicability to different types of uplink, including emergency uplink (3) Concur with our conclusions so we can embark on a plan to use proposed uplink system (4) Identify the need for the development of appropriate technology and infusion in the DSN (5) Gain advocacy to implement uplink coding in flight projects Action Item EMB04-1-14 -- Show a plan for using uplink coding, including showing where it is useful or not (include discussion of emergency uplink coding).
Effect of the relative velocity on the collision dipole in a pair of atoms
Humbert, J.; Galatry, L.
1983-08-01
It is shown that the dispersive collision induced dipole in a pair of atoms is dependent on the relative velocity of the partners. Two formulations taking into account this effect are successively presented. In the first one, the origin of the induced dipole lies in the energy coupling between the fluctuating instantaneous dipole of an atom and the reaction field due to the presence of the neighbor; the effect of the relative velocity is introduced through a Fourier expansion of the time dependent internuclear distance. The second method is based on the consideration of the secular equation for approximate instantaneous normal modes of the whole system. In the two cases, the vanishing velocity limit allows to find again a known result. For a nonzero relative velocity, a limited expansion is obtained and the two lowest order terms are given. Order of magnitude of the effects are estimated in a model of harmonic oscillators.
Quark contribution to the small-x evolution of color dipole
Ian Balitsky
2006-09-11
The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the NLO the nonlinear equation gets contributions from quark and gluon loops. In this paper I calculate the quark-loop contribution to small-x evolution of Wilson lines in the NLO. It turns out that there are no new operators at the one-loop level--just as at the tree level, the high-energy scattering can be described in terms of Wilson lines. In addition, from the analysis of quark loops I find that the argument of coupling constant in the BK equation is determined by the size of the parent dipole rather than by the size of produced dipoles. These results are to be supported by future calculation of gluon loops.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
Superdense Coding with Uniformly Accelerated Particle
NASA Astrophysics Data System (ADS)
Farahmand, Mehrnoosh; Mohammadzadeh, Hosein; Mehri-Dehnavi, Hossein; Rahimi, Robabeh
2017-03-01
We study superdense coding with uniformly accelerated particle in single mode approximation and beyond single mode approximation. We use four different functions, the capacity of superdense coding, negativity, discord and the probability of success for evaluating the final results. In single mode approximation, all the four functions behave as expected, however in beyond single mode approximation, except the probability of success, the other three functions represent peculiar behaviors at least for special ranges where the beyond single mode approximation is strong.
Waves in space plasma dipole antenna subsystem
NASA Technical Reports Server (NTRS)
Thomson, Mark
1993-01-01
The Waves In Space Plasma (WISP) flight experiment requires a 50-meter-long deployable dipole antenna subsystem (DASS) to radiate radio frequencies from the STS Orbiter cargo bay. The transmissions are to excite outer ionospheric plasma between the dipole and a free-flying receiver (Spartan) for scientific purposes. This report describes the singular DASS design requirements and how the resulting design satisfies them. A jettison latch is described in some detail. The latch releases the antenna in case of any problems which might prevent the bay doors from closing for re-entry and landing of the Orbiter.
The viscous modulation of Lamb's dipole vortex
NASA Astrophysics Data System (ADS)
van de Fliert, B. W.
1996-07-01
A description of the adiabatic decay of the Lamb dipolar vortex is motivated by a variational characterization of the dipole. The parameters in the description are the values of the entrophy and linear momentum integrals, which change in time due to the dissipation. It is observed that the dipole dilates during the decay process [radius R˜(νt)1/2], while the amplitude of the vortex and its translation speed diminish in time proportional to (νt)-3/2 and (νt)-1.
NASA Astrophysics Data System (ADS)
Barry, D. A.; Parlange, J.-Y.; Li, L.; Jeng, D.-S.; Crapper, M.
2005-10-01
The solution to the Green and Ampt infiltration equation is expressible in terms of the Lambert W-1 function. Approximations for Green and Ampt infiltration are thus derivable from approximations for the W-1 function and vice versa. An infinite family of asymptotic expansions to W-1 is presented. Although these expansions do not converge near the branch point of the W function (corresponds to Green-Ampt infiltration with immediate ponding), a method is presented for approximating W-1 that is exact at the branch point and asymptotically, with interpolation between these limits. Some existing and several new simple and compact yet robust approximations applicable to Green-Ampt infiltration and flux are presented, the most accurate of which has a maximum relative error of 5 × 10 -5%. This error is orders of magnitude lower than any existing analytical approximations.
NASA Technical Reports Server (NTRS)
Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)
2000-01-01
This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor
A periodic charge-dipole electrostatic model: parametrization for silver slabs.
Bodrenko, I V; Sierka, M; Fabiano, E; Della Sala, F
2012-10-07
We present an extension of the charge-dipole model for the description of periodic systems. This periodic charge-dipole electrostatic model (PCDEM) allows one to describe the linear response of periodic structures in terms of charge- and dipole-type gaussian basis functions. The long-range electrostatic interaction is efficiently described by means of the continuous fast multipole method. As a first application, the PCDEM method is applied to describe the polarizability of silver slabs. We find that for a correct description of the polarizability of the slabs both charges and dipoles are required. However a continuum set of parametrizations, i.e., different values of the width of charge- and dipole-type gaussians, leads to an equivalent and accurate description of the slabs polarizability but a completely unphysical description of induced charge-density inside the slab. We introduced the integral squared density measure which allows one to obtain a unique parametrization which accurately describes both the polarizability and the induced density profile inside the slab. Finally the limits of the electrostatic approximations are also pointed out.
NASA Astrophysics Data System (ADS)
Pursiainen, S.; Sorrentino, A.; Campi, C.; Piana, M.
2011-04-01
Electroencephalography is a non-invasive imaging modality in which a primary current density generated by the neural activity in the brain is to be reconstructed based on external electric potential measurements. This paper focuses on the finite element method (FEM) from both forward and inverse aspects. The goal is to establish a clear correspondence between the lowest order Raviart-Thomas basis functions and dipole sources as well as to show that the adopted FEM approach is computationally effective. Each basis function is associated with a dipole moment and a location. Four candidate locations are tested. Numerical experiments cover two different spherical multilayer head models, four mesh resolutions and two different forward simulation approaches, one based on FEM and another based on the boundary element method (BEM) with standard dipoles as sources. The forward simulation accuracy is examined through column- and matrix-wise relative errors as well as through performance in inverse dipole localization. A closed-form approximation of dipole potential was used as the reference forward simulation. The present approach is compared to the BEM and indirectly also to the recent FEM-based subtraction approach regarding both accuracy, computation time and accessibility of implementation.
Effects of head models and dipole source parameters on EEG fields.
Peng, Li; Peng, Mingming; Xu, Anhuai
2015-01-01
Head model and an efficient method for computing the forward EEG (electroencephalography)problem are essential to dipole source localization(DSL). In this paper, we use less expensive ovoid geometry to approximate human head, aiming at investigating the effects of head shape and dipole source parameters on EEG fields. The application of point least squares (PLS) based on meshless method was introduced for solving EEG forward problem and numerical simulation is implemented in three kinds of ovoid head models. We present the performances of the surface potential in the face of varying dipole source parameters in detail. The results show that the potential patterns are similar for different dipole position in different head shapes, but the peak value of potential is significantly influenced by the head shape. Dipole position induces a great effect on the peak value of potential and shift of peak potential. The degree of variation between sphere head model and non-sphere head models is seen at the same time. We also show that PLS method with the trigonometric basis is superior to the constant basis, linear basis, and quadratic basis functions in accuracy and efficiency.
Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators.
Driben, R; Konotop, V V; Malomed, B A; Meier, T
2016-07-01
The dynamics of a pair of harmonic oscillators represented by three-dimensional fields coupled with a repulsive cubic nonlinearity is investigated through direct simulations of the respective field equations and with the help of the finite-mode Galerkin approximation (GA), which represents the two interacting fields by a superposition of 3+3 harmonic-oscillator p-wave eigenfunctions with orbital and magnetic quantum numbers l=1 and m=1, 0, -1. The system can be implemented in binary Bose-Einstein condensates, demonstrating the potential of the atomic condensates to emulate various complex modes predicted by classical field theories. First, the GA very accurately predicts a broadly degenerate set of the system's ground states in the p-wave manifold, in the form of complexes built of a dipole coaxial with another dipole or vortex, as well as complexes built of mutually orthogonal dipoles. Next, pairs of noncoaxial vortices and/or dipoles, including pairs of mutually perpendicular vortices, develop remarkably stable dynamical regimes, which feature periodic exchange of the angular momentum and periodic switching between dipoles and vortices. For a moderately strong nonlinearity, simulations of the coupled-field equations agree very well with results produced by the GA, demonstrating that the dynamics is accurately spanned by the set of six modes limited to l=1.
Effects of Head Models and Dipole Source Parameters on EEG Fields
Peng, Li; Peng, Mingming; Xu, Anhuai
2015-01-01
Head model and an efficient method for computing the forward EEG (electroencephalography)problem are essential to dipole source localization(DSL). In this paper, we use less expensive ovoid geometry to approximate human head, aiming at investigating the effects of head shape and dipole source parameters on EEG fields. The application of point least squares (PLS) based on meshless method was introduced for solving EEG forward problem and numerical simulation is implemented in three kinds of ovoid head models. We present the performances of the surface potential in the face of varying dipole source parameters in detail. The results show that the potential patterns are similar for different dipole position in different head shapes, but the peak value of potential is significantly influenced by the head shape. Dipole position induces a great effect on the peak value of potential and shift of peak potential. The degree of variation between sphere head model and non-sphere head models is seen at the same time. We also show that PLS method with the trigonometric basis is superior to the constant basis, linear basis, and quadratic basis functions in accuracy and efficiency. PMID:25893011
Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators
NASA Astrophysics Data System (ADS)
Driben, R.; Konotop, V. V.; Malomed, B. A.; Meier, T.
2016-07-01
The dynamics of a pair of harmonic oscillators represented by three-dimensional fields coupled with a repulsive cubic nonlinearity is investigated through direct simulations of the respective field equations and with the help of the finite-mode Galerkin approximation (GA), which represents the two interacting fields by a superposition of 3 +3 harmonic-oscillator p -wave eigenfunctions with orbital and magnetic quantum numbers l =1 and m =1 , 0, -1 . The system can be implemented in binary Bose-Einstein condensates, demonstrating the potential of the atomic condensates to emulate various complex modes predicted by classical field theories. First, the GA very accurately predicts a broadly degenerate set of the system's ground states in the p -wave manifold, in the form of complexes built of a dipole coaxial with another dipole or vortex, as well as complexes built of mutually orthogonal dipoles. Next, pairs of noncoaxial vortices and/or dipoles, including pairs of mutually perpendicular vortices, develop remarkably stable dynamical regimes, which feature periodic exchange of the angular momentum and periodic switching between dipoles and vortices. For a moderately strong nonlinearity, simulations of the coupled-field equations agree very well with results produced by the GA, demonstrating that the dynamics is accurately spanned by the set of six modes limited to l =1 .
Arapiraca, A F C; Jonsson, Dan; Mohallem, J R
2011-12-28
We report an upgrade of the Dalton code to include post Born-Oppenheimer nuclear mass corrections in the calculations of (ro-)vibrational averages of molecular properties. These corrections are necessary to achieve an accuracy of 10(-4) debye in the calculations of isotopic dipole moments. Calculations on the self-consistent field level present this accuracy, while numerical instabilities compromise correlated calculations. Applications to HD, ethane, and ethylene isotopologues are implemented, all of them approaching the experimental values.
Summary of 1990 Code Conference
Cooper, R.K.; Chan, Kwok-Chi D.
1990-01-01
The Conference on Codes and the Linear Accelerator Community was held in Los Alamos in January 1990, and had approximately 100 participants. This conference was the second in a series which has as its goal the exchange of information about codes and code practices among those writing and actually using these codes for the design and analysis of linear accelerators and their components. The first conference was held in San Diego in January 1988, and concentrated on beam dynamics codes and Maxwell solvers. This most recent conference concentrated on 3-D codes and techniques to handle the large amounts of data required for three-dimensional problems. In addition to descriptions of codes, their algorithms and implementations, there were a number of paper describing the use of many of the codes. Proceedings of both these conferences are available. 3 refs., 2 tabs.
Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system
NASA Astrophysics Data System (ADS)
Singh, Mahi R.; Schindel, Daniel G.; Hatef, Ali
2011-10-01
We have studied quantum coherence and interference phenomena in a quantum dot (QD)-metallic nanorod (MNR) hybrid system. Probe and control laser fields are applied to the hybrid system. Induced dipole moments are created in the QD and the MNR, and they interact with each other via the dipole-dipole interaction. Using the density matrix method, it was found that the power spectrum of MNR has two transparent, states and they can be switched to one transparent state by the control field. Ultrafast switching and sensing nanodevices could be produced using this model.
Electric field-driven water dipoles: nanoscale architecture of electroporation.
Tokman, Mayya; Lee, Jane HyoJin; Levine, Zachary A; Ho, Ming-Chak; Colvin, Michael E; Vernier, P Thomas
2013-01-01
Electroporation is the formation of permeabilizing structures in the cell membrane under the influence of an externally imposed electric field. The resulting increased permeability of the membrane enables a wide range of biological applications, including the delivery of normally excluded substances into cells. While electroporation is used extensively in biology, biotechnology, and medicine, its molecular mechanism is not well understood. This lack of knowledge limits the ability to control and fine-tune the process. In this article we propose a novel molecular mechanism for the electroporation of a lipid bilayer based on energetics analysis. Using molecular dynamics simulations we demonstrate that pore formation is driven by the reorganization of the interfacial water molecules. Our energetics analysis and comparisons of simulations with and without the lipid bilayer show that the process of poration is driven by field-induced reorganization of water dipoles at the water-lipid or water-vacuum interfaces into more energetically favorable configurations, with their molecular dipoles oriented in the external field. Although the contributing role of water in electroporation has been noted previously, here we propose that interfacial water molecules are the main players in the process, its initiators and drivers. The role of the lipid layer, to a first-order approximation, is then reduced to a relatively passive barrier. This new view of electroporation simplifies the study of the problem, and opens up new opportunities in both theoretical modeling of the process and experimental research to better control or to use it in new, innovative ways.
Ion Optical Stray Field Analysis of an ESR Dipole
NASA Astrophysics Data System (ADS)
Schillinger, B.; Weiland, T.; Langenbeck, B.
1997-05-01
The ion optical characteristics of the injection into the ESR are calculated up to second order. The three dimensional model of an ESR dipole magnet forms the basis of our computations. Special efforts have been spent on an accurate approximation of the lateral stray field over a distance of 2m, in which the ion beam enters the ESR dipole tangentially. The reference trajectory and the first and second order transformation coefficients are calculated solving the corresponding differential equations numerically. For this purpose we have developed a new ion optics section as part of the MAFIA postprocessing module P. The differential equations are set up and solved automatically using the simulated magnetic field distribution. The new implemented section is general and allows the easy calculation of beam trajectories and optical characteristics corresponding to arbitrary numerically calculated magnetic fields. As special feature also phase space monitors along a curved reference trajectory can be defined. We will give a short introduction into the method and discuss the results in case of the ESR injection.
Symbolic coding for noninvertible systems: uniform approximation and numerical computation
NASA Astrophysics Data System (ADS)
Beyn, Wolf-Jürgen; Hüls, Thorsten; Schenke, Andre
2016-11-01
It is well known that the homoclinic theorem, which conjugates a map near a transversal homoclinic orbit to a Bernoulli subshift, extends from invertible to specific noninvertible dynamical systems. In this paper, we provide a unifying approach that combines such a result with a fully discrete analog of the conjugacy for finite but sufficiently long orbit segments. The underlying idea is to solve appropriate discrete boundary value problems in both cases, and to use the theory of exponential dichotomies to control the errors. This leads to a numerical approach that allows us to compute the conjugacy to any prescribed accuracy. The method is demonstrated for several examples where invertibility of the map fails in different ways.
Non-free gas of dipoles of non-singular screw dislocations and the shear modulus near the melting
Malyshev, Cyril
2014-12-15
The behavior of the shear modulus caused by proliferation of dipoles of non-singular screw dislocations with finite-sized core is considered. The representation of two-dimensional Coulomb gas with smoothed-out coupling is used, and the stress–stress correlation function is calculated. A convolution integral expressed in terms of the modified Bessel function K{sub 0} is derived in order to obtain the shear modulus in approximation of interacting dipoles. Implications are demonstrated for the shear modulus near the melting transition which are due to the singularityless character of the dislocations. - Highlights: • Thermodynamics of dipoles of non-singular screw dislocations is studied below the melting. • The renormalization of the shear modulus is obtained for interacting dipoles. • Dependence of the shear modulus on the system scales is presented near the melting.
NASA Astrophysics Data System (ADS)
Oruç, Bülent
2010-01-01
The magnetic gradient tensor (MGT) provides gradient components of potential fields with mathematical properties which allow processing techniques e.g. analytic signal techniques. With MGT emerging as a new tool for geophysical exploration, the mathematical modelling of gradient tensor fields is necessary for interpretation of magnetic field measurements. The point-dipole and line of dipoles are used to approximate various magnetic objects. I investigate the maxima of the magnitude of magnetic vector components (MMVC) and analytic signals of magnetic gradient tensor (ASMGT) resulting from point-dipole and line of dipoles sources in determining horizontal locations. I also present a method in which depths of these sources are estimated from the ratio of the maximum of MMVC to the maximum of ASMGT. Theoretical examples have been carried out to test the feasibility of the method in obtaining source locations and depths. The method has been applied to the MMVC and ASMGT computed from the total field data over a basic/ultrabasic body at the emerald deposit of Socotó, Bahia, Brazil and buried water supply pipe near Jadaguda Township, India. In both field examples, the method produces good correlations with previous interpretations.
Conductor Development for High Field Dipole Magnets
Scanlan, R.M.; Dietderich, D.R.; Higley, H.C.
2000-03-01
Historically, improvements in dipole magnet performance have been paced by improvements in the superconductor available for use in these magnets. The critical conductor performance parameters for dipole magnets include current density, piece length, effective filament size, and cost. Each of these parameters is important for efficient, cost effective dipoles, with critical current density being perhaps the most important. Several promising magnet designs for the next hadron collider or a muon collider require fields of 12 T or higber, i.e. beyond the reach of NbTi. The conductor options include Nb{sub 3}Sn, Nb{sub 3}Al, or the high temperature superconductors. Although these conductors have the potential to provide the combination of performance and cost required, none of them have been developed sufficiently at this point to satisfy all the requirements. This paper will review the status of each class of advanced conductor and discuss the remaining problems that require solutions before these new conductors can be considered as practical. In particular, the plans for a new program to develop Nb{sub 3}Sn and Nb{sub 3}Al conductors for high energy physics applications will be presented. Also, the development of a multikiloamp Bi-2212 cable for dipole magnet applications will be reported.
The Case of the Disappearing Magnetic Dipole
ERIC Educational Resources Information Center
Gough, W.
2008-01-01
The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…
A Microstrip Reflect Array Using Crossed Dipoles
NASA Technical Reports Server (NTRS)
Pozar, David M.; Targonski, Stephen D.
1998-01-01
Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.
Electromagnetic Force on a Moving Dipole
ERIC Educational Resources Information Center
Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.
2011-01-01
We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…
Electromagnetic Force on a Moving Dipole
ERIC Educational Resources Information Center
Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.
2011-01-01
We analyse the force acting on a moving dipole due to an external electromagnetic field and show that the expression derived in Vekstein (1997 "Eur. J. Phys." 18 113) is erroneous and suggest the correct equation for the description of this force. We also discuss the physical meaning of the relativistic transformation of current for a closed…
Hertzian Dipole Radiation over Isotropic Magnetodielectric Substrates
2015-03-01
public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report investigates dipole antennas printed on grounded...engineering of thin planar antennas . Since these materials often require complicated constitutive equations to describe their properties rigorously, the...material properties and substrate thickness. 15. SUBJECT TERMS Magnetodielectrics, planar antennas , boundary value problems, contour integration, branch
Conceptual design of Dipole Research Experiment (DREX)
NASA Astrophysics Data System (ADS)
Qingmei, XIAO; Zhibin, WANG; Xiaogang, WANG; Chijie, XIAO; Xiaoyi, YANG; Jinxing, ZHENG
2017-03-01
A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).
Formation of dipole vortex in the ionosphere
Shukla, P.K.; Yu, M.Y.
1985-04-01
It is shown that isolated dipole vortices can exist in the F-region of the ionosphere. These are associated with the Rayleigh-Taylor and E x B/sub 0/ gradient drift instabilities. The vortices may be responsible for the rapid structuring of barium clouds as well as other phenomena observed in the upper ionosphere.
Conceptual design of Dipole Research Experiment (DREX)
NASA Astrophysics Data System (ADS)
Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing
2017-03-01
A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).
The Case of the Disappearing Magnetic Dipole
ERIC Educational Resources Information Center
Gough, W.
2008-01-01
The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…
Dipole nano-laser: Theory and properties
Ghannam, T.
2014-03-31
In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.
Kubilius, Jonas
2014-01-01
Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.
Intrinsic Nilpotent Approximation.
1985-06-01
RD-A1II58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 1/2 OF TECH CAMBRIDGE LAB FOR INFORMATION AND, DECISION UMCLRSSI SYSTEMS C...TYPE OF REPORT & PERIOD COVERED Intrinsic Nilpotent Approximation Technical Report 6. PERFORMING ORG. REPORT NUMBER LIDS-R-1482 7. AUTHOR(.) S...certain infinite-dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras or g . where x E M, (x,,Z) E T*M/O. It
Anomalous diffraction approximation limits
NASA Astrophysics Data System (ADS)
Videen, Gorden; Chýlek, Petr
It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.
Relativistic continuum quasiparticle random-phase approximation in spherical nuclei
Daoutidis, I.; Ring, P.
2011-04-15
We have calculated the strength distributions of the dipole response in spherical nuclei, ranging all over the periodic table. The calculations were performed within two microscopic models: the discretized quasiparticle random-phase approximation and the continuum quasiparticle random-phase approximation, which takes into account the coupling of the single-particle continuum in an exact way. Pairing correlations are treated with the BCS model. In the calculations, two density functionals were used, namely, the PC-F1 and the DD-PC1. Both are based on relativistic point-coupling Lagrangians. It is explicitly shown that this model is capable of reproducing the giant- as well as the pygmy-dipole resonance for open-shell nuclei in a high level of quantitative agreement with the available experimental observations.
Adiabatic approximation for the Rabi model with broken inversion symmetry
NASA Astrophysics Data System (ADS)
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2017-01-01
We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.
GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.
Groß, Lynn; Herrmann, Carmen
2016-09-30
Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce GenLocDip, a program for calculating and visualizing local dipole moments of molecular subsystems. GenLocDip currently uses the Atoms-In-Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three-dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin-independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non-covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc.
BKT phase transition in a 2D system with long-range dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Fedichev, P. O.; Men'shikov, L. I.
2012-01-01
We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.
Master equation with quantized atomic motion including dipole-dipole interactions
NASA Astrophysics Data System (ADS)
Damanet, François; Braun, Daniel; Martin, John
2016-05-01
We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.
Model dependence of the deuteron electric dipole moment
NASA Astrophysics Data System (ADS)
Gibson, B. F.; Afnan, I. R.
2012-09-01
Direct measurement of the electric dipole moment (EDM) of the neutron lies in the future; measurement of a nuclear EDM may well be obtained first. The deuteron is the one nucleus for which exact model calculations can easily be performed. In this report we explore the model dependence of deuteron EDM calculations. Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variations in the nucleon-nucleon interaction, including contemporary potential models. We compare the full calculation with the result in the plane-wave approximation, explore the tensor force contribution to the model results, and examine the effects of short range repulsion that characterizes realistic, contemporary potential models of the deuteron. We find that separable potential model calculations will provide an adequate description of the deuteron EDM until such time as a measurement of better than 10% is achieved.
Low-cost, pseudo-Halbach dipole magnets for NMR
NASA Astrophysics Data System (ADS)
Tayler, Michael C. D.; Sakellariou, Dimitrios
2017-04-01
We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5 mm bore size and field up to nearly 2 T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1 mL of pure [13C ]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10-10 T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency 1JCH = 140.7 (1) Hz.
Low-cost, pseudo-Halbach dipole magnets for NMR.
Tayler, Michael C D; Sakellariou, Dimitrios
2017-04-01
We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5mm bore size and field up to nearly 2T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1mL of pure [(13)C]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10(-10)T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency (1)JCH=140.7(1)Hz.
Competition between finite-size effects and dipole-dipole interactions in few-atom systems
NASA Astrophysics Data System (ADS)
Damanet, François; Martin, John
2016-11-01
In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.
Covariant approximation averaging
NASA Astrophysics Data System (ADS)
Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2015-06-01
We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.
Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Cisewski, Jessi
2015-08-01
Explicitly specifying a likelihood function is becoming increasingly difficult for many problems in astronomy. Astronomers often specify a simpler approximate likelihood - leaving out important aspects of a more realistic model. Approximate Bayesian computation (ABC) provides a framework for performing inference in cases where the likelihood is not available or intractable. I will introduce ABC and explain how it can be a useful tool for astronomers. In particular, I will focus on the eccentricity distribution for a sample of exoplanets with multiple sub-populations.
Kailkhura, Bhavya; Theagarajan, Lakshmi Narasimhan; Varshney, Pramod K.
2017-04-12
In this paper, we generalize the well-known index coding problem to exploit the structure in the source-data to improve system throughput. In many applications (e.g., multimedia), the data to be transmitted may lie (or can be well approximated) in a low-dimensional subspace. We exploit this low-dimensional structure of the data using an algebraic framework to solve the index coding problem (referred to as subspace-aware index coding) as opposed to the traditional index coding problem which is subspace-unaware. Also, we propose an efficient algorithm based on the alternating minimization approach to obtain near optimal index codes for both subspace-aware and -unawaremore » cases. In conclusion, our simulations indicate that under certain conditions, a significant throughput gain (about 90%) can be achieved by subspace-aware index codes over conventional subspace-unaware index codes.« less
Van Belle, D; Couplet, I; Prevost, M; Wodak, S J
1987-12-20
The calculation of induced dipole moments and of their contribution to electrostatic effects in proteins is implemented following the approach of Warshel. Isotropic polarizabilities are assigned to individual atoms, and the resulting deviation from pairwise interactions is treated by a self-consistent iterative procedure. We give a detailed description of how the formalism is implemented in molecular mechanics and molecular dynamics simulation procedures, and report results based on calculations performed on crystal structures of crambin, liver alcohol dehydrogenase and ribonuclease T1. We focus our analysis on evaluating the contribution of polarizability of the protein matrix to electrostatic energies, local fields, to dipole moments of peptide groups and of secondary structure elements in the polypeptide chain. Our calculations confirm that induced dipole moments in proteins provide important stabilizing contributions to electrostatic energies, and that these contributions cannot be mimicked by the usual approximations where either a continuum dielectric constant, or a distance-dependent dielectric function is used. We find that induced protein dipoles appreciably affect the magnitude and direction of local electrostatic fields in a manner that is strongly influenced by the microscopic environment in the protein. Most strongly affected are fields in charged groups that are involved in close interactions with other charged groups, while the influence on local fields of aliphatic groups is marginal. We find, moreover, that induction effects from surrounding protein atoms tend on average to increase peptide dipoles and helix macro-dipoles by about 16%, again reflecting electrostatic stabilization by the protein matrix, and show that (at least in the alpha/beta domain of alcohol dehydrogenase) the contribution of side-chains to this stabilization is significant.
Multicriteria approximation through decomposition
Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.
1998-06-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Multicriteria approximation through decomposition
Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |
1997-12-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
ERIC Educational Resources Information Center
Wolff, Hans
This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Kubilius, Jonas
2014-01-01
Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing. PMID:25165519
Revisiting the NVSS number count dipole
Tiwari, Prabhakar; Nusser, Adi E-mail: adi@physics.technion.ac.il
2016-03-01
We present a realistic modeling of the dipole component of the projected sky distribution of NVSS radio galaxies. The modeling relies on mock catalogs generated within the context of ΛCDM cosmology, in the linear regime of structure formation. After removing the contribution from the solar motion, the mocks show that the remaining observed signal is mostly (70%) due to structures within z ∼< 0.1. The amplitude of the model signal depends on the bias factor b of the NVSS mock galaxies. For sources with flux density, S > 15 mJy, the bias recipe inferred from higher order moments is consistent with the observed dipole signal at 2.12σ. Flux thresholds above 20 mJy yield a disagreement close to the 3σ level. A constant high bias, b = 3 is needed to mitigate the tension to the ∼ 2.3σ level.
THE SNS RING DIPOLE MAGNETIC FIELD QUALITY.
WANDERER,P.; JACKSON,J.; JAIN,A.; LEE,Y.Y.; MENG,W.; PAPAPHILIPPOU,I.; SPATARO,C.; TEPIKIAN,S.; TSOUPAS,N.; WEI,J.
2002-06-03
The large acceptance and compact size of the Spallation Neutron Source (SNS) ring implies the use of short, large aperture dipole magnets, with significant end field errors. The SNS will contain 32 such dipoles. We report magnetic field measurements of the first 16 magnets. The end field errors have been successfully compensated by the use of iron bumps. For 1.0 GeV protons, the magnets have been shimmed to meet the 0.01% specification for rms variation of the integral field. At 1.3 GeV, the rms variation is 0.036%. The load on the corrector system at 1.3 GeV will be reduced by the use of sorting.
3-wave mixing Josephson dipole element
NASA Astrophysics Data System (ADS)
Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.
2017-05-01
Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.
Generation of squeezing: magnetic dipoles on cantilevers
NASA Astrophysics Data System (ADS)
Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre
2011-05-01
We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.
The Antarctic dipole and its predictability
NASA Astrophysics Data System (ADS)
Yuan, Xiaojun; Martinson, Douglas G.
This study investigates the nature of interannual variability of Antarctic sea ice and its relationship with the tropical climate. We find that the dominant interannual variance structure in the sea ice edge and surface air temperature fields is organized as a quasi-stationary wave which we call the “Antarctic Dipole” (ADP). It is characterized by an out-of-phase relationship between the ice and temperature anomalies in the central/eastern Pacific and Atlantic sectors of the Antarctic. The dipole consists of a strong standing mode and a weaker propagating motion within each basin's ice field. It has the same wavelength as the Antarctic Circumpolar Wave (ACW) and dominates the ACW variance. The dipole is clearly associated with tropical ENSO events; it can be predicted with moderate skill using linear regression involving surface temperature two to four months ahead. The prediction performs better in extreme warm/cold years, and best in La Niña years.
Revisiting the NVSS number count dipole
NASA Astrophysics Data System (ADS)
Tiwari, Prabhakar; Nusser, Adi
2016-03-01
We present a realistic modeling of the dipole component of the projected sky distribution of NVSS radio galaxies. The modeling relies on mock catalogs generated within the context of ΛCDM cosmology, in the linear regime of structure formation. After removing the contribution from the solar motion, the mocks show that the remaining observed signal is mostly (70%) due to structures within z lesssim 0.1. The amplitude of the model signal depends on the bias factor b of the NVSS mock galaxies. For sources with flux density, S > 15 mJy, the bias recipe inferred from higher order moments is consistent with the observed dipole signal at 2.12σ. Flux thresholds above 20 mJy yield a disagreement close to the 3σ level. A constant high bias, b = 3 is needed to mitigate the tension to the ~ 2.3σ level.
RHIC AC DIPOLE DESIGN AND CONSTRUCTION.
BAI,M.; METH,M.; PAI,C.; PARKER,B.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.; ZALTSMAN,A.
2001-06-18
Two ac dipoles with vertical and horizontal magnetic field have been proposed at RHIC for applications in linear and non-linear beam dynamics and spin manipulations. A magnetic field amplitude of 380 Gm is required to produce a coherent oscillation of 5 times the rms beam size at the top energy. We take the ac dipole frequency to be 1.0% of the revolution frequency away from the betatron frequency. To achieve the strong magnetic field with minimum power loss, an air-core magnet with two seven turn winding of low loss Litz wire resonating at 64 kHz is designed. The system is also designed to allow one to connect the two magnet winding in series to resonate at 37 kHz for the spin manipulation. Measurements of a half length prototype magnet are also presented.
Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions
NASA Astrophysics Data System (ADS)
Kuznetsov, Andrey A.; Pshenichnikov, Alexander F.
2017-03-01
Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ , the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.
Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions.
Kuznetsov, Andrey A; Pshenichnikov, Alexander F
2017-03-01
Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ, the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.
Search for the electron electric dipole moment
De Mille, D.; Bickman, S.; Hamilton, P.; Jiang, Y.; Prasad, V.; Kawall, D.; Paolino, R.
2006-07-11
Extensions to the Standard Model (SM) typically include new heavy particles and new mechanisms for CP violation. These underlying phenomena can give rise to electric dipole moments of the electron and other particles. Tabletop-scale experiments used to search for these effects are described. Present experiments are already sensitive to new physics at the TeV scale, and new methods could extend this range dramatically. Such experiments could be among the first to show evidence for physics beyond the SM.
Black Saturn with a dipole ring
Yazadjiev, Stoytcho S.
2007-09-15
We present a new stationary, asymptotically flat solution of 5D Einstein-Maxwell gravity describing a Saturn-like black object: a rotating black hole surrounded by a rotating dipole black ring. The solution is generated by combining the vacuum black Saturn solution and the vacuum black ring solution with appropriately chosen parameters. Some basic properties of the solution are analyzed and the basic quantities are calculated.
Trapped field internal dipole superconducting motor generator
Hull, John R.
2001-01-01
A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.
Single-layer high field dipole magnets
Vadim V. Kashikhin and Alexander V. Zlobin
2001-07-30
Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.
Electric dipole moment of light nuclei
NASA Astrophysics Data System (ADS)
Afnan, Iraj R.; Gibson, Benjamin F.
2010-07-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the 3P1 channel. This second contribution is sensitive to off-shell behavior of the 3P1 amplitude.
Observation of dipole-mode vector solitons
Krolikowski; Ostrovskaya; Weilnau; Geisser; McCarthy; Kivshar; Denz; Luther-Davies
2000-08-14
We report on the first experimental observation of a novel type of optical vector soliton, a dipole-mode soliton, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.
Pygmy dipole response in 238U nucleus
NASA Astrophysics Data System (ADS)
Guliyev, Ekber; Kuliev, Ali Akbar; Quliyev, Huseynqulu
2017-02-01
The presence of the El pygmy dipole resonance (PDR) in the actinide nucleus 238U was shown via QRPA. Below the particle threshold energy, 24 excitation states were calculated. The calculations, is demonstrating the presence of a PDR with evidence for K splitting. The calculations further suggest that the PDR in 238U is predominantly K=0. The obtained results show universality of the PDR in atomic nuclei.
Toroidal Dipole Moment of a Massless Neutrino
Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes
2009-04-20
We obtain the toroidal dipole moment of a massless neutrino {tau}{sub v{sub I}}{sup M} using the results for the anapole moment of a massless Dirac neutrino a{sub v{sub I}}{sup D}, which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2){sub L} x U(1){sub Y}.
15 T And Beyond - Dipoles and Quadrupoles
Sabbi, GianLuca
2008-05-19
Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R&D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.
Electric dipole moment of light nuclei
Gibson, Benjamin; Afnan, I R
2010-01-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
The midpoint between dipole and parton showers
Höche, Stefan; Prestel, Stefan
2015-09-28
We present a new parton-shower algorithm. Borrowing from the basic ideas of dipole cascades, the evolution variable is judiciously chosen as the transverse momentum in the soft limit. This leads to a very simple analytic structure of the evolution. A weighting algorithm is implemented that allows one to consistently treat potentially negative values of the splitting functions and the parton distributions. Thus, we provide two independent, publicly available implementations for the two event generators PYTHIA and SHERPA.
Bent Solenoids with Superimposed Dipole Fields
Meinke, Rainer, B.; Goodzeit, Carl, L.
2000-03-21
A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.
Sextupole correction coils for SSC model dipoles
Rechen, J.B.; Gilbert, W.S.; Hassenzahl, W.V.
1985-05-01
Local correction of the sextupole error field is proposed for the dipoles of the SSC. This requirement is imposed on the design by the high field quality required both during injection at low fields and during colliding beam operation at high fields. Error fields in the main dipole windings due to superconductor magnetization and conductor misplacements and unwanted sextupole and decapole magnetic field terms. To correct the sextupole error field we have constructed sextupole coils made of a single layer of superconducting wire and have mounted them with high precision on the stainless steel bore tube. These correction coils have been operated with 1 meter long SSC model dipoles in both the self-powered and externally-powered modes. The sextupole field in the bore has been reduced by as much as a factor of 50. The level of correction depends strongly on the angular alignment of the correction coil with respect to the sextupole error field it is to correct. Results of tests, performance of the correction coils and alignment requirements for the system are presented.
Local electric dipole moments: A generalized approach.
Groß, Lynn; Herrmann, Carmen
2016-09-30
We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc.
Dynamics of two-dimensional dipole systems
Golden, Kenneth I.; Kalman, Gabor J.; Hartmann, Peter; Donko, Zoltan
2010-09-15
Using a combined analytical/molecular dynamics approach, we study the current fluctuation spectra and longitudinal and transverse collective mode dispersions of the classical two-dimensional (point) dipole system (2DDS) characterized by the {phi}{sub D}(r)={mu}{sup 2}/r{sup 3} repulsive interaction potential; {mu} is the electric dipole strength. The interest in the 2DDS is twofold. First, the quasi-long-range 1/r{sup 3} interaction makes the system a unique classical many-body system, with a remarkable collective mode behavior. Second, the system may be a good model for a closely spaced semiconductor electron-hole bilayer, a system that is in the forefront of current experimental interest. The longitudinal collective excitations, which are of primary interest for the liquid phase, are acoustic at long wavelengths. At higher wave numbers and for sufficiently high coupling strength, we observe the formation of a deep minimum in the dispersion curve preceded by a sharp maximum; this is identical to what has been observed in the dispersion of the zero-temperature bosonic dipole system, which in turn emulates so-called roton-maxon excitation spectrum of the superfluid {sup 4}He. The analysis we present gives an insight into the emergence of this apparently universal structure, governed by strong correlations. We study both the liquid and the crystalline solid state. We also observe the excitation of combination frequencies, resembling the roton-roton, roton-maxon, etc. structures in {sup 4}He.
Optimizing the Zeldovich approximation
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.
1994-01-01
We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment
Electric dipole moment in KH2PO4 systematically modified by proton irradiation
NASA Astrophysics Data System (ADS)
Jung Kweon, Jin; Eui Lee, Cheol; Noh, S. J.; Kim, H. S.
2012-01-01
We have carried out an impedance spectroscopy study on a series of proton-irradiated KH2PO4 (KDP) systems. A systematic modification was observed in the transverse dipole moment of the proton-irradiated KDP systems, associated with hydrogen-ion displacements, as obtained from dielectric constant measurements by using a mean-field approximation. Besides, intercorrelation of the charge transport with the dielectric properties was revealed, both having closely to do with the hydrogen-bond modification.
The monoenergetic approximation in stellarator neoclassical calculations
NASA Astrophysics Data System (ADS)
Landreman, Matt
2011-08-01
In 'monoenergetic' stellarator neoclassical calculations, to expedite computation, ad hoc changes are made to the kinetic equation so speed enters only as a parameter. Here we examine the validity of this approach by considering the effective particle trajectories in a model magnetic field. We find monoenergetic codes systematically under-predict the true trapped particle fraction. The error in the trapped ion fraction can be of order unity for large but experimentally realizable values of the radial electric field, suggesting some results of these codes may be unreliable in this regime. This inaccuracy is independent of any errors introduced by approximation of the collision operator.
NASA Astrophysics Data System (ADS)
Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury; Koshkina, Yulia; Trubacheva, Olga; Zlobinskiy, Arkadiy
2016-12-01
Theoretically, a circular electric dipole is a horizontal analogue of a vertical electric dipole and, similarly to the latter, it generates the unimodal transverse magnetic field. As a result, it demonstrates exceptionally high signal detectability and both vertical and lateral resolutions, particularly regarding thin resistive targets. The ideal circular electric dipole is represented by two concentric continuums of electrodes connected to different poles of the transmitter. In practice, the ideal dipole is adequately approximated by eight outer electrodes and one central electrode. The greatest disadvantage of circular electric dipoles stems from the necessity to provide perfectly symmetrical radial grounded lines with equal current in each line. In addition, relocating such a cumbersome system is very difficult on land and offshore. All these disadvantages might be significantly reduced in the proposed ice-borne system. The system utilizes drifting ice floes in high latitude Arctic regions as stable platforms for locating marine circular electric dipole transmitters, while the underlain ocean water is a perfect environment for grounding transmitter and receiver electrodes. Taking into account the limited size of drifting floes, mainly short offset methods can be applied from the surface. Among those, the proposed method is superior in providing sufficiently high signal detectability and resolution to delineate deep targets below very conductive ocean water and sub-seafloor sediments. Other existing methods, which are able to provide similar characteristics, utilize near bottom arrays and would be hard to employ in the presence of a thick ice cover.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1978-01-01
The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.
Topics in Metric Approximation
NASA Astrophysics Data System (ADS)
Leeb, William Edward
This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.
A simulation assessment of the thermodynamics of dense ion-dipole mixtures with polarization
Bastea, Sorin
2014-07-28
Molecular dynamics (MD) simulations are employed to ascertain the relative importance of various electrostatic interaction contributions, including induction interactions, to the thermodynamics of dense, hot ion-dipole mixtures. In the absence of polarization, we find that an MD-constrained free energy term accounting for the ion-dipole interactions, combined with well tested ionic and dipolar contributions, yields a simple, fairly accurate free energy form that may be a better option for describing the thermodynamics of such mixtures than the mean spherical approximation (MSA). Polarization contributions induced by the presence of permanent dipoles and ions are found to be additive to a good approximation, simplifying the thermodynamic modeling. We suggest simple free energy corrections that account for these two effects, based in part on standard perturbative treatments and partly on comparisons with MD simulation. Even though the proposed approximations likely need further study, they provide a first quantitative assessment of polarization contributions at high densities and temperatures and may serve as a guide for future modeling efforts.
Expectation values of single-particle operators in the random phase approximation ground state.
Kosov, D S
2017-02-07
We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.
Expectation values of single-particle operators in the random phase approximation ground state
NASA Astrophysics Data System (ADS)
Kosov, D. S.
2017-02-01
We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.
NASA Astrophysics Data System (ADS)
Peshkin, Murray
2000-03-01
A general theorem for matter-wave interferometry that relies only on the unitary property of the Schroedinger equation and not upon any classical or semi-classical approximation restricts the benefits of using long drift spaces. In particular, it negates some, but not all, suggestions that have been made for measuring the neutron's electric-dipole moment by interferometry.
Dipole Density Solitons and Solitary Dipole Vortices in an Inhomogeneous Space Plasma
Wu, D.J.; Huang, G.L.; Wang, D.Y.
1996-11-01
A new type of density soliton, a dipole density soliton, as well as single dip and hump density solitons, were discovered in recent satellite observations of space plasmas. Moreover, these three kinds of density solitons are all associated with similar local electromagnetic fluctuations with Alfv{acute e}n characteristics and have the similar spatial scale comparable with the electron inertial length. This indicates that they originate from the same physical mechanism. We propose that the solitary plasma dipole vortex model can consistently account for these three kinds of density solitons, with the differences in their appearances attributed to the differences in the positions and directions at which the satellite crosses the solitary dipole vortex. {copyright} {ital 1996 The American Physical Society.}
A novel background field removal method for MRI using projection onto dipole fields (PDF).
Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi
2011-11-01
For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.
Bound states of a light atom and two heavy dipoles in two dimensions
NASA Astrophysics Data System (ADS)
Rosa, D. S.; Bellotti, F. F.; Jensen, A. S.; Krein, G.; Yamashita, M. T.
2016-12-01
We study a three-body system, formed by a light particle and two identical heavy dipoles, in two dimensions in the Born-Oppenheimer approximation. We present the analytic light-particle wave function resulting from an attractive zero-range potential between the light and each of the heavy particles. It expresses the large-distance universal properties which must be reproduced by all realistic short-range interactions. We calculate the three-body spectrum for zero heavy-heavy interaction as a function of light to heavy mass ratio. We discuss the relatively small deviations from Coulomb estimates and the degeneracies related to radial nodes and angular momentum quantum numbers. We include a repulsive dipole-dipole interaction and investigate the three-body solutions as functions of strength and dipole direction. Avoided crossings occur between levels localized in the emerging small and large-distance minima, respectively. The characteristic exchange of properties such as mean-square radii are calculated. Simulation of quantum information transfer is suggested. For large heavy-heavy-particle repulsion all bound states have disappeared into the continuum. The corresponding critical strength is inversely proportional to the square of the mass ratio, far from the linear dependence from the Landau criterion.
Effect of rotational-state-dependent molecular alignment on the optical dipole force
NASA Astrophysics Data System (ADS)
Kim, Lee Yeong; Lee, Ju Hyeon; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk
2016-07-01
The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. Herein, we consider the effects of state-dependent alignment in estimating the optical dipole force acting on the molecules and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear molecules subject to either propagating or standing-wave optical fields for a range of temperatures and laser intensities. The results demonstrate that the alignment-dependent effective polarizability can serve to provide correct estimates of the optical dipole force, on which a state-selection method applicable to nonpolar molecules could be based. We note that an analogous analysis of the forces acting on polar molecules subject to an inhomogeneous static electric field reveals a similarly strong dependence on molecular orientation.
Molecular Dipole Moments within the Incremental Scheme Using the Domain-Specific Basis-Set Approach.
Fiedler, Benjamin; Coriani, Sonia; Friedrich, Joachim
2016-07-12
We present the first implementation of the fully automated incremental scheme for CCSD unrelaxed dipole moments using the domain-specific basis-set approach. Truncation parameters are varied, and the accuracy of the method is statistically analyzed for a test set of 20 molecules. The local approximations introduce small errors at second order and negligible ones at third order. For a third-order incremental CCSD expansion with a CC2 error correction, a cc-pVDZ/SV domain-specific basis set (tmain = 3.5 Bohr), and the truncation parameter f = 30 Bohr, we obtain a mean error of 0.00 mau (-0.20 mau) and a standard deviation of 1.95 mau (2.17 mau) for the total dipole moments (Cartesian components of the dipole vectors). By analyzing incremental CCSD energies, we demonstrate that the MP2 and CC2 error correction schemes are an exclusive correction for the domain-specific basis-set error. Our implementation of the incremental scheme provides fully automated computations of highly accurate dipole moments at reduced computational cost and is fully parallelized in terms of the calculation of the increments. Therefore, one can utilize the incremental scheme, on the same hardware, to extend the basis set in comparison to standard CCSD and thus obtain a better total accuracy.
Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei
NASA Astrophysics Data System (ADS)
Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet
2010-12-01
In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B(E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.
Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei
NASA Astrophysics Data System (ADS)
Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet
2010-12-01
In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B( E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.
Impact of the A48 collimator on the Tevatron B0 dipoles
Ludovic Y. Nicolas; Nikolai V. Mokhov
2003-06-23
To protect the CDF detector components in an event of an abort kicker prefire (AKP) in the Tevatron, a new collimator is to be installed at the A48 location during the summer 2003 shutdown. Detailed calculations have shown that this 0.5-m long ''single L-shape'' steel collimator will intercept a bunch of protons when such an incident occurs, providing reliable protection of the CDF main detector at an AKP. It will also mitigate the backgrounds induced by elastic beam-gas interactions upstream of B0. Although the Roman Pot detectors downstream of the A48 collimator will see an increased background, the amount of radiation they will receive either resulting from beam halo interactions in the collimator or during an AKP will not damage their sensitive parts. Secondaries resulting from beam halo interactions with the A48 collimator do not noticeably affect the downstream dipoles. The case of an AKP is quite different. As opposed to halo hits in the ''single-L shape'' unit (around 10{sup 5} p/s), a bunch lost on A48 during an AKP represents more than 2 x 10{sup 11} protons ''instantaneously'' interacting with the collimator material. Although the collimator protects the downstream superconducting (SC) dipoles against a damage in such an event, secondaries generated in A48 create a significant radiation load on the dipoles which will most likely result in a quench of the first one. This effect is studied in detail in this note. Energy deposition in the B0 dipoles downstream of a new A48 collimator to be installed in the Tevatron this summer is calculated with the MARS14 code to evaluate the dipole's quench stability at an abort kicker prefire.
Ravishankar, C., Hughes Network Systems, Germantown, MD
1998-05-08
Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the
Beyond the Kirchhoff approximation
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto
1989-01-01
The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.
Magnetohydrodynamics wave propagation in the neighbourhood of two dipoles
NASA Astrophysics Data System (ADS)
McLaughlin, J. A.; Hood, A. W.
2006-06-01
Context: .This paper is the third in a series of investigations by the authors. Aims: .The nature of fast magnetoacoustic and Alfvén waves is investigated in a 2D β=0 plasma in the neighbourhood of two dipoles. Methods: .We use both numerical simulations (two-step Lax-Wendroff scheme) and analytical techniques (WKB approximation). Results: .It is found that the propagation of the linear fast wave is dictated by the Alfvén speed profile and that close to the null, the wave is attracted to the neutral point. However, it is also found that in this magnetic configuration some of the wave can escape the refraction effect; this had not been seen in previous investigations by the authors. The wave split occurs near the regions of very high Alfvén speed (found near the loci of the two dipoles). Also, for the set-up investigated it was found that 40% of the wave energy accumulates at the null. Ohmic dissipation will then extract the wave energy at this point. The Alfvén wave behaves in a different manner in that part of the wave accumulates along the separatrices and part escapes. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. Conclusions: .The phenomenon of wave accumulation at a specific place is a feature of both wave types, as is the result that a fraction of the wave can now escape the numerical box when propagating in this magnetic configuration.
Electric dipoles vs. magnetic dipoles —For two molecules in a harmonic trap
NASA Astrophysics Data System (ADS)
Górecki, Wojciech; Rzążewski, Kazimierz
2017-06-01
We study energy levels of two heteronuclear molecules moving in a spherically symmetric harmonic trap. A role of electric dipole interactions is compared and contrasted with our earlier results (Ołdziejewski R. et al., EPL, 114 (2016) 46003) for two magnetic dipolar atoms. We stress the importance of a rotational energy with its value which is very high compared to the energy of a dipolar interaction. We show that dipolar forces do not play a significant role in the ground state of the system under typical experimental conditions. However, there exist excited states that exhibit anticrossings similar to the ones observed for magnetic dipoles.
Joint inversion of Wenner and dipole-dipole data to study a gasoline-contaminated soil
NASA Astrophysics Data System (ADS)
de la Vega, Matías; Osella, Ana; Lascano, Eugenia
2003-11-01
The goal of this work was to study a contaminated soil due to a gasoline spill produced by fissures in a concrete purge chamber located along a gas transmission line. A monitoring well drilled 16 m down gradient from the purge chamber revealed the presence of a gasoline layer of 0.5 m thick at 1.5 m depth, floating on top of the water table. A second well, drilled 30 m away from the first well, and in the same direction, did not show any evidence of contamination. To investigate this problem, a geoelectrical survey was conducted, combining dipole-dipole and Wenner arrays. First, four dipole-dipole profiles in a direction perpendicular to the longitudinal axis joining the wells were carried out. The electrical tomographies obtained from the 2D inversion of the data showed that the contaminated region was characterized by a resistive plume located at a depth between 1 to 2 m and had lateral extent of about 6-8 m. The longitudinal extension was less than 20 m, since the last profile located 30 m farther from the chamber did not show this kind of anomaly. To better determine the longitudinal extension, we performed a dipole-dipole profile along a line in this direction. The inverse model confirmed that the extension of the contaminated section was about 16 m. To complete the study of the deeper layer, we carried out Wenner soundings. The results of the inversion process indicated that to a depth of 20 m the soil was very conductive, because of the presence of clays as the main constituents, which confine the contaminant within this impermeable surrounding. To improve the inverse model, we performed a joint inversion of dipole-dipole and Wenner data. Analysis of the depth of penetration showed that it increased to 25 m and comparing the resulting model with the ones obtained from each array separately, we concluded that the joint inversion improves the depth obtained by the survey, while maintaining the shallow lateral resolution.
Influence of medium chirality on electric dipole-dipole resonance energy transfer
NASA Astrophysics Data System (ADS)
Rodriguez, Justo J.; Salam, A.
2010-09-01
Electric dipole-dipole resonance energy transfer taking place between two chromophores in an absorptive and dispersive chiral medium is studied. Quantized electromagnetic field operators in this environment are first obtained from the time-harmonic Maxwell equations and the Drude-Born-Fedorov equations. Second-order time-dependent perturbation theory and the Fermi Golden rule are used to calculate the transfer rate. A complicated dependence on the permittivity, permeability and chirality admittance of the medium is found. In the near-zone, the rate is amplified in a medium with negligible absorption comprised of one enantiomer relative to that in a racemic mixture.
Probing the Lipid Membrane Dipole Potential by Atomic Force Microscopy
Yang, Yi; Mayer, Kathryn M.; Wickremasinghe, Nissanka S.; Hafner, Jason H.
2008-01-01
The electrostatic properties of biological membranes can be described by three parameters: the transmembrane potential, the membrane surface potential, and the membrane dipole potential. The first two are well characterized in terms of their magnitudes and biological effects. The dipole potential, however, is not well characterized. Various methods to measure the membrane dipole potential indirectly yield different values, and there is not even agreement on the source of the membrane dipole moment. This ambiguity impedes investigations into the biological effects of the membrane dipole moment, which should be substantial considering the large interfacial fields with which it is associated. Electrostatic analysis of phosphatidylcholine lipid membranes with the atomic force microscope reveals a repulsive force between the negatively charged probe tips and the zwitterionic lipids. This unexpected interaction has been analyzed quantitatively to reveal that the repulsion is due to a weak external field created by the internal membrane dipole potential. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported phosphatidylcholine membranes. This new ability to quantitatively measure the membrane dipole moment in a noninvasive manner with nanometer scale spatial resolution will be useful in identifying the biological effects of the dipole potential. PMID:18805919
Passive synchronization of finite dipoles in a doubly periodic domain
NASA Astrophysics Data System (ADS)
Tsang, Alan Cheng Hou; Kanso, Eva
2012-11-01
We consider the interaction dynamics of finite dipoles in a doubly periodic domain. A finite dipole is a pair of equal and opposite strength point vortices separated by a finite distance throughout its time evolution. The finite dipole dynamical system has been proposed as a model that captures the far-field hydrodynamics interactions in fish schools or collections of swimming bodies in an inviscid fluid. In this work, we formulate the equations of motion governing the dynamics of finite dipoles in a doubly periodic domain. We show that a single dipole in a doubly-periodic box exhibits either regular or chaotic behavior, depending on the initial angle of orientation of the dipole. In the case of the two dipoles, we identify a variety of interesting interaction modes including collision, switching, and passive synchronization of the dipoles. In the case of three dipoles, we observe the formation of relative equilibrium in finite time when the dipoles move together in a way reminiscent to that of flocking behavior.
NASA Astrophysics Data System (ADS)
Hill, Vanessa J.; Rowlands, Peter
2008-10-01
We propose that the mathematical structures related to the `universal rewrite system' define a universal process applicable to Nature, which we may describe as `Nature's code'. We draw attention here to such concepts as 4 basic units, 64- and 20-unit structures, symmetry-breaking and 5-fold symmetry, chirality, double 3-dimensionality, the double helix, the Van der Waals force and the harmonic oscillator mechanism, and our explanation of how they necessarily lead to self-aggregation, complexity and emergence in higher-order systems. Biological concepts, such as translation, transcription, replication, the genetic code and the grouping of amino acids appear to be driven by fundamental processes of this kind, and it would seem that the Platonic solids, pentagonal symmetry and Fibonacci numbers have significant roles in organizing `Nature's code'.
Shalev, Daniel
2017-01-01
"Let's get one thing straight: there is no such thing as a show code," my attending asserted, pausing for effect. "You either try to resuscitate, or you don't. None of this halfway junk." He spoke so loudly that the two off-service consultants huddled at computers at the end of the unit looked up… We did four rounds of compressions and pushed epinephrine twice. It was not a long code. We did good, strong compressions and coded this man in earnest until the end. Toward the final round, though, as I stepped up to do compressions, my attending looked at me in a deep way. It was a look in between willing me as some object under his command and revealing to me everything that lay within his brash, confident surface but could not be spoken. © 2017 The Hastings Center.
NASA Astrophysics Data System (ADS)
Andreev, Pavel
2015-05-01
In spite of the long-range nature of the dipole-dipole interaction, the self-consistent field part of the dipole-dipole interaction in BECs equals to zero. Hence the dipole-dipole interaction is related to the exchange part of the dipole-dipole interaction in BECs. However the exchange part of the dipole-dipole interaction in BECs coincides with the result of the formal application of the self-consistent field to dipolar BECs. Considering the electric dipole-dipole interaction in accordance with the Maxwell equations we obtain the positive and stable contribution of dipoles in the Bogoliubov spectrum. We obtain a different picture at the study of dipolar degenerate fermions, where there are both parts of the dipole-dipole interaction. The self-consistent field part gives the anisotropic positive contribution and the exchange part gives the negative isotropic contribution. The sing of the full contribution of dipoles depends on the direction of wave propagation. Hence the dipolar part of the spectrum of fermions brings the instability at large enough dipole moment, when the dipolar part overcomes the Fermi pressure. Strong dependence of the electric dipole-dipole interaction on the spin polarization is described as well.
An Exact Form of Lilley's Equation with a Velocity Quadrupole/Temperature Dipole Source Term
NASA Technical Reports Server (NTRS)
Goldstein, Marvin E.
2001-01-01
There have been several attempts to introduce approximations into the exact form of Lilley's equation in order to express the source term as the sum of a quadrupole whose strength is quadratic in the fluctuating velocities and a dipole whose strength is proportional to the temperature fluctuations. The purpose of this note is to show that it is possible to choose the dependent (i.e., the pressure) variable so that this type of result can be derived directly from the Euler equations without introducing any additional approximations.
New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.
Ioanoviciu, Damaschin
2015-01-01
A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.
Approximate Green's function methods for HZE transport in multilayered materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.
Lift-induced vortex dipole collapse
NASA Astrophysics Data System (ADS)
Ravichandran, S.; Dixit, Harish N.; Govindarajan, Rama
2017-03-01
Two vortices of opposite sign in two dimensions merely move along parallel lines. We show that even a small buoyancy completely changes this dynamics. When the vortices are of different density from their surroundings, buoyancy produces a lateral drift by Kutta lift. This causes the density patches to merge, and the vortex dipole to collapse. This is followed by a rapid upward (for light vortices) ejection and creation of small-scale structures by baroclinic torque. Our simple analytical equation explains the trajectory of the vortices. We show that these events occur in viscous simulations of many buoyant vortices.
Dipole Magnet for Beam Line Switching
NASA Astrophysics Data System (ADS)
Yoshida, Jun
We are developing a Bi-2223 HTS dipole magnet for beam line switching for use in the cyclotron facility of RCNP, Osaka University. Exit beam lines are periodically switched by increasing and decreasing of the magnetic field between 0 T and 1.6 T with a switching time of 10 sec. A Bi-2223 coil assembly was designed with the electromagnetic force support and the suppression of temperature rise by AC loss and eddy current loss. In this chapter, we introduce this magnet as a practical example of conduction-cooled Bi-2223-HTS magnet for accelerator application.
Multilayer Microstrip Slot And Dipole Array Antenna
NASA Technical Reports Server (NTRS)
Tulintseff, Ann N.
1994-01-01
Multilayer antenna structure contains interleaved linear subarrays of microstrip dipole and slot radiating antenna elements to provide compact, dual-band antenna. Structure also contains associated microstrip transmission lines, plus high-power amplifiers for transmission and low-noise amplifiers for reception. Overall function is to transmit in horizontal polarization at frequency of 29.634 GHz and receive in vertical polarization at 19.914 GHz, in direction 44 degrees from broadside to antenna. Antenna structure is part of apparatus described in "Steerable K/Ka-band Antenna for Land-Mobile Satellite Applications," NPO-18772.
The universal function in color dipole model
NASA Astrophysics Data System (ADS)
Jalilian, Z.; Boroun, G. R.
2017-10-01
In this work we review color dipole model and recall properties of the saturation and geometrical scaling in this model. Our primary aim is determining the exact universal function in terms of the introduced scaling variable in different distance than the saturation radius. With inserting the mass in calculation we compute numerically the contribution of heavy productions in small x from the total structure function by the fraction of universal functions and show the geometrical scaling is established due to our scaling variable in this study.
Hierarchical Approximate Bayesian Computation
Turner, Brandon M.; Van Zandt, Trisha
2013-01-01
Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior distribution of a model’s parameters. It is especially important when the model to be fit has no explicit likelihood function, which happens for computational (or simulation-based) models such as those that are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied only to models with few parameters. Extending ABC to hierarchical models has been difficult because high-dimensional hierarchical models add computational complexity that conventional ABC cannot accommodate. In this paper we summarize some current approaches for performing hierarchical ABC and introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian techniques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models. We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one with and one without a tractable likelihood function. PMID:24297436
Roy, Swapnoneel; Thakur, Ashok Kumar
2008-01-01
Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.
ERIC Educational Resources Information Center
Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien
2013-01-01
This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…
ERIC Educational Resources Information Center
Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien
2013-01-01
This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…
NASA Technical Reports Server (NTRS)
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.
Non-free gas of dipoles of non-singular screw dislocations and the shear modulus near the melting
NASA Astrophysics Data System (ADS)
Malyshev, Cyril
2014-12-01
The behavior of the shear modulus caused by proliferation of dipoles of non-singular screw dislocations with finite-sized core is considered. The representation of two-dimensional Coulomb gas with smoothed-out coupling is used, and the stress-stress correlation function is calculated. A convolution integral expressed in terms of the modified Bessel function K0 is derived in order to obtain the shear modulus in approximation of interacting dipoles. Implications are demonstrated for the shear modulus near the melting transition which are due to the singularityless character of the dislocations.
A plasmonic dipole optical antenna coupled quantum dot infrared photodetector
NASA Astrophysics Data System (ADS)
Mojaverian, Neda; Gu, Guiru; Lu, Xuejun
2015-12-01
In this paper, we report a full-wavelength plasmonic dipole optical antenna coupled quantum dot infrared photodetector (QDIP). The plasmonic dipole optical antenna can effectively modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR) within the nanometer (nm) gap region of the full-wavelength dipole antenna. The plasmonic dipole optical antenna coupled QDIP shows incident-angle-dependent photocurrent enhancement. The angular dependence follows the far-field pattern of a full-wavelength dipole antenna. The directivity of the plasmonic dipole optical antenna is measured to be 1.8 dB, which agrees well with the antenna simulation. To our best knowledge, this is the first report of the antenna far-field and directivity measurement. The agreement of the detection pattern and the directivity with antenna theory confirms functions of an optical antenna are similar to that of a RF antenna.
resistivity curves are developed and compared with the equivalent curves one would obtain using the DC dipole method and the magnetotelluric method. It...Basin, near Pecos, Texas is analyzed by comparison to layered models. The resulting models are compared to models obtained from well-logs and magnetotelluric data. (Author)
Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling
NASA Astrophysics Data System (ADS)
Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu
2016-08-01
Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2011-08-01
Dipole oscillator strength distributions (DOSDs) for ozone are constructed from experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density, and molar refractivity data. A lack of photoabsorption data in the intermediate energy region from 24 to 524 eV necessitates the use of a mixture rule in that region. For this purpose, a DOSD for O2 is constructed first. The dipole properties for O2 are essentially the same as those obtained in earlier work even though most of the input data is from more recent experiments. A discrepancy is found between the refractivity data and photoabsorption data in the 10-20.6 eV range for ozone. A reliable ozone DOSD of the sort obtained for many other species remains out of reach. However, it is suggested that the true dipole properties of ozone lie between those predicted by two distributions that we present.
NASA Astrophysics Data System (ADS)
Gontijo, R. G.; Cunha, F. R.
2017-06-01
This work describes a numerical model to compute the translational and rotational motion of N spherical magnetic particles settling in a quiescent viscous fluid under creeping flow condition. The motion of the particles may be produced by the action of gravitational forces, Brownian thermal fluctuations, magnetic dipole-dipole interactions, external magnetic field, and hydrodynamic interactions. In order to avoid particle overlap, we consider a repulsive force based on a variation of a screened-Coulomb potential mixed with Hertz contact forces. The inertia of the particles is neglected so that a mobility approach to describe the hydrodynamic interactions is used. The magnetic dipoles are fixed with respect to the particles themselves. Thus they can only interact magnetically between them and with an external applied magnetic field. Therefore the effect of magnetic field moment rotation relative to the particle as a consequence of a finite amount of particle anisotropy is neglected in this work. On the other hand, the inclusion of particle viscous hydrodynamic interactions and dipolar interactions is considered in our model. Both long-range hydrodynamic and magnetic interactions are accounted by a sophisticated technique of lattice sums. This work considers several possibilities of periodic and non-periodic particle interaction schemes. This paper intends to show the benefits and disadvantages of the different approaches, including a hybrid possibility of computing periodic and non-periodic particle interactions. The well-known mean sedimentation velocity and the equilibrium magnetization of the suspension are computed to validate the numerical scheme. The comparison is performed with the existent theoretical models valid for dilute suspensions and several empirical correlations available in the current literature. In the presence of dipole-dipole particle interactions, the simulations show a non-monotonic behavior of the mean sedimentation velocity as the particle
Hybrid of Quantum Phases for Induced Dipole Moments
NASA Astrophysics Data System (ADS)
Ma, Kai
2016-09-01
The quantum phase effects for induced electric and magnetic dipole moments are investigated. It is shown that the phase shift received by induced electric dipole has the same form with the one induced by magnetic dipole moment, therefore the total phase is a hybrid of these two types of phase. This feature indicates that in order to have a decisive measurement on either one of these two phases, it is necessary to measure the velocity dependence of the observed phase.
Vanishing of dipole matrix elements at level crossings.
NASA Technical Reports Server (NTRS)
Kocher, C. A.
1972-01-01
Demonstration that the vanishing of certain coupling matrix elements at level crossings follow from angular momentum commutation relations. A magnetic dipole transition having delta M = plus or minus 1, induced near a crossing of the levels in a nonzero magnetic field, is found to have a dipole matrix element comparable to or smaller than the quotient of the level separation and the field. This result also applies in the analogous electric field electric dipole case.
Lunar magnetic field - Permanent and induced dipole moments
NASA Technical Reports Server (NTRS)
Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.
1974-01-01
Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.
Propagation of magnetic dipole radiation through a medium.
Arnoldus, Henk F; Xu, Zhangjin
2016-05-01
An oscillating magnetic dipole moment emits radiation. We assume that the dipole is embedded in a medium with relative permittivity ϵ_{r} and relative permeability μ_{r}, and we have studied the effects of the surrounding material on the flow lines of the emitted energy. For a linear dipole moment in free space the flow lines of energy are straight lines, coming out of the dipole. When located in a medium, these field lines curve toward the dipole axis, due to the imaginary part of μ_{r}. Some field lines end on the dipole axis, giving a nonradiating contribution to the energy flow. For a rotating dipole moment in free space, each field line of energy flow lies on a cone around the axis perpendicular to the plane of rotation of the dipole moment. The field line pattern is an optical vortex. When embedded in a material, the cone shape of the vortex becomes a funnel shape, and the windings are much less dense than for the pattern in free space. This is again due to the imaginary part of μ_{r}. When the real part of μ_{r} is negative, the field lines of the vortex swirl around the dipole axis opposite to the rotation direction of the dipole moment. For a near-single-negative medium, the spatial extent of the vortex becomes huge. We compare the results for the magnetic dipole to the case of an embedded electric dipole.
Dipole characterization of single neurons from their extracellular action potentials
Victor, Jonathan D.
2011-01-01
The spatial variation of the extracellular action potentials (EAP) of a single neuron contains information about the size and location of the dominant current source of its action potential generator, which is typically in the vicinity of the soma. Using this dependence in reverse in a three-component realistic probe + brain + source model, we solved the inverse problem of characterizing the equivalent current source of an isolated neuron from the EAP data sampled by an extracellular probe at multiple independent recording locations. We used a dipole for the model source because there is extensive evidence it accurately captures the spatial roll-off of the EAP amplitude, and because, as we show, dipole localization, beyond a minimum cell-probe distance, is a more accurate alternative to approaches based on monopole source models. Dipole characterization is separable into a linear dipole moment optimization where the dipole location is fixed, and a second, nonlinear, global optimization of the source location. We solved the linear optimization on a discrete grid via the lead fields of the probe, which can be calculated for any realistic probe + brain model by the finite element method. The global source location was optimized by means of Tikhonov regularization that jointly minimizes model error and dipole size. The particular strategy chosen reflects the fact that the dipole model is used in the near field, in contrast to the typical prior applications of dipole models to EKG and EEG source analysis. We applied dipole localization to data collected with stepped tetrodes whose detailed geometry was measured via scanning electron microscopy. The optimal dipole could account for 96% of the power in the spatial variation of the EAP amplitude. Among various model error contributions to the residual, we address especially the error in probe geometry, and the extent to which it biases estimates of dipole parameters. This dipole characterization method can be applied to
Mutual impedance of nonplanar-skew sinusoidal dipoles
NASA Technical Reports Server (NTRS)
Richmond, J. H.; Geary, N. H.
1975-01-01
The mutual impedance expressions for parallel dipoles in terms of sine-integrals and cosine-integrals have been published by King (1957). The investigation reported provides analogous expressions for nonparallel dipoles. The expressions presented are most useful when the monopoles are close together. The theory of moment methods shows an approach for employing the mutual impedance of filamentary sinusoidal dipoles to calculate the impedance and scattering properties of straight and bent wires with small but finite diameter.
Equivalent Moving Dipole Localization of Cardiac Ectopic Activity in a Swine Model during Pacing
Lai, Dakun; Liu, Chenguang; Eggen, Michael D.; Iaizzo, Paul. A.; He, Bin
2010-01-01
Localization of the initial site of cardiac ectopic activity has direct clinical benefits for treating focal cardiac arrhythmias. The aim of the present study is to experimentally evaluate the performance of the equivalent moving dipole technique on non-invasively localizing the origin of the cardiac ectopic activity from body surface potential maps (BSPMs) in a well-controlled experimental setting. The cardiac ectopic activities were induced in 4 well-controlled intact pigs by either single-site pacing or dual-site pacing within the ventricles. In each pacing study, the initiation sites (ISs) of cardiac ectopic activity were localized by estimating the locations of a single moving dipole (SMD) or two moving dipoles (TMDs) from the measured BSPMs, and compared with the precise pacing sites (PSs). For the single-site pacing, the averaged SMD localization error was 18.6 ± 3.8 mm over 16 sites, while the averaged distance between the TMD locations and the two corresponding pacing sites was slightly larger (24.9 ± 6.2 mm over 5 pairs of sites), both occurring at the onset of the QRS complex (10–25 ms following the pacing spike). The obtained SMD trajectories originated near the stimulus site and then traversed across the heart during the ventricular depolarization. The present experimental results show that the initial location of the moving dipole can provide the approximate site of origin of a cardiac ectopic activity in vivo, and that the migration of the dipole can portray the passage of an ectopic beat across the heart. PMID:20515710
Helical dipole partial Siberian snake for the AGS
NASA Astrophysics Data System (ADS)
Takano, J.; Ahrens, L. A.; Alforque, R.; Bai, M.; Brown, K.; Courant, E. D.; Ganetis, G.; Gardner, C. J.; Glenn, J. W.; Hattori, T.; Huang, H.; Jain, A.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tsoupas, N.; Tepikian, S.; Tuozzolo, J.; Wood, J.; Zelenski, A.; Zeno, K.
2006-11-01
Overcoming depolarization resonances in medium class synchrotrons (3 to 50 GeV) is one of the key issues in accelerating a highly polarized proton beam up to very high energies. Since such synchrotrons, including the Alternating Gradient Synchrotron (AGS) and the J-PARC Main Ring, generally do not have sufficiently long straight sections to accommodate full Siberian snakes with reasonable beam excursions, the practical solution is to use partial Siberian snakes that rotate the particle spin about a horizontal axis by a fraction of 180 degrees. For the AGS, we designed and installed a new partial Siberian snake consisting of a helical dipole magnet with a double pitch structure. The helical structure reduced the amount of transverse coupling as compared to that achieved by the previous solenoidal partial snake. This coupling led to partial depolarization at certain energies from horizontal betatron oscillations. The helical magnetic field in the snake magnet was calculated using a 3D magnetic field code TOSCA, and was optimized by segmenting the helical pitch and varying the lengths of the segments. Fabrication errors were checked and verified to be within required tolerances. Finally, the transverse field was measured by rotating harmonic coils. After installation, we achieved a 37.5% improvement in polarization - from 40% with the old solenoid to 55% with the new helical snake, thereby demonstrating that the helical partial snake is an effective device to suppress depolarization resonances in medium-sized synchrotrons.
Low-lying dipole resonance in neutron-rich Ne isotopes
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi; van Giai, Nguyen
2008-07-01
Microscopic structure of the low-lying isovector dipole excitation mode in neutron-rich Ne26,28,30 is investigated by performing deformed quasiparticle-random-phase-approximation (QRPA) calculations. The particle-hole residual interaction is derived from a Skyrme force through a Landau-Migdal approximation. We obtain the low-lying resonance in Ne26 at around 8.6 MeV. It is found that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule. This excitation mode is composed of several QRPA eigenmodes, one is generated by a ν(2s1/2-12p3/2) transition dominantly and the other mostly by a ν(2s1/2-12p1/2) transition. The neutron excitations take place outside of the nuclear surface reflecting the spatially extended structure of the 2s1/2 wave function. In Ne30, the deformation splitting of the giant resonance is large, and the low-lying resonance overlaps with the giant resonance.
Mesoscopic supersolid of dipoles in a trap
Golomedov, A. E.; Astrakharchik, G. E.; Lozovik, Yu. E.
2011-09-15
A mesoscopic system of dipolar bosons trapped by a harmonic potential is considered. The system has a number of physical realizations including dipole excitons, atoms with large dipolar moment, polar molecules, and Rydberg atoms in inhomogeneous electric field. We carry out a diffusion Monte Carlo simulation to define the quantum properties of a two-dimensional system of trapped dipoles at zero temperature. In dimensionless units the system is described by two control parameters, namely, the number of particles and the strength of the interparticle interaction. We have shown that when the interparticle interaction is strong enough a mesoscopic crystal is formed. As the strength of interactions is decreased a multistage melting takes place. Off-diagonal order in the system is tested using natural-orbitals analysis. We have found that the system might be Bose condensed even in the case of strong interparticle interactions. There is a set of parameters for which a spatially ordered structure is formed while simultaneously the fraction of Bose-condensed particles is nonzero. This might be considered as a realization of a mesoscopic supersolid.
Projected Dipole Model for Quantum Plasmonics.
Yan, Wei; Wubs, Martijn; Asger Mortensen, N
2015-09-25
Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is subnanometric.
Projected Dipole Model for Quantum Plasmonics
NASA Astrophysics Data System (ADS)
Yan, Wei; Wubs, Martijn; Asger Mortensen, N.
2015-09-01
Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer—the only introduced parameter—is mapped from the free-electron distribution near the metal surface as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects of nonlocal response and a finite work function with TDDFT-level accuracy. Applying the theory to dimers, we find quantum corrections to the hybridization even in mesoscopic dimers, as long as the gap itself is subnanometric.
An alternate end design for SSC dipoles
Peters, C.; Caspi, S.; Taylor, C.
1989-02-01
Experience in the SSC dipole program has shown that fabrication of cylindrical coil ends is difficult. Cable stiffness requires large forces to maintain the proper position of the conductors in the end during winding. After winding, the coil ends remain distorted nd significant motion of the need conductors is required to force the coil end into the molding cavity. Local mechanical stresses are high during this process and extra pieces of insulation are required to prevent turn-to-turn shorts from developing during the winding and molding steps. Prior to assembly the coil end is compressed in a mold cavity and injected with a filler material to correct surface irregularities and fill voids in the end. LBL has developed an alternate design which permits the conductors to be wound over the end using minimal force and technician coerosion. The conductors are placed on a conical surface where the largest diameter over the outer layer conductors is 10 cm. No coil end spaces or insulation pieces between turns are required. The conductor geometry was analytically optimized to meet SSC multipole requirements for the ends. The first 1-m dipole utilizing this end geometry has been constructed and successfully tested. Design and construction data are presented. Also model test results, including training and multipole measurements of the end are given. 1 ref., 12 figs., 3 tabs.
Progress toward 10 tesla accelerator dipoles
Hassenzahl, W.; Gilbert, G.; Taylor, C.; Meuser, R.
1983-08-01
A 9.1 T central field has been achieved in a Nb-Ti dipole operating in pressurized helium II at 1.8 K. Three different Nb-Ti dipoles, without iron yokes, have achieved central fields of 8.0, 8.6, and 9.1 T - all short sample performance for the conductors at 1.8 K. In helium I, at 4.3 K, the maximum central fields are from 1.5 to 2.0 T lower. Ten-tesla magnets have been designed for both Nb-Ti operating at 1.8 K and Nb/sub 3/Sn operating at 4.2 K. They are based on a very small beam aperture, (40 to 45 mm), very high current density in the superconductors (over 1000 A/mm/sup 2/), and a very low ratio of stabilizing copper to superconductor (about 1). Both layer and block designs have been developed that utilize Rutherford Cable. Magnet cycling from 0 to 6 T has been carried out for field change rate up to 1 T/s; the cyclic heating at 1 T/s is 36 W per meter. At a more representative rate of 0.2 T/s the heating rate is only 2 W/m. Progress in the program to use Nb/sub 3/Sn and NbTi superconductor, in 10 T accelerator magnets is also discussed.
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
SPEAR3 Gradient Dipole Core Fabrication
Li, Nanyang
2003-07-29
Traditional means of core fabrication are to glue the laminations or weld them to form the yoke structure. These means result in good yoke assemblies for shorter (<0.6m) magnets. However, because of weld distortions or mechanical strength limitations, welding and/or gluing techniques are difficult to gain high mechanical precision for longer cores. The SPEAR3 gradient dipoles are up to 1.45m long and require distortions of <0.05mm. Therefore, the SPEAR3 gradient dipole core design incorporated an assembly technique, originally devised for the PEPII insertion quadrupoles and later adapted for the ALS gradient magnets. This technique involved fabricating a rigid frame for the core, precisely stacking and compressing the laminations using hydraulic jacks and granite surfaces and straight edges, and fixing the laminations in the frame by filling the grooves between the laminations and frame using steel loaded epoxy. Although this technique has been used in the past, it has never been fully described and published. This paper is written to provide a detailed description of the procedure and to present measurement data demonstrating the mechanical precision and stiffness of the resulting product.
New Insight into the Pygmy Dipole Resonance in Stable Nuclei
Neumann-Cosel, P. von
2008-11-11
Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution ({gamma},{gamma}') experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a nonrelativistic mean-field description, predicting significantly different properties of the PDR. The second part presents attempts to unravel the structure of dipoles modes at energies below the giant dipole resonance (GDR) in {sup 208}Pb with a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg.
Detecting the dipole moment of a single carbon monoxide molecule
Schwarz, A. Köhler, A.; Grenz, J.; Wiesendanger, R.
2014-07-07
Using non-contact atomic force microscopy with metallic tips enabled us to detect the electrostatic dipole moment of single carbon monoxide (CO) molecules adsorbed on three very different substrates. The observed distance dependent contrast can be explained by an interplay between the attractive van der Waals interaction and the repulsive electrostatic interaction, respectively, with the latter stemming from antiparallel aligned dipoles in tip and molecule. Our results suggest that metallic as well as CO-functionalized tips are able to probe electrostatic properties of polar molecules and that repulsive dipole-dipole interactions have to be considered when interpreting complex contrast patterns.
Retardation of quantum uncertainty of two radiative dipoles
NASA Astrophysics Data System (ADS)
Shishkov, V. Yu.; Andrianov, E. S.; Pukhov, A. A.; Vinogradov, A. P.
2017-06-01
In this paper we consider the excitation of one quantum dipole by another in the deep quantum limit. We use a full quantum mechanical theory to describe the interaction of the dipoles through the electromagnetic field. Our nonperturbative analytical calculations result in the exact solution. We show that minimal quantum uncertainty of the dipole oscillation amplitudes, taken at different times, have a retarded character. It is demonstrated that the commutator of the dipole oscillation amplitudes becomes nonzero inside the light cone only. Moreover, due to radiation in free space the value of the commutator has a global maximum.
International geomagnetic reference field 1965.0 in dipole coordinates
NASA Technical Reports Server (NTRS)
Mead, G. D.
1970-01-01
Computer program transforming spherical harmonic coefficients into arbitrarily tilted coordinate systems, tabulating coefficients of International Geomagnetic Reference Field 1965 in dipole coordinate system
Structural Analysis of the SHMS Cosine Theta Superconducting Dipole Force Collar
S.R. Lassiter, P.D. Brindza, M.J. Fowler, E. Sun, G. Markham
2009-06-01
Jefferson Laboratory is developing a set of innovative superconducting magnets for the 12 GeV upgrade in JLAB Hall C. We will report on the finite element analysis (FEA) of the force collar for the Super High Momentum Spectrometer Cosine Theta Dipole magnet. The force collar is designed with an interference fit and intended to provide enough pressure after cool down to operating temperature to counteract Lorentz forces acting on the dipole coil during operation. By counteracting the Lorentz forces and keeping the coil pack in overall compression, movement of the coils is expected to be minimized. The dimensional geometry of the cold mass is maintained in the commercial solid modeling code UG/I-DEAS while the magnetic field design is maintained in the commercial TOSCA code from Vector Fields. The three dimensional FEA was conducted in the commercial codes ANSYS and IDEAS. The method for converting the models and calculating the loads transferred to the structure is discussed. The results show the cold mass response to: force collar assembly preload, differential thermal contraction, and operational Lorentz loads. Evaluations are made for two candidate force collar materials and two candidate force collar designs.
Hybrid Approximate Message Passing
NASA Astrophysics Data System (ADS)
Rangan, Sundeep; Fletcher, Alyson K.; Goyal, Vivek K.; Byrne, Evan; Schniter, Philip
2017-09-01
The standard linear regression (SLR) problem is to recover a vector $\\mathbf{x}^0$ from noisy linear observations $\\mathbf{y}=\\mathbf{Ax}^0+\\mathbf{w}$. The approximate message passing (AMP) algorithm recently proposed by Donoho, Maleki, and Montanari is a computationally efficient iterative approach to SLR that has a remarkable property: for large i.i.d.\\ sub-Gaussian matrices $\\mathbf{A}$, its per-iteration behavior is rigorously characterized by a scalar state-evolution whose fixed points, when unique, are Bayes optimal. AMP, however, is fragile in that even small deviations from the i.i.d.\\ sub-Gaussian model can cause the algorithm to diverge. This paper considers a "vector AMP" (VAMP) algorithm and shows that VAMP has a rigorous scalar state-evolution that holds under a much broader class of large random matrices $\\mathbf{A}$: those that are right-rotationally invariant. After performing an initial singular value decomposition (SVD) of $\\mathbf{A}$, the per-iteration complexity of VAMP can be made similar to that of AMP. In addition, the fixed points of VAMP's state evolution are consistent with the replica prediction of the minimum mean-squared error recently derived by Tulino, Caire, Verd\\'u, and Shamai. The effectiveness and state evolution predictions of VAMP are confirmed in numerical experiments.
Countably QC-Approximating Posets
Mao, Xuxin; Xu, Luoshan
2014-01-01
As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730
Hu, Qing; Jin, Dafei; Xiao, Jun; Nam, Sang Hoon; Liu, Xiaoze; Liu, Yongmin; Zhang, Xiang; Fang, Nicholas X
2017-09-19
Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the conventional (single or colloidal) dye molecules and quantum dots. In this paper, we verify that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at a picosecond timescale. Our streak-camera lifetime measurement and interacting lattice-dipole calculation reveal that the metal-mediated dipole-dipole interaction shortens the fluorescent lifetime to about one-half and increases the energy dissipation rate by 10 times that expected from the noninteracting single-dipole picture. Our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a unique direction for developing fast and efficient optoelectronic devices.
Information Content of the Low-Energy Electric Dipole Strength: Correlation Analysis
Reinhard, P.-G.; Nazarewicz, Witold
2013-01-01
Background: Recent experiments on the electric dipole (E1) polarizability in heavy nuclei have stimulated theoretical interest in the low-energy electric dipole strength, both isovector and isoscalar. Purpose: We study the information content carried by the electric dipole strength with respect to isovector and isoscalar indicators characterizing bulk nuclear matter and finite nuclei. To separate isoscalar and isovector modes, and low-energy strength and giant resonances, we analyze the E1 strength as a function of the excitation energy E and momentum transfer q. Methods: We use the self-consistent nuclear density functional theory with Skyrme energy density functionals, augmented by the random phase approximation, to compute the E1 strength and covariance analysis to assess correlations between observables. Calculations are performed for the spherical, doubly magic nuclei 208Pb and 132Sn. Results: We demonstrate that E1 transition densities in the low-energy region below the giant dipole resonance exhibit appreciable state dependence and multinodal structures, which are fingerprints of weak collectivity. The correlation between the accumulated low-energy strength and the symmetry energy is weak, and dramatically depends on the energy cutoff assumed. On the other hand, a strong correlation is predicted between isovector indicators and the accumulated isovector strength at E around 20 MeV and momentum transfer q 0.65 fm 1. Conclusions: Momentum- and coordinate-space patterns of the low-energy dipole modes indicate a strong fragmentation into individual particle-hole excitations. The global measure of low-energy dipole strength correlates poorly with the nuclear symmetry energy and other isovector characteristics. Consequently, our results do not support the suggestion that there exists a collective pygmy dipole resonance, which is a strong indicator of nuclear isovector properties. By considering nonzero values of momentum transfer, one can isolate individual
Experimental study on dipole motion of an ion plasma confined in a linear Paul trap
NASA Astrophysics Data System (ADS)
Ito, K.; Okano, T.; Moriya, K.; Fukushima, K.; Higaki, H.; Okamoto, H.
2015-11-01
The compact non-neutral plasma trap systems named "S-POD" have been developed at Hiroshima University as an experimental simulator of beam dynamics. S-POD is based either on a linear Paul trap or on a Penning trap and can approximately reproduce the collective motion of a relativistic charged-particle beam observed in the center-of-mass frame. We here employ the Paul trap system to investigate the behavior of an ion plasma near a dipole resonance. A simple method is proposed to calibrate the data of secular frequency measurements by using the dipole instability condition. We also show that the transverse density profile of an ion plasma in the trap can be estimated from the time evolution of ion losses caused by the resonance.
Evidence of Soft Dipole Resonance in ^{11}Li with Isoscalar Character
Kanungo, R.; Sanetullaev, A.; Jansen, Gustav R.; Tanaka, J.; Ishimoto, S.; Myo, T.; Suzuki, T.; Andreoiu, C.; Bender, P.; Chen, A. A.; Davids, B.; Fallis, J.; Fortin, J. P.; Galinski, N.; Gallant, A. T.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Hagen, Gaute; Keefe, M.; Krucken, R.; Lighthall, J.; McNeice, E.; Miller, D.; Otsuka, T.; Purcell, J.; Randhawa, J. S.; Roger, T.; Rojas, A.; Savajols, H.; Shotter, A.; Tanihata, I.; Thompson, I. J.; Unsworth, C.; Voss, P.; Wang, Z.
2015-05-12
The first conclusive evidence of a dipole resonance in ^{11}Li having isoscalar character observed from inelastic scattering with a novel solid deuteron target is reported. The experiment was performed at the newly commissioned IRIS facility at TRIUMF. The results show a resonance peak at an excitation energy of 1.03±0.03 MeV with a width of 0.51±0.11 MeV (FWHM). The angular distribution is consistent with a dipole excitation in the distorted-wave Born approximation framework. The observed resonance energy together with shell model calculations show the first signature that the monopole tensor interaction is important in ^{11}Li. The first ab initio calculations in the coupled cluster framework are also included.
Evidence of Soft Dipole Resonance in 11Li with Isoscalar Character
Kanungo, R.; Sanetullaev, A.; Jansen, Gustav R.; ...
2015-05-12
The first conclusive evidence of a dipole resonance in 11Li having isoscalar character observed from inelastic scattering with a novel solid deuteron target is reported. The experiment was performed at the newly commissioned IRIS facility at TRIUMF. The results show a resonance peak at an excitation energy of 1.03±0.03 MeV with a width of 0.51±0.11 MeV (FWHM). The angular distribution is consistent with a dipole excitation in the distorted-wave Born approximation framework. The observed resonance energy together with shell model calculations show the first signature that the monopole tensor interaction is important in 11Li. The first ab initio calculations inmore » the coupled cluster framework are also included.« less
The influence of train leakage currents on the LEP dipole field
NASA Astrophysics Data System (ADS)
Bravin, E.; Brun, G.; Dehning, B.; Drees, A.; Galbraith, P.; Geitz, M.; Henrichsen, K.; Koratzinos, M.; Mugnai, G.; Tonutti, M.
The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 km, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or ≈ 20 ppm. Due to its size, the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect on the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP vacuum chamber, affecting the LEP dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented.
The polarizable point dipoles method with electrostatic damping: implementation on a model system.
Sala, Jonàs; Guàrdia, Elvira; Masia, Marco
2010-12-21
Recently, the use of polarizable force fields in Molecular Dynamics simulations has been gaining importance, since they allow a better description of heterogeneous systems compared to simple point charges force fields. Among the various techniques developed in the last years the one based on polarizable point dipoles represents one of the most used. In this paper, we review the basic technical issues of the method, illustrating the way to implement intramolecular and intermolecular damping of the electrostatic interactions, either with and without the Ewald summation method. We also show how to reduce the computational overhead for evaluating the dipoles, introducing to the state-of-the-art methods: the extended Lagrangian method and the always stable predictor corrector method. Finally we discuss the importance of screening the electrostatic interactions at short range, defending this technique against simpler approximations usually made. We compare results of density functional theory and classical force field-based Molecular Dynamics simulations of chloride in water.
Twist expansion of Drell-Yan structure functions in color dipole approach
NASA Astrophysics Data System (ADS)
Motyka, Leszek; Sadzikowski, Mariusz; Stebel, Tomasz
2015-05-01
The forward Drell-Yan process at the LHC probes the proton structure at a very small Bjorken- x and moderate hard scales. In this kinematical domain higher twist effects may be significant and introduce sizeable corrections to the standard leading twist description. We study the forward Drell-Yan process beyond the leading twist approximation within the color dipole model framework that incorporates multiple scattering effects. We derive the Mellin representation of the forward Drell-Yan impact factors for fully differential cross-sections. These results combined with the color dipole cross-section of the saturation model are used to perform the twist expansion of the Drell-Yan structure functions at arbitrary transverse momentum q T of the Drell-Yan pair and also of the structure functions integrated over q T . We also investigate the Lam-Tung relation, find that it is broken at twist 4 and provide explicit estimates for the breaking term.
Stable collective dynamics of two-level systems coupled by dipole interactions
NASA Astrophysics Data System (ADS)
Parmee, C. D.; Cooper, N. R.
2017-03-01
We study the dynamics of a set of two-level systems coupled by dipolar interactions under a resonant external Rabi drive. The two-level systems are prepared initially in a coherent product state, and we ask how the nonequilibrium conditions caused by the drive affect this coherence. We study the full nonlinear dynamics of the coupled two-level systems within a classical approximation by analyzing numerically the equations of motion and determining the stability of the collective coherent state within classical Floquet theory. We establish the behavior analytically in the high Rabi coupling limit by employing a Magnus expansion and spin-wave analysis. Our results show that, typically, the dipole interactions between the two-level systems lead to instabilities that cause a breakdown of the collective Rabi oscillations. However, we identify parameter regimes for which the two-level systems undergo collective coherent Rabi oscillations even in the presence of the dipole interactions.
Study of the Pygmy Dipole Resonance with Hadronic and Electromagnetic Probes
NASA Astrophysics Data System (ADS)
Endres, J.; Zilges, A.; Litvinova, E.; Savran, D.; Butler, P. A.; Herzberg, R.-D.; Harakeh, M. N.; Stoica, V. I.; Wörtche, H. J.; Harissopulos, S.; Lagoyannis, A.; Krücken, R.; Ring, P.; Pietralla, N.; Ponomarev, V. Yu.; Scheck, M.; Sonnabend, K.; Popescu, L.
2013-03-01
The structure of the pygmy dipole resonance has been investigated in the nuclei 140Ce, 138Ba, 124Sn, and 94Mo by performing experiments using different probes. On the one hand, real-photon scattering experiments have been conducted using the nuclear resonance fluorescence (NRF) method. On the other hand, α-scattering experiments have been done using the (α, α', γ) coincidence technique. An unexpected difference in the excitation cross sections of the dipole strength below the particle threshold has been observed. While a group of PDR states could be excited in both kinds of experiments, a group of energetically higher-lying states could only be excited in NRF. In order to understand this phenomenon, theoretical calculations using the quasiparticle-phonon model (QPM) and the relativistic quasiparticle time-blocking approximation (RQTBA) have been performed for the nucleus 124Sn. A possible explanation for the observed splitting was found.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1985-01-01
Analytical solutions for the three dimensional inhomogeneous wave equation with flow in a hardwall rectangular wind tunnel and in the free field are presented for a stationary monopole noise source. Dipole noise sources are calculated by combining two monopoles 180 deg out of phase. Numerical calculations for the modal content, spectral response and directivity for both monopole and dipole sources are presented. In addition, the effect of tunnel alterations, such as the addition of a mounting plate, on the tunnels reverberant response are considered. In the frequency range of practical importance for the turboprop response, important features of the free field directivity can be approximated in a hardwall wind tunnel with flow if the major lobe of the noise source is not directed upstream. However, for an omnidirectional source, such as a monopole, the hardwall wind tunnel and free field response are not comparable.
Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna
Zhang, Jingdi; Averitt, Richard D. E-mail: raveritt@ucsd.edu; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Xin E-mail: raveritt@ucsd.edu; Zhang, Gu-Feng; Geng, Kun
2015-12-07
We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.
Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Gu-Feng; Geng, Kun; Zhang, Xin; Averitt, Richard D.
2015-12-01
We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ˜170. Above an in-gap E-field threshold amplitude of ˜10 MV/cm-1, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.
TOSCA calculations and measurements for the SLAC SLC damping ring dipole magnet
Early, R.A.; Cobb, J.K.
1985-04-01
The SLAC damping ring dipole magnet was originally designed with removable nose pieces at the ends. Recently, a set of magnetic measurements was taken of the vertical component of induction along the center of the magnet for four different pole-end configurations and several current settings. The three dimensional computer code TOSCA, which is currently installed on the National Magnetic Fusion Energy Computer Center's Cray X-MP, was used to compute field values for the four configurations at current settings near saturation. Comparisons were made for magnetic induction as well as effective magnetic lengths for the different configurations. 1 ref., 12 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Panahi, M.; Solookinejad, G.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed
2016-07-01
The impact of the dipole-dipole interaction on the Goo-Hänchen (GH) shifts in reflected and transmitted lights is investigated. A weak probe beam is incident on a cavity containing the donor and acceptor quantum dots embedded in a nonlinear photonic crystal. We deduced that the GH shifts can be easily adjusted via controlling the corresponding parameters of the system in the presence or absence of dipole-dipole interaction. Our proposed model may be useful to developing the all-optical devices based on photonic materials doped with nanoparticles.
Fast approximate stochastic tractography.
Iglesias, Juan Eugenio; Thompson, Paul M; Liu, Cheng-Yi; Tu, Zhuowen
2012-01-01
Many different probabilistic tractography methods have been proposed in the literature to overcome the limitations of classical deterministic tractography: (i) lack of quantitative connectivity information; and (ii) robustness to noise, partial volume effects and selection of seed region. However, these methods rely on Monte Carlo sampling techniques that are computationally very demanding. This study presents an approximate stochastic tractography algorithm (FAST) that can be used interactively, as opposed to having to wait several minutes to obtain the output after marking a seed region. In FAST, tractography is formulated as a Markov chain that relies on a transition tensor. The tensor is designed to mimic the features of a well-known probabilistic tractography method based on a random walk model and Monte-Carlo sampling, but can also accommodate other propagation rules. Compared to the baseline algorithm, our method circumvents the sampling process and provides a deterministic solution at the expense of partially sacrificing sub-voxel accuracy. Therefore, the method is strictly speaking not stochastic, but provides a probabilistic output in the spirit of stochastic tractography methods. FAST was compared with the random walk model using real data from 10 patients in two different ways: 1. the probability maps produced by the two methods on five well-known fiber tracts were directly compared using metrics from the image registration literature; and 2. the connectivity measurements between different regions of the brain given by the two methods were compared using the correlation coefficient ρ. The results show that the connectivity measures provided by the two algorithms are well-correlated (ρ = 0.83), and so are the probability maps (normalized cross correlation 0.818 ± 0.081). The maps are also qualitatively (i.e., visually) very similar. The proposed method achieves a 60x speed-up (7 s vs. 7 min) over the Monte Carlo sampling scheme, therefore
Finite amplitude method for the quasiparticle random-phase approximation
Avogadro, Paolo; Nakatsukasa, Takashi
2011-07-15
We present the finite amplitude method (FAM), originally proposed in Ref. [17], for superfluid systems. A Hartree-Fock-Bogoliubov code may be transformed into a code of the quasiparticle-random-phase approximation (QRPA) with simple modifications. This technique has advantages over the conventional QRPA calculations, such as coding feasibility and computational cost. We perform the fully self-consistent linear-response calculation for the spherical neutron-rich nucleus {sup 174}Sn, modifying the hfbrad code, to demonstrate the accuracy, feasibility, and usefulness of the FAM.
Modified Coulomb-Dipole Theory for 2e Photoionization
NASA Technical Reports Server (NTRS)
2004-01-01
In the light of recent experiment on 2e photoionization of Li near threshold, we have considered a modification of the Coulomb-dipole theory, retaining the basic assumption that the threshold is dominated by asymmetric events in phase space [implies r(sub 1), k(sub 1)) greater than or equal to 2(r(sub 2), k(sub )]. In this region [in a collinear model, 2/r(sub 12) approached + 2/(r(sub 1)+r(sub 2)] the interaction reduces to V(rIsub 1) is greater than or equal to 2r(sub 2) is identically equal to [(-Z/r(sub 2)-(A-1)/r(sub 1)] + [(-2r(sub 2)/r(sub 1 exp 2)] is identically equal to V(sub c)+[V(sub d)]. For two electron emission Z = 2, thus both electrons see a Coulomb potential (V(sub c)) asymptotically, albeit each seeing a different charge. The residual potential (V(sub d)) is dipole in character. Writing the total psi = psi (sub c) + psi(sub d) = delta psi, and noting that. (T+V(sub c)-E)psy(sub c) = 0 and (T+V(sub c))psi(sub d) = 0 can be solved exactly, we find, substituting psi into the complete Schrod. Eq., that delta psi = -(H-E)(exp -1)(V(sub d) psi(sub 0)+V(sub c psi (sub 1). Using the fact that the absolute value of V(sub c) is much more than the absolute value of V(sub d) in almost all of configuration space, we can replace H by H(sub 0) in 9H-E)(exp -1) to obtain an improved approximation psi (improved) = psi(sub c) + psi(sub d) -(H(sub 0)-E)(exp -1) (V(sub c) psi (sub 0) + V(sub c) psi(sub 1). Here's the Green's function (H(sub 0)-E)(exp -1), can be exhibited explicitly, but the last term in psi (improved) is small, compared to the first two terms. Inserting them into the transition matrix element, which one handles in the usual way, we obtain in the limit E approaches 0, the threshold law: Q(E) alpha E + M(E)E(exp 5/4) + higher order (Eq. 1a). The modulation function, M(E), is a well-defined (but very non-trivial integral, but it is expected to be well approximated by a sinusoidal function containing a dipole phase term (M(E) = c sin[alpha log (E
Magnetic design and field optimization of a superferric dipole for the RISP fragment separator
NASA Astrophysics Data System (ADS)
Zaghloul, A.; Kim, J. Y.; Kim, D. G.; Jo, H. C.; Kim, M. J.
2015-10-01
The in-flight fragment separator of the Rare Isotope Science Project requires eight dipole magnets to produce a gap field of 1.7 T in a deflection sector of 30 degree with a 6-m central radius. If the beam-optics requirements are to be met, an integral field homogeneity of a few units (1 unit = 10-4) must be achieved. A superferric dipole magnet has been designed by using the Low-Temperature Superconducting wire NbTi and soft iron of grade SAE1010. The 3D magnetic design and field optimization have been performed using the Opera code. The length and the width of the air slots in the poles have been determined in an optimization process that considered not only the uniformity of the field in the straight section but also the field errors in the end regions. The field uniformity has also been studied for a range of operation of the dipole magnet from 0.4 T to 1.7 T. The magnetic design and field uniformity are discussed.
NASA Astrophysics Data System (ADS)
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.
Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 mm-1 at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime
Concentric Titled Double-Helix Dipole Magnets
Rainer Meinke, Ph.D; Carl Goodzeit; Millicent Ball, Ph.D
2003-09-05
The high magnetic fields required for future accelerator magnets can only be achieved with Nb3Sn, other A15 or HTS type conductors, which are brittle and sensitive to mechanical strain. The traditional ''cosine-theta'' dipole configuration has intrinsic drawbacks that make it difficult and expensive to employ such conductors in these designs. Some of these problems involve (1) difficulty in applying enough pre-stress to counteract Lorentz forces without compromising conductor performance; (2) small minimum bend radii of the conductor necessitating the intricate wind-and-react coil fabrication; (3) complex spacers in particular for coil ends and expensive tooling for coil fabrication; (4) typically only 2/3 of the coil aperture can be used with achievable field uniformity.
SSC collider dipole magnets field angle data
Kuchnir, M.; Bleadon, M.; Schmidt, E.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Ozelis, J.; Strait, J.; Wake, M. ); DiMarco, J.; Devred, A.; Kuzminski, J.; Yu, Y.; Zheng, H. ); Ogitsu, T. (Superconducting Super Collider
1992-09-01
In the fabrication of both 40 and 50 mm collider dipole superconducting magnets, surveys of the direction of the magnetic field along their length have been taken. This data besides being used for certifying compliance with the specifications for the finished magnet, yields interesting information on the straightness and rigidity of the coil placement between some stages in their manufacture and testing. A discussion on the measuring equipment and procedures is given. All of the 40 mm magnets that were built or cryostat at Fermilab have at least one of these surveys, and a summary of the data on them is presented. Most of the 50 mm magnets built and cold tested at Fermilab have been surveyed before and after insertion in the cryostat and before and after being cold tested. A summary of this data is also presented.
Nuclear electric dipole moment of 3He
Stetcu, Ionel; Friar, J L; Hayes, A C; Liu, C P; Navratil, P
2008-01-01
In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.
Active flutter suppression using dipole filters
NASA Technical Reports Server (NTRS)
Srinathkumar, S.; Waszak, Martin R.
1992-01-01
By using traditional control concepts of gain root locus, the active suppression of a flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable mode towards a critical system zero determines the degree to which the flutter mode can be stabilized. For control situations where the critical zero is adversely placed in the complex plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures that the flutter mode is stabilized with acceptable control energy. The control strategy is illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-tunnel model, where minimal control effort solutions are mandated by control rate saturation problems caused by wind-tunnel turbulence.
BEAM MANIPULATION WITH AN RF DIPOLE.
BAI,M.
1999-03-29
Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, we have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function.
Near-Field Magnetic Dipole Moment Analysis
NASA Technical Reports Server (NTRS)
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
Magnetic field decay in model SSC dipoles
Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.
1988-08-01
We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.
Nonlinear light scattering by a dipole monolayer
NASA Astrophysics Data System (ADS)
Averbukh, B. B.; Averbukh, I. B.
2013-08-01
Scattering of a strong p-polarized monochromatic field by a dipole monolayer is considered. It is shown that a triplet should be observed at incident angles (between the wave vector of the incident wave and the normal to the monolayer surface) not too close to π/2 in the spectrum of the scattered radiation. For grazing incidence of a strong field on the monolayer, waves with frequencies of the strong field and the high-frequency component of the triplet scatter forward and backward. In this case, radiation with frequency of the low-frequency component of the triplet propagates in the form of two inhomogeneous waves along the monolayer on both sides of it, exponentially decaying with distance from the monolayer.
Electric dipole moments: A global analysis
NASA Astrophysics Data System (ADS)
Chupp, Timothy; Ramsey-Musolf, Michael
2015-03-01
We perform a global analysis of searches for the permanent electric dipole moments (EDMs) of the neutron, neutral atoms, and molecules in terms of six leptonic, semileptonic, and nonleptonic interactions involving photons, electrons, pions, and nucleons. By translating the results into fundamental charge-conjugation-parity symmetry (CP) violating effective interactions through dimension six involving standard model particles, we obtain rough lower bounds on the scale of beyond the standard model CP-violating interactions ranging from 1.5 TeV for the electron EDM to 1300 TeV for the nuclear spin-independent electron-quark interaction. We show that planned future measurements involving systems or combinations of systems with complementary sensitivities to the low-energy parameters may extend the mass reach by an order of magnitude or more.
Intrinsic surface dipole in topological insulators.
Fregoso, Benjamin M; Coh, Sinisa
2015-10-28
We calculate the local density of states of two prototypical topological insulators (Bi2Se3 and Bi2Te2Se) as a function of distance from the surface within density functional theory. We find that, in the absence of disorder or doping, there is a 2 nm thick surface dipole the origin of which is the occupation of the topological surface states above the Dirac point. As a consequence, the bottom of the conduction band is bent upward by about 75 meV near the surface, and there is a hump-like feature associated with the top of the valence band. We expect that band bending will occur in all pristine topological insulators as long as the Fermi level does not cross the Dirac point. Our results show that topological insulators are intrinsic Schottky barrier solar cells.
Helical dipole magnets for polarized protons in RHIC
Syphers, M.; Courant, E.; Fischer, W.
1997-07-01
Superconducting helical dipole magnets will be used in the Brookhaven Relativistic Heavy Ion Collider (RHIC) to maintain polarization of proton beams and to perform localized spin rotations at the two major experimental detector regions. Requirements for the helical dipole system are discussed, and magnet prototype work is reported.
Electric dipole moment of the electron and of the neutron
NASA Technical Reports Server (NTRS)
Barr, S. M.; Zee, A.
1990-01-01
It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.
Dipole power supply for National Synchrotron Light Source Booster upgrade
Olsen, R.; Dabrowski, J.; Murray, J.
1992-12-31
The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.
Dipole power supply for National Synchrotron Light Source Booster upgrade
Olsen, R.; Dabrowski, J. ); Murray, J. )
1992-01-01
The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.
Pygmy Dipole Strength and Neutron Skins in Exotic Nuclei
NASA Astrophysics Data System (ADS)
Klimkiewicz, A.; Paar, N.; Adrich, P.; Fallot, M.; Boretzky, K.; Aumann, T.; Cortina-Gil, D.; Pramanik, U. Datta; Elze, Th. W.; Emling, H.; Geissel, H.; Hellström, M.; Jones, K. L.; Kratz, J. V.; Kulessa, R.; Nociforo, C.; Palit, R.; Simon, H.; Surówka, G.; Sümmerer, K.; Vretenar, D.; Waluś, W.
2008-05-01
Dipole strength distributions were determined for the neutron-rich nuclei 129-132Sn and 133,134Sb from electromagnetic excitation in an experiment using the FRS-LAND setup. For all nuclei, a sizeable fraction of ``pygmy'' dipole strength at excitation energies well below the giant dipole resonance was observed. The integrated low-lying dipole strength of the nuclei with low neutron separation energies can be compared to results for stable nuclei (e.g. N = 82 isotopes) determined for the energy regime of 5-9 MeV. A clear increase of the dipole strength with increasing asymmetry of the nuclei is observed. Comparing the ratio of the low-lying dipole over the giant dipole strength to recent relativistic mean field calculations, values for the parameters a4 and p0 of the symmetry energy and for the neutron skin thickness are derived. Averaged over 130Sn and 132Sn we extract a4 = 31.8+/-1.3 MeV and p0 = 2.2+/-0.5 MeV/fm3. The neutron skin sizes are determined to Rn-Rp = 0.23+/-0.03 fm and 0.24+/-0.03 fm for 130Sn and 132Sn, respectively. For 208Pb a neutron skin thickness of Rn-Rp = 0.18+/-0.035 fm follows, when applying the same method and using earlier published experimental findings on the dipole strength.
Diagnostics of the Fermilab Tevatron using an AC dipole
Miyamoto, Ryoichi
2008-08-01
The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.
Electric dipole moment of the electron and of the neutron
NASA Technical Reports Server (NTRS)
Barr, S. M.; Zee, A.
1990-01-01
It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.
Microstrip Dipoles for EHF and Millimeter Wave Applications.
1986-08-26
in the areas of: (a) Substrate- superstrate effects on printed circuit antennas (b) Mo- deling electromingnetically coupled microstrip dipoles in a...0067. The research performed during the duration of this grant has made an impact in the areas of: (a) Substrate- superstrate effects on printed...circuit antennas (b) Modeling electromagnetically coupled microstrip dipoles in a substrate- superstrate configuration (c) Modeling Mcrostrip Discontinuities
Simulations of the angular dependence of the dipole-dipole interaction among Rydberg atoms
NASA Astrophysics Data System (ADS)
Bigelow, Jacob L.; Hollingsworth, Jacob; Paul, Jacob T.; Peleg, Matan; Sanford, Veronica L.; Carroll, Thomas J.; Noel, Michael W.
2016-05-01
The dipole-dipole interaction between two Rydberg atoms depends on the relative orientation of the atoms and on the change in the magnetic quantum number. We simulate the effect of this anisotropy on the energy transport in an amorphous many atom system of ultracold Rydberg atoms subject to a homogeneous applied electric field. We consider two experimentally feasible geometries and find that the effects should be measurable in current generation imaging experiments. We also examine evidence for Anderson localization. This work was supported by the National Science Foundation under Grants No. 1205895 and No. 1205897 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.
Controlling the dipole-dipole interaction using NMR composite rf pulses
Baudin, Emmanuel
2014-08-07
New composite rf pulses are proposed during which the average dipole-dipole interactions within a spin ensemble are controlled, while a global rotation is achieved. The method used to tailor the pulses is based on the average Hamiltonian theory and relies on the geometrical properties of the spin-spin dipolar interaction. I describe several such composite pulses and analyze quantitatively the improvement brought on the control of the NMR dynamics. Numerical simulations show that the magic sandwich pulse sequence, during which the average dipolar field is effectively reversed, is plagued by defects originating from the finite initial and final π/2 rf pulses. A numerical test based on a classical description of nuclear magnetic resonance is used to check that, when these pulses are replaced by magic composite pulses, the efficiency of the magic sandwich is improved.
Depondt, Ph; Mertens, F G
2009-08-19
Spin dynamics with the Landau-Lifshitz equation has provided topics for a wealth of research endeavors. We introduce here a numerical integration method which explicitly uses the precession motion of a spin about the local field, thus intrinsically conserving spin lengths, and therefore allowing for relatively quick results for a large number of situations with varying temperatures and couplings. This method is applied to the effect of long-range dipole-dipole interactions in two-dimensional clusters of spins with nearest-neighbor XY-Heisenberg exchange interactions on a square lattice at finite temperature. The structures thus obtained are analyzed through orientational correlations functions. Magnon dispersion curves, different from those of the standard Heisenberg model, are obtained and discussed. The number of vortices in the system is discussed as a function of temperature and typical examples of vortex dynamics are shown.
ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE
Martinez Gonzalez, M. J.
2012-08-20
The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.
Measuring the Electron Electric Dipole Moment Using Ytterbium Fluoride Molecules
NASA Astrophysics Data System (ADS)
Smallman, I. J.; Devlin, J. A.; Kara, D. M.; Hudson, J. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.
2013-06-01
It is well known that the existence of an electron electric dipole moment (eEDM) would violate time reversal symmetry. The Standard Model predicts an eEDM less than 10^{-38}e.cm, however many popular extensions predict values in the range 10^{-29}-10^{-24}e.cm. Our experiment currently has the potential to measure eEDMs down to approximately 10^{-29}e.cm, making it a precise probe for T-violation and physics beyond the Standard Model. We measure the eEDM by performing a type of separated oscillating field interferometry on a pulsed beam of YbF. The molecules are prepared such that the molecular spin is oriented perpendicular to an applied strong (10kV/cm) electric field. The spin is then allowed to precess about the electric field axis over a 0.5ms interaction period. We measure this angle of rotation, which is directly proportional to the eEDM. In order to measure the eEDM precisely and without error we use a complex switching technique wherein certain parameters, including the applied electric and magnetic fields, are reversed between individual molecular pulses. I will present our current technique and our most recent world leading result.
A Nb sub 3 Sn high field dipole
McClusky, R.; Robins, K.E.; Sampson, W.B.
1990-01-01
A dipole magnet approximately 1 meter long with an 8 cm bore has been fabricated from cable made from Nb{sub 3}Sn multifilamentary strands. The coil consists of four layers of conductor wound in pairs to eliminate internal joints. Each set of layers is separately constrained with Kevlar-epoxy bands and the complete assembly clamped in a split laminated iron yoke. The inner coil pairs were wound before heat treating while the outer coils were formed from pre-reacted cable using conventional insulation. A NbTi version of the magnet was fabricated using SSC version of the magnet was fabricated using SSC conductor to test the construction techniques. This magnet reached a maximum central field of 7.6 Tesla, at 4.4K which is very close to the limit estimated from conductor measurements. The Nb{sub 3}Sn magnet, however, only reached a maximum field at 8.1T considerably short of the field expected from measurements on the inner cable. 7 refs., 5 figs.
Model dependence of the H2 electric dipole moment
NASA Astrophysics Data System (ADS)
Afnan, I. R.; Gibson, B. F.
2010-12-01
Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the 3P1 channel, the latter being sensitive to the off-shell behavior of the 3P1 amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the H2 EDM until such time as a measurement better than 10% is obtained.
Energy of van der Waals and dipole-dipole interactions between atoms in Rydberg states
NASA Astrophysics Data System (ADS)
Kamenski, A. A.; Manakov, N. L.; Mokhnenko, S. N.; Ovsiannikov, V. D.
2017-09-01
The van der Waals coefficient C6(θ ;n l J M ) of two like Rydberg atoms in their identical Rydberg states |n l J M 〉 is resolved into four irreducible components called scalar Rs s, axial (vector) Ra a, scalar-tensor Rs T=RT s , and tensor-tensor RT T parts in analogy with the components of dipole polarizabilities. The irreducible components determine the dependence of C6(θ ;n l J M ) on the angle θ between the interatomic and the quantization axes of atoms. The spectral resolution for the biatomic Green's function with account of the most contributing terms is used for evaluating the components Rα β of atoms in their Rydberg series of doublet states of the low angular momenta (2S , 2P , 2D , 2F ). The polynomial presentations in powers of the Rydberg-state principal quantum number n taking into account the asymptotic dependence C6(θ ;n l J M ) ∝n11 are derived for simplified evaluations of irreducible components. Numerical values of the polynomial coefficients are determined for Rb atoms in their n 2S1 /2 , n 2P1 /2 ,3 /2 , n 2D3 /2 ,5 /2 , and n 2F5 /2 ,7 /2 Rydberg states of arbitrary high n . The transformation of the van der Waals interaction law -C6/R6 into the dipole-dipole law C3/R3 in the case of close dipole-connected two-atomic states (the Förster resonance) is considered and the dependencies on the magnetic quantum numbers M and on the angle θ of the constant C3(θ ;n l J M ) are determined together with the ranges of interatomic distances R , where the transformation appears.
Dipole-Dipole Interactions of High-spin Paramagnetic Centers in Disordered Systems
Maryasov, Alexander G.; Bowman, Michael K.; Tsvetkov, Yuri D.
2007-09-13
Dipole-dipole interactions between distant paramagnetic centers (PCs) where at least one PC has spin S>1/2 are examined. The results provide a basis for the application of pulsed DEER or PELDOR methods to the measurement of distances between PC involving high-spin species. A projection operator technique based on spectral decomposition of the secular Hamiltonian is used to calculate EPR line splitting caused by the dipole coupling. This allows calculation of operators projecting arbitrary wavefunction onto high PC eigenstates when the eigenvectors of the Hamiltonian are not known. The effective spin vectors-that is, the expectation values for vector spin operators in the PC eigenstates-are calculated. The dependence of these effective spin vectors on the external magnetic field is calculated. There is a qualitative difference between pairs having at least one integer spin (non Karmers PC) and pairs of two half-integer (Kramers PC) spins. With the help of these effective spin vectors, the dipolar lineshape of EPR lines is calculated. Analytical relations are obtained for PCs with spin S=1/2 and 1. The dependence of Pake patterns on variations of zero field splitting, Zeeman energy, temperature and dipolar coupling are illustrated.
Finite dipole model for extreme near-field thermal radiation between a tip and planar SiC substrate
NASA Astrophysics Data System (ADS)
Jarzembski, Amun; Park, Keunhan
2017-04-01
Recent experimental studies have measured the infrared (IR) spectrum of tip-scattered near-field thermal radiation for a SiC substrate and observed up to a 50cm-1 redshift of the surface phonon polariton (SPhP) resonance peak [1,2]. However, the observed spectral redshift cannot be explained by the conventional near-field thermal radiation model based on the point dipole approximation. In the present work, a heated tip is modeled as randomly fluctuating point charges (or fluctuating finite dipoles) aligned along the primary axis of a prolate spheroid, and quasistatic tip-substrate charge interactions are considered to formulate the effective polarizability and self-interaction Green's function. The finite dipole model (FDM), combined with fluctuational electrodynamics, allows the computation of tip-plane thermal radiation in the extreme near-field (i.e., H / R ≲ 1 , where H is the tip-substrate gap distance and R is the tip radius), which cannot be calculated with the point dipole approximation. The FDM provides the underlying physics on the spectral redshift of tip-scattered near-field thermal radiation as observed in experiments. In addition, the SPhP peak in the near-field thermal radiation spectrum may split into two peaks as the gap distance decreases into the extreme near-field regime. This observation suggests that scattering-type spectroscopic measurements may not convey the full spectral features of tip-plane extreme near-field thermal radiation.
Gillen-Christandl, Katharina; Copsey, Bert D.
2011-02-15
The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.
NASA Astrophysics Data System (ADS)
Gillen-Christandl, Katharina; Copsey, Bert D.
2011-02-01
The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities (~100 W/cm2) and comparatively small detunings (~1000-10 000 linewidths), trap depths of ~1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.
Fabrication of a prototype dipole for the SSC Low Energy Booster
Spencer, C.M.
1993-12-01
The Low Energy Booster of the Superconducting Super Collider (SSC) will be a synchrotron containing 96 dipoles operating between 0.13 T and 1.35 T at 10 Hz. Each dipole`s 1.865 m-long core is made from {approximately}2900 steel laminations (lams), each 52 {times} 66 cm and 0.635 mm thick. A need to minimize power supply costs and stringent field specifications led to a straight core with very tight mechanical tolerances of the order of 0.05 mm. To satisfy these tolerances, we decided to stack the core in a vertical position; i.e., with the laminations laid horizontally. We designed and built an unusual vertical stacking fixture that pivots into a horizontal position after all the laminations have been stacked and compressed and four support angles welded onto the laminations. The stacking fixture, our experience using it, and conclusions as to the merits of stacking such a long core vertically will be described. The methods of insulating and potting the pancake coils and their installation into the unsplittable core is also described.
Noise Reduction for Detecting Event-Related Potential by Processing in Dipole Space
NASA Astrophysics Data System (ADS)
Fukami, Tadanori; Shimada, Takamasa; Ishikawa, Fumito; Ishikawa, Bunnoshin; Saito, Yoichi
2007-06-01
Averaged responses are generally used to detect event-related potentials (ERPs) by supressing the background electroencephalography (EEG) wave, the ERP component of a single-trial response, or the average of a small number of responses is used to assess time variation in a subjects’ state in detail. We therefore proposed a new method of reducing the noise component including the background wave in a single-trial response. In this study, our target is a component such as N100 approximated by one dipole. The method was performed by modifying the dipole position in the brain and detecting the projected components with reference to the dipole estimated from an averaged response. Results of simulation indicate that the proposed method could improve signal-to-noise ratio by 7.6 dB and decrease the error in N100 peak latency 6.7 ms by suppressing the influence of the background wave. In the EEG experiment, eight healthy subjects paticipated and their results show that the sway of waveforms by the background wave is suppressed and that the peak of the N100 component becomes prominent compared with that of the original single-trial response.
Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.
Simmen, Benjamin; Mátyus, Edit; Reiher, Markus
2014-10-21
This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.
Pygmy Dipole Strength in Exotic Nuclei and the Equation of State
Klimkiewicz, A.; Adrich, P.; Paar, N.; Vretenar, D.; Fallot, M.; Boretzky, K.; Aksouh, F.; Chatillon, A.; Pramanik, U. Datta; Emling, H.; Ershova, O.; Geissel, H.; Gorska, M.; Heil, M.; Hellstroem, M.; Jones, K. L.; Kurz, N.; Litvinov, Y.; Mahata, K.; Simon, H.
2009-08-26
A concentration of dipole strength at energies below the giant dipole resonance was observed in neutron-rich nuclei around {sup 132}Sn in an experiment using the FRS-LAND setup. This so-called 'pygmy' dipole strength can be related to the parameters of the symmetry energy and to the neutron skin thickness on the grounds of a relativistic quasiparticle random-phase approximation. Using this ansatz and the experimental findings for {sup 130}Sn and {sup 132}Sn, we derive a value of the symmetry energy pressure of p-bar{sub 0} = 2.2+-0.5 MeV/fm{sup 3}. Neutron skin thicknesses of R{sub n}-R{sub p} 0.23+-0.03 fm and 0.24+-0.03 fm for {sup 130}Sn and {sup 132}Sn, respectively, have been determined. Preliminary results on {sup 68}Ni from a similar experiment using an improved setup indicate an enhanced cross section at low energies, while the results for {sup 58}Ni are in accordance with results from photoabsorption measurements.
Equivalence of dipole correction and Coulomb cutoff techniques in supercell calculations
NASA Astrophysics Data System (ADS)
Yu, Liping; Ranjan, V.; Lu, W.; Bernholc, J.; Nardelli, M. Buongiorno
2008-06-01
In ab initio calculations of surfaces or nonperiodic systems, one frequently relies on the supercell approximation, where the periodic replicas of the system are separated by enough empty space to avoid spurious interactions between the successive images. However, a vacuum separation is not sufficient to screen the dipolar interaction that appears in asymmetrically charged or polar systems. The dipole correction and Coulomb cutoff methods are often used to eliminate such interactions between the periodic replicas. In this work, these methods are compared under the same conditions in the framework of plane-wave based density-functional theory. The dipole correction method is shown to be equivalent to the rigorous Coulomb cutoff formalism in the calculations of total energy, force, charge density, and self-consistent potential. We demonstrate that the band structures obtained by these methods coincide for the localized bound states and that the corrections have essentially no influence on the occupied energy bands, only substantially affecting the unoccupied bands. By comparing the results of the two methods, the localized bound states of interest can be easily distinguished from the highly delocalized unoccupied states using a relatively small supercell. This comparison offers substantial savings in the computational time when ascertaining convergence with supercell size. The accuracy of the dipole correction method is also confirmed by comparing the results for a model ferroelectric BaTiO3 slab with a Berry-phase calculation of polarization for the bulk system.