Sample records for dipole cross section

  1. Ion dipole capture cross sections at low ion and rotational energies - Comparison of integrated capture cross sections with reaction cross sections for NH3 and H2O parent-ion collisions.

    NASA Technical Reports Server (NTRS)

    Dugan, J. V., Jr.; Canright, R. B., Jr.

    1972-01-01

    The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.

  2. Electron-Impact Cross Sections for Dipole- and Spin-Allowed Excitations of Hydrogen, Helium, and Lithium.

    PubMed

    Stone, Philip M; Kim, Yong-Ki; Desclaux, J P

    2002-01-01

    Electron-impact excitation cross sections are presented for the dipole- and spin allowed transitions from the ground states to the np (2)P states for hydrogen and lithium, and to the 1snp (1)P states for helium, n = 2 through 10. Two scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. The scaled Born cross sections are in excellent agreement with available theoretical and experimental data.

  3. Total γ ⋆ }γ {⋆ cross section and the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Florkowski, W.

    1998-05-01

    In the framework of the dipole picture of the BFKL pomeron we discuss two possibilities of calculating the total γ^{star}γ^{star} cross section of the virtual photons. It is shown that the dipole model reproduces the results obtained earlier from k_T-factorization up to the selection of the scale determining the length of the QCD cascade. The choice of scale turns out to be important for the numerical outcome of the calculations.

  4. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  5. Total Electron-Impact Ionization Cross-Sections of CFx and NFx (x = 1 - 3)

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Tarnovsky, Vladimir; Becker, Kurt H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The discrepancy between experimental and theoretical total electron-impact ionization cross sections for a group of fluorides, CFx, and NFx, (x = 1 - 3), is attributed to the inadequacies in previous theoretical models. Cross-sections calculated using a recently developed siBED (simulation Binary-Encounter-Dipole) model that takes into account the shielding of the long-range dipole potential between the scattering electron and target are in agreement with experimentation. The present study also carefully reanalyzed the previously reported experimental data to account for the possibility of incomplete collection of fragment ions and the presence of ion-pair formation channels. For NF3, our experimental and theoretical cross-sections compare well with the total ionization cross-sections recently reported by Haaland et al. in the region below dication formation.

  6. Dipole strength distributions from HIGS Experiments

    NASA Astrophysics Data System (ADS)

    Werner, V.; Cooper, N.; Goddard, P. M.; Humby, P.; Ilieva, R. S.; Rusev, G.; Beller, J.; Bernards, C.; Crider, B. P.; Isaak, J.; Kelley, J. H.; Kwan, E.; Löher, B.; Peters, E. E.; Pietralla, N.; Romig, C.; Savran, D.; Scheck, M.; Tonchev, A. P.; Tornow, W.; Yates, S. W.; Zweidinger, M.

    2015-05-01

    A series of photon scattering experiments has been performed on the double-beta decay partners 76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesis

  7. One-loop corrections to light cone wave functions: The dipole picture DIS cross section

    NASA Astrophysics Data System (ADS)

    Hänninen, H.; Lappi, T.; Paatelainen, R.

    2018-06-01

    We develop methods to perform loop calculations in light cone perturbation theory using a helicity basis, refining the method introduced in our earlier work. In particular this includes implementing a consistent way to contract the four-dimensional tensor structures from the helicity vectors with d-dimensional tensors arising from loop integrals, in a way that can be fully automatized. We demonstrate this explicitly by calculating the one-loop correction to the virtual photon to quark-antiquark dipole light cone wave function. This allows us to calculate the deep inelastic scattering cross section in the dipole formalism to next-to-leading order accuracy. Our results, obtained using the four dimensional helicity scheme, agree with the recent calculation by Beuf using conventional dimensional regularization, confirming the regularization scheme independence of this cross section.

  8. High-mass diffraction in the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    1998-05-01

    Using the QCD dipole picture of the BFKL pomeron, the cross-section of single diffractive dissociation of virtual photons at high energy and large diffractively excited masses is calculated. The calculation takes into account the full impact-parameter phase-space and thus allows to obtain an exact value of the triple BFKL Pomeron vertex. It appears large enough to compensate the perturbative 6-gluon coupling factor (α/π)3 thus suggesting a rather appreciable diffractive cross-section.

  9. Dipole polarizability, sum rules, mean excitation energies, and long-range dispersion coefficients for buckminsterfullerene C 60

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-11-01

    Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.

  10. Dipole response of neutron-rich Sn isotopes

    NASA Astrophysics Data System (ADS)

    Klimkiewicz, A.; Adrich, P.; Boretzky, K.; Fallot, M.; Aumann, T.; Cortina-Gil, D.; Datta Pramanik, U.; Elze, Th. W.; Emling, H.; Geissel, H.; Hellstroem, M.; Jones, K. L.; Kratz, J. V.; Kulessa, R.; Leifels, Y.; Nociforo, C.; Palit, R.; Simon, H.; Surowka, G.; Sümmerer, K.; Typel, S.; Walus, W.

    2007-05-01

    The neutron-rich isotopes 129-133Sn were studied in a Coulomb excitation experiment at about 500 AMeV using the FRS-LAND setup at GSI. From the exclusive measurement of all projectile-like particles following the excitation and decay of the projectile in a high-Z target, the energy differential cross section can be extracted. At these beam energies dipole transitions are dominating, and within the semi-classical approach the Coulomb excitation cross sections can be transformed into photoabsorption cross sections. In contrast to stable Sn nuclei, a substantial fraction of dipole strength is observed at energies below the giant dipole resonance (GDR). For 130Sn and 132Sn this strength is located in a peak-like structure around 10 MeV excitation energy and exhibits a few percent of the Thomas-Reiche Kuhn (TRK) sum-rule strength. Several calculations predict the appearance of dipole strength at low excitation energies in neutron-rich nuclei. This low-lying strength is often referred to as pygmy dipole resonance (PDR) and, in a macroscopic picture, is discussed in terms of a collective oscillation of excess neutrons versus the core nucleons. Moreover, a sharp rise is observed at the neutron separation threshold around 5 MeV for the odd isotopes. A possible contribution of 'threshold strength', which can be described within the direct-breakup model is discussed. The results for the neutron-rich Sn isotopes are confronted with results on stable nuclei investigated in experiments using real photons.

  11. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  12. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geytenbeek, Ben; Rao, Soumya; White, Martin

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or anmore » anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.« less

  13. A statistical study on the shape and position of the magnetotail neutral sheet

    NASA Astrophysics Data System (ADS)

    Xiao, Sudong; Zhang, Tielong; Ge, Yasong; Wang, Guoqiang; Baumjohann, Wolfgang; Nakamura, Rumi

    2016-02-01

    We study the average shape and position of the magnetotail neutral sheet based on magnetic field data obtained by Cluster, Geotail, TC-1, and THEMIS from the years 1995 to 2013. All data in the aberrated GSM (geocentric solar magnetospheric) coordinate system are normalized to the same solar wind pressure 2 nPa and downtail distance X ˜ -20RE. Our results show characteristics of the neutral sheet, as follows. (1) The neutral sheet assumes a greater degree of curve in the YZ cross section when the dipole tilt increases, the Earth dipole tilt angle affects the neutral sheet configuration not only in the YZ cross section but also in the XY cross section, and the neutral sheet assumes a more significant degree of tilt in the XY cross section when the dipole tilt increases. (2) Counterclockwise twisting of the neutral sheet with 3.10° is observed, looking along the downtail direction, for the positive interplanetary magnetic field (IMF) BY with a value of 3 to 8 nT, and clockwise twisting of the neutral sheet with 3.37° for the negative IMF BY with a value of -8 to -3 nT, and a northward IMF can result in a greater twisting of the near-tail neutral sheet than southward. The above results can be a reference to the neutral sheet model. Our large database also shows that the displaced ellipse model is effective to study the average shape of the neutral sheet with proper parameters when the dipole tilt angle is larger (less) than 10° (-10° ).

  14. Dipole and spin-dipole strength distributions in ^{124,126,128,130} Te isotopes

    NASA Astrophysics Data System (ADS)

    Cakmak, Necla; Cakmak, Sadiye; Selam, Cevad; Unlu, Serdar

    2018-02-01

    We try to present the structure of 1- excitations in open-shell ^{124,126,128,130} Te isotopes. Electric dipole states are investigated within a translational and Galilean invariant model. Also, a theoretical description of charge-conserving spin-dipole {1}- excitations is presented for the same isotopes. The energy spectra for both kinds of excitations are analysed in detail. Furthermore, a comparison of the calculated cross-sections and energies with the available experimental data is given.

  15. Electron-impact excitation of the a-italic /sup 3/. sigma. /sub g//sup +/, B-italic /sup 1/. sigma. /sub u//sup +/, c-italic /sup 3/Pi/sub u/, and C-italic /sup 1/Pi/sub u/ states of H/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M.A.; Trajmar, S.

    1986-07-01

    Normalized differential and integral cross sections for electron-impact excitation of the dipole-allowed B-italic /sup 1/..sigma../sub u//sup +/,C-italic /sup 1/Pi/sub u/ and dipole-forbidden a-italic /sup 3/..sigma../sub g//sup +/,c-italic /sup 3/Pi/sub u/ states of molecular hydrogen have been determined by analysis of energy-loss spectra obtained with a crossed-beam apparatus at electron-impact energies of 20, 30, 40, and 60 eV and scattering angles ranging from 10/sup 0/ to 120/sup 0/. Normalization of the data was achieved by utilizing the elastic differential cross sections measured previously by us (preceding article). The cross sections are compared with other available theoretical and experimental data.

  16. Dipole strength in 80Se below the neutron-separation energy for the nuclear transmutation of 79Se

    NASA Astrophysics Data System (ADS)

    Makinaga, Ayano; Massarczyk, Ralph; Beard, Mary; Schwengner, Ronald; Otsu, Hideaki; Müller, Stefan; Röder, Marko; Schmidt, Konrad; Wagner, Andreas

    2017-09-01

    The γ-ray strength function (γSF) in 80Se is an important parameter to estimate the neutron-capture cross section of 79Se which is one of the long-lived fission products (LLFPs). Until now, the γSF method was applied for 80Se only above the neutron-separation energy (Sn) and the evaluated 79Se(n,γ) cross section has an instability caused by the GSF below Sn. We studied the dipole-strength distribution of 80Se in a photon-scattering experiment using bremsstrahlung produced by an electron beam of an energy of 11.5 MeV at the linear accelerator ELBE at HZDR. The present photoabsorption cross section of 80Se was combined with results of (γ,n) experiments and are compared with predictions usinmg the TALYS code. We also estimated the 79Se(n,γ) cross sections and compare them with TALYS predictionms and earlier work by other groups.

  17. Constrained dipole oscillator strength distributions, sum rules, and dispersion coefficients for Br2 and BrCN

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2017-03-01

    Dipole oscillator strength distributions for Br2 and BrCN are constructed from photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density and molar refractivity data when available. The distributions are used to predict dipole sum rules S (k) , mean excitation energies I (k) , and van der Waals C6 coefficients. Coupled-cluster calculations of the static dipole polarizabilities of Br2 and BrCN are reported for comparison with the values of S (- 2) extracted from the distributions.

  18. Stagnancy of the pygmy dipole resonance

    NASA Astrophysics Data System (ADS)

    Sun, Xu-Wei; Chen, Jing; Lu, Ding-Hui

    2018-01-01

    The pygmy dipole resonance (PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm-1. However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei 70-78Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section. Supported by National Science Foundation of China

  19. Suppression versus enhancement of heavy quarkonia in p A collisions

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Schmidt, Iván; Siddikov, M.

    2017-06-01

    We describe the production of heavy quarkonia in p A collisions within the dipole approach by assuming the dominance of the perturbative color-singlet mechanism (CSM) in the pT-integrated cross section. Although accounting for a nonzero heavy Q -Q ¯ separation is a higher-twist correction that is usually neglected, we found it to be the dominant source of nuclear effects, significantly exceeding the effects of leading-twist gluon shadowing and energy loss. Moreover, this contribution turns out to be the most reliably predicted, relying on the precise measurements of the dipole cross section at the Hadron-Electron Ring Accelerator (HERA) at DESY. The nuclear suppression of quarkonia has been anticipated to become stronger with energy because the dipole cross section steeply rises. However, the measured nuclear effects remain essentially unchanged within the energy range from that of the BNL Relativistic Heavy Ion Collider (RHIC) to that of the Large Hadron Collider (LHC). A production mechanism is proposed that enhances the charmonium yield. Nuclear effects for the production of J /ψ , ψ (2 S ) , Υ (1 S ) , and Υ (2 S ) are calculated and are in agreement with data from RHIC and LHC. The dipole description offers a unique explanation for the observed significant nuclear suppression of the ψ (2 S ) -to-J /ψ ratio, which is related to the nontrivial features of the ψ (2 S ) wave function.

  20. Theoretical studies of photoexcitation and ionization in H2O

    NASA Technical Reports Server (NTRS)

    Diercksen, G. H. F.; Kraemer, W. P.; Rescigno, T. N.; Bender, C. F.; Mckoy, B. V.; Langhoff, S. R.; Langhoff, P. W.

    1982-01-01

    Theoretical studies using Franck-Condon and static-exchange approximations are reported for the complete dipole excitation and ionization spectrum in H2O, where (1) large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground state equilibrium geometry, and (2) previously devised moment-theory techniques are employed in constructing the continuum oscillator-strength densities from the calculated spectra. Comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact-excitation cross sections, and dipole and synchrotron-radiation studies of partial-channel photoionization cross sections. The calculated partial-channel cross sections are found to be atomic-like, and dominated by 2p-kd components. It is suggested that the latter transition couples with the underlying 1b(1)-kb(1) channel, accounting for a prominent feature in recent synchrotron-radiation measurements.

  1. Lidar cross-sections of soot fractal aggregates: Assessment of equivalent-sphere models

    NASA Astrophysics Data System (ADS)

    Ceolato, Romain; Gaudfrin, Florian; Pujol, Olivier; Riviere, Nicolas; Berg, Matthew J.; Sorensen, Christopher M.

    2018-06-01

    This work assesses the ability of equivalent-sphere models to reproduce the optical properties of soot aggregates relevant for lidar remote sensing, i.e. the backscattering and extinction cross sections. Lidar cross-sections are computed with a spectral discrete dipole approximation model over the visible-to-infrared (400-5000 nm) spectrum and compared with equivalent-sphere approximations. It is shown that the equivalent-sphere approximation, applied to fractal aggregates, has a limited ability to calculate such cross-sections well. The approximation should thus be used with caution for the computation of broadband lidar cross-sections, especially backscattering, at small and intermediate wavelengths (e.g. UV to visible).

  2. Structure of alcohol cluster ions in the gas phase, according to spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.

    2017-01-01

    Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.

  3. A Statistical Model of the Magnetotail Neutral Sheet

    NASA Astrophysics Data System (ADS)

    Xiao, Sudong; Zhang, Tielong; Baumjohann, Wolfgang; Nakamura, Rumi; Ge, Yasong; Du, Aimin; Wang, Guoqiang; Lu, Quanming

    2015-04-01

    The neutral sheet of the magnetotail is characterized by weak magnetic field, strong cross tail current, and a reversal of the magnetic field direction across it. The dynamics of the earth's magnetosphere is greatly influenced by physical processes that occur near the neutral sheet. However, the exact position of the neutral sheet is variable in time. It is therefore essential to have a reliable estimate of the average position of the neutral sheet. Magnetic field data from ten years of Cluster, nineteen years of Geotail, four years of TC 1, and seven years of THEMIS observations have been incorporated to obtain a model of the magnetotail neutral sheet. All data in aberrated GSM (Geocentric Solar Magnetospheric) coordinate system are normalized to the same solar wind pressure condition. The shape and position of the neutral sheet, illustrated directly by the separator of positive and negative Bx on the YZ cross sections, are fitted with a displaced ellipse model. It is consistent with previous studies that the neutral sheet becomes curvier in the YZ cross section when the dipole tilt increases, yet our model shows the curviest neutral sheet compared with previous models. The new model reveals a hinging distance very close to 10 RE at a reference solar wind dynamic pressure of 2 nPa. We find that the earth dipole tilt angle not only affects the neutral sheet configuration in the YZ cross section but also in the XZ cross section. The neutral sheet becomes more tilting in the XZ cross section when the dipole tilt increases. The effect of an interplanetary magnetic field (IMF) penetration is studied, and an IMF By-related twisting of about 3° is found. Anticlockwise twisting of the neutral sheet is observed, looking along the downtail direction, for a positive IMF By, and clockwise twisting of the neutral sheet for a negative IMF By.

  4. Hard diffraction from quasi-elastic dipole scattering

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1996-02-01

    The contribution to diffraction dissociation of virtual photons due to quasi-elastic scattering of the q- overlineq component is calculated in the framework of the QCD dipole picture. Both longitudinal and transverse components of the cross-section are given. It is shown that, at fixed mass of the diffractively produced system, quantum mechanical interference plays an important rôle. Phenomenological consequences are discussed.

  5. Operator evolution for ab initio electric dipole transitions of 4He

    DOE PAGES

    Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...

    2015-07-24

    A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less

  6. Partial Photoneutron Cross Sections for 207,208Pb

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2014-05-01

    Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.

  7. Absolute cross section measurements for the scattering of low- and intermediate-energy electrons from PF3. I. Elastic scattering

    NASA Astrophysics Data System (ADS)

    Hishiyama, N.; Hoshino, M.; Blanco, F.; García, G.; Tanaka, H.

    2017-12-01

    We report absolute elastic differential cross sections (DCSs) for electron collisions with phosphorus trifluoride, PF3, molecules (e- + PF3) in the impact energy range of 2.0-200 eV and over a scattering angle range of 10°-150°. Measured angular distributions of scattered electron intensities were normalized by reference to the elastic DCSs of He. Corresponding integral and momentum-transfer cross sections were derived by extrapolating the angular range from 0° to 180° with the help of a modified phase-shift analysis. In addition, due to the large dipole moment of the considered molecule, the dipole-Born correction for the forward scattering angles has also been applied. As a part of this study, independent atom model calculations in combination with screening corrected additivity rule were also performed for elastic and inelastic (electronic excitation plus ionization) scattering using a complex optical potential method. Rotational excitation cross sections have been estimated with a dipole-Born approximation procedure. Vibrational excitations are not considered in this calculation. Theoretical data, at the differential and integral levels, were found to reasonably agree with the present experimental results. Furthermore, we explore the systematics of the elastic DCSs for the four-atomic trifluoride molecules of XF3 (X = B, N, and P) and central P-atom in PF3, showing that, owing to the comparatively small effect of the F-atoms, the present angular distributions of elastic DCSs are essentially dominated by the characteristic of the central P-atom at lower impact energies. Finally, these quantitative results for e- - PF3 collisions were compiled together with the previous data available in the literature in order to obtain a cross section dataset for modeling purposes. To comprehensively describe such a considerable amount of data, we proceed by first discussing, in this paper, the vibrationally elastic scattering processes whereas vibrational and electronic excitation shall be the subject of our following paper devoted to inelastic collisions.

  8. Photoionization research on atomic radiation. 3: The ionization cross section of atomic nitrogen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Elzer, A.

    1982-01-01

    The photoionization cross section of atomic nitrogen was measured between the ionization limit and 432 A. The experimental values are well fitted by those from a calculation of HENRY due to the dipole velocity approximation. A Rydberg series converging to the 5S-state of the ion is clearly identified from the ionization measurements and is shown to ionize.

  9. Effect of core polarizability on photoionization cross-section calculations.

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, R. C.

    1972-01-01

    Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.

  10. Total and partial photoneutron cross sections for Pb isotopes

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Daoutidis, I.; Iwamoto, C.; Akimune, H.; Okamoto, A.; Yamagata, T.; Kamata, M.; Itoh, O.; Toyokawa, H.; Lui, Y.-W.; Harada, H.; Kitatani, F.; Hilaire, S.; Koning, A. J.

    2012-07-01

    Using quasimonochromatic laser-Compton scattering γ rays, total photoneutron cross sections were measured for 206,207,208Pb near neutron threshold with a high-efficiency 4π neutron detector. Partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near threshold by measuring anisotropies in photoneutron emission with linearly polarized γ rays. The E1 strength dominates over the M1 strength in the neutron channel where E1 photoneutron cross sections show extra strength of the pygmy dipole resonance in 207,208Pb near the neutron threshold corresponding to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to an M1 cross section less than 10% of the total photoneutron cross section.

  11. Quantification of tracer plume transport parameters in 2D saturated porous media by cross-borehole ERT imaging

    NASA Astrophysics Data System (ADS)

    Lekmine, G.; Auradou, H.; Pessel, M.; Rayner, J. L.

    2017-04-01

    Cross-borehole ERT imaging was tested to quantify the average velocity and transport parameters of tracer plumes in saturated porous media. Seven tracer tests were performed at different flow rates and monitored by either a vertical or horizontal dipole-dipole ERT sequence. These sequences were tested to reconstruct the shape and temporally follow the spread of the tracer plumes through a background regularization procedure. Data sets were inverted with the same inversion parameters and 2D model sections of resistivity ratios were converted to tracer concentrations. Both array types provided an accurate estimation of the average pore velocity vz. The total mass Mtot recovered was always overestimated by the horizontal dipole-dipole and underestimated by the vertical dipole-dipole. The vertical dipole-dipole was however reliable to quantify the longitudinal dispersivity λz, while the horizontal dipole-dipole returned better estimation for the transverse component λx. λ and Mtot were mainly influenced by the 2D distribution of the cumulated electrical sensitivity and the Shadow Effects induced by the third dimension. The size reduction of the edge of the plume was also related to the inability of the inversion process to reconstruct sharp resistivity contrasts at the interface. Smoothing was counterbalanced by a non-realistic rise of the ERT concentrations around the centre of mass returning overpredicted total masses. A sensitivity analysis on the cementation factor m and the porosity ϕ demonstrated that a change in one of these parameters by 8% involved non negligible variations by 30 and 40% of the dispersion coefficients and mass recovery.

  12. Unusual temperature dependence of the dissociative electron attachment cross section of 2-thiouracil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopyra, Janina; Abdoul-Carime, Hassan; Université Lyon 1, Villeurbanne

    At low energies (<3 eV), molecular dissociation is controlled by dissociative electron attachment for which the initial step, i.e., the formation of the transient negative ion, can be initiated by shape resonance or vibrational Feshbach resonance (VFR) mediated by the formation of a dipole bound anion. The temperature dependence for shape-resonances is well established; however, no experimental information is available yet on the second mechanism. Here, we show that the dissociation cross section for VFRs mediated by the formation of a dipole bound anion decreases as a function of a temperature. The change remains, however, relatively small in the temperaturemore » range of 370-440 K but it might be more pronounced at the extended temperature range.« less

  13. N(+)-N and O(+)-O interaction energies, dipole transition moments, and transport cross sections

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Stallcop, J. R.

    1986-01-01

    Complete sets of ion-atom interaction energies have been computed for nitrogen and oxygen with accurate large scale structure calculations. The computed energies agree well with the accurate potential curves available from spectroscopic measurement. The state functions from the nitrogen calculations have been applied to determine the transition moment for all allowed dipole transitions. These results can be combined to compute a detailed radiation spectrum such as that required to define the highly nonequilibrium environment of aeroassisted orbital transfer vehicle (AOTV). The long-range interaction energies have been used to determine the ion-atom resonance charge exchange cross sections that are important for transport processes such as diffusion. A calculation to determine reliable transport properties for energies that include the AOTV temperature range from these computed properties is described.

  14. On the use of statistical methods to interpret electrical resistivity data from the Eumsung basin (Cretaceous), Korea

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun

    2001-12-01

    Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.

  15. Cut-and-connect of two antiparallel vortex tubes

    NASA Technical Reports Server (NTRS)

    Melander, Mogens V.; Hussain, Fazle

    1988-01-01

    Motivated by an early conjecture that vortex cut-and-connect plays a key role in mixing and production of turbulence, helicity and aerodynamic noise, the cross-linking of two antiparallel viscous vortex tubes via direct numerical simulation is studied. The Navier-Stokes equations are solved by a dealiased pseudo-spectral method with 64 cubed grid points in a periodic domain for initial Reynolds numbers Re up to 1000. The vortex tubes are given an initial sinusoidal perturbation to induce a collision and keep the two tubes pressed against each other as annihilation continues. Cross-sectional and wire plots of various properties depict three stages of evolution: (1) Inviscid induction causing vortex cores to first approach and form a contact zone with a dipole cross-section, and then to flatten and stretch; (2) Vorticity annihilation in the contact zone accompanied by bridging between the two vortices at both ends of the contact zone due to a collection of cross-linked vortex lines, now orthogonal to the initial vortex tubes. The direction of dipole advection in the contact zone reverses; and (3) Threading of the remnants of the original vortices in between the bridges as they pull apart. The crucial stage 2 is shown to be a simple consequence of vorticity annihilation in the contact zone, link-up of the un-annihilated parts of vortex lines, and stretching and advection by the vortex tube swirl of the cross-linked lines, which accumulate at stagnation points in front of the annihilating vortex dipole. It is claimed that bridging is the essence of any vorticity cross-linking and that annihilation is sustained by stretching of the dipole by the bridges. Vortex reconnection details are found to be insensitive to asymmetry. Modeling of the reconnection process is briefly examined. The 3D spatial details of scalar transport (at unity Schmidt number), enstrophy production, dissipation and helicity are also examined.

  16. Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.

    2014-11-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.

  17. Method and apparatus for ion mobility spectrometry with alignment of dipole direction (IMS-ADD)

    DOEpatents

    Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2007-01-30

    Techniques and instrumentation are described for analyses of substances, including complex samples/mixtures that require separation prior to characterization of individual components. A method is disclosed for separation of ion mixtures and identification of ions, including protein and other macromolecular ions and their different structural isomers. Analyte ions are not free to rotate during the separation, but are substantially oriented with respect to the drift direction. Alignment is achieved by applying, at a particular angle to the drift field, a much stronger alternating electric field that "locks" the ion dipoles with moments exceeding a certain value. That value depends on the buffer gas composition, pressure, and temperature, but may be as low as .about.3 Debye under certain conditions. The presently disclosed method measures the direction-specific cross-sections that provide the structural information complementing that obtained from known methods, and, when coupled to those methods, increases the total peak capacity and specificity of gas-phase separations. Simultaneous 2-D separations by direction-specific cross sections along and orthogonally to the ion dipole direction are also possible.

  18. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviorsmore » are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.« less

  19. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    NASA Astrophysics Data System (ADS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Chiang, Hai-Pang

    2016-09-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  20. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-01

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.

  1. Ozone: Unresolved discrepancies for dipole oscillator strength distributions, dipole sums, and van der Waals coefficients

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-08-01

    Dipole oscillator strength distributions (DOSDs) for ozone are constructed from experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density, and molar refractivity data. A lack of photoabsorption data in the intermediate energy region from 24 to 524 eV necessitates the use of a mixture rule in that region. For this purpose, a DOSD for O2 is constructed first. The dipole properties for O2 are essentially the same as those obtained in earlier work even though most of the input data is from more recent experiments. A discrepancy is found between the refractivity data and photoabsorption data in the 10-20.6 eV range for ozone. A reliable ozone DOSD of the sort obtained for many other species remains out of reach. However, it is suggested that the true dipole properties of ozone lie between those predicted by two distributions that we present.

  2. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larriba, Carlos, E-mail: clarriba@umn.edu; Hogan, Christopher J.

    2013-10-15

    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission ismore » largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas molecule collisions (gas molecules with altered trajectories by the potential interaction) without tracking grazing trajectories are further discussed. The presented calculation techniques should enable more accurate collision cross section predictions under experimentally relevant conditions than pre-existing approaches, and should enhance the ability of collision cross section measurement schemes to discern the structures of gas phase entities.« less

  3. Application of the Schwinger multichannel formulation to electron-impact excitation of the B 1Sigma(+)u state of H2

    NASA Technical Reports Server (NTRS)

    Gibson, Thomas L.; Lima, Marco A. P.; Mckoy, Vincent; Huo, Winifred M.

    1987-01-01

    The paper reports cross sections for electron-impact excitation of the X 1Sigma(+)g - BISigma(+)u transition in H2 for collision energies of 15, 20, and 30 eV. For this dipole-allowed transition with its associated long-range potential, the contributions of the more strongly scattered low-angular-momentum partial waves to the cross section were obtained from a two-state Schwinger multichannel calculation, and a modified Born-closure scheme was used to include the contributions from the remaining weakly scattered partial waves. Agreement between the calculated differential cross sections and available experimental data is encouraging.

  4. BORN CROSS SECTIONS FOR INELASTIC SCATTERING OF ELECTRONS BY HYDROGEN ATOMS. III. 5s, 5p, 5d, 5f, 5g STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milford, S.N.; Morrissey, J.J.; Scanlon, J.H.

    1960-12-01

    Born total cross sections were computed for the strong optically allowed transitions from n = 5 to n' = 6, at incident energies between 0.2 and 1361 ev. Thirty energy values were considered for the 5s to 6p and 5g to 6h cases, and nine for the other transitions. The cross sections obtained were larger than those of comparable transitions for lower n. The Bethe (dipole) approximation was also used, and was found to give good agreement with the Born results down to relatively low energies ( approx equal 3 ev). (auth)

  5. Isotropic Huygens dipoles and multipoles with colloidal particles

    NASA Astrophysics Data System (ADS)

    Dezert, Romain; Richetti, Philippe; Baron, Alexandre

    2017-11-01

    Huygens sources are elements that scatter light in the forward direction as used in the Huygens-Fresnel principle. They have remained fictitious until recently when experimental systems have been fabricated. In this Rapid Communication, we propose isotropic meta-atoms that act as Huygens sources. Using clusters of plasmonic or dielectric colloidal particles, Huygens dipoles that resonate at visible frequencies can be achieved with scattering cross sections as high as five times the geometric cross section of the particle surpassing anything achievable with a hypothetical simple spherical particle. Examples are given that predict extremely broadband scattering in the forward direction over a 1000 nm wavelength range at optical frequencies. These systems are important to the fields of nanoantennas, metamaterials, and wave physics in general as well as any application that requires local control over the radiation properties of a system as in solar cells or biosensing.

  6. Determining partial differential cross sections for low-energy electron photodetachment involving conical intersections using the solution of a Lippmann-Schwinger equation constructed with standard electronic structure techniques.

    PubMed

    Han, Seungsuk; Yarkony, David R

    2011-05-07

    A method for obtaining partial differential cross sections for low energy electron photodetachment in which the electronic states of the residual molecule are strongly coupled by conical intersections is reported. The method is based on the iterative solution to a Lippmann-Schwinger equation, using a zeroth order Hamiltonian consisting of the bound nonadiabatically coupled residual molecule and a free electron. The solution to the Lippmann-Schwinger equation involves only standard electronic structure techniques and a standard three-dimensional free particle Green's function quadrature for which fast techniques exist. The transition dipole moment for electron photodetachment, is a sum of matrix elements each involving one nonorthogonal orbital obtained from the solution to the Lippmann-Schwinger equation. An expression for the electron photodetachment transition dipole matrix element in terms of Dyson orbitals, which does not make the usual orthogonality assumptions, is derived.

  7. Collisional excitation of the highly excited hydrogen atoms in the dipole form of the semiclassical impact parameter and Born approximations

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1971-01-01

    Expressions for the excitation cross section of the highly excited states of the hydrogenlike atoms by fast charged particles have been derived in the dipole approximation of the semiclassical impact parameter and the Born approximations, making use of a formula for the asymptotic expansion of the oscillator strength of the hydrogenlike atoms given by Menzel. When only the leading term in the asymptotic expansion is retained, the expression for the cross section becomes identical to the expression obtained by the method of the classical collision and correspondence principle given by Percival and Richards. Comparisons are made between the Bethe coefficients obtained here and the Bethe coefficients of the Born approximation for transitions where the Born calculation is available. Satisfactory agreement is obtained only for n yields n + 1 transitions, with n the principal quantum number of the excited state.

  8. ''Reading'' the photoelectron {beta}-parameter spectrum in a resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolmatov, V. K.; Guler, E.; Manson, S. T.

    2007-09-15

    The behavior of the dipole photoelectron angular distribution parameter {beta}{sub nl}({omega}) in the vicinity of autoionizing resonances is discussed. It is shown that from this behavior, surprisingly, many photoionization parameters that cannot be measured experimentally can be extracted. These are the energy positions and ordering of autoionizing resonance minima in the partial photoionization cross sections {sigma}{sub l+1} and {sigma}{sub l-1}, the energies at which these two cross sections intersect, and signs and magnitudes of the cos({delta}{sub l+1}-{delta}{sub l-1}) ({delta}{sub l{+-}}{sub 1} being the phase shifts of the dipole photoionization amplitudes D{sub l{+-}}{sub 1}, respectively) through the autoionizing resonance energy region.more » Based on this, a deeper interpretation of such effects as the width-narrowing, width-fluctuating, and q-reversal in the {beta}{sub nl} parameter spectrum in the autoionizing resonance energy region is given. As an example, calculated data for partial photoionization cross sections {sigma}{sub 3d{r_reversible}}{sub f} and {sigma}{sub 3d{r_reversible}}{sub p}, and {beta}{sub 3d} parameters for 3d photoelectrons from Cr{sup +} are presented.« less

  9. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  10. Application of the BEf-scaling approach to electron impact excitation of diople-allowed electronic states in molecules

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Thorn, P. A.; Campbell, L.; Kato, H.; Kawahara, H.; Hoshino, M.; Tanaka, H.; Kim, Y.-K.

    2008-05-01

    We consider the efficacy of the BEf-scaling approach, in calculating reliable integral cross sections for electron impact excitation of dipole-allowed electronic states in molecules. We will demonstrate, using specific examples in H2, CO and H2O, that this relatively simple procedure can generate quite accurate integral cross sections which compare well with available experimental data. Finally, we will briefly consider the ramifications of this to atmospheric and other types of modelling studies.

  11. Spin correlations and new physics in τ -lepton decays at the LHC

    DOE PAGES

    Hayreter, Alper; Valencia, German

    2015-07-31

    We use spin correlations to constrain anomalous τ -lepton couplings at the LHC including its anomalous magnetic moment, electric dipole moment and weak dipole moments. Single spin correlations are ideal to probe interference terms between the SM and new dipole-type couplings as they are not suppressed by the τ -lepton mass. Double spin asymmetries give rise to T -odd correlations useful to probe CP violation purely within the new physics amplitudes, as their appearance from interference with the SM is suppressed by m τ. We compare our constraints to those obtained earlier on the basis of deviations from the Drell-Yanmore » cross-section.« less

  12. Pinning down electroweak dipole operators of the top quark

    DOE PAGES

    Schulze, Markus; Soreq, Yotam

    2016-08-19

    Here, we consider hadronic top quark pair production and pair production in association with a photon or a Z boson to probe electroweak dipole couplings in tb¯W, tt¯γ, and tt¯Z interactions. We demonstrate how measurements of these processes at the 13 TeV LHC can be combined to disentangle and constrain anomalous dipole operators. The construction of cross section ratios allows us to significantly reduce various uncertainties and exploit orthogonal sensitivity between the tt¯γ and tt¯Z couplings. In addition, we show that angular correlations in tt¯ production can be used to constrain the remaining tb¯W dipole operator. Our approach yields excellentmore » sensitivity to the anomalous couplings and can be a further step toward precise and direct measurements of the top quark electroweak interactions.« less

  13. Two- and three-photon ionization in the noble gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, E.J.

    1981-08-01

    By using a characteristic Green's function for an exactly solvable Schroedinger equation with an approximation to the central potential of Hermann and Skillman, the cross section for nonresonant two- and three-photon ionization of Ne, Ar, Kr, and Xe were calculated in jl coupling. Expressions for cross sections in jl coupling are given. Comparison with the Ar two-photon cross section of Pindzola and Kelly, calculated using the many-body theory, the dipole-length approximation, and LS coupling shows a disagreement of as much as a factor of 2. The disagreement appears to arise from distortion introduced by shifting the Green's-function resonances to experimentalmore » values.« less

  14. Electron-impact excitation of the BΣ1u+ and CΠ1u electronic states of H2

    NASA Astrophysics Data System (ADS)

    Kato, H.; Kawahara, H.; Hoshino, M.; Tanaka, H.; Campbell, L.; Brunger, M. J.

    2008-06-01

    Differential and integral cross sections for electron-impact excitation of the dipole-allowed BΣ1u+ and CΠ1u electronic states of molecular hydrogen have been measured. The differential cross sections were determined by analysis of normalized energy-loss spectra obtained using a crossed-beam apparatus at the electron-impact energies of 40, 100, and 200 eV. Integral cross sections were subsequently derived from these data. The present work was undertaken in order to investigate some ambiguities between earlier experimental data and recent BEf-scaled cross sections as defined and calculated by Kim [J. Chem. Phys. 126, 064305 (2007)] and also to extend the energy range of the available data. Optical oscillator strengths, also determined as a part of the present investigation, were found to be in fair accordance with previous measurements and some calculations.

  15. Low-lying electric-dipole strengths of Ca, Ni, and Sn isotopes imprinted on total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2017-08-01

    Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.

  16. Impact of electronic coupling, symmetry, and planarization on one- and two-photon properties of triarylamines with one, two, or three diarylboryl acceptors.

    PubMed

    Makarov, Nikolay S; Mukhopadhyay, Sukrit; Yesudas, Kada; Brédas, Jean-Luc; Perry, Joseph W; Pron, Agnieszka; Kivala, Milan; Müllen, Klaus

    2012-04-19

    We have performed a study of the one- and two-photon absorption properties of a systematically varied series of triarylamino-compounds with one, two, or three attached diarylborane arms arranged in linear dipolar, bent dipolar, and octupolar geometries. Two-photon fluorescence excitation spectra were measured over a wide spectral range with femtosecond laser pulses. We found that on going from the single-arm to the two- and three-arm systems, the peak in two-photon absorption (2PA) cross-section is suppressed by factors of 3-11 for the lowest excitonic level associated with the electronic coupling of the arms, whereas it is enhanced by factors of 4-8 for the higher excitonic level. These results show that the coupling of arms redistributes the 2PA cross-section between the excitonic levels in a manner that strongly favors the higher-energy excitonic level. The experimental data on one- and two-photon cross-sections, ground- and excited-state transition dipole moments, and permanent dipole moment differences between the ground and the lowest excited states were compared to the results obtained from a simple Frenkel exciton model and from highly correlated quantum-chemical calculations. It has been found that planarization of the structure around the triarylamine moiety leads to a sizable increase in peak 2PA cross-section for the lowest excitonic level of the two-arm system, whereas for the three-arm system, the corresponding peak was weakened and shifted to lower energy. Our studies show the importance of the interarm coupling, number of arms, and structural planarity on both the enhancement and the suppression of two-photon cross-sections in multiarm molecules. © 2012 American Chemical Society

  17. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium.

    PubMed

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-12-17

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.

  18. Astrophysical relevance of the low-energy dipole strength of 206Pb

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Tsoneva, N.; Goriely, S.; Bhatia, C.; Arnold, C. W.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2018-05-01

    The dipole strength of 206Pb was studied below the neutron separation energy using photon scattering experiments at the HIGS facility. Utilizing the technique of nuclear resonance fluorescence with 100% linearly-polarized photon beams, the spins, parities, branching ratios and decay widths of excited states in 206Pb from 4.9 - 8.1 MeV have been measured. The new experimental information is used to reliably predict the neutron capture cross section of 205Pb, an important branch point nucleus along the s-process path of nucleosynthesis.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole framework in the small-x region. The result features the cosφ and cos2φ azimuthal angular correlations, which have been missing in previous studies based on the dipole model. In particular, the cos2φ term is generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion collider provides important information about the gluon tomography at small x. Here, we also show the consistency with the standard collinear factorization approach based on the quark and gluon generalized parton distributions.

  20. Ultracold collisions between spin-orbit-coupled dipoles: General formalism and universality

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hougaard, Christiaan R.; Mulkerin, Brendan C.; Liu, Xia-Ji

    2018-04-01

    A theoretical study of the low-energy scattering properties of two aligned identical bosonic and fermionic dipoles in the presence of isotropic spin-orbit coupling is presented. A general treatment of particles with arbitrary (pseudo)spin is given in the framework of multichannel scattering. At ultracold temperatures and away from shape resonances or closed-channel dominated resonances, the cross section can be well described within the Born approximation to within corrections due to the s -wave scattering. We compare our findings with numerical calculations and find excellent agreement.

  1. Estimating nonlinear effects in forward dijet production in ultra-peripheral heavy ion collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Kotko, P.; Kutak, K.; Sapeta, S.; Stasto, A. M.; Strikman, M.

    2017-05-01

    Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or kT) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb-Pb collisions at CM energy 5.1 TeV per nucleon pair. The formalism is applicable when the average transverse momentum of the dijet system PT is much bigger than the saturation scale Qs, PT≫ Qs, while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to the Weizsäcker-Williams (WW) unintegrated gluon distribution, which is far less known from experimental data than the most common dipole gluon distribution appearing in inclusive small- x processes. We have calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL + DGLAP evolution equation. The saturation effects are visible but rather weak for realistic pT cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. We find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotko, P.; Kutak, K.; Sapeta, S.

    Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or k T ) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb–Pb collisions atCMenergy 5.1 TeV per nucleon pair. The formalism is applicablewhen the average transversemomentum of the dijet system P T is much bigger than the saturation scale Q s , P T >> Qs , while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to theWeizsäcker–Williams (WW) unintegrated gluon distribution, which is far less known frommore » experimental data than the most common dipole gluon distribution appearing in inclusive small-x processes. We also calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL+DGLAP evolution equation. The saturation effects are visible but rather weak for realistic p T cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. Finally, we find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.« less

  3. Dipole Resonances of 76Ge

    NASA Astrophysics Data System (ADS)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  4. Millimeter-wave integrated-horn antennas. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1991-01-01

    Full-wave analysis is employed to determine the far-field pattern and input impedance of a dipole-fed horn antenna in a ground plane, and the theoretical results are compared with mm-wave and microwave data. The theoretical work exploits the Green's function corresponding to the horn structure and the method of moments. It is determined that the horn should have 70 sections/wavelength and 50 secondary modes for optimized accuracy, and certain dipole positions can reduce the resonance to zero. The experimentally derived impedance and radiation patterns agree with the constraints developed theoretically. The 70-degree flare-angle horn with selected dipole positions and horn apertures yields good radiation patterns, cross-polarization levels, and resonant dipole impedances. The conclusions are of interest to the development of the horn antennas etched in Si/GaAs for applications to zero-visibility tracking, radio astronomy, plasma diagnostics, and remote sensing.

  5. Isospin properties of electric dipole excitations in 48Ca

    NASA Astrophysics Data System (ADS)

    Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.

    2014-03-01

    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.

  6. Charge-to-mass dispersion methods for abrasion-ablation fragmentation models

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Norbury, J. W.

    1985-01-01

    Methods to describe the charge-to-mass dispersion distributions of projectile prefragments are presented and used to determine individual isotope cross-sections or various elements produced in the fragmentation of relativistic argon nuclei by carbon targets. Although slight improvements in predicted cross-sections are obtained for the quantum mechanical giant dipole resonance (GDR) distribution when compared qith the predictions of the geometric GDR model, the closest agreement between theory and experiment continues to be obtained with the simple hypergeometric distribution, which treats the nucleons in the nucleus as completely uncorrelated.

  7. Neutral Pion Electroproduction in the Δ Resonance Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villano, Anthony

    2007-11-01

    The electroproduction of baryon resonances at high Q 2 is examined. Analysis focuses on the Δ(1232) resonance via exclusive pseudoscalar meson production of π 0 particles. Differential cross sections are extracted for exclusive π 0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Δ(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A 3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Δ region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor Gmore » $$*\\atop{M}$$ is extracted along with the scalar to magnetic dipole ratio C2/M1.« less

  8. Low-energy positron scattering by pyrimidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, Alessandra Souza; Pastega, Diego F.; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br

    2015-12-28

    This work reports elastic integral and differential cross sections for positron collisions with pyrimidine, for energies up to 20 eV. The cross sections were computed with the Schwinger multichannel method in the static plus polarization approximation. We also employed the Born closure procedure to account for the long range potential due to the permanent dipole moment of the molecule. Our results are compared with the experimental total cross section of Zecca et al. [J. Phys. B 43, 215204 (2010)], the experimental grand-total, quasi-elastic integral and differential cross section of Palihawadana et al. [Phys. Rev. A 88, 12717 (2013)]. We alsomore » compare our results with theoretical integral and differential cross sections obtained by Sanz et al. [Phys. Rev. A 88, 62704 (2013)] with the R-matrix and the independent atom model with screening-corrected additivity rule methods, and with the results computed by Franz and Gianturco [Phys. Rev. A 88, 042711 (2013)] using model correlation-polarization potentials. The agreement between the theory and the experiment is encouraging.« less

  9. Total cross section of furfural by electron impact: Experiment and theory.

    PubMed

    Traoré Dubuis, A; Verkhovtsev, A; Ellis-Gibbings, L; Krupa, K; Blanco, F; Jones, D B; Brunger, M J; García, G

    2017-08-07

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  10. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  11. Total cross section of furfural by electron impact: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Traoré Dubuis, A.; Verkhovtsev, A.; Ellis-Gibbings, L.; Krupa, K.; Blanco, F.; Jones, D. B.; Brunger, M. J.; García, G.

    2017-08-01

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  12. Electron and positron scattering from CF 3I molecules below 600 eV: a comparison with CF 3H

    NASA Astrophysics Data System (ADS)

    Kawada, Michihito K.; Sueoka, Osamu; Kimura, Mineo

    2000-11-01

    The total cross-sections (TCSs) for electron and positron scattering from CF 3I molecules have been studied experimentally. A theoretical analysis based on the continuum multiple-scattering (CMS) method has been performed to understand the origin of resonances and the elastic cross-sections. The present TCS for electron scattering is found to be larger by about 20% than that of T. Underwood-Lemons, D.C. Winkler, J.A. Tossel, J.H. Moore [J. Chem. Phys. 100 (1994) 9117] although the general shape agrees well in the entire energy studied. The difference in the cross-sections for CF 3I and CF 3H is explained by the sizes and the dipole moments of these molecules.

  13. Measurement of 58Fe (p , n)58Co reaction cross-section within the proton energy range of 3.38 to 19.63 MeV

    NASA Astrophysics Data System (ADS)

    Ghosh, Reetuparna; Badwar, Sylvia; Lawriniang, Bioletty; Jyrwa, Betylda; Naik, Haldhara; Naik, Yeshwant; Suryanarayana, Saraswatula Venkata; Ganesan, Srinivasan

    2017-08-01

    The 58Fe (p , n)58Co reaction cross-section within Giant Dipole Resonance (GDR) region i.e. from 3.38 to 19.63 MeV was measured by stacked-foil activation and off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron facility at Mumbai. The present data were compared with the existing literature data and found to be in good agreement. The 58Fe (p , n)58Co reaction cross-section as a function of proton energy was also theoretically calculated by using the computer code TALYS-1.8 and found to be in good agreement, which shows the validity of the TALYS-1.8 program.

  14. Electron ionization cross-section calculations for liquid water at high impact energies

    NASA Astrophysics Data System (ADS)

    Bousis, C.; Emfietzoglou, D.; Hadjidoukas, P.; Nikjoo, H.; Pathak, A.

    2008-04-01

    Cross-sections for the ionization of liquid water is perhaps the most essential set of data needed for modeling electron transport in biological matter. The complexity of ab initio calculations for any multi-electron target has led to largely heuristic semi-empirical models which take advantage elements of the Bethe, dielectric and binary collision theories. In this work we present various theoretical models for calculating total ionization cross-sections (TICSs) for liquid water over the 10 keV-1 MeV electron energy range. In particular, we extend our recent dielectric model calculations for liquid water to relativistic energies using both the appropriate kinematic corrections and the transverse part. Comparisons are made with widely used atomic and molecular TICS models such as those of Khare and co-workers, Kim-Rudd, Deutsch-Märk, Vriens and Gryzinski. The required dipole oscillator strength was provided by our recent optical-data model which is based on the latest experimental data for liquid water. The TICSs computed by the above models differ by up to 40% from the dielectric results. The best agreement (to within ∼10%) was obtained by Khare's original model and an approximate form of Gryzinski's model. In contrast, the binary-encounter-dipole (BED) models of both Kim-Rudd and Khare and co-workers resulted in ∼10-20% higher TICS values, while discrepancies increased to ∼30-40% when their simpler binary-encounter-Bethe (BEB) versions were used. Finally, we discuss to what extent the accuracy of the TICS is indicative of the reliability of the underlying differential cross-sections.

  15. An analytical force balance model for dust particles with size up to several Debye lengths

    NASA Astrophysics Data System (ADS)

    Aussems, D. U. B.; Khrapak, S. A.; Doǧan, I.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-11-01

    In this study, we developed a revised stationary force balance model for particles in the regime a / λ D < 10 . In contrast to other analytical models, the pressure and dipole force were included too, and for anisotropic plasmas, a novel contribution to the dipole moment was derived. Moreover, the Coulomb logarithm and collection cross-section were modified. The model was applied on a case study where carbon dust is formed near the plasma sheath in the linear plasma device Pilot-PSI. The pressure force and dipole force were found to be significant. By tracing the equilibrium position, the particle radius was determined at which the particle deposits. The obtained particle radius agrees well with the experimentally obtained size and suggests better agreement as compared to the unrevised model.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Markus; Soreq, Yotam

    Here, we consider hadronic top quark pair production and pair production in association with a photon or a Z boson to probe electroweak dipole couplings in tb¯W, tt¯γ, and tt¯Z interactions. We demonstrate how measurements of these processes at the 13 TeV LHC can be combined to disentangle and constrain anomalous dipole operators. The construction of cross section ratios allows us to significantly reduce various uncertainties and exploit orthogonal sensitivity between the tt¯γ and tt¯Z couplings. In addition, we show that angular correlations in tt¯ production can be used to constrain the remaining tb¯W dipole operator. Our approach yields excellentmore » sensitivity to the anomalous couplings and can be a further step toward precise and direct measurements of the top quark electroweak interactions.« less

  17. Electromagnetic moments and electric dipole transitions in carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-07-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.

  18. Change of electric dipole moment in charge transfer transitions of ferrocene oligomers studied by ultrafast two-photon absorption

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Alexander; Arias, Eduardo; Moggio, Ivana; Ziolo, Ronald; Uudsemaa, Merle; Trummal, Aleksander; Cooper, Thomas; Rebane, Aleksander

    2017-02-01

    Change of permanent electric dipole moment in the lower-energy charge transfer transitions for a series of symmetrical and non-symmetrical ferrocene-phenyleneethynylene oligomers were studied by measuring the corresponding femtosecond two-photon absorption cross section spectra, and were determined to be in the range Δμ = 3 - 10 D. Quantum-chemical calculations of Δμ for the non-symmetrical oligomers show good quantitative agreement with the experimental results, thus validating two-photon absorption spectroscopy as a viable experimental approach to study electrostatic properties of organometallics and other charge transfer systems.

  19. Estimating nonlinear effects in forward dijet production in ultra-peripheral heavy ion collisions at the LHC

    DOE PAGES

    Kotko, P.; Kutak, K.; Sapeta, S.; ...

    2017-05-27

    Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or k T ) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb–Pb collisions atCMenergy 5.1 TeV per nucleon pair. The formalism is applicablewhen the average transversemomentum of the dijet system P T is much bigger than the saturation scale Q s , P T >> Qs , while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to theWeizsäcker–Williams (WW) unintegrated gluon distribution, which is far less known frommore » experimental data than the most common dipole gluon distribution appearing in inclusive small-x processes. We also calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL+DGLAP evolution equation. The saturation effects are visible but rather weak for realistic p T cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. Finally, we find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.« less

  20. Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. 3: CO2

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Borst, W. L.; Zipf, E. C.

    1972-01-01

    Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact of CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focussed electron gun used in this series of experiments is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are given. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.

  1. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  2. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-01

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl →ɛ,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe25+ ion, as an example.

  3. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, L. Y.; Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088; Wang, J. G.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl→ε,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels.more » The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.« less

  4. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of themore » large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.« less

  5. Dipole and nondipole photoionization of molecular hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, B.; McKoy, V.; Southworth, S. H.

    2015-05-01

    We describe a theoretical approach to molecular photoionization that includes first-order corrections to the dipole approximation. The theoretical formalism is presented and applied to photoionization of H-2 over the 20-to 180-eV photon energy range. The angle-integrated cross section sigma, the electric dipole anisotropy parameter beta(e), the molecular alignment anisotropy parameter beta(m), and the first-order nondipole asymmetry parameters gamma and delta were calculated within the single-channel, static-exchange approximation. The calculated parameters are compared with previous measurements of sigma and beta(m) and the present measurements of beta(e) and gamma + 3 delta. The dipole and nondipole angular distribution parameters were determined simultaneouslymore » using an efficient, multiangle measurement technique. Good overall agreement is observed between the magnitudes and spectral variations of the calculated and measured parameters. The nondipole asymmetries of He 1s and Ne 2p photoelectrons were also measured in the course of this work.« less

  6. Cross-Section Measurements of the Kr86(γ,n) Reaction to Probe the s-Process Branching at Kr85

    NASA Astrophysics Data System (ADS)

    Raut, R.; Tonchev, A. P.; Rusev, G.; Tornow, W.; Iliadis, C.; Lugaro, M.; Buntain, J.; Goriely, S.; Kelley, J. H.; Schwengner, R.; Banu, A.; Tsoneva, N.

    2013-09-01

    We have carried out photodisintegration cross-section measurements on Kr86 using monoenergetic photon beams ranging from the neutron separation energy, Sn=9.86MeV, to 13 MeV. We combine our experimental Kr86(γ,n)Kr85 cross section with results from our recent Kr86(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of Kr86. The new experimental information is used to predict the neutron capture cross section of Kr85, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise Kr85(n,γ)Kr86 cross section allows us to produce more precise predictions of the Kr86 abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the C13 neutron source burns convectively rather than radiatively, represent a possible solution for the highest Kr86∶Kr82 ratios observed in meteoritic stardust SiC grains.

  7. Cross-section measurements of the 86Kr(γ,n) reaction to probe the s-process branching at 85Kr.

    PubMed

    Raut, R; Tonchev, A P; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N

    2013-09-13

    We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86  MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.

  8. {{\\rm{H}}}_{2}\\,X{}^{1}{{\\rm{\\Sigma }}}_{g}^{+}-c{}^{3}{{\\rm{\\Pi }}}_{u} Excitation by Electron Impact: Energies, Spectra, Emission Yields, Cross-sections, and H(1s) Kinetic Energy Distributions

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean; Liu, Melinda J.; Johnson, Paul V.; Malone, Charles P.; Khakoo, Murtadha A.

    2017-10-01

    The c{}3{{{\\Pi }}}u state of the hydrogen molecule has the second largest triplet-state excitation cross-section, and plays an important role in the heating of the upper thermospheres of outer planets by electron excitation. Precise energies of the H2, D2, and HD c{}3{{{\\Pi }}}u-(v,N) levels are calculated from highly accurate ab initio potential energy curves that include relativistic, radiative, and empirical non-adiabatic corrections. The emission yields are determined from predissociation rates and refined radiative transition probabilities. The excitation function and excitation cross-section of the c{}3{{{\\Pi }}}u state are extracted from previous theoretical calculations and experimental measurements. The emission cross-section is determined from the calculated emission yield and the extracted excitation cross-section. The kinetic energy (E k ) distributions of H atoms produced via the predissociation of the c{}3{{{\\Pi }}}u state, the c{}3{{{\\Pi }}}u- - b{}3{{{Σ }}}u+ dissociative emission by the magnetic dipole and electric quadrupole, and the c{}3{{{\\Pi }}}u - a{}3{{{Σ }}}g+ - b{}3{{{Σ }}}u+ cascade dissociative emission by the electric dipole are obtained. The predissociation of the c{}3{{{\\Pi }}}u+ and c{}3{{{\\Pi }}}u- states both produce H(1s) atoms with an average E k of ˜4.1 eV/atom, while the c{}3{{{\\Pi }}}u- - b{}3{{{Σ }}}u+ dissociative emissions by the magnetic dipole and electric quadrupole give an average E k of ˜1.0 and ˜0.8 eV/atom, respectively. The c{}3{{{\\Pi }}}u - a{}3{{{Σ }}}g+ - b{}3{{{Σ }}}u+ cascade and dissociative emission gives an average E k of ˜1.3 eV/atom. On average, each H2 excited to the c{}3{{{\\Pi }}}u state in an H2-dominated atmosphere deposits ˜7.1 eV into the atmosphere while each H2 directly excited to the a{}3{{{Σ }}}g+ and d{}3{{{\\Pi }}}u states contribute ˜2.3 and ˜3.3 eV, respectively, to the atmosphere. The spectral distribution of the calculated continuum emission arising from the X{}1{{{Σ }}}g+ - c{}3{{{\\Pi }}}u excitation is significantly different from that of direct a{}3{{{Σ }}}g+ or d{}3{{{\\Pi }}}u excitations.

  9. Study of top quark dipole interactions in t t \\xAF production associated with two heavy gauge bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Etesami, Seyed Mohsen; Khatibi, Sara; Mohammadi Najafabadi, Mojtaba

    2018-04-01

    In this paper, we investigate the prospects of measuring the strong and weak dipole moments of the top quark at the Large Hadron Collider (LHC). Measurements of these couplings provide an excellent opportunity to probe new physics interactions as they have quite small magnitudes in the standard model. Our analyses are performed using the production cross sections of t t ¯W W and t t ¯Z Z processes in the same sign dilepton and four-lepton final states, respectively. The sensitivities to strong and weak top quark dipole interactions at the 95% confidence level for various integrated luminosity scenarios are derived and compared with other studies. To estimate the constraints, the main source of backgrounds and a realistic simulation of the detector response are considered.

  10. A triangular property of the associated Legendre functions

    NASA Technical Reports Server (NTRS)

    Fineschi, S.; Landi Degl'innocenti, E.

    1990-01-01

    A mathematical formula is introduced and proved which relates the associated Legendre functions with given nonnegative integral indices. The application of this formula in simplifying the calculation of collisional electron-atom cross sections higher than the dipole is mentioned. A proof of the stated identity using the Gegenbauer polynomials and their generating function is given.

  11. Gyroscopic effect in low-energy classical capture of a rotating quadrupolar diatom by an ion.

    PubMed

    Dashevskaya, Elena; Litvin, Iliya; Nikitin, Evgueni

    2006-03-09

    The low-energy capture of homonuclear diatoms by ions is due mainly to the long-range part of the interpartner potential with leading terms that correspond to charge-quadrupole interaction and charge-induced dipole interaction. The capture dynamics is described by the perturbed-rotor adiabatic potentials and the Coriolis interaction between manifold of states that belong to a given value of the intrinsic angular momentum. When the latter is large enough, it can noticeably affect the capture cross section calculated in the adiabatic channel approximation due to the gyroscopic property of a rotating diatom. This paper presents the low-energy (low-temperature) state-selected partial and mean capture cross sections (rate coefficients) for the charge-quadrupole interaction that include the gyroscopic effect (decoupling of intrinsic angular momentum from the collision axis), quantum correction for the diatom rotation, and the correction for the charge-induced dipole interaction. These results complement recent studies on the gyroscopic effect in the quantum regime of diatom-ion capture (Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J. J. Chem. Phys. 2004, 120, 9989-9997).

  12. Measurement of the νμ charged-current quasielastic cross section on carbon with the ND280 detector at T2K

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Koga, T.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J. D.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Stewart, T.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2015-12-01

    This paper reports a measurement by the T2K experiment of the νμ charged current quasielastic (CCQE) cross section on a carbon target with the off-axis detector based on the observed distribution of muon momentum (pμ) and angle with respect to the incident neutrino beam (θμ). The flux-integrated CCQE cross section was measured to be ⟨σ ⟩=(0.83 ±0.12 )×10-38 cm2 . The energy dependence of the CCQE cross section is also reported. The axial mass, MAQE, of the dipole axial form factor was extracted assuming the Smith-Moniz CCQE model with a relativistic Fermi gas nuclear model. Using the absolute (shape-only) pμ-cos θμ distribution, the effective MAQE parameter was measured to be 1.2 6-0.18+0.21 GeV /c2 (1.4 3-0.22+0.28 GeV /c2 ).

  13. Gluon tomography from deeply virtual Compton scattering at small x

    DOE PAGES

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2017-06-29

    We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole framework in the small-x region. The result features the cosφ and cos2φ azimuthal angular correlations, which have been missing in previous studies based on the dipole model. In particular, the cos2φ term is generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion collider provides important information about the gluon tomography at small x. Here, we also show the consistency with the standard collinear factorization approach based on the quark and gluon generalized parton distributions.

  14. Exclusive photoproduction of vector mesons in proton-lead ultraperipheral collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Xie, Ya-Ping; Chen, Xurong

    2018-02-01

    Rapidity distributions of vector mesons are computed in dipole model proton-lead ultraperipheral collisions (UPCs) at the CERN Larger Hadron Collider (LHC). The dipole model framework is implemented in the calculations of cross sections in the photon-hadron interaction. The bCGC model and Boosted Gaussian wave functions are employed in the scattering amplitude. We obtain predictions of rapidity distributions of J / ψ meson proton-lead ultraperipheral collisions. The predictions give a good description to the experimental data of ALICE. The rapidity distributions of ϕ, ω and ψ (2 s) mesons in proton-lead ultraperipheral collisions are also presented in this paper.

  15. The Crossed-Dipole Structure of Aircraft in an Electromagnetic Pulse Environment

    DTIC Science & Technology

    1974-09-01

    The crossed-dipole receiving antenna has been used as a representative model to approximate electromagnetic pulse effects on aircraft. This paper...receiving antenna is excited by a broad spectrum electromagnetic pulse , certain important electrical resonances occur: that is, at specific single...dipole are presented which give insight into methods of analyzing aircraft in an electromagnetic pulse environment.

  16. Diffractive ρ and ϕ production at HERA using a holographic AdS/QCD light-front meson wave function

    NASA Astrophysics Data System (ADS)

    Ahmady, Mohammad; Sandapen, Ruben; Sharma, Neetika

    2016-10-01

    We use an anti-de Sitter/quantum chromodynamics holographic light-front wave function for the ρ and ϕ mesons, in conjunction with the color glass condensate dipole cross section whose parameters are fitted to the most recent 2015 high precision HERA data on inclusive deep inelastic scattering, in order to predict the cross sections for diffractive ρ and ϕ electroproduction. Our results suggest that the holographic meson light-front wave function is able to give a simultaneous description of ρ and ϕ production data provided we use a set of light quark masses with mu ,d

  17. VizieR Online Data Catalog: H2, D2, and HD c3Πu;

    NASA Astrophysics Data System (ADS)

    Liu, X.; Shemansky, D. E.; Yoshii, J.; Liu, M. J.; Johnson, P. V.; Malone, C. P.; Khakoo, M. A.

    2017-11-01

    The c3{Pi}u state of the hydrogen molecule has the triplet-state excitation cross-section, and plays an important role in the heating of the upper thermospheres of outer planets by electron excitation. Precise energies of the H2, D2, and HD c3{Pi}u-(v,N) levels are calculated from highly accurate ab initio potential energy curves that include relativistic, radiative, and empirical non-adiabatic corrections. The emission yields are determined from predissociation rates and refined radiative transition probabilities. The excitation function and excitation cross-section of the c3{Pi}u state are extracted from previous theoretical calculations and experimental measurements. The emission cross-section is determined from the calculated emission yield and the extracted excitation cross-section. The kinetic energy (Ek) distributions of H atoms produced via the predissociation of the c3{Pi}u state, the c3{Pi}u--b3{Sigma}u+ dissociative emission by the magnetic dipole and electric quadrupole, and the c3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ cascade dissociative emission by the electric dipole are obtained. The predissociation of the c3{Pi}u+ and c3{Pi}u- states both produce H(1s) atoms with an average Ek of ~4.1eV/atom, while the c3{Pi}u--b3{Sigma}u+ dissociative emissions by the magnetic dipole and electric quadrupole give an average Ek of ~1.0 and ~0.8eV/atom, respectively. The c3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ cascade and dissociative emission gives an average Ek of ~1.3 eV/atom. On average, each H2 excited to the c3{Pi}u state in an H2-dominated atmosphere deposits ~7.1eV into the atmosphere while each H2 directly excited to the a3{Sigma}g+ and d3{Pi}u states contribute ~2.3 and ~3.3eV, respectively, to the atmosphere. The spectral distribution of the calculated continuum emission arising from the X1{Sigma}g+-c3{Pi}u excitation is significantly different from that of direct a3{Sigma}g+ or d3{Pi}u excitations. (5 data files).

  18. Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2014-07-01

    The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  19. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    NASA Astrophysics Data System (ADS)

    Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.

    2017-11-01

    Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  20. Far-field potentials in cylindrical and rectangular volume conductors.

    PubMed

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  1. Magnetic field effect on photoionization cross-section of hydrogen-like impurity in cylindrical quantum wire

    NASA Astrophysics Data System (ADS)

    Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.

    2008-01-01

    We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.

  2. Extinction cross-section suppression and active acoustic invisibility cloaking

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-10-01

    Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.

  3. A FODO racetrack ring for nuSTORM: design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-01

    The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arcmore » length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less

  4. Cross sections for electron impact excitation of the C 1Π and D 1Σ+ electronic states in N2O

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Suzuki, D.; Kato, H.; Hoshino, M.; Tanaka, H.; Ingólfsson, O.; Campbell, L.; Brunger, M. J.

    2009-09-01

    Differential and integral cross sections for electron-impact excitation of the dipole-allowed C Π1 and D Σ1+ electronic states of nitrous oxide have been measured. The differential cross sections were determined by analysis of normalized energy-loss spectra obtained using a crossed-beam apparatus at six electron energies in the range 15-200 eV. Integral cross sections were subsequently derived from these data. The present work was undertaken in order to check both the validity of the only other comprehensive experimental study into these excitation processes [Marinković et al., J. Phys. B 32, 1949 (1998)] and to extend the energy range of those data. Agreement with the earlier data, particularly at the lower common energies, was typically found to be fair. In addition, the BEf-scaling approach [Kim, J. Chem. Phys. 126, 064305 (2007)] is used to calculate integral cross sections for the C Π1 and D Σ1+ states, from their respective thresholds to 5000 eV. In general, good agreement is found between the experimental integral cross sections and those calculated within the BEf-scaling paradigm, the only exception being at the lowest energies of this study. Finally, optical oscillator strengths, also determined as a part of the present investigations, were found to be in fair accordance with previous corresponding determinations.

  5. Scattering from a quantum anapole at low energies

    NASA Astrophysics Data System (ADS)

    Whitcomb, Kyle M.; Latimer, David C.

    2017-12-01

    In quantum field theory, the photon-fermion vertex can be described in terms of four form-factors that encode the static electromagnetic properties of the particle, namely, its charge, magnetic dipole moment, electric dipole moment, and anapole moment. For Majorana fermions, only the anapole moment can be nonzero, a consequence of the fact that these particles are their own antiparticles. Using the framework of quantum field theory, we perform a scattering calculation that probes the anapole moment with a spinless charged particle. In the limit of low momentum transfer, we confirm that the anapole can be classically likened to a point-like toroidal solenoid whose magnetic field is confined to the origin. Such a toroidal current distribution can be used to demonstrate the Aharonov-Bohm effect. We find that, in the non-relativistic limit, our scattering cross section agrees with a quantum mechanical computation of the cross section for a spinless current scattered by an infinitesimally thin toroidal solenoid. Our presentation is geared toward advanced undergraduate or beginning graduate students. This work serves as an introduction to the anapole moment and also provides an example of how one can develop an understanding of a particle's electromagnetic properties in quantum field theory.

  6. First measurement of the isoscalar excitation above the neutron emission threshold of the Pygmy Dipole Resonance in 68Ni

    NASA Astrophysics Data System (ADS)

    Martorana, N. S.; Cardella, G.; Lanza, E. G.; Acosta, L.; Andrés, M. V.; Auditore, L.; Catara, F.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Santonocito, D.; Trifirò, A.; Trimarchi, M.; Vigilante, M.; Vitturi, A.

    2018-07-01

    The excitation of the Pygmy Dipole Resonance (PDR) in the 68Ni nucleus, above the neutron emission threshold, via an isoscalar probe has been observed for the first time. The excitation has been produced in reactions where a 68Ni beam, obtained by the fragmentation of a 70Zn primary beam at INFN-LNS, impinged on a 12C target. The γ-ray decay was detected using the CsI(Tl) detectors of the CHIMERA multidetector sphere. The 68Ni isotope as well as other heavy ion fragments were detected using the FARCOS array. The population of the PDR was evidenced by comparing the detected γ-ray energy spectra with statistical code calculations. The isotopic resolution of the detection system allows also to directly compare neutron decay channels with the 68Ni channel, better evidencing the PDR decay response function. This comparison allows also the extraction of the PDR cross section and the relative γ-ray angular distribution. The measured γ-ray angular distribution confirms the E1 character of the transition. The γ decay cross section for the excitation of the PDR was measured to be 0.32 mb with a 18% of statistical error.

  7. Photoexcitation and ionization in carbon dioxide - Theoretical studies in the separated-channel static-exchange approximation

    NASA Technical Reports Server (NTRS)

    Padial, N.; Csanak, G.; Mckoy, B. V.; Langhoff, P. W.

    1981-01-01

    Vertical-electronic static-exchange photoexcitation and ionization cross sections are reported which provide a first approximation to the complete dipole spectrum of CO2. Separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths, and Stieltjes-Chebyshev moment methods were used in the development. Detailed comparisons were made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e, 2e) photoelectron spectroscopy. Results show that the separate-channel static-exchange approximation is generally satisfactory in CO2.

  8. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Alexander, E-mail: alexander.dunning@gmail.com; Schowalter, Steven J.; Puri, Prateek

    2015-09-28

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl{sup +}. The photodissociation cross section for the photon energy range 35 500 cm{sup −1} to 47 500 cm{sup −1} is measured using an integrated ion trap and time-of-flight mass spectrometer; we observe a broad, asymmetric profile that is peaked near 43 000 cm{sup −1}. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl{sup +} is extremely complex due to the presence of multiple open electronic shells,more » including the 4f{sup 10} configuration. The molecule has nine attractive potentials with ionically bonded electrons and 99 repulsive potentials dissociating to a ground state Dy{sup +} ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between the vibrational ground state and several resolved repulsive excited states.« less

  9. Deuterium target data for precision neutrino-nucleus cross sections

    DOE PAGES

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; ...

    2016-06-23

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, F A(q 2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of F A from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of F A. A complete error budget for the nucleon isovector axial radius leads to r A 2 = 0.46(22)fm 2, withmore » a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(ν μn → μ -p)| Ev=1 GeV = 10.1(0.9)×10 -39cm 2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. Furthermore, these techniques can be readily extended to other amplitudes and processes.« less

  10. A four-body model for the breakup of Borromean nucleus 22C

    NASA Astrophysics Data System (ADS)

    Miyamoto, Tomokazu

    A Borromean system is a bound 3-body system where no 2-body subsystems are bound. In nuclear physics, a nucleus that can be modelled as a Borromean system is called a Borromean nucleus; 6 He and 11 Li are good examples of this. Recent research suggests that this Borromean nature should also be exhibited by 22 C, the heaviest-known carbon isotope. In this PhD thesis, a schematic approach is taken to study reactions involving Borromean nuclei. Hyperspherical formalism (HH) and coordinate space Faddeev (CSF) method are used for creating their 3-body bound state wave functions. We formulate the reactions of a Borromean nucleus with a stable target at incident energies ranging from tens of (MeV) to a few hundred (MeV); we adopt a 4-body reaction model to deepen our understanding of the reaction mechanism involving Borromean nuclei. The Glauber-WKB framework is used to describe these reactions, which is well-suited for these incident energies. Introducing Watson-Migdal final state interaction, we calculate the E1 strengths for Borromean nuclei so as to elucidate their breakup mechanism and we explore the possibility of the existence of a soft dipole mode. We also calculate the differential breakup cross sections to see how the post-collision interaction can have an impact on the cross sections. As far as 22 C is concerned, it is found that the reactions are mainly focused on the forward angle region, and the contributions from the higher order terms are not significant. This implies that the non-eikonal trajectories do not play a crucial role in the reaction mechanism. Also, both E1 distributions and breakup cross sections seem to sensitive to the 2n-separation energies of the bound state wave functions, but the E1 distributions and the cross sections to 1- continuum state seem not to be sensitive to the FSIs; cross sections to 0+ and 2+ continuum states seem to be sensitive to the FSIs. Our findings does not support the view that, if an soft dipole mode exists, it is induced by the FSIs.

  11. Low-degree Structure in Mercury's Planetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.

    2012-01-01

    The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.

  12. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  13. Comparative analysis of proton- and neutron-halo breakups

    NASA Astrophysics Data System (ADS)

    Mukeru, B.

    2018-06-01

    A detailed analysis of the proton- and neutron-halo breakup cross sections is presented. Larger neutron-halo breakup cross sections than proton-halo breakup cross sections are obtained. This is found to be mainly due to the projectile structure, namely the ground state wave function and the dipole electric response function. It is also found that the continuum–continuum couplings are stronger in the proton-halo breakup than in the neutron-halo breakup. The increase of proton- and neutron-halo ground state separation energy slightly strengthens these couplings in the proton- and neutron-halo total and nuclear breakups, while they are weakened in the proton- and neutron-halo Coulomb breakups. The Coulomb-nuclear interference remains strongly destructive in both proton- and neutron-halo breakups and this is independent of the ground state separation energy. The results also show that the increase of the neutron-halo ground state separation energy decreases significantly the agreement between the proton- and neutron-halo breakup cross sections, both qualitatively and quantitatively. It is obtained that when the proton-halo ground state separation energy is increased by a factor of 4.380, the proton-halo breakup cross section is reduced by a factor of 4.392, indicating a clear proportionality. However, when the neutron-halo ground state separation energy is increased by the same factor, the neutron-halo total breakup cross section is reduced by a factor of 8.522.

  14. RFID antenna design for circular polarization in UHF band

    NASA Astrophysics Data System (ADS)

    Shahid, Hamza; Khan, Muhammad Talal Ali; Tayyab, Umais; Irshad, Usama Bin; Alkhazraji, Emad; Javaid, Muhammad Sharjeel

    2017-05-01

    A miniature half cross dipole antenna for defense and aerospace RFID applications in UHF band is presented. The dipole printed line arms are half crossed shape on top of dielectric substrate backed by reactive impedance surface. The antenna fed by a coaxial cable at the gap separating the dipole arms. Our design is intended to work at 2.42 GHz for RFID readers. The radiation pattern obtained has HPBW of 112, return loss of 22.24 dB and 90 MHz bandwidth.

  15. Mirror-image-induced magnetic modes.

    PubMed

    Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco

    2013-01-22

    Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section.

  16. QRPA plus phonon coupling model and the photoabsorption cross section for 18,20,22O

    NASA Astrophysics Data System (ADS)

    Colò, G.; Bortignon, P. F.

    2001-12-01

    We have calculated the electric dipole strength distributions in the unstable neutron-rich oxygen isotopes 18,20,22O, in a model which include up to four quasiparticle-type configurations. The model is the extension, to include the effect of the pairing correlations, of a previous model very successful around closed shell nuclei, and it is based on the quasiparticle-phonon coupling. Low-lying dipole strength is found, which exhausts between 5 and 10% of the Thomas-Reiche-Kuhn (TRK) energy-weighted sum rule (EWSR) below 15 MeV excitation energy, in rather good agreement with recent experimental data. The role of the phonon coupling is shown to be crucial in order to obtain this result.

  17. Positron scattering from pyridine

    NASA Astrophysics Data System (ADS)

    Stevens, D.; Babij, T. J.; Machacek, J. R.; Buckman, S. J.; Brunger, M. J.; White, R. D.; García, G.; Blanco, F.; Ellis-Gibbings, L.; Sullivan, J. P.

    2018-04-01

    We present a range of cross section measurements for the low-energy scattering of positrons from pyridine, for incident positron energies of less than 20 eV, as well as the independent atom model with the screening corrected additivity rule including interference effects calculation, of positron scattering from pyridine, with dipole rotational excitations accounted for using the Born approximation. Comparisons are made between the experimental measurements and theoretical calculations. For the positronium formation cross section, we also compare with results from a recent empirical model. In general, quite good agreement is seen between the calculations and measurements although some discrepancies remain which may require further investigation. It is hoped that the present study will stimulate development of ab initio level theoretical methods to be applied to this important scattering system.

  18. Exclusive vector meson photoproduction with a leading baryon in photon-hadron interactions at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Gonçalves, V. P.; Navarra, F. S.; Spiering, D.

    2018-04-01

    Exclusive vector meson photoproduction associated with a leading baryon (B =n ,Δ+,Δ0 ) in p p and p A collisions at RHIC and LHC energies is investigated using the color dipole formalism and taking into account nonlinear effects in the QCD dynamics. In particular, we compute the cross sections for ρ , ϕ and J /Ψ production together with a Δ and compare the predictions with those obtained for a leading neutron. Our results show that the V +Δ cross section is almost 30% of the V +n one. Our results also show that a future experimental analysis of these processes is, in principle, feasible and can be useful to study leading particle production.

  19. Rovibrationally-Resolved Direct Photodissociation Through The Lyman And Werner Transitions Of H_{2}

    NASA Astrophysics Data System (ADS)

    Gay, Christopher; Stancil, P. C.

    2008-03-01

    Direct photodissociation cross sections have been obtained for the Lyman and Werner transitions of H2 using a combination of ab initio and experimentally derived potential curves and dipole transition moments. The partial cross sections have been evaluated for transitions from all 301 rovibrational levels (v'',J'') of the ground electronic state and over a wavelength range that extends from 10nm to the dissociation threshold for each particular rovibrational state. For UV-irradiated molecular gas with column densities of 1016-1019cm-2, direct photodissociation can compete with the Solomon process as an H2 destruction process. This research was supported by NASA grant NNG06GJ11G from the Astrophysics Theory Program.

  20. Measurement of the dipole in the cross-correlation function of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam, E-mail: gazta@ice.cat, E-mail: camille.bonvin@unige.ch, E-mail: lhui@astro.columbia.edu

    It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions thatmore » do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.« less

  1. Photodissociation of CS from Excited Rovibrational Levels

    NASA Astrophysics Data System (ADS)

    Pattillo, R. J.; Cieszewski, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.; McCann, J. F.; McLaughlin, B. M.

    2018-05-01

    Accurate photodissociation cross sections have been computed for transitions from the X 1Σ+ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have been obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X 1Σ+ state and for photon wavelengths ranging from 500 Å to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.

  2. Forward J / ψ production at high energy: Centrality dependence and mean transverse momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducloué, B.; Lappi, T.; Mäntysaari, H.

    2016-10-21

    Forward rapidity J/more » $$\\psi$$ meson production in proton-nucleus collisions can be an important constraint of descriptions of the small- x nuclear wave function. In an earlier work we studied this process using a dipole cross section satisfying the Balitsky-Kovchegov equation, fit to HERA inclusive data and consistently extrapolated to the nuclear case using a standard Woods-Saxon distribution. In this paper we present further calculations of these cross sections, studying the mean transverse momentum of the meson and the dependence on collision centrality. We also extend the calculation to backward rapidities using nuclear parton distribution functions. Here, we show that the parametrization is overall rather consistent with the available experimental data. However, there is a tendency towards a too strong centrality dependence. This can be traced back to the rather small transverse area occupied by small- x gluons in the nucleon that is seen in the HERA data, compared to the total inelastic nucleon-nucleon cross section.« less

  3. Electron scattering on molecules: search for semi-empirical indications

    NASA Astrophysics Data System (ADS)

    Fedus, Kamil; Karwasz, Grzegorz P.

    2017-06-01

    Reliable cross-sections for electron-molecule collisions are urgently needed for numerical modeling of various processes important from technological point of view. Unfortunately, a significant progress in theory and experiment over the last decade is not usually accompanied by the convergence of cross-sections measured at different laboratories and calculated with different methods. Moreover the most advanced contemporary theories involve such large basis sets and complicated equations that they are not easily applied to each specific molecule for which data are needed. For these reasons the search for semi-empirical indications in angular and energy dependencies of scattering cross-section becomes important. In this paper we make a brief review of the applicability of the Born-dipole approximation for elastic, rotational, vibrational and ionization processes that can occur during electron-molecule collisions. We take into account the most recent experimental findings as the reference points. Contribution to the Topical Issue "Atomic and Molecular Data and Their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  4. All-dielectric cylindrical nanoantennas in the visible range

    NASA Astrophysics Data System (ADS)

    Dalal, Reena; Shankhwar, Nishant; Kalra, Yogita; Kumar, Ajeet; Sinha, R. K.

    2017-08-01

    All-dielectric nanoparticles have attained a lot of attention owing to the lesser loss and better quality than their metallic counterparts. As a result, they perceive applications in the field of nanoantennas, photovoltaics and nanolasers. In the dielectric nanoparticles, the electric and magnetic dipoles are created in dielectric nanoparticles when they interact with the light of a particular frequency. Kerker's type scattering is obtained where electric and magnetic dipoles interfere. In our design, Silicon cylindrical nanoparticles having radius of 70 nm and length 120 nm have been considered. The propagation of light is taken along the length of the cylinder. The scattering cross section has been obtained and plotted with respect to the wavelength. At the peaks of scattering spectra, electric and magnetic dipoles are created at the wavelengths of 510 nm and 600 nm, respectively. Both dipoles interfere at the wavelengths of 550 nm and 645 nm. At these wavelengths, far field scattering pattern has been calculated. At the wavelength 645 nm, forward scattering takes place because electric and magnetic dipoles are in phase at this wavelength. Further, directivity is enhanced by taking the planar array of the nanoparticles. It has been observed that directivity increases by increasing the size of the array. Also, there is an increase in the directivity by increasing the gap between the nanoparticles. This enhancement of directivity can lead to the design of all dielectric cylindrical nanoantennas.

  5. Alkali Halide Opacity in Brown Dwarf and Cool Stellar Atmospheres: A Study of Lithium Chloride

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.

    2003-12-01

    Recent thermochemical equilibrium calculations have revealed the important role played by lithium chloride in the lithium chemistry of cool dwarf atmospheres (K. Lodders 1999, ApJ 519, 793). Indeed, LiCl appears to be the dominant Li-bearing gas over an extended domain of the (P,T) diagram, typically for temperatures below 1500 K. LiCl has a large dipole moment in its ground electronic state which can give rise to intense rovibrational line spectra. In addition, LiCl can make dipole transitions to several low-lying unbound excited states, causing dissociation of the molecule. For these reasons, LiCl may be a significant source of line and continuum opacity in brown dwarf and cool stellar atmospheres. In this work, we report calculations of complete lists of line oscillator strengths and photodissociation cross sections for the low-lying electronic states of LiCl. We have performed single- and double-excitation configuration interaction calculations using the ALCHEMY ab initio package (Mc Lean et al. 1991, MOTECC 91, Elsevier, Leiden) and obtained the potential curves and the corresponding dipole transition moment functions between the X 1Σ ^+ ground state and the B 1Σ ^+ and A 1Π excited states. The resulting line oscillator strengths and molecular photodissociation cross sections have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999, J. Comput. App. Math. 102, 41). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state (EOS). This work was supported in part by NSF grants AST-9720704 and AST-0086246, NASA grants NAG5-8425, NAG5-9222, and NAG5-10551 as well as NASA/JPL grant 961582.

  6. Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo

    2016-03-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.

  7. State-resolved Photodissociation and Radiative Association Data for the Molecular Hydrogen Ion

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Savage, Jeremy S.; Colgan, James; Fursa, Dmitry V.; Kilcrease, David P.; Bray, Igor; Fontes, Christopher J.; Hakel, Peter; Timmermans, Eddy

    2017-12-01

    We present state-resolved (electronic, vibrational, and rotational) cross sections and rate coefficients for the photodissociation (PD) of {{{H}}}2+ and radiative association (RA) of H–H+. We developed a fully quantum mechanical approach within the nonrelativistic Born–Oppenheimer approximation to describe {{{H}}}2+ and calculate the data for transitions between the ground electronic state 1s{σ }g and the 2p{σ }u, 2p{π }u, 3p{σ }u, 3p{π }u, 4p{σ }u, 4f{σ }u, 4f{π }u, and 4p{π }u electronic states (i.e., up to {{{H}}}2+ n = 4). Tables of the dipole-matrix elements and energies needed to calculate state-resolved cross sections and rate coefficients will be made publicly available. These data could be important in astrophysical models when dealing with photon wavelengths (or radiation temperature distributions that are weighted toward such wavelengths) around 100 nm. For example, at these wavelengths and a material temperature of 8400 K, the LTE-averaged PD cross section via the (second electronically excited) 2p{π }u state is over three times larger than the PD cross section via the (first electronically excited) 2p{σ }u state.

  8. Quasicontinuum γ decay of Zr 91 , 92 : Benchmarking indirect ( n , γ ) cross section measurements for the s process

    DOE PAGES

    Guttormsen, M.; Goriely, S.; Larsen, A. C.; ...

    2017-08-21

    Here, nuclear level densities (NLDs) and γ-ray strength functions (γSFs) have been extracted from particle-γ coincidences of the 92Zr(p,p´γ) 92Zr and 92Zr (p,dγ) 91Zr reactions using the Oslo method. The new 91,92Zr γSF data, combined with photonuclear cross sections, cover the whole energy range from Eγ ≈ 1.5 MeV up to the giant dipole resonance at Eγ ≈ 17 MeV. The wide-range γSF data display structures at Eγ ≈ 9.5 MeV, compatible with a superposition of the spin-flip M1 resonance and a pygmy E1 resonance. Furthermore, the γSF shows a minimum at Eγ ≈ 2–3 MeV and an increase atmore » lower γ-ray energies. The experimentally constrained NLDs and γSFs are shown to reproduce known (n,γ) and Maxwellian-averaged cross sections for 91,92Zr using the TALYS reaction code, thus serving as a benchmark for this indirect method of estimating (n,γ) cross sections for Zr isotopes.« less

  9. The effects of seasonal and diurnal variations in the Earth's magnetic dipole orientation on solar wind-magnetosphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Cnossen, Ingrid; Wiltberger, Michael; Ouellette, Jeremy E.

    2012-11-01

    The angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z axis, sometimes called the “dipole tilt,” varies as a function of UT and season. Observations have shown that the cross-polar cap potential tends to maximize near the equinoxes, when on average μ = 0, with smaller values observed near the solstices. This is similar to the well-known semiannual variation in geomagnetic activity. We use numerical model simulations to investigate the role of two possible mechanisms that may be responsible for the influence of μ on the magnetosphere-ionosphere system: variations in the coupling efficiency between the solar wind and the magnetosphere and variations in the ionospheric conductance over the polar caps. Under southward interplanetary magnetic field (IMF) conditions, variations in ionospheric conductance at high magnetic latitudes are responsible for 10-30% of the variations in the cross-polar cap potential associated with μ, but variations in solar wind-magnetosphere coupling are more important and responsible for 70-90%. Variations in viscous processes contribute slightly to this, but variations in the reconnection rate with μ are the dominant cause. The variation in the reconnection rate is primarily the result of a variation in the length of the section of the separator line along which relatively strong reconnection occurs. Changes in solar wind-magnetosphere coupling also affect the field-aligned currents, but these are influenced as well by variations in the conductance associated with variations in μ, more so than the cross-polar cap potential. This may be the case for geomagnetic activity too.

  10. A FODO racetrack ring for nuSTORM: design and optimization

    DOE PAGES

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-17

    Here, the goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize themore » arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less

  11. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  12. Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Jalalian, A.; Tsindlekht, M. I.

    2015-05-01

    Continuous bead-free C-type cubic gadolinium oxide (Gd2O3) nanofibers 20-30 μm long and 40-100 nm in diameter were sintered by sol-gel calcination assisted electrospinning technique. Dipole-dipole interaction of neighboring Gd3+ ions in nanofibers with large length-to-diameter aspect ratio results in some kind of superparamagnetic behavior: fibers are magnetized twice stronger than Gd2O3 powder. Being compared with commercial Gd-DTPA/Magnevist®, Gd2O3 diethyleneglycol-coated (Gd2O3-DEG) fibers show high 1/T1 and 1/T2 proton relaxivities. Intense room temperature photoluminescence, high NMR relaxivity and high neutron scattering cross-section of 157Gd nucleus promise to integrate Gd2O3 fibers for multimodal bioimaging and neutron capture therapy.

  13. Hard diffraction in the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1996-02-01

    Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, xP, Q2, and β = {x Bj}/{x P}. It factorizes into an explicit x P-dependent Hard Pomeron flux factor and structure function. The lux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small β is similar to that for F2 at small xBj.

  14. Long-range dynamic polarization potentials for 11Be projectiles on 64Zn

    NASA Astrophysics Data System (ADS)

    So, W. Y.; Kim, K. S.; Choi, K. S.; Cheoun, Myung-Ki

    2015-07-01

    We investigate the effects of the long-range dynamic polarization (LRDP) potential, which consists of the Coulomb dipole excitation (CDE) potential and the long-range nuclear (LRN) potential, for the 11Be projectile on 64Zn. To study these effects, we perform a χ2 analysis of an optical model including the LRDP potential as well as a conventional short-range nuclear (SRN) potential. To take these effects into account, we argue that both the CDE and LRN potentials are essential to explaining the experimental values of PE, which is the ratio of the elastic scattering cross section to the Rutherford cross section. The Coulomb and nuclear parts of the LRDP potential are found to contribute to a strong absorption effect. Strong absorption occurs because the real part of the CDE and LRN potentials lowers the barrier, and the imaginary part of the CDE and LRN potentials removes the flux from the elastic channel in the 11Be+64Zn system. Finally, we extract the total reaction cross section σR including the inelastic, breakup, and fusion cross sections. The contribution of the inelastic scattering by the first excited state at ɛx1 st=0.32 MeV (1 /2-) is found to be relatively large and cannot be ignored. In addition, our results are shown to agree quite well with the experimental breakup reaction cross section by using a fairly large radius parameter.

  15. Spin-flip isovector giant resonances from the 90Zr(n,p)90Y reaction at 198 MeV

    NASA Astrophysics Data System (ADS)

    Raywood, K. J.; Spicer, B. M.; Yen, S.; Long, S. A.; Moinester, M. A.; Abegg, R.; Alford, W. P.; Celler, A.; Drake, T. E.; Frekers, D.; Green, P. E.; Häusser, O.; Helmer, R. L.; Henderson, R. S.; Hicks, K. H.; Jackson, K. P.; Jeppesen, R. G.; King, J. D.; King, N. S.; Miller, C. A.; Officer, V. C.; Schubank, R.; Shute, G. G.; Vetterli, M.; Watson, J.; Yavin, A. I.

    1990-06-01

    Doubly differential cross sections of the reaction 90Zr(n,p)90Y have been measured at 198 MeV for excitations up to 38 MeV in the residual nucleus. An overall resolution of 1.3 MeV was achieved. The spectra show qualitative agreement in shape and magnitude with recent random phase approximation calculations; however, all of the calculations underestimate the high excitation region of the spectra. A multipole decomposition of the data has been performed using differential cross sections calculated in the distorted-wave impulse approximation. An estimate of the Gamow-Teller strength in the reaction is given. The isovector spin-flip dipole giant resonance has been identified and there is also an indication of isovector monopole strength.

  16. Photoionization of Ne8+

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Abdel-Naby, Sh. A.; Robicheaux, F.; Colgan, J.

    2014-05-01

    Single and double photoionization cross sections for Ne8+ are calculated using a non-perturbative fully relativistic time-dependent close-coupling method. A Bessel function expansion is used to include both dipole and quadrupole effects in the radiation field interaction and the repulsive interaction between electrons includes both the Coulomb and Gaunt interactions. The fully correlated ground state of Ne8+ is obtained by solving a time-independent inhomogeneous set of close-coupled equations. Propagation of the time-dependent close-coupled equations yields single and double photoionization cross sections for Ne8+ at energies easily accessible at advanced free electron laser facilities. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.

  17. Manifestation of Molecular Chromophore Polymorphism in Diffuse Vibronic Spectra

    NASA Astrophysics Data System (ADS)

    Tolkachev, V. A.

    2018-05-01

    The location of the purely electronic 0-0-transition v0 for homomorphic chromophores is defined in the transition cross-section spectrum σ(ν) by the extremum ( ∂φ/ ∂v = 0) of the function [σ(ν)/ν] exp ((∓ hv/2 kT) = φ(| v - v 0|) and "-" for absorption, ν < ν0 and "+" for emission) for the dipole Frank-Condon transition with thermal distribution among the initial-state sublevels. The observed effective cross section and spectrum with polymorphism are formed by partial contributions of electronic transitions of the separate species with different ν i0. In this instance, the homomorphic extremum is distorted, i.e., broadened, weakened, or absent, which is also indicative of a polymorphic chromophore. Examples of these distortions of the functions calculated from the experimental spectra are given.

  18. Electromagnetic fission of238U at 600 and 1000 MeV per nucleon

    NASA Astrophysics Data System (ADS)

    Rubehn, Th.; Müller, W. F. J.; Bassini, R.; Begemann-Blaich, M.; Blaich, Th.; Ferrero, A.; Groß, C.; Imme, G.; Iori, I.; Kunde, G. J.; Kunze, W. D.; Lindenstruth, V.; Lynen, U.; Möhlenkamp, T.; Moretto, L. G.; Ocker, B.; Pochodzalla, J.; Raciti, G.; Reito, S.; Sann, H.; Schüttauf, A.; Seidel, W.; Serfling, V.; Trautmann, W.; Trzcinski, A.; Verde, G.; Wörner, A.; Zude, E.; Zwieglinski, B.

    1995-06-01

    Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsäcker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium.

  19. Integral equation calculations for the photodisintegration process {sup 4}He({gamma},{ital n}){sup 3}He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellerkmann, G.; Sandhas, W.; Sofianos, S.A.

    1996-06-01

    Results obtained by solving Alt-Grassberger-Sandhas (AGS)-type integral equations for the photodisintegration of {sup 4}He, employing the Malfliet-Tjon potential, are compared with the latest experimental data. Good agreement between theory and experiment is found in electric dipole approximation for the total cross section, but the differential cross sections differ at higher energies. This discrepancy is reduced, but not fully removed by taking into account the electric quadrupole contributions. In order to get some feeling for the sensitivity to the underlying potential, we also show calculations based on the Yamaguchi potential. They differ from the Malfliet-Tjon results in a way which resemblesmore » the trends known from triton photodisintegration. {copyright} {ital 1996 The American Physical Society.}« less

  20. Manifestation of Molecular Chromophore Polymorphism in Diffuse Vibronic Spectra

    NASA Astrophysics Data System (ADS)

    Tolkachev, V. A.

    2018-05-01

    The location of the purely electronic 0-0-transition v0 for homomorphic chromophores is defined in the transition cross-section spectrum σ(ν) by the extremum (∂φ/∂v = 0) of the function [σ(ν)/ν] exp ((∓hv/2kT) = φ(|v - v 0|) and "-" for absorption, ν < ν0 and "+" for emission) for the dipole Frank-Condon transition with thermal distribution among the initial-state sublevels. The observed effective cross section and spectrum with polymorphism are formed by partial contributions of electronic transitions of the separate species with different ν i0. In this instance, the homomorphic extremum is distorted, i.e., broadened, weakened, or absent, which is also indicative of a polymorphic chromophore. Examples of these distortions of the functions calculated from the experimental spectra are given.

  1. Experimental Simulation of Solar Wind Interactions with Magnetic Dipole Fields above Insulating Surfaces

    NASA Astrophysics Data System (ADS)

    Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic

    2017-10-01

    Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.

  2. Modeling and simulation of dielectrophoretic collective dynamics in a suspension of polarizable particles under the action of a gradient AC electric field.

    PubMed

    Tada, Shigeru; Shen, Yan; Qiu, Zhiyong

    2017-06-01

    When a suspension of polarizable particles is subjected to a gradient AC electric field, the particles exhibit collective motion due to an interaction between the dipole induced in the particles and the spatial gradient of the electric field; this is known as dielectrophoresis. In the present study, the collective dynamics of suspended particles in a parallel-plate electric chamber was investigated by simulating numerically the trajectories of individual particles under the action of combined dielectrophoretic and dipole-dipole interparticle forces. The particles were transported by the dielectrophoretic forces toward the grounded electrodes. Before long, when the particles approached the site of the minimum field strength, attractive/repulsive interparticle forces became dominant and acted among the particles attempting to form a column-like cluster, having the particles distribution in concentric circles in its cross-section, in line with the centerline of the grounded electrodes. Our results also well reproduced the transient particle aggregation that was observed experimentally. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Empirically constructed dynamic electric dipole polarizability function of magnesium and its applications

    NASA Astrophysics Data System (ADS)

    Babb, James F.

    2015-08-01

    The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.

  4. Systematics of hot giant electric dipole resonance widths

    NASA Astrophysics Data System (ADS)

    Schiller, A.; Thoennessen, M.; McAlpine, K. M.

    2007-05-01

    Giant Electric Dipole Resonance (GDR) parameters for γ decay to excited states with finite spin and temperature have been compiled by two of the authors ( nucl-ex/0605004). Over 100 original works have been reviewed and from some 70 of them, more than 300 sets of hot GDR parameters for different isotopes, excitation energies, and spin regions have been extracted. All parameter sets have been brought onto a common footing by calculating the equivalent Lorentzian parameters. Together with a complementary compilation by Samuel S. Dietrich and Barry L. Berman [At. Data Nucl. Data Tables 38, 199-338, (1988)] on ground-state photo-neutron and photo-absorption cross sections and their Lorentzian parameters, it is now possible by means of a comparison of the two data sets to shed light on the evolution of GDR parameters with temperature and spin.

  5. Compilation of giant electric dipole resonances built on excited states

    NASA Astrophysics Data System (ADS)

    Schiller, A.; Thoennessen, M.

    2007-07-01

    Giant Electric Dipole Resonance (GDR) parameters for γ decay to excited states with finite spin and temperature are compiled. Over 100 original works have been reviewed and from some 70 of them, about 350 sets of hot GDR parameters for different isotopes, excitation energies, and spin regions have been extracted. All parameter sets have been brought onto a common footing by calculating the equivalent Lorentzian parameters. The current compilation is complementary to an earlier compilation by Samuel S. Dietrich and Barry L. Berman (At. Data Nucl. Data Tables 38 (1988) 199-338) on ground-state photo-neutron and photo-absorption cross sections and their Lorentzian parameters. A comparison of the two may help shed light on the evolution of GDR parameters with temperature and spin. The present compilation is current as of July 2006.

  6. Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons

    NASA Astrophysics Data System (ADS)

    Spohr, K. M.; Shaw, M.; Galster, W.; Ledingham, K. W. D.; Robson, L.; Yang, J. M.; McKenna, P.; McCanny, T.; Melone, J. J.; Amthor, K.-U.; Ewald, F.; Liesfeld, B.; Schwoerer, H.; Sauerbrey, R.

    2008-04-01

    Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena (I ~ 3-5×1019 W cm-2) produced hard bremsstrahlung photons (kT~2.9 MeV) via a laser-gas interaction which served to induce (γ, p) and (γ, n) reactions in Mg, Ti, Zn and Mo isotopes. Several (γ, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields. As the laser-generated bremsstrahlung spectra stretches over the energy regime dominated by the giant dipole resonance (GDR), these yield measurements were used in conjunction with theoretical estimates of the resonance energies Eres and their widths Γres to derive the integral reaction cross-section σint(γ,p) for 25Mn, 48, 49Ti, 68Zn and 97, 98Mo isotopes for the first time. This study enabled the determination of the previously unknown \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} cross-section ratios for these isotopes. The experiments were supported by extensive model calculations (Empire) and the results were compared to the Thomas-Reiche-Kuhn (TRK) dipole sum rule as well as to the experimental data in neighboring isotopes and good agreement was observed. The Coulomb barrier and the neutron excess strongly influence the \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} ratios for increasing target proton and neutron numbers.

  7. Investigation on the relationship between solubility of artemisinin and polyvinylpyrroli done addition by using DAOSD approach

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Guo, Ran; He, Anqi; Weng, Shifu; Gao, Xiuxiang; Xu, Yizhuang; Noda, Isao; Wu, Jinguang

    2017-07-01

    In this work, we investigated the influence of polyvinylpyrrolidone (PVP) on the solubility of artemisinin in aqueous solution by using quantitative 1H NMR. Experimental results demonstrate that about 4 times of incremental increase occurs on the solubility of artemisinin upon introducing PVP. In addition, dipole-dipole interaction between the ester group of artemisinin and the amide group of N-methylpyrrolidone (NMP), a model compound of PVP, is characterized by two-dimensional (2D) correlation FTIR spectroscopy with the DAOSD (Double Asynchronous Orthogonal Sample Design) approach developed in our previous work. The observation of cross peaks in a pair of 2D asynchronous spectra suggests that dipole-dipole interaction indeed occurs between the ester group of artemisinin and amide group of NMP. Moreover, the pattern of cross peaks indicates that the carbonyl band of artemisinin undergoes blue-shift while the bandwidth and absorptivity increases via interaction with NMP, and the amide band of NMP undergoes blue-shift while the absorptivity increases via interaction with artemisinin. Dipole-dipole interaction, as one of the strongest intermolecular interaction between artemisinin and excipient, may play an important role in the enhancement of the solubility of artemisinin in aqueous solution.

  8. Scattering matrix approach to the dissociative recombination of HCO{sup +} and N{sub 2}H{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca dos Santos, S.; Douguet, N.; Orel, A. E.

    We present a theoretical study of the indirect dissociative recombination of linear polyatomic ions at low collisional energies. The approach is based on the computation of the scattering matrix just above the ionization threshold and enables the explicit determination of all diabatic electronic couplings responsible for dissociative recombination. In addition, we use the multi-channel quantum-defect theory to demonstrate the precision of the scattering matrix by reproducing accurately ab initio Rydberg state energies of the neutral molecule. We consider the molecular ions N{sub 2}H{sup +} and HCO{sup +} as benchmark systems of astrophysical interest and improve former theoretical studies, which hadmore » repeatedly produced smaller cross sections than experimentally measured. Specifically, we demonstrate the crucial role of the previously overlooked stretching modes for linear polyatomic ions with large permanent dipole moment. The theoretical cross sections for both ions agree well with experimental data over a wide energy range. Finally, we consider the potential role of the HOC{sup +} isomer in the experimental cross sections of HCO{sup +} at energies below 10 meV.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttormsen, M.; Goriely, S.; Larsen, A. C.

    Here, nuclear level densities (NLDs) and γ-ray strength functions (γSFs) have been extracted from particle-γ coincidences of the 92Zr(p,p´γ) 92Zr and 92Zr (p,dγ) 91Zr reactions using the Oslo method. The new 91,92Zr γSF data, combined with photonuclear cross sections, cover the whole energy range from Eγ ≈ 1.5 MeV up to the giant dipole resonance at Eγ ≈ 17 MeV. The wide-range γSF data display structures at Eγ ≈ 9.5 MeV, compatible with a superposition of the spin-flip M1 resonance and a pygmy E1 resonance. Furthermore, the γSF shows a minimum at Eγ ≈ 2–3 MeV and an increase atmore » lower γ-ray energies. The experimentally constrained NLDs and γSFs are shown to reproduce known (n,γ) and Maxwellian-averaged cross sections for 91,92Zr using the TALYS reaction code, thus serving as a benchmark for this indirect method of estimating (n,γ) cross sections for Zr isotopes.« less

  10. Birds and insects as radar targets - A review

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1985-01-01

    A review of radar cross-section measurements of birds and insects is presented. A brief discussion of some possible theoretical models is also given and comparisons made with the measurements. The comparisons suggest that most targets are, at present, better modeled by a prolate spheroid having a length-to-width ratio between 3 and 10 than by the often used equivalent weight water sphere. In addition, many targets observed with linear horizontal polarization have maximum cross sections much better estimated by a resonant half-wave dipole than by a water sphere. Also considered are birds and insects in the aggregate as a local radar 'clutter' source. Order-of-magnitude estimates are given for many reasonable target number densities. These estimates are then used to predict X-band volume reflectivities. Other topics that are of interest to the radar engineer are discussed, including the doppler bandwidth due to the internal motions of a single bird, the radar cross-section probability densities of single birds and insects, the variability of the functional form of the probability density functions, and the Fourier spectra of single birds and insects.

  11. Formation of iron metal and grain coagulation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Berg, Otto

    1994-01-01

    The interstellar grain population in the giant molecular cloud from which the sun formed contained little or no iron metal. However, thermal processing of individual interstellar silicates in the solar nebula is likely to result in the formation of a population of very small iron metal grains. If such grains are exposed to even transient magnetic fields, each will become a tiny dipole magnet capable of interacting with other such dipoles over spatial scale orders of magnitude larger than the radii of individual grains. Such interactions will greatly increase the coagulation cross-section for this grain population. Furthermore, the magnetic attraction between two iron dipoles will significantly increase both the collisional sticking coefficient and the strength of the interparticle binding energy for iron aggregates. Formation of iron metal may therefore be a key step in the aggregation of planetesimals in a protoplanetary nebula. Such aggregates may have already been observed in protoplanetary systems. The enhancement in the effective interaction distance between two magnetic dipoles is directly proportional to the strength of the magnetic dipoles and inversely proportional to the relative velocity. It is less sensitive to the reduced mass of the interacting particles (alpha M(exp -1/2)) and almost insensitive to the initial number density of magnetic dipoles (alpha n(sub o)(exp 1/6)). We are in the process of measuring the degree of coagulation in our condensation flow apparatus as a function of applied magnetic field and correlating these results by means of magnetic remanance acquisition measurements on our iron grains with the strength of the magnetic field to which the grains are exposed. Results of our magnetic remanance acquisition measurements and the magnetic-induced coagulation study will be presented as well as an estimate of the importance of such processes near the nebular midplane.

  12. Eroding dipoles and vorticity growth for Euler flows in {{{R}}}^{3}: the hairpin geometry as a model for finite-time blowup

    NASA Astrophysics Data System (ADS)

    Childress, Stephen; Gilbert, Andrew D.

    2018-02-01

    A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as realized in the eroding hairpin excludes a finite time blowup for the corresponding Navier-Stokes model.

  13. Photodisintegration cross section of the reaction 4He(γ,n)3He at the giant dipole resonance peak

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Kelley, J. H.; Raut, R.; Rusev, G.; Tonchev, A. P.; Ahmed, M. W.; Crowell, A. S.; Stave, S. C.

    2012-06-01

    The photodisintegration cross section of 4He into a neutron and helion was measured at incident photon energies of 27.0, 27.5, and 28.0 MeV. A high-pressure 4He-Xe gas scintillator served as target and detector while a pure Xe gas scintillator was used for background measurements. A NaI detector in combination with the standard HIγS scintillator paddle system was employed for absolute photon-flux determination. Our data are in good agreement with the theoretical prediction of the Trento group and the recent data of Nilsson [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.75.014007 75, 014007 (2007)] but deviate considerably from the high-precision data of Shima [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.72.044004 72, 044004 (2005)].

  14. Pygmy dipole resonance in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Bracco, A.; Crespi, F. C. L.; Lanza, E. G.; Litvinova, E.; Paar, N.; Avigo, R.; Bazzacco, D.; Benzoni, G.; Birkenbach, B.; Blasi, N.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Ciemała, M.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocarte, R.; Jungclaus, A.; Leoni, S.; Ljungvall, J.; Lunardi, S.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Milion, B.; Morales, A. I.; Napoli, D. R.; Nicolini, R.; Pellegri, L.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Siebeck, B.; Siem, S.; Söderström, P.-A.; Ur, C.; Valiente-Dobon, J. J.; Wieland, O.; Ziebliński, M.

    2016-04-01

    The γ decay from the high-lying states of 140Ce excited via inelastic scattering of 17O at a bombarding energy of 340 MeV was measured using the high-resolution AGATA-demonstrator array in coincidence with scattered ions detected in two segmented Δ E -E silicon detectors. Angular distributions of scattered ions and emitted γ rays were measured, as well as their differential cross sections. The excitation of 1- states below the neutron separation energy is similar to the one obtained in reactions with the α isoscalar probe. The comparison between the experimental differential cross sections and the corresponding predictions using the distorted-wave Born approximation allowed us to extract the isoscalar component of identified 1- pygmy states. For this analysis the form factor obtained by folding microscopically calculated transition densities and optical potentials was used.

  15. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  16. Performance prediction of high Tc superconducting small antennas using a two-fluid-moment method model

    NASA Astrophysics Data System (ADS)

    Cook, G. G.; Khamas, S. K.; Kingsley, S. P.; Woods, R. C.

    1992-01-01

    The radar cross section and Q factors of electrically small dipole and loop antennas made with a YBCO high Tc superconductor are predicted using a two-fluid-moment method model, in order to determine the effects of finite conductivity on the performances of such antennas. The results compare the useful operating bandwidths of YBCO antennas exhibiting varying degrees of impurity with their copper counterparts at 77 K, showing a linear relationship between bandwidth and impurity level.

  17. Giant Primeval Magnetic Dipoles

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  18. Ro-vibronic transition intensities for triatomic molecules from the exact kinetic energy operator; electronic spectrum for the C̃ 1B2 ← X̃ 1A1 transition in SO2.

    PubMed

    Zak, Emil J; Tennyson, Jonathan

    2017-09-07

    A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃  1 B 2  ← X̃  1 A 1 ro-vibronic transitions of SO 2 . Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.

  19. Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

    NASA Astrophysics Data System (ADS)

    Donaldson, L. M.; Bertulani, C. A.; Carter, J.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Ponomarev, V. Yu.; Reinhard, P.-G.; Usman, I. T.; Adsley, P.; Brummer, J. W.; Buthelezi, E. Z.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; Jingo, M.; Kleinig, W.; Kureba, C. O.; Kvasil, J.; Latif, M.; Li, K. C. W.; Mira, J. P.; Nemulodi, F.; Papka, P.; Pellegri, L.; Pietralla, N.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.

    2018-01-01

    Proton inelastic scattering experiments at energy Ep = 200 MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.

  20. Gadolinia nanofibers as a multimodal bioimaging and potential radiation therapy agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishin, A. M., E-mail: grishin@kth.se, E-mail: grishin@inmatech.com; INMATECH Intelligent Materials Technology, SE-127 45 Skärholmen; Petrozavodsk State University, 185910 Petrozavodsk, Karelian Republic

    2015-05-15

    Continuous bead-free C-type cubic gadolinium oxide (Gd{sub 2}O{sub 3}) nanofibers 20-30 μm long and 40-100 nm in diameter were sintered by sol-gel calcination assisted electrospinning technique. Dipole-dipole interaction of neighboring Gd{sup 3+} ions in nanofibers with large length-to-diameter aspect ratio results in some kind of superparamagnetic behavior: fibers are magnetized twice stronger than Gd{sub 2}O{sub 3} powder. Being compared with commercial Gd-DTPA/Magnevist{sup ®}, Gd{sub 2}O{sub 3} diethyleneglycol-coated (Gd{sub 2}O{sub 3}-DEG) fibers show high 1/T{sub 1} and 1/T{sub 2} proton relaxivities. Intense room temperature photoluminescence, high NMR relaxivity and high neutron scattering cross-section of {sup 157}Gd nucleus promise to integrate Gd{submore » 2}O{sub 3} fibers for multimodal bioimaging and neutron capture therapy.« less

  1. Spectroscopic properties of the 1.4 microm emission of Tm3+ ions in TeO2-WO3-PbO glasses.

    PubMed

    Balda, R; Lacha, L M; Fernández, J; Arriandiaga, M A; Fernández-Navarro, J M; Muñoz-Martin, D

    2008-08-04

    In this work, we report the spectroscopic properties of the infrared 3H4-->3F4 emission of Tm3+ ions in two different compositions of glasses based on TeO2, WO3, and PbO for three Tm2O3 concentrations (0.1,0.5, and 1 wt%). Judd-Ofelt intensity parameters have been determined and used to calculate the radiative transition probabilities and radiative lifetimes. The infrared emission at around 1490 nm corresponding to the 3H4-->F4 transition has two noticeable features if compared to fluoride glasses used for S-band amplifiers. On one hand, it is broader by nearly 30 nm, and on the other, the stimulated emission cross section is twice the value for fluoride glasses. Both the relative intensity ratio of the 1490 nm emission to 1820 nm and the measured lifetime of the 3H4 level decrease as concentration increases, due to the existence of energy transfer via cross-relaxation among Tm3+ ions. The analysis of the decays from the 3H4 level with increasing concentration indicates the presence of a dipole-dipole quenching process assisted by energy migration.

  2. Electronic Asymmetry by Compositionally Braking Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Warusawithana, Maitri

    2005-03-01

    By stacking molecular layers of 3 different perovskite titanate phases, BaTiO3, SrTiO3 and CaTiO3 with atomic layer control, we construct nanostructures where global inversion symmetry is broken. With the structures clamped to the substrate, the stacking order gives rise to asymmetric strain fields. The dielectric response show asymmetric field tuning consistent with the symmetry of the stacking order. By analyzing the temperature and frequency dependence of the complex dielectric constant, we show that the response comes from activated switching of dipoles between two asymmetric states separated by an energy barrier. We find the size of average dipole units from the temperature dependence of the linewidth of field tuning curves to be around 10 unit cells in all the different nanostructures we investigate. At low temperatures we observe a deviation from the kinetic response suggesting a further growth in correlations. Pyrocurrent measurements confirm this observation indicating a phase transition to a ferro-like state. We explain the high temperature dipoles as single unit cell cross sectional columns correlated via the strain fields in the stacking direction, with the height somewhat short of the film thickness possibly due to some form of weak disorder.

  3. Electron capture by Ne3+ ions from atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Rejoub, R.; Bannister, M. E.; Havener, C. C.; Savin, D. W.; Verzani, C. J.; Wang, J. G.; Stancil, P. C.

    2004-05-01

    Using the Oak Ridge National Laboratory ion-atom merged-beam apparatus, absolute total electron-capture cross sections have been measured for collisions of Ne3+ ions with hydrogen (deuterium) atoms at energies between 0.07 and 826 eV/u . Comparison to previous measurements shows large discrepancies between 50 and 400 eV/u . Previously published molecular-orbital close-coupling (MOCC) calculations were performed over limited energy ranges, but show good agreement with the present measurements. Here MOCC calculations are presented for energies between 0.01 and 1000 eV/u for collisions with both H and D. For energies below ˜1 eV/u , an enhancement in the magnitude of both the experimental and theoretical cross sections is observed which is attributed to the ion-induced dipole attraction between the reactants. Below ˜4 eV/u , the present calculations show a significant target isotope effect.

  4. Electron impact excitation of the electronic states of N2. III - Transitions in the 12.5-14.2-eV energy-loss region at incident energies of 40 and 60 eV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Trajmar, S.; Cartwright, D. C.

    1977-01-01

    Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomizawa, Shinya

    We show a uniqueness theorem for Kaluza-Klein black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and a nondegenerate connected event horizon of the cross-section topology S{sup 3}, or lens space, we prove that a stationary charged rotating Kaluza-Klein black hole in five-dimensional minimal supergravity is uniquely characterized by its mass, two independent angular momenta, electric charge, magnetic flux, and nut charge, provided that there exists neither a nut nor a bolt (a bubble) in the domain of outer communication. We also show that under themore » assumptions of the same symmetry, same asymptotics, and the horizon cross section of S{sup 1}xS{sup 2}, a black ring within the same theory--if it exists--is uniquely determined by its dipole charge and rod intervals besides the charges and magnetic flux.« less

  6. Rotational Effects of Nanoparticles for Cooling down Ultracold Neutrons

    PubMed Central

    Tu, Xiaoqing; Sun, Guangai; Gong, Jian; Liu, Lijuan; Ren, Yong; Gao, Penglin; Wang, Wenzhao; Yan, H.

    2017-01-01

    Due to quantum coherence, nanoparticles have very large cross sections when scattering with very cold or Ultracold Neutrons (UCN). By calculating the scattering cross section quantum mechanically at first, then treating the nanoparticles as classical objects when including the rotational effects, we can derive the associated energy transfer. We find that rotational effects could play an important role in slowing down UCN. In consequence, the slowing down efficiency can be improved by as much as ~40%. Since thermalization of neutrons with the moderator requires typically hundreds of collisions between them, a ~40% increase of the efficiency per collision could have a significant effect. Other possible applications, such as neutrons scattering with nano shells and magnetic particles,and reducing the systematics induced by the geometric phase effect using nanoparticles in the neutron Electric Dipole Moment (nEDM), are also discussed in this paper. PMID:28294116

  7. Diffractive charmonium spectrum in high energy collisions in the basis light-front quantization approach

    DOE PAGES

    Chen, Guangyao; Li, Yang; Maris, Pieter; ...

    2017-04-14

    Using the charmonium light-front wavefunctions obtained by diagonalizing an effective Hamiltonian with the one-gluon exchange interaction and a confining potential inspired by light-front holography in the basis light-front quantization formalism, we compute production of charmonium states in diffractive deep inelastic scattering and ultra-peripheral heavy ion collisions within the dipole picture. Our method allows us to predict yields of all vector charmonium states below the open flavor thresholds in high-energy deep inelastic scattering, proton-nucleus and ultra-peripheral heavy ion collisions, without introducing any new parameters in the light-front wavefunctions. The obtained charmonium cross section is in reasonable agreement with experimental data atmore » HERA, RHIC and LHC. We observe that the cross-section ratio σΨ(2s)/σJ/Ψ reveals significant independence of model parameters« less

  8. Multipacting optimization of a 750 MHz rf dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delayen, Jean R.; Castillo, Alejandro

    2014-12-01

    Crab crossing schemes have been proposed to re-instate luminosity degradation due to crossing angles at the interaction points in next generation colliders to avoid the use of sharp bending magnets and their resulting large synchrotron radiation generation, highly undessirable in the detector region. The rf dipole has been considered for a different set of applications in several machines, both rings and linear colliders. We present in this paper a study of the effects on the multipacting levels and location depending on geometrical variations on the design for a crabbing/deflecting application in a high current (3/0.5 A), high repetition (750 MHz)more » electron/proton collider, as a matter to provide a comparison point for similar applications of rf dipoles.« less

  9. Electron-Impact Cross Sections for Ground State to np Excitations of Sodium and Potassium.

    PubMed

    Stone, Philip M; Kim, Yong-Ki

    2004-01-01

    Cross sections for electron impact excitation of atoms are important for modeling of low temperature plasmas and gases. While there are many experimental and theoretical results for excitation to the first excited states, little information is available for excitation to higher states. We present here calculations of excitations from the ground state to the np levels of sodium (n = 3 through 11) and potassium (n = 4 through 12). We also present a calculation for a transition from the excited sodium level 3p to 3d to show the generality of the method. Scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. These formulas have been shown to be remarkably accurate yet simple to use. We have used a core polarization potential in a Dirac-Fock wave function code to calculate target atom wave functions and a matching form of the dipole transition operator to calculate oscillator strengths and Born cross sections. The scaled Born results here for excitation to the first excited levels are in very good agreement with experimental and other theoretical data, and the results for excitation to the next few levels are in satisfactory agreement with the limited data available. The present results for excitation to the higher levels are believed to be the only data available.

  10. Laboratory plasma with cold electron temperature of the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Robertson, Scott

    2009-10-01

    For the first time, plasma with cold electron temperatures less than 300K has been created continuously in the laboratory. The plasma is created in a cylindrical double-walled vacuum chamber in which the inner chamber (18cm in diameter and 30cm long) is wrapped in copper tubing through which vapor from liquid nitrogen flows, providing a cooling mechanism for the neutral gas. The inner chamber has two negatively-biased filaments for plasma generation and a platinum wire Langmuir probe for diagnostic measurements. Neutral gas pressures of 1.6mTorr and a total filament emission current of 2mA are used to obtain plasma densities near 4 x 10^8 cm-3. When carbon monoxide is used as the working gas, decreasing the neutral gas temperature also decreases the cold electron temperatures, yielding cold electrons with 21meV (240K) when the neutral CO is at 150K. The same experiment conducted with H2, He, or Ar results in a doubling of the cold electron temperatures, yielding 80meV (930K) when the neutral gas is at 150K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a nonzero electric dipole moment which increases the cross section for electron energy exchange. Nitric oxide, a dominant constituent of the ionosphere, has a similar dipole moment and collision cross section as carbon monoxide and is likely to be equally effective at cooling electrons.

  11. Effect of the magnetic dipole interaction on a spin-1 system

    NASA Astrophysics Data System (ADS)

    Hu, Fangqi; Jia, Wei; Zhao, Qing

    2018-05-01

    We consider a hybrid system composed of a spin-1 triplet coupled to a nuclear spin. We study the effect of the axisymmetric and the quadrupole term of the magnetic dipole interaction between the two electrons forming the triplet on the energy spectrum in a static magnetic field. The energy spectrum obtained by directly diagonalizing the Hamiltonian of the system shows that these two terms not only remove the special crossings that appear in the absence of the magnetic dipole interaction, but also produce new (avoided) crossings by lifting the relevant levels. Specially, the gaps between the avoided crossing levels increase with the strength of the quadrupole term. In order to accurately illustrate these effects, we present the results for the discriminant and von Neumann entropy of one electron interacting with the rest of the whole system. Finally, by numerically solving the time-dependent Schrödinger equations of the system, we discover that the polarization oscillation of electron and nuclear spin is in-phase and the total average longitudinal spin is not conserved at location of avoided crossing, but the two results are opposite beyond that.

  12. ROVIBRATIONALLY RESOLVED DIRECT PHOTODISSOCIATION THROUGH THE LYMAN AND WERNER TRANSITIONS OF H{sub 2} FOR FUV/X-RAY-IRRADIATED ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, C. D.; Porter, R. L.; Stancil, P. C.

    Using ab initio potential curves and dipole transition moments, cross-section calculations were performed for the direct continuum photodissociation of H{sub 2} through the B{sup 1}{Sigma}{sup +}{sub u} <- X{sup 1}{Sigma}{sup +}{sub g} (Lyman) and C{sup 1}{Pi}{sub u} <- X{sup 1}{Sigma}{sup +}{sub g} (Werner) transitions. Partial cross-sections were obtained for wavelengths from 100 A to the dissociation threshold between the upper electronic state and each of the 301 bound rovibrational levels v''J'' within the ground electronic state. The resulting cross-sections are incorporated into three representative classes of interstellar gas models: diffuse clouds, photon-dominated regions, and X-ray-dominated regions (XDRs). The models, whichmore » used the CLOUDY plasma/molecular spectra simulation code, demonstrate that direct photodissociation is comparable to fluorescent dissociation (or spontaneous radiative dissociation, the Solomon process) as an H{sub 2} destruction mechanism in intense far-ultraviolet or X-ray-irradiated gas. In particular, changes in H{sub 2} rotational column densities are found to be as large as 20% in the XDR model with the inclusion of direct photodissociation. The photodestruction rate from some high-lying rovibrational levels can be enhanced by pumping from H Ly{beta} due to a wavelength coincidence with cross-section resonances resulting from quasi-bound levels of the upper electronic states. Given the relatively large size of the photodissociation data set, a strategy is described to create truncated, but reliable, cross-section data consistent with the wavelength resolving power of typical observations.« less

  13. Near field of an oscillating electric dipole and cross-polarization of a collimated beam of light: Two sides of the same coin

    NASA Astrophysics Data System (ADS)

    Aiello, Andrea; Ornigotti, Marco

    2014-09-01

    We address the question of whether there exists a hidden relationship between the near-field distribution generated by an oscillating electric dipole and the so-called cross-polarization of a collimated beam of light. We find that the answer is affirmative by showing that the complex field distributions occurring in both cases have a common physical origin: the requirement that the electromagnetic fields must be transverse.

  14. Electron collisions with F2CO molecules

    NASA Astrophysics Data System (ADS)

    Freitas, Thiago Corrêa; Barbosa, Alessandra Souza; Bettega, Márcio Henrique Franco

    2017-07-01

    In this paper we present elastic differential, integral, and momentum-transfer cross sections for electron collisions with carbonyl fluoride (F2CO ) molecules for the incident electron's energy from 0.5 eV to 20 eV. The Schwinger multichannel method with pseudopotentials was employed to obtain the cross sections in the static-exchange and static-exchange plus polarization approximations. The present results were compared with the available data in the literature, in particular, with the results of Kaur, Mason, and Antony [Phys. Rev. A 92, 052702 (2015), 10.1103/PhysRevA.92.052702] for the differential, total, and momentum-transfer cross sections. We have found a π* shape resonance centered at 2.6 eV in the B1 symmetry and other resonance, in the B2 symmetry, located at around 9.7 eV. A systematic study of the inclusion of polarization effects was performed in order to have a well balanced description of this negative-ion transient state. The effects of the long-range electric dipole potential were included by the Born closure scheme. Electronic structure calculations were also performed to help in the interpretation of the scattering results, and associate the transient states to the unoccupied orbitals.

  15. Extinction cross-section cancellation of a cylindrical radiating active source near a rigid corner and acoustic invisibility

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-11-01

    Active cloaking in its basic form requires that the extinction cross-section (or energy efficiency) from a radiating body vanishes. In this analysis, this physical effect is demonstrated for an active cylindrically radiating acoustic source in a non-viscous fluid, undergoing periodic axisymmetric harmonic vibrations near a rigid corner (i.e., quarter-space). The rigorous multipole expansion method in cylindrical coordinates, the method of images, and the addition theorem of cylindrical wave functions are used to derive closed-form mathematical expressions for the radiating, amplification, and extinction cross-sections of the active source. Numerical computations are performed assuming monopole and dipole modal oscillations of the circular source. The results reveal some of the situations where the extinction energy efficiency factor of the active source vanishes depending on its size and location with respect to the rigid corner, thus, achieving total invisibility. Moreover, the extinction energy efficiency factor varies between positive or negative values. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility in underwater acoustics or other areas.

  16. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.

    PubMed

    Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes

    2013-11-21

    Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopeliovich, B. Z.; Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, D-69120 Heidelberg; Potashnikova, I. K.

    Two novel QCD effects, double-color filtering and mutual boosting of the saturation scales in colliding nuclei, affect the transparency of the nuclei for quark dipoles in comparison with proton-nucleus collisions. The former effect increases the survival probability of the dipoles, since color filtering in one nucleus makes the other one more transparent. The second effect acts in the opposite direction and is stronger; it makes the colliding nuclei more opaque than in the case of pA collisions. As a result of parton saturation in nuclei the effective scale is shifted upward, which leads to an increase of the gluon densitymore » at small x. This in turn leads to a stronger transverse momentum broadening in AA compared with pA collisions, i.e., to an additional growth of the saturation momentum. Such a mutual boosting leads to a system of reciprocity equations, which result in a saturation scale, a few times higher in AA than in pA collisions at the energies of the large hadron collider (LHC). Since the dipole cross section is proportional to the saturation momentum squared, the nuclei become much more opaque for dipoles in AA than in pA collisions. For the same reason gluon shadowing turns out to be boosted to a larger magnitude compared with the product of the gluon shadowing factors in each of the colliding nuclei. All these effects make it more difficult to establish a baseline for anomalous J/{Psi} suppression in heavy ion collisions at high energies.« less

  18. Isolated photon production in proton-nucleus collisions at forward rapidity

    NASA Astrophysics Data System (ADS)

    Ducloué, B.; Lappi, T.; Mäntysaari, H.

    2018-03-01

    We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the color glass condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data. For comparison, we also update the results for the nuclear modification factor for pion production in the same kinematics. We present predictions for future forward RHIC and LHC measurements at √{sN N}=200 GeV and √{sN N}=8 TeV .

  19. Quadrupole radiation from terahertz dipole antennas.

    PubMed

    Rudd, J V; Johnson, J L; Mittleman, D M

    2000-10-15

    We report what is to our knowledge the first detailed investigation of the polarization state of radiation from lens-coupled terahertz dipole antennas. The radiation exhibits a weak but measurable component that is polarized orthogonally to the orientation of the emitter dipole. The angular radiation pattern of this cross-polarized emission reveals that it is quadrupolar, rather than dipolar, in nature. One can understand this result by taking into account the photocurrent flowing in the strip lines that feed the dipole antenna. A Fresnel-Kirchhoff scalar diffraction calculation is used for calculating the frequency-dependent angular distribution of the radiation pattern, providing satisfactory agreement with the measurements.

  20. Independent component analysis of EEG dipole source localization in resting and action state of brain

    NASA Astrophysics Data System (ADS)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-04-01

    EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.

  1. The 20Ne(d,p) 21Ne Transfer Reaction in Relation to the s-Process Abundances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsangu, C. T.; Laird, A. M.; Parikh, A.

    2016-01-01

    A study of the Ne-20(d,p)Ne-21 transfer reaction was performed using the Quadrupole Dipole Dipole Dipole (Q3D) magnetic spectrograph in Garching, Germany. The experiment probed excitation energies in Ne-21 ranging from 6.9 MeV to 8.5 MeV. The aim was to investigate the spectroscopic information of Ne-21 within the Gamow window of core helium burning in massive stars. Further information in this region will help reduce the uncertainties on the extrapolation down to Gamow window cross sections of the O-17(alpha,gamma)Ne-21 reaction. In low metallicity stars, this reaction has a direct impact on s-process abundances by determining the fate of O-16 as eithermore » a neutron poison or a neutron absorber. The experiment used a 22-MeV deuteron beam, with intensities varying from 0.5-1 mu A, and an implanted target of Ne-20 of 7 mu g/cm(2) in 40 mu g/cm(2) carbon foils. Sixteen Ne-21 peaks have been identified in the E-x = 6.9-8.5 MeV range, of which only thirteen peaks correspond to known states. Only the previously-known E-x = 7.960 MeV state was observed within the Gamow window.« less

  2. Study of Various Types of Resonances within the Phonon Damping Model

    NASA Astrophysics Data System (ADS)

    Dang, Nguyen Dinh

    2001-10-01

    The main successes of the Phonon Damping Model (PDM)(N. Dinh Dang and A. Arima, Phys. Rev. Lett. 80), 4145 (1998); Nucl. Phys. A 636, 427 (1998); N. Dinh Dang, K. Tanabe, and A. Arima, Phys. Rev. C 58, 3374 (1998). are presented in the description of: 1) the giant dipole resonance (GDR) in highly excited nuclei, 2) the double giant dipole resonance (DGDR) and multiple phonon resonances, 3) the Gamow-Teller resonance (GTR), and 4) the damping of pygmy dipole resonance (PDR) in neutron-rich nuclei. The analyses of results of numerical calculations are discussed in comparison with the experimental systematics on i) the width and the shape of the GDR at finite temperature ^1,(N. Dinh Dang et al., Phys. Rev. C 61), 027302 (2000). and angular momentum(N. Dinh Dang, Nucl. Phys. A 687), 261c (2001). for tin isotopes , ii) the electromagnetic cross sections of DGDR for ^136Xe and ^208Pb on a lead target at relativistic energies(N. Dinh Dang, V. Kim Au, and A. Arima, Phys. Rev. Lett. 85), 1827 (2000)., iii) the strength function of GTR(N. Dinh Dang, T. Suzuki, and A. Arima, Preprint RIKEN-AF-NF 377 (2000), submitted.), and iv) the PDR in oxygen and calcium isotopes(N. Dinh Dang et al., Phys. Rev. C 63), 044302 (2001)..

  3. Excitonic giant-dipole potentials in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Kurz, Markus; Grünwald, Peter; Scheel, Stefan

    2017-06-01

    In this paper we predict the existence of a novel species of Wannier excitons when exposed to crossed electric and magnetic fields. In particular, we present a theory of giant-dipole excitons in Cu2O in crossed fields. Within our theoretical approach we perform a pseudoseparation of the center-of-mass motion for the field-dressed excitonic species, thereby obtaining an effective single-particle Hamiltonian for the relative motion. For arbitrary gauge fields we exactly separate the gauge-dependent kinetic-energy terms from the effective single-particle interaction potential. Depending on the applied field strengths and the specific field orientation, the potential for the relative motion of electron and hole exhibits an outer well at spatial separations up to several micrometers and depths up to 380 μ eV , leading to possible permanent excitonic electric dipole moments of around 3 ×106 D.

  4. Photoionization of ground and excited levels of P II

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-01-01

    Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.

  5. Transport Properties of Thin Bismuth Films on InP (110) Surfaces by Scanning Tunneling Potentiometry

    NASA Astrophysics Data System (ADS)

    Feenstra, R. M.; Briner, B. G.; Chin, T. P.; Woodall, J. M.

    1996-03-01

    Charge transport in 20--30 Å thick Bi-films is studied by scanning tunneling potentiometry (STP) at room temperature. The Bi is deposited on cleaved InP(110) surfaces at temperatures near 140 K, yielding atomically flat films interspersed with 12 Å deep holes. The InP substrates contain conducting/insulating/conducting layers, which in cross-section are used to form contacts to the film, thus enabling lateral current densities as high as 8 × 10^6 A/cm^2 . Potential variations due to scattering of this lateral current is detected using STP, by locating the zero-crossing of current-voltage characteristics at each pixel in an image. Potential images reveal, on a coarse scale, a smooth ramp arising from the electric field due to phonon scattering in the film, from which an electron-phonon scattering length of >1000 Å is deduced. On a finer scale, potential steps 2--10 mV high are seen near surface holes and grain boundaries in the film. Detailed study of the ballistic scattering near the holes reveals a dipole shaped feature, which is identified as a residual resistivity dipole. *present address: Physics, Carnegie Mellon Univ., Pittsburgh PA 15213 **now at: Fritz-Haber-Institut, 14195 Berlin, briner@fhi-berlin.mpg.de

  6. FRET Studies Between CdTe Capped by Small-Molecule Ligands and Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhou, Dejian; He, Junhui

    2014-12-01

    Water-soluble luminescent semiconductor nanocrystals also known as quantum dots (QDs) that have prominent photostability, wide absorption cross sections and tunable narrow emission, have been shown as promising probes in immunoassays. QDs are often used as donors in fluorescence resonance energy transfer (FRET) based sensors using organic dyes or fluorescent proteins as acceptors. Here, the FRET between a QD donor and fluorescent protein acceptors has been studied. The fluorescent protein (FP)mCherry appended with a hexa-histidine-tag could effectively self-assemble onto CdTe to produce small donor-acceptor distances and hence highly efficient FRET (efficiency > 80%) at relatively low FP:CdTe copy numbers (ca.1). Using the Förster dipole-dipole interaction formula, the Förster radius (R0) and respective donor-acceptor distances for the CdTe-FP FRET systems have been calculated. The binding constants (Kd) of the QD-FP systems have also been evaluated by the emission spectra.

  7. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    NASA Astrophysics Data System (ADS)

    Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.

    2014-08-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.

  8. Optical spectroscopy of BaY2F8:Dy3+

    NASA Astrophysics Data System (ADS)

    Parisi, Daniela; Toncelli, Alessandra; Tonelli, Mauro; Cavalli, Enrico; Bovero, Enrico; Belletti, Alessandro

    2005-05-01

    The optical spectra of the BaY2F8:Dy3+ laser crystal have been investigated in the 5000-30 000 cm-1 range. The Judd-Ofelt parametrization scheme has been applied to the analysis of the room temperature absorption spectra. The calculated radiative lifetime of the 4F9/2 state is 1.48 ms. Decay curves of the visible emission have been measured as a function of the temperature for two different Dy3+ concentrations (0.5 and 4.4%). In the case of the diluted crystal the emission profiles are single exponential with decay times consistent with the radiative lifetime. The decay curves of the concentrated crystal are not exponential and they obey the Inokuti-Hirayama model for energy transfer for an electric dipole-dipole interaction in the absence of diffusion among the donors. The emission cross section at 575 nm has been estimated using the integral β-τ method in order to assess the potentialities of this compound as a solid state laser material in the yellow region.

  9. Some effects of electron channeling on electron energy loss spectroscopy.

    PubMed

    Kirkland, Earl J

    2005-02-01

    As an electron beam (of order 100 keV) travels through a crystalline solid it can be channeled down a zone axis of the crystal to form a channeling peak centered on the atomic columns. The channeling peak can be similar in size to the outer atomic orbitals. Electron energy loss spectroscopy (EELS) measures the losses that the electron experiences as it passes through the solid yielding information about the unoccupied density of states in the solid. The interaction matrix element for this process typically produces dipole selection rules for small angle scattering. In this paper, a theoretical calculation of the EELS cross section in the presence of strong channeling is performed for the silicon L23 edge. The presence of channeling is found to alter both the intensity and selection rules for this EELS signal as a function of depth in the solid. At some depths in the specimen small but significant non-dipole transition components can be produced, which may influence measurements of the density of states in solids.

  10. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  11. Electron scattering by the hydrocarbons C4H6,C5H8 , and C6H10

    NASA Astrophysics Data System (ADS)

    Kiataki, Matheus B.; Pastega, Diego F.; Bettega, Márcio H. F.

    2017-10-01

    We report calculated elastic integral and differential cross sections for electron collisions with the hydrocarbons 1,3-butadiene (C4H6 ), 2-methyl-1,3-butadiene (C5H8 ), and 2,3-dimethyl-1,3-butadiene (C6H10 ) for impact energies up to 15 eV. Our calculations were performed with the Schwinger Multichannel Method with pseudopotentials, in the static-exchange and static-exchange plus polarization approximations. These molecules differ for the presence of one methyl group, in the case of C5H8 , and two methyl groups, in the case of C6H10 in substitution of one and two hydrogen atoms in C4H6 , respectively (methylation effect). For the polar molecule 2-methyl-1,3-butadiene, we included the Born closure procedure in order to account for the long-range potential. We found two π* shape resonances in the integral cross section of each one of the molecules studied. The present results are also compared with the experimental values for the resonances positions and with total cross sections available in the literature. In particular, we show that the minimum in the total cross section of C5H8 located at around 1.6 eV and assigned by the authors as a Ramsauer-Townsend minimum is, actually, a valley between the two π* shape resonances. Also for the C5H8 molecule, the enhancement in the total cross section below 1.6 eV is the tail of the low-lying shape resonance and not an effect due to its permanent dipole moment, as suggested by the authors. We discuss the influence of the methylation effect in the shape and magnitude of the elastic cross sections and also in the location of the π* shape resonances of these hydrocarbons.

  12. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    NASA Astrophysics Data System (ADS)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  13. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  14. Computational study of alkali-metal-noble gas collisions in the presence of nonresonant lasers - Na + Xe + h/2/pi/omega sub 1 + h/2/pi/omega sub 2 system

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; Chang, C.; George, T. F.; Laskowski, B.; Stallcop, J. R.

    1980-01-01

    The collision of Na with Xe in the presence of both the rhodamine-110 dye laser and the Nd-glass laser is investigated within a quantum-mechanical close-coupled formalism, utilizing ab initio potential curves and transition dipole matrix elements. Both one- and two-photon processes are investigated; the Na + Xe system is not asymptotically resonant with the radiation fields, so that these processes can only occur in the molecular collision region. The one-photon processes are found to have measurable cross sections at relatively low intensities; even the two-photon process has a significant section for field intensities as low as 10 MW/sq cm.

  15. Negative refraction with low absorption using Raman transitions with magnetoelectric coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikes, D. E.; Yavuz, D. D.

    2010-07-15

    We suggest a scheme for obtaining negative refraction that does not require the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency. The key idea of the scheme is to obtain a strong electric response by using far-off-resonant Raman transitions. We propose to use a pair of electric-dipole Raman transitions and utilize magneto-electric cross coupling to achieve a negative index of refraction without requiring negative permeability. The interference of the two Raman transitions allows tunable negative refraction with low absorption.

  16. Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2

    PubMed Central

    Tóth, Sándor; Wehinger, Björn; Rolfs, Katharina; Birol, Turan; Stuhr, Uwe; Takatsu, Hiroshi; Kimura, Kenta; Kimura, Tsuyoshi; Rønnow, Henrik M.; Rüegg, Christian

    2016-01-01

    Inelastic X-ray scattering with meV energy resolution (IXS) is an ideal tool to measure collective excitations in solids and liquids. In non-resonant scattering condition, the cross-section is strongly dominated by lattice vibrations (phonons). However, it is possible to probe additional degrees of freedom such as magnetic fluctuations that are strongly coupled to the phonons. The IXS spectrum of the coupled system contains not only the phonon dispersion but also the so far undetected magnetic correlation function. Here we report the observation of strong magnon–phonon coupling in LiCrO2 that enables the measurement of magnetic correlations throughout the Brillouin zone via IXS. We find electromagnon excitations and electric dipole active two-magnon excitations in the magnetically ordered phase and heavily damped electromagnons in the paramagnetic phase of LiCrO2. We predict that several (frustrated) magnets with dominant direct exchange and non-collinear magnetism show surprisingly large IXS cross-section for magnons and multi-magnon processes. PMID:27882928

  17. Ionization Cross Sections and Dissociation Channels of the DNA Sugar-Phosphate Backbone by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred M.; Fletcher, Graham D.

    2004-01-01

    It has been suggested that the genotoxic effects of ionizing radiation in living cells are not caused by the highly energetic incident radiation, but rather are induced by less energetic secondary species generated, the most abundant of which are free electrons.' The secondary electrons will further react to cause DNA damage via indirect and direct mechanisms. Detailed knowledge of these mechanisms is ultimately important for the development of global models of cellular radiation damage. We are studying one possible mechanism for the formation cf DNA strand breaks involving dissociative ionization of the DNA sugar-phosphate backbone induced by secondary electron co!lisions. We will present ionization cross sections at electron collision energies between threshold and 10 KeV using the improved binary encounter dipole (iBED) formulation' Preliminary results of the possible dissociative ionization pathways will be presented. It is speculated that radical fragments produced from the dissociative ionization can further react, providing a possible mechanism for double strand breaks and base damage.

  18. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  19. Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingoez, A.; Lapierre, Alain; Nguyen, A.-T.

    2005-12-15

    We have studied collisional perturbations of radio-frequency (rf) electric-dipole (E1) transitions between the nearly degenerate opposite-parity levels in atomic dysprosium (Dy) in the presence of 10 to 80 {mu}Torr of H{sub 2}, N{sub 2}, He, Ar, Ne, Kr, and Xe. Collisional broadening and shift of the resonance, as well as the attenuation of the signal amplitude are observed to be proportional to the foreign-gas density with the exception of H{sub 2} and Ne, for which no shifts were observed. Corresponding rates and cross sections are presented. In addition, rates and cross sections for O{sub 2} are extracted from measurements usingmore » air as foreign gas. The primary motivation for this study is the need for accurate determination of the shift rates, which are needed in a laboratory search for the temporal variation of the fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Phys. Rev. A 69, 22105 (2004)].« less

  20. Nuclear effects in (anti)neutrino charge-current quasielastic scattering at MINER νA kinematics

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Antonov, A. N.; Megias, G. D.; González-Jiménez, R.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udías, J. M.

    2018-05-01

    We compare the characteristics of the charged-current quasielastic (anti)neutrino scattering obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the model using a realistic spectral function S(p, ɛ) that gives a scaling function in accordance with the (e, e‧ ) scattering data, with the recent data published by the MiniBooNE, MINER νA, and NOMAD collaborations. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals from the Jastrow correlation method and has a realistic energy dependence. Both models provide a good description of the MINER νA and NOMAD data without the need of an ad hoc increase of the value of the mass parameter in the axial-vector dipole form factor. The models considered in this work, based on the the impulse approximation (IA), underpredict the MiniBooNE data for the flux-averaged charged-current quasielastic {ν }μ ({\\bar{ν }}μ ){+}12\\text{C} differential cross section per nucleon and the total cross sections, although the shape of the cross sections is represented by the approaches. The discrepancy is most likely due to missing of the effects beyond the IA, e.g., those of the 2p–2h meson exchange currents that have contribution in the transverse responses.

  1. First direct measurement of the 2H(α,γ)6Li cross section at big bang energies and the primordial lithium problem.

    PubMed

    Anders, M; Trezzi, D; Menegazzo, R; Aliotta, M; Bellini, A; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Davinson, T; Elekes, Z; Erhard, M; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Junker, M; Lemut, A; Marta, M; Mazzocchi, C; Prati, P; Rossi Alvarez, C; Scott, D A; Somorjai, E; Straniero, O; Szücs, T

    2014-07-25

    Recent observations of (6)Li in metal poor stars suggest a large production of this isotope during big bang nucleosynthesis (BBN). In standard BBN calculations, the (2)H(α,γ)(6)Li reaction dominates (6)Li production. This reaction has never been measured inside the BBN energy region because its cross section drops exponentially at low energy and because the electric dipole transition is strongly suppressed for the isoscalar particles (2)H and α at energies below the Coulomb barrier. Indirect measurements using the Coulomb dissociation of (6)Li only give upper limits owing to the dominance of nuclear breakup processes. Here, we report on the results of the first measurement of the (2)H(α,γ)(6)Li cross section at big bang energies. The experiment was performed deep underground at the LUNA 400 kV accelerator in Gran Sasso, Italy. The primordial (6)Li/(7)Li isotopic abundance ratio has been determined to be (1.5 ± 0.3) × 10(-5), from our experimental data and standard BBN theory. The much higher (6)Li/(7)Li values reported for halo stars will likely require a nonstandard physics explanation, as discussed in the literature.

  2. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    DOE PAGES

    Bhattacharya, Atri; Enberg, Rikard; Jeong, Yu Seon; ...

    2016-11-28

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k T factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest datamore » on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.« less

  3. Four-body calculation of {sup 12}C(α, γ){sup 16}O radiative capture reaction at stellar energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, H., E-mail: H-Sadeghi@Araku.ac.ir; Firoozabadi, M. M.

    2016-01-15

    On the basis of the four-alphamodel, the {sup 12}C(α, γ){sup 16}Oradiative capture process is investigated by using the four-body Faddeev–Yakubovsky equations as well as the two- and three-body electromagnetic currents. The present calculation is an application of our current conservation realistic potentials method for the {sup 12}C(α, γ){sup 16}Oradiative capture process. This work clears the way formore refinedmodels of radiative capture based on two- and three-body realistic potentials and current conservation. The calculation is carried out by considering the {sup 4}He + {sup 12}C (1 + 3) and the {sup 8}Be + {sup 8}Be (2 + 2) subamplitudes, respectively. Radiativemore » capture {sup 12}C(α, γ){sup 16}Oreaction is one of the most important reactions in nuclear astrophysics. For this reaction, the electric dipole transitions between states with the same isospin are forbidden in the first order. Because the state 1{sup +} and 0{sup +} ground state nuclei {sup 16}O have zero isospin, thus the electric dipole radiations are not at the first order between two levels and electric dipole radiation will be the second order and electric dipole radiation is the same order as the electric quadrupole radiation. Therefore, we must consider the effects of both radiations. In comparison with other theoretical methods and available experimental data, good agreement is achieved for the E{sub 1} and E{sub 2} contribution to the cross section and the astrophysical S factor for this process.« less

  4. ASYMMETRIC ABSORPTION PROFILES OF Ly{alpha} AND Ly{beta} IN DAMPED Ly{alpha} SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hee-Won, E-mail: hwlee@sejong.ac.kr

    2013-08-01

    Damped Ly{alpha} systems observed in the quasar spectra are characterized by a high neutral hydrogen column density, N{sub HI} > 2 x 10{sup 20} cm{sup -2}. The absorption wing profiles are often fitted using the Voigt function due to the fact that the scattering cross section near the resonant line center is approximately described by the Lorentzian function. Since a hydrogen atom has infinitely many p states that participate in the electric dipole interaction, the cross section starts to deviate from the Lorentzian in an asymmetric way in the line wing regions. We investigate this asymmetry in the absorption linemore » profiles around Ly{alpha} and Ly{beta} as a function of the neutral hydrogen column density N{sub HI}. In terms of {Delta}{lambda} {identical_to} {lambda} - {lambda}{sub {alpha}}, we expand the Kramers-Heisenberg formula around Ly{alpha} to find {sigma}({lambda}) {approx_equal} (0.5f{sub 12}){sup 2}{sigma}{sub T}({Delta}{lambda}/{lambda}{sub {alpha}}){sup -2}[1 + 3.792({Delta}{lambda}/{lambda}{sub {alpha}})], where f{sub 12} and {sigma}{sub T} are the oscillator strength of Ly{alpha} and the Thomson scattering cross section, respectively. In terms of {Delta}{lambda}{sub 2} {identical_to} {lambda} - {lambda}{sub {beta}} in the vicinity of Ly{beta}, the total scattering cross section, given as the sum of cross sections for Rayleigh and Raman scattering, is shown to be {sigma}({lambda}) {approx_equal} {sigma}{sub T}(0.5f{sub 13}){sup 2}(1 + R{sub 0})({Delta}{lambda}{sub 2}/{lambda}{sub {beta}}){sup -2}[1 - 24.68({Delta}{lambda}{sub 2}/{lambda}{sub {beta}})] with f{sub 13} and the factor R{sub 0} = 0.1342 being the oscillator strength for Ly{beta} and the ratio of the Raman cross section to Rayleigh cross section, respectively. A redward asymmetry develops around Ly{alpha}, whereas a blue asymmetry is obtained for Ly{beta}. The absorption center shifts are found to be almost proportional to the neutral hydrogen column density.« less

  5. On the origin of pure optical rotation in twisted-cross metamaterials

    PubMed Central

    Barr, Lauren E.; Díaz-Rubio, Ana; Tremain, Ben; Carbonell, Jorge; Sánchez-Dehesa, José; Hendry, Euan; Hibbins, Alastair P.

    2016-01-01

    We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation. PMID:27457405

  6. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  7. Molecular Line and Continuum Opacities for Modeling of Extrasolar Giant Planet and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.; Kirby, K.; Yamaguchi, Y.; Allen, W. D.

    2002-01-01

    The molecular line and continuum opacities are investigated in the atmospheres of cool stars and Extrasolar Giant Planets (EGPs). Using a combination of ab inito and experimentally derived potential curves and dipole transition moments, accurate data have been calculated for rovibrationally-resolved oscillator strengths and photodissociation cross sections in the B' (sup 2)Sigma+ (left arrow) X (sup 2)Sigma+ and A (sup 2)Pi (left arrow) X (sup 2)Sigma+ band systems in MgH. We also report our progress on the study of the electronic structure of LiCl and FeH.

  8. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  9. Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  10. Derived properties from the dipole and generalized oscillator strength distributions of an endohedral confined hydrogen atom

    NASA Astrophysics Data System (ADS)

    Martínez-Flores, C.; Cabrera-Trujillo, R.

    2018-03-01

    We report the electronic properties of a hydrogen atom confined by a fullerene molecule by obtaining the eigenvalues and eigenfunctions of the time-independent Schrödinger equation by means of a finite-differences approach. The hydrogen atom confinement by a C60 fullerene cavity is accounted for by two model potentials: a square-well and a Woods-Saxon. The Woods-Saxon potential is implemented to study the role of a smooth cavity on the hydrogen atom generalized oscillator strength distribution. Both models characterize the cavity by an inner radius R 0, thickness Δ, and well depth V 0. We use two different values for R 0 and Δ, found in the literature, that characterize H@C60 to analyze the role of the fullerene cage size and width. The electronic properties of the confined hydrogen atom are reported as a function of the well depth V 0, emulating different electronic configurations of the endohedral cavity. We report results for the hyper-fine splitting, nuclear magnetic screening, dipole oscillator strength, the static and dynamic polarizability, mean excitation energy, photo-ionization, and stopping cross section for the confined hydrogen atom. We find that there is a critical potential well depth value around V 0 = 0.7 a.u. for the first set of parameters and around V 0 = 0.9 a.u. for the second set of parameters, which produce a drastic change in the electronic properties of the endohedral hydrogen system. These values correspond to the first avoided crossing on the energy levels. Furthermore, a clear discrepancy is found between the square-well and Woods-Saxon model potential results on the hydrogen atom generalized oscillator strength due to the square-well discontinuity. These differences are reflected in the stopping cross section for protons colliding with H@C60.

  11. Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna

    NASA Astrophysics Data System (ADS)

    Qin, Yuwei; Xiong, Xiaoyan Y. Z.; Sha, Wei E. I.; Jiang, Li Jun

    2018-04-01

    The unique gate-voltage dependent optical properties of graphene make it a promising electrically-tunable plasmonic material. In this work, we proposed in situ control of the polarization of nanoantennas by combining plasmonic structures with an electrostatically tunable graphene monolayer. The tunable polarizer is designed based on an asymmetric cross nanoantenna comprising two orthogonal metallic dipoles sharing the same feed gap. Graphene monolayer is deposited on a Si/SiO2 substrate, and inserted beneath the nanoantenna. Our modelling demonstrates that as the chemical potential is incremented up to 1 eV by electrostatic doping, resonant wavelength for the longer graphene-loaded dipole is blue shifted for 500 nm (~10% of the resonance) in the mid-infrared range, whereas the shorter dipole experiences much smaller influences due to the unique wavelength-dependent optical properties of graphene. In this way, the relative field amplitude and phase between the two dipole nanoantennas are electrically adjusted, and the polarization state of the reflected wave can be electrically tuned from the circular into near-linear states with the axial ratio changing over 8 dB. Our study thus confirms the strong light-graphene interaction with metallic nanostructures, and illuminates promises for high-speed electrically controllable optoelectronic devices.

  12. Negative refraction using Raman transitions and chirality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikes, D. E.; Yavuz, D. D.

    2011-11-15

    We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.

  13. Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-10-01

    A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ → ,γ‧) experiment at the HI γ → S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB (E 1) ↑ and ΣB (M 1) ↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9 ± 0.2 e2fm2 and 8.3 ± 2.0 μN2, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of αD = 122 ± 10 mb /MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of Rskin206 = 0.12- 0.19 fm and a corresponding range for the slope of the symmetry energy of L = 48- 60 MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb (n , γ)206Pb at 30 keV to be σ = 130 ± 25 mb. The astrophysical impact of this measurement-on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter-is discussed.

  14. Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

    DOE PAGES

    Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; ...

    2017-08-02

    A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ→,γ') experiment at the HIγ→S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB(E1)↑ and ΣB(M1)↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9±0.2e 2fm 2 and 8.3±2.0μmore » $$2\\atop{N}$$, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of α D=122±10mb/MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of R$$206\\atop{skin}$$=0.12–0.19fm and a corresponding range for the slope of the symmetry energy of L=48–60MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb(n,γ)Pb 206 at 30 keV to be σ=130±25mb. In conclusion, the astrophysical impact of this measurement—on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter—is discussed.« less

  15. Determination of π± meson polarizabilities from the γγ→π+π- process

    NASA Astrophysics Data System (ADS)

    Fil'Kov, L. V.; Kashevarov, V. L.

    2006-03-01

    A fit of the experimental data to the total cross section of the process γγ→π+π- in the energy region from threshold to 2500 MeV has been carried out using dispersion relations with subtractions for the invariant amplitudes, where the dipole and the quadrupole polarizabilities of the charged pion are free parameters. As a result, the sum and the difference of the electric and magnetic dipole and quadrupole polarizabilities of the charged pion have been found: (α1+β1)π±=(0.18-0.02+0.11)×10-4fm3,(α1-β1)π±=(13.0-1.9+2.6)×10-4fm3,(α2+β2)π±=(0.133±0.015)×10-4fm5,(α2-β2)π±=(25.0-0.3+0.8)×10-4fm5. These values agree with the dispersion sum rule predictions. The value found for the difference of the dipole polarizabilities is consistent with the results obtained from scattering of high energy π- mesons off the Coulomb field of heavy nuclei [Yu. M. Antipov , Phys. Lett. B121, 445 (1983)] and from radiative π+ photoproduction from the proton at MAMI [J. Ahrens , Eur. Phys. J. A 23, 113 (2005)], whereas it is at variance with the recent calculations in the framework of chiral perturbation theory.

  16. Dipolar response of hydrated proteins

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2012-02-01

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ˜2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.

  17. Dipolar response of hydrated proteins.

    PubMed

    Matyushov, Dmitry V

    2012-02-28

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.

  18. Fabrication and test of model superconducting inflector for g-2 at FNAL

    DOE PAGES

    Krave, Steven; Kashikhin, Vladimir S.; Strauss, Thomas

    2017-03-01

    The new FNAL g-2 experiment is based on the muon storage ring previously used at BNL. The 1.45 T dipole magnetic field in the storage ring is required to have very high (1 ppm) homogeneity. The muon beam injected into the ring must be transported through the magnet yoke and the main superconducting coil cryostat with minimal distortions. The old inflector magnet shielded the main dipole fringe field inside the muon transport beam pipe, with an outer NbTi superconducting screen, and did not disturb the field in the area of circulating beam. Nevertheless, this magnet had coils with closed endsmore » in which a large fraction of muon beam particles were lost. A new magnet is envisioned utilizing the same cross section as the original with open ends for improved beam transport. A model magnet has been wound utilizing 3d printed parts to verify the magnetic behavior of the magnet at room temperature and validate winding of the complicated geometry required for the magnet ends. Finally, room temperature magnetic measurements have been performed and confirm the magnetic design« less

  19. What formulas are good for representing dipole and generalized oscillator-strength spectra

    NASA Astrophysics Data System (ADS)

    Inokuti, M.; Dillon, M. A.

    The dipole oscillator-strength distribution df/depsilon for a single continuum excitation of an atom or molecule is a function of the kinetic energy epsilon of an outgoing electron. The distribution describes many optical phenomena such as absorption, refraction, and reflection; in particular, df/depsilon is equal to the cross section for ionization by a photon with energy epsilon + I, apart from an universal constant, where I is the ionization threshold for the relevant shell. Furthermore, df/depsilon governs the ionization by glancing collisions of fast charged particles. Recent years have seen considerable accumulation of experimental data on df/depsilon. Those data are indeed valuable for many aplications in radiation physics, plasma physics, atmospheric physics, and astrophysics. In most of these applications, one needs a comprehensive set of data, i.e., numerical values of df/depsilon over a wide range of epsilon, say, from several eV to many keV; most often, one needs data at all epsilon at which df/depsilon is appreciable. A method for systematizing the data so that one can extrapolate or interpolate them dependably was sought.

  20. Experimental Demonstration of Underwater Acoustic Scattering Cancellation

    PubMed Central

    Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2015-01-01

    We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067

  1. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Department of Physics, Sophia University, Tokyo 102-8554; Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Πmore » transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)« less

  2. Quantitative x-ray photoelectron spectroscopy: Quadrupole effects, shake-up, Shirley background, and relative sensitivity factors from a database of true x-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Seah, M. P.; Gilmore, I. S.

    2006-05-01

    An analysis is provided of the x-ray photoelectron spectroscopy (XPS) intensities measured in the National Physical Laboratory (NPL) XPS database for 46 solid elements. This present analysis does not change our previous conclusions concerning the excellent correlation between experimental intensities, following deconvolving the spectra with angle-averaged reflection electron energy loss data, and the theoretical intensities involving the dipole approximation using Scofield’s cross sections. Here, more recent calculations for cross sections by Trzhaskovskaya involving quadrupole terms are evaluated and it is shown that their cross sections diverge from the experimental database results by up to a factor of 5. The quadrupole angular terms lead to small corrections that are close to our measurement limit but do appear to be supported in the present analysis. Measurements of the extent of shake-up for the 46 elements broadly agree with the calculations of Yarzhemsky but not in detail. The predicted constancy in the shake-up contribution by Yarzhemsky implies that the use of the Shirley background will lead to a peak area that is a constant fraction of the true peak area including the shake-up intensities. However, the measured variability of the shake-up contribution makes the Shirley background invalid for quantification except for situations where the sensitivity factors are from reference samples similar to those being analyzed.

  3. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties

    NASA Astrophysics Data System (ADS)

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-01

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.

  4. Electric and magnetic target polarization in quantum radar

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2017-05-01

    In this paper, we discuss the effect that photon polarization has on the quantum radar cross section (QRCS) during the special case scenario of when the target is enveloped in either a uniform electric field or magnetic field and all of its atomic electric/magnetic dipole moments become aligned (target polarization). This target polarization causes the coupling between the photon and the matter to change and alter the scattering characteristics of the target. Most notably, it causes scattering to be very near zero at a specified angle. We also investigate the relationship between electric and magnetic types of coupling and find that the electric contribution dominates the QRCS response.

  5. Configurational entropy and ρ and ϕ mesons production in QCD

    NASA Astrophysics Data System (ADS)

    Karapetyan, G.

    2018-06-01

    In the present work the electroproduction for diffractive ρ and ϕ mesons by considering AdS/QCD correspondence and Color Glass Condensate (CGC) approximation are studied with respect to the associated dipole cross section, whose parameters are studied and analysed in the framework of the configurational entropy. Our results suggest different quantum states of the nuclear matter, showing that the extremal points of the nuclear configurational entropy is able to reflect a true description of the ρ and ϕ mesons production, using current data concerning light quark masses. During the computations parameters, obtained in fitting procedure, coincide to the experimental within ∼ 0.1%.

  6. Nonsequential two-photon absorption from the K shell in solid zirconium

    DOE PAGES

    Ghimire, Shambhu; Fuchs, Matthias; Hastings, Jerry; ...

    2016-10-21

    Here, we report the observation of nonsequential two-photon absorption from the K shell of solid Zr (atomic number Z=40) using intense x-ray pulses from the Spring-8 Angstrom Compact Free-Electron Laser (SACLA). We determine the generalized nonlinear two-photon absorption cross section at the two-photon threshold in the range of 3.9–57 ×10 –60 cm 4s bounded by the estimated uncertainty in the absolute intensity. The lower limit is consistent with the prediction of 3.1 ×10 –60 cm 4s from the nonresonant Z –6 scaling for hydrogenic ions in the nonrelativistic, dipole limit.

  7. Observation of low-lying resonances in the quasicontinuum of 195,196Pt and enhanced astrophysical reaction rates

    DOE PAGES

    Giacoppo, F.; Bello Garrote, F. L.; Eriksen, T. K.; ...

    2015-05-28

    An excess of strength on the low-energy tail of the giant dipole resonance recently has been observed in the γ-decay from the quasicontinuum of 195,196Pt. The nature of this phenomenon is not yet fully investigated. If this feature is present also in the γ-ray strength of the neutron-rich isotopes, it can affect the neutron-capture reactions involved in the formation of heavy-elements in stellar nucleosynthesis. The experimental level density and γ-ray strength function of 195,196Pt are presented together with preliminary calculations of the corresponding neutron-capture cross sections.

  8. Improvement of solar-cycle prediction: Plateau of solar axial dipole moment

    NASA Astrophysics Data System (ADS)

    Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.

    2017-11-01

    Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.

  9. Optimal galaxy survey for detecting the dipole in the cross-correlation with 21 cm Intensity Mapping

    NASA Astrophysics Data System (ADS)

    Lepori, Francesca; Di Dio, Enea; Villa, Eleonora; Viel, Matteo

    2018-05-01

    We investigate the future perspectives of the detection of the relativistic dipole by cross-correlating the 21 cm emission in Intensity Mapping (IM) and galaxy surveys at low redshift. We model the neutral hydrogen (HI) and the galaxy population by means of the halo model to relate the parameters that affect the dipole signal such as the biases of the two tracers and the Poissonian noise. We investigate the behavior of the signal-to-noise as a function of the galaxy and magnification biases, for two fixed models of the neutral hydrogen. In both cases we found that the signal-to-noise does not grow by increasing the difference between the biases of the two tracers, due to the larger shot-noise yields by highly biased tracers. We also study and provide an optimal luminosity-threshold galaxy catalogue to enhance the signal-to-noise ratio of the relativistic dipole. Interestingly, we show that the maximum magnitude provided by the survey does not lead to the maximum signal-to-noise for detecting relativistic effects and we predict the optimal value for the limiting magnitude. Our work suggests that an optimal analysis could increase the signal-to-noise ratio up to a factor five compared to a standard one.

  10. Separation of Anisotropy and Exchange Broadening Using 15N CSA- 15N- 1H Dipole-Dipole Relaxation Cross-Correlation Experiments

    NASA Astrophysics Data System (ADS)

    Renner, Christian; Holak, Tad A.

    2000-08-01

    Based on the measurement of cross-correlation rates between 15N CSA and 15N-1H dipole-dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R2 = 1/T2) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T1/T2 ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T1/T2 ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N-H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or β-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T1/T2 ratios. The 15N CSA tensor of the residues for this β-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T2 relaxation times for several residues could be mistaken as indications for exchange processes.

  11. Radar signatures of snowflake riming: A modeling study.

    PubMed

    Leinonen, Jussi; Szyrmer, Wanda

    2015-08-01

    The capability to detect the state of snowflake riming reliably from remote measurements would greatly expand the understanding of its global role in cloud-precipitation processes. To investigate the ability of multifrequency radars to detect riming, a three-dimensional model of snowflake growth was used to generate simulated aggregate and crystal snowflakes with various degrees of riming. Three different growth scenarios, representing different temporal relationships between aggregation and riming, were formulated. The discrete dipole approximation was then used to compute the radar backscattering properties of the snowflakes at frequencies of 9.7, 13.6, 35.6, and 94 GHz. In two of the three growth scenarios, the rimed snowflakes exhibit large differences between the backscattering cross sections of the detailed three-dimensional models and the equivalent homogeneous spheroidal models, similarly to earlier results for unrimed snowflakes. When three frequencies are used simultaneously, riming appears to be detectable in a robust manner across all three scenarios. In spite of the differences in backscattering cross sections, the triple-frequency signatures of heavily rimed particles resemble those of the homogeneous spheroids, thus explaining earlier observational results that were compatible with such spheroids.

  12. Strong field localization in subwavelength metal-dielectric optical waveguides

    NASA Astrophysics Data System (ADS)

    Kozina, O. N.; Mel'Nikov, L. A.; Nefedov, I. S.

    2011-08-01

    Detailed calculations of eigenmodes of waveguiding structures made of silver and glass and containing coaxial cables with a nanoscale cross section of different configurations are conducted. In particular, the study focuses on optical coaxial waveguides with the core made in the form of a thin metallic cylinder filled with a dielectric. We show that these waveguides support relatively low-loss propagation of radiation that is strongly localized in the central region, has phase velocity approaching the speed of light and predominant electric-field orientation (dipole type). Optical characteristics of such waveguides are compared with those of coaxial-type waveguides containing a continuous central filament made of metal and with a multilayer structure. Using numeric modeling, we established that the proposed type of the waveguide enables the transmission of an optical image with relatively low losses with a submicron resolution over a distance considerably longer than its cross section. A typical propagation length in the waveguides based on silver and glass with the refractive index of about 1.5 at a wavelength of 500 nm is about 1700 nm.

  13. Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles.

    PubMed

    Donovan, David Patrick; Quante, Markus; Schlimme, Ingo; Macke, Andreas

    2004-09-01

    The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.

  14. NLO properties of ester containing fluorescent carbazole based styryl dyes - Consolidated spectroscopic and DFT approach

    NASA Astrophysics Data System (ADS)

    Rajeshirke, Manali; Sekar, Nagaiyan

    2018-02-01

    The linear and nonlinear optical (NLO) properties of new fluorescent styryl dyes based on anchoring ester containing carbazole as donor appended to different acceptor groups to have a conjugated π-system with push-pull geometry are studied. The NLO properties have been determined using solvatochromic and computational methods. Three different TD-DFT functional are used namely, B3LYP, BHandHLYP, and CAM-B3LYP, with aim of elucidating better functional for NLOphores. Further, the two photon properties (σ2PA) have been described theoretically by two level model considering the dipole moment difference between the ground and the final electronic states and bypassing the intermediated resonance state. The compounds with a high charge transfer from the acceptor group to the carbazole ring have relatively high two-photon absorption cross-sections (60-317 GM). The linear polarizability (αCT), first order hyperpolarizability (β) and second order hyperpolarizability (ɣ) for 4c dye was the highest among the studied dyes which is attributed to the lesser energy gap evident by both the methods. But in contrary, the σ2PA cross-section value was low for dye 4c which is due to the presence of freely rotatable twisted phenyl ring in the conjugation path, pulling the electron density towards itself and thus lead to decrease in σ2PA cross-section. Structure-property relationship is better understood by the correlation of bond length alternation/bond order alternation (BLA/BOA) with NLO properties of dyes. Thus by simple solvatochromic method and computational method, we have screened the carbazole styryls as NLO candidates with good first order hyperpolarizability and good two photon cross-section.

  15. Electron impact polarization of atomic spectral lines. I - A general theoretical scheme

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Degl'innocenti, Egidio L.

    1992-01-01

    A suitable theoretical scheme able to describe, in a wide variety of astrophysical situations, the phenomenon of atomic line polarization by electron impact is developed. Starting from the general principles of quantum mechanics and assuming the Born approximation, the rate equations for the density matrix elements of a multilevel atomic system, interacting with a nonrelativistic electron beam having any kind of angular distribution, are derived in full generality. The resulting theory generalizes the previous ones by accounting for the collisional rates and the cross sections concerning both inelastic and superelastic collisions (in any geometrical situation), and, moreover, by taking into account the coherences among Zeeman sublevels split by a magnetic field. As an example of particular relevance, the general formulas derived in the first sections of the paper are subsequently particularized to the case of the electric dipole interaction.

  16. A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters

    NASA Technical Reports Server (NTRS)

    Hilmer, Robert V.; Voigt, Gerd-Hannes

    1995-01-01

    A tilt-dependent magnetic field model of the Earth's magnetosphere with variable magnetopause standoff distance is presented. Flexible analytic representations for the ring and cross-tail currents, each composed of the elements derived from the Tsyganenko and Usmanov (1982) model, are combined with the fully shielded vacuum dipole configurations of Voigt (1981). Although the current sheet does not warp in the y-z plane, changes in the shape and position of the neutral sheet with dipole tilt are consistent with both MHD equilibrium theory and observations. In addition, there is good agreement with observed Delta B profiles and the average equatorial contours of magnetic field magnitude. While the dipole field is rigorously shielded within the defined magnetopause, the ring and cross-tails currents are not similarly confined, consequently, the model's region of validity is limited to the inner magnetosphere. The model depends on four independent external parameters. We present a simple but limited method of simulating several substorm related magnetic field changes associated with the disrupion of the near-Earth cross-tail current sheet and collapse of the midnight magnetotail field region. This feature further facilitates the generation of magnetic field configuration time sequences useful in plasma convection simulations of real magnetospheric events.

  17. Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Kai; Chen, Lin; Hong, Chi-Cherng; Li, Tim; Chen, Cheng-Ta; Wang, Lu

    2018-03-01

    In the boreal spring of 2014, the oceanic and atmospheric conditions were favorable for an El Niño's development. It was predicted that in 2014, a super El Niño or at least a regular El Niño with normal magnitude, would initiate. However, the growth rate of the sea surface temperature anomaly (SSTA) in the equatorial eastern Pacific suddenly declined in the boreal summer. The physical processes responsible for the termination of the 2014 El Niño were addressed in this study. We hypothesized that a meridional dipole of SSTA, characterized by a pronounced warm SSTA over the eastern North Pacific (ENP) and cold SSTA over the eastern South Pacific (ESP), played a crucial role in blocking the 2014 El Niño's development. The observational analysis revealed that the meridional dipole of SSTA and the relevant anomalous cross-equatorial flow in the tropical eastern Pacific, induced anomalous westward ({u^' }<0) and upwelling ({w^' }>0) currents in the equatorial eastern Pacific, leading to negative anomalous zonal advection term (- {u^' }partial \\overline T /partial x<0) and anomalous upwelling advection term (- {w^' }partial \\overline T /partial z<0). Additionally, the anomalous cross-equatorial flow also induced northward meridional current anomalies that transported subtropical cold water to the equator. All the changes of the oceanic dynamic terms collectively caused negative SSTA tendency in the boreal summer, and thus killed off the budding 2014 El Niño. The idealized numerical experiments further confirmed that the 2014 El Niño's development could be suppressed by the meridional dipole of SSTA, and both the ENP pole and ESP pole make a contribution.

  18. Systematics of Rydberg Series of Diatomic Molecules and Correlation Diagrams

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Woo

    2015-06-01

    Rydberg states are studied for H2, Li2, HeH, LiH and BeH using the multi-reference configuration interaction (MRCI) method. The systematics and regularities of the physical properties such as potential energies curves (PECs), quantum defect curves, permanent dipole moment and transition dipole moment curves of the Rydberg series are studied. They are explained using united atom perturbation theory by Bingel and Byers-Brown, Fermi model, Stark theory, and Mulliken's theory. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, indicating that the members of the l-mixed Rydberg series have dipole moments with opposite directions, which are related to the reversal of the polarity of a dipole moment at the avoided crossing points. The assignment of highly excited states is difficult because of the usual absence of the knowledge on the behaviors of potential energy curves at small internuclear separation whereby the correlation between the united atom limit and separated atoms limit cannot be given. All electron MRCI calculations of PECs are performed to obtain the correlation diagrams between Rydberg orbitals at the united-atom and separated atoms limits.

  19. The effects of pressure anisotropy on Birkeland currents in dipole and stretched magnetospheres

    NASA Technical Reports Server (NTRS)

    Birmingham, Thomas J.

    1992-01-01

    Attention is given to two effects which modify the rate of generation of Birkeland currents from the values given by the Vasyliunas (1970) formula in a dipole, namely, nonisotropic plasma pressure and the radial distention of magnetic field lines. The parallel current at any given point is the integrated effect of the diversion of perpendicular currents along the length of the flux tube from the equator. The result for j-parallel in I is fully nonlinear. In a dipole field the effect of anisotropy is modest: j-parallel at the ionosphere is, irrespective of the r0 value, about factor of 2.4 larger for a large P-parallel anisotropy (r = 0.1) than for the isotropic case and factor of 0.2 smaller for r = 10. In the stretched field the comparable values are factor of 10 and factor of 0.06 for a field line intersecting the ionosphere at a dipole colatitude of 16.4 deg and crossing the equator at r0 of 20. The results exhibit differences in plasma density and plasma pressure along field lines between the stretched and dipole models.

  20. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer.

    PubMed

    Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang

    2013-03-14

    The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.

  1. Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study

    NASA Astrophysics Data System (ADS)

    Wanapun, Duangporn; Wampler, Ronald D.; Begue, Nathan J.; Simpson, Garth J.

    2008-03-01

    A new method for sensitive determination of protein secondary structure via multi-photon absorption is considered theoretically. Perturbation theory is developed to describe the polarization-dependent two-photon absorption (TPA) of α-helix and β-sheet protein secondary structures. The exciton coupling interactions responsible for relatively weak electronic circular dichroism in one-photon absorption are predicted to give rise to large changes in the TPA cross-section (>200%) for circular versus linear incident polarizations, defined as CLD. The CLD effect in TPA is electric dipole-allowed, which explains the much greater sensitivity. These predictions suggest TPA should be a viable means of sensitively probing protein secondary structure.

  2. Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations.

    PubMed

    Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa; Ebert, Martin

    2012-04-23

    Light scattering by light absorbing carbon (LAC) aggregates encapsulated into sulfate shells is computed by use of the discrete dipole method. Computations are performed for a UV, visible, and IR wavelength, different particle sizes, and volume fractions. Reference computations are compared to three classes of simplified model particles that have been proposed for climate modeling purposes. Neither model matches the reference results sufficiently well. Remarkably, more realistic core-shell geometries fall behind homogeneous mixture models. An extended model based on a core-shell-shell geometry is proposed and tested. Good agreement is found for total optical cross sections and the asymmetry parameter. © 2012 Optical Society of America

  3. Electromagnetic wave scattering from some vegetation samples

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.

    1988-01-01

    For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.

  4. Effect of multiple plasmon excitation on single, double and multiple ionizations of C60 in collisions with fast highly charged Si ions

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.

    2007-06-01

    We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  5. Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.

    2007-03-01

    Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  6. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  7. L-changing depopulation of Na s and p Rydberg states by ion impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolfes, R.G.; Smith, D.B.; MacAdam, K.B.

    1988-04-01

    Ar/sup +/ and Na/sup +/ ion beams bombarding Na ns and np Rydberg-state targets at impact velocities near the Bohr-orbital velocity of the target atoms (i.e., v-italic-tildeapprox. =1) induce transitions to (n-1)l states (lgreater than or equal to2) with larger-than-geometric cross sections. Depopulation of ns states proceeds directly into the full n-1, lgreater than or equal to2 manifold rather than populating the np or (n-1)p states as the first of a sequence of dipole-allowed steps. Depopulation of np states leads to a distribution of final states that is dominated by the nearer or high-l part of the n-1 manifold. nmore » dependences of the cross section for ns depopulation are given at several energies for n = 32--41 and at a single energy for np, n = 26--32. The absolute cross section for Na(36s) depopulation falls gradually but steadily for reduced velocities v-italic-tilde increasing from 0.3 to 1.35. Bombardment of Na 39s and 39p states in applied fields 0--18.5 V/cm reveals that the final-state distributions become narrower as manifold states are Stark shifted close to the initial states. No theoretical results are available for direct comparison with these experiments, but the method of coupled channels seems to be the most suitable candidate.« less

  8. An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Geier, Manfred; Yang, Xiaoyuan; Orcutt, John; Zenker, Jake; Brooks, Sarah D.

    2018-05-01

    We investigate the optical properties of ice crystals nucleated on atmospheric black carbon (BC). The parameters examined in this study are the shape of the ice crystal, the volume fraction of the BC inclusion, and its location inside the crystal. We report on new spectrometer measurements of forward scattering and backward polarization from ice crystals nucleated on BC particles and grown under laboratory-controlled conditions. Data from the Cloud and Aerosol Spectrometer with Polarization (CASPOL) are used for direct comparison with single-particle calculations of the scattering phase matrix. Geometrical optics and discrete dipole approximation techniques are jointly used to provide the best compromise of flexibility and accuracy over a broad range of size parameters. Together with the interpretation of the trends revealed by the CASPOL measurements, the numerical results confirm previous reports on absorption cross-section magnification in the visible light range. Even taking into account effects of crystal shape and inclusion position, the ratio between absorption cross-section of the compound particle and the absorption cross-section of the BC inclusion alone (the absorption magnification) has a lower bound of 1.5; this value increases to 1.7 if the inclusion is centered with respect to the crystal. The simple model of BC-ice particle presented here also offers new insights on the effect of the relative position of the BC inclusion with respect to the crystal's outer surfaces, the shape of the crystal, and its size.

  9. Applicability of the Rayleigh-Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence

    NASA Astrophysics Data System (ADS)

    Tyynelä, J.; Leinonen, J.; Westbrook, C. D.; Moisseev, D.; Nousiainen, T.

    2013-02-01

    The applicability of the Rayleigh-Gans approximation (RGA) for scattering by snowflakes is studied in the microwave region of the electromagnetic spectrum. Both the shapes of the single ice crystals, or monomers, and their amounts in the modeled snowflakes are varied. For reference, the discrete-dipole approximation (DDA) is used to produce numerically accurate solutions to the single-scattering properties, such as the backscattering and extinction cross-sections, single-scattering albedo, and the asymmetry parameter. We find that the single-scattering albedo is the most accurate with only about 10% relative bias at maximum. The asymmetry parameter has about 0.12 absolute bias at maximum. The backscattering and extinction cross-sections show about - 65% relative biases at maximum, corresponding to about - 4.6 dB difference. Overall, the RGA agrees well with the DDA computations for all the cases studied and is more accurate for the integrated quantities, such as the single-scattering albedo and the asymmetry parameter than the cross-sections for the same snowflakes. The accuracy of the RGA seems to improve, when the number of monomers is increased in an aggregate, and decrease, when the frequency increases. It is also more accurate for less dense monomer shapes, such as stellar dendrites. The DDA and RGA results are well correlated; the sample correlation coefficients of those are close to unity throughout the study. Therefore, the accuracy of the RGA could be improved by applying appropriate correction factors.

  10. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties.

    PubMed

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-15

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Avoiding bias effects in NMR experiments for heteronuclear dipole-dipole coupling determinations: principles and application to organic semiconductor materials.

    PubMed

    Kurz, Ricardo; Cobo, Marcio Fernando; de Azevedo, Eduardo Ribeiro; Sommer, Michael; Wicklein, André; Thelakkat, Mukundan; Hempel, Günter; Saalwächter, Kay

    2013-09-16

    Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 3D resistivity survey for shallow subsurface fault investigations

    NASA Astrophysics Data System (ADS)

    Petrit, Kraipat; Klamthim, Poonnapa; Duerrast, Helmut

    2018-03-01

    The shallow subsurface is subject to various human activities, and the place of occurrence of geohazards, e.g. shallow active faults. The identification of the location and orientation of such faults can be vital for infrastructure development. The aim of this study was to develop a low-cost 3D resistivity survey system, with reasonable survey time for shallow fault investigations. The study area in Songkhla Province, Thailand is located in an old quarry where faults could be identified in outcrops. The study area was designed to cover the expected fault with 100 electrodes arranged in a 10×10 square grid with an electrode spacing of 3 meters in x and y axis. Each electrode in turn was used as a current and potential electrode using a dipole-dipole array. Field data have been processed and interpreted using 3DResINV. Results, presented in horizontal depth slices and vertical xz- and yz-cross sections, revealed through differences in resistivity down to 8 m depths a complex structural setting with two shallow faults and dipping sedimentary rock layers. In conclusion, this study has shown that a 3D resistivity survey can imagine complex tectonic structures, thus providing a far more insight into the shallow subsurface.

  13. Detecting a heavy neutrino electric dipole moment at the LHC

    NASA Astrophysics Data System (ADS)

    Sher, Marc; Stevens, Justin R.

    2018-02-01

    The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10-17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10-17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5-1000 GeV for integrated luminosities of 300 and 3000 fb-1 at the LHC.

  14. Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect.

    PubMed

    Pustovit, Vitaliy N; Shahbazyan, Tigran V

    2009-02-20

    We identify a new mechanism for cooperative emission of light by an ensemble of N dipoles near a metal nanostructure supporting a surface plasmon. The cross talk between emitters due to the virtual plasmon exchange leads to the formation of three plasmonic superradiant modes whose radiative decay rates scale with N, while the total radiated energy is thrice that of a single emitter. Our numerical simulations indicate that the plasmonic Dicke effect survives nonradiative losses in the metal.

  15. Electron impact elastic and excitation cross-sections of the isomers of C4F6 molecule for plasma modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Song, Mi-Young; Baluja, K. L.; Choi, Heechol; Yoon, Jung-Sik

    2018-06-01

    We report the calculations of elastic (along with its symmetry components) and electronic excitation cross sections by electron impact of the three isomers of C4F6, namely, hexafluoro-1,3-butadiene (1,3-C4F6), hexafluoro-2-butyne (2-C4F6), and hexafluorocyclobutene (c-C4F6) belonging to the point groups C2, D3d, and C2v, respectively, using the R-matrix approach. The electron energy range is from 0.01 eV to 12 eV. We have employed the cc-pVTZ basis set for C and F atoms to generate self-consistent field molecular orbitals to construct the target states for all the isomers included in our calculations. All the target states are constructed by including correlation effects in a configuration interaction (CI) approach. The target properties such as vertical excitation energies and dipole moment of all the isomers are in reasonable agreement with the literature values. Differences in the cross sections of these isomers are strongly influenced by the effect of correlation and polarization effects and their geometrical extent. We have included the ground state and many excited states of each isomer in the trial wave function of the entire scattering system. The resulting elastic cross sections are compared with the available experimental results. The agreement is reasonably good for energies above 5 eV. The shape resonances detected at 2.57, 2.95, and 3.20 eV for c-C4F6, 1,3-C4F6, and 2-C4F6 isomers are associated with the negative anion formation of C3F3- as observed in the mass spectrometry experiments. We have also performed 1-state CI calculation for all the isomers that include only the correlated ground state. The position of resonances shifts to lower energies as the number of target states is increased compared to 1-state calculation for all the isomers. The elastic cross section for 2-C4F6 isomer is larger than the other isomers because of its larger spatial extent. The present cross section data are important for plasma simulation and modeling, especially related to fluorocarbon plasma.

  16. Photoresponse of 60Ni below 10-MeV excitation energy: Evolution of dipole resonances in fp-shell nuclei near N=Z

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.

  17. On the gas-phase formation of the HCO radical: accurate quantum study of the H+CO radiative association

    NASA Astrophysics Data System (ADS)

    Stoecklin, Thierry; Halvick, Philippe; Yu, Hua-Gen; Nyman, Gunnar; Ellinger, Yves

    2018-04-01

    We present the first quantum study of the radiative association of H and CO to form the HCO molecule within a time-independent approach. We use a recently published 3D potential energy surface of spectroscopic accuracy and two 3D dipole moment surfaces, which were calculated for this study. We discuss the variation of the radiative association cross-section as a function of both the rotational angular momentum of CO and the total angular momentum and use the uniform J-shifting approach to obtain the global radiative association rate coefficient. The effect of the saddle point separating the HCO molecule from the H+CO reactants and the main features of the radiative association cross-sections are analysed and discussed. The calculated rate coefficient is below 10-23 cm3 molecule-1 s-1 for temperatures lower than 30 K, and increases up to 5 × 10-20 cm3 molecule-1 s-1 at T = 300 K. These results demonstrate that the gas-phase H+CO radiative association cannot be the process at the origin of the sequence leading to the formation of methanol in a cold interstellar medium.

  18. Studying Room Acoustics using a Monopole-Dipole Microphone Array

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Abel, Jonathan S.; Gills, Stephen R. (Technical Monitor)

    1997-01-01

    The use of a soundfield microphone for examining the directional nature of a room impulse response was reported recently. By cross-correlating monopole and co-located dipole microphone signals aligned with left-right, up-down, and front-back axes, a sense of signal direction of arrival is revealed. The current study is concerned with the array's ability to detect individual reflections and directions of arrival, as a function of the cross-correlation window duration. If is window is too long, weak reflections are overlooked; if too short, spurious detections result. Guidelines are presented for setting the window width according to perceptual criteria. Formulas are presented describing the accuracy with which direction of arrival can be estimated as a function of room specifics and measurement noise. The direction of arrival of early reflections is more accurately determined than that of later reflections which are quieter and more numerous. The transition from a fairly directional sound field at the beginning of the room impulse response to a uni-directional diffuse field is examined. Finally, it is shown that measurements from additional dipole orientations can significantly improve the ability to detect reflections and estimate their directions of arrival.

  19. The Role of Ionospheric Conductivity in the Response of the Magnetosphere and Ionosphere to Changes in the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cnossen, I.; Wiltberger, M. J.; Richmond, A. D.; Ouellette, J.

    2014-12-01

    The strength and orientation of the Earth's magnetic field play an important role in the magnetosphere-ionosphere-thermosphere system. This is demonstrated in a set of idealized experiments with the Coupled Magnetosphere-Ionosphere-Thermosphere model using a dipolar magnetic field. A decrease of the dipole moment (M) causes an increase in ionospheric conductance. This increase in conductance results in enhanced field-aligned currents (FACs), which change the shape of the magnetosphere, and causes a deviation from theoretical scaling relations of the stand-off distance, the size of the polar cap, and the cross-polar cap potential with M. The orientation of the Earth's magnetic field determines how the angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z-axis varies with season and universal time (UT). The angle μ can affect solar wind-magnetosphere-ionosphere coupling in two distinct ways: via variations in ionospheric conductivity over the polar caps or via a change in the coupling efficiency between the solar wind and magnetosphere as a result of changes in geometry. Simulations in which the ionospheric conductivity was either kept fixed or allowed to vary realistically demonstrated that variations in ionospheric conductance are responsible for ~10-30% of the variations in the cross-polar cap potential associated with variations in μ for southward interplanetary magnetic field (IMF). The remainder was mostly due to variations in the magnetic reconnection rate, which were associated with variations in the length of the section of the separator line along which relatively strong reconnection occurs.

  20. Spontaneous Symmetry Breaking Facilitates Metal-to-Ligand Charge Transfer: A Quantitative Two-Photon Absorption Study of Ferrocene-phenyleneethynylene Oligomers.

    PubMed

    Mikhaylov, Alexander; Uudsemaa, Merle; Trummal, Aleksander; Arias, Eduardo; Moggio, Ivana; Ziolo, Ronald; Cooper, Thomas M; Rebane, Aleksander

    2018-04-19

    Change of the permanent molecular electric dipole moment, Δμ, in a series of nominally centrosymmetric and noncentrosymmteric ferrocene-phenyleneethynylene oligomers was estimated by measuring the two-photon absorption cross-section spectra of the lower energy metal-to-ligand charge-transfer transitions using femtosecond nonlinear transmission method and was found to vary in the range up to 12 D, with the highest value corresponding to the most nonsymmetric system. Calculations of the Δμ performed by the TD-DFT method show quantitative agreement with the experimental values and reveal that facile rotation of the ferrocene moieties relative to the organic ligand breaks the ground-state inversion symmetry in the nominally symmetric structures.

  1. Determination of the scalar polarizabilities of the proton using beam asymmetry $$\\Sigma_{3}$$ in Compton scattering

    DOE PAGES

    Sokhoyan, V.; Downie, E. J.; Mornacchi, E.; ...

    2017-01-01

    The scalar dipole polarizabilities, α E1 and β M1, are fundamental properties related to the internal dynamics of the nucleon. The currently accepted values of the proton polarizabilities were determined by fitting to unpolarized proton Compton scattering cross section data. The measurement of the beam asymmetry Σ 3 in a certain kinematical range provides an alternative approach to the extraction of the scalar polarizabilities. At the Mainz Microtron (MAMI) the beam asymmetry was measured for Compton scattering below pion photoproduction threshold for the first time. Finally, the results are compared with model calculations and the influence of the experimental datamore » on the extraction of the scalar polarizabilities is determined.« less

  2. Photoionization of the valence shells of the neutral tungsten atom

    NASA Astrophysics Data System (ADS)

    Ballance, C. P.; McLaughlin, B. M.

    2015-04-01

    Results from large-scale theoretical cross section calculations for the total photoionization (PI) of the 4f, 5s, 5p and 6s orbitals of the neutral tungsten atom using the Dirac Coulomb R-matrix approximation (DARC: Dirac-atomic R-matrix codes) are presented. Comparisons are made with previous theoretical methods and prior experimental measurements. In previous experiments a time-resolved dual laser approach was employed for the photo-absorption of metal vapours and photo-absorption measurements on tungsten in a solid, using synchrotron radiation. The lowest ground state level of neutral tungsten is 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J}, with J = 0, and requires only a single dipole matrix for PI. To make a meaningful comparison with existing experimental measurements, we statistically average the large-scale theoretical PI cross sections from the levels associated with the ground state 5{{p}6}5{{d}4}6{{s}2}{{ }5}{{D}J} (J = 0, 1, 2, 3, 4) levels and the 5{{d}5}6{{s} 7}{{S}3} excited metastable level. As the experiments have a self-evident metastable component in their ground state measurement, averaging over the initial levels allows for a more consistent and realistic comparison to be made. In the wider context, the absence of many detailed electron-impact excitation (EIE) experiments for tungsten and its multi-charged ion stages allows current PI measurements and theory to provide a road-map for future EIE, ionization and di-electronic cross section calculations by identifying the dominant resonance structure and features across an energy range of hundreds of eV.

  3. Plasma Centrifuge Heat Engine - a Route to Non-thermal p- 11 B Fusion

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.

    2007-06-01

    An invention [US Patent and Trademark Office App. Nos. 60/596567 (2005) and 60/766791 (2006)] combines centrifugal and dipole confinement, with recent oscillating plasma theory. The plasma undergoes compression/expansion (C/E), parallel to B by centrifugal force and perpendicular to B by B variation, providing a thermal cycle which recovers most (>95%) of heating as mechanical energy. This gives a "Q-amplifier" for beam-target systems. Centrifugally confined Boron plasma undergoes C/E by slow, cross-B interchange activity. Parallel and perpendicular C/E are matched by the rotation profile which arises naturally. Hot plasma is heated and cold plasma is cooled. Beam-target fusion reactions occur in the hot plasma region and expansion returns most of the heat energy as rotation energy. Rotation energy, in turn, produces waves which drive protons to an energy near the fusion peak cross section. A possible machine, including the arrangement of magnets and HV, is described.

  4. A New Scaling Law of Resonance in Total Scattering Cross Section in Gases

    NASA Astrophysics Data System (ADS)

    Raju, Gorur Govinda

    2009-10-01

    Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns scaling of total cross section of gases at resonance energy and the electron energy at which resonance occurs. The meaning of resonance is briefly explained in the following section. Here, we use the term scaling to relate the two quantities mentioned, namely, the resonance energy and the total cross section at that energy. Consistent with the definition of scaling, if the law proposed holds, one of the two quantities mentioned above may be calculated if the other is known. Such a method is very useful in gas discharge modeling and calculation of breakdown voltages, as more fully explained in the later section of the paper. 2 DESCRIPTION OF RESONANCE: A brief description of resonance phenomena in several types of target particles, viz., atomic, poly atomic, polar, non-polar phenomena are presented. 3 PREVIOUS SCALING LAWS: A common representation of a given characteristic with as few adjustable parameters as possible is generally known as the scaling law. The Paschen curve for breakdown voltage is such a familiar scaling law. With reference to cross sections several attempts have been made to obtain a scaling law, with varying degree of success. If the cross section-energy curve is qualitatively similar without having sharp peaks and oscillations, moderately successful scaling laws may be devised. For example, the ionization cross section- energy curves for most gases follow a general pattern. Several published scaling laws are discussed. 4 A NEW SCALING LAW AND DISCUSSION: In this work the author has compiled the resonance details for more than 60 gasest hat include the range from simple atoms to complex molecules that are polyatomic, dipolar, electron-attaching and isomers. The target particles exhibit a number of distinct features, as far as their total cross section variation with electron energy is concerned as already explained.

  5. An examination of the effect of dipole tilt angle and cusp regions on the shape of the dayside magnetopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrinec, S.M.; Russell, C.T.

    1995-06-01

    The shape of the dayside magnetopause has been studied from both a theoretical and an empirical perspective for several decades. Early theoretical studies of the magnetopause shape assumed an inviscid interaction and normal pressure balance along the entire boundary, with the interior magnetic field and magnetopause currents being solved self-consistently and iteratively, using the Biot-Savart Law. The derived shapes are complicated, due to asymmetries caused by the nature of the dipole field and the direction of flow of the solar wind. These models contain a weak field region or cusp through which the solar wind has direct access to themore » ionosphere. More recent MHD model results have indicated that the closed magnetic field lines of the dayside magnetosphere can be dragged tailward of the terminator plane, so that there is no direct access of the magnetosheath to the ionosphere. Most empirical studies have assumed that the magnetopause can be approximated by a simple conic section with a specified number of coefficients, which are determined by least squares fits to spacecraft crossing positions. Thus most empirical models resemble more the MHD models than the more complex shape of the Biot-Savart models. In this work, the authors examine empirically the effect of the cusp regions on the shape of the dayside magnetopause, and they test the accuracy of these models. They find that during periods of northward IMF, crossings of the magnetopause that are close to one of the cusp regions are observed at distances closer to Earth than crossings in the equatorial plane. This result is consistent with the results of the inviscid Biot-Savart models and suggests that the magnetopause is less viscous than is assumed in many MHD models. 28 refs., 4 figs., 1 tab.« less

  6. [The influence of mutual arrangement of the electric dipole and the spatial nonuniformity of brain electrical conductivity on the solution of the direct task of electroencephalography using the method of finite elements].

    PubMed

    Stavtsev, A Iu; Ushakov, V L

    2010-01-01

    The results of comparing the solutions of the direct task of electroencephalography on a spherical model and a spherical model with one nonuniformity are discussed. The nonuniformity was simulated by two parabolas situated on the same axis of symmetry and crossing the boundary of the gray and white matters. The region between the larger and the smaller parabolas had the physical characteristics of the gray matter, and the region inside the smaller parabola had the characteristics of the cerebrospinal fluid. The task was to find a combination of the parameters (the distance between the dipole and the nonuniformity, the angle of rotation of the dipole relative to the nonuniformity, the sizes of the dipole and the nonuniformity, etc.) that provides the maximum effect of the difference of potentials on the outer surface of the scalp in the spherical model with one nonuniformity and the spherical model. The influence of the points of ground location on the value of the effect was analyzed (ground only at the right ear and ground at both ears). The data obtained show that a maximum difference of potentials is reached at the positions of dipoles close to tangential relative to the scalp surface.

  7. Assesment on the performance of electrode arrays using image processing technique

    NASA Astrophysics Data System (ADS)

    Usman, N.; Khiruddin, A.; Nawawi, Mohd

    2017-08-01

    Interpreting inverted resistivity section is time consuming, tedious and requires other sources of information to be relevant geologically. Image processing technique was used in order to perform post inversion processing which make geophysical data interpretation easier. The inverted data sets were imported into the PCI Geomatica 9.0.1 for further processing. The data sets were clipped and merged together in order to match the coordinates of the three layers and permit pixel to pixel analysis. Dipole-dipole array is more sensitive to resistivity variation with depth in comparison with Werner-Schlumberger and pole-dipole. Image processing serves as good post-inversion tool in geophysical data processing.

  8. A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

    NASA Astrophysics Data System (ADS)

    Shuai, Chen-yang; Wang, Guang-ming

    2017-12-01

    A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.

  9. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    NASA Astrophysics Data System (ADS)

    Sunyaev, Rashid A.; Khatri, Rishi

    2013-03-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.

  10. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunyaev, Rashid A.; Khatri, Rishi, E-mail: sunyaev@mpa-garching.mpg.de, E-mail: khatri@mpa-garching.mpg.de

    2013-03-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μKmore » which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.« less

  11. E1 and M1 strength functions at low energy

    NASA Astrophysics Data System (ADS)

    Schwengner, Ronald; Massarczyk, Ralph; Bemmerer, Daniel; Beyer, Roland; Junghans, Arnd R.; Kögler, Toni; Rusev, Gencho; Tonchev, Anton P.; Tornow, Werner; Wagner, Andreas

    2017-09-01

    We report photon-scattering experiments using bremsstrahlung at the γELBE facility of Helmholtz-Zentrum Dresden-Rossendorf and using quasi-monoenergetic, polarized γ beams at the HIγS facility of the Triangle Universities Nuclear Laboratory in Durham. To deduce the photoabsorption cross sections at high excitation energy and high level density, unresolved strength in the quasicontinuum of nuclear states has been taken into account. In the analysis of the spectra measured by using bremsstrahlung at γELBE, we perform simulations of statistical γ-ray cascades using the code γDEX to estimate intensities of inelastic transitions to low-lying excited states. Simulated average branching ratios are compared with model-independent branching ratios obtained from spectra measured by using monoenergetic γ beams at HIγS. E1 strength in the energy region of the pygmy dipole resonance is discussed in nuclei around mass 90 and in xenon isotopes. M1 strength in the region of the spin-flip resonance is also considered for xenon isotopes. The dipole strength function of 74Ge deduced from γELBE experiments is compared with the one obtained from experiments at the Oslo Cyclotron Laboratory. The low-energy upbend seen in the Oslo data is interpreted as M1 strength on the basis of shell-model calculations.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, R.; Ambrosio, G.; Barzi, E.

    The design study of the block type 15-Tesla RHQT Nb{sub 3}Al dipole magnet, and its merits over Nb{sub 3}Sn magnets are presented. The copper stabilized RHQT Nb{sub 3}Al strand is now becoming commercially available for the application to the accelerator magnets. A 1 mm diameter RHQT Nb{sub 3}Al strand with filament size about 50 {mu}, non-copper Jc about 1000 A/mm{sup 2} at 15 Tesla at 4.2K, copper ratio of 50%, can now be produced over several hundred meters. The stress and strain characteristics of the Nb{sub 3}Al strand are superior to the Nb{sub 3}Sn strand. Another advantage is that itmore » can tolerate a longitudinal strain up to 0.55%. The RHQT Nb{sub 3}Al Rutherford cable will have less chance of contamination of the stabilizer, compared to Nb{sub 3}Sn cable. These characteristics of the RHQT Nb{sub 3}Al will be beneficial for designing and producing 15-Tesla dipole magnets. An example 15-Tesla magnet cross section, utilizing the RHQT Nb{sub 3}Sn strand is presented. A systematic investigation on RHQT Nb{sub 3}Al strands, its Rutherford cables, and building a small racetrack magnet for cable testing are proposed.« less

  13. Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges

    NASA Astrophysics Data System (ADS)

    Terekhov, Pavel D.; Baryshnikova, Kseniia V.; Artemyev, Yuriy A.; Karabchevsky, Alina; Shalin, Alexander S.; Evlyukhin, Andrey B.

    2017-07-01

    Spectral multipole resonances of parallelepiped-, pyramid-, and cone-like shaped silicon nanoparticles excited by linearly polarized light waves are theoretically investigated. The numerical finite element method is applied for the calculations of the scattering cross sections as a function of the nanoparticles geometrical parameters. The roles of multipole moments (up to the third order) in the scattering process are analyzed using the semianalytical multipole decomposition approach. The possibility of scattering pattern configuration due to the tuning of the multipole contributions to the total scattered waves is discussed and demonstrated. It is shown that cubic nanoparticles can provide a strong isotropic side scattering with minimization of the scattering in forward and backward directions. In the case of the pyramidal and conical nanoparticles the total suppression of the side scattering can be obtained. It was found that due to the shape factor of the pyramidal and conical nanoparticles their electric toroidal dipole resonance can be excited in the spectral region of the first electric and magnetic dipole resonances. The influence of the incident light directions on the optical response of the pyramidal and conical nanoparticles is discussed. The obtained results provide important information that can be used for the development of nanoantennas with improved functionality due to the directional scattering effects.

  14. Rotational Quenching Study in Isovalent H+ + CO and H+ + CS Systems

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-06-01

    Cooling and trapping of polar molecules has attracted attention at cold and ultracold temperatures. Extended study of molecular inelastic collision processes of polar interstellar species with proton finds an important astrophysical application to model interstellar medium. Present study includes computation of rate coefficient for molecular rotational quenching process in proton collision with isovalent CO and CS molecules using quantum dynamical close-coupling calculations. Full dimensional ab initio potential energy surfaces have been computed for the ground state for both the systems using internally contracted multireference configuration interaction method and basis sets. Quantum scattering calculations for rotational quenching of isovalent species are studied in the rigid-rotor approximation with CX (X=O, S) bond length fixed at an experimental equilibrium value of 2.138 and 2.900 a.u., respectively. Asymptotic potentials are computed using the dipole and quadrupole moments, and the dipole polarizability components. The resulting long-range potentials with the short-range ab initio interaction potentials have been fitted to study the anisotropy of the rigid-rotor surface using the multipolar expansion coefficients. Rotational quenching cross-section and corresponding rates from j=4 level of CX to lower j' levels have been obtained and found to obey Wigner's threshold law at ultra cold temperatures.

  15. Dynamics of elastic interactions in soft and biological matter.

    PubMed

    Yuval, Janni; Safran, Samuel A

    2013-04-01

    Cells probe their mechanical environment and can change the organization of their cytoskeletons when the elastic and viscous properties of their environment are modified. We use a model in which the forces exerted by small, contractile acto-myosin filaments (e.g., nascent stress fibers in stem cells) on the extracellular matrix are modeled as local force dipoles. In some cases, the strain field caused by these force dipoles propagates quickly enough so that only static elastic interactions need be considered. On the other hand, in the case of significant energy dissipation, strain propagation is slower and may be eliminated completely by the relaxation of the cellular cytoskeleton (e.g., by cross-link dissociation). Here, we consider several dissipative mechanisms that affect the propagation of the strain field in adhered cells and consider these effects on the interaction between force dipoles and their resulting mutual orientations. This is a first step in understanding the development of orientational (nematic) or layering (smectic) order in the cytoskeleton. We use the theory to estimate the propagation time of the strain fields over a cellular distance for different mechanisms and find that in some cases it can be of the order of seconds, thus competing with the cytoskeletal relaxation time. Furthermore, for a simple system of two force dipoles, we predict that in some cases the orientation of force dipoles might change significantly with time, e.g., for short times the dipoles exhibit parallel alignment while for later times they align perpendicularly.

  16. Determination of {pi}{sup {+-}} meson polarizabilities from the {gamma}{gamma}{yields}{pi}{sup +}{pi}{sup -} process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fil'kov, L.V.; Kashevarov, V.L.

    2006-03-15

    A fit of the experimental data to the total cross section of the process {gamma}{gamma}{yields}{pi}{sup +}{pi}{sup -} in the energy region from threshold to 2500 MeV has been carried out using dispersion relations with subtractions for the invariant amplitudes, where the dipole and the quadrupole polarizabilities of the charged pion are free parameters. As a result, the sum and the difference of the electric and magnetic dipole and quadrupole polarizabilities of the charged pion have been found: ({alpha}{sub 1}+{beta}{sub 1}){sub {pi}{sup {+-}}}=(0.18{sub -0.02}{sup +0.11})x10{sup -4} fm{sup 3},({alpha}{sub 1}-{beta}{sub 1}){sub {pi}{sup {+-}}}=(13.0{sub -1.9}{sup +2.6})x10{sup -4} fm{sup 3},({alpha}{sub 2}+{beta}{sub 2}){sub {pi}{sup {+-}}}=(0.133{+-}0.015)x10{supmore » -4} fm{sup 5},({alpha}{sub 2}-{beta}{sub 2}){sub {pi}{sup {+-}}}=(25.0{sub -0.3}{sup +0.8})x10{sup -4} fm{sup 5}. These values agree with the dispersion sum rule predictions. The value found for the difference of the dipole polarizabilities is consistent with the results obtained from scattering of high energy {pi}{sup -} mesons off the Coulomb field of heavy nuclei [Yu. M. Antipov et al., Phys. Lett. B121, 445 (1983)] and from radiative {pi}{sup +} photoproduction from the proton at MAMI [J. Ahrens et al., Eur. Phys. J. A 23, 113 (2005)], whereas it is at variance with the recent calculations in the framework of chiral perturbation theory.« less

  17. What's new in well logging and formation evaluation

    USGS Publications Warehouse

    Prensky, S.

    2011-01-01

    A number of significant new developments is emerging in well logging and formation evaluation. Some of the new developments include an ultrasonic wireline imager, an electromagnetic free-point indicator, wired and fiber-optic coiled tubing systems, and extreme-temperature logging-while-drilling (LWD) tools. The continued consolidation of logging and petrophysical service providers in 2010 means that these innovations are increasingly being provided by a few large companies. Weatherford International has launched a slimhole cross-dipole tool as part of the company's line of compact logging tools. The 26-ft-long Compact Cross-Dipole Sonic (CXD) tool can be run as part of a quad-combo compact logging string. Halliburton has introduced a version of its circumferential acoustic scanning tool (CAST) that runs on monoconductor cable (CAST-M) to provide high-resolution images in open hole and in cased hole for casing and cement evaluation.

  18. Lensing as a probe of early universe: from CMB to galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassani, Farbod; Baghram, Shant; Firouzjahi, Hassan, E-mail: farbod@physics.sharif.edu, E-mail: baghram@sharif.edu, E-mail: firouz@ipm.ir

    The Cosmic Microwave Background (CMB) radiation lensing is a promising tool to study the physics of early universe. In this work we probe the imprints of deviations from isotropy and scale invariance of primordial curvature perturbation power spectrum on CMB lensing potential and convergence. Specifically, we consider a scale-dependent hemispherical asymmetry in primordial power spectrum. We show that the CMB lensing potential and convergence and also the cross-correlation of the CMB lensing and late time galaxy convergence can probe the amplitude and the scale dependence of the dipole modulation. As another example, we consider a primordial power spectrum with localmore » feature. We show that the CMB lensing and the cross-correlation of the CMB lensing and galaxy lensing can probe the amplitude and the shape of the local feature. We show that the cross correlation of CMB lensing convergence and galaxy lensing is capable to probe the effects of local features in power spectrum on smaller scales than the CMB lensing. Finally we showed that the current data can constrain the amplitude and moment dependence of dipole asymmetry.« less

  19. Quantum memory with optically trapped atoms.

    PubMed

    Chuu, Chih-Sung; Strassel, Thorsten; Zhao, Bo; Koch, Markus; Chen, Yu-Ao; Chen, Shuai; Yuan, Zhen-Sheng; Schmiedmayer, Jörg; Pan, Jian-Wei

    2008-09-19

    We report the experimental demonstration of quantum memory for collective atomic states in a far-detuned optical dipole trap. Generation of the collective atomic state is heralded by the detection of a Raman scattered photon and accompanied by storage in the ensemble of atoms. The optical dipole trap provides confinement for the atoms during the quantum storage while retaining the atomic coherence. We probe the quantum storage by cross correlation of the photon pair arising from the Raman scattering and the retrieval of the atomic state stored in the memory. Nonclassical correlations are observed for storage times up to 60 mus.

  20. Quantum interference in laser spectroscopy of highly charged lithiumlike ions

    NASA Astrophysics Data System (ADS)

    Amaro, Pedro; Loureiro, Ulisses; Safari, Laleh; Fratini, Filippo; Indelicato, Paul; Stöhlker, Thomas; Santos, José Paulo

    2018-02-01

    We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2 s →2 p →2 s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes 79+207Pb and 80+209Bi due to experimental interest, as well as other examples of isotopes with lower Z , namely 56+141Pr and 64+165Ho. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.

  1. The dynamics of the reaction D/sub 2//sup +/+N. -->. ND/sup +/+D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, D.J.; Douglass, C.H.; Gentry, W.R.

    1977-03-01

    We report the results of a merged-beam study of the reaction D/sup +//sub 2/+N..-->..ND/sup +/+D over the range of relative kinetic energy from approx.0.005 to 10 eV. At low kinetic energies the reaction cross section is accurately proportional to the orbiting cross section calculated for the ion-induced dipole potential plus an experimentally estimated r/sup -6/ term. The reaction probability for the N(/sup 4/S/sub u/) ground state is estimated to be at least 71% for low-energy orbiting collisions. The reaction mechanism is direct, with the ND/sup +/ product scattered preferentially forward with respect to the incident N atom velocity at initialmore » kinetic energies as low as 0.031 eV. A deconvolution analysis of the measured product laboratory energy distributions shows a net conversion of internal to translational energy at initial kinetic energies less than 0.9 eV, and a net conversion of translational to internal energy at higher initial kinetic energies. We interpret the results in terms of the adiabatic electronic state correlations for NH/sup +//sub 2/ systems, taking into consideration previous work by Mahan and co-workers on the reaction N/sup +/+H/sub 2/..-->..NH/sup +/+H.« less

  2. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers.

    PubMed

    Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank

    2016-06-20

    Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.

  3. Rotational Mode Specificity in the F(-) + CH3Y [Y = F and Cl] SN2 Reactions.

    PubMed

    Szabó, István; Czakó, Gábor

    2015-12-17

    More than 12 million quasiclassical trajectories are computed for the F(-) + CH3Y(v = 0, JK) [Y = F and Cl] SN2 reactions using full-dimensional ab initio analytical potential energy surfaces. The initial (J, K = 0) and (J, K = J) [J = 0, 2, 4, 6, 8] rotational state specific cross sections are obtained at different collision energies (Ecoll) in the 1-20 kcal mol(-1) range, and the scattering angle and initial attack angle distributions as well as the mechanism-specific opacity functions are reported at Ecoll = 10 kcal mol(-1). The tumbling rotation (K = 0) inhibits the F(-) + CH3F reaction by a factor of 3 for J = 8 at Ecoll = 10 kcal mol(-1). This tumbling rotational effect becomes smaller at low and high Ecoll, and the tumbling motion affects the cross sections of F(-) + CH3Cl by only a few percent. The spinning rotation (K = J) hinders both reactions by factors in the 1.3-1.7 range for J = 8 at low Ecoll, whereas slight promotion is found as the Ecoll increases. The tumbling rotation may counteract the attractive ion-dipole forces, and the spinning motion hinders the complex formation, thereby decreasing the reactivity.

  4. Electron-impact excitation of diatomic hydride cations II: OH+ and SH+

    NASA Astrophysics Data System (ADS)

    Hamilton, James R.; Faure, Alexandre; Tennyson, Jonathan

    2018-05-01

    R-matrix calculations combined with the adiabatic-nuclei-rotation and Coulomb-Born approximations are used to compute electron-impact rotational rate coefficients for two open-shell diatomic cations of astrophysical interest: the hydoxyl and sulphanyl ions, OH+ and SH+. Hyperfine resolved rate coefficients are deduced using the infinite-order-sudden approximation. The propensity rule ΔF = Δj = ΔN = ±1 is observed, as is expected for cations with a large dipole moment. A model for OH+ excitation in the Orion Bar photon-dominated region is presented which nicely reproduces Herschel observations for an electron fraction xe = 10-4 and an OH+ column density of 3 × 1013 cm-2. Electron-impact electronic excitation cross-sections and rate coefficients for the ions are also presented.

  5. Superhalo of 22C reexamined

    NASA Astrophysics Data System (ADS)

    Shulgina, N. B.; Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.

    2018-06-01

    An unusually large value of the 22C matter radius, extracted by Tanaka et al. [Phys. Rev. Lett. 104, 062701 (2010), 10.1103/PhysRevLett.104.062701] from measured reaction cross sections, attracted great attention of scientific community. Since that time, several experimental works related to the 22C nucleus have appeared in the literature. Some of the experimental data, measured with high accuracy, allow us to fix 22C structure more reliably. Two limiting models reproducing 22C nuclear structure within the three-body cluster approach, that allow us to describe all existing experimental data, are presented. The 22C ground state, continuum structure, and geometry are obtained. With fixed 22C wave function, the prediction for the soft dipole mode in 22C, which is studied in the process of Coulomb fragmentation, is performed.

  6. Laboratory Rotational Spectroscopy in the Era of ALMA: Applications to Disks and Circumstellar Outflows

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; McCarthy, Michael C.; Stancil, Phillip C.; Halfen, DeWayne; Burton, Mark; Gottlieb, Carl A.; Lee, Kelvin

    2018-06-01

    The enormous leap in sensitivity and angular resolution offered by the Atacama Large Millimeter Array (ALMA) has revealed the presence of ever greater chemical complexity in astronomical sources, with an increasing number of unidentified lines. The need for supporting laboratory spectroscopy has become more urgent to fully exploit the scientific impact of ALMA. Rotational transition measurements are particularly important in this regard, as are the evaluation of line strengths, collisional cross sections, and dipole moments. Here we present new spectroscopic data concerning a wide range of potential interstellar and circumstellar molecules, including silicon and metal-bearing species, lines arising from vibrationally-excited molecules, and supporting theoretical calculations. Recent work concerning AlC2, KO, and vibrationally-excited AlO will be presented.

  7. CCSD(T) potential energy and induced dipole surfaces for N2–H2(D2): retrieval of the collision-induced absorption integrated intensities in the regions of the fundamental and first overtone vibrational transitions.

    PubMed

    Buryak, Ilya; Lokshtanov, Sergei; Vigasin, Andrey

    2012-09-21

    The present work aims at ab initio characterization of the integrated intensity temperature variation of collision-induced absorption (CIA) in N(2)-H(2)(D(2)). Global fits of potential energy surface (PES) and induced dipole moment surface (IDS) were made on the basis of CCSD(T) (coupled cluster with single and double and perturbative triple excitations) calculations with aug-cc-pV(T,Q)Z basis sets. Basis set superposition error correction and extrapolation to complete basis set (CBS) limit techniques were applied to both energy and dipole moment. Classical second cross virial coefficient calculations accounting for the first quantum correction were employed to prove the quality of the obtained PES. The CIA temperature dependence was found in satisfactory agreement with available experimental data.

  8. OSCILLATOR STRENGTHS OF VIBRIONIC EXCITATIONS OF NITROGEN DETERMINED BY THE DIPOLE (γ, γ) METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ya-Wei; Kang, Xu; Xu, Long-Quan

    2016-03-10

    The oscillator strengths of the valence-shell excitations of molecular nitrogen have significant applicational values in studies of the Earth's atmosphere and interstellar gases. In this work, the absolute oscillator strengths of the valence-shell excitations of molecular nitrogen in 12.3–13.4 eV were measured by the novel dipole (γ, γ) method, in which the high-resolution inelastic X-ray scattering is operated at a negligibly small momentum transfer and can simulate the photoabsorption process. Because the experimental technique used in the present work is distinctly different from those used previously, the present experimental results give an independent cross-check to previous experimental and theoretical data.more » The excellent coincidence of the present results with the dipole (e, e) and those that were extrapolated indicates that the present oscillator strengths can serve as benchmark data.« less

  9. Demonstration of current drive by a rotating magnetic dipole field

    NASA Astrophysics Data System (ADS)

    Giersch, L.; Slough, J. T.; Winglee, R.

    2007-04-01

    Abstract.A dipole-like rotating magnetic field was produced by a pair of circular, orthogonal coils inside a metal vacuum chamber. When these coils were immersed in plasma, large currents were driven outside the coils: the currents in the plasma were generated and sustained by the rotating magnetic dipole (RMD) field. The peak RMD-driven current was at roughly two RMD coil radii, and this current (60 kA m-) was sufficient to reverse the ambient magnetic field (33 G). Plasma density, electron temperature, magnetic field and current probes indicated that plasma formed inside the coils, then expanded outward until the plasma reached equilibrium. This equilibrium configuration was adequately described by single-fluid magnetohydrodynamic equilibrium, wherein the cross product of the driven current and magnetic filed was approximately equal to the pressure gradient. The ratio of plasma pressure to magnetic field pressure, β, was locally greater than unity.

  10. Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections.

    PubMed

    Campuzano, Iain; Bush, Matthew F; Robinson, Carol V; Beaumont, Claire; Richardson, Keith; Kim, Hyungjun; Kim, Hugh I

    2012-01-17

    We present the use of drug-like molecules as a traveling wave (T-wave) ion mobility (IM) calibration sample set, covering the m/z range of 122.1-609.3, the nitrogen collision cross-section (Ω(N(2))) range of 124.5-254.3 Å(2) and the helium collision cross-section (Ω(He)) range of 63.0-178.8 Å(2). Absolute Ω(N(2)) and Ω(He) values for the drug-like calibrants and two diastereomers were measured using a drift-tube instrument with radio frequency (RF) ion confinement. T-wave drift-times for the protonated diastereomers betamethasone and dexamethasone are reproducibly different. Calibration of these drift-times yields T-wave Ω(N(2)) values of 189.4 and 190.4 Å(2), respectively. These results demonstrate the ability of T-wave IM spectrometry to differentiate diastereomers differing in Ω(N(2)) value by only 1 Å(2), even though the resolution of these IM experiments were ∼40 (Ω/ΔΩ). Demonstrated through density functional theory optimized geometries and ionic electrostatic surface potential analysis, the small but measurable mobility difference between the two diastereomers is mainly due to short-range van der Waals interactions with the neutral buffer gas and not long-range charge-induced dipole interactions. The experimental RF-confining drift-tube and T-wave Ω(N(2)) values were also evaluated using a nitrogen based trajectory method, optimized for T-wave operating temperature and pressures, incorporating additional scaling factors to the Lennard-Jones potentials. Experimental Ω(He) values were also compared to the original and optimized helium based trajectory methods.

  11. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method.

    PubMed

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2014-05-14

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  12. Optimization of complex slater-type functions with analytic derivative methods for describing photoionization differential cross sections.

    PubMed

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-05-05

    The complex basis function (CBF) method applied to various atomic and molecular photoionization problems can be interpreted as an L2 method to solve the driven-type (inhomogeneous) Schrödinger equation, whose driven term being dipole operator times the initial state wave function. However, efficient basis functions for representing the solution have not fully been studied. Moreover, the relation between their solution and that of the ordinary Schrödinger equation has been unclear. For these reasons, most previous applications have been limited to total cross sections. To examine the applicability of the CBF method to differential cross sections and asymmetry parameters, we show that the complex valued solution to the driven-type Schrödinger equation can be variationally obtained by optimizing the complex trial functions for the frequency dependent polarizability. In the test calculations made for the hydrogen photoionization problem with five or six complex Slater-type orbitals (cSTOs), their complex valued expansion coefficients and the orbital exponents have been optimized with the analytic derivative method. Both the real and imaginary parts of the solution have been obtained accurately in a wide region covering typical molecular regions. Their phase shifts and asymmetry parameters are successfully obtained by extrapolating the CBF solution from the inner matching region to the asymptotic region using WKB method. The distribution of the optimized orbital exponents in the complex plane is explained based on the close connection between the CBF method and the driven-type equation method. The obtained information is essential to constructing the appropriate basis sets in future molecular applications. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruberti, M.; Yun, R.; Averbukh, V.

    2014-05-14

    Here, we extend the L{sup 2} ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in themore » ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N{sub 2}, and H{sub 2}O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.« less

  14. Electron collisions with α-D-glucose and β-D-glucose monomers

    NASA Astrophysics Data System (ADS)

    da Costa, Romarly F.; Bettega, Márcio H. F.; Varella, Márcio T. do N.; Lima, Marco A. P.

    2010-03-01

    The development of new alternative routes for production of second generation ethanol from sugarcane biomass poses a challenge to the scientific community. Current research in this field addresses the use of a plasma-based pretreatment of the lignocellulosic raw material. With the aim to provide a theoretical background for this experimental technique we investigate the role of low-energy electrons from the plasma in the rupture of the matrix of cellulosic chains. In this paper, we report calculated cross sections for elastic scattering of low-energy electrons by the α- and β-D-glucose monomers. The calculations employed the Schwinger multichannel method with pseudopotentials and were carried out at the static-exchange and static-exchange plus polarization levels of approximation. Through the comparison of the results obtained with inclusion of polarization effects we discuss the influence of the different conformations of the hydroxyl group linked to the anomeric carbon on the resonance spectra of these molecules. Resonant structures appearing at different energies for α- and β-glucose at the low-energy regime of impact energies can be understood as a fingerprint of an "isomeric effect" and suggest that distinct fragmentation mechanisms proceeding via σ∗ shape resonances may become operative depending on the glucose anomer under consideration. For energies above 15 eV the integral elastic cross sections are very similar for both monomers. Differential cross sections for the glucopyranose anomers considered in this work are typically dominated by a strong forward scattering due to the molecules' large electric dipole moments and, for energies close to the resonances' positions, they display particular features at the intermediate angular region, notably a pronounced f-wave scattering pattern, that are probably associated with the presence of those structures.

  15. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  16. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2016-02-01

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  17. Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays

    NASA Astrophysics Data System (ADS)

    Padooru, Yashwanth R.; Yakovlev, Alexander B.; Chen, Pai-Yen; Alù, Andrea

    2012-08-01

    Following the idea of "cloaking by a surface" [A. Alù, Phys. Rev. B 80, 245115 (2009); P. Y. Chen and A. Alù, Phys. Rev. B 84, 205110 (2011)], we present a rigorous analytical model applicable to mantle cloaking of cylindrical objects using 1D and 2D sub-wavelength conformal frequency selective surface (FSS) elements. The model is based on Lorenz-Mie scattering theory which utilizes the two-sided impedance boundary conditions at the interface of the sub-wavelength elements. The FSS arrays considered in this work are composed of 1D horizontal and vertical metallic strips and 2D printed (patches, Jerusalem crosses, and cross dipoles) and slotted structures (meshes, slot-Jerusalem crosses, and slot-cross dipoles). It is shown that the analytical grid-impedance expressions derived for the planar arrays of sub-wavelength elements may be successfully used to model and tailor the surface reactance of cylindrical conformal mantle cloaks. By properly tailoring the surface reactance of the cloak, the total scattering from the cylinder can be significantly reduced, thus rendering the object invisible over the range of frequencies of interest (i.e., at microwaves and far-infrared). The results obtained using our analytical model for mantle cloaks are validated against full-wave numerical simulations.

  18. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximummore » position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.« less

  19. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.

  20. Controllable Nanoparticle Assembly and Actuation with Modified Dipole Potentials in Simulation

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua

    Science at the nanoscale poses several recurring difficulties. How can we control the assembly of objects too small for direct manipulation to be practical? How can we extend that control to in vivo systems so we can make use of nanotechnology in medicine? And how can we recreate the extraordinary capacities of Nature: healing, replication, growth, adaptation, self-regulation? One of the most powerful tools for addressing these challenges is the simple, familiar dipole moment. Since their debut as fuel control devices at NASA in the early sixties, possible applications for dipole suspensions have grown to areas far beyond what their creators envisioned. A multitude of ambitious new medical and mechanical applications make use of dipolar colloids. Dipoles are attractive from a practical standpoint because one can use fields to control not just their orientation and location, but also their mutual interactions. From a physical standpoint, dipoles are compelling as an exceptionally simple form of symmetry-breaking that leads to a variety of complex phenomena. This thesis studies the assembly and control of spherical colloids with a dipolar interaction modified by additional conditions using simulations. Three cases are examined in detail. The first is the case of an electrical dipole moment created by regions of opposite charge density on the surface of a colloid. Here the dipole potential is modified by strong screening. Such a system is interesting as a model for certain proteins in a high-salt solution and suggests possible uses for inverse Janus colloids. The resulting phases have little resemblance to the usual dipole phases and can be controlled with small quantities of homogeneously charged particles. In the second case, superparamagnetic dipoles are linked into chains. Such chains have been realized in a wide variety of experimental schemes. A general theory is developed for the equilibrium shapes of the chains in a precessing field when their endpoints are fixed. This theory reveals that the chains are good candidates for contracting muscles in microscopic devices with a conveniently harmonic form for their potentials. Ensembles of free chains can be put to more elaborate uses. To illustrate, a regime is designed that spins the chains into a self-healing cross-linked gel. Finally, we will turn to self-replication. Decorating a permanent dipole with a single permanent binding site is enough to enable self-replication using dimers as the template. A periodic magnetic drive provides the energy to drive replication. Several theoretical principles regarding the statistics of linear self-replicators are deduced and used to optimize the dipole replicating system.

  1. Conditional phase-shift enhancement through dynamical Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Hui; Artoni, M.; Cataliotti, F.; La Rocca, G. C.

    2017-12-01

    Large cross-phase shifts per photon can be attained through an all-optical polarization control of dipole blockade in Rydberg atoms. A pair of weak circularly polarized signal and control light pulses experience a giant nonlinear cross-interaction through the conditional excitation of a Rydberg state. Conditional cross-phase modulations on the order of π-radians may be attained under specific symmetric EIT quasi-resonant driving conditions at large degrees of transparency. We also suggest the possibility of extending our scheme to work at very low intensities and within a few-blockade-radii regions.

  2. Binding Energies of Proton-Bound Dimers of Imidazole and n-Acetylalanine Methyl Ester Obtained by Blackbody Infrared Radiative Dissociation

    PubMed Central

    Jockusch, Rebecca A.; Williams*, Evan R.

    2005-01-01

    The dissociation kinetics of protonated n-acetyl-L-alanine methyl ester dimer (AcAlaMEd), imidazole dimer, and their cross dimer were measured using blackbody infrared radiative dissociation (BIRD). Master equation modeling of these data was used to extract threshold dissociation energies (Eo) for the dimers. Values of 1.18 ± 0.06, 1.11 ± 0.04, and 1.12 ± 0.08 eV were obtained for AcAlaMEd, imidazole dimer, and the cross dimer, respectively. Assuming that the reverse activation barrier for dissociation of the ion–molecule complex is negligible, the value of Eo can be compared to the dissociation enthalpy (ΔHd°) from HPMS data. The Eo values obtained for the imidazole dimer and the cross dimer are in agreement with HPMS values; the value for AcAlaMEd is somewhat lower. Radiative rate constants used in the master equation modeling were determined using transition dipole moments calculated at the semiempirical (AM1) level for all dimers and compared to ab initio (RHF/3-21G*) calculations where possible. To reproduce the experimentally measured dissociation rates using master equation modeling, it was necessary to multiply semiempirical transition dipole moments by a factor between 2 and 3. Values for transition dipole moments from the ab initio calculations could be used for two of the dimers but appear to be too low for AcAlaMEd. These results demonstrate that BIRD, in combination with master equation modeling, can be used to determine threshold dissociation energies for intermediate size ions that are in neither the truncated Boltzmann nor the rapid energy exchange limit. PMID:16604163

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Christopher Matthew

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia ( 15NH 3) target at a four momentum transfer squared of Q 2 = 0.5 (GeV/c) 2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH 3. The asymmetry, A p, has beenmore » used to determine the proton elastic form factor G Ep. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.« less

  4. Acoustic integrated extinction.

    PubMed

    Norris, Andrew N

    2015-05-08

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  5. Optical model calculations of heavy-ion target fragmentation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Norbury, J. W.

    1986-01-01

    The fragmentation of target nuclei by relativistic protons and heavy ions is described within the context of a simple abrasion-ablation-final-state interaction model. Abrasion is described by a quantum mechanical formalism utilizing an optical model potential approximation. Nuclear charge distributions of the excited prefragments are calculated by both a hypergeometric distribution and a method based upon the zero-point oscillations of the giant dipole resonance. Excitation energies are estimated from the excess surface energy resulting from the abrasion process and the additional energy deposited by frictional spectator interactions of the abraded nucleons. The ablation probabilities are obtained from the EVA-3 computer program. Isotope production cross sections for the spallation of copper targets by relativistic protons and for the fragmenting of carbon targets by relativistic carbon, neon, and iron projectiles are calculated and compared with available experimental data.

  6. 11Li Breakup on 208 at energies around the Coulomb barrier.

    PubMed

    Fernández-García, J P; Cubero, M; Rodríguez-Gallardo, M; Acosta, L; Alcorta, M; Alvarez, M A G; Borge, M J G; Buchmann, L; Diget, C A; Falou, H A; Fulton, B R; Fynbo, H O U; Galaviz, D; Gómez-Camacho, J; Kanungo, R; Lay, J A; Madurga, M; Martel, I; Moro, A M; Mukha, I; Nilsson, T; Sánchez-Benítez, A M; Shotter, A; Tengblad, O; Walden, P

    2013-04-05

    The inclusive breakup for the (11)Li + (208)Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of (9)Li following the (11)Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the (11)Li continuum at low excitation energy.

  7. Single and multiple ionization of C60 fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.

    2010-10-01

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.

  8. On the Paramagnetic Inelastic Scattering of Neutrons due to Ions in the Anisotropic Crystalline Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Yasusada

    1960-03-15

    The paramagnetic inelastic scattering of neutrons due to ions of3d transition elements in the anisotropic crystalline field was considered. When the orbital momentum of the paramagnetic tons is not quenched, the spin states are no longer degenerate but split into discrete levels. The transition between these levels can occur by mugnetic dipole interaction of ions with neutrons. In the special case of FeCl/sub 2/, an antiferromagnetic crystal whose Neel temperature is 24 deg K, the calculation of the forward scuttering cross-sections of neutrons at various temperatures and wave lengths was carried out which showed that it is possible, under ordinarymore » conditions, to observe the inelastically scattered neutrons and hence to obtain information about the energy level scheme of the atomic spin in the cry stal. (auth)« less

  9. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials

    NASA Astrophysics Data System (ADS)

    Reena, Reena; Kalra, Yogita; Kumar, Ajeet

    2018-06-01

    In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.

  10. Effect of broken axial symmetry on the electric dipole strength and the collective enhancement of level densities in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Grosse, E.; Junghans, A. R.; Wilson, J. N.

    2017-11-01

    The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.

  11. A Simplified Model for the Optical Force exerted on a Vertically Oriented Cilium by an Optical Trap and the Resulting Deformation

    NASA Astrophysics Data System (ADS)

    Lofgren, Ian; Resnick, Andrew

    2014-03-01

    Eukaryotic cilia are essentially whiplike structures extending from the cell body. Although their existence has been long known, their mechanical and functional properties are poorly understood. Optical traps are a non-contact method of applying a localized force to microscopic objects and an ideal tool for the study of ciliary mechanics. Starting with the discrete dipole approximation, a common means of calculating the optical force on an object that is not spherical, we tackle the problem of the optical force on a cilium. Treating the cilium as a homogeneous nonmagnetic cylinder and the electric field of the laser beam as linearly polarized results in a force applied in the direction of polarization. The force density in the polarization direction is derived from the force on an individual dipole within the cilium, which can be integrated over the volume of the cilium in order to find the total force. Utilizing Euler-Bernoulli beam theory, we integrate the force density over a cross section of the cilium and numerically solve a fourth order differential equation to obtain the final deformation of the cilium. This prediction will later be compared with experimental results to infer the mechanical stiffness of the cilium. Support from the National Institutes of Health, 1R15DK092716 is gratefully acknowledged.

  12. The spontaneous synchronized dance of pairs of water molecules

    NASA Astrophysics Data System (ADS)

    Roncaratti, Luiz F.; Cappelletti, David; Pirani, Fernando

    2014-03-01

    Molecular beam scattering experiments have been performed to study the effect of long-range anisotropic forces on the collision dynamics of two small polar molecules. The main focus of this paper is on water, but also ammonia and hydrogen sulphide molecules have been investigated, and some results will be anticipated. The intermolecular distances mainly probed are of the order of 1 nm and therefore much larger than the molecular dimensions. In particular, we have found that the natural electric field gradient, generated by different spatial orientations of the permanent electric dipoles, is able to promote the transformation of free rotations into coupled pendular states, letting the molecular partners involved in the collision complex swinging to and fro around the field direction. This long-ranged concerted motion manifested itself as large increases of the magnitude of the total integral cross section. The experimental findings and the theoretical treatment developed to shed light on the details of the process suggest that the transformation from free rotations to pendular states depends on the rotational level of both molecules, on the impact parameter, on the relative collision velocity, on the dipole moment product and occurs in the time scale of picoseconds. The consequences of this intriguing phenomenon may be important for the interpretation and, in perspective, for the control of elementary chemical and biological processes, given by polar molecules, ions, and free radicals, occurring in several environments under various conditions.

  13. Bound states for an induced electric dipole in the presence of an azimuthal magnetic field and a disclination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakke, K.

    2010-09-15

    Based on the Wei-Han-Wei setup [H. Wei, R. Han, and X. Wei, Phys. Rev. Lett. 75, 2071 (1995)], where a neutral particle with an induced electric dipole moment interacts with a configuration of crossed electric and magnetic fields, in this paper we study the bound states that arise when we change the Wei-Han-Wei field configuration and consider a field configuration of crossed azimuthal magnetic field and a radial electric field. Moreover, we consider here a spin-half neutral particle and the presence of a linear topological defect called disclination. We obtain the bound states in two distinct cases: in the firstmore » case, we consider that the wave function of the neutral particle is well-behaved at the origin and vanishes at the asymptotic limit; in the second case, we consider the neutral particle confined to a parabolic potential like a quantum dot.« less

  14. Finite difference modelling of dipole acoustic logs in a poroelastic formation with anisotropic permeability

    NASA Astrophysics Data System (ADS)

    He, Xiao; Hu, Hengshan; Wang, Xiuming

    2013-01-01

    Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.

  15. Ester-free cross-linker molecules for ultraviolet-light-cured polysilsesquioxane gate dielectric layers of organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Okada, Shuichi; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2018-04-01

    Pentacene thin-film transistors (TFTs) were fabricated with ultraviolet-light (UV)-cured polysilsesquioxane (PSQ) gate dielectric layers using cross-linker molecules with or without ester groups. To polymerize PSQ without ester groups, thiol-ene reaction was adopted. The TFTs fabricated with PSQ layers comprising ester-free cross-linkers showed a higher carrier mobility than the TFTs with PSQ layers cross-linked with ester groups, which had large electric dipole moments that limited the carrier mobility. It was demonstrated that the thiol-ene reaction is more suitable than the conventional radical reaction for UV-cured PSQ with small dielectric constant.

  16. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    DTIC Science & Technology

    2016-06-02

    Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...theoretical and experimental studies of mul- tiple scattering and multiple-field-of-view (MFOV) li- dar detection have made possible the retrieval of cloud...droplet cloud are typical of Rayleigh scattering, with a signature close to a dipole (phase function quasi -flat and a zero-depolarization ratio

  17. Injector Design for a Model Electron Ring at the University of Maryland

    NASA Astrophysics Data System (ADS)

    Godlove, T.; Bernal, S.; Deng, J. J.; Li, Y.; Reiser, M.; Wang, J. G.; Zou, Y.

    1997-05-01

    A model electron recirculator is being developed at the University of Maryland. It employs a 10-keV, space-charge-dominated beam injected into a 1.8-m radius ring equipped with a strong-focusing lattice based on printed-circuit quadrupoles and dipoles. The motivation and general features are described in separate papers. Here we describe the design for injecting a single-turn bunch into the ring. The system includes a low-emittance e-gun, matching section, pulsed dipole and Panofsky quadrupole. The dipole at the injection point must deflect the beam -10^circ during entry and +10^circ after entry, with about 25 ns transition time. The Panofsky quadrupole must be off during entry and on for subsequent laps, with a similar rise time.

  18. Cherenkov radiation due to the passage of an oscillatory dipole moving parallel to a conducting barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, P.K.

    1973-08-01

    The Cherenkov radiation emitted by an oscillating dipole moving in a semi-infinite dielectric with a constant velocity along a straight line parallel to the conducting boundary is calculated by using Maxwell's equations. The wave nature of electromagnetic intensities reveals that waves propagate in two modes, and the radiation takes place in the form of two cones which are semicircular in section, the axes of the cones coinciding wiih the path of the dipole. Conditions for the existence of only one cone are given. The intensity of radiation fluctuates spatially. The conducting boundary acts as a promoter and plays an importantmore » role in the graduation of energy loss which is technically important for concentration of radiation. (RWR)« less

  19. Störmer method for a problem of point injection of charged particles into a magnetic dipole field

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. K.

    2017-03-01

    The problem of point injection of charged particles into a magnetic dipole field was considered. Analytical expressions were obtained by the Störmer method for regions of allowed pulses of charged particles at random points of a dipole field at a set position of the point source of particles. It was found that, for a fixed location of the studied point, there was a specific structure of the coordinate space in the form of a set of seven regions, where the injector location in each region corresponded to a definite form of an allowed pulse region at the studied point. It was shown that the allowed region boundaries in four of the mentioned regions were surfaces of conic section revolution.

  20. Toward Protein Structure In Situ: Comparison of Two Bifunctional Rhodamine Adducts of Troponin C

    PubMed Central

    Julien, Olivier; Sun, Yin-Biao; Knowles, Andrea C.; Brandmeier, Birgit D.; Dale, Robert E.; Trentham, David R.; Corrie, John E. T.; Sykes, Brian D.; Irving, Malcolm

    2007-01-01

    As part of a program to develop methods for determining protein structure in situ, sTnC was labeled with a bifunctional rhodamine (BR or BSR), cross-linking residues 56 and 63 of its C-helix. NMR spectroscopy of the N-terminal domain of BSR-labeled sTnC in complex with Ca2+ and the troponin I switch peptide (residues 115–131) showed that BSR labeling does not significantly affect the secondary structure of the protein or its dynamics in solution. BR-labeling was previously shown to have no effect on the solution structure of this complex. Isometric force generation in isolated demembranated fibers from rabbit psoas muscle into which BR- or BSR-labeled sTnC had been exchanged showed reduced Ca2+-sensitivity, and this effect was larger with the BSR label. The orientation of rhodamine dipoles with respect to the fiber axis was determined by polarized fluorescence. The mean orientations of the BR and BSR dipoles were almost identical in relaxed muscle, suggesting that both probes accurately report the orientation of the C-helix to which they are attached. The BSR dipole had smaller orientational dispersion, consistent with less flexible linkers between the rhodamine dipole and cysteine-reactive groups. PMID:17483167

  1. Intrinsic resonances and AC-dipole simulations of 3He in the AGS Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hock, Kiel; Meot, Francois; Huang, Haixin

    Polarized 3He collisions are part of future RHIC physics programs and of the eRHIC project. The anomalous magnetic moment of 3He (G=-4.184) is roughly three times greater than that of protons (G=1.793), a polarized species that is already used at the Collider-Accelerator complex at BNL. Because of the higher anomolous magnetic moment and possibly injecting into the AGS at rigidities beyond 7 T • m, 3He may have to cross depolarizing intrinsic resonances while accelerating in the Booster. To overcome these strong intrinsic resonances we look to an AC-dipole, which will need to be installed in the Booster. An AC-dipolemore » is a magnet that induces large betatron oscillations which forces the entire bunch to experience a stronger resonance and induce a spin flip of all particles. An artificial intrinsic resonance is created, with close proximity to the original intrinsic resonance, which requires simulations to gauge what magnet strength is required. Simulations have been performed using zgoubi regarding the resonances 0 + v y, 12 - v y, and 6 + v y and show that the AC-dipole is effective at overcoming these resonances. Benefits of avoiding the 0 + v y and crossing the 12 - v y and 6 + v y in the Booster presents the advantage of allowing injection above the 0 + v y in the AGS and minimizes the orbit distortions from the snakes.« less

  2. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  3. Effect of anomalous tbW vertex on decay-lepton distributions in e+ e-® tt(bar) and CP-violating asymmetries

    NASA Astrophysics Data System (ADS)

    Rindani, Saurabh D.

    2000-06-01

    We obtain analytic expressions for the energy and polar-angle double differential distributions of a secondary lepton l+(l-) arising from the decay of t (tbar) in with an anomalous tbW decay vertex. We also obtain analytic expressions for the various differential cross-sections with the lepton energy integrated over. In this case, we find that the angular distributions of the secondary lepton do not depend on the anomalous coupling in the decay, regardless of possible anomalous couplings occurring in the production amplitude for . Our study includes the effect of longitudinal e- and e+ beam polarization. We also study the lepton energy and beam polarization dependence of certain CP-violating lepton angular asymmetries arising from an anomalous tbW decay vertex and compare them with the asymmetries arising due to CP-violation in the production process due to the top electric or weak dipole moment.

  4. Single and multiple ionization of C{sub 60} fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkar, A. H.; Kadhane, U.; Misra, D.

    2010-10-15

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less

  5. Ionization, evaporation and fragmentation of C60 in collisions with highly charged C, O and F ions—effect of projectile charge state.

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Misra, D.; Tribedi, L. C.

    2007-09-01

    We study the various inelastic processes such ionization, fragmentation and evaporation of C60 molecule in collisions with fast heavy ions. We have used 2.33 MeV/u C, O and F projectile ion beams. Various ionization and fragmentation products were detected using time-of-flight mass spectrometer. The multiply charged C60r+ ions were detected for maximum r = 4. The projectile charge state (qp) dependence of the single and double ionization cross sections is well reproduced by a model based on the giant dipole plasmon resonance (GDPR). The qp-dependence of the fragmentation yields, was found to be linear. Variation of relative yields of the evaporation products of C602+ (i.e. C582+, C562+ etc) and C603+ (i.e. C583+, C563+ etc) with qp has also been investigated for various projectiles.

  6. On second harmonic generation and multiphoton-absorption induced luminescence from laser-reshaped silver nanoparticles embedded in glass.

    PubMed

    Zolotovskaya, S A; Tyrk, M A; Stalmashonak, A; Gillespie, W A; Abdolvand, A

    2016-10-28

    Spherical silver nanoparticles (NPs) of 30 nm diameter embedded in soda-lime glass were uniformly reshaped (elongated) after irradiation by a linearly polarised 250 fs pulsed laser operating within the NPs' surface plasmon resonance band. We observed second harmonic generation (SHG) and multiphoton-absorption-induced luminescence (MAIL) in the embedded laser-reshaped NPs upon picosecond (10 ps) pulsed laser excitation at 1064 nm. A complementary study of SHG and MAIL was conducted in soda-lime glass containing embedded, mechanically-reshaped silver NPs of a similar elongation ratio (aspect ratio) to the laser-reshaped NPs. This supports the notion that the observed difference in SHG and MAIL in the studied nanocomposite systems is due to the shape modification mechanism. The discrete dipole approximation method was used to assess the absorption and scattering cross-sections of the reshaped NPs with different elongation ratios.

  7. Magnetic design and field optimization of a superferric dipole for the RISP fragment separator

    NASA Astrophysics Data System (ADS)

    Zaghloul, A.; Kim, J. Y.; Kim, D. G.; Jo, H. C.; Kim, M. J.

    2015-10-01

    The in-flight fragment separator of the Rare Isotope Science Project requires eight dipole magnets to produce a gap field of 1.7 T in a deflection sector of 30 degree with a 6-m central radius. If the beam-optics requirements are to be met, an integral field homogeneity of a few units (1 unit = 10-4) must be achieved. A superferric dipole magnet has been designed by using the Low-Temperature Superconducting wire NbTi and soft iron of grade SAE1010. The 3D magnetic design and field optimization have been performed using the Opera code. The length and the width of the air slots in the poles have been determined in an optimization process that considered not only the uniformity of the field in the straight section but also the field errors in the end regions. The field uniformity has also been studied for a range of operation of the dipole magnet from 0.4 T to 1.7 T. The magnetic design and field uniformity are discussed.

  8. Role of interbranch pumping on the quantum-statistical behavior of multi-mode magnons in ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Haghshenasfard, Zahra; Cottam, M. G.

    2018-01-01

    Theoretical studies are reported for the quantum-statistical properties of microwave-driven multi-mode magnon systems as represented by ferromagnetic nanowires with a stripe geometry. Effects of both the exchange and the dipole-dipole interactions, as well as a Zeeman term for an external applied field, are included in the magnetic Hamiltonian. The model also contains the time-dependent nonlinear effects due to parallel pumping with an electromagnetic field. Using a coherent magnon state representation in terms of creation and annihilation operators, we investigate the effects of parallel pumping on the temporal evolution of various nonclassical properties of the system. A focus is on the interbranch mixing produced by the pumping field when there are three or more modes. In particular, the occupation magnon number and the multi-mode cross correlations between magnon modes are studied. Manipulation of the collapse and revival phenomena of the average magnon occupation number and the control of the cross correlation between the magnon modes are demonstrated through tuning of the parallel pumping field amplitude and appropriate choices for the coherent magnon states. The cross correlations are a direct consequence of the interbranch pumping effects and do not appear in the corresponding one- or two-mode magnon systems.

  9. Investigations on the spectroscopic properties of Dy3 + ions doped Zinc calcium tellurofluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Arunkumar, S.; Annapoorani, K.; Marimuthu, K.

    2018-03-01

    A new series of Dy3 + doped (30-x)B2O3 + 30TeO2 + 20CaCO3 + 10ZnO + 10ZnF2 + xDy2O3 (x = 0.01, 0.1, 0.5, 1, 2 and 3 in wt%) Zinc calcium tellurofluoroborate glasses were prepared and their structural, luminescence and excited state dynamics have been studied and reported. The structural properties have been characterized through XRD and FTIR studies to confirm the amorphous nature and to explore the presence of fundamental stretching vibrations. The bonding parameters (δ and β), optical band gap, Urbach's energy, oscillator strengths and Judd-Ofelt (JO) intensity parameters were calculated from the absorption spectra. The JO intensity parameters and the Y/B intensity ratio values have been used to explore the nature of the bonding and asymmetry around the Dy-ligand field environment. The luminescence properties of the present Dy3 + doped glasses have been analyzed through luminescence excited state dynamics and radiative properties such as transition probability (A), stimulated emission cross-section (σPE) branching ratio (β) and radiative lifetime (τR) values. The combination of dominant blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emissions generates white light emission in the CIE chromaticity diagram thus suggests that the present Dy3 + doped glasses are suitable for white light applications. The lifetime of the 4F9/2 excited state is found to decrease with the increase in Dy3 + ion content and the concentration quenching of the Dy3 + ions emission could be ascribed due to the resonant energy transfer and cross-relaxation processes. The non-exponential behavior of the decay curves has been analyzed with Inokuti-Hirayama model and the interaction between the Dy3 + ions is of electric dipole-dipole in nature.

  10. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links.

    PubMed

    Podsiadlo, Paul; Kaushik, Amit K; Shim, Bong Sup; Agarwal, Ashish; Tang, Zhiyong; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2008-11-20

    The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.

  11. Photodissociation of the carbon monoxide dication in the (3)Σ(-) manifold: Quantum control simulation towards the C(2+) + O channel.

    PubMed

    Vranckx, S; Loreau, J; Vaeck, N; Meier, C; Desouter-Lecomte, M

    2015-10-28

    The photodissociation and laser assisted dissociation of the carbon monoxide dication X(3)Π CO(2+) into the (3)Σ(-) states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X (3)Π state are performed for 13 excited (3)Σ(-) states of CO(2+). The photodissociation cross section, calculated by time-dependent methods, shows that the C(+) + O(+) channels dominate the process in the studied energy range. The carbon monoxide dication CO(2+) is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground (3)Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this (3)Π state to a manifold of (3)Σ(-) excited states leading to numerous C(+) + O(+) channels and a single C(2+) + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the "laser distillation" strategy. Finally, the local pulse is compared with optimal control theory.

  12. The spontaneous synchronized dance of pairs of water molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roncaratti, Luiz F.; Instituto de Física, Universidade de Brasília, 70910-900 Brasília; Cappelletti, David, E-mail: david.cappelletti@unipg.it

    2014-03-28

    Molecular beam scattering experiments have been performed to study the effect of long-range anisotropic forces on the collision dynamics of two small polar molecules. The main focus of this paper is on water, but also ammonia and hydrogen sulphide molecules have been investigated, and some results will be anticipated. The intermolecular distances mainly probed are of the order of 1 nm and therefore much larger than the molecular dimensions. In particular, we have found that the natural electric field gradient, generated by different spatial orientations of the permanent electric dipoles, is able to promote the transformation of free rotations into coupledmore » pendular states, letting the molecular partners involved in the collision complex swinging to and fro around the field direction. This long-ranged concerted motion manifested itself as large increases of the magnitude of the total integral cross section. The experimental findings and the theoretical treatment developed to shed light on the details of the process suggest that the transformation from free rotations to pendular states depends on the rotational level of both molecules, on the impact parameter, on the relative collision velocity, on the dipole moment product and occurs in the time scale of picoseconds. The consequences of this intriguing phenomenon may be important for the interpretation and, in perspective, for the control of elementary chemical and biological processes, given by polar molecules, ions, and free radicals, occurring in several environments under various conditions.« less

  13. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    NASA Astrophysics Data System (ADS)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  14. Quantum statistics for a two-mode magnon system with microwave pumping: application to coupled ferromagnetic nanowires.

    PubMed

    Haghshenasfard, Zahra; Cottam, M G

    2017-05-17

    A microscopic (Hamiltonian-based) method for the quantum statistics of bosonic excitations in a two-mode magnon system is developed. Both the exchange and the dipole-dipole interactions, as well as the Zeeman term for an external applied field, are included in the spin Hamiltonian, and the model also contains the nonlinear effects due to parallel pumping and four-magnon interactions. The quantization of spin operators is achieved through the Holstein-Primakoff formalism, and then a coherent magnon state representation is used to study the occupation magnon number and the quantum statistical behaviour of the system. Particular attention is given to the cross correlation between the two coupled magnon modes in a ferromagnetic nanowire geometry formed by two lines of spins. Manipulation of the collapse-and-revival phenomena for the temporal evolution of the magnon number as well as the control of the cross correlation between the two magnon modes is demonstrated by tuning the parallel pumping field amplitude. The role of the four-magnon interactions is particularly interesting and leads to anti-correlation in some cases with coherent states.

  15. Exploration of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros, Sandra J.; Summers, Don; Cremaldi, Lucien

    New physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. We explore a 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity, 100 TeV $$p\\bar{p}$$ collider with 7$$\\times$$ the energy of the LHC but only 2$$\\times$$ as much NbTi superconductor, motivating the choice of 4.5 T single bore dipoles. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per beam crossing, because lower beam currents can produce the same rare event rates. Events are more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. A Fermilab-like $$\\bar p$$ source would disperse the beam into 12 momentum channels to capture more antiprotons. Because stochastic cooling time scales as the number of particles, 12 cooling ring sets would be used. Each set would include phase rotation to lower momentum spreads, equalize all momentum channels, and stochastically cool. One electron cooling ring would follow the stochastic cooling rings. Finally antiprotons would be recycled during runs without leaving the collider ring by joining them to new bunches with synchrotron damping.« less

  16. Recent data for the p p at tevatron and odderon description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazal-e-Aleem; Ali, M.; Rashid, H.

    1991-06-01

    The experimental data for pp and {bar p}p at {radical}s = 53 GeV shows the difference between the differential cross sections in the dip region. This prompted the need for a crossing-odd amplitude even at this energy. Further support to this idea was provided by the order of magnitude rise of the measured pp differential cross section in the dip region as we go from ISR to CERN collider energies. In order to overcome the difficulty to explain these phenomena, Gauron et al used the idea of an odderon in addition to the pomeron and explained the then available datamore » for pp and {bar p}p. Dynamical origin to the idea of an odderon was later provided by Islam. He has pointed out that, if the nucleon consists of a core of valence quarks surrounded by a cloud of quark-antiquark pairs, then in elastic scattering an odderon amplitude occurs when the cores interact by exchanging a J = 1, C = {minus}1, u{bar u} + d{bar d} state and the cloud undergoes maximal diffraction scattering. The model has recently been modified by these authors so as to fit the very recent data of {bar p}p at 546 GeV and make predictions at 1.8 TeV. The same idea was also used by Barnbard et al to explain the pp and {bar p}p data , Jankovszky et al have also fitted the data for p ({bar p}) p by employing the odderon in conjunction with the dipole pomeron. In this paper the authors will compare the results of these models with the most recent measurements at tevatron and also compare them with those of other models.« less

  17. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS{sub 2} layered semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Mikailzade, Faik A.

    2015-06-14

    Lanthanum-doped high quality TlInS{sub 2} (TlInS{sub 2}:La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS{sub 2}:La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. Themore » TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS{sub 2}:La. Thermal treatments of TlInS{sub 2}:La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10{sup −14} cm{sup 2}, corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS{sub 2}:La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10{sup −16} cm{sup 2} were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles, which are originated from the charged B5 deep level defects, are aligned in the direction of the applied electric field and the equilibrium polarization can be reached in a relatively short time. When the polarization field is maintained, while cooling the temperature of sample to a sufficiently low degrees, the relaxation times of the aligned dipoles drastically increases. Practically, frozen internal electric field or electrets states remain inside the TlInS{sub 2}:La when the applied bias field is switched off. The influence of deep level defects on TSDC spectra of TlInS{sub 2}:La has been revealed for the first time.« less

  18. Topological defect formation in rotating binary dipolar Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585

    We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point outmore » that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.« less

  19. Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review

    NASA Astrophysics Data System (ADS)

    Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy

    2018-04-01

    Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.

  20. Impact of anisotropy on the structure and dynamics of ionic liquids: A computational study of 1-butyl-3-methyl-imidazolium trifluoroacetate

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Rudas, T.; Neumayr, G.; Gansterer, W.; Steinhauser, O.

    2007-07-01

    The complex ionic network of 1-butyl-3-methyl-imidazolium trifluoroacetate was simulated by means of the molecular dynamics methods over a time period of 100ns. The influence of the anisotropy of the shape and charge distribution of both the cations and the anions on the local (molecular) and global (collective) structure and dynamics is analyzed. The distance-dependent g coefficients of the orientational probability function g(r,Ω) were found to be an excellent way to interpret local structure. Thereby, the combination and interrelation of individual g coefficients elucidate the mutual orientation. Dynamics at the molecular level is characterized by the time correlation function of the center-of-mass corrected molecular dipole moment μcm. Upon uniting the set of molecular dipoles to a single collective rotational dipole moment, MD, dynamics on a global level is studied. Decomposing into subsets of cations and anions respective self terms as well as the prominent cross term can be extracted. This decomposition also enables a detailed peak assignment in dielectric spectra.

  1. Impact of anisotropy on the structure and dynamics of ionic liquids: a computational study of 1-butyl-3-methyl-imidazolium trifluoroacetate.

    PubMed

    Schröder, C; Rudas, T; Neumayr, G; Gansterer, W; Steinhauser, O

    2007-07-28

    The complex ionic network of 1-butyl-3-methyl-imidazolium trifluoroacetate was simulated by means of the molecular dynamics methods over a time period of 100 ns. The influence of the anisotropy of the shape and charge distribution of both the cations and the anions on the local (molecular) and global (collective) structure and dynamics is analyzed. The distance-dependent g coefficients of the orientational probability function g(r,Omega) were found to be an excellent way to interpret local structure. Thereby, the combination and interrelation of individual g coefficients elucidate the mutual orientation. Dynamics at the molecular level is characterized by the time correlation function of the center-of-mass corrected molecular dipole moment mucm. Upon uniting the set of molecular dipoles to a single collective rotational dipole moment, MD, dynamics on a global level is studied. Decomposing into subsets of cations and anions respective self terms as well as the prominent cross term can be extracted. This decomposition also enables a detailed peak assignment in dielectric spectra.

  2. Dipolar modulation in the size of galaxies: the effect of Doppler magnification

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Andrianomena, Sambatra; Bacon, David; Clarkson, Chris; Maartens, Roy; Moloi, Teboho; Bull, Philip

    2017-12-01

    Objects falling into an overdensity appear larger on its near side and smaller on its far side than other objects at the same redshift. This produces a dipolar pattern of magnification, primarily as a consequence of the Doppler effect. At low redshift, this Doppler magnification completely dominates the usual integrated gravitational lensing contribution to the lensing magnification. We show that one can optimally observe this pattern by extracting the dipole in the cross-correlation of number counts and galaxy sizes. This dipole allows us to almost completely remove the contribution from gravitational lensing up to redshift ≲0.5, and even at high redshift z ≃ 1, the dipole picks up the Doppler magnification predominantly. Doppler magnification should be easily detectable in current and upcoming optical and radio surveys; by forecasting for telescopes such as the SKA, we show that this technique is competitive with using peculiar velocities via redshift-space distortions to constrain dark energy. It produces similar yet complementary constraints on the cosmological model to those found using measurements of the cosmic shear.

  3. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.

    PubMed

    Panaretos, Anastasios H; Werner, Douglas H

    2015-04-06

    In this paper we theoretically investigate the feasibility of creating a dual-mode plasmonic nanorod antenna. The proposed design methodology relies on adapting to optical wavelengths the principles of operation of trapped dipole antennas, which have been widely used in the low MHz frequency range. This type of antenna typically employs parallel LC circuits, also referred to as "traps", which are connected along the two arms of the dipole. By judiciously choosing the resonant frequency of these traps, as well as their position along the arms of the dipole, it is feasible to excite the λ/2 resonance of both the original dipole as well as the shorter section defined by the length of wire between the two traps. This effectively enables the dipole antenna to have a dual-mode of operation. Our analysis reveals that the implementation of this concept at the nanoscale requires that two cylindrical pockets (i.e. loading volumes) be introduced along the length of the nanoantenna, inside which plasmonic core-shell particles are embedded. By properly selecting the geometry and constitution of the core-shell particle as well as the constitution of the host material of the two loading volumes and their position along the nanorod, the equivalent effect of a resonant parallel LC circuit can be realized. This effectively enables a dual-mode operation of the nanorod antenna. The proposed methodology introduces a compact approach for the realization of dual-mode optical sensors while at the same time it clearly illustrates the inherent tuning capabilities that core-shell particles can offer in a practical framework.

  4. ARC: An open-source library for calculating properties of alkali Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.

    2017-11-01

    We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/. [2] J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007). http://matplotlib.org/.

  5. Comparison of three underwater antennas for use in radiotelemetry

    USGS Publications Warehouse

    Beeman, J.W.; Grant, C.; Haner, P.V.

    2004-01-01

    The radiation patterns of three versions of underwater radiotelemetry antennas were measured to compare the relative reception ranges in the horizontal and vertical planes, which are important considerations when designing detection systems. The received signal strengths of an antenna made by stripping shielding from a section of coaxial cable (stripped coax) and by two versions of a dipole antenna were measured at several orientations relative to a dipole transmit antenna under controlled field conditions. The received signal strengths were greater when the transmit and receive antennas were parallel to each other than when they were perpendicular, indicating that a parallel orientation provides optimal detection range. The horizontal plane radiation pattern of the flexible, stripped coax antenna was similar to that of a rigid dipole antenna, but movement of underwater stripped coax antennas in field applications could affect the orientation of transmit and receive antennas in some applications, resulting in decreased range and variation in received signal strengths. Compared with a standard dipole, a dipole antenna armored by housing within a polyvinyl chloride fitting had a smaller radiation pattern in the horizontal plane but a larger radiation pattern in the vertical plane. Each of these types of underwater antenna can be useful, but detection ranges can be maximized by choosing an appropriate antenna after consideration of the location, relation between transmit and receive antenna orientations, radiation patterns, and overall antenna resiliency.

  6. Calculation of photoionization differential cross sections using complex Gauss-type orbitals.

    PubMed

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-09-05

    Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Halogenation effects on electron collisions with CF3Cl, CF2Cl2, and CFCl3

    NASA Astrophysics Data System (ADS)

    Freitas, T. C.; Lopes, A. R.; Azeredo, A. D.; Bettega, M. H. F.

    2016-04-01

    We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ∗ resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.

  8. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Rey, Michael; Nikitin, Andrei V.; Tyuterev, Vladimir G.

    2017-10-01

    Modeling atmospheres of hot exoplanets and brown dwarfs requires high-T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of 12CH4 in the infrared range 0-13,400 cm-1 up to T max = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm-1 and intensity cutoff down to 10-33 cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001-0.01 cm-1. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high-T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.

  9. Method of constructing a superconducting magnet

    DOEpatents

    Satti, John A.

    1981-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  10. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  11. Simulating nanostorm heating in coronal loops using hydrodynamics and non-thermal particle evolution

    NASA Astrophysics Data System (ADS)

    Migliore, Christina; Winter, Henry; Murphy, Nicholas

    2018-01-01

    The solar corona is filled with loop-like structures that appear bright against the background when observed in the extreme ultraviolet (EUV). These loops have several remarkable properties that are not yet well understood. Warm loops (∼ 1 MK) appear to be ∼ 2 ‑ 9 times as dense at their apex as the predictions of hydrostatic atmosphere models. These loops also appear to be of constant cross-section despite the fact that the field strength in a potential magnetic field should decrease in the corona, causing the loops to expand. It is not clear why many active region loops appear to be of constant cross-section. Theories range from an internal twist of the magnetic field to observational effects. In this work we simulate active region loops heated by nanoflare storms using a dipolar magnetic field. We calculate the hydrodynamic properties for each loop using advanced hydrodynamics codes to simulate the corona and chromospheric response and basic dipole models to represent the magnetic fields of the loops. We show that even modest variations of the magnetic field strength along the loop can lead to drastic changes in the density profiles of active region loops, and they can also explain the overpressure at the apex of these loops. Synthetic AIA images of each loop are made to show the observable consequences of varying magnetic field strengths along the loop’s axis of symmetry. We also show how this work can lead to improved modeling of larger solar and stellar flares.

  12. Mars, Venus, Earth and Titan UV Laboratory Aeronomy by Electron Impact

    NASA Astrophysics Data System (ADS)

    Malone, C. P.; Ajello, J. M.; McClintock, W. E.; Eastes, R.; Evans, J. S.; Holsclaw, G.; Schneider, N. M.; Jain, S.; Gerard, J. C. M. C.; Hoskins, A.

    2017-12-01

    The UV response of the Mars, Earth, Titan and Venus upper atmospheres to the solar radiation fields [solar wind and solar EUV] is the focus of the present generation of Mars, Earth, Titan and Venus missions. These missions are Mars Express (MEX), the Mars Atmosphere and Volatile Evolution Mission (MAVEN), Cassini at Titan, Global-scale Observations of the Limb and Disk (GOLD) mission for Earth and Venus Express (VEX). Each spacecraft is equipped with a UV spectrometer that senses far ultraviolet (FUV) emissions from 110-190 nm, whose dayglow intensities are proportional to three quantities:1) particle (electron, ion) fluxes, 2) the altitude distribution of species in the ionosphere: CO, CO2, O, N2 at Venus and Mars and N2, O and O2 at Titan and Earth and 3) the emission cross section for the interaction process. UV spectroscopy provides a benchmark to the present space environment and indicates pathways for removing upper atmosphere gas (e.g., water escape from Mars and Earth) or N2 escape at Titan over eons. We present a UV laboratory program that utilizes an instrument, unique in the world, at the University of Colorado that can measure excitation mechanisms by particle (electron, ion) impact and the resulting emission cross sections that include processes occurring in a planetary atmosphere, particularly the optically forbidden emissions presented by the Cameron bands, the Lyman Birge Hopfield bands and the OI 135.6 nm multiplet. There are presently uncertainties by a factor of two in the existing measurements of the emission cross section, affecting modeling of electron transport. We have utilized the MAVEN Imaging Ultraviolet Spectrograph (IUVS) engineering model which operates at moderate spectral resolution ( 0.5-1.0nm FWHM) to obtain the full vibrational spectra of the Cameron band system CO(a 3Π → X 1Σ+) from both CO direct excitation and CO2 dissociative excitation, and for the dipole-allowed Fourth Positive band system of CO, while for N2 we have studied molecular nitrogen (N2 LBH bands, a 1Πg → X 1Σg+). We have performed laboratory measurements using mono-energetic electrons in a large chamber to excite band systems by the same processes as occur at low densities in planetary atmospheres. We have ascertained vibrational structure and emission cross sections for the strongest band systems on solar system objects.

  13. Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2016-04-01

    Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at different incident energies are measured, one can determine both the proton and neutron radii for unstable nuclei as well. The total reaction cross sections calculated in this paper are given as Supplemental Material for the sake of future measurements.

  14. Metamaterial composition comprising frequency-selective-surface resonant element disposed on/in a dielectric flake, methods, and applications

    DOEpatents

    Shelton, David; Boreman, Glenn; D'Archangel, Jeffrey

    2015-11-10

    Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 .mu.m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Inverse computation for cardiac sources using single current dipole and current multipole models

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Ma, Ping; Lu, Hong; Tang, Xue-Zheng; Hua, Ning; Tang, Fa-Kuan

    2009-12-01

    Two cardiac functional models are constructed in this paper. One is a single current model and the other is a current multipole model. Parameters denoting the properties of these two models are calculated by a least-square fit to the measurements using a simulated annealing algorithm. The measured signals are detected at 36 observation nodes by a superconducting quantum interference device (SQUID). By studying the trends of position, orientation and magnitude of the single current dipole model and the current multipole model in the QRS complex during one time span and comparing the reconstructed magnetocardiography (MCG) of these two cardiac models, we find that the current multipole model is a more appropriate model to represent cardiac electrophysiological activity.

  16. Vertically oriented metamaterial broadband linear polariser

    DOE PAGES

    Campione, Salvatore; Burckel, David Bruce

    2018-03-14

    Control and manipulation of polarization is an important topic for imaging and light matter interactions. In the infrared regime, the large wavelengths make wire grid polarizers a viable option, as it is possible to create periodic arrays of metallic wires at that scale. The recent advent of metamaterials has spurred an increase in non-traditional polarizer motifs centred around more complicated repeat units, which potentially provide more functionality. In this paper we explore the use of two-dimensional (2D) arrays of single and back-to-back vertically oriented cross dipoles arranged in a cubic in-plane silicon matrix. Here, we show that both single andmore » back-to-back versions have higher rejection ratios and larger bandwidths than either wire grid polarizers or 2D arrays of linear dipoles.« less

  17. Magnetic rotation (MR) band-crossing at high spin states: Role of nucleons in this crossing in N = 78 odd-Z isotones

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Garg, Ritika; Mandal, Samit Kumar

    2013-02-01

    Magnetic-dipole rotational (MR) bands were discovered about 15 years ago, and have been explained using shears mechanism. The theoretical understanding of these bands has been provided using tilted axis cranking (TAC). At present, magnetic rotation has been seen in whole nuclear landscape and about 180 bands in 80 nuclides has been observed in mass regions A=20, 60, 80, 110, 135 and 195 respectively. The crossing of these bands (ΔI = 1) is very much similar to normal band crossing (ΔI = 2) and already exhibited in different mass regions. We have observed new MR bands and their crossing in the A = 130 mass region in 135La, 137Pr and 139Pm nuclei. The systematic evolution of this phenomenon in N=78 odd-Z isotones leads us to understand the role on nucleons in this crossing.

  18. Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC

    DOE PAGES

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; ...

    2017-12-01

    Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider "transparent" to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for amore » quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring.« less

  19. Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.

    Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider "transparent" to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for amore » quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring.« less

  20. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less

  1. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  2. Weakening of the relationship between the Indian Ocean Dipole and the ENSO in recent decades

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Young; Ham, Yoo-Geun; Kug, Jong-Seong

    2016-04-01

    This study reports, on the 20th century the relationship between the El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) was weaker then late 1990s. We shows that 15-yr moving correlation between the Nino3.4 index during the December to February (DJF) and IOD index during the September to November (SON) season. At this results we divided previous decades (1979 to 1998) and late decades (1999 to 2014). The correlation coefficient was 0.64 in the previous decades and 0.21 in the late decades. Late decades was suddenly weaker then previous decades. Because, there is a big difference between previous decades and late decades in the ENSO regressed precipitation anomaly spatial distribution during the El Nino developing the MAM season. There was existed positive precipitation anomalies over the off-equatorial western Pacific. It was induced the cross-equatorial southerly flow over the eastern Indian Ocean and maritime continent. It means cross-equatorial southerly flow was key point to understanding ENSO-IOD coupling system. In addition, using the climate models participated in Coupled Model Intercomparison Project phase 5 (CMIP5) supports the observational results.

  3. Fast Xe-129 relaxation in solid xenon near its melting point: Cross-over from Raman scattering of phonons to vacancy diffusion.

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.

    2002-03-01

    NMR measurements of longitudinal relaxation times T1 in pure solid xenon were carried out using both natural-abundance and isotopically-enriched samples of hyperpolarized ^129Xe. At temperatures below 120 K and fields above 500 Gauss, the relaxation rate 1/T1 is field- and abundance-independent, consistent with the model of ^129Xe spin-flip Raman scattering of phonons(R. J. Fitzgerald et al.), Phys. Rev. B 59, 8795 (1999).. Above 120 K, vacancies invade the xenon lattice(P. R. Granfors et al.) Phys. Rev. B 24, 4753 (1981)., and a dramatic cross-over to the nuclear dipole-dipole relaxation due to the diffusion of vacancies is observed. As a result, the measured relaxation times of xenon near its melting point strongly depend on field and somewhat on ^129Xe abundance, and can be as short as several seconds, leading to potential difficulties in cryogenic applications of hyperpolarized ^129Xe. The data are analyzed using the theory of nuclear relaxation due to spin diffusion in cubic crystals(C. A. Sholl, J. Phys. C 21), 319 (1988)., and some estimates of the vacancy density and jump rates are discussed.

  4. Mechanism of spontaneous polarization transfer in high-field SABRE experiments

    NASA Astrophysics Data System (ADS)

    Knecht, Stephan; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.

    2018-02-01

    We propose an explanation of the previously reported SABRE (Signal Amplification By Reversible Exchange) effect at high magnetic fields, observed in the absence of RF-excitation and relying only on "spontaneous" polarization transfer from parahydrogen (pH2, the H2 molecule in its nuclear singlet spin state) to a SABRE substrate. We propose a detailed mechanism for spontaneous polarization transfer and show that it is comprised of three steps: (i) Generation of the anti-phase Î1zÎ2z spin order of catalyst-bound H2; (ii) spin order conversion Î1zÎ2z → (Î1z +Î2z) due to cross-correlated relaxation, leading to net polarization of H2; (iii) polarization transfer to the SABRE substrate, occurring due to NOE. Formation of anti-phase polarization is due to singlet-to-T0 mixing in the catalyst-bound form of H2, while cross-correlated relaxation originates from fluctuations of dipole-dipole interactions and chemical shift anisotropy. The proposed mechanism is supported by a theoretical treatment, magnetic field-dependent studies and high-field NMR measurements with both pH2 and thermally polarized H2.

  5. Mechanism of spontaneous polarization transfer in high-field SABRE experiments.

    PubMed

    Knecht, Stephan; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Ivanov, Konstantin L

    2018-02-01

    We propose an explanation of the previously reported SABRE (Signal Amplification By Reversible Exchange) effect at high magnetic fields, observed in the absence of RF-excitation and relying only on "spontaneous" polarization transfer from parahydrogen (pH 2 , the H 2 molecule in its nuclear singlet spin state) to a SABRE substrate. We propose a detailed mechanism for spontaneous polarization transfer and show that it is comprised of three steps: (i) Generation of the anti-phase Î 1z Î 2z spin order of catalyst-bound H 2 ; (ii) spin order conversion Î 1z Î 2z →(Î 1z +Î 2z ) due to cross-correlated relaxation, leading to net polarization of H 2 ; (iii) polarization transfer to the SABRE substrate, occurring due to NOE. Formation of anti-phase polarization is due to singlet-to-T 0 mixing in the catalyst-bound form of H 2 , while cross-correlated relaxation originates from fluctuations of dipole-dipole interactions and chemical shift anisotropy. The proposed mechanism is supported by a theoretical treatment, magnetic field-dependent studies and high-field NMR measurements with both pH 2 and thermally polarized H 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mechanisms of H{sub 2}O desorption from amorphous solid water by 157-nm irradiation: An experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSimone, Alice J.; Crowell, Vernon D.; Sherrill, C. David

    2013-10-28

    The photodesorption of water molecules from amorphous solid water (ASW) by 157-nm irradiation has been examined using resonance-enhanced multiphoton ionization. The rotational temperature has been determined, by comparison with simulations, to be 425 ± 75 K. The time-of-flight spectrum of H{sub 2}O (v= 0) has been fit with a Maxwell-Boltzmann distribution with a translational temperature of 700 ± 200 K (0.12 ± 0.03 eV). H{sup +} and OH{sup +} fragment ions have been detected with non-resonant multiphoton ionization, indicating vibrationally excited parent water molecules with translational energies of 0.24 ± 0.08 eV. The cross section for water removal from ASWmore » by 7.9-eV photons near 100 K is (6.9 ± 1.8) × 10{sup −20} cm{sup 2} for >10 L H{sub 2}O exposure. Electronic structure computations have also probed the excited states of water and the mechanisms of desorption. Calculated electron attachment and detachment densities show that exciton delocalization leads to a dipole reversal state in the first singlet excited state of a model system of hexagonal water ice. Ab Initio Molecular Dynamics simulations show possible desorption of a photo-excited water molecule from this cluster, though the non-hydrogen bonded OH bond is stretched significantly before desorption. Potential energy curves of this OH stretch in the electronic excited state show a barrier to dissociation, lending credence to the dipole reversal mechanism.« less

  7. Photodissociation of the carbon monoxide dication in the {sup 3}Σ{sup −} manifold: Quantum control simulation towards the C{sup 2+} + O channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vranckx, S.; Laboratoire de Chimie Physique; Loreau, J.

    The photodissociation and laser assisted dissociation of the carbon monoxide dication X{sup 3}Π CO{sup 2+} into the {sup 3}Σ{sup −} states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X {sup 3}Π state are performed for 13 excited {sup 3}Σ{sup −} states of CO{sup 2+}. The photodissociation cross section, calculated by time-dependent methods, shows that the C{sup +} + O{sup +} channels dominate the process in the studied energy range. The carbon monoxide dication CO{sup 2+} is an interesting candidate for control because it can be producedmore » in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground {sup 3}Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this {sup 3}Π state to a manifold of {sup 3}Σ{sup −} excited states leading to numerous C{sup +} + O{sup +} channels and a single C{sup 2+} + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the “laser distillation” strategy. Finally, the local pulse is compared with optimal control theory.« less

  8. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  9. Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field

    NASA Astrophysics Data System (ADS)

    Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.

    2018-02-01

    The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.

  10. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  11. O Some Theoretical Studies and Applications of Light Scattering by Small Particles

    NASA Astrophysics Data System (ADS)

    Zhan, Jiyu

    1992-01-01

    A theoretical study of the interference structure of the Mie extinction cross section Q_{ rm ext} is presented. For real refractive indices m < 2.5 the dominant term of Q _{rm ext} has an x dependence of the form sin^2 ((m - 1)x), leading to the periodicity of Deltax = pi/(m - 1). At m > 2.5 the Q _{rm ext} curve does not have a simple periodic structure. Analytical expression for absorption and scattering coefficients of polydispersion of hexagonal plates, that are used to model fluffy snow flakes, are derived by the anomalous diffraction approximation (ADA). The results are within 12% accuracy when compared to the calculations of the superposition of dipoles method. A method for measuring the real part of the refractive indices of phytoplankton, bacteria or other particulate material suspended in seawater is developed based on the ADA. The accuracy in determining the real part of the refractive index is around 0.005.

  12. Raman Antenna Effect in Semiconducting Nanowires.

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Xiong, Qihua; Eklund, Peter

    2007-03-01

    A novel Raman antenna effect has been observed in Raman scattering experiments recently carried out on individual GaP nanowires [1]. The Raman antenna effect is perfectly general and should appear in all semiconducting nanowires. It is characterized by an anomalous increase in the Raman cross section for scattering from LO or TO phonons when the electric field of the incident laser beam is parallel to the nanowire axis. We demonstrate that the explanation for the effect lies in the polarization dependence of the Mie scattering from the nanowire and the concomitant polarization-dependent electric field set up inside the wire. Our analysis involves calculations of the internal electric field using the discrete dipole approximation (DDA). We find that the Raman antenna effect happens only for nanowire diameters d<λ/4, where λ is the excitation laser wavelength. Our calculations are found in good agreement with recent experimental results for scattering from individual GaP nanowires. [1] Q. Xiong, G. Chen, G. D. Mahan, P. C. Eklund, in preparation, 2006.

  13. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  14. Cross Sections for Electron Impact Excitation of Astrophysically Abundant Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2006-01-01

    Electron collisional excitation rates and transition probabilities are important for computing electron temperatures and densities, ionization equilibria, and for deriving elemental abundances from emission lines formed in the collisional and photoionized astrophysical plasmas. Accurate representation of target wave functions that properly account for the important correlation and relaxation effects and inclusion of coupling effects including coupling to the continuum are essential components of a reliable collision calculation. Non-orthogonal orbitals technique in multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities. The effect of coupling to the continuum spectrum is included through the use of pseudostates which are chosen to account for most of the dipole polarizabilities of target states. The B-spline basis is used in the R-matrix approach to calculate electron excitation collision strengths and rates. Results for oscillator strengths and electron excitation collision strengths for transitions in N I, O I, O II, O IV, S X and Fe XIV have been produced

  15. Molecules of significance in planetary aeronomy

    NASA Technical Reports Server (NTRS)

    Mohan, H.

    1979-01-01

    This monograph is basically devoted to spectroscopic information of the molecules of planetary interest. Only those molecules have been dealt with which have been confirmed spectroscopically to be present in the atmosphere of major planets of our solar system and play an important role in the aeronomy of the respective planets. An introduction giving the general conditions of planets and their atmospheres including the gaseous molecules is given. Some typical planetary spectra is presented and supported with a discussion on some basic concepts of optical absorption and molecular parameters that are important to the study of planetary atmospheres. Quantities like dipole moments, transition probabilities, Einstein coefficients and line strengths, radiative life times, absorption cross sections, oscillator strengths, line widths and profiles, equivalent widths, growth curves, bond strengths, electronic transition moments, Franck-Condon factors and r-centroids, etc., are discussed. Spectroscopic information and relevant data of 6 diatomic (HF, HCL, CO, H2, O2, N2) and 6 polyatomic (CO2, N2), O3, HeO, NH3, CH4) molecules are presented.

  16. Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions

    DOE PAGES

    Chien, Y. T.; Cirigliano, V.; Dekens, W.; ...

    2016-02-01

    Here we investigate direct and indirect constraints on the complete set of anomalous CP-violating Higgs couplings to quarks and gluons originating from dimension-6 operators, by studying their signatures at the LHC and in electric dipole moments (EDMs). We also show that existing uncertainties in hadronic and nuclear matrix elements have a significant impact on the interpretation of EDM experiments, and we quantify the improvements needed to fully exploit the power of EDM searches. Currently, the best bounds on the anomalous CP-violating Higgs interactions come from a combination of EDM measurements and the data from LHC Run 1. We argue thatmore » Higgs production cross section and branching ratios measurements at the LHC Run 2 will not improve the constraints significantly. But, the bounds on the couplings scale roughly linearly with EDM limits, so that future theoretical and experimental EDM developments can have a major impact in pinning down interactions of the Higgs.« less

  17. HERAFitter: Open source QCD fit project

    DOE PAGES

    Alekhin, S.; Behnke, O.; Belov, P.; ...

    2015-07-01

    HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodologicalmore » options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study the impact of new precise measurements from hadron colliders. This paper describes the general structure of HERAFitter and its wide choice of options.« less

  18. ExoMol line lists - XXIX. The rotation-vibration spectrum of methyl chloride up to 1200 K

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yachmenev, A.; Thiel, W.; Fateev, A.; Tennyson, J.; Yurchenko, S. N.

    2018-06-01

    Comprehensive rotation-vibration line lists are presented for the two main isotopologues of methyl chloride, 12CH335Cl and 12CH337Cl. The line lists, OYT-35 and OYT-37, are suitable for temperatures up to T = 1200 K and consider transitions with rotational excitation up to J = 85 in the wavenumber range 0-6400 cm-1 (wavelengths λ > 1.56 μm). Over 166 billion transitions between 10.2 million energy levels have been calculated variationally for each line list using a new empirically refined potential energy surface, determined by refining to 739 experimentally derived energy levels up to J = 5, and an established ab initio dipole moment surface. The OYT line lists show excellent agreement with newly measured high-temperature infrared absorption cross-sections, reproducing both strong and weak intensity features across the spectrum. The line lists are available from the ExoMol database and the CDS database.

  19. Azimuthal asymmetries and the emergence of “collectivity” from multi-particle correlations in high-energy pA collisions

    DOE PAGES

    Dumitru, Adrian; McLerran, Larry; Skokov, Vladimir

    2015-02-23

    In this study, we show how angular asymmetries ~cos2φ can arise in dipole scattering at high energies. We illustrate the effects due to anisotropic fluctuations of the saturation momentum of the target with a finite correlation length in the transverse impact parameter plane, i.e. from a domain-like structure. We compute the two-particle azimuthal cumulant in this model including both one-particle factorizable as well as genuine two-particle non-factorizable contributions to the two-particle cross section. We also compute the full BBGKY hierarchy for the four-particle azimuthal cumulant and find that only the fully factorizable contribution to c 2{4} is negative while allmore » contributions from genuine two, three and four particle correlations are positive. Our results may provide some qualitative insight into the origin of azimuthal asymmetries in p + Pb collisions at the LHC which reveal a change of sign of c 2{4} in high multiplicity events. (author)« less

  20. Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Y. T.; Cirigliano, V.; Dekens, W.

    Here we investigate direct and indirect constraints on the complete set of anomalous CP-violating Higgs couplings to quarks and gluons originating from dimension-6 operators, by studying their signatures at the LHC and in electric dipole moments (EDMs). We also show that existing uncertainties in hadronic and nuclear matrix elements have a significant impact on the interpretation of EDM experiments, and we quantify the improvements needed to fully exploit the power of EDM searches. Currently, the best bounds on the anomalous CP-violating Higgs interactions come from a combination of EDM measurements and the data from LHC Run 1. We argue thatmore » Higgs production cross section and branching ratios measurements at the LHC Run 2 will not improve the constraints significantly. But, the bounds on the couplings scale roughly linearly with EDM limits, so that future theoretical and experimental EDM developments can have a major impact in pinning down interactions of the Higgs.« less

  1. Minimum principles in electromagnetic scattering by small aspherical particles

    NASA Astrophysics Data System (ADS)

    Kostinski, Alex B.; Mongkolsittisilp, Ajaree

    2013-12-01

    We consider the question of optimal shapes, e.g., those causing minimal extinction among all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple discussion of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also shown. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose connecting low and high frequency regimes in a single minimum principle valid for all size parameters, provided that reasonable size distributions of randomly oriented aspherical particles wash out the resonances for intermediate size parameters. This proposal is further supported by the sum rule for integrated extinction.

  2. Decay Pattern of Pygmy States Observed in Neutron-Rich Ne26

    NASA Astrophysics Data System (ADS)

    Gibelin, J.; Beaumel, D.; Motobayashi, T.; Blumenfeld, Y.; Aoi, N.; Baba, H.; Elekes, Z.; Fortier, S.; Frascaria, N.; Fukuda, N.; Gomi, T.; Ishikawa, K.; Kondo, Y.; Kubo, T.; Lima, V.; Nakamura, T.; Saito, A.; Satou, Y.; Scarpaci, J.-A.; Takeshita, E.; Takeuchi, S.; Teranishi, T.; Togano, Y.; Vinodkumar, A. M.; Yanagisawa, Y.; Yoshida, K.

    2008-11-01

    Coulomb excitation of the exotic neutron-rich nucleus Ne26 on a Pb208 target was measured at 58MeV/u in order to search for low-lying E1 strength above the neutron emission threshold. This radioactive beam experiment was carried out at the RIKEN Accelerator Research Facility. Using the invariant mass method in the Ne25+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV excitation energy. By performing a multipole decomposition of the differential cross section, a reduced dipole transition probability of B(E1)=0.49±0.16e2fm2 is deduced, corresponding to 4.9±1.6% of the Thomas-Reiche-Kuhn sum rule. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is measured. The extracted decay pattern is not consistent with several mean-field theory descriptions of the pygmy states.

  3. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2014-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard "ballerina skirt" picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180° a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  4. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2013-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180 deg; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  5. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.

    PubMed

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A

    2017-01-19

    The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).

  6. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey, Michael; Tyuterev, Vladimir G.; Nikitin, Andrei V., E-mail: michael.rey@univ-reims.fr

    Modeling atmospheres of hot exoplanets and brown dwarfs requires high- T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of {sup 12}CH{sub 4} in the infrared range 0–13,400 cm{sup −1} up to T {sub max} = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm{sup −1} and intensity cutoff down to 10{sup −33} cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line positionmore » accuracies of 0.001–0.01 cm{sup −1}. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high- T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.« less

  7. Relativistic R -matrix calculations for the electron-impact excitation of neutral molybdenum

    NASA Astrophysics Data System (ADS)

    Smyth, R. T.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.; Ramsbottom, C. A.; Ballance, C. P.

    2017-10-01

    A recent PISCES-B Mod experiment [Nishijima et al., J. Phys. B 43, 225701 (2010), 10.1088/0953-4075/43/22/225701] has revealed up to a factor of 5 discrepancy between measurement and the two existing theoretical models [Badnell et al., J. Phys. B 29, 3683 (1996), 10.1088/0953-4075/29/16/014; Bartschat et al., J. Phys. B 35, 2899 (2002), 10.1088/0953-4075/35/13/305], providing important diagnostics for Mo i. In the following paper we address this issue by employing a relativistic atomic structure and R -matrix scattering calculations to improve upon the available models for future applications and benchmark results against a recent Compact Toroidal Hybrid experiment [Hartwell et al., Fusion Sci. Technol. 72, 76 (2017), 10.1080/15361055.2017.1291046]. We determine the atomic structure of Mo i using grasp0, which implements the multiconfigurational Dirac-Fock method. Fine structure energies and radiative transition rates are presented and compared to existing experimental and theoretical values. The electron-impact excitation of Mo i is investigated using the relativistic R -matrix method and the parallel versions of the Dirac atomic R -matrix codes. Electron-impact excitation cross sections are presented and compared to the few available theoretical cross sections. Throughout, our emphasis is on improving the results for the z 1,2,3o5P →a S52,z 2,3,4o7P → a S73 and y 2,3,4o7P → a S73 electric dipole transitions of particular relevance for diagnostic work.

  8. Halogenation effects on electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, T. C., E-mail: tcf03@fisica.ufpr.br; Lopes, A. R.; Bettega, M. H. F.

    2016-04-28

    We report differential and integral elastic cross sections for low-energy electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3} molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)]more » and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ{sup ∗} resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.« less

  9. Alignment and pulse-duration effects in two-photon double ionization of H2 by femtosecond XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars

    2014-10-01

    We present calculations for the dependence of the two-photon double ionization (DI) of H2 on the relative orientation of the linear laser polarization to the internuclear axis and the length of the pulse. We use the fixed-nuclei approximation at the equilibrium distance of 1.4 a0, where a0=0.529 ×10-10m is the Bohr radius. Central photon energies cover the entire direct DI domain from 26.5 to 34.0 eV. In contrast to the parallel geometry studied earlier [X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke, Phys. Rev. A 83, 043403 (2011), 10.1103/PhysRevA.83.043403], the effect of the pulse duration is almost negligible for the case when the two axes are perpendicular to each other. This is a consequence of the symmetry rules for dipole excitation in the two cases. In the parallel geometry, doubly excited states of 1Σu+ symmetry affect the cross section, while in the perpendicular geometry only much longer-lived 1Πu states are present. This accounts for the different convergence patterns observed in the calculated cross sections as a function of the pulse length. When the photon energy approaches the threshold of sequential DI, a sharp increase of the generalized total cross section (GTCS) with increasing pulse duration is also observed in the perpendicular geometry, very similar to the case of the molecular axis being oriented along the laser polarization direction. Our results differ from those of Colgan et al. [J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 41, 121002 (2008), 10.1088/0953-4075/41/12/121002] and Morales et al. [F. Morales, F. Martín, D. A. Horner, T. N. Rescigno, and C. W. McCurdy, J. Phys. B 42, 134013 (2009), 10.1088/0953-4075/42/13/134013], but are in excellent agreement with the GTCSs of Simonsen et al. [A. S. Simonsen, S. A. Sørngård, R. Nepstad, and M. Førre, Phys. Rev. A 85, 063404 (2012), 10.1103/PhysRevA.85.063404] over the entire domain of direct DI.

  10. Energy transfer and 2.0 μm emission in Tm{sup 3+}/Ho{sup 3+} co-doped α-NaYF{sub 4} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhigang; Yang, Shuo; Xia, Haiping, E-mail: hpxcm@nbu.edu.cn

    2016-04-15

    Highlights: • Cubic NaYF{sub 4} single crystals co-doped with ∼1.90 mol% Tm{sup 3+} and various Ho{sup 3+} concentrations were grown by Bridgman method. • The maximum fluorescence lifetime was 23.23 ms for Tm{sup 3+} (1.90 mol%)/Ho{sup 3+} (3.89 mol%) co-doped α-NaYF{sub 4}. • The obtained energy transfer rate (W{sub ET}) and energy transfer efficiency (η) of Tm{sup 3+}:{sup 3}F{sub 4} are 1077 s{sup −1} and 95.0%, respectively. • The maximum emission cross section reached 1.06 × 10{sup −20} cm{sup 2}. - Abstract: Cubic NaYF{sub 4} single crystals co-doped with ∼1.90 mol% Tm{sup 3+} and various Ho{sup 3+} concentrations were grownmore » by Bridgman method. The energy transfer from Tm{sup 3+} to Ho{sup 3+} and the optimum fluorescence emission around 2.04 μm of Ho{sup 3+} ion were investigated based on the measured absorption spectra, emission spectra, emission cross section and decay curves under excitation of 800 nm LD. The emission intensity at 2.04 μm increased with the increase of Ho{sup 3+} concentration from 0.96 mol% to 3.89 mol% when the concentration of Tm{sup 3+} was held constantly at ∼1.90 mol%. Moreover, the maximum emission cross section reached 1.06 × 10{sup −20} cm{sup 2} and the maximum fluorescence lifetime was 23.23 ms for Tm{sup 3+}(1.90 mol%)/Ho{sup 3+}(3.89 mol%) co-doped one. According to the measured lifetime of Tm{sup 3+} single-doped and Tm{sup 3+}/Ho{sup 3+} co-doped samples, the maximum energy transfer efficiency of Tm{sup 3+}:{sup 3}F{sub 4} level was 95.0%. Analysis on the fluorescence dynamics indicated that electric dipole–dipole is dominant for the energy transfer from Tm{sup 3+} to Ho{sup 3+}.« less

  11. Dissociative Ionization of Aromatic and Heterocyclic Molecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    2003-01-01

    Space radiation poses a major health hazard to humans in space flight. The high-energy charged particles in space radiation ranging from protons to high atomic number, high-energy (HZE) particles, and the secondary species they produce, attack DNA, cells, and tissues. Of the potential hazards, long-term health effects such as carcinogenesis are likely linked to the DNA lesions caused by secondary electrons in the 1 - 30 eV range. Dissociative ionization (DI) is one of the electron collision processes that can damage the DNA, either directly by causing a DNA lesion, or indirectly by producing radicals and cations that attack the DNA. To understand this process, we have developed a theoretical model for DI. Our model makes use of the fact that electron motion is much faster than nuclear motion and assumes DI proceeds through a two-step process. The first step is electron-impact ionization resulting in a particular state of the molecular ion in the geometry of the neutral molecule. In the second step the ion undergoes unimolecular dissociation. Thus the DI cross section sigma(sup DI)(sub a) for channel a is given by sigma(sup DI)(sub a) = sigma(sup I)(sub a) P(sub D) with sigma(sup I)(sub a) the ionization cross section of channel a and P(sub D) the dissociation probability. This model has been applied to study the DI of H2O, NH3, and CH4, with results in good agreement with experiment. The ionization cross section sigma(sup I)(sub a) was calculated using the improved binary encounter-dipole model and the unimolecular dissociation probability P(sub D) obtained by following the minimum energy path determined by the gradients and Hessians of the electronic energy with respect to the nuclear coordinates of the ion. This model is used to study the DI from the low-lying channels of benzene and pyridine to understand the different product formation in aromatic and heterocyclic molecules. DI study of the DNA base thymine is underway. Solvent effects will also be discussed.

  12. Low energy electron-impact study of AlO using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Kaur, Savinder; Baluja, Kasturi L.; Bassi, Monika

    2017-11-01

    This comprehensive study reports the electron-impact on the open shell AlO molecule at low energy (less than 10 eV) using the R-matrix method. We present the elastic (integrated and differential), momentum-transfer, electronic excitation and ionisation cross sections; along with effective collision frequency over a wide electron temperature range (1000-100 000 K). Correlations via a configuration interaction technique are used to represent the target states. Calculations are performed in the static-exchange and 24-target states close-coupling approximation at the experimental bond length of 1.6178 Å. We have used different basis sets 6-311G*, double zeta, polarization (DZP), cc-pCVTZ to represent our target states. We have chosen the Gaussian Type Orbitals (GTOs) basis set DZP to represent the atomic orbitals which gave the best one-electron properties of the molecule. The calculated dipole moment (1.713 au), rotational constant (0.641399 cm-1) and the vertical excitation energies are in concurrence with the best available data. The continuum electron is also represented by GTOs and is placed at the center of mass of the molecule. Resonance analysis is carried out to assign the resonance parameters and the parentage of detected resonances by fitting the eigenphase sums to the Breit-Wigner profile. Our study has detected three core-excited shape resonances in the 24-state model. We detect a stable bound state of AlO- of 1 A 1 symmetry having configuration 1 σ 2 … 7 σ 21 π 42 π 4 with a vertical electronic affinity value of 2.59 eV which is in good accord with the experimental value of 2.6 ± (0.01) eV. The ionisation cross sections are calculated using the Binary-Encounter-Bethe Model in which Hartree-Fock molecular orbitals at self-consistent level are used to calculate kinetic and binding energies of the occupied molecular orbitals. We include partial waves up to g-wave beyond which Born closure method is employed to obtain converged cross sections.

  13. Estimation of dose delivered to accelerator devices from stripping of 18.5 MeV/n 238U ions using the FLUKA code

    NASA Astrophysics Data System (ADS)

    Oranj, Leila Mokhtari; Lee, Hee-Seock; Leitner, Mario Santana

    2017-12-01

    In Korea, a heavy ion accelerator facility (RAON) has been designed for production of rare isotopes. The 90° bending section of this accelerator includes a 1.3- μm-carbon stripper followed by two dipole magnets and other devices. An incident beam is 18.5 MeV/n 238U33+,34+ ions passing through the carbon stripper at the beginning of the section. The two dipoles are tuned to transport 238U ions with specific charge states of 77+, 78+, 79+, 80+ and 81+. Then other ions will be deflected at the bends and cause beam losses. These beam losses are a concern to the devices of transport/beam line. The absorbed dose in devices and prompt dose in the tunnel were calculated using the FLUKA code in order to estimate radiation damage of such devices located at the 90° bending section and for the radiation protection. A novel method to transport multi-charged 238U ions beam was applied in the FLUKA code by using charge distribution of 238U ions after the stripper obtained from LISE++ code. The calculated results showed that the absorbed dose in the devices is influenced by the geometrical arrangement. The maximum dose was observed at the coils of first, second, fourth and fifth quadruples placed after first dipole magnet. The integrated doses for 30 years of operation with 9.5 p μA 238U ions were about 2 MGy for those quadrupoles. In conclusion, the protection of devices particularly, quadruples would be necessary to reduce the damage to devices. Moreover, results showed that the prompt radiation penetrated within the first 60 - 120 cm of concrete.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, P.F.

    The magnet system for the Superconducting Super Collider will likely remain the most ambitions-and challenging-application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winter in an early technical showdown that occupied the fledgling SSC project. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press andmore » still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos {theta}) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG. Beyond that, the ongoing chronicle must be left for others to amplify and complete.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, P.F.

    The magnet system for the Superconducting Super Collider will likely remain the most ambitions-and challenging-application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980`s when it emerged as the winter in an early technical showdown that occupied the fledgling SSC project. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press andmore » still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos {theta}) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet ``style`` for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG. Beyond that, the ongoing chronicle must be left for others to amplify and complete.« less

  16. RFQ device for accelerating particles

    DOEpatents

    Shepard, Kenneth W.; Delayen, Jean R.

    1995-01-01

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.

  17. Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section

    NASA Astrophysics Data System (ADS)

    Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther

    2015-06-01

    Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.

  18. Structure determination of a key intermediate of the enantioselective Pd complex catalyzed allylic substitution reaction

    PubMed

    Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger

    2000-09-01

    The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.

  19. Visible luminescence of Dy3+ doped PbF2-Li2O-SrO-ZnO-B2O3 glasses for yellow light applications

    NASA Astrophysics Data System (ADS)

    Anjaiah, G.; Sasikala, T.; Kistaiah, P.

    2018-05-01

    The present studies on various concentrations of Dy3+ ions doped PLSrZFB glasses were carried out through optical absorption, photoluminescence and decay time measurements. The Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2,4,6) can be utilized to evaluate the emission properties. The decay curves for the 4F9/2 levels have been measured and these turns to non-exponential nature at higher concentrations (> 0.1 mol%) is due to energy transfer between the Dy3+-Dy3+ ions dipole -dipole type through cross relaxation channels. The CIE chromaticity color coordinates were calculated and they were all located within the vicinity of white region of the color coordination diagram. The Inokuti-Hirayama model is used to analyze the energy transfer process and also energy transfer parameters have been calculated and discussed.

  20. Design of a High Luminosity 100 TeV Proton-Antiproton Collider

    NASA Astrophysics Data System (ADS)

    Oliveros Tautiva, Sandra Jimena

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10 34 cm-2 s-1 luminosity 100 TeV proton-antiproton collider is explored with 7x the energy of the LHC. The dipoles are 4.5 T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in pp than pp collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller beta* for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  1. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveros Tuativa, Sandra Jimena

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10more » $$^{\\,34}$$ cm$$^{-2}$$ s$$^{-1}$$ luminosity 100 TeV proton-antiproton collider is explored with 7$$\\times$$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $$p\\bar{p}$$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $$\\beta^{*}$$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.« less

  2. Colliding or co-rotating ion beams in storage rings for EDM search

    NASA Astrophysics Data System (ADS)

    Koop, I. A.

    2015-11-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10-20. We show that the bending radius of such an EDM storage ring could be about 2-3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed.

  3. Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2017-01-01

    In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ M 1 →E 2) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 ⩽ Z ⩽ 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of χ M 1 →E 2 for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s1/2, 2p1/2, 2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2, 4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2 and 4f7/2) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the calculations is α-1 = 137.035999139, and was taken from CODATA 2014.

  4. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  5. Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Huei; Jan, Sen; Mensah, Vigan; Andres, Magdalena; Rainville, Luc; Yang, Yiing Jang; Cheng, Yu-Hsin

    2018-01-01

    Variability of the Kuroshio east of Taiwan was observed at a cross-stream transect 50 km south of the PCM-1 line with an array of three moored ADCPs measuring for 23 months, supplemented with eleven repeated shipboard surveys. Observations of the Kuroshio's velocity structure reveal the absence of an obvious regular seasonal signal, but significant variability at 70-200 day period for both maximum velocity axis migration and transport due to interactions with mesoscale eddies. Empirical orthogonal function (EOF) analysis shows the migration and transport modes explain 46% and 29% of the total variance, respectively, which is in contrast to the findings at the PCM-1 line where the transport mode explained more variance than did the migration mode. The Kuroshio transport in the upper 500 m across a 150 km section is 17.2 Sv with a standard deviation of 5 Sv. The estimated Kuroshio transport is 4.3 Sv lower than that reported for the PCM-1 line, likely due to the interannual variations related to abundance of mesoscale eddies in the Subtropical Counter Current (STCC) region. Transport variability east of Taiwan is mostly caused by Kuroshio-eddy interactions. When single anticyclonic (cyclonic) eddies encounter the Kuroshio, they enhance (reduce) poleward transport, presumably by increasing (decreasing) the sea level anomaly (SLA) along the eastern flank of the Kuroshio (correlation = 0.82). When a pair of eddies impinges on the Kuroshio, the upstream confluence and diffluence caused by the dipole eddies increases and decreases the Kuroshio transport, respectively. Furthermore, the eastward (westward) currents that result from either the single eddy or the dipole eddy produce flow divergence (convergence) adjacent to the Kuroshio's eastern edge, favoring the offshore (onshore) migration of the Kuroshio axis.

  6. Relative Impacts of Low Permeability Subsurface Deposits on Recharge Basin Infiltration Rates

    NASA Astrophysics Data System (ADS)

    Oconnell, P.; Becker, M.; Pham, C.; Rodriguez, G.; Hutchinson, A.; Plumlee, M.

    2017-12-01

    Artificial recharge of aquifers through spreading basins has become an important component of water management in semi-arid climates. The rate at which water can be recharged in these basins is limited by the natural vertical permeability of the underlying deposits which may be highly variable both laterally and vertically. To help understand hydrostratigraphic controls on recharge, a newly constructed basin was surveyed and instrumented. Prior to flooding the basin, lithology was characterized by shallow hand coring, direct push coring, ground penetrating radar, and electrical resistivity. After flooding, recharge was monitored through piezometers, electrical resistivity, and a network of fiber optic distributed temperature sensing (DTS). The DTS network used temperature as a tracer to measure infiltration rate on 25 cm intervals both laterally and vertically. Several hundred paired DTS time series datasets (from fiber optic cables located at 0 and 0.5 meters below ground surface) were processed with the cross-wavelet transform (XWT) to calculate spatially and temporally continuous infiltration rates, which can be interpolated and animated to visualize heterogeneity. Time series data from 8-meter deep, vertically oriented DTS cables reveal depth intervals where infiltration rates vary. Inverted resistivity sections from repeated dipole-dipole surveys along the sidewall of a spreading basin exhibit a positive correlation with the distribution of relatively high and low infiltration rates, indicating zones of preferential downward (efficient) and lateral (inefficient) flow, respectively. In contrast to other monitored basins, no perching was observed in the vertically oriented DTS cables. The variation in recharge across the basin and the appearance of subsurface lateral flow can be explained in context of the alluvial depositional environment.

  7. Microscopic multiphonon approach to spectroscopy in the neutron-rich oxygen region

    NASA Astrophysics Data System (ADS)

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2018-03-01

    Background: A fairly rich amount of experimental spectroscopic data have disclosed intriguing properties of the nuclei in the region of neutron rich oxygen isotopes up to the neutron dripline. They, therefore, represent a unique laboratory for studying the evolution of nuclear structure away from the stability line. Purpose: We intend to give an exhaustive microscopic description of low and high energy spectra, dipole response, weak, and electromagnetic properties of the even 22O and the odd 23O and 23F. Method: An equation of motion phonon method generates an orthonormal basis of correlated n -phonon states (n =0 ,1 ,2 ,⋯ ) built of constituent Tamm-Dancoff phonons. This basis is adopted to solve the full eigenvalue equations in even nuclei and to construct an orthonormal particle-core basis for the eigenvalue problem in odd nuclei. No approximations are involved and the Pauli principle is taken into full account. The method is adopted to perform self-consistent, parameter free, calculations using an optimized chiral nucleon-nucleon interaction in a space encompassing up to two-phonon basis states. Results: The computed spectra in 22O and 23O and the dipole cross section in 22O are in overall agreement with the experimental data. The calculation describes poorly the spectrum of 23F. Conclusions: The two-phonon configurations play a crucial role in the description of spectra and transitions. The large discrepancies concerning the spectra of 23F are ultimately traced back to the large separation between the Hartree-Fock levels belonging to different major shells. We suggest that a more compact single particle spectrum is needed and can be generated by a new chiral potential which includes explicitly the contribution of the three-body forces.

  8. Efficient Nd3+→Yb3+ energy transfer processes in high phonon energy phosphate glasses for 1.0 μm Yb3+ laser

    NASA Astrophysics Data System (ADS)

    Rivera-López, F.; Babu, P.; Basavapoornima, Ch.; Jayasankar, C. K.; Lavín, V.

    2011-06-01

    Efficient Nd3+→Yb3+ resonant and phonon-assisted energy transfer processes have been observed in phosphate glasses and have been studied using steady-state and time-resolved optical spectroscopies. Results indicate that the energy transfer occurs via nonradiative electric dipole-dipole processes and is enhanced with the concentration of Yb3+ acceptor ions, having an efficiency higher than 75% for the glass doped with 1 mol% of Nd2O3 and 4 mol% of Yb2O3. The luminescence decay curves show a nonexponential character and the energy transfer microscopic parameter calculated with the Inokuti-Hirayama model gives a value of 240 × 10-40 cm6 s-1, being one of the highest reported in the literature for Nd3+-Yb3+ co-doped matrices. From the steady-state experimental absorption and emission cross-sections, a general expression for estimating the microscopic energy transfer parameter is proposed based upon the theoretical methods developed by Miyakawa and Dexter and Tarelho et al. This expression takes into account all the resonant mechanisms involved in an energy transfer processes together with other phonon-assisted nonvanishing overlaps. The value of the Nd3+→Yb3+ energy transfer microscopic parameter has been calculated to be 200 × 10-40 cm6 s-1, which is in good agreement with that obtained from the Inokuti-Hirayama fitting. These results show the importance of the nonresonant phonon-assisted Nd3+→Yb3+ energy transfer processes and the great potential of these glasses as active matrices in the development of multiple-pump-channel Yb3+ lasers.

  9. Optical and luminescence properties of Dy3+ ions in phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Rasool, Sk. Nayab; Rama Moorthy, L.; Jayasankar, C. K.

    2013-08-01

    Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 - x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd-Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti-Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.

  10. Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.

    2011-10-01

    The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.

  11. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    NASA Astrophysics Data System (ADS)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  12. Analysis of closed orbit deviations for a first direct deuteron electric dipole moment measurement at the cooler synchrotron COSY

    NASA Astrophysics Data System (ADS)

    Schmidt, V.; Lehrach, A.

    2017-07-01

    The Jülich Electric Dipole moment Investigations (JEDI) collaboration in Julich is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. Ensuring a precise measurement, various beam and spin manipulating effects have to be considered and investigated. A distortion of the closed orbit is one of the major sources for systematic uncertainties. Therefore misalignments of magnets and residual power supply oscillations are simulated using the MAD-X code in order to analyse their effect on the orbit. The underlying model for all simulations includes the dipoles, quadrupoles and sextupoles at COSY as well as the corrector magnets and BPMs (Beam Position Monitors). Since most sextupoles are only used during beam extraction, the sextupole strengths are set to zero resulting in a linear machine. The optics is adjusted in a way that the dispersion is zero in the straight sections. The closed orbit studies are performed for deuterons with a momentum of 970 MeV/c.

  13. Transfer of dipolar gas through the discrete localized mode.

    PubMed

    Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui

    2013-12-01

    By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.

  14. RFQ device for accelerating particles

    DOEpatents

    Shepard, K.W.; Delayen, J.R.

    1995-06-06

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

  15. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    NASA Astrophysics Data System (ADS)

    Alumbaugh, D. L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (less than 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  16. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-06-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  17. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.

    2013-12-01

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.

  18. The Helium Golden Ratios: triplet-singlet and G for He-like X-ray Emission

    NASA Astrophysics Data System (ADS)

    Stancil, Phillip C.; Miller, Ansley; Terry, Jason; Cumbee, Renata; Mullen, Patrick Dean; Schultz, David R.

    2017-06-01

    The existence of a mere two electrons manifests a multitude of interesting and diverse phenomena in the atomic structure of He-like ions including separate spin manifolds (singlets and triplets), unusual ordering of angular momentum states, and intercombination (i) and forbidden (f) radiative transitions. This rich behavior extends also to the dynamics involving He-like ions and various perturbers. While electrons have a propensity for exciting resonant (r) dipole-allowed transitions, heavy particles are far less selective. In this presentation, I'll illustrate how these properties play out in ion-neutral charge exchange (CX) processes which result in He-like product ions. The focus will be on the spin-multiplicity of the atomic ions and the quasi-molecular states involved in the interactions, how these affect the CX cross sections, and their impact on the resulting X-ray spectrum. In particular, the G-ratio, the ratio of Kα line intensities (f+i)/r, is very sensitive to the spin-dependent cross sections which in turn is dependent on the neutral target, whether open-shell like H (Nolte et al. 2012, 2017; Wu et al. 2012) or closed-shell like He or H2 (Cumbee et al. 2017; Mullen et al. 2016, 2017). Preliminary evidence also suggests that multielectron capture processes may influence the G-ratio when multielectron targets are involved.Cumbee R. S. et al. 2017, ApJ, submittedMullen, P. D. et al. 2016, ApJS, 224, 31Mullen, P. D. et al. 2017, ApJ, submittedNolte, J. et al. 2012, JPB, 45, 245202; 2017, to be submittedWu, Y. et al. 2012, JPB, 84, 022711This work was partially supported by NASA grants NNX09AC46G and NNG09WF24I.

  19. Numerical and experimental investigations of dependence of photoacoustic signals from gold nanoparticles on the optical properties

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Sato, Ryota; Kushibiki, Toshihiro; Ishihara, Miya; Teranishi, Toshiharu

    2018-04-01

    Gold nanoparticles (AuNPs) are used as a contrast agent of the photoacoustic (PA) imaging. The efficiency of AuNPs has been discussed with the absorption cross section. However, the effects of the scattering of the light by AuNPs and surrounding medium on the PA signal from AuNPs have not been discussed. The PA signals from the aqueous solution of AuNPs were examined in the numerical simulation and the experiment. In the numerical simulation, the absorption and scattering cross sections of spherical and polyhedral AuNPs were calculated by Mie theory and discrete dipole approximation. Monte Carlo simulation calculated the absorbed light energy in the aqueous solution of AuNPs. Based on the PA wave equation, the PA signals were simulated. In the experiment, the PA signal from the aqueous solution of AuNP was measured by use of a piezoelectric film and a Q-switched Nd:YAG laser operated at 532 nm. The results of the numerical simulation and the experiment agreed well. In the numerical simulation and the experiment, a single Au nanocube with 50-nm edge generated the peak value of the PA signal significantly. It was approximately 350 times and twice as large as the peak values of the spherical AuNPs with 10- and 50-nm diameters, respectively. The peak value of the PA signal depended on both the absorption and scattering coefficients of the AuNPs and the surrounding medium. The peak value increased with the scattering coefficient in a quadratic manner. The character of the temporal profile of the PA signal such as full width at half maximum depended on the scattering coefficient of the AuNPs.

  20. Processing of N2O ice by fast ions: implications on nitrogen chemistry in cold astrophysical environments

    NASA Astrophysics Data System (ADS)

    Almeida, G. C.; Pilling, S.; de Barros, A. L. F.; da Costa, C. A. P.; Pereira, R. C.; da Silveira, E. F.

    2017-10-01

    Nitrous oxide, N2O, is found in the interstellar medium associated with dense molecular clouds and its abundance is explained by active chemistry occurring on N2 rich ice surfaces of dust grains. Such regions are being constantly exposed to ionizing radiation that triggers chemical processes which change molecular abundances with time. Due to its non-zero dipole moment, N2O can be used as an important tracer for the abundance of N2 in such regions as well as for characterization of nitrogen content of ices in outer bodies of Solar system. In this work, we experimentally investigate the resistance of frozen N2O molecules against radiation in attempt to estimate their half-life in astrophysical environments. All the radiolysis products, such as NO2 and NO, were identified by Fourier transform infrared spectroscopy. The infrared absorbance as a function of fluence is modified by ice compaction and by radiolysis, the compaction being dominant at the beginning of the ice processing. The N2O destruction cross-section as well the formation cross-sections of the products NxOy (x = 1-2 and y = 1-5) oxides and ozone (O3) by 1.5 MeV 14N+ ion beam are determined. The characterization of radiation resistance of N2O in cold astrophysical environments is relevant since it yields limits for the nitrogen abundance where the N2O molecule is used to indirectly derive its concentration. The half-life of solid N2O molecules dissociated by medium-mass cosmic rays at Pluto's orbit and at the interstellar medium is estimated.

  1. Magnetoencephalography Phantom Comparison and Validation: Hospital Universiti Sains Malaysia (HUSM) Requisite.

    PubMed

    Omar, Hazim; Ahmad, Alwani Liyan; Hayashi, Noburo; Idris, Zamzuri; Abdullah, Jafri Malin

    2015-12-01

    Magnetoencephalography (MEG) has been extensively used to measure small-scale neuronal brain activity. Although it is widely acknowledged as a sensitive tool for deciphering brain activity and source localisation, the accuracy of the MEG system must be critically evaluated. Typically, on-site calibration with the provided phantom (Local phantom) is used. However, this method is still questionable due to the uncertainty that may originate from the phantom itself. Ideally, the validation of MEG data measurements would require cross-site comparability. A simple method of phantom testing was used twice in addition to a measurement taken with a calibrated reference phantom (RefPhantom) obtained from Elekta Oy of Helsinki, Finland. The comparisons of two main aspects were made in terms of the dipole moment (Qpp) and the difference in the dipole distance from the origin (d) after the tests of statistically equal means and variance were confirmed. The result of Qpp measurements for the LocalPhantom and RefPhantom were 978 (SD24) nAm and 988 (SD32) nAm, respectively, and were still optimally within the accepted range of 900 to 1100 nAm. Moreover, the shifted d results for the LocalPhantom and RefPhantom were 1.84 mm (SD 0.53) and 2.14 mm (SD 0.78), respectively, and these values were below the maximum acceptance range of within 5.0 mm of the nominal dipole location. The Local phantom seems to outperform the reference phantom as indicated by the small standard error of the former (SE 0.094) compared with the latter (SE 0.138). The result indicated that HUSM MEG system was in excellent working condition in terms of the dipole magnitude and localisation measurements as these values passed the acceptance limits criteria of the phantom test.

  2. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  3. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft-tissue contrast in clinical magnetic resonance imaging.

  4. Mutual Coupling Analysis for Conformal Microstrip Antennas.

    DTIC Science & Technology

    1984-12-01

    6 0.001/ko, and the infinite integral is terminated at k 150 ko . 28*,-J ." . .. C. MUTUAL COUPLING ANALYSIS In this section, the moment method ...fact that it does provide an attractive alternative to the Green’s function method on which the analysis in later sections is based. In the present...by the moment method , the chosen set of expansion dipole modes plays a very important role. The efficiency as well as accuracy of the analysis depend

  5. ExoMol molecular line lists - XXVII: spectra of C2H4

    NASA Astrophysics Data System (ADS)

    Mant, Barry P.; Yachmenev, Andrey; Yurchenko, Jonathan Tennyson Sergei N.

    2018-05-01

    A new line list for ethylene, 12C21H4 is presented. The line list is based on high level ab initiopotential energy and dipole moment surfaces. The potential energy surface is refined by fitting to experimental energies. The line list covers the range up to 7000 cm-1(1.43 μm) with all ro-vibrational transitions (50 billion) with the lower state below 5000 cm-1included and thus should be applicable for temperatures up to 700 K. A technique for computing molecular opacities from vibrational band intensities is proposed and used to provide temperature dependent cross sections of ethylene for shorter wavelength and higher temperatures. When combined with realistic band profiles (such as the proposed three-band model), the vibrational intensity technique offers a cheap but reasonably accurate alternative to the full ro-vibrational calculations at high temperatures and should be reliable for representing molecular opacities. The C2H4 line list, which is called MaYTY, is rmade available in electronic form from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) databases.

  6. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalenko, V. N.; Vechernin, V. V.

    2016-01-22

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity.more » In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.« less

  7. Effective interaction of electroweak-interacting dark matter with Higgs boson and its phenomenology

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Kobayashi, Daiki; Mori, Naoya; Senaha, Eibun

    2015-03-01

    We study phenomenology of electroweak-interacting fermionic dark matter (DM) with a mass of O (100) GeV. Constructing the effective Lagrangian that describes the interactions between the Higgs boson and the SU (2)L isospin multiplet fermion, we evaluate the electric dipole moment (EDM) of electron, the signal strength of Higgs boson decay to two photons and the spin-independent elastic-scattering cross section with proton. As representative cases, we consider the SU (2)L triplet fermions with zero/nonzero hypercharges and SU (2)L doublet fermion. It is found that the electron EDM gives stringent constraints on those model parameter spaces. In the cases of the triplet fermion with zero hypercharge and the doublet fermion, the Higgs signal strength does not deviate from the standard model prediction by more than a few % once the current DM direct detection constraint is taken into account, even if the CP violation is suppressed. On the contrary, O (10- 20)% deviation may occur in the case of the triplet fermion with nonzero hypercharge. Our representative scenarios may be tested by the future experiments.

  8. Effect of inclusions on heterogeneous crack nucleation in nanocomposites

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Ovid'Ko, I. A.; Skiba, N. V.

    2007-02-01

    A two-dimensional theoretical model is proposed for the heterogeneous nucleation of a grain-boundary nanocrack in a nanocomposite consisting of a nanocrystalline matrix and nanoinclusions whose elastic moduli are identical to those of the matrix. The inclusions have the form of rods with a rectangular cross section and undergo dilatation eigenstrain induced by the differences in the lattice parameters and thermal expansion coefficients of the matrix and inclusions. In terms of the model, a mode-I-II nanocrack nucleates at the negative disclination of a biaxial dipole consisting of wedge grain-boundary (or junction) disclinations; then, the nanocrack opens along a grain boundary and reaches an inclusion boundary. Depending on the relative positions and orientations of the initial segment of the nanocrack and the inclusion, the nanocrack can either penetrate into the inclusion or bypass it along the matrix-inclusion interface. The nanocrack nucleation probability increases near an inclusion with negative (compressive) dilatation eigenstrain. A decrease in the inclusion size decreases (increases) the probability of a crack opening along the interface if the dilatation eigenstrain is negative (positive).

  9. Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles

    NASA Astrophysics Data System (ADS)

    Kostinski, A. B.; Mongkolsittisilp, A.

    2013-12-01

    We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.

  10. The Super Separator Spectrometer S3 and the associated detection systems: SIRIUS & LEB-REGLIS3

    NASA Astrophysics Data System (ADS)

    Déchery, F.; Savajols, H.; Authier, M.; Drouart, A.; Nolen, J.; Ackermann, D.; Amthor, A. M.; Bastin, B.; Berryhill, A.; Boutin, D.; Caceres, L.; Coffey, M.; Delferrière, O.; Dorvaux, O.; Gall, B.; Hauschild, K.; Hue, A.; Jacquot, B.; Karkour, N.; Laune, B.; Le Blanc, F.; Lecesne, N.; Lopez-Martens, A.; Lutton, F.; Manikonda, S.; Meinke, R.; Olivier, G.; Payet, J.; Piot, J.; Pochon, O.; Prince, V.; Souli, M.; Stelzer, G.; Stodel, C.; Stodel, M.-H.; Sulignano, B.; Traykov, E.; Uriot, D.; S3, Sirius; Leb-Reglis3 Collaboration

    2016-06-01

    The Super Separator Spectrometer (S3) facility is developed in the framework of the SPIRAL2 project [1]. S3 has been designed to extend the capability of the facility to perform experiments with extremely low cross sections, taking advantage of the very high intensity stable beams of the superconducting linear accelerator of SPIRAL2. It will mainly use fusion-evaporation reactions to reach extreme regions of the nuclear chart: new opportunities will be opened for super-heavy element studies and spectroscopy at and beyond the driplines. In addition to our previous article (Déchery et al. [2]) introducing the optical layout of the spectrometer and the expected performances, this article will present the current status of the main elements of the facility: the target station, the superconducting multipole, and the magnetic and electric dipoles, with a special emphasis on the status of the detection system SIRIUS and on the low-energy branch which includes the REGLIS3 system. S3 will also be a source of low energy radioactive isotopes for delivery to the DESIR facility.

  11. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    PubMed

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  12. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    PubMed Central

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A.; Pantell, R. H.; Feinstein, J.; Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern–Gerlach gradient devices and compound material and magnetic refractive prisms. PMID:20113108

  13. Role of Relativistic Effects in the Ionization of Heavy Ions by Electron Impact

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan C.; Basak, Arun K.

    2005-05-01

    Electron impact single ionization cross sections of few heavy ions are evaluated using the recently proposed modifications [1] of the widely used simplified version of the improved binary-encounter (siBED) dipole model [2]. This model consists of two adjustable parameters and it is found that they are related to the nature of the charge distribution in the bonding region of the target. For its effective uses for ionic target the siBED model is further modified [3] in terms of the ionic and relativistic effects. This study focuses on the relativistic energy domain and the findings suggest the fate of those parameters. Details of our findings will be presented at the conference. [1] W. M. Huo, Phys. Rev. A 64, 042719 (2001). [2] M. A. Uddin, M. A. K. F. Haque, A. K. Basak and B. C. Saha, Phys. Rev A70, 0322706(2004). [3] M. a. Uddin, M. A. K. F. Haque, M. S. Mahbub, K. R. Karim, A.K. Basak and B. C. Saha, Phys. Rev. A (in press) 2005.

  14. Calculation and measurement of radiation corrections for plasmon resonances in nanoparticles

    NASA Astrophysics Data System (ADS)

    Hung, L.; Lee, S. Y.; McGovern, O.; Rabin, O.; Mayergoyz, I.

    2013-08-01

    The problem of plasmon resonances in metallic nanoparticles can be formulated as an eigenvalue problem under the condition that the wavelengths of the incident radiation are much larger than the particle dimensions. As the nanoparticle size increases, the quasistatic condition is no longer valid. For this reason, the accuracy of the electrostatic approximation may be compromised and appropriate radiation corrections for the calculation of resonance permittivities and resonance wavelengths are needed. In this paper, we present the radiation corrections in the framework of the eigenvalue method for plasmon mode analysis and demonstrate that the computational results accurately match analytical solutions (for nanospheres) and experimental data (for nanorings and nanocubes). We also demonstrate that the optical spectra of silver nanocube suspensions can be fully assigned to dipole-type resonance modes when radiation corrections are introduced. Finally, our method is used to predict the resonance wavelengths for face-to-face silver nanocube dimers on glass substrates. These results may be useful for the indirect measurements of the gaps in the dimers from extinction cross-section observations.

  15. High-redshift radio galaxies and divergence from the CMB dipole

    NASA Astrophysics Data System (ADS)

    Colin, Jacques; Mohayaee, Roya; Rameez, Mohamed; Sarkar, Subir

    2017-10-01

    Previous studies have found our velocity in the rest frame of radio galaxies at high redshift to be much larger than that inferred from the dipole anisotropy of the cosmic microwave background. We construct a full sky catalogue, NVSUMSS, by merging the NRAO VLA Sky Survey and the Sydney University Molonglo Sky Survey catalogues and removing local sources by various means including cross-correlating with the 2MASS Redshift Survey catalogue. We take into account both aberration and Doppler boost to deduce our velocity from the hemispheric number count asymmetry, as well as via a three-dimensional linear estimator. Both its magnitude and direction depend on cuts made to the catalogue, e.g. on the lowest source flux; however these effects are small. From the hemispheric number count asymmetry we obtain a velocity of 1729 ± 187 km s-1, I.e. about four times larger than that obtained from the cosmic microwave background dipole, but close in direction, towards RA=149° ± 2°, Dec. = -17° ± 12°. With the three-dimensional estimator, the derived velocity is 1355 ± 174 km s-1 towards RA = 141° ± 11°, Dec. = -9° ± 10°. We assess the statistical significance of these results by comparison with catalogues of random distributions, finding it to be 2.81σ (99.75 per cent confidence).

  16. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers

    NASA Astrophysics Data System (ADS)

    Yu, Hongyi; Liu, Gui-Bin; Yao, Wang

    2018-07-01

    We investigate the optical properties of spin-triplet interlayer excitons in heterobilayer transition metal dichalcogenides in comparison with the spin-singlet ones. Surprisingly, the optical transition dipole of the spin-triplet exciton is found to be in the same order of magnitude to that of the spin-singlet exciton, in sharp contrast to the monolayer excitons where the spin-triplet species is considered as dark compared to the singlet. Unlike the monolayer excitons whose spin-conserved (spin-flip) transition dipole can only couple to light of in-plane (out-of-plane) polarisation, such restriction is removed for the interlayer excitons due to the breaking of the out-of-plane mirror symmetry. We find that as the interlayer atomic registry changes, the optical transition dipole of interlayer exciton crosses between in-plane ones of opposite circular polarizations and the out-of-plane one for both the spin-triplet and spin-singlet species. As a result, excitons of both species have non-negligible coupling into photon modes of both in-plane and out-of-plane propagations, another sharp difference from the monolayers where the exciton couples predominantly into the out-of-plane propagation channel. At given atomic registry, the spin-triplet and spin-singlet excitons have distinct valley polarisation selection rules, allowing the selective optical addressing of both the valley configuration and the spin-singlet/triplet configuration of interlayer excitons.

  17. Dipole oscillator strengths, dipole properties and dispersion energies for SiF4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.

  18. Numerical Models for Sound Propagation in Long Spaces

    NASA Astrophysics Data System (ADS)

    Lai, Chenly Yuen Cheung

    Both reverberation time and steady-state sound field are the key elements for assessing the acoustic condition in an enclosed space. They affect the noise propagation, speech intelligibility, clarity index, and definition. Since the sound field in a long space is non diffuse, classical room acoustics theory does not apply in this situation. The ray tracing technique and the image source methods are two common models to fathom both reverberation time and steady-state sound field in long enclosures nowadays. Although both models can give an accurate estimate of reverberation times and steady-state sound field directly or indirectly, they often involve time-consuming calculations. In order to simplify the acoustic consideration, a theoretical formulation has been developed for predicting both steady-state sound fields and reverberation times in street canyons. The prediction model is further developed to predict the steady-state sound field in a long enclosure. Apart from the straight long enclosure, there are other variations such as a cross junction, a long enclosure with a T-intersection, an U-turn long enclosure. In the present study, an theoretical and experimental investigations were conducted to develop formulae for predicting reverberation times and steady-state sound fields in a junction of a street canyon and in a long enclosure with T-intersection. The theoretical models are validated by comparing the numerical predictions with published experimental results. The theoretical results are also compared with precise indoor measurements and large-scale outdoor experimental results. In all of previous acoustical studies related to long enclosure, most of the studies are focused on the monopole sound source. Besides non-directional noise source, many noise sources in long enclosure are dipole like, such as train noise and fan noise. In order to study the characteristics of directional noise sources, a review of available dipole source was conducted. A dipole was constructed which was subsequent used for experimental studies. In additional, a theoretical model was developed for predicting dipole sound fields. The theoretical model can be used to study the effect of a dipole source on the speech intelligibility in long enclosures.

  19. A polarizable dipole-dipole interaction model for evaluation of the interaction energies for N-H···O=C and C-H···O=C hydrogen-bonded complexes.

    PubMed

    Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng

    2014-03-05

    In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. Copyright © 2013 Wiley Periodicals, Inc.

  20. Analyzing the cosmic variance limit of remote dipole measurements of the cosmic microwave background using the large-scale kinetic Sunyaev Zel'dovich effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrana, Alexandra; Johnson, Matthew C.; Harris, Mary-Jean, E-mail: aterrana@perimeterinstitute.ca, E-mail: mharris8@perimeterinstitute.ca, E-mail: mjohnson@perimeterinstitute.ca

    Due to cosmic variance we cannot learn any more about large-scale inhomogeneities from the primary cosmic microwave background (CMB) alone. More information on large scales is essential for resolving large angular scale anomalies in the CMB. Here we consider cross correlating the large-scale kinetic Sunyaev Zel'dovich (kSZ) effect and probes of large-scale structure, a technique known as kSZ tomography. The statistically anisotropic component of the cross correlation encodes the CMB dipole as seen by free electrons throughout the observable Universe, providing information about long wavelength inhomogeneities. We compute the large angular scale power asymmetry, constructing the appropriate transfer functions, andmore » estimate the cosmic variance limited signal to noise for a variety of redshift bin configurations. The signal to noise is significant over a large range of power multipoles and numbers of bins. We present a simple mode counting argument indicating that kSZ tomography can be used to estimate more modes than the primary CMB on comparable scales. A basic forecast indicates that a first detection could be made with next-generation CMB experiments and galaxy surveys. This paper motivates a more systematic investigation of how close to the cosmic variance limit it will be possible to get with future observations.« less

  1. Software for the First Station of the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Dowell, J.; LWA Collaboration

    2014-05-01

    The first station of the Long Wavelength Array, LWA1, is currently operating at frequencies between 10 and 88 MHz in the Southwest United States. LWA1 consists of 256 cross-polarization dipole pairs spread over a 100 m aperture with five total-power outriggers up to ˜500 m from the center of the station. The raw voltages from the antennas are digitized and digitally combined to form four independent dual polarization beams, each with two tunings with up to 19.6 MHz of bandwidth. The telescope is designed to be a general-purpose instrument and supports a wide variety of science projects from the ionosphere to the cosmic dark ages. I will present the software behind this telescope and discuss the challenges associated with calibrating and maintaining an array of 261 dipoles. I will also discuss some of the challenges of handling the large data volume that LWA1 produces and how the LWA User Computing Facility helps address those problems.

  2. Observation of Feshbach resonances between ultracold Na and Rb atoms

    NASA Astrophysics Data System (ADS)

    Wang, Fudong; Xiong, Dezhi; Li, Xiaoke; Wang, Dajun

    2013-03-01

    Absolute ground-state 23Na87Rb molecule has a large electric dipole moment of 3.3 Debye and its two body exchange chemical reaction is energetically forbidden at ultracold temperatures. It is thus a nice candidate for studying quantum gases with dipolar interactions. We have built an experiment setup to investigate ultracold collisions between Na and Rb atoms as a first step toward the production of ground state molecular samples. Ultracold mixtures are first obtained by evaporative cooling of Rb and sympathetic cooling of Na. They are then transferred to a crossed dipole trap and prepared in different spin combinations for Feshbach resonance study. Several resonances below 1000 G are observed with both atoms prepared in either | F = 1,mF = 1 > or | F = 1,mF = - 1 > hyperfine states. Most of them are within 30 G of predicted values§ based on potentials obtained by high quality molecular spectroscopy studies. This work is supported by RGC Hong Kong. § E. Tiemann, private communications

  3. Shift of the Magnetopause Reconnection Line to the Winter Hemisphere Under Southward IMF Conditions: Geotail and MMS Observations

    NASA Technical Reports Server (NTRS)

    Kitamura, N.; Hasegawa, H.; Saito, Y.; Shinohara, I.; Yokota, S.; Nagai, T.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Dorelli, J. C.; hide

    2016-01-01

    At 02:13 UT on 18 November 2015 when the geomagnetic dipole was tilted by -27deg, the MMS spacecraft observed southward reconnection jets near the subsolar magnetopause under southward and dawnward interplanetary magnetic field conditions. Based on four-spacecraft estimations of the magnetic field direction near the separatrix and the motion and direction of the current sheet, the location of the reconnection line was estimated to be approx.1.8 R(sub E) or further northward of MMS. The Geotail spacecraft at GSM Z approx. 1.4 R(sub E) also observed southward reconnection jets at the dawnside magnetopause 30-40 min later. The estimated reconnection line location was northward of GSM Z approx.2 R(sub E). This crossing occurred when MMS observed purely southward magnetic fields in the magnetosheath. The simultaneous observations are thus consistent with the hypothesis that the dayside magnetopause reconnection line shifts from the subsolar point toward the northem (winter) hemisphere due to the effect of geomagnetic dipole tilt.

  4. Free–free experiments: the search for dressed atom effects

    NASA Astrophysics Data System (ADS)

    Martin, N. L. S.; Weaver, C. M.; Kim, B. N.; deHarak, B. A.

    2018-07-01

    Experiments on free–free electron scattering, specifically the absorption or emission of 1.17 eV photons from a Nd:YAG laser field by an unbound electron when it is scattered by an atom or molecule, are reviewed. For large scattering angles such experiments are well described by a simple analytical theory that is independent of the properties of the target. At small scattering angles this theory breaks down for targets with a high dipole polarizability α, and an additional term needs to be incorporated in the scattering amplitude. This term is proportional to the dipole polarizability, and hence introduces the properties of the target into the free–free cross section—i.e., the laser field ‘dresses’ the atom. A progress report is given of free–free experiments designed to look for such ‘dressed atom’ effects during the electron-impact excitation of argon in the presence of a laser field; the lowest excited states of argon have α ≈ 300 atomic units.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, P.F.

    The magnet system for the Superconducting Super Collider will likely remain the most ambitious -- and challenging -- application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winner in an early technical showdown that occupied the fledgling SSC project. However, some of its gross features can be traced back to three path-breaking superconducting accelerator initiatives under way a decade earlier -- on the East Coast, on the West Coast, and in the Midwest.more » Other features have a still earlier legacy. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos {theta}) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG.« less

  6. Size effects on plasticity and fatigue microstructure evolution in FCC single crystals

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar Abbas

    In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions. The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.

  7. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  8. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of bothmore » tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.« less

  9. Statistical downscaling forecast of Chinese winter temperature based on the autumn SST anomalies

    NASA Astrophysics Data System (ADS)

    Lu, J.

    2017-12-01

    This study investigates the impacts of the autumn sea surface temperature anomalies (SSTA) on interannual variations of Chinese winter temperature, and discusses the potential predictability of December-January-February (DJF) 2-m air temperature anomalies (TSA) over China based on the intimate linkage between the DJF TSA and autumn SSTA. According to the Empirical Orthogonal Function (EOF) analysis, three leading EOF modes jointly account for 80% of the total TSA variances and are characterized by a homogeneous spatial pattern, a north-south seesaw and a cross structure. The first three EOFs exhibit a stable feature revealed by cross-validation, suggesting the potential predictability of the DJF TSA. The EOF1 mode is influenced by changes in the intensities of the Siberian High (SH), East Asian winter monsoon (EAWM) and East Asian Trough related to an Eurasian pattern teleconnection, which can be tracked back to September-October-November (SON) SSTA associated with two SSTA tripole patterns in the North Pacific and North Atlantic, a dipole mode in the Indian Ocean and an ENSO-like mode in the equatorial and subtropical Pacific. However, the Arctic Oscillation plays an important role in the second mode. The teleconnection connecting the atmospheric circulation anomalies in two hemispheres indicates that the configuration of global SON SSTA induces the two annular modes and causes a TSA oscillation between the northern and southern parts of China. The third mode is related to the westward shift of the SH and western pathway EAWM, which are attributed to two dipole modes in the North Pacific and South Pacific, Atlantic Multidecadal Oscillation and Indian Ocean Basin Mode. Therefore a physically-based statistical model is established based on autumn SSTA indices. Cross-validation suggests that this statistical downscaling forecast model shows a good performance in predicting the DJF TSA.

  10. Ideal Magnetic Dipole Scattering

    NASA Astrophysics Data System (ADS)

    Feng, Tianhua; Xu, Yi; Zhang, Wei; Miroshnichenko, Andrey E.

    2017-04-01

    We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters light as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Such a possibility was recently demonstrated for the so-called anapole mode, which is associated with zero electric dipole scattering. By spectrally overlapping the magnetic dipole resonance with the anapole mode, we achieve ideal magnetic dipole scattering in the far field with tunable strong scattering resonances in the near infrared spectrum. We demonstrate that such a condition can be realized at least for two subwavelength geometries. One of them is a core-shell nanosphere consisting of a Au core and silicon shell. It can be also achieved in other geometries, including nanodisks, which are compatible with current nanofabrication technology.

  11. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F(-) + CH3F SN2 and proton-abstraction reactions.

    PubMed

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor

    2015-06-28

    We develop a full-dimensional global analytical potential energy surface (PES) for the F(-) + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol(-1), respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol(-1), respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol(-1). Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F(-) + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ∼40 kcal mol(-1), and retention trajectories via double inversion are found above Ecoll = ∼ 30 kcal mol(-1), and at Ecoll = ∼ 50 kcal mol(-1), the front-side attack cross sections start to increase very rapidly. At low Ecoll, the indirect mechanism dominates (mainly isotropic backward-forward symmetric θ distribution and translationally cold products) and significant long-range orientation effects (isotropic α distribution) and barrier recrossings are found. At higher Ecoll, the SN2 reaction mainly proceeds with direct rebound mechanism (backward scattering and hot product translation).

  12. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the F- + CH3F SN2 and proton-abstraction reactions

    NASA Astrophysics Data System (ADS)

    Szabó, István; Telekes, Hajnalka; Czakó, Gábor

    2015-06-01

    We develop a full-dimensional global analytical potential energy surface (PES) for the F- + CH3F reaction by fitting about 50 000 energy points obtained by an explicitly correlated composite method based on the second-order Møller-Plesset perturbation-F12 and coupled-cluster singles, doubles, and perturbative triples-F12a methods and the cc-pVnZ-F12 [n = D, T] basis sets. The PES accurately describes the (a) back-side attack Walden inversion mechanism involving the pre- and post-reaction (b) ion-dipole and (c) hydrogen-bonded complexes, the configuration-retaining (d) front-side attack and (e) double-inversion substitution pathways, as well as (f) the proton-abstraction channel. The benchmark quality relative energies of all the important stationary points are computed using the focal-point analysis (FPA) approach considering electron correlation up to coupled-cluster singles, doubles, triples, and perturbative quadruples method, extrapolation to the complete basis set limit, core-valence correlation, and scalar relativistic effects. The FPA classical(adiabatic) barrier heights of (a), (d), and (e) are -0.45(-0.61), 46.07(45.16), and 29.18(26.07) kcal mol-1, respectively, the dissociation energies of (b) and (c) are 13.81(13.56) and 13.73(13.52) kcal mol-1, respectively, and the endothermicity of (f) is 42.54(38.11) kcal mol-1. Quasiclassical trajectory computations of cross sections, scattering (θ) and initial attack (α) angle distributions, as well as translational and internal energy distributions are performed for the F- + CH3F(v = 0) reaction using the new PES. Apart from low collision energies (Ecoll), the SN2 excitation function is nearly constant, the abstraction cross sections rapidly increase with Ecoll from a threshold of ˜40 kcal mol-1, and retention trajectories via double inversion are found above Ecoll = ˜ 30 kcal mol-1, and at Ecoll = ˜ 50 kcal mol-1, the front-side attack cross sections start to increase very rapidly. At low Ecoll, the indirect mechanism dominates (mainly isotropic backward-forward symmetric θ distribution and translationally cold products) and significant long-range orientation effects (isotropic α distribution) and barrier recrossings are found. At higher Ecoll, the SN2 reaction mainly proceeds with direct rebound mechanism (backward scattering and hot product translation).

  13. Energy flow of electric dipole radiation in between parallel mirrors

    NASA Astrophysics Data System (ADS)

    Xu, Zhangjin; Arnoldus, Henk F.

    2017-11-01

    We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.

  14. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  15. Geometrical Simplification of the Dipole-Dipole Interaction Formula

    ERIC Educational Resources Information Center

    Kocbach, Ladislav; Lubbad, Suhail

    2010-01-01

    Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…

  16. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  17. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.

    2012-03-01

    The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  18. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  19. Dipole oscillator strength properties and dispersion energies for SiH 4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH 4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH 4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C 6, for the interaction of silane with itself and with forty-four other species, and the triple-dipole dispersion energy coefficient C 9 for (SiH 4) 3.

  20. Multiband rectenna for microwave applications

    NASA Astrophysics Data System (ADS)

    Okba, Abderrahim; Takacs, Alexandru; Aubert, Hervé; Charlot, Samuel; Calmon, Pierre-François

    2017-02-01

    This paper reports a multiband rectenna (rectifier + antenna) suitable for the electromagnetic energy harvesting of the spill-over loss of microwave antennas placed on board of geostationary satellites. Such rectenna is used for powering autonomous wireless sensors for satellite health monitoring. The topology of the rectenna is presented. The experimental results demonstrate that the proposed compact rectenna can harvest efficiently the incident electromagnetic energy at three different frequencies that are close to the resonant frequencies of the cross-dipoles implemented in the antenna array. xml:lang="fr"

  1. Observations at the planet Mercury by the plasma electron experiment - Mariner 10

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Vasyliunas, V. M.; Hartle, R. E.; Siscoe, G. L.

    1977-01-01

    Two nightside encounters with Mercury's magnetosphere by Mariner 10 revealed bow shock and magnetosheath signatures in the plasma electron data that are entirely consistent with the geometry expected for an interaction between a planet-centered magnetic dipole and the solar wind. The geometrically determined distance between the planet's center and the solar wind stagnation point is 1.4 plus or minus 0.1 R sub M. Both diffuse and sharp shock crossings were observed on the two magnetosphere encounters.

  2. Proceedings of the 2010 Antenna Applications Symposium Held in Monticello, Illinois on 21-23 September 2010. Volume 1

    DTIC Science & Technology

    2010-12-01

    learned for this expensive (in time and dollars) one year phased array element investigation is that simpler is better. The crossed dipole and helix...and amplitude control. One of the major lessons Fidelity Comtech learned from the cellular industry was not to attempt to control the performance of...Coaxial Antennas With Feed Gap Effect," IEEE Transactions on Antennas and Propagation, vol.57, no.2, pp.559-563, Feb. 2009. [18] Tam Do-Nhat, R

  3. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.

    PubMed

    Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan

    2015-05-04

    Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

  4. The kinematic dipole in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Maartens, Roy; Clarkson, Chris; Chen, Song

    2018-01-01

    In the concordance model of the Universe, the matter distribution—as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) —should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.

  5. Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions

    PubMed Central

    Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping

    2012-01-01

    The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954

  6. Model misspecification detection by means of multiple generator errors, using the observed potential map.

    PubMed

    Zhang, Z; Jewett, D L

    1994-01-01

    Due to model misspecification, currently-used Dipole Source Localization (DSL) methods may contain Multiple-Generator Errors (MulGenErrs) when fitting simultaneously-active dipoles. The size of the MulGenErr is a function of both the model used, and the dipole parameters, including the dipoles' waveforms (time-varying magnitudes). For a given fitting model, by examining the variation of the MulGenErrs (or the fit parameters) under different waveforms for the same generating-dipoles, the accuracy of the fitting model for this set of dipoles can be determined. This method of testing model misspecification can be applied to evoked potential maps even when the parameters of the generating-dipoles are unknown. The dipole parameters fitted in a model should only be accepted if the model can be shown to be sufficiently accurate.

  7. The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment.

    PubMed

    Takashima, S

    2001-04-05

    The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and electro-optical methods. The search for the origin of these dipolemoments, however, must be based on the detailed knowledge on protein structure with atomic resolutions. At present, we have two sources of information on the structure of protein molecules: (1) x-ray databases obtained in crystalline state; (2) NMR databases obtained in solution state. While x-ray databases consist of only one model, NMR databases, because of the fluctuation of the protein folding in solution, consist of a number of models, thus enabling the computation of dipole moment repeated for all these models. The aim of this work, using these databases, is the detailed investigation on the interdependence between the structure and dipole moment of protein molecules. The dipole moment of protein molecules has roughly two components: one dipole moment is due to surface charges and the other, core dipole moment, is due to polar groups such as N--H and C==O bonds. The computation of surface charge dipole moment consists of two steps: (A) calculation of the pK shifts of charged groups for electrostatic interactions and (B) calculation of the dipole moment using the pK corrected for electrostatic shifts. The dipole moments of several proteins were computed using both NMR and x-ray databases. The dipole moments of these two sets of calculations are, with a few exceptions, in good agreement with one another and also with measured dipole moments.

  8. Imaging Radar Studies of Atmospheric Winds and Waves

    DTIC Science & Technology

    1993-09-02

    3*ZAWindow - ZASpread(dir) do 10004 ant - 1,3 0 C "c Test #1: Reject this Doppler frequency if both quadrature "c components are too small on any...dipole) - pd23(dir,dipole) - 2*pi If (pd23(dir,dipole) .At. -pi) 1 pd23(dir,dipole) - pd23(dir,dipole) + 2*pi c "c Tests #2,3,6,&7: The two zenith...thetal+theta2)/2 10098 continue c "c Tests #4 and #8: Both dipoles have separately determined zenith "c angles for one direction. Do these two values

  9. A gaussian model for simulated geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Meduri, Domenico G.

    2016-10-01

    Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.

  10. Electromagnetic toroidal excitations in matter and free space.

    PubMed

    Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

  11. Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators

    DOE PAGES

    Liu, Sheng; Vaskin, Aleksandr; Campione, Salvatore; ...

    2017-06-07

    Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. Here in this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrallymore » overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.« less

  12. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  13. Electric dipole polarizability from first principles calculations

    DOE PAGES

    Miorelli, M.; Bacca, S.; Barnea, N.; ...

    2016-09-19

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for themore » 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.« less

  14. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  15. Gravitational dynamos and the low-frequency geomagnetic secular variation

    PubMed Central

    Olson, P.

    2007-01-01

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  16. Initial-state colour dipole emission associated with QCD Pomeron exchange

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1995-02-01

    The initial-state radiation of soft colour dipoles produced together with a single QCD Pomeron exchange (BFKL) in onium-onium scattering is calculated in the framework of Mueller's approach. The resulting dipole production grows with increasing energy and reveals an unexpected feature of a power-law tail at appreciably large transverse distances from the collision axis, this phenomenon being related to the scale-invariant structure of dipole-dipole correlations.

  17. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  18. A new dipole index of the salinity anomalies of the tropical Indian Ocean.

    PubMed

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-04-07

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.

  19. SYMBMAT: Symbolic computation of quantum transition matrix elements

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Kirchner, T.

    2012-08-01

    We have developed a set of Mathematica notebooks to compute symbolically quantum transition matrices relevant for atomic ionization processes. The utilization of a symbolic language allows us to obtain analytical expressions for the transition matrix elements required in charged-particle and laser induced ionization of atoms. Additionally, by using a few simple commands, it is possible to export these symbolic expressions to standard programming languages, such as Fortran or C, for the subsequent computation of differential cross sections or other observables. One of the main drawbacks in the calculation of transition matrices is the tedious algebraic work required when initial states other than the simple hydrogenic 1s state need to be considered. Using these notebooks the work is dramatically reduced and it is possible to generate exact expressions for a large set of bound states. We present explicit examples of atomic collisions (in First Born Approximation and Distorted Wave Theory) and laser-matter interactions (within the Dipole and Strong Field Approximations and different gauges) using both hydrogenic wavefunctions and Slater-Type Orbitals with arbitrary nlm quantum numbers as initial states. Catalogue identifier: AEMI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 71 628 No. of bytes in distributed program, including test data, etc.: 444 195 Distribution format: tar.gz Programming language: Mathematica Computer: Single machines using Linux or Windows (with cores with any clock speed, cache memory and bits in a word) Operating system: Any OS that supports Mathematica. The notebooks have been tested under Windows and Linux and with versions 6.x, 7.x and 8.x Classification: 2.6 Nature of problem: The notebooks generate analytical expressions for quantum transition matrix elements required in diverse atomic processes: ionization by ion, electron, or photon impact and ionization within the framework of strong field physics. In charged-particle collisions approaches based on perturbation theory enjoy widespread utilization. Accordingly, we have chosen the First Born Approximation and Distorted Wave theories as examples. In light-matter interactions, the main ingredient for many types of calculations is the dipole transition matrix in its different formulations, i.e. length, velocity, and acceleration gauges. In all these cases the transitions of interest occur between a bound state and a continuum state which can be described in different ways. With the notebooks developed in the present work it is possible to calculate transition matrix elements analytically for any set of quantum numbers nlm of initial hydrogenic states or Slater-Type Orbitals and for plane waves or Coulomb waves as final continuum states. Solution method: The notebooks employ symbolic computation to generate analytical expressions for transition matrix elements used in both collision and light-matter interaction physics. fba_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the First Born Approximation (FBA). The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a plane wave (PW) or a Coulomb wave (CW). distorted_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in Distorted Wave (DW) theories. The transitions considered are from a (distorted) bound hydrogenic state with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the Strong Field Approximation (SFA)) or a CW (the Coulomb-Volkov Approximation (CVA)). dipoleVelocity_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). For the case of the CVA we only include the transition from the 1s state to a continuum state represented by a CW. fba_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the FBA. The transitions considered are from a Slater-Type Orbital (STO) with arbitrary quantum numbers nlm to a continuum state represented by a PW or a CW. distorted_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in DW theories. The transitions considered are from a (distorted) STO with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleVelocity_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). The symbolic expressions obtained within each notebook can be exported to standard programming languages such as Fortran or C using the Format.m package (see the text and Ref. Sofroniou (1993) [16] for details). Running time: Computational times vary according to the transition matrix selected and quantum numbers nlm of the initial state used. The typical running time is several minutes, but it will take longer for large values of nlm.

  20. Conformational analysis investigation into the influence of nano-porosity of ultra-permeable ultra-selective polyimides on its diffusivity as potential membranes for use in the "green" separation of natural gases

    NASA Astrophysics Data System (ADS)

    Madkour, Tarek M.

    2013-08-01

    Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the pentyl group has caused the polymeric chains to revert back to the fully extended configurations possibly due to the quite high potential energy barriers that the chains have to cross to reach the less extended configurational states.

  1. Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong

    2015-01-01

    Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.

  2. Dipole-relaxation parameters for Ce3+-Fint- complexes in CaF2:Ce and CaF2:Ce,Mn

    NASA Astrophysics Data System (ADS)

    Jassemnejad, B.; McKeever, S. W. S.

    1987-12-01

    Dipole-relaxation parameters for Ce3+-Fint- centers (C4v symmetry) in CaF2 are calculated using the method of ionic thermocurrents (ITC). The data indicate concentration-dependent effects if analyzed using the traditional ITC equation, assuming a single value for the reorientation activation energy. This analysis is unable to account for an observed broadening of the ITC peak as more Ce is added to the crystals. However, as has been published for other MF2:R3+ systems, we find that the broadening can be successfully accounted for by adopting a modified ITC equation which allows for a Gaussian distribution of activation energies about a mean value E0 and with a distribution width p. The parameter E0 is found to be independent of dipole content while p is found to increase with increasing dipole concentration. The data are consistent with a perturbation of the dipole-relaxation parameters due to interactions with other defects within the system. However, the strength of the observed effects is difficult to explain by invoking electrostatic dipole-dipole interactions only. Other perturbations, due perhaps to monopole-dipole interactions or elastic interactions, must be taking place. The data indicate that dipole concentrations calculated by ITC will be in error in the presence of such interactions due to a reduction in the mean contribution per dipole to the overall polarization density. For samples in which interaction effects are negligible, we calculate a dipole moment of 3.12×10-29 C m. The data further indicate that that the addition of Mn to the system causes a decrease in the interaction effects via a reduction in the Ce C4v center dipole moment. It appears that the broadening of the ITC curve is sensitive to the defect structure surrounding the dipoles.

  3. Equivalent source modeling of the core magnetic field using magsat data

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Estes, R. H.

    1983-01-01

    Experiments are carried out on fitting the main field using different numbers of equivalent sources arranged in equal area at fixed radii at and inside the core-mantle boundary. In fixing the radius for a given series of runs, the convergence problems that result from the extreme nonlinearity of the problem when dipole positions are allowed to vary are avoided. Results are presented from a comparison between this approach and the standard spherical harmonic approach for modeling the main field in terms of accuracy and computational efficiency. The modeling of the main field with an equivalent dipole representation is found to be comparable to the standard spherical harmonic approach in accuracy. The 32 deg dipole density (42 dipoles) corresponds approximately to an eleventh degree/order spherical harmonic expansion (143 parameters), whereas the 21 dipole density (92 dipoles) corresponds to approximately a seventeenth degree and order expansion (323 parameters). It is pointed out that fixing the dipole positions results in rapid convergence of the dipole solutions for single-epoch models.

  4. Laboratory Measurements for H3+ Deuteration Reactions

    NASA Astrophysics Data System (ADS)

    Bowen, Kyle; Hillenbrand, Pierre-Michel; Urbain, Xavier; Savin, Daniel Wolf

    2018-06-01

    Deuterated molecules are important chemical tracers of protostellar cores. At the ~106 cm-3 particle densities and ~20 K temperatures typical for protostellar cores, most molecules freeze onto dust grains. A notable exception is H3+ and its isotopologues. These become important carriers of positive charge in the gas, can couple to any ambient magnetic field, and can thereby alter the cloud dynamics. Knowing the total abundance of H3+ and its isotopologues is important for studying the evolution of protostellar cores. However, H3+ and D3+ have no dipole moment. They lack a pure rotational spectrum and are not observable at protostellar core temperatures. Fortunately H2D+ and D2H+ have dipole moments and a pure rotational spectrum that can be excited in protostellar cores. Observations of these two molecules, combined with astrochemical models, provide information about the total abundance of H3+ and all its isotopologues. The inferred abundances, though, rely on accurate astrochemical data for the deuteration of H3+ and its isotopologues.Here we present laboratory measurements of the rate coefficients for three important deuterating reactions, namely D + H3+/H2D+/D2H+ → H + H2D+/ D2H+/D3+. Astrochemical models currently rely on rate coefficients from classical (Langevin) or semi-classical methods for these reactions, as fully quantum-mechanical calculations are beyond current computational capabilities. Laboratory studies are the most tractable means of providing the needed data. For our studies we used our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and molecular ions. Co-propagating beams allow us to measure experimental rate coefficients as a function of collision energy. We extract cross section data from these results, which we then convolve with a Maxwell-Boltzmann distribution to generate thermal rate coefficients. Here we present our results for these three reactions and discuss some implications.

  5. Dynamics and reactivity of trapped electrons on supported ice crystallites.

    PubMed

    Stähler, Julia; Gahl, Cornelius; Wolf, Martin

    2012-01-17

    The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we estimated the electron surface density for DEA, yielding cross sections that are orders of magnitude higher than the electron density measured in the gas phase.

  6. HZEFRG1 - SEMIEMPIRICAL NUCLEAR FRAGMENTATION MODEL

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1994-01-01

    The high charge and energy (HZE), Semiempirical Nuclear Fragmentation Model, HZEFRG1, was developed to provide a computationally efficient, user-friendly, physics-based program package for generating nuclear fragmentation databases. These databases can then be used in radiation transport applications such as space radiation shielding and dosimetry, cancer therapy with laboratory heavy ion beams, and simulation studies of detector design in nuclear physics experiments. The program provides individual element and isotope production cross sections for the breakup of high energy heavy ions by the combined nuclear and Coulomb fields of the interacting nuclei. The nuclear breakup contributions are estimated using an energy-dependent abrasion-ablation model of heavy ion fragmentation. The abrasion step involves removal of nucleons by direct knockout in the overlap region of the colliding nuclei. The abrasions are treated on a geometric basis and uniform spherical nuclear density distributions are assumed. Actual experimental nuclear radii obtained from tabulations of electron scattering data are incorporated. Nuclear transparency effects are included by using an energy-dependent, impact-parameter-dependent average transmission factor for the projectile and target nuclei, which accounts for the finite mean free path of nucleons in nuclear matter. The ablation step, as implemented by Bowman, Swiatecki, and Tsang (LBL report no. LBL-2908, July 1973), was treated as a single-nucleon emission for every 10 MeV of excitation energy. Fragmentation contributions from electromagnetic dissociation (EMD) processes, arising from the interacting Coulomb fields, are estimated by using the Weiszacker-Williams theory, extended to include electric dipole and electric quadrupole contributions to one-nucleon removal cross sections. HZEFRG1 consists of a main program, seven function subprograms, and thirteen subroutines. Each is fully commented and begins with a brief description of its functionality. The inputs, which are provided interactively by the user in response to on-screen questions, consist of the projectile kinetic energy in units of MeV/nucleon and the masses and charges of the projectile and target nuclei. With proper inputs, HZEFRG1 first calculates the EMD cross sections and then begins the calculations for nuclear fragmentation by searching through a specified number of isotopes for each charge number (Z) from Z=1 (hydrogen) to the charge of the incident fragmenting nucleus (Zp). After completing the nuclear fragmentation cross sections, HZEFRG1 sorts through the results and writes the sorted output to a file in descending order, based on the charge number of the fragmented nucleus. Details of the theory, extensive comparisons of its predictions with available experimental cross section data, and a complete description of the code implementing it are given in the program documentation. HZEFRG1 is written in ANSI FORTRAN 77 to be machine independent. It was originally developed on a DEC VAX series computer, and has been successfully implemented on a DECstation running RISC ULTRIX 4.3, a Sun4 series computer running SunOS 4.1, an HP 9000 series computer running HP-UX 8.0.1, a Cray Y-MP series computer running UNICOS, and IBM PC series computers running MS-DOS 3.3 and higher. HZEFRG1 requires 1Mb of RAM for execution. In addition, a FORTRAN 77 compiler is required to create an executable. A sample output run is included on the distribution medium for numerical comparison. The standard distribution medium for this program is a 3.5 inch 1.44Mb MS-DOS format diskette. Alternate distribution media and formats are available upon request. HZEFRG1 was completed in 1992.

  7. Georadar and geoelectricity method to identify the determine zone of sliding landslide

    NASA Astrophysics Data System (ADS)

    Dalimunthe, Y. K.; Hamid, A.

    2018-01-01

    The aim of this research is to determine the contrast between the sliding plane by observing the parameters of rock types, fractures, and faults that could potentially land slides in Bandar Baru, Lampung Barat, Indonesia by both methods of georadar and geoelectricity. This research uses radar reflection profiling configuration for georadar and dipole-dipole configuration for geoelectricity. For georadar data processing has been done with Reflexwave software and for geoelectricity, data processing has been done with Earthimager 2DINV software to interpret subsurface section. Results of research by both methods of georadar and geoelectricity shows the area of contact between the sand stone with resistivity value of 200-1449 Ωm and clay stone with a resistivity value of 32-100 Ωm at the limit depth of 9 m as a potential zone of sliding landslides where the physical properties of clay stone easily derail massive material on it.

  8. 3D magnetic sources' framework estimation using Genetic Algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Ponte-Neto, C. F.; Barbosa, V. C.

    2008-05-01

    We present a method for inverting total-field anomaly for determining simple 3D magnetic sources' framework such as: batholiths, dikes, sills, geological contacts, kimberlite and lamproite pipes. We use GA to obtain magnetic sources' frameworks and their magnetic features simultaneously. Specifically, we estimate the magnetization direction (inclination and declination) and the total dipole moment intensity, and the horizontal and vertical positions, in Cartesian coordinates , of a finite set of elementary magnetic dipoles. The spatial distribution of these magnetic dipoles composes the skeletal outlines of the geologic sources. We assume that the geologic sources have a homogeneous magnetization distribution and, thus all dipoles have the same magnetization direction and dipole moment intensity. To implement the GA, we use real-valued encoding with crossover, mutation, and elitism. To obtain a unique and stable solution, we set upper and lower bounds on declination and inclination of [0,360°] and [-90°, 90°], respectively. We also set the criterion of minimum scattering of the dipole-position coordinates, to guarantee that spatial distribution of the dipoles (defining the source skeleton) be as close as possible to continuous distribution. To this end, we fix the upper and lower bounds of the dipole moment intensity and we evaluate the dipole-position estimates. If the dipole scattering is greater than a value expected by the interpreter, the upper bound of the dipole moment intensity is reduced by 10 % of the latter. We repeat this procedure until the dipole scattering and the data fitting are acceptable. We apply our method to noise-corrupted magnetic data from simulated 3D magnetic sources with simple geometries and located at different depths. In tests simulating sources such as sphere and cube, all estimates of the dipole coordinates are agreeing with center of mass of these sources. To elongated-prismatic sources in an arbitrary direction, we estimate dipole-position coordinates coincident with principal axis of sources. In tests with synthetic data, simulating the magnetic anomaly yielded by intrusive 2D structures such as dikes and sills, the estimates of the dipole coordinates are coincident with the principal plane of these 2D sources. We also inverted the aeromagnetic data from Serra do Cabral, in southeastern, Brazil, and we estimated dipoles distributed on a horizontal plane at depth of 30 km, with inclination and declination of 59.1° and -48.0°, respectively. The results showed close agreement with previous interpretation.

  9. Probing the Cosmological Principle in the counts of radio galaxies at different frequencies

    NASA Astrophysics Data System (ADS)

    Bengaly, Carlos A. P.; Maartens, Roy; Santos, Mario G.

    2018-04-01

    According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxies. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is ~2 times larger than predicted by the mock data. For TGSS, the dipole is almost ~ 5 times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.

  10. A new dipole index of the salinity anomalies of the tropical Indian Ocean

    PubMed Central

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-01-01

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events. PMID:27052319

  11. Lineshapes of Dipole-Dipole Resonances in a Cold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Richards, B. G.; Jones, R. R.

    2015-05-01

    We have examined the lineshapes associated with Stark tuned, dipole-dipole resonances involving Rydberg atoms in a cold gas. Rb atoms in a MOT are laser excited from the 5 p level to 32p3 / 2 in the presence of a weak electric field. A fast rising electric field pulse Stark tunes the total energy of two 32 p atom pairs so it is (nearly) degenerate with that of the 32s1 / 2+33s1 / 2 states. Because of the dipole-dipole coupling, atom pairs separated by a distance R, develop 32s1 / 2+33s1 / 2 character. The maximum probability for finding atoms in s-states depends on the detuning from degeneracy and on the dipole-dipole coupling. We obtain the ``resonance'' lineshape by measuring, via state-selective field ionization, the s-state population as a function of the tuning field. The resonance width decreases with density due to R-3 dependence of the dipole-dipole coupling. In principle, the lineshape provides information about the distribution of Rydberg atom spacings in the sample. For equally spaced atoms, the lineshape should be Lorentzian while for a random nearest neighbor distribution it appears as a cusp. At low densities nearly Gaussian lineshapes are observed with widths that are too large to be the result of inhomogeneous electric or magnetic fields. Supported by the NSF.

  12. Polymer chain collapse induced by many-body dipole correlations.

    PubMed

    Budkov, Yu A; Kalikin, N N; Kolesnikov, A L

    2017-04-01

    We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.

  13. Photoeffect cross sections of some rare-earth elements at 145.4 keV

    NASA Astrophysics Data System (ADS)

    Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.

    1985-08-01

    Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.

  14. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    PubMed

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  15. Current Status of The Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Dartez, Louis; Creighton, Teviet; Jenet, Fredrick; Dolch, Timothy; Boehler, Keith; Bres, Luis; Cole, Brent; Luo, Jing; Miller, Rossina; Murray, James; Reyes, Alex; Rivera, Jesse

    2018-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of cross-dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual- polarization dipole antenna stands. The primary science goals of LoFASM will be the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council’s ASTRO2010 decadal survey. The data acquisition system for the LoFASM antenna array uses Field Programmable Gate Array (FPGA) technology to implement a real time full Stokes spectrometer and data recorder. This poster presents an overview of the LoFASM Radio Telescope as well as the status of data analysis of initial commissioning observations.

  16. Optimization of photoluminescence of GdAl3(BO3)4:Sm3+ phosphors for solid state lighting devices

    NASA Astrophysics Data System (ADS)

    Jamalaiah, Bungala Chinna

    2017-10-01

    The GdAl3(BO3)4:Sm3+ phosphors prepared by solid-state reaction method were characterized through thermal, structural and photoluminescence studies at room temperature only. The observed X-ray diffraction peaks were well consistent with JCPDS No. 83-1907. When excited with 406 nm wavelength, the studied phosphors exhibit orange-red luminescence through 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions. The concentration of Sm3+ ions was optimized to be 0.01 mol% for intense luminescence in GdAl3(BO3)4:Sm3+ phosphors. Beyond 0.01 mol% of Sm3+ ions concentration, luminescence quenching was observed due to energy transfer among the excited Sm3+ ions through cross-relaxation and dipole-dipole interaction mechanisms. The GdAl3(BO3)4:0.01 mol% Sm3+ phosphor was identified as a notable host material to emit intense orange-red luminescence for various solid state lighting devices under 406 nm excitation.

  17. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  18. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    NASA Astrophysics Data System (ADS)

    Ganem, Joseph; Bowman, Steven R.

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  19. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    PubMed Central

    2013-01-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684

  20. Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chen, Z.; Valiya Parambathu, A.; Hirasaki, G. J.; Chapman, W. G.

    2018-04-01

    The role of internal motions and molecular geometry on 1H NMR relaxation rates in liquid-state hydrocarbons is investigated using MD (molecular dynamics) simulations of the autocorrelation functions for intramolecular and intermolecular 1H-1H dipole-dipole interactions. The effects of molecular geometry and internal motions on the functional form of the autocorrelation functions are studied by comparing symmetric molecules such as neopentane and benzene to corresponding straight-chain alkanes n-pentane and n-hexane, respectively. Comparison of rigid versus flexible molecules shows that internal motions cause the intramolecular and intermolecular correlation-times to get significantly shorter, and the corresponding relaxation rates to get significantly smaller, especially for longer-chain n-alkanes. Site-by-site simulations of 1H's across the chains indicate significant variations in correlation times and relaxation rates across the molecule, and comparison with measurements reveals insights into cross-relaxation effects. Furthermore, the simulations reveal new insights into the relative strength of intramolecular versus intermolecular relaxation as a function of internal motions, as a function of molecular geometry, and on a site-by-site basis across the chain.

Top