Lattice calculation of electric dipole moments and form factors of the nucleon
NASA Astrophysics Data System (ADS)
Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.
2017-07-01
We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
Lattice calculation of electric dipole moments and form factors of the nucleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramczyk, M.; Aoki, S.; Blum, T.
In this paper, we analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)more » $$F_3$$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $$F_2$$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for $$F_3$$. In conclusion, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.« less
Lattice calculation of electric dipole moments and form factors of the nucleon
Abramczyk, M.; Aoki, S.; Blum, T.; ...
2017-07-10
In this paper, we analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)more » $$F_3$$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $$F_2$$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for $$F_3$$. In conclusion, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.« less
Form factors of the d*(2380 ) resonance
NASA Astrophysics Data System (ADS)
Dong, Yubing; Shen, Pengnian; Zhang, Zongye
2018-06-01
In order to explore the possible physical quantities for judging different structures of the newly observed resonance d*(2380 ), we study its electromagnetic form factors. In addition to the electric charge monopole C 0 , we calculate its electric quadrupole E 2 , magnetic dipole M 1 , and magnetic octupole M 3 form factors on the base of the realistic coupled Δ Δ +C8C8 channel d* wave function with both the S - and D -partial waves. The results show that the magnetic dipole moment and electric quadrupole deformation of d* are 7.602 and 2.53 ×10-2 fm2 , respectively. The calculated magnetic dipole moment in the naive constituent quark model is also compared with the result of D12π picture. By comparing with partial results where the d* state is considered with a single Δ Δ and with a D12π structures, we find that in addition to the charge distribution of d*, the magnetic dipole moment and magnetic radius can be used to discriminate different structures of d*. Moreover, a quite small electric quadrupole deformation indicates that d* is more inclined to a slightly oblate shape due to our compact hexaquark dominated structure of d*.
Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang
2013-03-14
The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.
NASA Astrophysics Data System (ADS)
Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo
2014-10-01
We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.
Electric and magnetic form factors of strange baryons
NASA Astrophysics Data System (ADS)
Van Cauteren, T.; Merten, D.; Corthals, T.; Janssen, S.; Metsch, B.; Petry, H.-R.; Ryckebusch, J.
. Predictions for the electromagnetic form factors of the Λ , Σ and Ξ hyperons are presented. The numerical calculations are performed within the framework of the fully relativistic constituent-quark model developed by the Bonn group. The computed magnetic moments compare favorably with the experimentally known values. Most magnetic form factors GM (Q2) can be parameterized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14 GeV.
Neutron Electric Dipole Moment from Gauge-String Duality.
Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea
2017-03-03
We compute the electric dipole moment of nucleons in the large N_{c} QCD model by Witten, Sakai, and Sugimoto with N_{f}=2 degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological θ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result-a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be d_{n}=1.8×10^{-16}θ e cm. The electric dipole moment of the proton is exactly the opposite.
Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna
NASA Technical Reports Server (NTRS)
Tulintseff, Ann N. (Inventor)
1995-01-01
An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.
Hidden momentum and the Abraham-Minkowski debate
NASA Astrophysics Data System (ADS)
Saldanha, Pablo L.; Filho, J. S. Oliveira
2017-04-01
We use an extended version of electrodynamics, which admits the existence of magnetic charges and currents, to discuss how different models for electric and magnetic dipoles do or do not carry hidden momentum under the influence of external electromagnetic fields. Based on that, we discuss how the models adopted for the electric and magnetic dipoles from the particles that compose a material medium influence the expression for the electromagnetic part of the light momentum in the medium. We show that Abraham expression is compatible with electric dipoles formed by electric charges and magnetic dipoles formed by magnetic charges, while Minkowski expression is compatible with electric dipoles formed by magnetic currents and magnetic dipoles formed by electric currents. The expression ɛ0E ×B , on the other hand, is shown to be compatible with electric dipoles formed by electric charges and magnetic dipoles formed by electric currents, which are much more natural models. So this expression has an interesting interpretation in the Abraham-Minkowski debate about the momentum of light in a medium: It is the expression compatible with the nonexistence of magnetic charges. We also provide a simple justification of why Abraham and Minkowski momenta can be associated with the kinetic and canonical momentum of light, respectively.
Axial-vector form factors of the nucleon from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rajan; Jang, Yong-Chull; Lin, Huey-Wen
In this paper, we present results for the form factors of the isovector axial vector current in the nucleon state using large scale simulations of lattice QCD. The calculations were done using eight ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2 + 1 + 1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06 , 0.09, and 0.12 fm and light-quark masses corresponding to the pion masses M π ≈ 135, 225, and 310 MeV. High-statistics estimates allow us to quantify systematic uncertainties in the extraction of G A (Q 2)more » and the induced pseudoscalar form factor G P(Q 2) . We perform a simultaneous extrapolation in the lattice spacing, lattice volume and light-quark masses of the axial charge radius r A data to obtain physical estimates. Using the dipole ansatz to fit the Q 2 behavior we obtain r A | dipole = 0.49(3) fm , which corresponds to M A = 1.39(9) GeV , and is consistent with M A = 1.35(17) GeV obtained by the miniBooNE collaboration. The estimate obtained using the z -expansion is r A | z - expansion = 0.46(6) fm, and the combined result is r A | combined = 0.48(4) fm. Analysis of the induced pseudoscalar form factor G P (Q 2) yields low estimates for g* P and g πNN compared to their phenomenological values. To understand these, we analyze the partially conserved axial current (PCAC) relation by also calculating the pseudoscalar form factor. Lastly, we find that these low values are due to large deviations in the PCAC relation between the three form factors, and in the pion-pole dominance hypothesis.« less
Axial-vector form factors of the nucleon from lattice QCD
Gupta, Rajan; Jang, Yong-Chull; Lin, Huey-Wen; ...
2017-12-04
In this paper, we present results for the form factors of the isovector axial vector current in the nucleon state using large scale simulations of lattice QCD. The calculations were done using eight ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2 + 1 + 1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06 , 0.09, and 0.12 fm and light-quark masses corresponding to the pion masses M π ≈ 135, 225, and 310 MeV. High-statistics estimates allow us to quantify systematic uncertainties in the extraction of G A (Q 2)more » and the induced pseudoscalar form factor G P(Q 2) . We perform a simultaneous extrapolation in the lattice spacing, lattice volume and light-quark masses of the axial charge radius r A data to obtain physical estimates. Using the dipole ansatz to fit the Q 2 behavior we obtain r A | dipole = 0.49(3) fm , which corresponds to M A = 1.39(9) GeV , and is consistent with M A = 1.35(17) GeV obtained by the miniBooNE collaboration. The estimate obtained using the z -expansion is r A | z - expansion = 0.46(6) fm, and the combined result is r A | combined = 0.48(4) fm. Analysis of the induced pseudoscalar form factor G P (Q 2) yields low estimates for g* P and g πNN compared to their phenomenological values. To understand these, we analyze the partially conserved axial current (PCAC) relation by also calculating the pseudoscalar form factor. Lastly, we find that these low values are due to large deviations in the PCAC relation between the three form factors, and in the pion-pole dominance hypothesis.« less
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
NASA Technical Reports Server (NTRS)
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
Precise measurement of the neutron magnetic form factor G(M)n in the few-GeV2 region.
Lachniet, J; Afanasev, A; Arenhövel, H; Brooks, W K; Gilfoyle, G P; Higinbotham, D; Jeschonnek, S; Quinn, B; Vineyard, M F; Adams, G; Adhikari, K P; Amaryan, M J; Anghinolfi, M; Asavapibhop, B; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Beard, K; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Bonner, B E; Bookwalter, C; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Bültmann, S; Burkert, V D; Calarco, J R; Careccia, S L; Carman, D S; Casey, L; Cheng, L; Cole, P L; Coleman, A; Collins, P; Cords, D; Corvisiero, P; Crabb, D; Crede, V; Cummings, J P; Dale, D; Daniel, A; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dhamija, S; Dharmawardane, K V; Dhuga, K S; Dickson, R; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Fedotov, G; Fersch, R; Feuerbach, R J; Forest, T A; Fradi, A; Gabrielyan, M Y; Garçon, M; Gavalian, G; Gevorgyan, N; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Graham, L; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hanretty, C; Hardie, J; Hassall, N; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hu, J; Huertas, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Juengst, H G; Kageya, T; Kalantarians, N; Keller, D; Kellie, J D; Khandaker, M; Khetarpal, P; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klusman, M; Konczykowski, P; Kossov, M; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Laget, J M; Langheinrich, J; Lawrence, D; Lima, A C S; Livingston, K; Lowry, M; Lu, H Y; Lukashin, K; Maccormick, M; Malace, S; Manak, J J; Markov, N; Mattione, P; McAleer, S; McCracken, M E; McKinnon, B; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Mineeva, T; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Moreno, B; Moriya, K; Morrow, S A; Moteabbed, M; Mueller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Park, S; Pasyuk, E; Paterson, C; Pereira, S Anefalos; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Popa, I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Saini, M S; Salamanca, J; Salgado, C; Sandorfi, A; Santoro, J P; Sapunenko, V; Schott, D; Schumacher, R A; Serov, V S; Sharabian, Y G; Sharov, D; Shaw, J; Shvedunov, N V; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Starostin, A; Stavinsky, A; Stepanyan, S; Stepanyan, S S; Stokes, B E; Stoler, P; Stopani, K A; Strakovsky, I I; Strauch, S; Suleiman, R; Taiuti, M; Taylor, S; Tedeschi, D J; Thompson, R; Tkabladze, A; Tkachenko, S; Ungaro, M; Vlassov, A V; Watts, D P; Wei, X; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Yurov, M; Zana, L; Zhang, J; Zhao, B; Zhao, Z W
2009-05-15
The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.
Nucleon electromagnetic form factors using lattice simulations at the physical point
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-08-01
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
Hu, Yiyu; Cao, Dapeng
2009-05-05
On the basis of the coarse grained model, we investigated the adsorption of nonuniformly charged fullerene-like nanoparticles on planar polyelectrolyte brushes (PEBs) in aqueous solution by using Brownian dynamics simulation. It is found that the electroneutral nanoparticles can be adsorbed by the PEB, which is attributed to the asymmetrical electrostatic interactions of the PEB with the positively charged sites and negatively charged sites of the fullerene-like nanoparticles. The simulation results indicated that the adsorption amount exhibits non-monotonic behavior with the dipole moment of nanoparticles. First, the adsorption amount increases with the dipole moment and then reaches the maximum at the dipole moment of micro = 10.45. Finally, the adsorption falls at the dipole moment of micro = 14.39. The reason may be that, at the extremely large dipole moment of micro = 14.39, the fullerene-like nanoparticles aggregate together to form a big cluster in the bulk phase, which can be confirmed by the extremely high peak in the radial distribution function between nanoparticles. Accordingly, it is difficult for nanoparticles to enter into the PEB at the dipole moment of micro = 14.39. In addition, it is also found that the brush grafting density is an important factor affecting the brush thickness.
Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong
2011-02-15
Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.
QCD dipole model and k T factorization
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
2001-01-01
It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k T factorization at the leading logarithm approximation (in - logx Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.
Chemical potential and compressibility of quantum Hall bilayer excitons,.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, Brian
2016-02-25
I consider a system of two parallel quantum Hall layers with total filling factor 0 or 1. When the distance between the layers is small enough, electrons and holes in opposite layers can form inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential. I present results for the chemical potential u of the resulting bosonic system as a function of the exciton concentration n and the interlayer separation d. I show that both u and the interlayer capacitance have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing dipole moment andmore » an increasing effective mass with increasing d. Finally, I discuss the transition between the superfluid and Wigner crystal phases, which is shown to occur at d x n-1/10. Results are derived first via simple intuitive arguments, and then verified with more careful analytic derivations and numeric calculations.« less
Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions
NASA Astrophysics Data System (ADS)
Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.
2014-07-01
The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.
Laboratory simulation of energetic flows of magnetospheric planetary plasma
NASA Astrophysics Data System (ADS)
Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Zakharov, Yu P.; Prokopov, P. A.; Ponomarenko, A. G.
2017-01-01
Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere.
NASA Astrophysics Data System (ADS)
Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.
2017-11-01
Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.
NASA Astrophysics Data System (ADS)
Hughes, Stephen; Agarwal, Girish S.
2017-02-01
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Hughes, Stephen; Agarwal, Girish S
2017-02-10
We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.
Threshold law for electron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
A derivation of the explicit form of the threshold law for electron impact ionization of atoms is presented, based on the Coulomb-dipole theory. The important generalization is made of using a dipole function whose moment is the dipole moment formed by an inner electron and the nucleus. The result is a modulated quasi-linear law for the yield of positive ions which applies to positron-atom impact ionization.
Simulation of self-assembly of polyzwitterions into vesicles
Mahalik, Jyoti P.; Muthukumar, Murugappan
2016-08-19
Using the Langevin dynamics method and a coarse-grained model, we have researched the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergomore » globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. Finally the vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.« less
Network formation and gelation in telechelic star polymers
NASA Astrophysics Data System (ADS)
Wadgaonkar, Indrajit; Chatterji, Apratim
2017-02-01
We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.
Network formation and gelation in telechelic star polymers.
Wadgaonkar, Indrajit; Chatterji, Apratim
2017-02-28
We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.
Electromagnetic and axial-vector form factors of the quarks and nucleon
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Randhawa, Monika
2017-11-01
In light of the improved precision of the experimental measurements and enormous theoretical progress, the nucleon form factors have been evaluated with an aim to understand how the static properties and dynamical behavior of nucleons emerge from the theory of strong interactions between quarks. We have analyzed the vector and axial-vector nucleon form factors (GE,Mp,n(Q2) and GAp,n(Q2)) using the spin observables in the chiral constituent quark model (χCQM) which has made a significant contribution to the unraveling of the internal structure of the nucleon in the nonperturbative regime. We have also presented a comprehensive analysis of the flavor decomposition of the form factors (GEq(Q2), GMq(Q2) and GAq(Q2) for q = u,d,s) within the framework of χCQM with emphasis on the extraction of the strangeness form factors which are fundamental to determine the spin structure and test the chiral symmetry breaking effects in the nucleon. The Q2 dependence of the vector and axial-vector form factors of the nucleon has been studied using the conventional dipole form of parametrization. The results are in agreement with the available experimental data.
Optical activity of chirally distorted nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.
2016-05-21
We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ bymore » a factor of 10{sup 5}. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.« less
Optical activity of chirally distorted nanocrystals
NASA Astrophysics Data System (ADS)
Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.
2016-05-01
We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.
NASA Astrophysics Data System (ADS)
Gondek, E.; Kityk, I. V.; Danel, A.; Sanetra, J.
2008-06-01
We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1 H-pyrazolo[3,4- b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.
Gondek, E; Kityk, I V; Danel, A; Sanetra, J
2008-06-01
We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1H-pyrazolo[3,4-b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.
The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.
1991-12-01
MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.
Optimal Super Dielectric Material
2015-09-01
INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated...containing liquid with dissolved ionic species will form large dipoles, polarized opposite the applied field. Large dipole SDM placed between the...electrodes of a parallel plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with
The effects of pressure anisotropy on Birkeland currents in dipole and stretched magnetospheres
NASA Technical Reports Server (NTRS)
Birmingham, Thomas J.
1992-01-01
Attention is given to two effects which modify the rate of generation of Birkeland currents from the values given by the Vasyliunas (1970) formula in a dipole, namely, nonisotropic plasma pressure and the radial distention of magnetic field lines. The parallel current at any given point is the integrated effect of the diversion of perpendicular currents along the length of the flux tube from the equator. The result for j-parallel in I is fully nonlinear. In a dipole field the effect of anisotropy is modest: j-parallel at the ionosphere is, irrespective of the r0 value, about factor of 2.4 larger for a large P-parallel anisotropy (r = 0.1) than for the isotropic case and factor of 0.2 smaller for r = 10. In the stretched field the comparable values are factor of 10 and factor of 0.06 for a field line intersecting the ionosphere at a dipole colatitude of 16.4 deg and crossing the equator at r0 of 20. The results exhibit differences in plasma density and plasma pressure along field lines between the stretched and dipole models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vina Punjabi, Charles Perdrisat
2010-05-01
The ratio, μpGEp/GMp, where μp is the proton magnetic moment, has been measured extensively over the last decade at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of transverse to longitudinal polarizations components of the recoiling proton in elastic electron-proton scattering. The polarization transfer results are of unprecedented high precision and accuracy, due in large part to the small systematic uncertainties associated with the experimental technique. Prior to these measurements, the form factors were empirically observed to exhibit dipole forms, such that μpGEp/GMp ≈ 1 over all regions of momentum transfermore » studied. With the Hall A results confirming that the ratio μpGEp/GMp shows a steady decrease below unity as a function of Q2, beginning around Q2 ≈ 1 GeV2, discussions revolving around the implication of this deviation from dipole behavior for the structure of the proton have been accompanied by renewed experimental interest in these elastic form factors. Starting in the fall of 2007, two new experiments, GEp-III and GEp-2γ in Hall C at JLab, measured the form factor ratio, GEp/GMp; the GEp-III experiment pushed the highest Q2 limit from 5.6 to 8.49 GeV2, with intermediate points at 5.2 and 6.8 GeV2, and the GEp-2γ experiment measured the ratio in three different kinematics at the constant value Q2=2.5 GeV2, by changing beam energy and detector angles. Preliminary results from both experiments are reported.« less
Inclusion of Theta(12) dependence in the Coulomb-dipole theory of the ionization threshold
NASA Technical Reports Server (NTRS)
Srivastava, M. K.; Temkin, A.
1991-01-01
The Coulomb-dipole (CD) theory of the electron-atom impact-ionization threshold law is extended to include the full electronic repulsion. It is found that the threshold law is altered to a form in contrast to the previous angular-independent model. A second energy regime, is also identified wherein the 'threshold' law reverts to its angle-independent form. In the final part of the paper the dipole parameter is estimated to be about 28. This yields numerical estimates of E(a) = about 0.0003 and E(b) = about 0.25 eV.
Nucleon Axial and Electromagnetic Form Factors
NASA Astrophysics Data System (ADS)
Jang, Yong-Chull; Bhattacharya, Tanmoy; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram
2018-03-01
We present results for the isovector axial, induced pseudoscalar, electric, and magnetic form factors of the nucleon. The calculations were done using 2 + 1 + 1-flavor HISQ ensembles generated by the MILC collaboration with lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and by comparing two-versus three-states in three-point correlators. The Q2 behavior is analyzed using the model independent z-expansion and the dipole ansatz. Final results for the charge radii and magnetic moment are obtained using a simultaneous fit in Mπ, lattice spacing a and finite volume.
Pattern formation in a monolayer of magnetic spheres
NASA Astrophysics Data System (ADS)
Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang
2003-08-01
Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.
NASA Astrophysics Data System (ADS)
Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro
2018-01-01
Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.
Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon
2015-12-07
The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.
Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong
2015-01-01
Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.
The Physics of Coupled Atomic-Molecular Condensate System
2010-10-09
electric dipoles represents a novel state of matter with long-range and anisotropic dipole-dipole interactions, that are highly amenable to the...free-bound FC factor. Simultaneously, a series of laser �elds of (molecular) Rabi frequency i (i 2) are applied to move the molecules from the
EMIIM Wetting Properties of & Their Effect on Electrospray Thruster Design
2012-03-21
materials can be characterized using the surface tension and contact or “wetting" angle formed when a liquid droplet comes in contact with a solid surface...Illustration of the instantaneous dipole formed by electron motion in a hy- drogen atom(left) and how these instantaneous dipoles can attract each other...the extractor grid and of like charge to the emitter. A Taylor cone formed using an internally wetted emitter and the ionic liquid BMI-BG4 is shown in
Computer program for determining rotational line intensity factors for diatomic molecules
NASA Technical Reports Server (NTRS)
Whiting, E. E.
1973-01-01
A FORTRAN IV computer program, that provides a new research tool for determining reliable rotational line intensity factors (also known as Honl-London factors), for most electric and magnetic dipole allowed diatomic transitions, is described in detail. This users manual includes instructions for preparing the input data, a program listing, detailed flow charts, and three sample cases. The program is applicable to spin-allowed dipole transitions with either or both states intermediate between Hund's case (a) and Hund's case (b) coupling and to spin-forbidden dipole transitions with either or both states intermediate between Hund's case (c) and Hund's case (b) coupling.
Properties of the superconductor in accelerator dipole magnets
NASA Astrophysics Data System (ADS)
Teravest, Derk
Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.
NASA Astrophysics Data System (ADS)
McDowell, Sean A. C.
2018-03-01
An MP2/6-311++G(3df,3pd) computational study of a series of hydrogen-bonded complexes X3CH⋯YZ (X = Cl, F, NC; YZ = FLi, BF, CO, N2) was undertaken to assess the trends in the relative stability and other molecular properties with variation of both the X group and the chemical hardness of the Y atom of YZ. The red- and blue-shifting propensities of the proton donor X3CH were investigated by considering the Csbnd H bond length change and its associated vibrational frequency shift. The proton donor Cl3CH, which has a positive dipole moment derivative with respect to Csbnd H bond extension, tends to form red-shifted complexes, this tendency being modified by the hardness (and dipole moment) associated with the proton acceptor. On the other hand, F3CH has a negative dipole moment derivative and tends to form blue-shifted complexes, suggesting that as X becomes more electron-withdrawing, the proton donor should have a negative dipole moment derivative and form blue-shifted complexes. Surprisingly, the most polar proton donor (NC)3CH was found to have a positive dipole moment derivative and produces red-shifted complexes. A perturbative model was found useful in rationalizing the trends for the Csbnd H bond length change and associated frequency shift.
Study on photoemission surface of varied doping GaN photocathode
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Du, Ruijuan; Ding, Huan; Gao, Youtang; Chang, Benkang
2014-09-01
For varied doping GaN photocathode, from bulk to surface the doping concentrations are distributed from high to low. The varied doping GaN photocathode may produce directional inside electric field within the material, so the higher quantum efficiency can be obtained. The photoemission surface of varied doping GaN photocathode is very important to the high quantum efficiency, but the forming process of the surface state after Cs activation or Cs/O activation has been not known completely. Encircling the photoemission mechanism of varied GaN photocathode, considering the experiment phenomena during the activation and the successful activation results, the varied GaN photocathode surface model [GaN(Mg):Cs]:O-Cs after activation with cesium and oxygen was given. According to GaN photocathode activation process and the change of electronic affinity, the comparatively ideal NEA property can be achieved by Cs or Cs/O activation, and higher quantum efficiency can be obtained. The results show: The effective NEA characteristic of GaN can be gotten only by Cs. [GaN(Mg):Cs] dipoles form the first dipole layer, the positive end is toward the vacuum side. In the activation processing with Cs/O, the second dipole layer is formed by O-Cs dipoles, A O-Cs dipole includes one oxygen atom and two Cs atoms, and the positive end is also toward the vacuum side thus the escape of electrons can be promoted.
NASA Astrophysics Data System (ADS)
Hu, Yufen; Li, Wei; Lu, Yan; Wang, Zhongping; Leng, Xinli; Liao, Qinghua; Liu, Xiaoqing; Wang, Li
The self-assembly structures of 2,2‧:6‧,2‧‧-terpyridine-4‧-carboxylic acid (C16H11N3O2; YN) molecules and 3,5-diphenylbenzoic acid (C19H14O2; YC) molecules on Ag(110) surface have been investigated by scanning tunneling microscopy (STM) and Density Functional Theory (DFT) calculation. The YC molecules form two different well-organized structures due to the π-π stacking and dipole-dipole interactions. When three C atoms of YC molecules are replaced by three N atoms to form YN molecules, the main driving force to form ordered assembly structures of YN molecule is changed to metal-organic coordination bond and hydrogen bond. The dramatic changes of main driving force between YC/Ag(110) and YN/Ag(110) system demonstrate that the N atoms are apt to form metal-organic coordination bond and hydrogen bond but dipole-dipole interactions and π-π stacking are relative to C atoms. These findings further reveal that the optimization design of organic molecules could vary the main driving force and then lead to the change of the molecular self-assembly structures.
Giant Primeval Magnetic Dipoles
NASA Astrophysics Data System (ADS)
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking.
Picardi, Michela F; Zayats, Anatoly V; Rodríguez-Fortuño, Francisco J
2018-03-16
Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.
Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking
NASA Astrophysics Data System (ADS)
Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.
2018-03-01
Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.
Yu, Wenjie; Andrews, Lester; Wang, Xuefeng
2017-11-22
Laser-ablated Be atoms, cations, and electrons were reacted with F 2 , ClF, Cl 2 , NF 3 , CCl 4 , CF 2 Cl 2 , HCl, DCl, and SiCl 4 diluted in noble gases. The major products were the dihalides BeF 2 , BeClF, BeCl 2 , and the hydride chloride HBeCl, whose identities were confirmed by comparison with previous evaporative work, deuterium substitution, and vibrational frequency calculations. The matrix-isolated fundamental frequency of the BeF molecule is higher, and the frequency of BeCl is lower, than that determined for the gas-phase molecules. The BeF + and BeCl + cations formed strong dipole-induced dipole complexes in solid Ne, Ar, Kr, and Xe with stepwise increase in computed noble gas dissociation energies. Going down the family NgBeF + and NgBeCl + series (Ng = Ne, Ar, Kr, Xe) the Mulliken charges q(Be) decrease, while q(Ng) increases, and the dipole moments decrease, which suggests covalent bonding in the xenon species. We find that the largest intramatrix shift is Ne to Ar which follows the largest factor increase for the Ng atomic polarizabilities. Extra electrons produce Cl - , which reacts with HCl to form the stable HCl 2 - anion and possibly with BeCl 2 to give BeCl 3 - . A weak band observed in neon experiments with F 2 is probably due to BeF 3 - .
STM imaging ortho- and para-fluorothiophenol self-assembled monolayers on Au(111).
Jiang, Peng; Deng, Ke; Fichou, Denis; Xie, Si-Shen; Nion, Aymeric; Wang, Chen
2009-05-05
Self-assembled monolayers (SAMs) of para- and ortho-fluorothiophenol (p- and o-FTP) spontaneously formed on Au(111) substrate have been contrasted through investigation by a scanning tunneling microscope (STM) at room temperature. High-resolution STM imaging reveals that p-FTP adopts a 6 x radical3R30 degrees molecule arrangement containing six molecules. Two different kinds of p-FTP molecule dimer line structures have been formed on Au(111) by intermolecular pi-pi stacking along 112 substrate directions, besides a single p-FTP molecule line. In contrast, o-FTP molecules self-assemble into a much looser wave-like SAM, which can be described as a 5 x 3 radical3R30 degrees structure containing two molecules. Periodic density functional theory (DFT) calculations for the two systems suggest that these kinds of FTP molecules preferentially take the asymmetrical positions between 3-fold face-centered cubic (fcc) hollow and bridge sites on Au(111), tilting from the substrate surface. Theoretical simulation gives apparent average tilted angles of 58 degrees and 68 degrees for p-FTP and o-FTP with respect to the surface normal, respectively. This simulation shows that o-FTP is more inclined to lie down toward the Au(111) surface compared to p-FTP. The difference between p-FTP and o-FTP SAM structures can be qualitatively understood in terms of the variation of intermolecular dipole-dipole orientation. This suggests that, besides well-known Au-S and pi-pi interactions, electrostatic interactions including dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions might also play an important role in influencing the SAM structures formed by aromatic thiols with a permanent dipole moment.
Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.
Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng
2012-03-30
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.
Contribution of the Axon Initial Segment to Action Potentials Recorded Extracellularly.
Teleńczuk, Maria; Brette, Romain; Destexhe, Alain; Teleńczuk, Bartosz
2018-01-01
Action potentials (APs) are electric phenomena that are recorded both intracellularly and extracellularly. APs are usually initiated in the short segment of the axon called the axon initial segment (AIS). It was recently proposed that at the onset of an AP the soma and the AIS form a dipole. We study the extracellular signature [the extracellular AP (EAP)] generated by such a dipole. First, we demonstrate the formation of the dipole and its extracellular signature in detailed morphological models of a reconstructed pyramidal neuron. Then, we study the EAP waveform and its spatial dependence in models with axonal AP initiation and contrast it with the EAP obtained in models with somatic AP initiation. We show that in the models with axonal AP initiation the dipole forms between somatodendritic compartments and the AIS, and not between soma and dendrites as in the classical models. The soma-dendrites dipole is present only in models with somatic AP initiation. Our study has consequences for interpreting extracellular recordings of single-neuron activity and determining electrophysiological neuron types, but also for better understanding the origins of the high-frequency macroscopic extracellular potentials recorded in the brain.
Reaction μ-+6Li-->3H+3H+νμ and the axial current form factor in the timelike region
NASA Astrophysics Data System (ADS)
Mintz, S. L.
1983-09-01
The differential muon-capture rate dΓdET is obtained for the reaction μ-+6Li-->3H+3H+νμ over the allowed range of ET, the tritium energy, for two assumptions concerning the behavior of FA, the axial current form factor, in the timelike region; analytic continuation from the spacelike region and mirror behavior, FA(q2, timelike)=FA(q2, spacelike). The values of dΓdET under these two assumptions are found to vary substantially in the timelike region as a function of the mass MA in the dipole fit to FA. Values of dΓdET are given for MA2=2mπ2, 4.95mπ2, and 8mπ2. NUCLEAR REACTIONS Muon capture 6Li(μ-, νμ)3H3H, Γ, dΓdET calculated for two assumptions concerning the axial current form factor behavior in timelike region.
A class of Fourier integrals based on the electric potential of an elongated dipole.
Skianis, Georgios Aim
2014-01-01
In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals are associated with a group of functions at space domain, which represent the electric potential of a distribution of elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by the Fourier transform of the Green's function of the potential of the dipole distribution, times a definite integral in which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated dipole distributions, at spatial frequency domain.
Broadband standard dipole antenna for antenna calibration
NASA Astrophysics Data System (ADS)
Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao
1995-06-01
Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.
Nucleon form factors with 2+1 flavor dynamical domain-wall fermions
NASA Astrophysics Data System (ADS)
Yamazaki, Takeshi; Aoki, Yasumichi; Blum, Tom; Lin, Huey-Wen; Ohta, Shigemi; Sasaki, Shoichi; Tweedie, Robert; Zanotti, James
2009-06-01
We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axial-vector currents: the vector, induced tensor, axial-vector, and induced pseudoscalar form factors. The calculation is carried out with the gauge configurations generated with Nf=2+1 dynamical domain-wall fermions and Iwasaki gauge actions at β=2.13, corresponding to a cutoff a-1=1.73GeV, and a spatial volume of (2.7fm)3. The up and down-quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate the form factors in the range of momentum transfers, 0.2
Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.
Yu, Hongling; Ho, Tak-San; Rabitz, Herschel
2018-05-09
Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.
NASA Astrophysics Data System (ADS)
Mu, Yan; Gao, Yi Qin
2007-09-01
We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.
Störmer method for a problem of point injection of charged particles into a magnetic dipole field
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.
2017-03-01
The problem of point injection of charged particles into a magnetic dipole field was considered. Analytical expressions were obtained by the Störmer method for regions of allowed pulses of charged particles at random points of a dipole field at a set position of the point source of particles. It was found that, for a fixed location of the studied point, there was a specific structure of the coordinate space in the form of a set of seven regions, where the injector location in each region corresponded to a definite form of an allowed pulse region at the studied point. It was shown that the allowed region boundaries in four of the mentioned regions were surfaces of conic section revolution.
Evidence for a quantum dipole liquid state in an organic quasi–two-dimensional material
NASA Astrophysics Data System (ADS)
Hassan, Nora; Cunningham, Streit; Mourigal, Martin; Zhilyaeva, Elena I.; Torunova, Svetlana A.; Lyubovskaya, Rimma N.; Schlueter, John A.; Drichko, Natalia
2018-06-01
Mott insulators are commonly pictured with electrons localized on lattice sites, with their low-energy degrees of freedom involving spins only. Here, we observe emergent charge degrees of freedom in a molecule-based Mott insulator κ-(BEDT-TTF)2Hg(SCN)2Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario in which the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures.
Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.
2005-07-26
A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn
2016-10-01
We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fessenden, R.W.; Carton, P.M.; Shimamori, H.
1982-09-16
Time-resolved changes in microwave dielectric absorption have been used to study transients formed by laser flash photolysis. Details of the method and apparatus are given. Applications both to the measurements of the dipole moments of transients and to decay kinetics are given. The dipole moments of the lowest triplet states of a number of aromatic compounds (mostly ketones) have been measured in benzene solution at room temperature. States of n..pi..* character generally possess smaller dipole moments than the corresponding ground states while states of ..pi pi..* character (for example, fluorenone) have larger values than the ground state. The triplets ofmore » 4-(dimethylamino)benzaldehyde and 4,4'-bis(dimethylamino)benzophenone have rather high values of dipole moment (10.5 and 8.4 D, respectively) showing their charge-transfer character. The triplet state of benzil was found to have zero or near-zero dipole moment, thus confirming that the triplet state is of a transstructure. 7 figures, 1 table.« less
NASA Astrophysics Data System (ADS)
Setyawan, Agus; Satria Fikri, Muhammad; Endro Suseno, Jatmiko; Fuad, Muhamad
2018-05-01
Gombel hill locates at Semarang, Central Java, Indonesia. Base on Semarang’s susceptiblity map zone, Gombel hill is belong to high susceptibility and instability zone. Instability may cause faults to Gombel hill area, unfortunately the geosciences research in Gombel is still lack. The geophysical survey has been conducted using 2D geoelectric resistivity method with dipole – dipole configuration to identify the lithology of landslide at Gombel hill. The data have been collected from three lines. The first and third line have 100 m length, and the second line have 80 m length with 5 m space in each lines. The data were processed and modelled using Res2Dinv software. From the first line, suspected there are two layers which formed the structure of the subsurface. The second line suspected there are three layers which formed the structure of the subsurface. And the last line suspected there are two layers which formed the structure of the subsurface. Overall, the landslide of Gombel hill area can be found with depth 5 m – 6 m and found at contact between clay and clay rock layer. We expect the results can be used for mitigation hazard and planning the developing infrastructure in Gombel area.
NASA Astrophysics Data System (ADS)
Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; de Ruijter, Will P. M.; Maas, Leo R. M.
2016-04-01
The South East Madagascar Current (SEMC) flows poleward along the eastern coast of Madagascar as a western boundary current which further south provides some of the source waters of the Agulhas Current, either directly or in the form of eddies. We investigate the region of dipole formation south of Madagascar combining vertical T/S profiles from Argo floats, altimetry measurements and an existing eddy detection algorithm. Results from our analysis show that the dipole consists of an anticyclonic intrathermocline eddy (ITE) formed on its southern flank and a cyclonic ITE formed on its northern flank. Both lobes of the dipole exhibit similar T/S properties throughout the water column, although vertically shifted within the thermocline depending on its nature: upward in a cyclonic ITE and downward in an anticyclonic ITE. A subsurface salinity maximum of about 35.5 psu characterizes the upper layers with Subtropical Surface Water (STSW). At intermediate levels, a well defined path of South Indian Central Water (SICW) extends throughout the water column up to reach a minimum in salinity of 34.5 psu, corresponding to Antarctic Intermediate Water (AAIW). Below, at deep layers, the North Atlantic Deep Water (NADW) is found. The intrathermocline nature of the Madagascar dipoles has not been previously reported and represents an important feature to be considered when assessing the heat and salt fluxes driven by eddy movement and contributing to the Agulhas Current. Unlike surface eddies, intrathermocline eddies strongly influence the intermediate/deeper layers in the oceans and, hence, may have a larger contribution in the spreading rates and pathways of water masses. Because the intrathermocline nature of eddies is invisible to altimetry measurements, these results stress the importance of combining altimetry with historical records of Argo profiles which uncover eddy dynamics below the sea surface. Lastly, we further investigate from altimetry the area of dipole formation. The main axis of the SEMC appears flanked on its northern and southern borders by a semi-isolated semicircular region where kinetic energy of the mean flow is being transfered to the eddy kinetic energy field, in this case to the dipole formation, through barotropic instabilities without the need of an evident SEMC retroflection. In this regard, future work will be addressed to account for the mechanism by which Madagascar dipoles thus generated present an intrathermocline structure.
Non-mean-field theory of anomalously large double layer capacitance
NASA Astrophysics Data System (ADS)
Loth, M. S.; Skinner, Brian; Shklovskii, B. I.
2010-07-01
Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our “one-component plasma” model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.
The gamma decay of the giant dipole resonance: from zero to finite temperature
NASA Astrophysics Data System (ADS)
Bracco, Angela; Camera, Franco
2016-08-01
This paper is intended to give a selected and rather brief overview of the work made in the last thirty years to study the properties of the giant dipole resonance focusing in particular on nuclei formed at finite temperatures using heavy ion reactions. The physical problems that are discussed (using examples of particular results) in this paper can be grouped into 3 major topics: (i) the temperature dependence of the GDR width; (ii) the dipole oscillation in reaction dynamics; (iii) the isospin mixing at finite temperature.
Optimal Design for Parameter Estimation in EEG Problems in a 3D Multilayered Domain
2014-03-30
dipole, C(x) = q δ(x − rq), where δ is the Dirac distribution, rq is a fixed point in the brain which represents the dipole location, and q is the dipole...again based on the formulations discussed above, we consider a function F of the form F (x, θ) = qδ(x− rq), where δ denotes the dirac distribution...Inverse Problems, 12, (1996), 565–577. [5] H.T. Banks, M.W. Buksas and T. Lin, Electromagnetic Material Interrogation Using Conductive Inter- faces and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Christopher Matthew
The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia ( 15NH 3) target at a four momentum transfer squared of Q 2 = 0.5 (GeV/c) 2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH 3. The asymmetry, A p, has beenmore » used to determine the proton elastic form factor G Ep. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.« less
NASA Astrophysics Data System (ADS)
Childress, Stephen; Gilbert, Andrew D.
2018-02-01
A theory of an eroding ‘hairpin’ vortex dipole structure in three-dimensions is developed, extending our previous study of an axisymmetric eroding dipole without swirl. The axisymmetric toroidal dipole was found to lead to maximal growth of vorticity, as {t}4/3. The hairpin is here similarly proposed as a model to produce large ‘self-stretching’ of vorticity, with the possibility of finite-time blow-up. We derive a system of partial differential equations of ‘generalized’ form, involving contour averaging of a locally two-dimensional Euler flow. We do not attempt here to solve the system exactly, but point out that non-existence of physically acceptable solutions would most probably be a result of the axial flow. Because of the axial flow the vorticity distribution within the dipole eddies is no longer of the simple Sadovskii type (vorticity constant over a cross-section) obtained in the axisymmetric problem. Thus the solution of the system depends upon the existence of a larger class of propagating two-dimensional dipoles. The hairpin model is obtained by formal asymptotic analysis. As in the axisymmetric problem a local transformation to ‘shrinking’ coordinates is introduced, but now in a self-similar form appropriate to the study of a possible finite-time singularity. We discuss some properties of the model, including a study of the helicity and a first step in iterating toward a solution from the Sadovskii structure. We also present examples of two-dimensional propagating dipoles not previously studied, which have a vorticity profile consistent with our model. Although no rigorous results can be given, and analysis of the system is only partial, the formal calculations are consistent with the possibility of a finite time blowup of vorticity at a point of vanishing circulation of the dipole eddies, but depending upon the existence of the necessary two-dimensional propagating dipole. Our results also suggest that conservation of kinetic energy as realized in the eroding hairpin excludes a finite time blowup for the corresponding Navier-Stokes model.
NASA Astrophysics Data System (ADS)
Frey, Jesse
In recent years there has been a growing interest in smaller satellites. Smaller satellites are cheaper to build and launch than larger satellites. One form factor, the CubeSat, is especially popular with universities and is a 10~cm cube. Being smaller means that the mass and power budgets are tighter and as such new ways must be developed to cope with these constraints. Traditional attitude control systems often use reaction wheels with gas thrusters which present challenges on a CubeSat. Many CubeSats use magnetic attitude control which uses the Earth's magnetic field to torque the satellite into the proper orientation. Magnetic attitude control systems fall into two main categories: active and passive. Active control is often achieved by running current through a coil to produce a dipole moment, while passive control uses the dipole moment from permanent magnets that consume no power. This thesis describes a system that uses twelve hard magnetic torquers along with a magnetometer. The torquers only consume current when their dipole moment is flipped, thereby significantly reducing power requirements compared with traditional active control. The main focus of this thesis is on the design, testing and fabrication of CubeSat hardware and software in preparation for launch.
The Dipole Segment Model for Axisymmetrical Elongated Asteroids
NASA Astrophysics Data System (ADS)
Zeng, Xiangyuan; Zhang, Yonglong; Yu, Yang; Liu, Xiangdong
2018-02-01
Various simplified models have been investigated as a way to understand the complex dynamical environment near irregular asteroids. A dipole segment model is explored in this paper, one that is composed of a massive straight segment and two point masses at the extremities of the segment. Given an explicitly simple form of the potential function that is associated with the dipole segment model, five topological cases are identified with different sets of system parameters. Locations, stabilities, and variation trends of the system equilibrium points are investigated in a parametric way. The exterior potential distribution of nearly axisymmetrical elongated asteroids is approximated by minimizing the acceleration error in a test zone. The acceleration error minimization process determines the parameters of the dipole segment. The near-Earth asteroid (8567) 1996 HW1 is chosen as an example to evaluate the effectiveness of the approximation method for the exterior potential distribution. The advantages of the dipole segment model over the classical dipole and the traditional segment are also discussed. Percent error of acceleration and the degree of approximation are illustrated by using the dipole segment model to approximate four more asteroids. The high efficiency of the simplified model over the polyhedron is clearly demonstrated by comparing the CPU time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryachko, E.S.
1999-06-03
The electronic coupling between the initial and final diabatic states is the major factor that determines the rate of electron transfer. A general formula for the adiabatic-to-diabatic mixing angle in terms of the electronic dipole moments is derived within a two-state model. It expresses the electronic coupling determining the rate of electronic transfer in terms of the off-diagonal diabatic dipole moment.
NASA Astrophysics Data System (ADS)
Gillespie, S. A.; Parikh, A.; Barton, C. J.; Faestermann, T.; José, J.; Hertenberger, R.; Wirth, H.-F.; de Séréville, N.; Riley, J. E.; Williams, M.
2017-08-01
Sulphur isotopic ratio measurements may help to establish the astrophysical sites in which certain presolar grains were formed. Nova model predictions of the 34S/32S ratio are, however, unreliable due to the lack of an experimental 34S(p ,γ )35Cl reaction rate. To this end, we have measured the 34S(3He,d )35Cl reaction at 20 MeV using a high resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Twenty-two levels over 6.2 MeV
NASA Technical Reports Server (NTRS)
Guberman, Steven L.; Dalgarno, A.
1992-01-01
Bonn-Oppenheimer-based ab initio calculations of dipole moments from the i 3Pi sub g-b 3Sigma(+) sub u, c 3Pi sub u-a 3Sigma(+) sub g, and i 3Pi sub g-c 3Pi sub u transitions of H2 have been conducted, to yield a tabulation of the dipole transition probabilities and Franck-Condon factors. These factors are given for transitions originating in the lowest vibrational level of the ground X 1Sigma(+) sub g state.
An Exact Form of Lilley's Equation with a Velocity Quadrupole/Temperature Dipole Source Term
NASA Technical Reports Server (NTRS)
Goldstein, Marvin E.
2001-01-01
There have been several attempts to introduce approximations into the exact form of Lilley's equation in order to express the source term as the sum of a quadrupole whose strength is quadratic in the fluctuating velocities and a dipole whose strength is proportional to the temperature fluctuations. The purpose of this note is to show that it is possible to choose the dependent (i.e., the pressure) variable so that this type of result can be derived directly from the Euler equations without introducing any additional approximations.
Dipole of the Epoch of reionization 21-cm signal
Slosar, Anze
2017-04-10
The motion of the Solar System with respect to the cosmic rest frame modulates the monopole of the epoch of reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative of the monopole signal. We argue that although the signal is weaker by a factor of ~100, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Furthermore, an experimentmore » designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.« less
The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach
ERIC Educational Resources Information Center
Likar, A.; Razpet, N.
2009-01-01
The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…
Controllable Nanoparticle Assembly and Actuation with Modified Dipole Potentials in Simulation
NASA Astrophysics Data System (ADS)
Dempster, Joshua
Science at the nanoscale poses several recurring difficulties. How can we control the assembly of objects too small for direct manipulation to be practical? How can we extend that control to in vivo systems so we can make use of nanotechnology in medicine? And how can we recreate the extraordinary capacities of Nature: healing, replication, growth, adaptation, self-regulation? One of the most powerful tools for addressing these challenges is the simple, familiar dipole moment. Since their debut as fuel control devices at NASA in the early sixties, possible applications for dipole suspensions have grown to areas far beyond what their creators envisioned. A multitude of ambitious new medical and mechanical applications make use of dipolar colloids. Dipoles are attractive from a practical standpoint because one can use fields to control not just their orientation and location, but also their mutual interactions. From a physical standpoint, dipoles are compelling as an exceptionally simple form of symmetry-breaking that leads to a variety of complex phenomena. This thesis studies the assembly and control of spherical colloids with a dipolar interaction modified by additional conditions using simulations. Three cases are examined in detail. The first is the case of an electrical dipole moment created by regions of opposite charge density on the surface of a colloid. Here the dipole potential is modified by strong screening. Such a system is interesting as a model for certain proteins in a high-salt solution and suggests possible uses for inverse Janus colloids. The resulting phases have little resemblance to the usual dipole phases and can be controlled with small quantities of homogeneously charged particles. In the second case, superparamagnetic dipoles are linked into chains. Such chains have been realized in a wide variety of experimental schemes. A general theory is developed for the equilibrium shapes of the chains in a precessing field when their endpoints are fixed. This theory reveals that the chains are good candidates for contracting muscles in microscopic devices with a conveniently harmonic form for their potentials. Ensembles of free chains can be put to more elaborate uses. To illustrate, a regime is designed that spins the chains into a self-healing cross-linked gel. Finally, we will turn to self-replication. Decorating a permanent dipole with a single permanent binding site is enough to enable self-replication using dimers as the template. A periodic magnetic drive provides the energy to drive replication. Several theoretical principles regarding the statistics of linear self-replicators are deduced and used to optimize the dipole replicating system.
Total γ ⋆ }γ {⋆ cross section and the QCD dipole picture
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz, W.; Florkowski, W.
1998-05-01
In the framework of the dipole picture of the BFKL pomeron we discuss two possibilities of calculating the total γ^{star}γ^{star} cross section of the virtual photons. It is shown that the dipole model reproduces the results obtained earlier from k_T-factorization up to the selection of the scale determining the length of the QCD cascade. The choice of scale turns out to be important for the numerical outcome of the calculations.
Petrenko, Y M
2015-01-01
Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.
NASA Astrophysics Data System (ADS)
Il'ichev, A. T.; Savin, A. S.
2017-12-01
We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff-Love plate.
Exotic and excited-state radiative transitions in charmonium from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.
2009-05-01
We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exoticmore » $$1^{-+}$$ $$\\eta_{c1}$$ radiative decay, we find a large partial width $$\\Gamma(\\eta_{c1} \\to J/\\psi \\gamma) \\sim 100 \\,\\mathrm{keV}$$. We find clear signals for electric dipole and magnetic quadrupole transition form factors in $$\\chi_{c2} \\to J/\\psi \\gamma$$, calculated for the first time in this framework, and study transitions involving excited $$\\psi$$ and $$\\chi_{c1,2}$$ states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate $Y_{\\mathrm{hyb?}} \\to \\et« less
Neutron and proton electric dipole moments from N f=2+1 domain-wall fermion lattice QCD
Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; ...
2016-05-05
We present a lattice calculation of the neutron and proton electric dipole moments (EDM’s) with N f = 2 + 1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use pion masses 330 and 420 MeV and 2.7 fm 3 lattices with Iwasaki gauge action and a 170 MeV pion and 4.6 fm 3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient, high statistics calculation; however themore » statistical errors on our results are still relatively large, so we investigate a new direction to reduce them, reweighting with the local topological charge density which appears promising. Furthermore, we discuss the chiral behavior and finite size effects of the EDM’s in the context of baryon chiral perturbation theory.« less
Some factors influencing radiation of sound from flow interaction with edges of finite surfaces
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Fox, H. L.; Chanaud, R. C.
1976-01-01
Edges of surfaces which are exposed to unsteady flow cause both strictly acoustic effects and hydrodynamic effects, in the form of generation of new hydrodynamic sources in the immediate vicinity of the edge. An analytical model is presented which develops the explicit sound-generation role of the velocity and Mach number of the eddy convection past the edge, and the importance of relative scale lengths of the turbulence, as well as the relative intensity of pressure fluctuations. The Mach number (velocity) effects show that the important paramater is the convection Mach number of the eddies. The effects of turbulence scale lengths, isotropy, and spatial density (separation) are shown to be important in determining the level and spectrum of edge sound radiated for the edge dipole mechanism. Experimental data is presented which provides support for the dipole edge noise model in terms of Mach number (velocity) scaling, parametric dependence on flow field parameter, directivity, and edge diffraction effects.
CP-violating top quark couplings at future linear e^+e^- colliders
NASA Astrophysics Data System (ADS)
Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.
2018-02-01
We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.
Neutral Pion Electroproduction in the Δ Resonance Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villano, Anthony
2007-11-01
The electroproduction of baryon resonances at high Q 2 is examined. Analysis focuses on the Δ(1232) resonance via exclusive pseudoscalar meson production of π 0 particles. Differential cross sections are extracted for exclusive π 0 electroproduction. In the central invariant mass (W) region the cross sections are used to extract resonant multipole amplitudes. In particular, the ratio of the electric quadrupole to magnetic dipole amplitudes (E2/M1) will be discussed for the Δ(1232) resonance. The transition to pQCD is discussed in terms of E2/M1 and other multipoles. The helicity amplitude A 3/2 can be used as a baryon helicity conservation meter in this context and will be discussed. The fast shrinking of the resonant contribution in the Δ region is observed at this high momentum transfer. Apart from the observables related to pQCD scaling, the transition form factor Gmore » $$*\\atop{M}$$ is extracted along with the scalar to magnetic dipole ratio C2/M1.« less
Cseh, R; Benz, R
1999-01-01
Phloretin is known to adsorb to lipid surfaces and alters the dipole potential of lipid monolayers and bilayers. Its adsorption to biological and artificial membranes results in a change of the membrane permeability for a variety of charged and neutral compounds. In this respect phloretin represents a model substance to study the effect of dipole potentials on membrane permeability. In this investigation we studied the interaction of phloretin with monolayers formed of different lipids in the liquid-expanded and the condensed state. Phloretin integrated into the monolayers as a function of the aqueous concentration of its neutral form, indicated by an increase of the surface pressure in the presence of phloretin. Simultaneous recording of the surface potential of the monolayers allowed us to correlate the degree of phloretin integration and the phloretin-induced dipole potential change. Increasing the surface pressure decreased the phloretin-induced shift of the isotherms, but did not influence the phloretin-induced surface potential change. This means that phloretin adsorption to the lipid surface can occur without affecting the lipid packing. The surface potential effect of phloretin is accompanied by a change of the lipid dipole moment vector dependent on the lipid packing. This means that the relation between the surface potential change and the lipid packing cannot be described by a static model alone. Taking into account the deviations of the surface potential change versus molecular area isotherms of the experimental data to the theoretically predicted course, we propose a model that relates the area change to the dipole moment in a dynamic manner. By using this model the experimental data can be described much better than with a static model. PMID:10465758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurationsmore » improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.« less
Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media
NASA Astrophysics Data System (ADS)
Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna
2017-12-01
Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.
Quadrupole-Quadrupole Interactions to Control Plasmon-Induced Transparency
NASA Astrophysics Data System (ADS)
Rana, Goutam; Deshmukh, Prathmesh; Palkhivala, Shalom; Gupta, Abhishek; Duttagupta, S. P.; Prabhu, S. S.; Achanta, VenuGopal; Agarwal, G. S.
2018-06-01
Radiative dipolar resonance with Lorentzian line-shape induces the otherwise dark quadrupolar resonances resulting in electromagnetically induced transparency (EIT). The two interfering excitation pathways of the dipole are earlier shown to result in a Fano line shape with a high figure of merit suitable for sensing. In metamaterials made of metal nanorods or antennas, the plasmonic EIT (PIT) efficiency depends on the overlap of the dark and bright mode spectra as well as the asymmetry resulting from the separation between the monomer (dipole) and dimer (quadrupole) that governs the coupling strength. Increasing asymmetry in these structures leads to the reduction of the figure of merit due to a broadening of the Fano resonance. We demonstrate a PIT system in which the simultaneous excitation of two dipoles result in double PIT. The corresponding two quadrupoles interact and control the quality factor (Q ) of the PIT resonance. We show an antiresonancelike symmetric line shape with nonzero asymmetry factors. The PIT resonance vanishes due to quadrupole-quadrupole coupling. A Q factor of more than 100 at 0.977 THz is observed, which is limited by the experimental resolution of 6 GHz. From polarization-dependent studies we show that the broadening of the Lorentzian resonance is due to scattering-induced excitation of orthogonally oriented dipoles in the monomer and dimer bars in the terahertz regime. The high Q factors in the terahertz frequency region demonstrated here are interesting for sensing application.
Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.
Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W
2014-09-01
Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.
Evidence for a quantum dipole liquid state in an organic quasi-two-dimensional material.
Hassan, Nora; Cunningham, Streit; Mourigal, Martin; Zhilyaeva, Elena I; Torunova, Svetlana A; Lyubovskaya, Rimma N; Schlueter, John A; Drichko, Natalia
2018-06-08
Mott insulators are commonly pictured with electrons localized on lattice sites, with their low-energy degrees of freedom involving spins only. Here, we observe emergent charge degrees of freedom in a molecule-based Mott insulator κ-(BEDT-TTF) 2 Hg(SCN) 2 Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario in which the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion speciesmore » then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.« less
Yandell, Margaret A; King, Sarah B; Neumark, Daniel M
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.
EM Diffusion for a Time-Domain Airborne EM System
NASA Astrophysics Data System (ADS)
Yin, C.; Qiu, C.; Liu, Y.; Cai, J.
2014-12-01
Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux for a vertical magnetic dipole, injecting into the earth; 4) there exists no vertical current in an isotropic homogeneous half-space. The currents for both HCP and VCX transmitting dipole flow horizontally.
Ion-dipole interactions and their functions in proteins.
Sippel, Katherine H; Quiocho, Florante A
2015-07-01
Ion-dipole interactions in biological macromolecules are formed between atomic or molecular ions and neutral protein dipolar groups through either hydrogen bond or coordination. Since their discovery 30 years ago, these interactions have proven to be a frequent occurrence in protein structures, appearing in everything from transporters and ion channels to enzyme active sites to protein-protein interfaces. However, their significance and roles in protein functions are largely underappreciated. We performed PDB data mining to identify a sampling of proteins that possess these interactions. In this review, we will define the ion-dipole interaction and discuss several prominent examples of their functional roles in nature. © 2015 The Protein Society.
Anisotropic mean-square displacements in two-dimensional colloidal crystals of tilted dipoles
NASA Astrophysics Data System (ADS)
Froltsov, V. A.; Likos, C. N.; Löwen, H.; Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.
2005-03-01
Superparamagnetic colloidal particles confined to a flat horizontal air-water interface in an external magnetic field, which is tilted relative to the interface, form anisotropic two-dimensional crystals resulting from their mutual dipole-dipole interactions. Using real-space experiments and harmonic lattice theory we explore the mean-square displacements of the particles in the directions parallel and perpendicular to the in-plane component of the external magnetic field as a function of the tilt angle. We find that the anisotropy of the mean-square displacement behaves nonmonotonically as a function of the tilt angle and does not correlate with the structural anisotropy of the crystal.
Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan
2015-12-17
The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.
NASA Astrophysics Data System (ADS)
Lekmine, G.; Auradou, H.; Pessel, M.; Rayner, J. L.
2017-04-01
Cross-borehole ERT imaging was tested to quantify the average velocity and transport parameters of tracer plumes in saturated porous media. Seven tracer tests were performed at different flow rates and monitored by either a vertical or horizontal dipole-dipole ERT sequence. These sequences were tested to reconstruct the shape and temporally follow the spread of the tracer plumes through a background regularization procedure. Data sets were inverted with the same inversion parameters and 2D model sections of resistivity ratios were converted to tracer concentrations. Both array types provided an accurate estimation of the average pore velocity vz. The total mass Mtot recovered was always overestimated by the horizontal dipole-dipole and underestimated by the vertical dipole-dipole. The vertical dipole-dipole was however reliable to quantify the longitudinal dispersivity λz, while the horizontal dipole-dipole returned better estimation for the transverse component λx. λ and Mtot were mainly influenced by the 2D distribution of the cumulated electrical sensitivity and the Shadow Effects induced by the third dimension. The size reduction of the edge of the plume was also related to the inability of the inversion process to reconstruct sharp resistivity contrasts at the interface. Smoothing was counterbalanced by a non-realistic rise of the ERT concentrations around the centre of mass returning overpredicted total masses. A sensitivity analysis on the cementation factor m and the porosity ϕ demonstrated that a change in one of these parameters by 8% involved non negligible variations by 30 and 40% of the dispersion coefficients and mass recovery.
Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions
NASA Astrophysics Data System (ADS)
Seydi, I.; Abedinpour, S. H.; Tanatar, B.
2017-06-01
We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.
NASA Astrophysics Data System (ADS)
Amaral, J. T.; Becker, V. M.
2018-05-01
We investigate ρ vector meson production in e p collisions at HERA with leading neutrons in the dipole formalism. The interaction of the dipole and the pion is described in a mixed-space approach, in which the dipole-pion scattering amplitude is given by the Marquet-Peschanski-Soyez saturation model, which is based on the traveling wave solutions of the nonlinear Balitsky-Kovchegov equation. We estimate the magnitude of the absorption effects and compare our results with a previous analysis of the same process in full coordinate space. In contrast with this approach, the present study leads to absorption K factors in the range of those predicted by previous theoretical studies on semi-inclusive processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement.more » These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.« less
Robust Quantum Computing using Molecules with Switchable Dipole
2010-06-15
REPORT Robust quantum computing using molecules with switchable dipole 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Of the many systems studied to...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Ultracold polar molecules, quantum computing , phase gates...From - To) 30-Aug-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Aug-2009 Robust quantum computing using molecules with
Modeling of magnetic particle orientation in magnetic powder injection molding
NASA Astrophysics Data System (ADS)
Doo Jung, Im; Kang, Tae Gon; Seul Shin, Da; Park, Seong Jin
2018-03-01
The magnetic micro powder orientation under viscous shear flow has been analytically understood and characterized into a new analytical orientation model for a powder injection molding process. The effects of hydrodynamic force from the viscous flow, external magnetic force and internal dipole-dipole interaction were considered to predict the orientation under given process conditions. Comparative studies with a finite element method proved the calculation validity with a partial differential form of the model. The angular motion, agglomeration and magnetic chain formation have been simulated, which shows that the effect of dipole-dipole interaction among powders on the orientation state becomes negligible at a high Mason number condition and at a low λ condition (the ratio of external magnetic field strength and internal magnetic moment of powder). Our developed model can be very usefully employed in the process analysis and design of magnetic powder injection molding.
Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P
2015-04-03
Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Burrow, Joshua A.; Yahiaoui, Riad; Sarangan, Andrew; Agha, Imad; Mathews, Jay; Searles, Thomas A.
2017-12-01
We report the polarization-dependent electromagnetic response from a series of novel terahertz (THz) metasurfaces where asymmetry is introduced through the displacement of two adjacent metallic arms separated by a distance $\\delta$. For all polarization states, the symmetric metasurface exhibits a low quality (Q) factor fundamental dipole mode. By breaking the symmetry, we experimentally observe a secondary dipole-like mode with a Q factor nearly $9\\times$ higher than the fundamental resonance. As $\\delta$ increases, the fundamental dipole mode $f_{1}$ redshifts and the secondary mode $f_{2}$ blueshifts creating a highly transmissive spectral window. Polarization-dependent measurements reveal a full suppression of $f_{2}$ for all asymmetries at $\\theta \\geq 60^\\circ$. Furthermore, at $\\delta \\geq 60 \\text{ }\\mu\\text{m}$, we observe a polarization selective electromagnetic induced transparency (EIT) for the fundamental mode. This work paves the way for applications in filtering, sensing and slow-light devices common to other high Q factor THz metasurfaces with EIT-like response.
Interfacial Cation-Defect Charge Dipoles in Stacked TiO2/Al2O3 Gate Dielectrics.
Zhang, Liangliang; Janotti, Anderson; Meng, Andrew C; Tang, Kechao; Van de Walle, Chris G; McIntyre, Paul C
2018-02-14
Layered atomic-layer-deposited and forming-gas-annealed TiO 2 /Al 2 O 3 dielectric stacks, with the Al 2 O 3 layer interposed between the TiO 2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO 2 /Al 2 O 3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO 2 /Al 2 O 3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of Al Ti and Ti Al point-defect dipoles produced by local intermixing of the Al 2 O 3 /TiO 2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.
Nucleon form factors from quenched lattice QCD with domain wall fermions
NASA Astrophysics Data System (ADS)
Sasaki, Shoichi; Yamazaki, Takeshi
2008-07-01
We present a quenched lattice calculation of the weak nucleon form factors: vector [FV(q2)], induced tensor [FT(q2)], axial vector [FA(q2)] and induced pseudoscalar [FP(q2)] form factors. Our simulations are performed on three different lattice sizes L3×T=243×32, 163×32, and 123×32 with a lattice cutoff of a-1≈1.3GeV and light quark masses down to about 1/4 the strange quark mass (mπ≈390MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6fm)3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q2≈0.1GeV2) are accessible. The q2 dependences of form factors in the low q2 region are examined. It is found that the vector, induced tensor, and axial-vector form factors are well described by the dipole form, while the induced pseudoscalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling gA/gV=FA(0)/FV(0)=1.219(38) and the pseudoscalar coupling gP=mμFP(0.88mμ2)=8.15(54), where the errors are statistical errors only. These values agree with experimental values from neutron β decay and muon capture on the proton. However, the root mean-squared radii of the vector, induced tensor, and axial vector underestimate the known experimental values by about 20%. We also calculate the pseudoscalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
Field tuning the g factor in InAs nanowire double quantum dots.
Schroer, M D; Petersson, K D; Jung, M; Petta, J R
2011-10-21
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society
Improving Planck calibration by including frequency-dependent relativistic corrections
NASA Astrophysics Data System (ADS)
Quartin, Miguel; Notari, Alessio
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Relativistic many-body bound systems: electromagnetic properties. Monograph report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danos, M.; Gillet, V.
1977-04-01
The formulae for the calculation of the electron scattering form factors, and of the static magnetic dipole and electric quadrupole moments, of relativistic many-body bound systems are derived. The framework, given in NBS Monograph 147, is relativistic quantum field theory in the Schrodinger picture; the physical particles, i.e., the solutions of the interacting fields, are given as linear combinations of the solutions of the free fields, called the parton fields. The parton--photon interaction is taken as given by minimal coupling. In addition, the contribution of the photon--vector meson vertex of the vector dominance model is derived.
Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E
2004-10-08
The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.
Unidirectional emission in an all-dielectric nanoantenna
NASA Astrophysics Data System (ADS)
Feng, Tianhua; Zhang, Wei; Liang, Zixian; Xu, Yi
2018-03-01
All-dielectric nanoantennas are a promising alternative to plasmonic optical antennas for engineering light emission because of their low-loss nature in the optical spectrum. Nevertheless, it is still challenging to manipulate directional light emission with subwavelength all-dielectric nanoantennas. Here, we propose and numerically demonstrate that a hollow silicon nanodisk can serve as a versatile antenna for directing and enhancing the emission from either an electric or magnetic dipole emitter. When primarily coupled to both electric and magnetic dipole modes of a nanoantenna, broadband nearly-unidirectional emission can be realized by the interference of two modes, which can be spectrally tuned via the geometric parameters in an easy way. More importantly, the emission directions for the magnetic and electric dipole emitters are shown as opposite to each other through control of the phase difference between the induced magnetic and electric dipole modes of the antenna. Meanwhile, the Purcell factors can be enhanced by more than one order of magnitude and high quantum efficiencies can be maintained at the visible spectrum for both kinds of dipole emitters. We further show that these unidirectional emission phenomena can withstand small disorder effects of in-plane dipole orientation and location. Our study provides a simple yet versatile platform that can shape the emission of both magnetic and electric dipole emitters.
Linear optics measurements and corrections using an AC dipole in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.; Bai, M.; Yang, L.
2010-05-23
We report recent experimental results on linear optics measurements and corrections using ac dipole. In RHIC 2009 run, the concept of the SVD correction algorithm is tested at injection energy for both identifying the artificial gradient errors and correcting it using the trim quadrupoles. The measured phase beatings were reduced by 30% and 40% respectively for two dedicated experiments. In RHIC 2010 run, ac dipole is used to measure {beta}* and chromatic {beta} function. For the 0.65m {beta}* lattice, we observed a factor of 3 discrepancy between model and measured chromatic {beta} function in the yellow ring.
Combined density functional theory (DFT) and continuum calculations of pKa in carbonic anhydrase.
Jiao, Dian; Rempe, Susan B
2012-07-31
Deprotonation of zinc-bound water in carbonic anhydrase II is the rate-limiting step in the catalysis of carbon dioxide between gas- and water-soluble forms. To understand the factors determining the extent of dissociation, or pK(a), of the zinc-bound water, we apply quantum chemistry calculations to the active site coupled with a continuum model of the surrounding environment. Experimentally determined changes in pK(a) associated with mutations of the active site are well reproduced by this approach. Analysis of the active site structure and charge/dipole values provides evidence that mutations cause changes in both conformation of the active site structure and local polarization, which accounts for the shifts in pK(a). More specifically, the shifts in pK(a) correlate with the dipole moments of the zinc-bound water upon deprotonation. The data further support the conclusion that the distinct pK(a) values found in mutations of the same type, but applied to different sites, result from asymmetric ligation and different electronic environments around the zinc ion.
NASA Astrophysics Data System (ADS)
Xu, Long-Quan; Liu, Ya-Wei; Xu, Xin; Ni, Dong-Dong; Yang, Ke; Zhu, Lin-Fan
2017-07-01
The dipole (γ,γ) method, which is the inelastic X-ray scattering operated at a negligibly small momentum transfer, has been developed to determine the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. This new method is free from the line saturation effect, and its Bethe-Born conversion factor varies much more slowly with the excitation energy than that of the dipole (e, e) method. Thus the dipole (γ,γ) method provides a reliable approach to obtain the benchmark optical oscillator strengths of the valence-shell excitations for gaseous atoms and molecules. In this paper, we give a review of the dipole (γ,γ) method and some recent measurements of absolute optical oscillator strengths of gaseous atoms and molecules. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Revisitation of the dipole tracer test for heterogeneous porous formations
NASA Astrophysics Data System (ADS)
Zech, Alraune; D'Angelo, Claudia; Attinger, Sabine; Fiori, Aldo
2018-05-01
In this paper, a new analytical solution for interpreting dipole tests in heterogeneous media is derived by associating the shape of the tracer breakthrough curve with the log-conductivity variance. It is presented how the solution can be used for interpretation of dipole field test in view of geostatistical aquifer characterization on three illustrative examples. The analytical solution for the tracer breakthrough curve at the pumping well in a dipole tracer test is developed by considering a perfectly stratified formation. The analysis is carried out making use of the travel time of a generic solute particle, from the injection to the pumping well. Injection conditions are adapted to different possible field setting. Solutions are presented for resident and flux proportional injection mode as well as for an instantaneous pulse of solute and continuous solute injections. The analytical form of the solution allows a detailed investigation on the impact of heterogeneity, the tracer input conditions and ergodicity conditions at the well. The impact of heterogeneity manifests in a significant spreading of solute particles that increases the natural tendency to spreading induced by the dipole setup. Furthermore, with increasing heterogeneity the number of layers needed to reach ergodic conditions become larger. Thus, dipole test in highly heterogeneous aquifers might take place under non-ergodic conditions giving that the log-conductivity variance is underestimated. The method is a promising geostatistical analyzing tool being the first analytical solution for dipole tracer test analysis taking heterogeneity of hydraulic conductivity into account.
NASA Astrophysics Data System (ADS)
Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.
2015-09-01
A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.
Regularized quasinormal modes for plasmonic resonators and open cavities
NASA Astrophysics Data System (ADS)
Kamandar Dezfouli, Mohsen; Hughes, Stephen
2018-03-01
Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.
Improving Planck calibration by including frequency-dependent relativistic corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Notari, Alessio, E-mail: mquartin@if.ufrj.br, E-mail: notari@ffn.ub.es
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the 'orbital dipole', which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10{sup −3}, due to coupling with the 'solar dipole' (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevantmore » for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.« less
Peng, Chunwang; Liu, Jie; Zhao, Daohui; Zhou, Jian
2014-09-30
In this work, the adsorptions of hydrophobin (HFBI) on four different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, COOH-SAM, and NH2-SAM) were investigated by parallel tempering Monte Carlo and molecular dynamics simulations. Simulation results indicate that the orientation of HFBI adsorbed on neutral surfaces is dominated by a hydrophobic dipole. HFBI adsorbs on the hydrophobic CH3-SAM through its hydrophobic patch and adopts a nearly vertical hydrophobic dipole relative to the surface, while it is nearly horizontal when adsorbed on the hydrophilic OH-SAM. For charged SAM surfaces, HFBI adopts a nearly vertical electric dipole relative to the surface. HFBI has the narrowest orientation distribution on the CH3-SAM, and thus can form an ordered monolayer and reverse the wettability of the surface. For HFBI adsorption on charged SAMs, the adsorption strength weakens as the surface charge density increases. Compared with those on other SAMs, a larger area of the hydrophobic patch is exposed to the solution when HFBI adsorbs on the NH2-SAM. This leads to an increase of the hydrophobicity of the surface, which is consistent with the experimental results. The binding of HFBI to the CH3-SAM is mainly through hydrophobic interactions, while it is mediated through a hydration water layer near the surface for the OH-SAM. For the charged SAM surfaces, the adsorption is mainly induced by electrostatic interactions between the charged surfaces and the oppositely charged residues. The effect of a hydrophobic dipole on protein adsorption onto hydrophobic surfaces is similar to that of an electric dipole for charged surfaces. Therefore, the hydrophobic dipole may be applied to predict the probable orientations of protein adsorbed on hydrophobic surfaces.
The spontaneous emission factor for lasers with gain induced waveguiding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newstein, M.
1984-11-01
The expression for the spontaneous emission factor for lasers with gain induced waveguiding has a factor K, called by Petermann ''the astigmatism parameter.'' This factor has been invoked to explain spectral and dynamic characteristics of this class of lasers. We contend that the widely accepted form of the K factor is based on a derivation which is not appropriate for the typical laser situation where the spontaneous emission factor is much smaller than unity. An alternative derivation is presented which leads to a different form for the K factor. The new expression predicts much smaller values under conditions where themore » previous theory gave values large compared to unity. Petermann's form for the K factor is shown to be relevant to large gain linear amplifiers where the power is amplified spontaneous emission noise. The expression for the power output has Petermann's value of K as a factor. The difference in the two situations is that in the laser oscillator the typical atom of interest couples a small portion of its incoherent spontaneous emission into the dominant mode, whereas in the amplifier only the atoms at the input end are important as sources and their output is converted to a greater degree into the dominant mode through the propagation process. In this analysis the authors use a classical model of radiating point dipoles in a continuous medium characterized by a complex permittivity. Since uncritical use of this model will lead to infinite radiation resistance they address the problem of its self-consistency.« less
Resonance energy transfer: when a dipole fails.
Andrews, David L; Leeder, Jamie M
2009-05-14
The Coulombic coupling of electric dipole (E1) transition moments is the most commonly studied and widely operative mechanism for energy migration in multichromophore systems. However a significant number of exceptions exist, in which donor decay and/or acceptor excitation processes are E1-forbidden. The alternative transfer mechanisms that can apply in such cases include roles for higher multipole transitions, exciton- or phonon-assisted interactions, and non-Coulombic interactions based on electron exchange. A quantum electrodynamical formulation provides a rigorous basis to assess the first of these, specifically addressing the relative significance of higher multipole contributions to the process of energy transfer in donor-acceptor systems where electric dipole transitions are precluded by symmetry. Working within the near-zone limit, where donor-acceptor separations are small in comparison to the chromophore scale, the analysis highlights the contributions of both electric quadrupole-electric quadrupole (E2-E2) coupling and the seldom considered second-order electric dipole-electric dipole (E1(2)-E1(2)) coupling. For both forms of interaction, experimentally meaningful rate equations are secured by the use of orientational averaging, and the mechanisms are analyzed with reference to systems in which E1-forbidden transitions are commonly reported.
NASA Astrophysics Data System (ADS)
Nwosu, Chinomso; Pandey, Tara; Herring, Andrew; Coughlin, Edward; University of Massachusetts, Amherst Collaboration; Colorado School of Mines Collaboration
Backbone-to-backbone spacing in polymers is known to be dictated by the length of the pendant side-chains. Dipole forces in random polyelectrolytes lead to ionic clusters with a characteristic spacing that can be observed by SAXS. Repulsion due to side-chain sterics will compete with dipole forces driving cluster formation in random polyelectrolytes. A model study on short range order in anion exchange membranes (AEMs) of quaternized P4VP-ran-PI is presented. Quaternization of P4VP with alkyl bromides having different numbers of carbons, CnBr, introduces pendant side-chains as well as charges. X-ray scattering performed on PQ4VP-ran-PI(CnBr) show that when n <5 the dipole forces dominate leading to the formation of ionic clusters. However, when n >4, the chains remain separated due to sterics, forming a distinct backbone-to-backbone spacing morphology. For n=3, both dipole clustering and backbone spacing can coexist. Crosslinking of the isoprene units increased the coexistence window from n=3 to n=6. Impedance measurements show that a maximum conductivity of 110mS/cm was obtained for PQ4VP-ran-PI(C3Br). A discussion on short range order due to competition, or counter balancing, of steric repulsion and dipole forces will be presented. US Army MURI project (W911NF1010520).
Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces
Yajima, Takeaki; Hikita, Yasuyuki; Minohara, Makoto; ...
2015-04-07
The concept ‘the interface is the device' is embodied in a wide variety of interfacial electronic phenomena and associated applications in oxide materials, ranging from catalysts and clean energy systems to emerging multifunctional devices. Many device properties are defined by the band alignment, which is often influenced by interface dipoles. On the other hand, the ability to purposefully create and control interface dipoles is a relatively unexplored degree of freedom for perovskite oxides, which should be particularly effective for such ionic materials. Here we demonstrate tuning the band alignment in perovskite metal-semiconductor heterojunctions over a broad range of 1.7 eV.more » This is achieved by the insertion of positive or negative charges at the interface, and the resultant dipole formed by the induced screening charge. This approach can be broadly used in applications where decoupling the band alignment from the constituent work functions and electron affinities can enhance device functionality.« less
Pair aligning improved motility of Quincke rollers.
Lu, Shi Qing; Zhang, Bing Yue; Zhang, Zhi Chao; Shi, Yan; Zhang, Tian Hui
2018-06-06
Density-dependent speed is studied in a two-dimensional active colloid in which the colloidal particles are propelled by an external electric field via a Quincke rotation. Above the critcal electric field, dense dynamic clusters form spotaneously, in which the particles are highly aligned in velocity and move much faster than isolated units. Detailed observations on pair collision reveal that the alignment of velocity is induced by the long-ranged hydrodynamic interactions and the improvement of speed in the clusters arises from pair aligning in which two particles are closely paired and rotate synchronically. In the aligning state, the short-range in-plane dipole-dipole attraction enhances the rotation torque and gives rises to a larger rolling speed. The pair aligning becomes difficult and unstable at high electric field where the normal dipole-dipole repulsion becomes dominant. As a consequence, the dependence of speed on density becomes weak increasingly upon the increase of the electric field. This result offers an interpretation for the discrepancy between our and previous observations on Quincke rollers.
Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition.
Park, Jun-Bum; Lee, Il-Min; Lee, Seung-Yeol; Kim, Kyuho; Choi, Dawoon; Song, Eui Young; Lee, Byoungho
2013-07-01
We propose a novel approach to generate and tune a hot spot in a dipole nanostructure of vanadium dioxide (VO2) laid on a gold (Au) substrate. By inducing a phase transition of the VO2, the spatial and spectral distributions of the hot spot generated in the feed gap of the dipole can be tuned. Our numerical simulation based on a finite-element method shows a strong intensity enhancement difference and tunability near the wavelength of 678 nm, where the hot spot shows 172-fold intensity enhancement when VO2 is in the semiconductor phase. The physical mechanisms of forming the hot spots at the two-different phases are discussed. Based on our analysis, the effects of geometric parameters in our dipole structure are investigated with an aim of enhancing the intensity and the tunability. We hope that the proposed nanostructure opens up a practical approach for the tunable near-field nano-photonic devices.
The Nucleon Axial Form Factor and Staggered Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Aaron Scott
The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very samemore » nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum dependence with an extrapolation to the continuum limit and a full systematic error budget.« less
NASA Astrophysics Data System (ADS)
Satsukawa, Hidetaka; Yajima, Akio; Hiraki, Ko-ichi; Takahashi, Toshihiro; Kang, Haeyong; Jo, Younjung; Kang, Woun; Chung, Ok-Hee
2016-12-01
We performed 77Se- and 19F-NMR measurements on single crystals of (TMTSF)2FSO3 to characterize the electronic structures of different phases in the temperature-pressure phase diagram, determined by precise transport measurements [Jo et al.,
Neutral dipole-dipole dimers: A new field in science
NASA Astrophysics Data System (ADS)
Kosower, Edward M.; Borz, Galina
2018-03-01
Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate for decreasing the polarity of the acid (PA). Another possibility might be N-methylacylamides of which we have noted N-methylacetamide (NMA). We had found that NMA in a polar solvent on AgX was very acrobatic, forming first a 310-helix, an α-helix, a π-helix and a planar form in succession. In sharp contrast, we discovered that NMA forms a dimer (NMAD) and becomes immiscible with the water present on the PE surface. One may vary the acyl group and even include functional groups. Another aspect of the surface behavior of water is the formation of oligomers and polyoligomers. We will show a diagram that explains the formation of polyoligomers from oligomers and their ultimate formation of oligomers with apposed dipoles. This Scope summary should make it easier to follow the description of the varied phenomena found for the PE-water system.
AE monitoring instrumentation for high performance superconducting dipoles and quadrupoles, Phase 2
NASA Astrophysics Data System (ADS)
Iwasa, Y.
1986-01-01
In the past year and a half, attention has been focused on the development of instrumentation for on-line monitoring of high-performance superconducting dipoles and quadrupoles. This instrumentation has been completed and satisfactorily demonstrated on a prototype Fermi dipole. Conductor motion is the principal source of acoustic emission (AE) and the major cause of quenches in the dipole, except during the virgin run when other sources are also present. The motion events are mostly microslips. The middle of the magnet is most susceptible to quenches. This result agrees with the peak field location in the magnet. In the virgin state the top and bottom of the magnet appeared acoustically similar but diverged after training, possibly due to minute structural asymmetry, for example differences in clamping and welding strength; however, the results do not indicate any major structural defects. There is good correlation between quench current and AE starting current. The correlation is reasonable if mechanical disturbances are indeed responsible for quench. Based on AE cumulative history, the average frictional power dissipation in the whole dipole winding is estimated to be approx. 10 (MU)W cm(-3). We expect to implement the following in the next phase of this project: Application of room-temperature techniques to detecting structural defects in the dipole; application of the system to other dipoles and quadrupoles in the same series to compare their performances; and further investigation of AE starting current approx. quench current relationship. Work has begun on the room temperature measurements. Preliminary Stress Wave Factor measurements have been made on a model dipole casing.
Comparison of different sets of array configurations for multichannel 2D ERT acquisition
NASA Astrophysics Data System (ADS)
Martorana, R.; Capizzi, P.; D'Alessandro, A.; Luzio, D.
2017-02-01
Traditional electrode arrays such Wenner-Schlumberger or dipole-dipole are still widely used thanks to their well-known properties but the array configurations are generally not optimized for multi-channel resistivity measures. Synthetic datasets relating to four different arrays, dipole-dipole (DD), pole-dipole (PD), Wenner-Schlumberger (WS) and a modified version of multiple gradient (MG), have been made for a systematic comparison between 2D resistivity models and their inverted images. Different sets of array configurations generated from simple combinations of geometric parameters (potential dipole lengths and dipole separation factors) were tested with synthetic and field data sets, even considering the influence of errors and the acquisition velocity. The purpose is to establish array configurations capable to provide reliable results but, at the same time, not involving excessive survey costs, even linked to the acquiring time and therefore to the number of current dipoles used. For DD, PD and WS arrays a progression of different datasets were considered increasing the number of current dipoles trying to get about the same amount of measures. A multi-coverage MG array configuration is proposed by increasing the lateral coverage and so the number of current dipoles. Noise simulating errors both on the electrode positions and on the electric potential was added. The array configurations have been tested on field data acquired in the landfill site of Bellolampo (Palermo, Italy), to detect and locate the leachate plumes and to identify the HDPE bottom of the landfill. The inversion results were compared using a quantitative analysis of data misfit, relative model resolution and model misfit. The results show that the trends of the first two parameters are linked on the array configuration and that a cumulative analysis of these parameters can help to choose the best array configuration in order to obtain a good resolution and reliability of a survey, according to generally short acquisition times.
Distillation of bose-einstein condensates in a double-well potential.
Shin, Y; Saba, M; Schirotzek, A; Pasquini, T A; Leanhardt, A E; Pritchard, D E; Ketterle, W
2004-04-16
Bose-Einstein condensates of sodium atoms, prepared in an optical dipole trap, were distilled into a second empty dipole trap adjacent to the first one. The distillation was driven by thermal atoms spilling over the potential barrier separating the two wells and then forming a new condensate. This process serves as a model system for metastability in condensates, provides a test for quantum kinetic theories of condensate formation, and also represents a novel technique for creating or replenishing condensates in new locations.
Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui
2017-09-11
Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.
Multiple-generator errors are unavoidable under model misspecification.
Jewett, D L; Zhang, Z
1995-08-01
Model misspecification poses a major problem for dipole source localization (DSL) because it causes insidious multiple-generator errors (MulGenErrs) to occur in the fitted dipole parameters. This paper describes how and why this occurs, based upon simple algebraic considerations. MulGenErrs must occur, to some degree, in any DSL analysis of real data because there is model misspecification and mathematically the equations used for the simultaneously active generators must be of a different form than the equations for each generator active alone.
Collider study on the loop-induced dark matter mediation
NASA Astrophysics Data System (ADS)
Tsai, Yuhsin
2016-06-01
Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.
2014-03-01
The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).
Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu; Department of Physics, Boston University, Boston, Massachusetts 02215
We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits amore » linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.« less
Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field
Yang, Pei-Kun
2013-01-01
To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD) simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes. PMID:23852018
Interactions of bright and dark solitons with localized PT-symmetric potentials.
Karjanto, N; Hanif, W; Malomed, B A; Susanto, H
2015-02-01
We study collisions of moving nonlinear-Schrödinger solitons with a PT-symmetric dipole embedded into the one-dimensional self-focusing or defocusing medium. Accurate analytical results are produced for bright solitons, and, in a more qualitative form, for dark ones. In the former case, an essential aspect of the approximation is that it must take into regard the intrinsic chirp of the soliton, thus going beyond the framework of the simplest quasi-particle description of the soliton's dynamics. Critical velocities separating reflection and transmission of the incident bright solitons are found by means of numerical simulations, and in the approximate semi-analytical form. An exact solution for the dark soliton pinned by the complex PT-symmetric dipole is produced too.
Contribution of Hydrogen Bonds to Paper Strength Properties.
Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila
2016-01-01
The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper.
Contribution of Hydrogen Bonds to Paper Strength Properties
Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila
2016-01-01
The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper. PMID:27228172
An analytical force balance model for dust particles with size up to several Debye lengths
NASA Astrophysics Data System (ADS)
Aussems, D. U. B.; Khrapak, S. A.; Doǧan, I.; van de Sanden, M. C. M.; Morgan, T. W.
2017-11-01
In this study, we developed a revised stationary force balance model for particles in the regime a / λ D < 10 . In contrast to other analytical models, the pressure and dipole force were included too, and for anisotropic plasmas, a novel contribution to the dipole moment was derived. Moreover, the Coulomb logarithm and collection cross-section were modified. The model was applied on a case study where carbon dust is formed near the plasma sheath in the linear plasma device Pilot-PSI. The pressure force and dipole force were found to be significant. By tracing the equilibrium position, the particle radius was determined at which the particle deposits. The obtained particle radius agrees well with the experimentally obtained size and suggests better agreement as compared to the unrevised model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, P.K.
1973-08-01
The Cherenkov radiation emitted by an oscillating dipole moving in a semi-infinite dielectric with a constant velocity along a straight line parallel to the conducting boundary is calculated by using Maxwell's equations. The wave nature of electromagnetic intensities reveals that waves propagate in two modes, and the radiation takes place in the form of two cones which are semicircular in section, the axes of the cones coinciding wiih the path of the dipole. Conditions for the existence of only one cone are given. The intensity of radiation fluctuates spatially. The conducting boundary acts as a promoter and plays an importantmore » role in the graduation of energy loss which is technically important for concentration of radiation. (RWR)« less
Tarduno, J A; Cottrell, R D; Smirnov, A V
2001-03-02
Recent numerical simulations have yielded the most efficient geodynamo, having the largest dipole intensity when reversal frequency is low. Reliable paleointensity data are limited but heretofore have suggested that reversal frequency and paleointensity are decoupled. We report data from 56 Thellier-Thellier experiments on plagioclase crystals separated from basalts of the Rajmahal Traps (113 to 116 million years old) of India that formed during the Cretaceous Normal Polarity Superchron. These data suggest a time-averaged paleomagnetic dipole moment of 12.5 +/- 1.4 x 10(22) amperes per square meter, three times greater than mean Cenozoic and Early Cretaceous-Late Jurassic dipole moments when geomagnetic reversals were frequent. This result supports a correlation between intervals of low reversal frequency and high geomagnetic field strength.
Polar and low polar solvents media effect on dipole moments of some diazo Sudan dyes
NASA Astrophysics Data System (ADS)
Zakerhamidi, M. S.; Golghasemi Sorkhabi, Sh.; Shamkhali, A. N.
2014-06-01
Absorption and fluorescence spectra of three Sudan dyes (SudanIII, SudanIV and Sudan black B) were recorded in various solvents with different polarity in the range of 300-800 nm, at room temperature. The solvatochromic method was used to investigate dipole moments of these dyes in ground and excited states, in different media. The solvatochromic behavior of these substances and their solvent-solute interactions were analyzed via solvent polarity parameters. Obtained results express the effects of solvation on tautomerism and molecular configuration (geometry) of Sudan dyes in solvent media with different polarity. Furthermore, analyze of solvent-solute interactions and value of ground and excited states dipole moments suggests different forms of resonance structures for Sudan dyes in polar and low-polar solvents.
Electrorheological crystallization of proteins and other molecules
Craig, G.D.; Rupp, B.
1996-06-11
An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an X-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the X-ray diffraction pattern. 4 figs.
Electrorheological crystallization of proteins and other molecules
Craig, George D.; Rupp, Bernhard
1996-01-01
An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an x-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the x-ray diffraction pattern.
Anomalously large capacitance of an ionic liquid described by the restricted primitive model
NASA Astrophysics Data System (ADS)
Loth, M. S.; Skinner, Brian; Shklovskii, B. I.
2010-11-01
We use Monte Carlo simulations to examine the simplest model of a room-temperature ionic liquid (RTIL), called the “restricted primitive model,” at a metal surface. We find that at moderately low temperatures the capacitance of the metal-RTIL interface is so large that the effective thickness of the electrostatic double layer is up to three times smaller than the ion radius. To interpret these results we suggest an approach which is based on the interaction between discrete ions and their image charges in the metal surface and which therefore goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the insertion of an additional dipole does not require much energy. This leads to a large capacitance C that decreases monotonically with voltage V , producing a “bell-shaped” curve C(V) . We also consider what happens when the electrode is made from a semimetal rather than a perfect metal. In this case, the finite screening radius of the electrode shifts the reflection plane for image charges to the interior of the electrode, and we arrive at a “camel-shaped” C(V) . These predictions seem to be in qualitative agreement with experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salam, A., E-mail: salama@wfu.edu
2013-12-28
The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-orderedmore » diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.« less
Shape-Independent Limits to Near-Field Radiative Heat Transfer
NASA Astrophysics Data System (ADS)
Miller, Owen D.; Johnson, Steven G.; Rodriguez, Alejandro W.
2015-11-01
We derive shape-independent limits to the spectral radiative heat transfer rate between two closely spaced bodies, generalizing the concept of a blackbody to the case of near-field energy transfer. Through conservation of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced rates bounded by |χ |2/Im χ , optimally mediated by near-field photon transfer proportional to 1 /d2 across a separation distance d . Dipole-dipole and dipole-plate structures approach restricted versions of the limit, but common large-area structures do not exhibit the material enhancement factor and thus fall short of the general limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude improvement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive heat transfer through air at room temperature, and significantly greater at higher temperatures.
Fong, Clifford W
2016-08-01
Studies of the cyclin-dependent kinase inhibitors and HIV-1 protease inhibitors have confirmed that ligand-protein binding is dependent on desolvation effects. It has been found that a four parameter linear model incorporating desolvation energy, lipophilicity, dipole moment and molecular volume of the ligands is a good model to describe the binding between ligands and kinases or proteases. The resistance shown by MDR proteases to the anti-viral drugs is multi-faceted involving varying changes in desolvation, lipophilicity and dipole moment interaction compared to the non-resistant protease. Desolvation has been shown to be the dominant factor influencing the effect of inhibitors against the cyclin-dependent kinases, but lipophilicity and dipole moment are also significant factors. The model can differentiate between the inhibitory activity of CDK2/cycE, CDK1/cycB and CDK4/cycD enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural characteristics of liquid nitromethane at the nanoscale confinement in carbon nanotubes.
Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Ge, Zhongxue; Kang, Ying
2014-10-01
The stability of energetic materials confined in the carbon nanotubes can be improved at ambient pressure and room temperature, leading to potential energy storage and controlled energy release. However, the microscopic structure of confined energetic materials and the role played by the confinement size are still fragmentary. In this study, molecular dynamics simulations have been performed to explore the structural characteristics of liquid nitromethane (NM), one of the simplest energetic materials, confined in a series of armchair single-walled carbon nanotubes (SWNTs) changing from (5,5) to (16,16) at ambient conditions. The simulation results show that the size-dependent ordered structures of NM with preferred orientations are formed inside the tubular cavities driven by the van der Waals attractions between NM and SWNT together with the dipole-dipole interactions of NM, giving rise to a higher local mass density than that of bulk NM. The NM dipoles prefer to align parallel along the SWNT axis in an end-to-end fashion inside all the nanotubes except the (7,7) SWNT where a unique staggered orientation of NM dipoles perpendicular to the SWNT axis is observed. As the SWNT radius increases, the structural arrangements and dipole orientations of NM become disordered as a result of the weakening of van der Waals interactions between NM and SWNT.
Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents
Matyushov, Dmitry V.; Newton, Marshall D.
2017-03-09
Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less
Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.
Matyushov, Dmitry V; Newton, Marshall D
2017-03-23
Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.
Scattering from a quantum anapole at low energies
NASA Astrophysics Data System (ADS)
Whitcomb, Kyle M.; Latimer, David C.
2017-12-01
In quantum field theory, the photon-fermion vertex can be described in terms of four form-factors that encode the static electromagnetic properties of the particle, namely, its charge, magnetic dipole moment, electric dipole moment, and anapole moment. For Majorana fermions, only the anapole moment can be nonzero, a consequence of the fact that these particles are their own antiparticles. Using the framework of quantum field theory, we perform a scattering calculation that probes the anapole moment with a spinless charged particle. In the limit of low momentum transfer, we confirm that the anapole can be classically likened to a point-like toroidal solenoid whose magnetic field is confined to the origin. Such a toroidal current distribution can be used to demonstrate the Aharonov-Bohm effect. We find that, in the non-relativistic limit, our scattering cross section agrees with a quantum mechanical computation of the cross section for a spinless current scattered by an infinitesimally thin toroidal solenoid. Our presentation is geared toward advanced undergraduate or beginning graduate students. This work serves as an introduction to the anapole moment and also provides an example of how one can develop an understanding of a particle's electromagnetic properties in quantum field theory.
Detecting a heavy neutrino electric dipole moment at the LHC
NASA Astrophysics Data System (ADS)
Sher, Marc; Stevens, Justin R.
2018-02-01
The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10-17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10-17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5-1000 GeV for integrated luminosities of 300 and 3000 fb-1 at the LHC.
Polarized photon scattering of 52Cr: Determining the parity of dipole states
NASA Astrophysics Data System (ADS)
Krishichayan, Fnu; Bhike, M.; Tornow, W.
2014-03-01
Observation of dipole states in nuclei are important because they provide information on various collective and single-particle nuclear excitation modes, e.g., pygmy dipole resonance (PDR) and spin-flip M1 resonance. The PDR has been extensively studied in the higher and medium mass region, whereas not much information is available around the low mass (A ~ 50) region where, apparently,the PDR starts to form. The present photoresponse of 52Cr has been investigated to test the evolution of the PDR in a nucleus with a small number of excess neutrons as well as to look for spin-flip M1 resonance excitation mode. Spin-1 states in 52Cr between 5.0 to 9.5 MeV excitation energy were excited by exploiting fully polarized photons using the (γ ,γ') nuclear resonance fluorescence technique, a completely model-independent electromagnetic method. The de-excitation γ-rays were detected using a HPGe array. The experiment was carried out using the HIGS facility at TUNL. Results of unambiguous parity determinations of dipole states in 52Cr will be presented.
A simulation assessment of the thermodynamics of dense ion-dipole mixtures with polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastea, Sorin, E-mail: sbastea@llnl.gov
Molecular dynamics (MD) simulations are employed to ascertain the relative importance of various electrostatic interaction contributions, including induction interactions, to the thermodynamics of dense, hot ion-dipole mixtures. In the absence of polarization, we find that an MD-constrained free energy term accounting for the ion-dipole interactions, combined with well tested ionic and dipolar contributions, yields a simple, fairly accurate free energy form that may be a better option for describing the thermodynamics of such mixtures than the mean spherical approximation (MSA). Polarization contributions induced by the presence of permanent dipoles and ions are found to be additive to a good approximation,more » simplifying the thermodynamic modeling. We suggest simple free energy corrections that account for these two effects, based in part on standard perturbative treatments and partly on comparisons with MD simulation. Even though the proposed approximations likely need further study, they provide a first quantitative assessment of polarization contributions at high densities and temperatures and may serve as a guide for future modeling efforts.« less
Concerted orientation induced unidirectional water transport through nanochannels.
Wan, Rongzheng; Lu, Hangjun; Li, Jinyuan; Bao, Jingdong; Hu, Jun; Fang, Haiping
2009-11-14
The dynamics of water inside nanochannels is of great importance for biological activities as well as for the design of molecular sensors, devices, and machines, particularly for sea water desalination. When confined in specially sized nanochannels, water molecules form a single-file structure with concerted dipole orientations, which collectively flip between the directions along and against the nanotube axis. In this paper, by using molecular dynamics simulations, we observed a net flux along the dipole-orientation without any application of an external electric field or external pressure difference during the time period of the particular concerted dipole orientations of the molecules along or against the nanotube axis. We found that this unique special-directional water transportation resulted from the asymmetric potential of water-water interaction along the nanochannel, which originated from the concerted dipole orientation of the water molecules that breaks the symmetry of water orientation distribution along the channel within a finite time period. This finding suggests a new mechanism for achieving high-flux water transportation, which may be useful for nanotechnology and biological applications.
Diffusion-mediated dephasing in the dipole field around a single spherical magnetic object.
Buschle, Lukas R; Kurz, Felix T; Kampf, Thomas; Triphan, Simon M F; Schlemmer, Heinz-Peter; Ziener, Christian Herbert
2015-11-01
In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the strong-collision-approximation that allows a determination of the free induction decay in dependence of the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form of the dipole field for spherical objects, the free induction decay exhibits a complex component in contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance distribution allows improved quantification of transverse relaxation. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Raithel, Georg
2017-04-01
Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).
1980-07-31
this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in
NASA Astrophysics Data System (ADS)
Middleton, Kirsten; Zhang, G. P.; Nichols, Michael R.; George, Thomas F.
2012-05-01
Memantine, amantadine and rimantadine are structurally derived from the same diamondoid, adamantane. These derivatives demonstrate therapeutic efficacy in human diseases: memantine for Alzheimer's disease and amantadine and rimantadine for influenza. In order to better understand some of the properties that distinguish these three compounds, we conduct first-principles calculations on their structure and electronic properties. Our results indicate that protonation has a significant effect on the dipole moment, where the dipole moment in protonated memantine is over eight times larger than in the deprotonated form.
Capacitance of the Double Layer Formed at the Metal/Ionic-Conductor Interface: How Large Can It Be?
NASA Astrophysics Data System (ADS)
Skinner, Brian; Loth, M. S.; Shklovskii, B. I.
2010-03-01
The capacitance of the double layer formed at a metal/ionic-conductor interface can be remarkably large, so that the apparent width of the double layer is as small as 0.3 Å. Mean-field theories fail to explain such large capacitance. We propose an alternate theory of the ionic double layer which allows for the binding of discrete ions to their image charges in the metal. We show that at small voltages the capacitance of the double layer is limited only by the weak dipole-dipole repulsion between bound ions, and is therefore very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the mean-field value.
On the versatility of electronic structures in polymethine dyes
NASA Astrophysics Data System (ADS)
Pascal, Simon; Haefele, Alexandre; Monnereau, Cyrille; Charaf-Eddin, Azzam; Jacquemin, Denis; Le Guennic, Boris; Maury, Olivier; Andraud, Chantal
2014-10-01
This article provides an overview of the photophysical behavior diversity of polymethine chromophores which are ubiquitous in biological imaging and material sciences. One major challenge in this class of chromophore is to correlate the chemical structure to the observed optical properties, especially when symmetry-breaking phenomena occur. With the constant concern for rationalization of their spectroscopy, we propose an extended classification of polymethine dyes based on their ground state electronic configuration using three limit forms namely: cyanine, dipole and bis-dipole. The chemical modifications of the dye and the influence of exogenous parameters can promote dramatic spectroscopic changes that can be correlated to significant electronic reorganization between the three-abovementioned forms. The deep understanding of such phenomena should allow to identify, predict and take advantage of the versatile electronic structure of polymethines.
Resonant scattering from a two-dimensional honeycomb PT dipole structure
NASA Astrophysics Data System (ADS)
Markoš, P.; Kuzmiak, V.
2018-05-01
We studied numerically the electromagnetic response of the finite periodic structure consisting of the PT dipoles represented by two infinitely long, parallel cylinders with the opposite sign of the imaginary part of a refractive index, which are centered at the positions of a two-dimensional honeycomb lattice. We observed that the total scattered energy reveals a series of sharp resonances at which the energy increases by two orders of magnitude and an incident wave is scattered only in a few directions given by spatial symmetry of the periodic structure. We explain this behavior by analysis of the complex frequency spectra associated with an infinite honeycomb array of the PT dipoles and identify the lowest resonance with the broken PT -symmetry mode formed by a doubly degenerate pair with complex conjugate eigenfrequencies corresponding to the K point of the reciprocal lattice.
NASA Astrophysics Data System (ADS)
Ao, Juan; Sun, Jianqi
2016-05-01
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies (SSTAs) over the South Pacific Ocean (SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn, not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.
Simulation of Light Collection for Neutron Electrical Dipole Moment measurement
NASA Astrophysics Data System (ADS)
Ji, Pan; nEDM Collaboration
2017-09-01
nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.
NASA Astrophysics Data System (ADS)
Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof
2015-12-01
A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.
Polarizability of KC60: Evidence for Potassium Skating on the C60 Surface
NASA Astrophysics Data System (ADS)
Rayane, D.; Antoine, R.; Dugourd, Ph.; Benichou, E.; Allouche, A. R.; Aubert-Frécon, M.; Broyer, M.
2000-02-01
We present the first measurement of the polarizability and the permanent dipole moment of isolated KC60 molecules by molecular beam deflection technique. We have obtained a value of 2506+/-250 Å3 for the polarizability at room temperature. The addition of a potassium atom enhances by more than a factor of 20 the polarizability of a pure C60 molecule. This very high polarizability and the lack of observed permanent dipole show that the apparent polarizability of KC60 is induced by the free skating of the potassium atom on the C60 surface, resulting in a statistical orientation of the dipole. The results are interpreted with a simple model similar to the Langevin theory for paramagnetic systems.
Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.
Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q
2018-02-02
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.
Hard diffraction in the QCD dipole picture
NASA Astrophysics Data System (ADS)
Bialas, A.; Peschanski, R.
1996-02-01
Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, xP, Q2, and β = {x Bj}/{x P}. It factorizes into an explicit x P-dependent Hard Pomeron flux factor and structure function. The lux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small β is similar to that for F2 at small xBj.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.; Conrad, Joy
1996-01-01
The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field intensity, and mean geomagnetic dipole power excursion and axial dipole reversal frequencies. We conclude that McLeod's Rule helps unify geo-paleomagnetism, correctly relates theoretically predictable statistical properties of the core geodynamo to magnetic observation, and provides a priori information required for stochastic inversion of paleo-, archeo-, and/or historical geomagnetic measurements.
Collider study on the loop-induced dark matter mediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Yuhsin, E-mail: yhtsai@umd.edu
2016-06-21
Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results tomore » constraints from the direct detection experiments.« less
Directive and enhanced spontaneous emission using shifted cubes nanoantenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahari, B.; Tellez-Limon, R.; Kante, B., E-mail: bkante@ucsd.edu
2016-09-07
Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information aboutmore » the “material efficiency” and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.« less
High-mass diffraction in the QCD dipole picture
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
1998-05-01
Using the QCD dipole picture of the BFKL pomeron, the cross-section of single diffractive dissociation of virtual photons at high energy and large diffractively excited masses is calculated. The calculation takes into account the full impact-parameter phase-space and thus allows to obtain an exact value of the triple BFKL Pomeron vertex. It appears large enough to compensate the perturbative 6-gluon coupling factor (α/π)3 thus suggesting a rather appreciable diffractive cross-section.
Laurent, Adèle D; Medveď, Miroslav; Jacquemin, Denis
2016-06-17
We present the first theoretical investigation of a recently proposed class of photochromes, namely donor-acceptor Stenhouse adduct (DASA) switches [J. Am. Chem. Soc. 2014, 136, 8169-8172]. By using density functional theory and its time-dependent counterpart, we investigate the ground- and excited-state structures, electronic transition energies, and several properties of the two isomeric forms. In addition to demonstrating that the selected level of theory is able to reproduce the main experimental facts, we show that 1) the two forms of the DASA photochromes are close to isoenergetic; 2) the two isomers possess similar total dipole moments, in spite of their very different sizes; 3) both isomers have a zwitterionic nature; 4) the nature of the dipole-allowed electronic excited state is vastly different in the two forms; and 5) the specific band shape of the extended DASA can be reproduced by vibronic calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Virtual photon impact factors with exact gluon kinematics
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
2001-06-01
An explicit analytic formula for the transverse and longitudinal impact factors ST, L( N, γ) of the photon using kT factorization with exact gluon kinematics is given. Applications to the QCD dipole model and the extraction of the unintegrated gluon structure function from data are proposed.
Current Progress in Fabrication of a 14 Tesla Nb3Sn Dipole
NASA Astrophysics Data System (ADS)
Holik, Eddie, III; Benson, Christopher; Damborsky, Kyle; Diaczenko, Nick; Elliott, Tim; Garrison, Ray; Jaisle, Andrew; McInturff, Alfred; McIntyre, Peter; Sattarov, Dior
2012-03-01
The Accelerator Technology Laboratory at Texas A&M is fabricating a model dipole magnet, TAMU3, designed to operate at a 14 Tesla bore field. The dipole employs an advanced internal-tin Nb3Sn/Cu composite strand with enhanced current density. The coils must be processed through a heat treatment after winding, during which the Sn within the heterogeneous strands diffuse into the Cu/Nb matrix to form high-performance superconducting layers. Heat treatment of the first coil assembly revealed tin leakage from the Sn cores that was caused by omission of a pre-anneal step in the heat treatment. We are evaluating the electrical properties of the coil, the microstructure and short-sample superconducting performance of cut-off samples of current leads to determine the extent of damage to the performance of the windings. Results of those tests and plans for construction of TAMU3 will be presented.
Angular-momentum couplings in ultra-long-range giant dipole molecules
NASA Astrophysics Data System (ADS)
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-02-01
In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.
Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.
Chesi, Stefano; Yang, Li-Ping; Loss, Daniel
2016-02-12
We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.
Demonstration of current drive by a rotating magnetic dipole field
NASA Astrophysics Data System (ADS)
Giersch, L.; Slough, J. T.; Winglee, R.
2007-04-01
Abstract.A dipole-like rotating magnetic field was produced by a pair of circular, orthogonal coils inside a metal vacuum chamber. When these coils were immersed in plasma, large currents were driven outside the coils: the currents in the plasma were generated and sustained by the rotating magnetic dipole (RMD) field. The peak RMD-driven current was at roughly two RMD coil radii, and this current (60 kA m-) was sufficient to reverse the ambient magnetic field (33 G). Plasma density, electron temperature, magnetic field and current probes indicated that plasma formed inside the coils, then expanded outward until the plasma reached equilibrium. This equilibrium configuration was adequately described by single-fluid magnetohydrodynamic equilibrium, wherein the cross product of the driven current and magnetic filed was approximately equal to the pressure gradient. The ratio of plasma pressure to magnetic field pressure, β, was locally greater than unity.
The threshold laws for electron-atom and positron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1983-01-01
The Coulomb-dipole theory is employed to derive a threshold law for the lowest energy needed for the separation of three particles from one another. The study focuses on an electron impinging on a neutral atom, and the dipole is formed between an inner electron and the nucleus. The analytical dependence of the transition matrix element on energy is reduced to lowest order to obtain the threshold law, with the inner electron providing a shield for the nucleus. Experimental results using the LAMPF accelerator to produce a high energy beam of H- ions, which are then exposed to an optical laser beam to detach the negative H- ion, are discussed. The threshold level is found to be confined to the region defined by the upper bound of the inverse square of the Coulomb-dipole region. Difficulties in exact experimental confirmation of the threshold are considered.
Weitschies, Werner; Blume, Henning; Mönnikes, Hubert
2010-01-01
Knowledge about the performance of dosage forms in the gastrointestinal tract is essential for the development of new oral delivery systems, as well as for the choice of the optimal formulation technology. Magnetic Marker Monitoring (MMM) is an imaging technology for the investigation of the behaviour of solid oral dosage forms within the gastrointestinal tract, which is based on the labelling of solid dosage forms as a magnetic dipole and determination of the location, orientation and strength of the dipole after oral administration using measurement equipment and localization methods that are established in biomagnetism. MMM enables the investigation of the performance of solid dosage forms in the gastrointestinal tract with a temporal resolution in the range of a few milliseconds and a spatial resolution in 3D in the range of some millimetres. Thereby, MMM provides real-time tracking of dosage forms in the gastrointestinal tract. MMM is also suitable for the determination of dosage form disintegration and for quantitative measurement of in vivo drug release in case of appropriate extended release dosage forms like hydrogel-forming matrix tablets. The combination of MMM with pharmacokinetic measurements (pharmacomagnetography) enables the determination of in vitro-in vivo correlations (IVIC) and the delineation of absorption sites in the gastrointestinal tract. Copyright 2009 Elsevier B.V. All rights reserved.
Zhang, Zhelin; Chen, Yanping; Chen, Min; Zhang, Zhen; Yu, Jin; Sheng, Zhengming; Zhang, Jie
2016-12-09
We demonstrate effective control on the carrier-envelope phase and angular distribution as well as the peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of both the generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of a terahertz pulse for potential applications.
Superconducting Magnet Technology for Future High Energy Proton Colliders
NASA Astrophysics Data System (ADS)
Gourlay, Stephen
2017-01-01
Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.
Barnard, M.; Venter, C.; Harding, A. K.
2018-01-01
We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter ε), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to ε = 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle α=78−1+1° and observer angle ζ=69−1+2°. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of ε are favored for the offset-PC dipole field when assuming constant emissivity, and larger ε values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with α and ζ being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes. PMID:29681648
NASA Technical Reports Server (NTRS)
Barnard, M.; Venter, C.; Harding, A. K.
2016-01-01
We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.
Vertical transport in isotype InAlN/GaN dipole induced diodes grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Fireman, M. N.; Li, Haoran; Keller, Stacia; Mishra, Umesh K.; Speck, James S.
2017-05-01
InAlN dipole diodes were developed and fabricated on both (0001) Ga-Face and (" separators="| 000 1 ¯) N-face oriented GaN on sapphire templates by molecular beam epitaxy. The orientation and direction of the InAlN polarization dipole are functions of the substrate orientation and composition, respectively. Special consideration was taken to minimize growth differences and impurity uptake during growth on these orientations of opposite polarity. Comparison of devices on similarly grown structures with In compositions in excess of 50% reveals that dipole diodes shows poorer forward bias performance and exhibited an increase in reverse bias leakage, regardless of orientation. Similarly, (0001) Ga-face oriented InAlN at a lowered 40% In composition had poor device characteristics, namely, the absence of expected exponential turn on in forward bias. By contrast, at In compositions close to 40%, (" separators="| 000 1 ¯) N-face oriented InAlN devices had excellent performance, with over five orders of magnitude of rectification and extracted barrier heights of 0.53- 0.62 eV; these values are in close agreement with simulation. Extracted ideality factors ranging from 1.08 to 1.38 on these devices are further evidence of their optimal performance. Further discussion focuses on the growth and orientation conditions that may lead to this discrepancy yet emphasizes that with proper design and growth strategy, the rectifying dipole diodes can be achieved with InAlN nitride dipole layers.
NASA Technical Reports Server (NTRS)
Chackerian, C., Jr.; Farreng, R.; Guelachvili, G.; Rossetti, C.; Urban, W.
1984-01-01
Experimental intensity information is combined with numerically obtained vibrational wave functions in a nonlinear least squares fitting procedure to obtain the ground electronic state electric-dipole-moment function of carbon monoxide valid in the range of nuclear oscillation (0.87 to 1.01 A) of about the V = 38th vibrational level. Mechanical anharmonicity intensity factors, H, are computed from this function for delta V + = 1, 2, 3, with or = to 38.
Reiner, Maria; Pietschnig, Rudolf; Ostermaier, Clemens
2015-10-21
The influence of surface modifications on the Schottky barrier height for gallium nitride semiconductor devices is frequently underestimated or neglected in investigations thereof. We show that a strong dependency of Schottky barrier heights for nickel/aluminum-gallium nitride (0001) contacts on the surface terminations exists: a linear correlation of increasing barrier height with increasing electronegativity of superficial adatoms is observed. The negatively charged adatoms compete with the present nitrogen over the available gallium (or aluminum) orbital to form an electrically improved surface termination. The resulting modification of the surface dipoles and hence polarization of the surface termination causes observed band bending. Our findings suggest that the greatest Schottky barrier heights are achieved by increasing the concentration of the most polarized fluorine-gallium (-aluminum) bonds at the surface. An increase in barrier height from 0.7 to 1.1 eV after a 15% fluorine termination is obtained with ideality factors of 1.10 ± 0.05. The presence of surface dipoles that are changing the surface energy is proven by the sessile drop method as the electronegativity difference and polarization influences the contact angle. The extracted decrease in the Lifshitz-van-der-Waals component from 48.8 to 40.4 mJ/m(2) with increasing electronegativity and concentration of surface adatoms confirms the presence of increasing surface dipoles: as the polarizability of equally charged anions decreases with increasing electronegativity, the diiodomethane contact angles increase significantly from 14° up to 39° after the 15% fluorine termination. Therefore, a linear correlation between increasing anion electronegativity of the (Al)GaN termination and total surface energy within a 95% confidence interval is obtained. Furthermore, our results reveal a generally strong Lewis basicity of (Al)GaN surfaces explaining the high chemical inertness of the surfaces.
Unraveling the Nature of Steady Magnetopause Reconnection Versus Flux Transfer Events
NASA Astrophysics Data System (ADS)
Raeder, J.
2002-12-01
Magnetic reconnection is a fundamental mode of energy and momentum transfer from the solar wind to the magnetosphere. It is known to occur in different forms depending on solar wind and magnetospheric conditions. In particular, steady reconnection can be distinguished from pulse-like reconnection events which are also known as Flux Transfer Events (FTEs). The formation mechanism of FTEs and their contolling factors remain controversial. We use global MHD simulations of Earth's magnetosphere to show that for southward IMF conditions: a) steady reconnection preferentially occurs without FTEs when the stagnation flow line nearly coincides with the X-line location, which requires small dipole tilt and nearly due southward IMF, b) FTEs occur when the flow/field symmetry is broken, which requires either a large dipole tilt and/or a substantial east-west component of the IMF, c) the predicted spacecraft signature and the repetition frequency of FTEs in the simulations agrees very well with typical observations, lending credibility to the the model, d) the fundamental process that leads to FTE formation is multiple X-line formation caused by the flow and field patterns in the magnetosheath and requires no intrinsic plasma property variations like variable resistivity, e) if the dipole tilt breaks the symmetry FTEs occur only in the winter hemisphere whereas the reconnection signatures in the summer hemisphere are steady with no bipolar FTE-like signatures, f) if the IMF east-west field component breaks the symmetry FTEs occur in both hemispheres, and g) FTE formation depends on sufficient resolution and low diffusion in the model -- coarse resolution and/or high diffusivity lead to flow-through reconnection signatures that appear unphysical given the frequent observation of FTEs.
Global modeling of flux transfer events: generation mechanism and spacecraft signatures
NASA Astrophysics Data System (ADS)
Raeder, J.
2003-04-01
Magnetic reconnection is a fundamental mode of energy and momentum transfer from the solar wind to the magnetosphere. It is known to occur in different forms depending on solar wind and magnetospheric conditions. In particular, steady reconnection can be distinguished from pulse-like reconnection events which are also known as Flux Transfer Events (FTEs). The formation mechanism of FTEs and their contolling factors remain controversial. We use global MHD simulations of Earth's magnetosphere to show that for southward IMF conditions: a) steady reconnection preferentially occurs without FTEs when the stagnation flow line nearly coincides with the X-line location, which requires small dipole tilt and nearly due southward IMF, b) FTEs occur when the flow/field symmetry is broken, which requires either a large dipole tilt and/or a substantial east-west component of the IMF, c) the predicted spacecraft signature and the repetition frequency of FTEs in the simulations agrees very well with typical observations, lending credibility to the the model, d) the fundamental process that leads to FTE formation is multiple X-line formation caused by the flow and field patterns in the magnetosheath and requires no intrinsic plasma property variations like variable resistivity, e) if the dipole tilt breaks the symmetry FTEs occur only in the winter hemisphere whereas the reconnection signatures in the summer hemisphere are steady with no bipolar FTE-like signatures, f) if the IMF east-west field component breaks the symmetry FTEs occur in both hemispheres, and g) FTE formation depends on sufficient resolution and low diffusion in the model -- coarse resolution and/or high diffusivity lead to flow-through reconnection signatures that appear unphysical given the frequent observation of FTEs.
Extinction cross-section suppression and active acoustic invisibility cloaking
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-10-01
Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.
NASA Astrophysics Data System (ADS)
Yu, Shang-Yu; Wang, Kuan-Hsun; Zan, Hsiao-Wen; Soppera, Olivier
2017-06-01
In this article, we propose a solution-processed high-performance amorphous indium-zinc oxide (a-IZO) thin-film transistor (TFT) gated with a fluoropolymer dielectric. Compared with a conventional IZO TFT with a silicon nitride dielectric, a fluoropolymer dielectric effectively reduces the operation voltage to less than 3 V and greatly increases the effective mobility 40-fold. We suggest that the dipole layer formed at the dielectric surface facilitates electron accumulation and induces the electric double-layer effect. The dipole-induced hysteresis effect is also investigated.
Internal Charmonium Evolution in the Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Chen, Baoyi; Du, Xiaojian; Rapp, Ralf
2017-08-01
We employ a time-dependent Schrödinger equation to study the evolution of a c c ‾ dipole in a quark-gluon plasma (QGP). Medium effects on the heavy-quark potential in the QGP are found to significantly affect the timescales of the internal evolution of the dipole. Color-screening can enhance the overlap of the expanding wavepackage with excited states at high temperature, while it is reduced at lower temperatures where the dipole favors the formation of the charmonium ground state. We investigate the consequences of this mechanism on the double ratio of charmonium nuclear modification factors, RAAψ (2 S) /RAAJ/ψ, in heavy-ion collisions. The impact of the transition mechanisms on this ratio turns out to be rather sensitive to the attractive strength of the potential, and to its temperature dependence.
Standard, Random, and Optimum Array conversions from Two-Pole resistance data
Rucker, D. F.; Glaser, Danney R.
2014-09-01
We present an array evaluation of standard and nonstandard arrays over a hydrogeological target. We develop the arrays by linearly combining data from the pole-pole (or 2-pole) array. The first test shows that reconstructed resistances for the standard Schlumberger and dipoledipole arrays are equivalent or superior to the measured arrays in terms of noise, especially at large geometric factors. The inverse models for the standard arrays also confirm what others have presented in terms of target resolvability, namely the dipole-dipole array has the highest resolution. In the second test, we reconstruct random electrode combinations from the 2-pole data segregated intomore » inner, outer, and overlapping dipoles. The resistance data and inverse models from these randomized arrays show those with inner dipoles to be superior in terms of noise and resolution and that overlapping dipoles can cause model instability and low resolution. Finally, we use the 2-pole data to create an optimized array that maximizes the model resolution matrix for a given electrode geometry. The optimized array produces the highest resolution and target detail. Thus, the tests demonstrate that high quality data and high model resolution can be achieved by acquiring field data from the pole-pole array.« less
NASA Astrophysics Data System (ADS)
Al-Omari, S.
2006-12-01
The photophysical properties of the hexapyropheophorbide- a (P6) compound were studied using both steady-state and time-resolved spectroscopy. It was found that neighboring pyropheophorbide- a (pyroPheo) molecules covalently linked to each other through carbon chains, which could stack. This structural property is the reason for the possibility of formation of two different types of energy traps, which could be resolved experimentally. One of them is formed via face-to-face stacking of two pyroPheo molecules with a direction of the transition dipole moments parallel to each other. The second type of energy trap gives the dominant contribution to the fluorescence signal at a registration wavelength having the oblique geometry or orthogonal direction of the transition dipole moments of the interacting pyroPheo molecules. In any case, the dipole-dipole Förster energy transfer between pyroPheo molecules caused a very fast and efficient delivery of the excitation to a trap. As a result, the fluorescence as well as the singlet oxygen quantum yields of P6 were reduced by four and three times, respectively, compared to those values of the reference bispyrophephorbide- a (P2) compound.
Champagne, Pier Alexandre; Houk, K N
2017-10-20
The geometries, stabilities, and 1,3-dipolar cycloaddition reactivities of 24 mesoionic azomethine ylides and imines were investigated using density functional theory calculations at the M06-2X/6-311+G-(d,p)/M06-2X/6-31G-(d) level. The computed structures highlight how the commonly used "aromatic" resonance form should be replaced by two more accurate resonance structures. Stabilities of the dipoles were assessed by various homodesmotic schemes and are consistent with these compounds being nonaromatic. The activation free energies with ethylene or acetylene range from 11.8 to 36.6 kcal/mol. Within each dipole type, the predicted cycloaddition reactivities correlate with the reaction energies and the resonance stabilization energies provided by the various substituents. Endocyclic (X) heteroatoms increase the reactivity of the 1,3-dipoles in the order of O > NH ≅ S, whereas exocyclic (Y) substituents increase it in the order of CH 2 > NH > O > S. Distortion/interaction analysis indicated that the difference in reactivity between differently substituted 1,3-dipoles is driven by distortion, whereas the difference between azomethine ylides and imines is related to lower interaction energies of imines with the dipolarophiles.
NASA Astrophysics Data System (ADS)
Liu, Bo; Tang, Chaojun; Chen, Jing; Xie, Ningyan; Tang, Huang; Zhu, Xiaoqin; Park, Gun-sik
2018-05-01
It is well known that a suspended monolayer graphene has a weak light absorption efficiency of about 2.3% at normal incidence, which is disadvantageous to some applications in optoelectronic devices. In this work, we will numerically study multiband and broadband absorption enhancement of monolayer graphene over the whole visible spectrum, due to multiple magnetic dipole resonances in metamaterials. The unit cell of the metamaterials is composed of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO2 spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of monolayer graphene at optical frequencies. When the resonance wavelengths of the magnetic dipole modes are tuned to approach one another by changing the diameters of the Ag nanodisks, a broadband absorption enhancement can be achieved. The position of the absorption band in monolayer graphene can be also controlled by varying the thickness of the SiO2 spacer or the distance between the Ag nanodisks. Our designed graphene light absorber may find some potential applications in optoelectronic devices, such as photodetectors.
NASA Astrophysics Data System (ADS)
Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.
2015-12-01
Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.
NASA Astrophysics Data System (ADS)
Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin
2018-04-01
We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.
Zhou, Shuai; Chen, Qianwang
2011-09-14
Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent. This journal is © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine
2017-10-01
Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.
Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working
NASA Astrophysics Data System (ADS)
Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana
2017-11-01
Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.
Gamma-Ray Pulsar Light Curves in Vacuum and Force-Free Geometry
NASA Technical Reports Server (NTRS)
Harding, Alice K.; DeCesar, Megan E.; Miller, M. Coleman; Kalapotharakos, Constantinos; Contopoulos, Ioannis
2011-01-01
Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profiles. We find that, compared to the profiles derived from symmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines, increases significantly relative to the off-peak emission, formed along leading field lines. The enhanced contrast produces improved slot gap model fits to Fermi pulsar light curves like Vela, with vacuum dipole fits being more favorable.
QCD triple Pomeron coupling from string amplitudes
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
1998-06-01
Using the recent solution of the triple Pomeron coupling in the QCD dipole picture as a closed string amplitude with six legs, its analytical form in terms of hypergeometric functions and numerical value are derived.
Formation of iron metal and grain coagulation in the solar nebula
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Berg, Otto
1994-01-01
The interstellar grain population in the giant molecular cloud from which the sun formed contained little or no iron metal. However, thermal processing of individual interstellar silicates in the solar nebula is likely to result in the formation of a population of very small iron metal grains. If such grains are exposed to even transient magnetic fields, each will become a tiny dipole magnet capable of interacting with other such dipoles over spatial scale orders of magnitude larger than the radii of individual grains. Such interactions will greatly increase the coagulation cross-section for this grain population. Furthermore, the magnetic attraction between two iron dipoles will significantly increase both the collisional sticking coefficient and the strength of the interparticle binding energy for iron aggregates. Formation of iron metal may therefore be a key step in the aggregation of planetesimals in a protoplanetary nebula. Such aggregates may have already been observed in protoplanetary systems. The enhancement in the effective interaction distance between two magnetic dipoles is directly proportional to the strength of the magnetic dipoles and inversely proportional to the relative velocity. It is less sensitive to the reduced mass of the interacting particles (alpha M(exp -1/2)) and almost insensitive to the initial number density of magnetic dipoles (alpha n(sub o)(exp 1/6)). We are in the process of measuring the degree of coagulation in our condensation flow apparatus as a function of applied magnetic field and correlating these results by means of magnetic remanance acquisition measurements on our iron grains with the strength of the magnetic field to which the grains are exposed. Results of our magnetic remanance acquisition measurements and the magnetic-induced coagulation study will be presented as well as an estimate of the importance of such processes near the nebular midplane.
Secondary relaxation dynamics in rigid glass-forming molecular liquids with related structures.
Li, Xiangqian; Wang, Meng; Liu, Riping; Ngai, Kia L; Tian, Yongjun; Wang, Li-Min; Capaccioli, Simone
2015-09-14
The dielectric relaxation in three glass-forming molecular liquids, 1-methylindole (1MID), 5H-5-Methyl-6,7-dihydrocyclopentapyrazine (MDCP), and Quinaldine (QN) is studied focusing on the secondary relaxation and its relation to the structural α-relaxation. All three glass-formers are rigid and more or less planar molecules with related chemical structures but have dipoles of different strengths at different locations. A strong and fast secondary relaxation is detected in the dielectric spectra of 1MID, while no resolved β-relaxation is observed in MDCP and QN. If the observed secondary relaxation in 1MID is identified with the Johari-Goldstein (JG) β-relaxation, then apparently the relation between the α- and β-relaxation frequencies of 1MID is not in accord with the Coupling Model (CM). The possibility of the violation of the prediction in 1MID as due to either the formation of hydrogen-bond induced clusters or the involvement of intramolecular degree of freedom is ruled out. The violation is explained by the secondary relaxation originating from the in-plane rotation of the dipole located on the plane of the rigid molecule, contributing to dielectric loss at higher frequencies and more intense than the JG β-relaxation generated by the out-of-plane rotation. MDCP has smaller dipole moment located in the plane of the molecule; however, presence of the change of curvature of dielectric loss, ε″(f), at some frequency on the high-frequency flank of the α-relaxation reveals the JG β-relaxation in MDCP and which is in accord with the CM prediction. QN has as large an in-plane dipole moment as 1MID, and the absence of the resolved secondary relaxation is explained by the smaller coupling parameter than the latter in the framework of the CM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przepioski, Joshua
2015-08-25
This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene-2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify themore » dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less
Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przepioski, Joshua
2015-08-28
This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI 2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to bettermore » identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less
Liquid structure of dibutyl sulfoxide
Lo Celso, Fabrizio; Aoun, Bachir; Triolo, Alessandro; ...
2016-05-16
We present experimental (x-ray diffraction) data on the structure of liquid dibutyl sulfoxide at 320 K and rationalize them by means of Molecular Dynamics simulations. Not unexpectedly, DBSO bearing a strong dipolar moiety and two medium length, apolar, butyl chains, this compound turns out to be characterised by a distinct degree of polar-vs-apolar structural differentiation at the nm spatial scale that is fingerprinted in a low Q peak in its x-ray diffraction pattern. Similarly to, but to a larger extent than its shorter chain family members (such as DMSO), DBSO is also characterised by an enhanced dipole-dipole correlation that ismore » responsible for the moderate Kirkwood correlation factor as well as for the self-association detected in this compound. In conclusion, we show however that the supposedly relevant hydrogen bonding correlations between oxygen and butyl chain hydrogens are of limited extent and only in the case of α-hydrogens appreciable indication of the existence of such an interaction is found, but it turns out to be a mere consequence of the strong dipole-dipole correlation.« less
Two-leg ladder systems with dipole–dipole Fermion interactions
NASA Astrophysics Data System (ADS)
Mosadeq, Hamid; Asgari, Reza
2018-05-01
The ground-state phase diagram of a two-leg fermionic dipolar ladder with inter-site interactions is studied using density matrix renormalization group (DMRG) techniques. We use a state-of-the-art implementation of the DMRG algorithm and finite size scaling to simulate large system sizes with high accuracy. We also consider two different model systems and explore stable phases in half and quarter filling factors. We find that in the half filling, the charge and spin gaps emerge in a finite value of the dipole–dipole and on-site interactions. In the quarter filling case, s-wave superconducting state, charge density wave, homogenous insulating and phase separation phases occur depend on the interaction values. Moreover, in the dipole–dipole interaction, the D-Mott phase emerges when the hopping terms along the chain and rung are the same, whereas, this phase has been only proposed for the anisotropic Hubbard model. In the half filling case, on the other hand, there is either charge-density wave or charged Mott order phase depends on the orientation of the dipole moments of the particles with respect to the ladder geometry.
New design studies for TRIUMF's ARIEL High Resolution Separator
NASA Astrophysics Data System (ADS)
Maloney, J. A.; Baartman, R.; Marchetto, M.
2016-06-01
As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.
Large enhancement of capacitance driven by electrostatic image forces
NASA Astrophysics Data System (ADS)
Loth, Matthew Scott
The purpose of this thesis is to examine the role of electrostatic images in determining the capacitance and the structure of the electrostatic double layer (EDL) formed at the interface of a metal electrode and an electrolyte. Current mean field theories, and the majority of simulations, do not account for ions to form image charges in the metal electrodes and claim that the capacitance of the double layer cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments, and simulations where the images are included, the apparent width of the capacitor is substantially smaller. Monte Carlo simulations are used to examine the interface between a metal electrode and a room temperature ionic liquid (RTIL) modeled by hard spheres (the "restricted primitive model"). Image charges for each ion are included in the simulated electrode. At moderately low temperatures the capacitance of the metal/RTIL interface is so large that the effective thickness of the electrostatic double-layer is up to 3 times smaller than the ion radius. To interpret these results, an approach is used that is based on the interaction between discrete ions and their image charges, which therefore goes beyond the mean-field approximation. When a voltage is applied across the interface, the strong image attraction causes counterions to condense onto the metal surface to form compact ion-image dipoles. These dipoles repel each other to form a correlated liquid. When the surface density of these dipoles is low, the insertion of an additional dipole does not require much energy. This leads to a large capacitance C that decreases monotonically with voltage V, producing a "bell-shaped" C( V) curve. In the case of a semi-metal electrode, the finite screening radius of the electrode shifts the reflection plane for image charges to the interior of the electrode resulting in a "camel-shaped" C(V) curve, which is parabolic near V = 0, reaches a maximum and then decreases. These predictions are in qualitative agreement with experiment. A similarly simple model is employed to simulate the EDL of superionic crystals. In this case only small cations are mobile and other ions form an oppositely charged background. Simulations show an effective thickness of the EDL that may be 3 times smaller than the ion radius. The weak repulsion of ion-image dipoles again plays a central role in determining the capacitance in this theory, which is in reasonable agreement with experiment. Finally, the problem of a strongly charged, insulating macroion in a dilute solution of multivalent counterions is considered. While an ideal conductor does not exist in the problem, and no images are explicitly included, simulations demonstrate that adsorbed counterions form a strongly correlated liquid of at the surface of the macroion and acts as an effective metal surface. In fact, the surface screens the electric field of distant ions with a negative screening radius. The simulation results serve to confirm existing non-mean-field theories.
Computer simulations of equilibrium magnetization and microstructure in magnetic fluids
NASA Astrophysics Data System (ADS)
Rosa, A. P.; Abade, G. C.; Cunha, F. R.
2017-09-01
In this work, Monte Carlo and Brownian Dynamics simulations are developed to compute the equilibrium magnetization of a magnetic fluid under action of a homogeneous applied magnetic field. The particles are free of inertia and modeled as hard spheres with the same diameters. Two different periodic boundary conditions are implemented: the minimum image method and Ewald summation technique by replicating a finite number of particles throughout the suspension volume. A comparison of the equilibrium magnetization resulting from the minimum image approach and Ewald sums is performed by using Monte Carlo simulations. The Monte Carlo simulations with minimum image and lattice sums are used to investigate suspension microstructure by computing the important radial pair-distribution function go(r), which measures the probability density of finding a second particle at a distance r from a reference particle. This function provides relevant information on structure formation and its anisotropy through the suspension. The numerical results of go(r) are compared with theoretical predictions based on quite a different approach in the absence of the field and dipole-dipole interactions. A very good quantitative agreement is found for a particle volume fraction of 0.15, providing a validation of the present simulations. In general, the investigated suspensions are dominated by structures like dimmer and trimmer chains with trimmers having probability to form an order of magnitude lower than dimmers. Using Monte Carlo with lattice sums, the density distribution function g2(r) is also examined. Whenever this function is different from zero, it indicates structure-anisotropy in the suspension. The dependence of the equilibrium magnetization on the applied field, the magnetic particle volume fraction, and the magnitude of the dipole-dipole magnetic interactions for both boundary conditions are explored in this work. Results show that at dilute regimes and with moderate dipole-dipole interactions, the standard method of minimum image is both accurate and computationally efficient. Otherwise, lattice sums of magnetic particle interactions are required to accelerate convergence of the equilibrium magnetization. The accuracy of the numerical code is also quantitatively verified by comparing the magnetization obtained from numerical results with asymptotic predictions of high order in the particle volume fraction, in the presence of dipole-dipole interactions. In addition, Brownian Dynamics simulations are used in order to examine magnetization relaxation of a ferrofluid and to calculate the magnetic relaxation time as a function of the magnetic particle interaction strength for a given particle volume fraction and a non-dimensional applied field. The simulations of magnetization relaxation have shown the existence of a critical value of the dipole-dipole interaction parameter. For strength of the interactions below the critical value at a given particle volume fraction, the magnetic relaxation time is close to the Brownian relaxation time and the suspension has no appreciable memory. On the other hand, for strength of dipole interactions beyond its critical value, the relaxation time increases exponentially with the strength of dipole-dipole interaction. Although we have considered equilibrium conditions, the obtained results have far-reaching implications for the analysis of magnetic suspensions under external flow.
Conformal dual-band textile antenna with metasurface for WBAN application
NASA Astrophysics Data System (ADS)
Giman, Fatin Nabilah; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Abdulmalek, Mohamedfareq; Abdulaziz, Nidhal
2017-01-01
This paper presents the design of a dual-band wearable planar slotted dipole integrated with a metasurface. It operates in the 2.45 GHz (lower) and 5.8 GHz (upper) bands and made fully using textiles to suit wireless body area network applications. The metasurface in the form of an artificial magnetic conductor (AMC) plane is formed using a rectangular patch incorporated with a diamond-shaped slot to generate dual-phase response. This plane is then integrated with the planar slotted dipole antenna prior to its assessment in free space and bent configurations. Simulations and measurements indicated a good agreement, and the antenna featured an impedance bandwidth of 164 and 592 MHz in the lower and upper band, respectively. The presence of the AMC plane also minimized the backward radiation toward the human body and enhanced realized gains by up to 3.01 and 7.04 dB in the lower and upper band.
Colloidal layers in magnetic fields and under shear flow
NASA Astrophysics Data System (ADS)
Löwen, H.; Messina, R.; Hoffmann, N.; Likos, C. N.; Eisenmann, C.; Keim, P.; Gasser, U.; Maret, G.; Goldberg, R.; Palberg, T.
2005-11-01
The behaviour of colloidal mono- and bilayers in external magnetic fields and under shear is discussed and recent progress is summarized. Superparamagnetic colloidal particles form monolayers when they are confined to a air-water interface in a hanging water droplet. An external magnetic field allows us to tune the strength of the mutual dipole-dipole interaction between the colloids and the anisotropy of the interaction can be controlled by the tilt angle of the magnetic field relative to the surface normal of the air-water interface. For sufficiently large magnetic field strength crystalline monolayers are found. The role of fluctuations in these two-dimensional crystals is discussed. Furthermore, clustering phenomena in binary mixtures of superparamagnetic particles forming fluid monolayers are predicted. Finally, we address sheared colloidal bilayers and find that the orientation of confined colloidal crystals can be tailored by a previously applied shear direction.
Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Li, Jiaqi; Verellen, Niels; Van Dorpe, Pol
2018-02-01
Dielectric nanoparticles with both strong electric and magnetic dipole (ED and MD) resonances offer unique opportunities for efficient manipulation of light-matter interactions. Here, based on numerical simulations, we show far-field diffractive coupling of the ED and MD modes in a periodic rectangular array. By using unequal periodicities in the orthogonal directions, each dipole mode is separately coupled and strongly tuned. With this method, the electric and magnetic response of the dielectric nanoparticles can be deliberately engineered to accomplish various optical functionalities. Remarkably, an ultra-sharp MD resonance with sub-10 nm linewidth is achieved with a large enhancement factor for the magnetic field intensity on the order of ˜103. Our results will find useful applications for the detection of chemical and biological molecules as well as the design of novel photonic metadevices.
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2016-02-01
Isovector and isoscalar dipole excitations in 9Be and 10Be are investigated in the framework of antisymmetrized molecular dynamics, in which angular-momentum and parity projections are performed. In the present method, 1p-1h excitation modes built on the ground state and a large amplitude α -cluster mode are taken into account. The isovector giant dipole resonance (GDR) in E >20 MeV shows the two-peak structure, which is understood from the dipole excitation in the 2 α core part with the prolate deformation. Because of valence neutron modes against the 2 α core, low-energy E 1 resonances appear in E <20 MeV, exhausting about 20 % of the Thomas-Reiche-Kuhn sum rule and 10 % of the calculated energy-weighted sum. The dipole resonance at E ˜15 MeV in 10Be can be interpreted as the parity partner of the ground state having a 6He+α structure and has remarkable E 1 strength because of the coherent contribution of two valence neutrons. The isoscalar dipole strength for some low-energy resonances is significantly enhanced by the coupling with the α -cluster mode. For the E 1 strength of 9Be, the calculation overestimates the energy-weighted sum (EWS) in the low-energy (E <20 MeV) and GDR (20
Chen, Hongyi; Ren, Juanjuan; Gu, Ying; Zhao, Dongxing; Zhang, Junxiang; Gong, Qihuang
2015-01-01
The enhancement of the optical nonlinear effects at nanoscale is important in the on-chip optical information processing. We theoretically propose the mechanism of the great Kerr nonlinearity enhancement by using anisotropic Purcell factors in a double-Λ type four-level system, i.e., if the bisector of the two vertical dipole moments lies in the small/large Purcell factor axis in the space, the Kerr nonlinearity will be enhanced/decreased due to the spontaneously generated coherence accordingly. Besides, when the two dipole moments are parallel, the extremely large Kerr nonlinearity increase appears, which comes from the double population trapping. Using the custom-designed resonant plasmonic nanostructure which gives an anisotropic Purcell factor environment, we demonstrate the effective nanoscale control of the Kerr nonlinearity. Such controllable Kerr nonlinearity may be realized by the state-of-the-art nanotechnics and it may have potential applications in on-chip photonic nonlinear devices. PMID:26670939
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng
We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole framework in the small-x region. The result features the cosφ and cos2φ azimuthal angular correlations, which have been missing in previous studies based on the dipole model. In particular, the cos2φ term is generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion collider provides important information about the gluon tomography at small x. Here, we also show the consistency with the standard collinear factorization approach based on the quark and gluon generalized parton distributions.
Minimum emittance in TBA and MBA lattices
NASA Astrophysics Data System (ADS)
Xu, Gang; Peng, Yue-Mei
2015-03-01
For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.
Studies into Equine Electrocardiography and Vectorcardiography
Holmes, J. R.; Alps, B. J.
1967-01-01
Theoretical consideration has been given in two horses to the properties of the electric field created by the equine heart acting as a simple electric generator. The principles of the vectorial theory have been applied to test the validity of application of the dipole concept. The cardiac electric forces, althrough complex in the immediate region of the heart, appear at the body surface in a similar form to those arising from a relatively immobile, single equivalent dipole. The potential value of the technique of vectorcardiography in cardiological investigations is briefly discussed. ImagesFig. 1.Fig. 3.Fig. 5.Fig. 10.Fig. 12.Fig. 13. PMID:17649586
NASA Astrophysics Data System (ADS)
Vishwam, T.; Shihab, Suriya; Murthy, V. R. K.; Tiong, Ha Sie; Sreehari Sastry, S.
2017-05-01
Complex dielectric permittivity measurements of propylene glycol (PG) in ethanol at various mole fractions were measured by using open-ended coaxial probe technique at different temperatures in the frequency range 0.02 < ν/GHz < 20. The dipole moment (μ), excess dipole moment (Δμ),excess permittivity (εE), excess inverse relaxation time(1/τ)E, Bruggeman parameter (fB), excess Helmholtz energy (ΔFE) are determined using experimental data. From the minimum energy based geometry optimization, dipole moments of individual monomers of propylene glycol and ethanol and their binary system have been evaluated theoretically at gaseous state as well as alcoholic medium by using PCM and IEFPCM solvation models from the Hatree-Fock (HF) and Density Functional Theory (DFT-B3LYP) methods with 6-311G* and 6-311G** basis sets. The obtained results have been interpreted in terms of the short and long range ordering of the dipoles, Kirkwood correlation factor (geff), thermodynamic parameters, mean molecular polarizability (αM) and interaction in the mixture through hydrogen bonding. Dielectric relaxation study of propylene glycol in ethanol medium Determination of excess dielectric and thermodynamic parameters Comparison of experimental dipole moment with theoretical calculations Interpretation of the molecular interactions in the liquid through H-bonding Correlation between the evaluated dielectric parameters and theoretical results
Decay constants and radiative decays of heavy mesons in light-front quark model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ho-Meoyng
2007-04-01
We investigate the magnetic dipole decays V{yields}P{gamma} of various heavy-flavored mesons such as (D,D*,D{sub s},D{sub s}*,{eta}{sub c},J/{psi}) and (B,B*,B{sub s},B{sub s}*,{eta}{sub b},{upsilon}) using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The momentum dependent form factors F{sub VP}(q{sup 2}) for V{yields}P{gamma}* decays are obtained in the q{sup +}=0 frame and then analytically continued to the timelike region by changing q{sub perpendicular} to iq{sub perpendicular} in the form factors. The coupling constant g{sub VP{gamma}} for real photon case is then obtained in the limit as q{sup 2}{yields}0, i.e. g{sub VP{gamma}}=F{sub VP}(q{sup 2}=0). The weak decaymore » constants of heavy pseudoscalar and vector mesons are also calculated. Our numerical results for the decay constants and radiative decay widths for the heavy-flavored mesons are overall in good agreement with the available experimental data as well as other theoretical model calculations.« less
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-11-01
Active cloaking in its basic form requires that the extinction cross-section (or energy efficiency) from a radiating body vanishes. In this analysis, this physical effect is demonstrated for an active cylindrically radiating acoustic source in a non-viscous fluid, undergoing periodic axisymmetric harmonic vibrations near a rigid corner (i.e., quarter-space). The rigorous multipole expansion method in cylindrical coordinates, the method of images, and the addition theorem of cylindrical wave functions are used to derive closed-form mathematical expressions for the radiating, amplification, and extinction cross-sections of the active source. Numerical computations are performed assuming monopole and dipole modal oscillations of the circular source. The results reveal some of the situations where the extinction energy efficiency factor of the active source vanishes depending on its size and location with respect to the rigid corner, thus, achieving total invisibility. Moreover, the extinction energy efficiency factor varies between positive or negative values. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility in underwater acoustics or other areas.
Superlubricity behavior with phosphoric acid-water network induced by rubbing.
Li, Jinjin; Zhang, Chenhui; Luo, Jianbin
2011-08-02
In present work, a superlubricity phenomenon of phosphoric acid (H(3)PO(4)) was found under ambient conditions. An ultralow friction coefficient of about 0.004 between glass/Si(3)N(4) and sapphire/sapphire tribopairs was obtained under the lubrication of a phosphoric acid aqueous solution (pH 1.5) at high contact pressure (the maximum pressure can reach about 1.65 GPa) after a running-in period of about 600 s. The experimental results indicate that the superlow friction state was very stable for more than 3 h. In such a state, solidlike films formed on the two sliding surfaces, which are hydrates of phosphoric acid with a hydrogen-bonded network according to the Raman spectrum. The superlubricity mechanism is mainly attributed to the hydrogen bond effect that forms a hydrated water layer with low shearing strength, and the dipole-dipole effects that form an interfacial Coulomb repulsion force also make some contributions to low friction. This work may help us to introduce a new approach to superlubricity and may lead to the wide application of superlubricity in future technological and biomedical areas.
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Gauss, Jürgen; Kraka, Elfi; Stanton, John F.; Bartlett, Rodney J.
1993-07-01
A CCSD and CCSD (T) investigation of carbonyl oxide ( 1) and its cyclic isomer dioxirane ( 2) has been carried out employing DZ + P and TZ + 2P basis sets. Calculated geometries, charge distributions, and dipole moments suggest that 1 possesses more zwitterionic character (CCSD (T) dipole moment 4 D) than has been predicted. 1 can be distinguished from 2 by its infrared spectrum as indicated by CCSD (T) frequencies, intensities, and isotopic shifts. The heats of formation Δ H0f (298) for 1 and 2 are 30.2 and 6.0 kcal/mol, respectively; the CCSD (T) barrier to isomerization from 1 to 2 is 19.2 kcal/mol. Decomposition of 1 and 2 can lead to CO, CO 2, H 2O, H 2 but not to free CH 2, O 2 or O. Both isomers should be powerful epoxidation agents in the presence of alkenes, but they should differ in their ability to form cyclopropanes with alkenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S-Y; Hipps, Lawrence; Gillies, Robert R.
2014-05-16
The 2013-14 California drought was accompanied by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer, and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either ENSO or Pacific Decadal Oscillation; instead it is correlated with a typemore » of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased GHG loading as simulated by the CESM. Therefore, there is a traceable anthropogenic warming footprint in the enormous intensity of the anomalous ridge during winter 2013-14, the associated drought and its intensity.« less
NASA Astrophysics Data System (ADS)
Wang, S.-Y.; Hipps, Lawrence; Gillies, Robert R.; Yoon, Jin-Ho
2014-05-01
The 2013-2014 California drought was initiated by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either El Niño-Southern Oscillation (ENSO) or Pacific Decadal Oscillation; instead, it is correlated with a type of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased greenhouse gas loading as simulated by the CESM. Therefore, there is a traceable anthropogenic warming footprint in the enormous intensity of the anomalous ridge during winter 2013-2014 and the associated drought.
The structural and electronic properties of metal atoms adsorbed on graphene
NASA Astrophysics Data System (ADS)
Liu, Wenjiang; Zhang, Cheng; Deng, Mingsen; Cai, Shaohong
2017-09-01
Based on density functional theory (DFT), we studied the structural and electronic properties of seven different metal atoms adsorbed on graphene (M + graphene). The geometries, adsorption energies, density of states (DOS), band structures, electronic dipole moment, magnetic moment and work function (WF) of M + graphene were calculated. The adsorption energies ΔE indicated that Li, Na, K, Ca and Fe adsorbed on graphene were tending to form stable structures. However, diffusion would occur on Cu and Ag adsorbed on graphene. In addition, the electronic structure near the Fermi level of graphene was significantly affected by Fe (Cu and Ag), compared with Li (Na, K and Ca). The electronic dipole moment and magnetic moment of M + graphene were sensitive to the adsorbed metal atoms. Moreover, we found electropositive (electronegative) adsorption can decrease (increase) the WF of the surface. Specially, the WF of Ag + graphene and Fe + graphene would increase because surface dipole moment make a contribution to electron.
Electronic and rovibrational quantum chemical analysis of C3P-: the next interstellar anion?
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Lukemire, Joseph A.
2015-11-01
C3P- is analogous to the known interstellar anion C3N- with phosphorus replacing nitrogen in a simple step down the periodic table. In this work, it is shown that C3P- is likely to possess a dipole-bound excited state. It has been hypothesized and observationally supported that dipole-bound excited states are an avenue through which anions could be formed in the interstellar medium. Additionally, C3P- has a valence excited state that may lead to further stabilization of this molecule, and C3P- has a larger dipole moment than neutral C3P (˜6 D versus ˜4 D). As such, C3P- is probably a more detectable astromolecule than even its corresponding neutral radical. Highly accurate quantum chemical quartic force fields are also applied to C3P- and its singly 13C substituted isotopologues in order to provide structures, vibrational frequencies, and spectroscopic constants that may aid in its detection.
Maser Emission from Gravitational States on Isolated Neutron Stars
NASA Astrophysics Data System (ADS)
Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.
2018-04-01
Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.
Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori
2013-01-01
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves. PMID:23940752
Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori
2013-01-01
The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.
NASA Astrophysics Data System (ADS)
Ermilov, E. A.; Hackbarth, St.; Al-Omari, S.; Helmreich, M.; Jux, N.; Hirsch, A.; Röder, B.
2005-06-01
The photophysical properties of the novel hexapyropheophorbide a - fullerene hexaadduct (FHP6) compound were studied using both steady-state and time-resolved spectroscopic methods. It was found that neighboring pyropheophorbide a (pyroPheo) molecules covalently linked to one fullerene moiety due to the length and high flexibility of carbon chains could stack with each other. This structural property is the reason for the possibility of formation of two different types of energy traps, which could be resolved experimentally. One of them is formed via face-to-face stacking of two pyroPheo molecules with parallel to each other direction of the transition dipole moments. The second type of energy trap gives the dominant contribution to the fluorescence signal at registration wavelengths having the oblique geometry or orthogonal direction of the transition dipole moments of the interacting pyroPheo molecules. In any case the dipole-dipole resonant Förster energy transfer between pyroPheo molecules coupled to one fullerene moiety caused a very fast and efficient delivery of the excitation to a trap. As result the fluorescence as well as the singlet oxygen quantum yields of FHP6 were reduced three and two times, respectively, compared to those values of the reference bis pyropheophorbide a - fullerene hexaadduct (FHP1) compound.
Beam debunching due to ISR-induced energy diffusion
Yampolsky, Nikolai A.; Carlsten, Bruce E.
2017-06-20
One of the options for increasing longitudinal coherency of X-ray free electron lasers (XFELs) is seeding with a microbunched electron beam. Several schemes leading to significant amplitude of the beam bunching at X-ray wavelengths were recently proposed. All these schemes rely on beam optics having several magnetic dipoles. While the beam passes through a dipole, its energy spread increases due to quantum effects of synchrotron radiation. As a result, the bunching factor at small wavelengths reduces since electrons having different energies follow different trajectories in the bend. We rigorously calculate the reduction in the bunching factor due to incoherent synchrotronmore » the radiation while the beam travels in an arbitrary beamline. Lastly, we apply general results to estimate reduction of harmonic current in common schemes proposed for XFEL seeding.« less
Chiral separation and twin-beam photonics
NASA Astrophysics Data System (ADS)
Bradshaw, David S.; Andrews, David L.
2016-03-01
It is well-known that, in a homogeneous fluid medium, most optical means that afford discrimination between molecules of opposite handedness are intrinsically weak effects. The reason is simple: the wide variety of origins for differential response commonly feature real or virtual electronic transitions that break a parity condition. Despite being electric dipole allowed, they manifest the chirality of the material in which they occur by breaking a selection rule that would otherwise preclude the simultaneous involvement of magnetic dipole or electric quadrupole forms of coupling. Although the latter are typically weaker than electric dipole effects by several orders of magnitude, it is the involvement of these weak forms of interaction that are responsible for chiral sensitivity. There have been a number of attempts to cleverly exploit novel optical configurations to enhance the relative magnitude - and hence potentially the efficiency - of chiral discrimination. The prospect of success in any such venture is enticing, because of the huge impact that such an advance might be expected to have in the health, food and medical sectors. Some of these proposals have utilized mirror reflection, and others surface plasmon coupling, or optical binding methods. Several recent works in the literature have drawn attention to a further possibility: the deployment of optical beam interference as a means to achieve chiral separations of sizeable extent. In this paper the underlying theory is fully developed to identify the true scope and limitations of such an approach.
Revisiting the NVSS number count dipole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Prabhakar; Nusser, Adi, E-mail: ptiwari@physics.technion.ac.il, E-mail: adi@physics.technion.ac.il
We present a realistic modeling of the dipole component of the projected sky distribution of NVSS radio galaxies. The modeling relies on mock catalogs generated within the context of ΛCDM cosmology, in the linear regime of structure formation. After removing the contribution from the solar motion, the mocks show that the remaining observed signal is mostly (70%) due to structures within z ∼< 0.1. The amplitude of the model signal depends on the bias factor b of the NVSS mock galaxies. For sources with flux density, S > 15 mJy, the bias recipe inferred from higher order moments is consistent with the observed dipole signalmore » at 2.12σ. Flux thresholds above 20 mJy yield a disagreement close to the 3σ level. A constant high bias, b = 3 is needed to mitigate the tension to the ∼ 2.3σ level.« less
NASA Astrophysics Data System (ADS)
Zhu, Huihui; Jing, Xufeng; Zhou, Pengwei
2018-01-01
Strong electric and magnetic dipole in infrared region and higher order multi-pole resonance at visible wavelengths are observed in all-dielectric nanoring metasurfaces. We discuss some of the parameters that influence the optical response of the dielectric nanoring. Adjustment of nanoring radius (inner radius and outer radius) and height can change the absorption intensity and the resonance peaks. Dipole, quadrupole, six-pole and ten-pole resonance modes can be found in the silicon nanoring at resonance wavelength. The transmission spectrum of nanoring with high Q-factor and contrast is achieved with appropriate parameters. Further the nanoring is used to application of sensing in which the sensitivity reaches 228 nm/RIU. This research is an important step to understand resonance in silicon nanoring and paves way for designing some optic devices such as sensor, nanoantennas, and photovoltaics.
NASA Astrophysics Data System (ADS)
Usacheva, T. M.; Zhuravlev, V. I.
2013-03-01
Dielectric radiospectra (DRS) of 2,5-hexanediol and 1,2,6-hexanetriol at frequencies of 1 MHz, 9.375, 36.885, and 74.569 GHz in a temperature range of 303-423 K (above the glass transition temperatures) are studied. Experimental DRS are analyzed using the Dissado-Hill (DH) cluster model. The dependence of the equilibrium and relaxation characteristics of DRS on the number of OH groups is studied. The dipole moments of the clusters are calculated. The change in the orientation of the dipole moments of the molecules in the cluster during the rearranging of its structure is characterized through the unit vector of the longitudinal component of dipole moment M e of the cluster. The relation between a change in the Onsager-Kirkwood-Fröhlich correlation factor and the behavior of M e is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jia-Xing; Hu, Yuan; Jin, Yu
An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for bothmore » systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.« less
Han, Jia-Xing; Hu, Yuan; Jin, Yu; Zhang, Guo-Feng
2016-04-07
An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.
The influence of train leakage currents on the LEP dipole field
NASA Astrophysics Data System (ADS)
Bravin, E.; Brun, G.; Dehning, B.; Drees, A.; Galbraith, P.; Geitz, M.; Henrichsen, K.; Koratzinos, M.; Mugnai, G.; Tonutti, M.
The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 km, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or ≈ 20 ppm. Due to its size, the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect on the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP vacuum chamber, affecting the LEP dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented.
Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megha, A.; Sampoorna, M.; Nagendra, K. N.
2017-06-01
The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions usingmore » the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.« less
Considering ionic state in modeling sorption of pharmaceuticals to sewage sludge.
Rybacka, Aleksandra; Andersson, Patrik L
2016-12-01
Information on the partitioning of chemicals between particulate matter and water in sewage treatment plants (STPs) can be used to predict their subsequent environmental fate. However, this information can be challenging to acquire, especially for pharmaceuticals that are frequently present in ionized forms. This study investigated the relationship between the ionization state of active pharmaceutical ingredients (APIs) and their partitioning between water and sludge in STPs. We also investigated the underlying mechanisms of sludge sorption by using chemical descriptors based on ionized structures, and evaluated the usefulness of these descriptors in quantitative structure-property relationship (QSPR) modeling. K D values were collected for 110 APIs, which were classified as neutral, positive, or negative at pH 7. The models with the highest performance had the R 2 Y and Q 2 values of above 0.75 and 0.65, respectively. We found that the dominant intermolecular forces governing the interactions of neutral and positively charged APIs with sludge are hydrophobic, pi-pi, and dipole-dipole interactions, whereas the interactions of negatively charged APIs with sludge were mainly governed by covalent bonding as well as ion-ion, ion-dipole, and dipole-dipole interactions; hydrophobicity-driven interactions were rather unimportant. Including charge-related descriptors improved the models' performance by 5-10%, underlining the importance of electrostatic interactions. The use of descriptors calculated for ionized structures did not improve the model statistics for positive and negative APIs, but slightly increased model performance for neutral APIs. We attribute this to a better description of neutral zwitterions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.
2018-01-01
In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.
NASA Technical Reports Server (NTRS)
Herbst, E.; Leung, C. M.
1986-01-01
In order to incorporate large ion-polar neutral rate coefficients into existing gas phase reaction networks, it is necessary to utilize simplified theoretical treatments because of the significant number of rate coefficients needed. The authors have used two simple theoretical treatments: the locked dipole approach of Moran and Hamill for linear polar neutrals and the trajectory scaling approach of Su and Chesnavich for nonlinear polar neutrals. The former approach is suitable for linear species because in the interstellar medium these are rotationally relaxed to a large extent and the incoming charged reactants can lock their dipoles into the lowest energy configuration. The latter approach is a better approximation for nonlinear neutral species, in which rotational relaxation is normally less severe and the incoming charged reactants are not as effective at locking the dipoles. The treatments are in reasonable agreement with more detailed long range theories and predict an inverse square root dependence on kinetic temperature for the rate coefficient. Compared with the locked dipole method, the trajectory scaling approach results in rate coefficients smaller by a factor of approximately 2.5.
Kramers–Henneberger Form of Strong Field Theory with the Correction of Dipole Approximation
NASA Astrophysics Data System (ADS)
Huo, Yi-Ning; Li, Jian; Ma, Feng-Cai
2018-04-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11274149 and 11304185, and the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology under Grant No F12-254-1-00.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, J. M.; Randrup, J.; Vogt, R.
The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less
Reduction of characteristic RL time for fast, efficient magnetic levitation
NASA Astrophysics Data System (ADS)
Li, Yuqing; Feng, Guosheng; Wang, Xiaofeng; Wu, Jizhou; Ma, Jie; Xiao, Liantuan; Jia, Suotang
2017-09-01
We demonstrate the reduction of characteristic time in resistor-inductor (RL) circuit for fast, efficient magnetic levitation according to Kirchhoff's circuit laws. The loading time is reduced by a factor of ˜4 when a high-power resistor is added in series with the coils. By using the controllable output voltage of power supply and voltage of feedback circuit, the loading time is further reduced by ˜ 3 times. The overshoot loading in advance of the scheduled magnetic field gradient is equivalent to continuously adding a resistor without heating. The magnetic field gradient with the reduced loading time is used to form the upward magnetic force against to the gravity of the cooled Cs atoms, and we obtain an effectively levitated loading of the Cs atoms to a crossed optical dipole trap.
S-factor for radiative capture reactions for light nuclei at astrophysical energies
NASA Astrophysics Data System (ADS)
Ghasemi, Reza; Sadeghi, Hossein
2018-06-01
The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A < 17. We calculate the astrophysical factor for the dipole electronic transition E1 and magnetic dipole transition M1 and electric quadrupole transition E2 by using the M3Y potential for non-resonances and resonances captures. Then we have got the parameter of a central part and spin-orbit part of M3Y potential and spectroscopic factor for reaction channels. For the astrophysical S-factor of this article the good agreement is achieved In comparison with experimental data and other theoretical methods.
Laboratory kinetic studies of OH and CO2 relevant to upper atmospheric radiation balance
NASA Technical Reports Server (NTRS)
Nelson, David D.; Zahniser, Mark S.; Kolb, Charles E.
1994-01-01
During the first year of this program, we have made considerable progress toward the measurement of the dipole moments of vibrationally excited OH radicals. Our primary accomplishments have been 1) the modification of the original slit jet spectrometer for the study of radical species and 2) the observation of infrared chemiluminescence from the vibrationally excited OH radicals formed in the H + ozone reaction in the supersonic jet. We are optimistic that we will soon observe OH* laser induced fluorescence in the jet. Modulation of this fluorescence with microwave radiation in an applied electric field will be the final step required for the precise determination of the vibrational dependence of the OH dipole moment.
Giant magnons and spiky strings in the Schrödinger/dipole-deformed CFT correspondence
NASA Astrophysics Data System (ADS)
Georgiou, George; Zoakos, Dimitrios
2018-02-01
We construct semi-classical string solutions of the Schrödinger Sch 5 × S 5 spacetime, which is conjectured to be the gravity dual of a non-local dipole-deformed CFT. They are the counterparts of the giant magnon and spiky string solutions of the undeformed AdS 5 × S 5 to which they flow when the deformation parameter is turned off. They live in an S 3 subspace of the five-sphere along the directions of which the B-field has non-zero components, having also extent in the Sch 5 part of the metric. Finally, we speculate on the form of the dual field theory operators.
RFQ device for accelerating particles
Shepard, Kenneth W.; Delayen, Jean R.
1995-01-01
A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.
NASA Astrophysics Data System (ADS)
Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.
2017-01-01
Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.
Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing
2018-06-01
We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gora, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hajismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madajczyk, B.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, C. C.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration
2011-10-01
Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15° and 30°. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension α = 122fdg4 and declination δ = -47fdg4), extends over at least 20° in right ascension and has a post-trials significance of 5.3σ. The origin of this anisotropy is still unknown.
Craig, George D.; Glass, Robert; Rupp, Bernhard
1997-01-01
A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belousov, Yu. M., E-mail: theorphys@phystech.edu
The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon.more » Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.« less
NASA Astrophysics Data System (ADS)
Maier, Matthias; Margetis, Dionisios; Luskin, Mitchell
2017-06-01
We formulate and validate a finite element approach to the propagation of a slowly decaying electromagnetic wave, called surface plasmon-polariton, excited along a conducting sheet, e.g., a single-layer graphene sheet, by an electric Hertzian dipole. By using a suitably rescaled form of time-harmonic Maxwell's equations, we derive a variational formulation that enables a direct numerical treatment of the associated class of boundary value problems by appropriate curl-conforming finite elements. The conducting sheet is modeled as an idealized hypersurface with an effective electric conductivity. The requisite weak discontinuity for the tangential magnetic field across the hypersurface can be incorporated naturally into the variational formulation. We carry out numerical simulations for an infinite sheet with constant isotropic conductivity embedded in two spatial dimensions; and validate our numerics against the closed-form exact solution obtained by the Fourier transform in the tangential coordinate. Numerical aspects of our treatment such as an absorbing perfectly matched layer, as well as local refinement and a posteriori error control are discussed.
Enhanced and tunable electric dipole-dipole interactions near a planar metal film
NASA Astrophysics Data System (ADS)
Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen
2017-08-01
We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.
NASA Astrophysics Data System (ADS)
Kotko, P.; Kutak, K.; Sapeta, S.; Stasto, A. M.; Strikman, M.
2017-05-01
Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or kT) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb-Pb collisions at CM energy 5.1 TeV per nucleon pair. The formalism is applicable when the average transverse momentum of the dijet system PT is much bigger than the saturation scale Qs, PT≫ Qs, while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to the Weizsäcker-Williams (WW) unintegrated gluon distribution, which is far less known from experimental data than the most common dipole gluon distribution appearing in inclusive small- x processes. We have calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL + DGLAP evolution equation. The saturation effects are visible but rather weak for realistic pT cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. We find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotko, P.; Kutak, K.; Sapeta, S.
Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or k T ) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb–Pb collisions atCMenergy 5.1 TeV per nucleon pair. The formalism is applicablewhen the average transversemomentum of the dijet system P T is much bigger than the saturation scale Q s , P T >> Qs , while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to theWeizsäcker–Williams (WW) unintegrated gluon distribution, which is far less known frommore » experimental data than the most common dipole gluon distribution appearing in inclusive small-x processes. We also calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL+DGLAP evolution equation. The saturation effects are visible but rather weak for realistic p T cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. Finally, we find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.« less
Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeffrey G., E-mail: jglee@umd.edu; Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742; Hill, W. T., E-mail: wth@umd.edu
2014-10-15
We present two spatial-shaping approaches – phase and amplitude – for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials – a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemicallymore » etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure is made as an opaque mask in the path of a dipole trap beam, followed by imaging the shadow onto the plane of the atoms. While much more lossy, this very simple and inexpensive approach can produce dipole potentials suitable for containing degenerate gases. High-quality amplitude masks can be produced with standard photolithography techniques. Amplitude shaping was demonstrated on a Bose-Einstein condensate.« less
Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling
NASA Astrophysics Data System (ADS)
Pulido-Mancera, Laura; Bowen, Patrick T.; Imani, Mohammadreza F.; Kundtz, Nathan; Smith, David
2017-12-01
We consider the design and modeling of metasurfaces that couple energy from guided waves to propagating wave fronts. To this purpose, we develop a comprehensive, multiscale dipolar interpretation for large arrays of complementary metamaterial elements embedded in a waveguide structure. Within this modeling technique, the detailed electromagnetic response of each metamaterial element is replaced by a polarizable dipole, described by means of an effective polarizability. In this paper, we present two methods to extract this effective polarizability. The first method invokes surface equivalence principles, averaging over the effective surface currents and charges induced in the element's surface in order to obtain the effective dipole moments, from which the effective polarizability can be inferred. The second method is based in the coupled-mode theory, from which a direct relationship between the effective polarizability and the amplitude coefficients of the scattered waves can be deduced. We demonstrate these methods on several variants of waveguide-fed metasurface elements (both one- and two-dimensional waveguides), finding excellent agreement between the two, as well as with the analytical expressions derived for circular and elliptical irises. With the effective polarizabilities of the metamaterial elements accurately determined, the radiated fields generated by a waveguide-fed metasurface can be found self-consistently by including the interactions between polarizable dipoles. The dipole description provides an effective perspective and computational framework for engineering metasurface structures such as holograms, lenses, and beam-forming arrays, among others.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ciftja, Orion; Ian, Hou
2017-06-01
In transition metal oxides, magnetic dipole-dipole (DD) and chiral Dzyaloshinsky-Moriya (DM) interactions between nearest neighboring spins are comparable in magnitude. In particular, the effects of the DD interaction on the physical properties of magnetic nanosystems cannot be simply neglected due to its long-range character. For these reasons, we employed here a new quantum simulation approach in order to investigate the interplay of these two interactions and study their combined effects upon the magnetic vortical structures of monolayer nanodisks. Consequently, we found out from our computational results that, in the presence of Heisenberg exchange interaction, a sufficiently strong DD interaction is also able to induce a single magnetic vortex on a small nanodisk; a strong DM interaction usually gives rise to a multi-domain structure which evolves with changing temperature; In this circumstance, if a weak DD interaction is further considered, the multi-domains merge to form a single vortex in the whole magnetic phase. Moreover, if only the Heisenberg exchange and chiral DM interactions are considered in simulations, our results from calculations with different spin values show that the transition temperature TM is simply proportional to S (S + 1) ; if the temperature is scaled with TM, and the calculated magnetizations are divided by the spin value S, their curves exhibit very similar features in the whole temperature region below TM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen-Christandl, Katharina; Copsey, Bert D.
2011-02-15
The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular,more » for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.« less
Transfer of dipolar gas through the discrete localized mode.
Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui
2013-12-01
By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; Kesner, J.; Woskov, P. P.
2017-01-01
We report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the density profile is nearly "stationary" such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wavenumber dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.
Turbulent fluctuations during pellet injection into a dipole confined plasma torus
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.; ...
2017-01-01
Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less
Broken symmetry dielectric resonators for high quality factor Fano metasurfaces
Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.; ...
2016-10-25
We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple “bright” dipole modes to “dark” dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurfacemore » that achieves a quality factor of ~1300 at ~10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (~1 μm): a silicon-based implementation that achieves a quality factor of ~350; and a gallium arsenide-based structure that achieves a quality factor of ~600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. Here, we envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.« less
Broken symmetry dielectric resonators for high quality factor Fano metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.
We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple “bright” dipole modes to “dark” dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurfacemore » that achieves a quality factor of ~1300 at ~10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (~1 μm): a silicon-based implementation that achieves a quality factor of ~350; and a gallium arsenide-based structure that achieves a quality factor of ~600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. Here, we envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.« less
Emergent phases of fractonic matter
NASA Astrophysics Data System (ADS)
Prem, Abhinav; Pretko, Michael; Nandkishore, Rahul M.
2018-02-01
Fractons are emergent particles which are immobile in isolation, but which can move together in dipolar pairs or other small clusters. These exotic excitations naturally occur in certain quantum phases of matter described by tensor gauge theories. Previous research has focused on the properties of small numbers of fractons and their interactions, effectively mapping out the "standard model" of fractons. In the present work, however, we consider systems with a finite density of either fractons or their dipolar bound states, with a focus on the U (1 ) fracton models. We study some of the phases in which emergent fractonic matter can exist, thereby initiating the study of the "condensed matter" of fractons. We begin by considering a system with a finite density of fractons, which we show can exhibit microemulsion physics, in which fractons form small-scale clusters emulsed in a phase dominated by long-range repulsion. We then move on to study systems with a finite density of mobile dipoles, which have phases analogous to many conventional condensed matter phases. We focus on two major examples: Fermi liquids and quantum Hall phases. A finite density of fermionic dipoles will form a Fermi surface and enter a Fermi liquid phase. Interestingly, this dipolar Fermi liquid exhibits a finite-temperature phase transition, corresponding to an unbinding transition of fractons. Finally, we study chiral two-dimensional phases corresponding to dipoles in "quantum Hall" states of their emergent magnetic field. We study numerous aspects of these generalized quantum Hall systems, such as their edge theories and ground state degeneracies.
Topological defect formation in rotating binary dipolar Bose–Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585
We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point outmore » that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.« less
Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves
NASA Astrophysics Data System (ADS)
Gonoskov, Arkady; Bashinov, Alexey; Efimenko, Evgeny; Muraviev, Alexander; Kim, Arkady; Ilderton, Anton; Bastrakov, Sergey; Meyerov, Iosif; Marklund, Mattias; Sergeev, Alexander
2017-10-01
The prospect of achieving conditions for triggering strong-field QED phenomena at upcoming large-scale laser facilities raises a number of intriguing questions. What kind of new effects and interaction regimes can be accessed by basic QED phenomena? What are the minimal (optimal) requirements to trigger these effects and enter these regimes? How can we, from this, gain new fundamental knowledge or create important applications? The talk will concern the prospects of producing high fluxes of GeV photons by triggering a special type of self-sustaining cascade in the field of several colliding laser pulses that form a dipole wave. Apart from reaching the highest field strength for a given total power of laser pulses, the dipole wave enables anomalous radiative trapping that favors pair production and high-energy photon generation. An extensive theoretical analysis and 3D QED-PIC simulations indicate that the concept is feasible at upcoming large-scale laser facilities of 10 PW level and can provide an extraordinary intense source of GeV photons for novel experimental studies in nuclear and quark-nuclear physics.
Effect of the magnetic dipole interaction on a spin-1 system
NASA Astrophysics Data System (ADS)
Hu, Fangqi; Jia, Wei; Zhao, Qing
2018-05-01
We consider a hybrid system composed of a spin-1 triplet coupled to a nuclear spin. We study the effect of the axisymmetric and the quadrupole term of the magnetic dipole interaction between the two electrons forming the triplet on the energy spectrum in a static magnetic field. The energy spectrum obtained by directly diagonalizing the Hamiltonian of the system shows that these two terms not only remove the special crossings that appear in the absence of the magnetic dipole interaction, but also produce new (avoided) crossings by lifting the relevant levels. Specially, the gaps between the avoided crossing levels increase with the strength of the quadrupole term. In order to accurately illustrate these effects, we present the results for the discriminant and von Neumann entropy of one electron interacting with the rest of the whole system. Finally, by numerically solving the time-dependent Schrödinger equations of the system, we discover that the polarization oscillation of electron and nuclear spin is in-phase and the total average longitudinal spin is not conserved at location of avoided crossing, but the two results are opposite beyond that.
Resonance behavior of atomic and molecular photoionization amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepkov, N. A.; Kuznetsov, V. V.; Semenov, S. K.
The behavior of the partial photoionization amplitudes with a given orbital angular momentum l in the complex plane in resonances is studied. In the autoionization resonances the trajectory of the amplitude in the complex plane corresponds to a circle. With increasing photoelectron energy the amplitude moves about a circle in the counterclockwise direction. The new expressions for the partial amplitudes in the resonance are proposed which are similar to the Fano form but contain the 'partial' profile parameters which are connected with the Fano parameter q by a simple relation. In the giant dipole resonances the amplitudes in the complexmore » plane also move about a circle in the counterclockwise direction provided the Coulomb phase is excluded from the amplitude. In the correlational resonances created by channel interactions with the giant dipole resonance the trajectories of the amplitudes acquire a loop about which the amplitudes move in the counterclockwise direction. Very similar behavior of partial photoionization amplitudes in the complex plane is demonstrated also for the dipole transitions from the K shells of the N{sub 2} molecule in the {sigma}* shape resonance.« less
Reduction of noise radiated from open pipe terminations
NASA Astrophysics Data System (ADS)
Davis, M. R.
1989-07-01
A modified Quincke tube has been tested to determine the extent to which sound radiation from an open tube end can be reduced by conversion of the monopole source into a dipole form. It has been found that directivity patterns of the dipole with approximately 20 dB variation can be achieved provided that the out-of-phase tube ends are not too closely spaced. Very large spacings also reduce the effectiveness of the arrangement in reducing radiated power since the source system does not then approximate a simple dipole. Consideration has been given to compact designs which achieve path length differentials by the use of four concentric tubes. The relative size of the two acoustic paths has to be adjusted to allow for the size effect on radiation, requiring a somewhat larger area for the smaller tube. Through flow would require an opposite adjustment of the smaller tube area in this case if the smaller tube presented a smaller resistance to flow, as is likely since it involves straight-through flow. Flow through the system would increase the tuned operating frequency.
He, Yangyong; Cai, Zeying; Shao, Jian; Xu, Li; She, Limin; Zheng, Yue; Zhong, Dingyong
2018-05-03
The self-assembly behavior of quaterrylene (QR) molecules on Ag(111) surfaces has been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that the QR molecules are highly mobile on the Ag(111) surface at 78 K. No ordered assembled structure is formed on the surface with a sub-monolayer coverage up to 0.8 monolayer due to the intermolecular repulsive interactions, whereas ordered molecular structures are observed at one monolayer coverage. According to our DFT calculations, charge transfer occurs between the substrate and the adsorbed QR molecule. As a result, out-of-plane dipoles appear at the interface, which are ascribed to the repulsive dipole-dipole interactions between the QR molecules. Furthermore, due to the planar geometry, the QR molecules exhibit relatively low diffusion barriers on Ag(111). By applying a voltage pulse between the tunneling gap, immobilization and aggregation of QR molecules take place, resulting in the formation of a triangle-shaped trimer. Our work demonstrates the ability of manipulating intermolecular repulsive and attractive interactions at the single molecular level.
Axion Induced Oscillating Electric Dipole Moment of the Electron
Hill, Christopher T.
2016-01-12
A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less
Axion Induced Oscillating Electric Dipole Moment of the Electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less
Tada, Shigeru; Shen, Yan; Qiu, Zhiyong
2017-06-01
When a suspension of polarizable particles is subjected to a gradient AC electric field, the particles exhibit collective motion due to an interaction between the dipole induced in the particles and the spatial gradient of the electric field; this is known as dielectrophoresis. In the present study, the collective dynamics of suspended particles in a parallel-plate electric chamber was investigated by simulating numerically the trajectories of individual particles under the action of combined dielectrophoretic and dipole-dipole interparticle forces. The particles were transported by the dielectrophoretic forces toward the grounded electrodes. Before long, when the particles approached the site of the minimum field strength, attractive/repulsive interparticle forces became dominant and acted among the particles attempting to form a column-like cluster, having the particles distribution in concentric circles in its cross-section, in line with the centerline of the grounded electrodes. Our results also well reproduced the transient particle aggregation that was observed experimentally. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.
Ikeda, Toshiaki; Adachi, Hiroaki; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Haino, Takeharu
2017-10-06
A benzotrithiophene derivative possessing phenylisoxazoles self-assembled to form stacks. The molecule isodesmically self-assembled in chloroform, whereas it self-assembled in a cooperative fashion in decalin and in methylcyclohexane. Thermodynamic studies based on isodesmic, van der Schoot, and Goldstein-Stryer mathematical models revealed that the self-assembly processes are enthalpically driven and entropically opposed. An enthalpy-entropy compensation plot indicates that the assembly processes in chloroform, decalin, and methylcyclohexane are closely related. The enthalpic gains in less-polar solvents are greater than those in more-polar solvents, resulting in the formation of large assemblies in decalin and in methylcyclohexane. The formation of large assemblies leads to cooperative assemblies. The elongation process is enthalpically more favored than the nucleation process, which drives the cooperativity of the self-assembly. DFT calculations suggested that a hexameric assembly is more stable than tetrameric or dimeric assemblies. Cooperative self-assemblies based on intermolecular interactions other than hydrogen bonding have rarely been reported. It is demonstrated herein that van der Waals interactions, including induced dipole-dipole interactions, can drive the cooperative assembly of planar π-conjugated molecules.
NASA Astrophysics Data System (ADS)
Babb, James F.
2015-08-01
The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.
Optimal galaxy survey for detecting the dipole in the cross-correlation with 21 cm Intensity Mapping
NASA Astrophysics Data System (ADS)
Lepori, Francesca; Di Dio, Enea; Villa, Eleonora; Viel, Matteo
2018-05-01
We investigate the future perspectives of the detection of the relativistic dipole by cross-correlating the 21 cm emission in Intensity Mapping (IM) and galaxy surveys at low redshift. We model the neutral hydrogen (HI) and the galaxy population by means of the halo model to relate the parameters that affect the dipole signal such as the biases of the two tracers and the Poissonian noise. We investigate the behavior of the signal-to-noise as a function of the galaxy and magnification biases, for two fixed models of the neutral hydrogen. In both cases we found that the signal-to-noise does not grow by increasing the difference between the biases of the two tracers, due to the larger shot-noise yields by highly biased tracers. We also study and provide an optimal luminosity-threshold galaxy catalogue to enhance the signal-to-noise ratio of the relativistic dipole. Interestingly, we show that the maximum magnitude provided by the survey does not lead to the maximum signal-to-noise for detecting relativistic effects and we predict the optimal value for the limiting magnitude. Our work suggests that an optimal analysis could increase the signal-to-noise ratio up to a factor five compared to a standard one.
Craig, G.D.; Glass, R.; Rupp, B.
1997-01-28
A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.
Modeling single molecule junction mechanics as a probe of interface bonding
NASA Astrophysics Data System (ADS)
Hybertsen, Mark S.
2017-03-01
Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. A set of exemplary model junction structures has been analyzed using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond to the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N-Au and S-Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. The results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.
Modeling single molecule junction mechanics as a probe of interface bonding
Hybertsen, Mark S.
2017-03-07
Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less
Modeling single molecule junction mechanics as a probe of interface bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hybertsen, Mark S.
Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. We analyzed a set of exemplary model junction structures using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond tomore » the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N–Au and S–Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This, then, allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor-acceptor bond formation at the junction interfaces. The force extension characteristic of longer molecules such as diaminooctane, where the dipole interaction effects drop to a negligible level, accurately fit to the renormalized single-bond potential form. Our results suggest that measured force extension characteristics for single molecule junctions could be analyzed with a modified potential form that accounts for the energy stored in deformable mechanical components in series.« less
Configuration and energy landscape of the benzonitrile anion
NASA Astrophysics Data System (ADS)
Kirnosov, Nikita; Adamowicz, Ludwik
2017-05-01
Quantum chemical calculations are employed to study the configurational isomers of the anion formed by benzene substituted with a cyano group. It is found that an excess electron can form dipole-bound (DB) states with benzonitrile and phenyl-isocyanide isomers. It can also attach to the cyano group, if this group is separated from the benzene ring by some distance, forming a covalent CN- anion. There are four positions at peripherals of the benzene ring where this anion can localize and form stable complexes with the benzene radical. In these complexes CN- is connected to the benzene radical via non-covalent interactions.
NASA Astrophysics Data System (ADS)
Oh, Dong Keun; Hong, Sung Mok; Lee, Cheol Eui; Kim, B.-S.; Jin, J.-I.
2005-12-01
Using the time of flight (ToF) method, we investigated the bipolar charge transport for two glass-forming molecules containing carbazole and cyano-carbazole moiety. The enhanced electron mobility was observed in the cyano-carbazole compound. From the numerical method based the Laplace formalism, the distribution of hole trapping energy was obtained for the carbazole compound. This result was compared with the exponential distribution extracted from dispersion parameter for the cyano-carbazole material. Considering charge-dipole interactions as a reason for the disordered trapping mechanism, we discussed dispersive charge transport induced by a strong dipolar (i.e. cyano) group by comparing the distributions of hole trapping sites for two compounds.
NASA Astrophysics Data System (ADS)
Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing
2017-07-01
We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.
Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Kang, Ying; Ge, Zhongxue
2015-03-01
The structural characteristics involving thermal stabilities of liquid nitromethane (NM)—one of the simplest energetic materials—confined within a graphene (GRA) bilayer were investigated by means of all-atom molecular dynamics simulations and density functional theory calculations. The results show that ordered and layered structures are formed at the confinement of the GRA bilayer induced by the van der Waals attractions of NM with GRA and the dipole-dipole interactions of NM, which is strongly dependent on the confinement size, i.e., the GRA bilayer distance. These unique intermolecular arrangements and preferred orientations of confined NM lead to higher stabilities than bulk NM revealed by bond dissociation energy calculations.
RFQ device for accelerating particles
Shepard, K.W.; Delayen, J.R.
1995-06-06
A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.
Atom-field dressed states in slow-light waveguide QED
NASA Astrophysics Data System (ADS)
Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter
2016-03-01
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum
NASA Astrophysics Data System (ADS)
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 104 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10-9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10-14 for a pendulum dipole less than 10-9 A m2. The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ˜ 10-14.
Magnetic effect in the test of the weak equivalence principle using a rotating torsion pendulum.
Zhu, Lin; Liu, Qi; Zhao, Hui-Hui; Yang, Shan-Qing; Luo, Pengshun; Shao, Cheng-Gang; Luo, Jun
2018-04-01
The high precision test of the weak equivalence principle (WEP) using a rotating torsion pendulum requires thorough analysis of systematic effects. Here we investigate one of the main systematic effects, the coupling of the ambient magnetic field to the pendulum. It is shown that the dominant term, the interaction between the average magnetic field and the magnetic dipole of the pendulum, is decreased by a factor of 1.1 × 10 4 with multi-layer magnetic shield shells. The shield shells reduce the magnetic field to 1.9 × 10 -9 T in the transverse direction so that the dipole-interaction limited WEP test is expected at η ≲ 10 -14 for a pendulum dipole less than 10 -9 A m 2 . The high-order effect, the coupling of the magnetic field gradient to the magnetic quadrupole of the pendulum, would also contribute to the systematic errors for a test precision down to η ∼ 10 -14 .
Saturn's Magnetic Field and Magnetosphere.
Smith, E J; Davis, L; Jones, D E; Coleman, P J; Colburn, D S; Dyal, P; Sonett, C P
1980-01-25
The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.
NASA Astrophysics Data System (ADS)
Kesner, J.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.
2006-10-01
The levitated dipole experiment (LDX) is a new research facility that is investigating plasma confinement and stability in a dipole magnetic field configuration as a possible catalyzed DD fusion power source that would avoid the burning of tritium. We report the production of high beta plasma confined by a laboratory superconducting dipole using neutral gas fueling and electron cyclotron resonance heating (ECRH). The pressure results from a population of anisotropic energetic trapped electrons that is sustained by microwave heating provided sufficient neutral gas is supplied to the plasma. The trapped electron beta was observed to be limited by the hot electron interchange (HEI) instability, but when the neutral gas was programmed so as to maintain the deuterium gas pressure near 0.2 mPa, the fast electron pressure increased by more than a factor of ten and the resulting stable high beta plasma was maintained quasi-continuously for up to 14 seconds. Low frequency (<10 kHz) fluctuations are sometimes observed at low neutral base pressure.
NASA Astrophysics Data System (ADS)
Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.
The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.
A Passive Temperature-Sensing Antenna Based on a Bimetal Strip Coil.
Shi, Xianwei; Yang, Fan; Xu, Shenheng; Li, Maokun
2017-03-23
A passive temperature-sensing antenna is presented in this paper, which consists of a meandering dipole, a bimetal strip and a back cavity. The meandering dipole is divided into two parts: the lower feeding part and the upper radiating part, which maintain electric contact during operation. As a sensing component, a bimetal strip coil offers a twisting force to rotate the lower feeding part of the antenna when the temperature varies. As a result, the effective length of the dipole antenna changes, leading to a shift of the resonant frequency. Furthermore, a metal back cavity is added to increase the antenna's quality factor Q, which results in a high-sensitivity design. An antenna prototype is designed, fabricated, and measured, which achieves a sensitivity larger than 4.00 MHz/°C in a temperature range from 30 °C to 50 °C and a read range longer than 4 m. Good agreement between the simulation and measurement results is obtained.
A Passive Temperature-Sensing Antenna Based on a Bimetal Strip Coil
Shi, Xianwei; Yang, Fan; Xu, Shenheng; Li, Maokun
2017-01-01
A passive temperature-sensing antenna is presented in this paper, which consists of a meandering dipole, a bimetal strip and a back cavity. The meandering dipole is divided into two parts: the lower feeding part and the upper radiating part, which maintain electric contact during operation. As a sensing component, a bimetal strip coil offers a twisting force to rotate the lower feeding part of the antenna when the temperature varies. As a result, the effective length of the dipole antenna changes, leading to a shift of the resonant frequency. Furthermore, a metal back cavity is added to increase the antenna’s quality factor Q, which results in a high-sensitivity design. An antenna prototype is designed, fabricated, and measured, which achieves a sensitivity larger than 4.00 MHz/°C in a temperature range from 30 °C to 50 °C and a read range longer than 4 m. Good agreement between the simulation and measurement results is obtained. PMID:28333076
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.B.
1962-09-01
The method of atomic-beam radiofrequency spectroscopy was used to determine some nuclear and atomic properties of Lu/sup 176m/, Br/sup 80/, Br/sup 80m/, and I/sup 132/. Hyperfine structure me asurements were raade to determine the magnetic dipole interaction constants and the electric quadrupole interaction constants of all these isotopes. Also the nuclear spin and the electronic g/sub J/ factor were measured for Lu/sup 176m/, and the nuclear magnetic dipole moments and the electric quadrupole moments for the isotopes were calculated. All results are listed. 62 references. (auth)
Reactivity of fluoroalkanes in reactions of coordinated molecular decomposition
NASA Astrophysics Data System (ADS)
Pokidova, T. S.; Denisov, E. T.
2017-08-01
Experimental results on the coordinated molecular decomposition of RF fluoroalkanes to olefin and HF are analyzed using the model of intersecting parabolas (IPM). The kinetic parameters are calculated to allow estimates of the activation energy ( E) and rate constant ( k) of these reactions, based on enthalpy and IPM algorithms. Parameters E and k are found for the first time for eight RF decomposition reactions. The factors that affect activation energy E of RF decomposition (the enthalpy of the reaction, the electronegativity of the atoms of reaction centers, and the dipole-dipole interaction of polar groups) are determined. The values of E and k for reverse reactions of addition are estimated.
Gluon tomography from deeply virtual Compton scattering at small x
Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng
2017-06-29
We present a full evaluation of the deeply virtual Compton scattering cross section in the dipole framework in the small-x region. The result features the cosφ and cos2φ azimuthal angular correlations, which have been missing in previous studies based on the dipole model. In particular, the cos2φ term is generated by the elliptic gluon Wigner distribution of which the measurement at the planned electron-ion collider provides important information about the gluon tomography at small x. Here, we also show the consistency with the standard collinear factorization approach based on the quark and gluon generalized parton distributions.
NASA Astrophysics Data System (ADS)
Matyushov, Dmitry V.
2010-02-01
A theory of radiation absorption by dielectric mixtures is presented. The coarse-grained formulation is based on the wave-vector-dependent correlation functions of molecular dipoles of the host polar liquid and a density structure factor of the solutes. A nonlinear dependence of the dielectric absorption coefficient on the solute concentration is predicted and originates from the mutual polarization of the liquid surrounding the solutes by the collective field of the solute dipoles aligned along the radiation field. The theory is applied to terahertz absorption of hydrated saccharides and proteins. While the theory gives an excellent account of the observations for saccharides, without additional assumptions and fitting parameters, experimental absorption coefficient of protein solutions significantly exceeds theoretical calculations with dipole moment of the bare protein assigned to the solute and shows a peak against the protein concentration. A substantial polarization of protein’s hydration shell, resulting in a net dipole moment, is required to explain the disagreement between theory and experiment. When the correlation function of the total dipole moment of the protein with its hydration shell from numerical simulations is used in the analytical model, an absorption peak, qualitatively similar to that seen in experiment, is obtained. The existence and position of the peak are sensitive to the specifics of the protein-protein interactions. Numerical testing of the theory requires the combination of dielectric and small-angle scattering measurements. The calculations confirm that “elastic ferroelectric bag” of water shells observed in previous numerical simulations is required to explain terahertz dielectric measurements.
2010-01-01
We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002)]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small. PMID:20672062
NASA Astrophysics Data System (ADS)
Jacobs, James Patrick
Optically pumped atomic oscillators driven with a modulated light source have been used to measure the Permanent Electric Dipole Moment (PEDM) of the ^{199}Hg atom. A nonzero PEDM on the ground state of ^{199} Hg would be a direct violation of time reversal symmetry. The measurement was obtained by searching for a relative shift in the resonance frequency of the processing nuclear magnetic moments when an externally applied electric field was reversed relative to an externally applied magnetic field. The null result, d(^{199} Hg) = (.3 +/- 5.7 +/- 5.0) times 10 ^{-28} ecdotcm, represents nearly a factor of 15 improvement over previous ^{199}Hg measurements, and a factor of 25 improvement in statistical uncertainty. When combined with theoretical calculations, the result sets stringent limits on possible sources of time reversal symmetry violation in atomic systems.
Spin Relaxation and Manipulation in Spin-orbit Qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-02-01
We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Pygmy dipole resonance in 140Ce via inelastic scattering of 17O
NASA Astrophysics Data System (ADS)
Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Bracco, A.; Crespi, F. C. L.; Lanza, E. G.; Litvinova, E.; Paar, N.; Avigo, R.; Bazzacco, D.; Benzoni, G.; Birkenbach, B.; Blasi, N.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Ciemała, M.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocarte, R.; Jungclaus, A.; Leoni, S.; Ljungvall, J.; Lunardi, S.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Milion, B.; Morales, A. I.; Napoli, D. R.; Nicolini, R.; Pellegri, L.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Siebeck, B.; Siem, S.; Söderström, P.-A.; Ur, C.; Valiente-Dobon, J. J.; Wieland, O.; Ziebliński, M.
2016-04-01
The γ decay from the high-lying states of 140Ce excited via inelastic scattering of 17O at a bombarding energy of 340 MeV was measured using the high-resolution AGATA-demonstrator array in coincidence with scattered ions detected in two segmented Δ E -E silicon detectors. Angular distributions of scattered ions and emitted γ rays were measured, as well as their differential cross sections. The excitation of 1- states below the neutron separation energy is similar to the one obtained in reactions with the α isoscalar probe. The comparison between the experimental differential cross sections and the corresponding predictions using the distorted-wave Born approximation allowed us to extract the isoscalar component of identified 1- pygmy states. For this analysis the form factor obtained by folding microscopically calculated transition densities and optical potentials was used.
Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering
NASA Astrophysics Data System (ADS)
Ellis, John; Hwang, Dae Sung; Kotzinian, Aram
2009-10-01
We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for π+ production at HERMES, and qualitative agreement for π0 and K+ production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.
Fission Reaction Event Yield Algorithm FREYA 2.0.2
Verbeke, J. M.; Randrup, J.; Vogt, R.
2017-09-01
The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less
Zeeman interaction in the Δ31 state of HfF+ to search for the electron electric dipole moment
NASA Astrophysics Data System (ADS)
Petrov, A. N.; Skripnikov, L. V.; Titov, A. V.
2017-08-01
A theoretical study devoted to suppression of magnetic systematic effects in HfF+ cation for an experiment to search for the electron electric dipole moment is reported. The g factors for J =1 , F =3 /2 , | MF|=3 /2 hyperfine levels of the Δ31 state are calculated as functions of the external electric field. The minimal value for the difference between the g factors of Ω -doublet levels, Δ g =3 ×10-6 , is attained at the electric field 7 V/cm. The body-fixed g factor, G∥, was obtained both within the ab initio electronic structure calculations and with our fit of the experimental data [H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, and E. A. Cornell, Science 342, 1220 (2013), 10.1126/science.1243683]. For the electronic structure calculations we used a combined scheme to perform correlation calculations of HfF+, which includes both the direct four-component all-electron and generalized relativistic effective core potential approaches. The electron correlation effects were treated using the coupled cluster methods. The calculated value G∥=0.0115 agrees very well with the G∥=0.0118 obtained with our fitting procedure. The calculated ab initio value D∥=-1.53 a.u. for the molecule-frame dipole moment (with the origin in the center of mass) is in agreement with the experimental datum D∥=-1.54 (1 ) a.u. [H. Loh, Ph.D. thesis, Massachusetts Institute of Technology, 2006.].
Dipole oscillator strengths, dipole properties and dispersion energies for SiF4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.
Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng
2014-03-05
In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. Copyright © 2013 Wiley Periodicals, Inc.
Halverson, Tom; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas
2018-02-21
We propose a variational approach for the calculation of the quantum entanglement entropy of assemblies of rotating dipolar molecules. A basis truncation scheme based on the total angular momentum quantum number is proposed. The method is tested on hydrogen fluoride (HF) molecules confined in C 60 fullerene cages themselves trapped in a nanotube to form a carbon peapod. The rotational degrees of freedom of the HF molecules and dipolar interactions between neighboring molecules are considered in our model Hamiltonian. Both screened and unscreened dipoles are simulated and results are obtained for the ground state and one excited state that is expected to be accessible via a far-infrared collective excitation. The effect of basis truncation on energetic and entanglement properties is examined and discussed in terms of size extensivity. It is empirically found that for unscreened dipoles, a total angular momentum cutoff that increases linearly with the number of rotors is required in order to obtain proper system size scaling of the chemical potential and entanglement entropy. Recent experiments [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] suggest substantial screening of the HF dipole moment, so much smaller basis sets are required to obtain converged results in this realistic case. Static correlation functions are also computed and are shown to decay much quicker in the case of screened dipoles. Our variational results are also used to test the accuracy of perturbative and pairwise ansatz treatments.
First Plasma Results from the Levitated Dipole Experiment
NASA Astrophysics Data System (ADS)
Garnier, Darren T.
2005-04-01
On August 13, 2004, the first plasma physics experiments were conducted using the Levitated Dipole Experiment(LDX)http://www.psfc.mit.edu/ldx/. LDX was built at MIT's Plasma Science and Fusion Center as a joint research project of Columbia University and MIT. LDX is a first-of-its-kind experiment incorporating three superconducting magnets and exploring the physics of high-temperature plasma confined by dipole magnetic fields, similar to planetary magnetospheres. It will test recent theories that suggest that stable, high-β plasma can be confined without good curvature or magnetic shear, instead using plasma compressibility to provide stability. (Plasma β is the ratio of plasma pressure to magnetic pressure.) In initial experiments, 750 kA of current was induced in the dipole coil which was physically supported in the center of the 5 m diameter vacuum chamber. Deuterium plasma discharges, lasting from 4 to 10 seconds, were formed with multi-frequency ECRH microwave heating of up to 6.2 kW. Each plasma contained a large fraction of energetic and relativistic electrons that created a significant pressure that caused outward expansion of the magnetic field. Reconstruction of the magnetic equilibrium from external magnetic diagnostics indicate local peak plasma β 7 %. Along with an overview of the LDX device, results from numerous diagnostics operating during this initial supported campaign measuring the basic plasma parameters will be presented. In addition, observations of instabilities leading to rapid plasma loss and the effects of changing plasma compressibility will be explored.
Simulation study on the structural properties of colloidal particles with offset dipoles.
Rutkowski, David M; Velev, Orlin D; Klapp, Sabine H L; Hall, Carol K
2017-05-03
A major research theme in materials science is determining how the self-assembly of new generations of colloidal particles of complex shape and surface charge is guided by their interparticle interactions. In this paper, we describe results from quasi-2D Monte Carlo simulations of systems of colloidal particles with offset transversely-oriented extended dipole-like charge distributions interacting via an intermediate-ranged Yukawa potential. The systems are cooled slowly through an annealing procedure during which the temperature is lowered in discrete steps, allowing the system to equilibrate. We perform ground state calculations for two, three and four particles at several shifts of the dipole vector from the particle center. We create state diagrams in the plane spanned by the temperature and the area fraction outlining the boundaries between fluid, string-fluid and percolated states at various values of the shift. Remarkably we find that the effective cooling rate in our simulations has an impact on the structures formed, with chains being more prevalent if the system is cooled quickly and cyclic structures more prevalent if the system is cooled slowly. As the dipole is further shifted from the center, there is an increased tendency to assemble into small cyclic structures at intermediate temperatures. These systems further self-assemble into open lattice-like arrangements at very low temperatures. The novel structures identified might be useful for photonic applications, new types of porous media for filtration and catalysis, and gel matrices with unusual properties.
NASA Astrophysics Data System (ADS)
Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng
2016-06-01
Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)
Exploring cosmic origins with CORE: Effects of observer peculiar motion
NASA Astrophysics Data System (ADS)
Burigana, C.; Carvalho, C. S.; Trombetti, T.; Notari, A.; Quartin, M.; Gasperis, G. D.; Buzzelli, A.; Vittorio, N.; De Zotti, G.; de Bernardis, P.; Chluba, J.; Bilicki, M.; Danese, L.; Delabrouille, J.; Toffolatti, L.; Lapi, A.; Negrello, M.; Mazzotta, P.; Scott, D.; Contreras, D.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Cabella, P.; Cai, Z.-Y.; Calvo, M.; Castellano, M. G.; Challinor, A.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; Diego, J.-M.; Di Marco, A.; Di Valentino, E.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Tucker, C.; Väliviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Young, K.; Zannoni, M.
2018-04-01
We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-limited experiment up to a multipole lsimeq2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of simeq1 % accuracy in both foreground removal and relative calibration at an angular scale of 1o, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor simeq 17 in comparison with current results based on COBE-FIRAS. In addition to the scientific potential of a mission like CORE for these analyses, synergies with other planned and ongoing projects are also discussed.
Wang, Zhaohui; Witte, Russell S.
2015-01-01
Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and neurologic disorders, including arrhythmia and epilepsy. PMID:24569247
Kotko, P.; Kutak, K.; Sapeta, S.; ...
2017-05-27
Using the framework that interpolates between the leading power limit of the color glass condensate and the high energy (or k T ) factorization we calculate the direct component of the forward dijet production in ultra-peripheral Pb–Pb collisions atCMenergy 5.1 TeV per nucleon pair. The formalism is applicablewhen the average transversemomentum of the dijet system P T is much bigger than the saturation scale Q s , P T >> Qs , while the imbalance of the dijet system can be arbitrary. The cross section is uniquely sensitive to theWeizsäcker–Williams (WW) unintegrated gluon distribution, which is far less known frommore » experimental data than the most common dipole gluon distribution appearing in inclusive small-x processes. We also calculated cross sections and nuclear modification ratios using WW gluon distribution obtained from the dipole gluon density through the Gaussian approximation. The dipole gluon distribution used to get WW was fitted to the inclusive HERA data with the nonlinear extension of unified BFKL+DGLAP evolution equation. The saturation effects are visible but rather weak for realistic p T cut on the dijet system, reaching about 20% with the cut as low as 6 GeV. Finally, we find that the LO collinear factorization with nuclear leading-twist shadowing predicts quite similar effects.« less
Constraints on exotic dipole-dipole couplings between electrons at the micron scale
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek
2015-05-01
Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.
All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model
Savelyev, Alexey; MacKerell, Alexander D.
2014-01-01
Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978
Experimental study of the isovector giant dipole resonance in 80Zr and 81Rb
NASA Astrophysics Data System (ADS)
Ceruti, S.; Camera, F.; Bracco, A.; Mentana, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Bocchi, G.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Wieland, O.; Bazzacco, D.; Ciemala, M.; Farnea, E.; Gottardo, A.; Kmiecik, M.; Maj, A.; Mengoni, D.; Michelagnoli, C.; Modamio, V.; Montanari, D.; Napoli, D.; Recchia, F.; Sahin, E.; Ur, C.; Valiente-Dobón, J. J.; Wasilewska, B.; Zieblinski, M.
2017-01-01
The isovector giant dipole resonance (IVGDR) γ decay was measured in the compound nuclei 80Zr and 81Rb at an excitation energy of E*=54 MeV. The fusion reaction 40Ca+40Ca at Ebeam=136 MeV was used to form the compound nucleus 80Zr, while the reaction 37Cl+44Ca at Ebeam=95 MeV was used to form the compound nucleus 81Rb at the same excitation energy. The IVGDR parameters extracted from the analysis were compared with the ones found at higher excitation energy (E*=83 MeV). The comparison allows one to observe two different nuclear mechanisms: (i) the IVGDR intrinsic width remains constant with the excitation energy in the nucleus 81Rb; (ii) the isospin-violating spreading width (i.e., Coulomb spreading width) remains constant with the excitation energy in the nucleus 80Zr. The experimental setup used for the γ -ray detection was composed by the AGATA demonstrator array coupled to the large-volume LaBr3:Ce detectors of the HECTOR+ array.
NASA Astrophysics Data System (ADS)
Stojadinović, Stevan; Tadić, Nenad; Ćirić, Aleksandar; Vasilić, Rastko
2018-03-01
Plasma electrolytic oxidation was used for synthesis of Eu3+ doped monoclinic HfO2 coatings on hafnium substrate. Results of photoluminescence (PL) measurements show the existence of two distinct regions: one that is related to the blue emission originating from oxygen vacancy defects in HfO2 and the other one characterized with a series of sharp orange-red emission peaks related to f-f transitions of Eu3+ from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). PL peaks appearing in excitation spectra of obtained coatings are attributed either to charge transfer state of Eu3+ or to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold. PL of formed coatings increases with PEO time due to an increase of oxygen vacancy defects and the content of Eu3+. Acquired experimental data suggest that hypersensitive electrical dipole transition is much more intense than the magnetic dipole transition, indicating that Eu3+ ions occupy a non-inversion symmetry sites.
Structure Study of the Chiral Lactide Molecules by Chirped-Pulse Ftmw Spectroscopy
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Bialkowska-Jaworska, Ewa; Kisiel, Zbigniew
2011-06-01
Lactide is a six member cyclic diester with two chiral centers that forms from lactic acid in the presence of heat and an acid catalyst. It can form either a homo-chiral (RR) structure with both methyl groups equatorial or a hetero-chiral (RS) structure where one methyl group is equatorial and the other methyl group is axial. Structurally lactide is similar to lactic acid dimer; however, the kinked ring is covalently bonded and two waters are lost. And unlike lactic acid dimer, which has a very small dipole moment, the dipole moment of lactide is on the order of 3 Debye. Here the microwave spectra of the highly rigid homo- and hetero-chiral lactides are presented, which were first assigned in a heated lactic acid spectrum where the chemistry took place in the reservoir nozzles. Further isotopic information from a commercial sample of predominately homo-chiral lactide was obtained leading to a Kraitchman substitution structure of the homo-chiral lactide. Preliminary results of the cluster of homo-chiral lactide with one water molecule attached are also presented.
Cavity-backed, micro-strip dipole antenna array
NASA Technical Reports Server (NTRS)
Ellis, H., Jr. (Inventor)
1981-01-01
A flush-mounted antenna assembly includes a generally rectangular, conductive, box structure open along one face to form a cavity. Within the cavity a pair of mutually orthogonal dielectric plane surfaces in an "egg crate" arrangement are mounted normal to the plane of the open face, each diagonally within the cavity. Each dielectric plane supports a pair of printed circuit dipoles typically each fed from the opposite side of the dielectric plane by a printed "cone-shaped" feed line trace which also serve as an impedance matching device and functions as a balun connected from an unbalanced strip line external feed. The open face of the conductive cavity can be flush mounted with a randome thereover, the assembly thereby being flush with the skin of a aircraft or space vehicle.
Cavity-backed, micro-strip dipole antenna array
NASA Astrophysics Data System (ADS)
Ellis, H., Jr.
1981-09-01
A flush-mounted antenna assembly includes a generally rectangular, conductive, box structure open along one face to form a cavity. Within the cavity a pair of mutually orthogonal dielectric plane surfaces in an "egg crate" arrangement are mounted normal to the plane of the open face, each diagonally within the cavity. Each dielectric plane supports a pair of printed circuit dipoles typically each fed from the opposite side of the dielectric plane by a printed "cone-shaped" feed line trace which also serve as an impedance matching device and functions as a balun connected from an unbalanced strip line external feed. The open face of the conductive cavity can be flush mounted with a randome thereover, the assembly thereby being flush with the skin of a aircraft or space vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, T.; Cai, Y.; Smellie, R.
1993-05-01
The basic features of the Superconducting Super Collider lattice are the two beamlines formed by superconducting dipoles (7736) and quadrupoles (1564). The dipoles constraint two 20 TeV proton beams into counterrotating closed orbits of 86.2 km. The quadrupoles (FODO) require cryogenic cooling the LHe temperatures. This requirement isolates the main magnets from the outside world. The interface required, the spool, is a crucial component of superconducting lattice design and machine operation. There are over 1588 spools in the Super Collider. We present hear SSCL spool designs which consist of (1) housing for superconducting closed orbit and multipole correction magnets, (2)more » cryogenic function, magnet quench protection, system power, and instrumentation interfaces, and (3) cold to warm transitions for ware magnet and warm instrumentation drift spaces.« less
Ideal Magnetic Dipole Scattering
NASA Astrophysics Data System (ADS)
Feng, Tianhua; Xu, Yi; Zhang, Wei; Miroshnichenko, Andrey E.
2017-04-01
We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters light as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Such a possibility was recently demonstrated for the so-called anapole mode, which is associated with zero electric dipole scattering. By spectrally overlapping the magnetic dipole resonance with the anapole mode, we achieve ideal magnetic dipole scattering in the far field with tunable strong scattering resonances in the near infrared spectrum. We demonstrate that such a condition can be realized at least for two subwavelength geometries. One of them is a core-shell nanosphere consisting of a Au core and silicon shell. It can be also achieved in other geometries, including nanodisks, which are compatible with current nanofabrication technology.
Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams
NASA Astrophysics Data System (ADS)
Haitao, Chen; Gao, Zenghui; Wang, Wanqing
2017-06-01
The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Zimmerli, Gregory A.
2012-01-01
Good antenna-mode coupling is needed for determining the amount of propellant in a tank through the method of radio frequency mass gauging (RFMG). The antenna configuration and position in a tank are important factors in coupling the antenna to the natural electromagnetic modes. In this study, different monopole and dipole antenna mounting configurations and positions were modeled and responses simulated in a full-scale tank model with the transient solver of CST Microwave Studio (CST Computer Simulation Technology of America, Inc.). The study was undertaken to qualitatively understand the effect of antenna design and placement within a tank on the resulting radio frequency (RF) tank spectrum.
Jupiter's Magnetic Field. Magnetosphere, and Interaction with the Solar Wind: Pioneer 11.
Smith, E J; Davis, L; Jones, D E; Coleman, P J; Colburn, D S; Dyal, P; Sonett, C P
1975-05-02
The Pioneer 11 vector helium magnetometer provided precise, contititious measurements of the magnetic fields in interplanetary space, inside Jupiter's magnetosphere, and in the near vicinity of Jupiter. As with the Pioneer 10 data, evidence was seen of the dynanmic interaction of Jupiter with the solar wind which leads to a variety of phenomena (bow shock, upstream waves, nonlinear magnetosheath impulses) and to changes in the dimension of the dayside magnetosphere by as much as a factor of 2. The magnetosphere clearly appears to be blunt, not disk-shaped, with a well-defined outer boundary. In the outer magnetosphere, the magnetic field is irregular but exhibits a persistent southward component indicative of a closed magnetosphere. The data contain the first clear evidence in the dayside magnetosphere of the current sheet, apparently associated with centrifugal forces, that was a donminatnt feature of the outbound Pionieer 10 data. A modest westward spiraling of the field was again evident inbound but not outbound at higher latitudes and nearer the Sun-Jupiter direction. Measurements near periapsis, which were nearer the planet and provide better latitude and longitude coverage than Pioneer 10, have revealed a 5 percent discrepancy with the Pioneer 10 offset dipole mnodel (D(2)). A revised offset dipole (6-parameter fit) is presented as well as the results of a spherical harmonic analysis (23 parameters) consisting of an interior dipole, quadrupole, and octopole and an external dipole and quadrupole. The dipole moment and the composite field appear moderately larger than inferred from Pioneer 10. Maximum surface fields of 14 and 11 gauss in the northern and southern hemispheres are inferred. Jupiter's planetary field is found to be slightly more irregular than that of Earth.
Long-range dipolar order and dispersion forces in polar liquids
NASA Astrophysics Data System (ADS)
Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene
2017-11-01
Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.
Alidoosti, Elaheh; Zhao, Hui
2018-05-15
At concentrated electrolytes, the ion-ion electrostatic correlation effect is considered an important factor in electrokinetics. In this paper, we compute, in theory and simulation, the dipole moment for a spherical particle (charged, dielectric) under the action of an alternating electric field using the modified continuum Poisson-Nernst-Planck (PNP) model by Bazant et al. [ Double Layer in Ionic Liquids: Overscreening Versus Crowding . Phys. Rev. Lett. 2011 , 106 , 046102 ] We investigate the dependency of the dipole moment in terms of frequency and its variation with such quantities like ζ-potential, electrostatic correlation length, and double-layer thickness. With thin electric double layers, we develop simple models through performing an asymptotic analysis of the modified PNP model. We also present numerical results for an arbitrary Debye screening length and electrostatic correlation length. From the results, we find a complicated impact of electrostatic correlations on the dipole moment. For instance, with increasing the electrostatic correlation length, the dipole moment decreases and reaches a minimum and then it goes up. This is because of initially decreasing of surface conduction and finally increasing due to the impact of ion-ion electrostatic correlations on ion's convection and migration. Also, we show that in contrast to the standard PNP model, the modified PNP model can qualitatively explain the data from the experimental results in multivalent electrolytes.
Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals
NASA Astrophysics Data System (ADS)
Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.
2017-07-01
Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.
Nam, Sungho; Seo, Jooyeok; Woo, Sungho; Kim, Wook Hyun; Kim, Hwajeong; Bradley, Donal D. C.; Kim, Youngkyoo
2015-01-01
Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor. PMID:26656447
Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting
NASA Astrophysics Data System (ADS)
Liao, Bingjin; Li, Shoubo; Huang, Chunqing; Luo, Zhihuan; Pang, Wei; Tan, Haishu; Malomed, Boris A.; Li, Yongyao
2017-10-01
Spatially anisotropic solitary vortices, i.e., bright anisotropic vortex solitons (AVSs), supported by anisotropic dipole-dipole interactions, were recently predicted in spin-orbit-coupled binary Bose-Einstein condensates (BECs), in the form of two-dimensional semivortices (complexes built of zero-vorticity and vortical components). We demonstrate that the shape of the AVSs—horizontal or vertical, with respect to the in-plane polarization of the atomic dipole moments in the underlying BEC—may be effectively controlled by the strength Ω of the Zeeman splitting (ZS). A transition from the horizontal to vertical shape with the increase of Ω is found numerically and explained analytically. At the transition point, the AVS assumes the shape of an elliptical ring. The mobility of horizontal AVSs is studied, too, with the conclusion that, with the increase of Ω , their negative effective mass changes the sign to positive via a point at which the effective mass diverges. Lastly, we report a new species of inverted AVSs, with the zero-vorticity and vortex component placed in lower- and higher-energy components, as defined by the ZS. They are excited states, with respect to the ground states provided by the usual AVSs. Quite surprisingly, inverted AVSs are stable in a large parameter region.
Geomagnetic cutoffs: A review for space dosimetry applications
NASA Astrophysics Data System (ADS)
Smart, D. F.; Shea, M. A.
1994-10-01
The earth's magnetic field acts as a shield against charged particle radiation from interplanetary space, technically described as the geomagnetic cutoff. The cutoff rigidity problem (except for the dipole special case) has 'no solution in closed form'. The dipole case yields the Stormer equation which has been repeatedly applied to the earth in hopes of providing useful approximations of cutoff rigidities. Unfortunately the earth's magnetic field has significant deviations from dipole geometry, and the Stormer cutoffs are not adequate for most applications. By application of massive digital computer power it is possible to determine realistic geomagnetic cutoffs derived from high order simulation of the geomagnetic field. Using this technique, 'world-grids' of directional cutoffs for the earth's surface and for a limited number of satellite altitudes have been derived. However, this approach is so expensive and time comsuming it is impractical for most spacecraft orbits, and approximations must be used. The world grids of cutoff rigidities are extensively used as lookup tables, normalization points and interpolation aids to estimate the effective geomagnetic cutoff rigidity of a specific location in space. We review the various options for estimating the cutoff rigidity for earth-orbiting satellites.
NASA Astrophysics Data System (ADS)
Liu, Yan; Guan, Yefeng; Li, Hai; Luo, Zhihuan; Mai, Zhijie
2017-08-01
We study families of stationary nonlinear localized modes and composite gray and anti-gray solitons in a one-dimensional linear waveguide array with dual phase-flip nonlinear point defects. Unstaggered fundamental and dipole bright modes are studied when the defect nonlinearity is self-focusing. For the fundamental modes, symmetric and asymmetric nonlinear modes are found. Their stable areas are studied using different defect coefficients and their total power. For the nonlinear dipole modes, the stability conditions of this type of mode are also identified by different defect coefficients and the total power. When the defect nonlinearity is replaced by the self-defocusing one, staggered fundamental and dipole bright modes are created. Finally, if we replace the linear waveguide with a full nonlinear waveguide, a new type of gray and anti-gray solitons, which are constructed by a kink and anti-kink pair, can be supported by such dual phase-flip defects. In contrast to the usual gray and anti-gray solitons formed by a single kink, their backgrounds on either side of the gray hole or bright hump have the same phase.
Electronic Asymmetry by Compositionally Braking Inversion Symmetry
NASA Astrophysics Data System (ADS)
Warusawithana, Maitri
2005-03-01
By stacking molecular layers of 3 different perovskite titanate phases, BaTiO3, SrTiO3 and CaTiO3 with atomic layer control, we construct nanostructures where global inversion symmetry is broken. With the structures clamped to the substrate, the stacking order gives rise to asymmetric strain fields. The dielectric response show asymmetric field tuning consistent with the symmetry of the stacking order. By analyzing the temperature and frequency dependence of the complex dielectric constant, we show that the response comes from activated switching of dipoles between two asymmetric states separated by an energy barrier. We find the size of average dipole units from the temperature dependence of the linewidth of field tuning curves to be around 10 unit cells in all the different nanostructures we investigate. At low temperatures we observe a deviation from the kinetic response suggesting a further growth in correlations. Pyrocurrent measurements confirm this observation indicating a phase transition to a ferro-like state. We explain the high temperature dipoles as single unit cell cross sectional columns correlated via the strain fields in the stacking direction, with the height somewhat short of the film thickness possibly due to some form of weak disorder.
Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D
2016-04-22
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2 D and p=p_{2}=8.3±0.4 D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.
Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide
NASA Astrophysics Data System (ADS)
Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew
2018-04-01
Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.
Energy flow of electric dipole radiation in between parallel mirrors
NASA Astrophysics Data System (ADS)
Xu, Zhangjin; Arnoldus, Henk F.
2017-11-01
We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.
High-Pressure Viewports for Infrared Systems. Phase 2. Chalcogenide Glass
1982-01-28
radiation. the permanent microcopic dipole domain undergoes spontaneous polarization, which results in the buildup of charge on the opposite surface of the...are quantified in table 3. Materials that have been useful in the 8-12 prm region are all II-VI compounds , ie prepared from elements of group II and...Polycrystalline II-VI compounds . 18 ’T 6" ý4 04 MELT-FORMED GLASS The properties of the melt-formed glasses are quantified in table 4. Only glasses that have been
Magnetic Field of a Dipole and the Dipole-Dipole Interaction
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…
Geometrical Simplification of the Dipole-Dipole Interaction Formula
ERIC Educational Resources Information Center
Kocbach, Ladislav; Lubbad, Suhail
2010-01-01
Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…
Measuring the Forces between Magnetic Dipoles
ERIC Educational Resources Information Center
Gayetsky, Lisa E.; Caylor, Craig L.
2007-01-01
We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.
NASA Astrophysics Data System (ADS)
Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.
2012-03-01
The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.
Dipole oscillator strength properties and dispersion energies for SiH 4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH 4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH 4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C 6, for the interaction of silane with itself and with forty-four other species, and the triple-dipole dispersion energy coefficient C 9 for (SiH 4) 3.
NASA Astrophysics Data System (ADS)
Calcara, Massimo; Borgia, Andrea
2013-04-01
Current global warming theories have produced some benefits: among them, detailed studies on CO2 and its properties, possible applications and perspectives. Starting from its use as a "green solvent" (for instance in decaffeination process), to enhance system in oil recovery, to capture and storage enough amount of CO2 in geological horizon. So, a great debate is centred around this molecule. One More useful research in natural horizon studies is its theorised use in Enhanced Geothermal Systems with CO2 as the only working fluid. In any case, the CO2 characteristics should be deeply understood, before injecting a molecule prone to change easily its aggregation state at relatively shallow depth. CO2 Rock interaction becomes therefore a focal point in approaching research sectors linked in some manner to natural or induced presence of carbon dioxide in geological horizons. Possible chemical interactions between fluids and solids have always been a central topic in defining evolution of the system as a whole in terms of dissolutions, reactions, secondary mineral formation and, in case of whichever plant, scaling. Questions arise in case of presence of CO2 with host rocks. Chemical and molecular properties are strategic. CO2 Rock interactions are based on eventual solubility capability of pure liquid and supercritical CO2 seeking and eventually quantifying its polar and/or ionic solvent capabilities. Single molecule at STP condition is linear, with central carbon atom and oxygen atoms at opposite site on a straight line with a planar angle. It has a quadrupolar moment due to the electronegativity difference between carbon and oxygen. As soon as CO2 forms bond with water, it deforms even at atmospheric pressure, assuming an induced dipole moment with a value around 0.02 Debye. Hydrated CO2 forms a hydrophilic bond; it deforms with an angle of 178 degrees. Pure CO2 forms self aggregates. In the simplest case a dimer, with two molecules of CO2 exerting mutual attraction and forming at a first impact a structure defined parallel or slipped parallel or a more stable T shaped. As soon as pressure is applied, density changes and appears a stable (induced) dipole moment 0.22 Debye: phase changes and CO2 dipole moment reaches 0.85 Debye dipole moment. Pure CO2, here the only liquid phase, assumes Lewis acid/base properties. Polar solvent properties seem to be real, and some experiments have observed this characteristics. This stated, present work try to show computer aided simulation in chemical and physical evolution of a portion of rock with liquid and supercritical CO2, with and without water, in granite and oceanic basalt formations.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2011-11-01
Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Astrophysics Data System (ADS)
Marshall, J. R.
1999-09-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion. It is predicted that this will lead to an increase with time of both the aerodynamic and bed-dilatancy thresholds (3). Because of Paschen discharge effects in the martian atmosphere, the electrostatic charging in a saltation cloud may be partially abated, but this will lead to greater grain mobility, more charging, and thus to a charge-discharge steady state mediated by mechanical interactions. II. Dry colluvial systems: Sand avalanches on dunes, dry debris flows, talus flows, avalanches, and pyroclastic surges are examples of gravity-driven, dense granular flows where rock/grain fragmentation and grain-to-grain interactions cause triboelectrification (sometimes augmented by other electrical charging processes), and where the grain densities of the systems are such that strong dipole-dipole interactions between grains might be expected to be present. Because it is expected that the Coulombic forces between grains will cause a sluggishness or enhanced granular-flow viscosity, the motion of a grain mass will be retarded or damped so that this will assist, ultimately, in terminating the flow. The greatest Coulombic viscosity will be created in the most highly charged systems, which will also be the most energetic. Thus, grain flows have some tendency to be self-limiting by internal energy partitioning; gravitational potential is converted to Coulombic potential, which manifests itself as a drag force between the grains. III. Volcanic eruption plumes and impact ejecta curtains: The violence of these systems leads to powerful electrical charging of particulates. Lightning storms emanating from volcanic plumes are a testimony to the levels of charging. As pyroclastic grains interact forcefully and frequently within eruption plumes, it is reasonable to predict that the internal turbulent motions of the plume will be significantly damped by the Coulombic viscosity exerted by grain charges. Additional information is contained in the original.
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion. It is predicted that this will lead to an increase with time of both the aerodynamic and bed-dilatancy thresholds (3). Because of Paschen discharge effects in the martian atmosphere, the electrostatic charging in a saltation cloud may be partially abated, but this will lead to greater grain mobility, more charging, and thus to a charge-discharge steady state mediated by mechanical interactions. II. Dry colluvial systems: Sand avalanches on dunes, dry debris flows, talus flows, avalanches, and pyroclastic surges are examples of gravity-driven, dense granular flows where rock/grain fragmentation and grain-to-grain interactions cause triboelectrification (sometimes augmented by other electrical charging processes), and where the grain densities of the systems are such that strong dipole-dipole interactions between grains might be expected to be present. Because it is expected that the Coulombic forces between grains will cause a sluggishness or enhanced granular-flow viscosity, the motion of a grain mass will be retarded or damped so that this will assist, ultimately, in terminating the flow. The greatest Coulombic viscosity will be created in the most highly charged systems, which will also be the most energetic. Thus, grain flows have some tendency to be self-limiting by internal energy partitioning; gravitational potential is converted to Coulombic potential, which manifests itself as a drag force between the grains. III. Volcanic eruption plumes and impact ejecta curtains: The violence of these systems leads to powerful electrical charging of particulates. Lightning storms emanating from volcanic plumes are a testimony to the levels of charging. As pyroclastic grains interact forcefully and frequently within eruption plumes, it is reasonable to predict that the internal turbulent motions of the plume will be significantly damped by the Coulombic viscosity exerted by grain charges. Additional information is contained in the original.
Effect of Loop Geometry on TEM Response Over Layered Earth
NASA Astrophysics Data System (ADS)
Qi, Youzheng; Huang, Ling; Wu, Xin; Fang, Guangyou; Yu, Gang
2014-09-01
A large horizontal loop located on the ground or carried by an aircraft are the most common sources of the transient electromagnetic method. Although topographical factors or airplane outlines make the loop of arbitrary shape, magnetic sources are generally represented as a magnetic dipole or a circular loop, which may bring about significant errors in the calculated response. In this paper, we present a method for calculating the response of a loop of arbitrary shape (for which the description can be obtained by different methods, including GPS localization) in air or on the surface of a stratified earth. The principle of reciprocity is firstly used to exchange the functions of the transmitting loop and the dipole receiver, then the response of a vertical or a horizontal magnetic dipole is calculated beforehand, and finally the line integral of the second kind is employed to get the transient response. Analytical analysis and comparisons depict that our work got very good results in many situations. Synthetic and field examples are given in the end to show the effect of loop geometry and how our method improves the precision of the EM response.
Improving the lifetime in optical microtraps by using elliptically polarized dipole light
NASA Astrophysics Data System (ADS)
Garcia, Sébastien; Reichel, Jakob; Long, Romain
2018-02-01
Tightly focused optical dipole traps induce vector light shifts ("fictitious magnetic fields") which complicate their use for single-atom trapping and manipulation. The problem can be mitigated by adding a larger, real magnetic field, but this solution is not always applicable; in particular, it precludes fast switching to a field-free configuration. Here we show that this issue can be addressed elegantly by deliberately adding a small elliptical polarization component to the dipole trap beam. In our experiments with single 87Rb atoms laser-cooled in a chopped trap, we observe improvements up to a factor of 11 of the trap lifetime compared to the standard, seemingly ideal linear polarization. This effect results from a modification of heating processes via spin-state diffusion in state-dependent trapping potentials. We develop Monte Carlo simulations of the evolution of the atom's internal and motional states and find that they agree quantitatively with the experimental data. The method is general and can be applied in all experiments where the longitudinal polarization component is non-negligible.
Communication: theoretical study of ThO for the electron electric dipole moment search.
Skripnikov, L V; Petrov, A N; Titov, A V
2013-12-14
An experiment to search for the electron electric dipole moment (eEDM) on the metastable H(3)Δ1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [http://www.electronedm.org]. To interpret the experiment in terms of eEDM and dimensionless constant kT, P characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT, P, in ThO is required. We report our results for Eeff (84 GV/cm) and WT, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H(3)Δ1 → X(1)Σ(+) transition energy, which can serve as a measure of reliability of the obtained Eeff and WT, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H(3)Δ1.
Wang, Huapei; Kent, Dennis V; Rochette, Pierre
2015-12-08
The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene-Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain-behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼ 60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 10(22) A ⋅ m(2).
NASA Astrophysics Data System (ADS)
Kai, Li; Jun, Liu; Weiqiang, Liu
2017-07-01
In order to cover the shortage of dipole magnetic field in the magnetohydrodynamic(MHD) heat shield system, physical model of a multipolar magnetic field with central and peripheral solenoids is constructed. By employing the governing equations of three dimensional thermochemical nonequilibrium flow with electromagnetic source terms based on the low magneto-Reynolds assumption, the flow control performance of the dipole and multipolar magnetic fields are numerically simulated. To make the results comparable, two groups of cases are designed by first assuming equal stagnation magnetic induction strength and secondly assuming equal ampere-turns. Results show that, the five-magnet system, whose central polar orientation is the same with the peripheral ones, have stronger work capability and better shock control and thermal protection performance. Moreover, the five-solenoid systems are the best when the ampere-turns of the central solenoid are twice and fourth of the peripheral ones under those two circumstances respectively. Compared with the dipole magnetic field, the stagnation non-catalytic heat fluxes are decreased by a factor of 47.5% and 34.0% respectively.
Wang, Huapei; Kent, Dennis V.; Rochette, Pierre
2015-01-01
The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene–Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain–behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 1022 A⋅m2. PMID:26598664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw
2014-05-28
We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of themore » observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadykto, A. B., E-mail: anadykto@gmail.com; Department of Applied Mathematics, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, Moscow 127055; Nazarenko, K. M.
2016-06-08
The understanding of the role of ammonia, a well-known stabilizer of binary sulfuric acid-water clusters, in the gas-to-nanoparticle conversion in the Earth atmosphere is critically important for the assessment of aerosol radiative forcing associated with the climate changes. The sulfuric acid H{sub 2}SO{sub 4} is present in the atmosphere in the form of the gas-phase hydrates (H{sub 2}SO{sub 4})(H{sub 2}O){sub n}, whose interaction with NH{sub 3} leads to the formation of more stable bisulfate clusters (NH{sub 3})(H{sub 2}SO{sub 4})(H{sub 2}O){sub n}. Although the impact of NH{sub 3} on the thermochemical stability of binary clusters nucleating homogeneously has been studied inmore » some detail in the past, the effect of ammonia on other microphysical properties relevant to nucleation remains insufficiently well understood. In the present study, the effect of ammonia on the electrical dipole moment controlling the nucleation of airborne ions via the dipole-charge interaction has been investigated using the Density Functional Theory (DFT), ab initio MP2 and model chemistry G3 methods. The presence of ammonia in (H{sub 2}SO{sub 4})(H{sub 2}O){sub n} is found to lead to very large enhancement in the dipole moment, which exceeds 2.0-2.5 Debyes (∼60-80%), 3.7-5.0 Debyes (∼90-180%), 1.4-4.5 Debyes (∼50-150%) and 2.1-5.5 Debyes (∼60-700%) for n = 0, n = 1, n = 2 and n = 3, respectively. The implications of this include the significantly increased uptake of the sulfuric acid, the key atmospheric nucleation precursor, by airborne ions and neutrals (due to dipole-dipole interaction), enhanced nucleation rates and the elevated production of ultrafine particles, which cause adverse health impacts.« less
Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei
NASA Astrophysics Data System (ADS)
Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo
2016-03-01
Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.
The kinematic dipole in galaxy redshift surveys
NASA Astrophysics Data System (ADS)
Maartens, Roy; Clarkson, Chris; Chen, Song
2018-01-01
In the concordance model of the Universe, the matter distribution—as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) —should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.
Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions
Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping
2012-01-01
The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954
Spin manipulation and relaxation in spin-orbit qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-03-01
We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, John; Hwang, Dae Sung; Kotzinian, Aram
2009-10-01
We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for {pi}{sup +} production at HERMES, and qualitative agreement for {pi}{sup 0} and K{sup +} production. Our predictions for pion and kaon production at COMPASS could be probed withmore » increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.« less
Charge instability in double quantum dots in Ge/Si core/shell nanowires
NASA Astrophysics Data System (ADS)
Zarassi, Azarin; Su, Zhaoen; Schwenderling, Jens; Frolov, Sergey M.; Hocevar, Moïra; Nguyen, Binh-Minh; Yoo, Jinkyoung; Dayeh, Shadi A.
Controlling dephasing times are of great challenge in the studies of spin qubit. Reported long spin coherence time and predicted strong spin-orbit interaction of holes in Ge/Si core/shell nanowires, as well as their weak coupling to very few nuclear spins of these group IV semiconductors, persuade electrical spin control. We have established Pauli spin blockade in gate-tunable quantum dots formed in these nanowires. The g-factor has been measured and evidence of spin-orbit interaction has been observed in the presence of magnetic field. However, electrical control of spins requires considerable stability in the double dot configuration, and imperfectly these dots suffer from poor stability. We report on fabrication modifications on Ge/Si core/shell nanowires, as well as measurement techniques to suppress the charge instabilities and ease the way to study spin-orbit coupling and resolve electric dipole spin resonance.
Zhang, Z; Jewett, D L
1994-01-01
Due to model misspecification, currently-used Dipole Source Localization (DSL) methods may contain Multiple-Generator Errors (MulGenErrs) when fitting simultaneously-active dipoles. The size of the MulGenErr is a function of both the model used, and the dipole parameters, including the dipoles' waveforms (time-varying magnitudes). For a given fitting model, by examining the variation of the MulGenErrs (or the fit parameters) under different waveforms for the same generating-dipoles, the accuracy of the fitting model for this set of dipoles can be determined. This method of testing model misspecification can be applied to evoked potential maps even when the parameters of the generating-dipoles are unknown. The dipole parameters fitted in a model should only be accepted if the model can be shown to be sufficiently accurate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitagaki, T.; Yuta, H.; Tanaka, S.
1990-09-01
The weak nucleon axial-vector ({ital F}{sub {ital A}}) and vector ({ital F}{sub {ital V}}) form factors are determined from the momentum-transfer-squared ({ital Q}{sup 2}) distributions using 2538 {mu}{sup {minus}} {ital p} and 1384 {mu}{sup {minus}}{Delta}{sup ++} events. The data were obtained from 1 800 000 pictures taken in the BNL 7-foot deuterium-filled bubble chamber exposed to a wide-band neutrino beam with a mean energy {ital E}{sub {nu}}=1.6 GeV. In the framework of the conventional {ital V}{minus}{ital A} theory with standard assumptions, the value obtained from the {mu}{sup {minus}}{ital p} events for the axial-vector mass {ital M}{sub {ital A}} in themore » pure dipole parameterization is 1.070{sub {minus}0.045}{sup +0.040} GeV and from the {mu}{sup {minus}}{Delta}{sup ++} events is 1.28{sub {minus}0.10}{sup +0.08} GeV. These results are in good agreement with an earlier measurement from this experiment and other recent results. The reaction mechanisms for both processes are compared and found to be very similar. A two-parameter fit for the quasielastic reaction, using dipole forms for {ital F}{sub {ital V}} and {ital F}{sub {ital A}}, yields {ital M}{sub {ital A}}=0.97{sub {minus}0.11}{sup +0.14} GeV and {ital M}{sub {ital V}}=0.89{sub {minus}0.07}{sup +0.04} GeV, which is in good agreement with the conserved-vector-current value of {ital M}{sub {ital V}}=0.84 GeV. Possible deviations from the standard assumptions are also discussed.« less
Takashima, S
2001-04-05
The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and electro-optical methods. The search for the origin of these dipolemoments, however, must be based on the detailed knowledge on protein structure with atomic resolutions. At present, we have two sources of information on the structure of protein molecules: (1) x-ray databases obtained in crystalline state; (2) NMR databases obtained in solution state. While x-ray databases consist of only one model, NMR databases, because of the fluctuation of the protein folding in solution, consist of a number of models, thus enabling the computation of dipole moment repeated for all these models. The aim of this work, using these databases, is the detailed investigation on the interdependence between the structure and dipole moment of protein molecules. The dipole moment of protein molecules has roughly two components: one dipole moment is due to surface charges and the other, core dipole moment, is due to polar groups such as N--H and C==O bonds. The computation of surface charge dipole moment consists of two steps: (A) calculation of the pK shifts of charged groups for electrostatic interactions and (B) calculation of the dipole moment using the pK corrected for electrostatic shifts. The dipole moments of several proteins were computed using both NMR and x-ray databases. The dipole moments of these two sets of calculations are, with a few exceptions, in good agreement with one another and also with measured dipole moments.
What is measured by hyper-Rayleigh scattering from a liquid?
NASA Astrophysics Data System (ADS)
Rodriquez, Micheal B.; Shelton, David P.
2018-04-01
Polarization and angle dependence of hyper-Rayleigh scattering (HRS) measured for liquid acetonitrile and dimethyl sulfoxide (DMSO) is analyzed in terms of contributions from randomly oriented molecules and additional contributions produced during intermolecular collisions and induced by the electric field of dissolved ions. All three contributions show the effect of long-range correlation, and the correlation functions are determined using the HRS observations combined with the results of molecular dynamics simulations. HRS from acetonitrile is polarized transverse to the scattering vector. This is due to long-range molecular orientation correlation produced by the dipole-dipole interaction, and correlation at distances r > 100 nm must be included to account for the HRS observations. Analysis of the HRS measurements for acetonitrile determines the length scale a = 0.185 nm for the long-range longitudinal and transverse orientation correlation functions BL=-2 BT=a3/r3. Transverse polarized collision-induced HRS is also observed for acetonitrile, indicating long-range correlation of intermolecular modes. Strong longitudinal HRS is induced by the radial electric field of dissolved ions in acetonitrile. For DMSO, the angle between the molecular dipole and the vector part of the first hyperpolarizability tensor is about 100°. As a result, HRS from the randomly oriented molecules in DMSO is nearly unaffected by dipole correlation, and ion-induced HRS is weak. The strong longitudinal polarized HRS observed for DMSO is due to the collision-induced contribution, indicating long-range correlation of intermolecular modes. The HRS observations require correlation that has r-3 long-range asymptotic form, for molecular orientation and for intermolecular vibration and libration, for both acetonitrile and DMSO.
NASA Astrophysics Data System (ADS)
Fisenko, Anatoliy I.; Lemberg, Vladimir
2014-07-01
Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.
Imaging Radar Studies of Atmospheric Winds and Waves
1993-09-02
3*ZAWindow - ZASpread(dir) do 10004 ant - 1,3 0 C "c Test #1: Reject this Doppler frequency if both quadrature "c components are too small on any...dipole) - pd23(dir,dipole) - 2*pi If (pd23(dir,dipole) .At. -pi) 1 pd23(dir,dipole) - pd23(dir,dipole) + 2*pi c "c Tests #2,3,6,&7: The two zenith...thetal+theta2)/2 10098 continue c "c Tests #4 and #8: Both dipoles have separately determined zenith "c angles for one direction. Do these two values
A gaussian model for simulated geomagnetic field reversals
NASA Astrophysics Data System (ADS)
Wicht, Johannes; Meduri, Domenico G.
2016-10-01
Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.
Electrostatics of Granular Material (EGM): Space Station Experiment
NASA Technical Reports Server (NTRS)
Marshall, J.; Sauke, T.; Farrell, W.
2000-01-01
Aggregates were observed to form very suddenly in a lab-contained dust cloud, transforming (within seconds) an opaque monodispersed cloud into a clear volume containing rapidly-settling, long hair-like aggregates. The implications of such a "phase change" led to a series of experiments progressing from the lab, to KC-135, followed by micro-g flights on USML-1 and USML-2, and now EGM slated for Space Station. We attribute the sudden "collapse" of a cloud to the effect of dipoles. This has significant ramifications for all types of cloud systems, and additionally implicates dipoles in the processes of cohesion and adhesion of granular matter. Notably, there is the inference that like-charged grains need not necessarily repel if they are close enough together: attraction or repulsion depends on intergranular distance (the dipole being more powerful at short range), and the D/M ratio for each grain, where D is the dipole moment and M is the net charge. We discovered that these ideas about dipoles, the likely pervasiveness of them in granular material, the significance of the D/M ratio, and the idea of mixed charges on individual grains resulting from tribological processes --are not universally recognized in electrostatics, granular material studies, and aerosol science, despite some early seminal work in the literature, and despite commercial applications of dipoles in such modern uses as "Krazy Glue", housecleaning dust cloths, and photocopying. The overarching goal of EGM is to empirically prove that (triboelectrically) charged dielectric grains of material have dipole moments that provide an "always attractive" intergranular force as a result of both positive and negative charges residing on the surfaces of individual grains. Microgravity is required for this experiment because sand grains can be suspended as a cloud for protracted periods, the grains are free to rotate to express their electrostatic character, and Coulombic forces are unmasked. Suspended grains will be "interrogated" by applied electrical fields. In one module, grains will be immersed in an inhomogeneous electric field and allowed to be attracted towards or repelled from the central electrode of the module: part of the grain's speed will be a function of its net charge (monopole), part will be a function of the dipole. Observed grain position vs. time will provide a curve that can be deconvolved into the dipole and monopole forces responsible, since both have distinctive radial dependencies. In a second approach, the inhomogeneous field will be alternated at low frequency (e.g., every 5-10 seconds) so that the grains are alternately attracted and repelled from the center of the field. The resulting "zigzag" grain motion will gradually drift inwards, then suddenly change to a unidirectional inward path when a critical radial distance is encountered (a sort of "Coulombic event horizon") at which the dipole strength supersedes the monopole strength --thus proving the presence of a dipole, while also quantifying the D/M ratio. In a second module, an homogeneous electric field eliminates dipole effects (both Coulombic and induced) to provide calibration of the monopole and to more readily evaluate net charge statistical variance. In both modules, the e-fields will be exponentially step-ramped in voltage during the experiment, so that the field "nominalizes" grain speed while spreading the response time --effectively forcing each grain to "wait its turn" to be measured. In addition to rigorously quantifying M, D, and the D/M ratio for many hundreds of grains, the experiment will also observe gross electrometric and RF discharge phenomena associated with grain activity. The parameter space will encompass grain charging levels (via intentional triboelectrification), grain size, cloud density, and material type. Results will prove or disprove the dipole hypothesis. In either case, light will be shed on the role of electrostatic forces in governing granular systems. Knowledge so gained can be applied to natural clouds such as protostellar and protoplanetary dust and debris systems, planetary rings, planetary dust palls and aerosols created by volcanic, impact, aeolian, firestorm, or nuclear winter processes. The data are also directly applicable to adhesion, cohesion, transport, dispersion, and collection of granular materials in industrial, agricultural, pharmaceutical applications, and in fields as diverse as dust contamination of space suits on Mars and crop spraying on Earth.
Electromagnetic toroidal excitations in matter and free space.
Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I
2016-03-01
The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.
Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators
Liu, Sheng; Vaskin, Aleksandr; Campione, Salvatore; ...
2017-06-07
Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. Here in this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrallymore » overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.« less
Molecular dynamics simulations on the local order of liquid and amorphous ZnTe
NASA Astrophysics Data System (ADS)
Rino, José Pedro; Borges, Denilson; Mota, Rita C.; Silva, Maurício A. P.
2008-05-01
Molecular dynamics studies of structural and dynamical correlations of molten and vitreous states under several conditions of density and temperature were performed. We use an effective recently proposed interatomic potential, consisting of two- and three-body covalent interactions which has successfully described the structural, dynamical, and structural phase transformation induced by pressure in ZnTe [D. S. Borges and J. P. Rino, Phys. Rev. B 72, 014107 (2005)]. The two-body term of the interaction potential consists of Coulomb interaction resulting from charge transfer, steric repulsion due to atomic sizes, charge-dipole interaction to include the effect of electronic polarizability of anions, and dipole-dipole (van der Waals) interactions. The three-body covalent term is a modification of the Stillinger-Weber potential. Molecular dynamics simulations in isobaric-isenthalpic ensemble have been performed for systems amounting to 4096 and 64 000 particles. Starting from a crystalline zinc-blende (ZB) structure, the system is initially heated until a very homogeneous liquid is obtained. The vitreous zinc telluride phase is attained by cooling the liquid at sufficiently fast cooling rates, while slower cooling rates lead to a disordered ZB crystalline structure. Two- and three-body correlations for the liquid and vitreous phases are analyzed through pair distribution functions, static structure factors, and bond angle distributions. In particular, the neutron static structure factor for the liquid phase is in very good agreement with both the reported experimental data and first-principles simulations.
Zero-bias microwave detectors based on array of nanorectifiers coupled with a dipole antenna
NASA Astrophysics Data System (ADS)
Kasjoo, Shahrir R.; Singh, Arun K.; Mat Isa, Siti S.; Ramli, Muhammad M.; Mohamad Isa, Muammar; Ahmad, Norhawati; Mohd Nor, Nurul I.; Khalid, Nazuhusna; Song, Ai Min
2016-04-01
We report on zero-bias microwave detection using a large array of unipolar nanodevices, known as the self-switching diodes (SSDs). The large array was realized in a single lithography step without the need of interconnection layers, hence allowing for a simple and low-cost fabrication process. The SSD array was coupled with a narrowband dipole antenna with a resonant frequency of 890 MHz, to form a simple rectenna (rectifying antenna). The extrinsic voltage responsivity and noise-equivalent-power (NEP) of the rectenna were ∼70 V/W and ∼0.18 nW/Hz1/2, respectively, measured in the far-field region at unbiased condition. Nevertheless, the estimated intrinsic voltage responsivity can achieve up to ∼5 kV/W with NEP of ∼2.6 pW/Hz1/2.
Magnonic waveguide based on exchange-spring magnetic structure
NASA Astrophysics Data System (ADS)
Wang, Lixiang; Gao, Leisen; Jin, Lichuan; Liao, Yulong; Wen, Tianlong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong
2018-05-01
A soft/hard exchange-spring coupled bilayer magnetic structure is proposed to obtain a narrow channel for spin-wave propagation. Micromagnetic simulations show that broad-band Damon-Eshbach geometry spin waves are strongly constrained within the channel and propagate effectively with a high group velocity. The beam width of the bound spin waves is almost independent from the frequency and is smaller than 24nm. Two side spin beams appearing at the low-frequency excitation are demonstrated to be coupled with the channel spins by dipole-dipole interaction. In contrast to a domain wall, the channel formed by exchange-spring coupling is easier to be realized in experimental scenarios and holds stronger immunity to surroundings. This work is expected to open new possibilities for energy-efficient spin-wave guiding as well as to help shape the field of beam magnonics.
Sodemann, Inti; Fu, Liang
2015-11-20
It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discus optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.
NASA Astrophysics Data System (ADS)
Wu, Erheng; Cao, Qing; You, Jun; Liu, Chengpu
2017-06-01
The ultrafast dynamics in the few-cycle laser seeding of quantum cascade laser (QCL) is numerically investigated via the exact solution of the full-wave Maxwell-Bloch equations. It is found that, with or without taking permanent dipole moment (PDM) into account, the QCL emission is quite different: beyond the fundamental frequency band, additional high and low bands occur for that with PDM, which forms an ultra-broad quasi-comb. The origin for this is closely related to the generation of second order harmonic and direct-current components as a result of PDM breaking down the parity symmetry. Moreover, the carrier-envelope-phase (CEP) of laser seed is locked to the QCL output, no matter with or without PDM, and this phase controlled QCL maybe has more wide and convenient applications in related fields.
Excitation spectrum for an inhomogeneously dipole-field-coupled superconducting qubit chain
NASA Astrophysics Data System (ADS)
Ian, Hou; Liu, Yu-xi; Nori, Franco
2012-05-01
When a chain of N superconducting qubits couples to a coplanar resonator, each of the qubits experiences a different dipole-field coupling strength due to the wave form of the cavity field. We find that this inhomogeneous coupling leads to a dependence of the collective ladder operators of the qubit chain on the qubit-interspacing l. Varying the spacing l changes the transition amplitudes between the angular momentum levels. We derive an exact diagonalization of the general N-qubit Hamiltonian and, through the N=4 case, demonstrate how the l-dependent operators lead to a denser one-excitation spectrum and a probability redistribution of the eigenstates. Moreover, we show that the variation of l between its two limiting values coincides with the crossover between Frenkel- and Wannier-type excitons in the superconducting qubit chain.
Electric dipole polarizability from first principles calculations
Miorelli, M.; Bacca, S.; Barnea, N.; ...
2016-09-19
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for themore » 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.« less
Gravitational dynamos and the low-frequency geomagnetic secular variation.
Olson, P
2007-12-18
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.
Gravitational dynamos and the low-frequency geomagnetic secular variation
Olson, P.
2007-01-01
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345
Vitovic, Pavol; Weis, Martin; Tomcík, Pavol; Cirák, Július; Hianik, Tibor
2007-05-01
We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.
Ostrowska, Katarzyna; Ceresoli, Davide; Stadnicka, Katarzyna; Gryl, Marlena; Cazzaniga, Marco; Soave, Raffaella; Musielak, Bogdan; Witek, Łukasz J; Goszczycki, Piotr; Grolik, Jarosław; Turek, Andrzej M
2018-05-01
The structural origin of absorption and fluorescence anisotropy of the single crystal of the π-conjugated heterocyclic system 5,6,10b-tri-aza-acephenan-thrylene, TAAP, is presented in this study. X-ray analysis shows that the crystal framework in the space group P [Formula: see text] is formed by centrosymmetric dimers of face-to-face mutually oriented TAAP molecules joined by π-π non-covalent interactions. The conformation of the TAAP molecule is stabilized by intramolecular C-H⋯N( sp 2 ), N( sp 2 )H⋯π(CN), and C-H⋯O( sp 2 ) hydrogen bonds. The presence of weak π-π interactions is confirmed by quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) analysis. The analysis of the optical spectra of TAAP in solution and in the solid state does not allow the specification of the aggregation type. DFT calculations for the dimer in the gas phase indicate that the lowest singlet excitation is forbidden by symmetry, suggesting H-type aggregation, even though the overall absorption spectrum is bathochromically shifted as for the J-type. The experimental determination of the permanent dipole moment of a TAAP molecule in 1,4-dioxane solution indicates the presence of the monomer form. The calculated absorption and emission spectra of the crystal in a simple approximation are consistent with the experimentally determined orientation of the absorption and emission transition dipole moments in TAAP single crystals. The electrostatic interaction between monomers with a permanent dipole moment ( ca 4 D each) could result in the unusual spectroscopic JH-aggregate behaviour of the TAAP dimer.
Probing specific oxides as potential supports for metal/oxide model catalysts: MgO(111) polar film
NASA Astrophysics Data System (ADS)
Grigorkina, G. S.; Ramonova, A. G.; Kibizov, D. D.; Kozyrev, E. N.; Zaalishvili, V. B.; Fukutani, K.; Magkoev, T. T.
2017-05-01
The growth of thermally evaporated magnesium oxide thin film on Mo(110) substrate in ultra-high vacuum was studied by means of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and work function (WF) measurements. It is shown that at a growth rate of c.a. 0.1 monolayer per minute and the substrate temperature of 600 K the film acquires the MgO(111) structure. This structure begins to form at two monolayers and holds up to six monolayers. At higher thickness the film disorders due to weakening of the ordering effect of the isosymmetric Mo(110) support. Adsorption of CO and H2 on the formed MgO(111) film cooled down to 90 K was studied by means of ultraviolet photoelectron spectroscopy (UPS) and reflection absorption infrared spectroscopy (RAIRS) and compared with in-situ obtained results for CO on Pt(111). Comparison of UPS data of CO on MgO(111) and Pt(111) in combination with RAIRS results reveals quite different bonding mechanisms on the metal and the oxide supports. The main feature of CO on MgO(111) is quite high intensity of CO stretch vibration, considerably exceeding that on amorphous MgO, and comparable to that of CO on Pt(111). This is presumably due to the electrostatic effect of the uncompensated microscopic dipole moment of ultrathin MgO(111) film on the enhancing of CO dynamical dipole moment. Adsorption of H2 dramatically reduces the CO stretch intensity as a possible result of removing of dipole moment of MgO(111) surface by hydrogen and (CO+H2) interaction.
Helicon modes in uniform plasmas. I. Low m modes
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2015-09-01
Helicons are whistler modes with azimuthal wave numbers. They arise in bounded gaseous and solid state plasmas, but the present work shows that very similar modes also exist in unbounded uniform plasmas. The antenna properties determine the mode structure. A simple antenna is a magnetic loop with dipole moment aligned either along or across the ambient background magnetic field B0. For such configurations, the wave magnetic field has been measured in space and time in a large and uniform laboratory plasma. The observed wave topology for a dipole along B0 is similar to that of an m = 0 helicon mode. It consists of a sequence of alternating whistler vortices. For a dipole across B0, an m = 1 mode is excited which can be considered as a transverse vortex which rotates around B0. In m = 0 modes, the field lines are confined to each half-wavelength vortex while for m = 1 modes they pass through the entire wave train. A subset of m = 1 field lines forms two nested helices which rotate in space and time like corkscrews. Depending on the type of the antenna, both m = + 1 and m = -1 modes can be excited. Helicons in unbounded plasmas also propagate transverse to B0. The transverse and parallel wave numbers are about equal and form oblique phase fronts as in whistler Gendrin modes. By superimposing small amplitude fields of several loop antennas, various antenna combinations have been created. These include rotating field antennas, helical antennas, and directional antennas. The radiation efficiency is quantified by the radiation resistance. Since helicons exist in unbounded laboratory plasmas, they can also arise in space plasmas.
Initial-state colour dipole emission associated with QCD Pomeron exchange
NASA Astrophysics Data System (ADS)
Bialas, A.; Peschanski, R.
1995-02-01
The initial-state radiation of soft colour dipoles produced together with a single QCD Pomeron exchange (BFKL) in onium-onium scattering is calculated in the framework of Mueller's approach. The resulting dipole production grows with increasing energy and reveals an unexpected feature of a power-law tail at appreciably large transverse distances from the collision axis, this phenomenon being related to the scale-invariant structure of dipole-dipole correlations.
Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms
NASA Astrophysics Data System (ADS)
Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.
2018-01-01
In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.
A new dipole index of the salinity anomalies of the tropical Indian Ocean.
Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang
2016-04-07
With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopeliovich, B. Z.; Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, D-69120 Heidelberg; Potashnikova, I. K.
Two novel QCD effects, double-color filtering and mutual boosting of the saturation scales in colliding nuclei, affect the transparency of the nuclei for quark dipoles in comparison with proton-nucleus collisions. The former effect increases the survival probability of the dipoles, since color filtering in one nucleus makes the other one more transparent. The second effect acts in the opposite direction and is stronger; it makes the colliding nuclei more opaque than in the case of pA collisions. As a result of parton saturation in nuclei the effective scale is shifted upward, which leads to an increase of the gluon densitymore » at small x. This in turn leads to a stronger transverse momentum broadening in AA compared with pA collisions, i.e., to an additional growth of the saturation momentum. Such a mutual boosting leads to a system of reciprocity equations, which result in a saturation scale, a few times higher in AA than in pA collisions at the energies of the large hadron collider (LHC). Since the dipole cross section is proportional to the saturation momentum squared, the nuclei become much more opaque for dipoles in AA than in pA collisions. For the same reason gluon shadowing turns out to be boosted to a larger magnitude compared with the product of the gluon shadowing factors in each of the colliding nuclei. All these effects make it more difficult to establish a baseline for anomalous J/{Psi} suppression in heavy ion collisions at high energies.« less
Liu, Yuchun; Xu, Ling; Zhao, Chen; Shao, Ming; Hu, Bin
2017-06-07
Fullerene (C 60 ) is an important n-type organic semiconductor with high electron mobility and low thermal conductivity. In this work, we report the experimental results on the tunable Seebeck effect of C 60 hybrid thin-film devices by adopting different oxide layers. After inserting n-type high-dielectric constant titanium oxide (TiO x ) and zinc oxide (ZnO) layers, we observed a significantly enhanced n-type Seebeck effect in oxide/C 60 hybrid devices with Seebeck coefficients of -5.8 mV K -1 for TiO x /C 60 and -2.08 mV K -1 for ZnO/C 60 devices at 100 °C, compared with the value of -400 μV K -1 for the pristine C 60 device. However, when a p-type nickel oxide (NiO) layer is inserted, the C 60 hybrid devices show a p-type to n-type Seebeck effect transition when the temperature increases. The remarkable Seebeck effect and change in Seebeck coefficient in different oxide/C 60 hybrid devices can be attributed to two reasons: the temperature-dependent surface polarization difference and thermally-dependent interface dipoles. Firstly, the surface polarization difference due to temperature-dependent electron-phonon coupling can be enhanced by inserting an oxide layer and functions as an additional driving force for the Seebeck effect development. Secondly, thermally-dependent interface dipoles formed at the electrode/oxide interface play an important role in modifying the density of interface states and affecting the charge diffusion in hybrid devices. The surface polarization difference and interface dipoles function in the same direction in hybrid devices with TiO x and ZnO dielectric layers, leading to enhanced n-type Seebeck effect, while the surface polarization difference and interface dipoles generate the opposite impact on electron diffusion in ITO/NiO/C 60 /Al, leading to a p-type to n-type transition in the Seebeck effect. Therefore, inserting different oxide layers could effectively modulate the Seebeck effect of C 60 -based hybrid devices through the surface polarization difference and thermally-dependent interface dipoles, which represents an effective approach to tune the vertical Seebeck effect in organic functional devices.
Dipole-relaxation parameters for Ce3+-Fint- complexes in CaF2:Ce and CaF2:Ce,Mn
NASA Astrophysics Data System (ADS)
Jassemnejad, B.; McKeever, S. W. S.
1987-12-01
Dipole-relaxation parameters for Ce3+-Fint- centers (C4v symmetry) in CaF2 are calculated using the method of ionic thermocurrents (ITC). The data indicate concentration-dependent effects if analyzed using the traditional ITC equation, assuming a single value for the reorientation activation energy. This analysis is unable to account for an observed broadening of the ITC peak as more Ce is added to the crystals. However, as has been published for other MF2:R3+ systems, we find that the broadening can be successfully accounted for by adopting a modified ITC equation which allows for a Gaussian distribution of activation energies about a mean value E0 and with a distribution width p. The parameter E0 is found to be independent of dipole content while p is found to increase with increasing dipole concentration. The data are consistent with a perturbation of the dipole-relaxation parameters due to interactions with other defects within the system. However, the strength of the observed effects is difficult to explain by invoking electrostatic dipole-dipole interactions only. Other perturbations, due perhaps to monopole-dipole interactions or elastic interactions, must be taking place. The data indicate that dipole concentrations calculated by ITC will be in error in the presence of such interactions due to a reduction in the mean contribution per dipole to the overall polarization density. For samples in which interaction effects are negligible, we calculate a dipole moment of 3.12×10-29 C m. The data further indicate that that the addition of Mn to the system causes a decrease in the interaction effects via a reduction in the Ce C4v center dipole moment. It appears that the broadening of the ITC curve is sensitive to the defect structure surrounding the dipoles.
Equivalent source modeling of the core magnetic field using magsat data
NASA Technical Reports Server (NTRS)
Mayhew, M. A.; Estes, R. H.
1983-01-01
Experiments are carried out on fitting the main field using different numbers of equivalent sources arranged in equal area at fixed radii at and inside the core-mantle boundary. In fixing the radius for a given series of runs, the convergence problems that result from the extreme nonlinearity of the problem when dipole positions are allowed to vary are avoided. Results are presented from a comparison between this approach and the standard spherical harmonic approach for modeling the main field in terms of accuracy and computational efficiency. The modeling of the main field with an equivalent dipole representation is found to be comparable to the standard spherical harmonic approach in accuracy. The 32 deg dipole density (42 dipoles) corresponds approximately to an eleventh degree/order spherical harmonic expansion (143 parameters), whereas the 21 dipole density (92 dipoles) corresponds to approximately a seventeenth degree and order expansion (323 parameters). It is pointed out that fixing the dipole positions results in rapid convergence of the dipole solutions for single-epoch models.
Quantitative estimation of film forming polymer-plasticizer interactions by the Lorentz-Lorenz Law.
Dredán, J; Zelkó, R; Dávid, A Z; Antal, I
2006-03-09
Molar refraction as well as refractive index has many uses. Beyond confirming the identity and purity of a compound, determination of molecular structure and molecular weight, molar refraction is also used in other estimation schemes, such as in critical properties, surface tension, solubility parameter, molecular polarizability, dipole moment, etc. In the present study molar refraction values of polymer dispersions were determined for the quantitative estimation of film forming polymer-plasticizer interactions. Information can be obtained concerning the extent of interaction between the polymer and the plasticizer from the calculation of molar refraction values of film forming polymer dispersions containing plasticizer.
Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields
NASA Astrophysics Data System (ADS)
Kovář, Jiří; Slaný, Petr; Cremaschini, Claudio; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey
2016-06-01
We study electrically charged perfect fluid toroidal structures encircling a spherically symmetric gravitating object with Schwarzschild spacetime geometry and endowed with a dipole magnetic field. The work represents a direct continuation of our previous general-relativistic studies of electrically charged fluid in the approximation of zero conductivity, which formed tori around a Reissner-Nordström black hole or a Schwarzschild black hole equipped with a test electric charge and immersed in an asymptotically uniform magnetic field. After a general introduction of the zero-conductivity charged fluid model, we discuss a variety of possible topologies of the toroidal fluid configurations. Along with the charged equatorial tori forming interesting coupled configurations, we demonstrate the existence of the off-equatorial tori, for which the dipole type of magnetic field seems to be necessary. We focus on orbiting structures with constant specific angular momentum and on those in permanent rigid rotation. We stress that the general analytical treatment developed in our previous works is enriched here by the integrated form of the pressure equations. To put our work into an astrophysical context, we identify the central object with an idealization of a nonrotating magnetic neutron star. Constraining ranges of its parameters and also parameters of the circling fluid, we discuss a possible relevance of the studied toroidal structures, presenting along with their topology also pressure, density, temperature and charge profiles.
The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts
NASA Astrophysics Data System (ADS)
Neill, Duff
2017-01-01
We develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. This equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We compute the decay width analytically, giving a closed form expression, and find it to be jet geometry independent, up to the number of legs of the dipole in the active jet. Enabling the asymptotic expansion is the correct perturbative seed, where we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.
Gas-Phase Chemistry of Trimethyl Phosphite,
keywords include: Flowing afterglow; Trimethyl phosphite ; Reaction mechanisms; Phosphorous ; and Nucleophilic displacement....The reactions of trimethyl phosphite were investigated with a series of nucleophiles. Products, branching ratios, and reaction rate constants are...of methoxide to form a new ion-dipole complex (CH3O-(CH3O)2PZ). If an additional acidic hydrogen is available on the nucleophile, the major products
Effects of Lipid Composition on Bilayer Membranes Quantified by All-Atom Molecular Dynamics.
Ding, Wei; Palaiokostas, Michail; Wang, Wen; Orsi, Mario
2015-12-10
Biological bilayer membranes typically contain varying amounts of lamellar and nonlamellar lipids. Lamellar lipids, such as dioleoylphosphatidylcholine (DOPC), are defined by their tendency to form the lamellar phase, ubiquitous in biology. Nonlamellar lipids, such as dioleoylphosphatidylethanolamine (DOPE), prefer instead to form nonlamellar phases, which are mostly nonbiological. However, nonlamellar lipids mix with lamellar lipids in biomembrane structures that remain overall lamellar. Importantly, changes in the lamellar vs nonlamellar lipid composition are believed to affect membrane function and modulate membrane proteins. In this work, we employ atomistic molecular dynamics simulations to quantify how a range of bilayer properties are altered by variations in the lamellar vs nonlamellar lipid composition. Specifically, we simulate five DOPC/DOPE bilayers at mixing ratios of 1/0, 3/1, 1/1, 1/3, and 0/1. We examine properties including lipid area and bilayer thickness, as well as the transmembrane profiles of electron density, lateral pressure, electric field, and dipole potential. While the bilayer structure is only marginally altered by lipid composition changes, dramatic effects are observed for the lateral pressure, electric field, and dipole potential profiles. Possible implications for membrane function are discussed.
Low polarity water, a novel transition species at the polyethylene-water interface.
Kosower, Edward M; Borz, Galina
2015-10-14
The bridge between water repelling and water-attracting regions is recognized here as low polarity water, a novel "neutral" form of water; its identity as a dipole-dipole water dimer is supported by spectroscopic evidence of its presence in thin films of water on a polyethylene surface. High resolution (0.5 cm(-1)), low signal energies (Sg 100) and short scans (0.1 s) are used to ensure that all peaks are detected. Thin films may be trapped between two polyethylene windows, affirming the low polarity of such water; the spectra of the trapped films ("sandwich") are similar to those from a subtraction procedure. Use of the "sandwich" is a new and useful technique in surface studies. In general, intermediate forms might bridge incompatibility between different regimes, from sets of molecules (chemistry and physics) to sets of organisms (biology and sociology). Thin films of water on polyethylene also display strong and transient peaks of water oligomers, cyclic pentamers and cyclic hexamers (chair and boat), bicyclic hexamers (books 1 and 2) and tricyclic hexamers (prism) that have been previously identified in thin films of water on a silver halide surface.
Model of directed lines for square ice with second-neighbor and third-neighbor interactions
NASA Astrophysics Data System (ADS)
Kirov, Mikhail V.
2018-02-01
The investigation of the properties of nanoconfined systems is one of the most rapidly developing scientific fields. Recently it has been established that water monolayer between two graphene sheets forms square ice. Because of the energetic disadvantage, in the structure of the square ice there are no longitudinally arranged molecules. The result is that the structure is formed by unidirectional straight-lines of hydrogen bonds only. A simple but accurate discrete model of square ice with second-neighbor and third-neighbor interactions is proposed. According to this model, the ground state includes all configurations which do not contain three neighboring unidirectional chains of hydrogen bonds. Each triplet increases the energy by the same value. This new model differs from an analogous model with long-range interactions where in the ground state all neighboring chains are antiparallel. The new model is suitable for the corresponding system of point electric (and magnetic) dipoles on the square lattice. It allows separately estimating the different contributions to the total binding energy and helps to understand the properties of infinite monolayers and finite nanostructures. Calculations of the binding energy for square ice and for point dipole system are performed using the packages TINKER and LAMMPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zotti, G. De; Negrello, M.; Castex, G.
We review aspects of Cosmic Microwave Background (CMB) spectral distortions which do not appear to have been fully explored in the literature. In particular, implications of recent evidences of heating of the intergalactic medium (IGM) by feedback from active galactic nuclei are investigated. Taking also into account the IGM heating associated to structure formation, we argue that values of the y parameter of several × 10{sup −6}, i.e. a factor of a few below the COBE/FIRAS upper limit, are to be expected. The Compton scattering by the re-ionized plasma also re-processes primordial distortions, adding a y-type contribution. Hence no pure Bose-Einstein-likemore » distortions are to be expected. An assessment of Galactic and extragalactic foregrounds, taking into account the latest results from the Planck satellite as well as the contributions from the strong CII and CO lines from star-forming galaxies, demonstrates that a foreground subtraction accurate enough to fully exploit the PIXIE sensitivity will be extremely challenging. Motivated by this fact we also discuss methods to detect spectral distortions not requiring absolute measurements and show that accurate determinations of the frequency spectrum of the CMB dipole amplitude may substantially improve over COBE/FIRAS limits on distortion parameters. Such improvements may be at reach of next generation CMB anisotropy experiments. The estimated amplitude of the Cosmic Infrared Background (CIB) dipole might be detectable by careful analyses of Planck maps at the highest frequencies. Thus Planck might provide interesting constraints on the CIB intensity, currently known with a ≅ 30% uncertainty.« less
Cooperativity between various types of polar solute-solvent interactions in aqueous media.
Madeira, Pedro P; Bessa, Ana; Loureiro, Joana A; Álvares-Ribeiro, Luís; Rodrigues, Alírio E; Zaslavsky, Boris Y
2015-08-21
Partition coefficients of seven low molecular weight compounds were measured in multiple aqueous two-phase systems (ATPSs) formed by pairs of different polymers. The ionic composition of each ATPS was varied to include 0.01M sodium phosphate buffer (NaPB), pH 7.4 and 0.1M Na2SO4, 0.15M NaCl, and 0.15M NaClO4 all in 0.01M NaPB, pH 7.4. The differences between the solvent features of the coexisting phases in all the ATPSs were estimated from partitioning of a homologous series of dinitrophenylated-amino acids and by the solvatochromic method. The solute-specific coefficients for the compounds examined were determined by the multiple linear regression analysis using the modified linear solvation energy relationship equation. It is established that the solute specific coefficients characterizing different types of the solute-water interactions (dipole-dipole, dipole-ion, and H-bonding) for a given solute change in the presence of different salt additives in the solute specific manner. It is also found that these characteristics are linearly interrelated. It is suggested that there is a cooperativity between various types of solute-water interactions governed by the solute structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigation of the RbCa molecule: Experiment and theory.
Pototschnig, Johann V; Krois, Günter; Lackner, Florian; Ernst, Wolfgang E
2015-04-01
We present a thorough theoretical and experimental study of the electronic structure of RbCa. The mixed alkali-alkaline earth molecule RbCa was formed on superfluid helium nanodroplets. Excited states of the molecule in the range of 13 000-23 000 cm -1 were recorded by resonance enhanced multi-photon ionization time-of-flight spectroscopy. The experiment is accompanied by high level ab initio calculations of ground and excited state properties, utilizing a multireference configuration interaction method based on multiconfigurational self consistent field calculations. With this approach the potential energy curves and permanent electric dipole moments of 24 electronic states were calculated. In addition we computed the transition dipole moments for transitions from the ground into excited states. The combination of experiment and theory allowed the assignment of features in the recorded spectrum to the excited [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] states, where the experiment allowed to benchmark the calculation. This is the first experimental work giving insight into the previously unknown RbCa molecule, which offers great prospects in ultracold molecular physics due to its magnetic and electronic dipole moment in the [Formula: see text] ground state.
3D magnetic sources' framework estimation using Genetic Algorithm (GA)
NASA Astrophysics Data System (ADS)
Ponte-Neto, C. F.; Barbosa, V. C.
2008-05-01
We present a method for inverting total-field anomaly for determining simple 3D magnetic sources' framework such as: batholiths, dikes, sills, geological contacts, kimberlite and lamproite pipes. We use GA to obtain magnetic sources' frameworks and their magnetic features simultaneously. Specifically, we estimate the magnetization direction (inclination and declination) and the total dipole moment intensity, and the horizontal and vertical positions, in Cartesian coordinates , of a finite set of elementary magnetic dipoles. The spatial distribution of these magnetic dipoles composes the skeletal outlines of the geologic sources. We assume that the geologic sources have a homogeneous magnetization distribution and, thus all dipoles have the same magnetization direction and dipole moment intensity. To implement the GA, we use real-valued encoding with crossover, mutation, and elitism. To obtain a unique and stable solution, we set upper and lower bounds on declination and inclination of [0,360°] and [-90°, 90°], respectively. We also set the criterion of minimum scattering of the dipole-position coordinates, to guarantee that spatial distribution of the dipoles (defining the source skeleton) be as close as possible to continuous distribution. To this end, we fix the upper and lower bounds of the dipole moment intensity and we evaluate the dipole-position estimates. If the dipole scattering is greater than a value expected by the interpreter, the upper bound of the dipole moment intensity is reduced by 10 % of the latter. We repeat this procedure until the dipole scattering and the data fitting are acceptable. We apply our method to noise-corrupted magnetic data from simulated 3D magnetic sources with simple geometries and located at different depths. In tests simulating sources such as sphere and cube, all estimates of the dipole coordinates are agreeing with center of mass of these sources. To elongated-prismatic sources in an arbitrary direction, we estimate dipole-position coordinates coincident with principal axis of sources. In tests with synthetic data, simulating the magnetic anomaly yielded by intrusive 2D structures such as dikes and sills, the estimates of the dipole coordinates are coincident with the principal plane of these 2D sources. We also inverted the aeromagnetic data from Serra do Cabral, in southeastern, Brazil, and we estimated dipoles distributed on a horizontal plane at depth of 30 km, with inclination and declination of 59.1° and -48.0°, respectively. The results showed close agreement with previous interpretation.
Probing the Cosmological Principle in the counts of radio galaxies at different frequencies
NASA Astrophysics Data System (ADS)
Bengaly, Carlos A. P.; Maartens, Roy; Santos, Mario G.
2018-04-01
According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxies. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is ~2 times larger than predicted by the mock data. For TGSS, the dipole is almost ~ 5 times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.
A new dipole index of the salinity anomalies of the tropical Indian Ocean
Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang
2016-01-01
With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events. PMID:27052319
Lineshapes of Dipole-Dipole Resonances in a Cold Rydberg Gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2015-05-01
We have examined the lineshapes associated with Stark tuned, dipole-dipole resonances involving Rydberg atoms in a cold gas. Rb atoms in a MOT are laser excited from the 5 p level to 32p3 / 2 in the presence of a weak electric field. A fast rising electric field pulse Stark tunes the total energy of two 32 p atom pairs so it is (nearly) degenerate with that of the 32s1 / 2+33s1 / 2 states. Because of the dipole-dipole coupling, atom pairs separated by a distance R, develop 32s1 / 2+33s1 / 2 character. The maximum probability for finding atoms in s-states depends on the detuning from degeneracy and on the dipole-dipole coupling. We obtain the ``resonance'' lineshape by measuring, via state-selective field ionization, the s-state population as a function of the tuning field. The resonance width decreases with density due to R-3 dependence of the dipole-dipole coupling. In principle, the lineshape provides information about the distribution of Rydberg atom spacings in the sample. For equally spaced atoms, the lineshape should be Lorentzian while for a random nearest neighbor distribution it appears as a cusp. At low densities nearly Gaussian lineshapes are observed with widths that are too large to be the result of inhomogeneous electric or magnetic fields. Supported by the NSF.
Polymer chain collapse induced by many-body dipole correlations.
Budkov, Yu A; Kalikin, N N; Kolesnikov, A L
2017-04-01
We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.
Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, M M; Brown, C G; Perkins, M P
2010-12-07
The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentratesmore » the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the detonator bridge wire. This is called the common-mode voltage. The explosive component inside a detonator is relatively sensitive, and any electrical arc is a concern. In a safety analysis, the pin-to-cup voltage, i.e., detonator voltage, must be calculated to decide if an arc will form. If the electric field is known, the voltage between any two points is simply the integral of the field along a line between the points. Eq. 1.1. For simplicity, it is assumed that the electric field and dipole elements are aligned. Calculating the induced detonator voltage is more complex because of the field concentration caused by metal components. If the detonator cup is not electrically connected to the metal HE container, the portion of the voltage generated by the dipole at the detonator will divide between the container-to-cup and cup-to-pin gaps. The gap voltages are determined by their capacitances. As a simplification, it will be assumed the cup is electrically attached, short circuited, to the HE container. The electrical field in the pin-to-cup area is determined by the field near the dipole, the length of the dipole, the shape of the arms, and the orientation of the arms. Given the characteristics of a lightning strike and the inductance of the facility, the electric fields in the ''Faraday cage'' can be calculated. The important parameters for determining the voltage in an empty facility are the inductance of the rebars and the rate of change of the current, Eq. 1.3. The internal electric fields are directly related to the facility voltages, however, the electric fields in the pin-to-cup space is much higher than the facility fields because the antenna will concentrate the fields covered by the arms. Because the lightning current rise-time is different for every strike, the maximum electric field and the induced detonator voltage should be described by probability distributions. For pedantic purposes, the peak field in the simulations will be simply set to 1 V/m. Lightning induced detonator voltages can be calculated by scaling up with the facility fields. Any metal object around the explosives, such as a work stand, will also distort the electric fields. A computer simulation of the electric fields in a facility with a work stand and HE container is shown. In this configuration, the work stand is grounded, and the intensity of field around the HE (denoted in dark blue) is reduced relative to the rest of the work bay (denoted lighter blue). The area above work stand posts has much higher fields indicated by red. The fields on top of the container are also affected. Without an understanding of how the electric fields are distributed near the detonator cable and container, it is not possible to calculate the induced detonator voltage. The average lightning current has rise- and fall-times of 3 us and 50 us respectively, and this translates to a wavelength that is long when compared with the length of the HE container or detonator cable.« less
Magnetic dipole transitions of Bc and Bc* mesons in the relativistic independent quark model
NASA Astrophysics Data System (ADS)
Patnaik, Sonali; Dash, P. C.; Kar, Susmita; Patra, Sweta P.; Barik, N.
2017-12-01
We study M1-transitions involving mesons: Bc(1 s ), Bc*(1 s ), Bc(2 s ), Bc*(2 s ), Bc(3 s ), and Bc*(3 s ) in the relativistic independent quark (RIQ) model based on a flavor independent average potential in the scalar-vector harmonic form. The transition form factor for Bc*→Bcγ is found to have analytical continuation from spacelike to physical timelike region. Our predicted coupling constant gBc*Bc=0.34 GeV-1 and decay width Γ (Bc*→Bcγ )=23 eV agree with other model predictions. In view of possible observation of Bc and Bc* s-wave states at LHC and Z-factory and potential use of theoretical estimate on M1-transitions, we investigate the allowed as well as hindered transitions of orbitally excited Bc-meson states and predict their decay widths in overall agreement with other model predictions. We consider the typical case of Bc*(1 s )→Bc(1 s )γ , where our predicted decay width which is found quite sensitive to the mass difference between Bc* and Bc mesons may help in determining the mass of Bc* experimentally.
Shrestha, Rebika; Cardenas, Alfredo E; Elber, Ron; Webb, Lauren J
2015-02-19
The magnitude of the membrane dipole field was measured using vibrational Stark effect (VSE) shifts of nitrile oscillators placed on the unnatural amino acid p-cyanophenylalanine (p-CN-Phe) added to a peptide sequence at four unique positions. These peptides, which were based on a repeating alanine-leucine motif, intercalated into small unilamellar DMPC vesicles which formed an α-helix as confirmed by circular dichroic (CD) spectroscopy. Molecular dynamics simulations of the membrane-intercalated helix containing two of the nitrile probes, one near the headgroup region of the lipid (αLAX(25)) and one buried in the interior of the bilayer (αLAX(16)), were used to examine the structure of the nitrile with respect to the membrane normal, the assumed direction of the dipole field, by quantifying both a small tilt of the helix in the bilayer and conformational rotation of the p-CN-Phe side chain at steady state. Vibrational absorption energies of the nitrile oscillator at each position showed a systematic blue shift as the nitrile was stepped toward the membrane interior; for several different concentrations of peptide, the absorption energy of the nitrile located in the middle of the bilayer was ∼3 cm(-1) greater than that of the nitrile closest to the surface of the membrane. Taken together, the measured VSE shifts and nitrile orientations within the membrane resulted in an absolute magnitude of 8-11 MV/cm for the dipole field, at the high end of the range of possible values that have been accumulated from a variety of indirect measurements. Implications for this are discussed.
Shrestha, Rebika; Cardenas, Alfredo E.; Elber, Ron; Webb, Lauren J.
2015-01-01
The magnitude of the membrane dipole field was measured using vibrational Stark effect (VSE) shifts of nitrile oscillators placed on the unnatural amino acid p-cyanophenylalanine (p-CN-Phe) added to a peptide sequence at four unique positions. These peptides, which were based on a repeating alanine-leucine motif, intercalated into small unilamellar DMPC vesicles which formed an α-helix as confirmed by circular dichroic (CD) spectroscopy. Molecular dynamics simulations of the membrane-intercalated helix containing two of the nitrile probes, one near the head-group region of the lipid (αLAX(25)) and one buried in the interior of the bilayer (αLAX(16)), were used to examine the structure of the nitrile with respect to the membrane normal, the assumed direction the dipole field, by quantifying both a small tilt of the helix in the bilayer and conformational rotation of the p-CN-Phe side chain at steady-state. Vibrational absorption energies of the nitrile oscillator at each position showed a systematic blue shift as the nitrile was stepped towards the membrane interior; for several different concentrations of peptide, the absorption energy of the nitrile located in the middle of the bilayer was ~3 cm−1 greater than that of the nitrile closest to the surface of the membrane. Taken together, the measured VSE shifts and nitrile orientations within the membrane resulted in a value of 8 – 11 MV/cm for the dipole field, at the high end of the range of possible values that have been accumulated from a variety of indirect measurements. Implications for this are discussed. PMID:25602635
Concise NMR approach for molecular dynamics characterizations in organic solids.
Aliev, Abil E; Courtier-Murias, Denis
2013-08-22
Molecular dynamics characterisations in solids can be carried out selectively using dipolar-dephasing experiments. Here we show that the introduction of a sum of Lorentzian and Gaussian functions greatly improve fittings of the "intensity versus time" data for protonated carbons in dipolar-dephasing experiments. The Lorentzian term accounts for remote intra- and intermolecular (1)H-(13)C dipole-dipole interactions, which vary from one molecule to another or for different carbons within the same molecule. Thus, by separating contributions from weak remote interactions, more accurate Gaussian decay constants, T(dd), can be extracted for directly bonded (1)H-(13)C dipole-dipole interactions. Reorientations of the (1)H-(13)C bonds lead to the increase of T(dd), and by measuring dipolar-dephasing constants, insight can be gained into dynamics in solids. We have demonstrated advantages of the method using comparative dynamics studies in the α and γ polymorphs of glycine, cyclic amino acids L-proline, DL-proline and trans-4-hydroxy-L-proline, the Ala residue in different dipeptides, as well as adamantane and hexamethylenetetramine. It was possible to distinguish subtle differences in dynamics of different carbon sites within a molecule in polymorphs and in L- and DL-forms. The presence of overall molecular motions is shown to lead to particularly large differences in dipolar-dephasing experiments. The differences in dynamics can be attributed to differences in noncovalent interactions. In the case of hexamethylenetetramine, for example, the presence of C-H···N interactions leads to nearly rigid molecules. Overall, the method allows one to gain insight into the role of noncovalent interactions in solids and their influence on the molecular dynamics.
Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan
2012-04-24
Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dharodi, Vikram; Das, Amita, E-mail: amita@ipr.res.in; Patel, Bhavesh
2016-01-15
The strongly coupled dusty plasma has often been modelled by the Generalized Hydrodynamic (GHD) model used for representing visco-elastic fluid systems. The incompressible limit of the model which supports transverse shear wave mode is studied in detail. In particular, dipole structures are observed to emit transverse shear waves in both the limits of sub- and super-luminar propagation, where the structures move slower and faster than the phase velocity of the shear waves, respectively. In the sub-luminar limit the dipole gets engulfed within the shear waves emitted by itself, which then backreacts on it and ultimately the identity of the structuremore » is lost. However, in the super-luminar limit the emission appears like a wake from the tail region of the dipole. The dipole, however, keeps propagating forward with little damping but minimal distortion in its form. A Poynting-like conservation law with radiative, convective, and dissipative terms being responsible for the evolution of W, which is similar to “enstrophy” like quantity in normal hydrodynamic fluid systems, has also been constructed for the incompressible GHD equations. The conservation law is shown to be satisfied in all the cases of evolution and collision amidst the nonlinear structures to a great accuracy. It is shown that monopole structures which do not move at all but merely radiate shear waves, the radiative term, and dissipative losses solely contribute to the evolution of W. The dipolar structures, on the other hand, propagate in the medium and hence convection also plays an important role in the evolution of W.« less
NASA Astrophysics Data System (ADS)
Felker, Peter M.; Bačić, Zlatko
2017-09-01
We present methodology for variational calculation of the 6 n -dimensional translation-rotation (TR) eigenstates of assemblies of n H2O@C60 moieties coupled by dipole-dipole interactions. We show that the TR Hamiltonian matrix for any n can be constructed from dipole-dipole matrix elements computed for n = 2 . We present results for linear H2O@C60 assemblies. Two classes of eigenstates are revealed. One class comprises excitations of the 111 rotational level of H2O. The lowest-energy 111 -derived eigenstate for each assembly exhibits significant dipole ordering and shifts down in energy with the assembly size.
Screened dipolar interactions in some molecular crystals
NASA Astrophysics Data System (ADS)
Munn, R. W.; Hurst, M.
1990-10-01
Screened dipole energies and dipole electric fields are calculated for the crystals of HCN, meta- and para-nitroaniline, the nonlinear optical compounds POM, MAP and DAN, meta-dinitrobenzene, and acetanilide. Only para-nitroaniline is centrosymmetric, but all the crystals have significant negative dipole energies (of the order of -20 kJ mol -1) except for POM and metadinitrobenzene, where they are positive but small in magnitude. Local dipole fields are of the order of 10 GV m -1. The results assume that surface charge annuls any macroscopic dipole field. It is speculated that the observed preponderance of centrosymmetric crystals of polar molecules may reflect a favourable dipole energy in the initial crystal nucleus rather than the macroscopic crystal.
Demonstration of Protection of a Superconducting Qubit from Energy Decay
NASA Astrophysics Data System (ADS)
Lin, Yen-Hsiang; Nguyen, Long B.; Grabon, Nicholas; San Miguel, Jonathan; Pankratova, Natalia; Manucharyan, Vladimir E.
2018-04-01
Long-lived transitions occur naturally in atomic systems due to the abundance of selection rules inhibiting spontaneous emission. By contrast, transitions of superconducting artificial atoms typically have large dipoles, and hence their lifetimes are determined by the dissipative environment of a macroscopic electrical circuit. We designed a multilevel fluxonium artificial atom such that the qubit's transition dipole can be exponentially suppressed by flux tuning, while it continues to dispersively interact with a cavity mode by virtual transitions to the noncomputational states. Remarkably, energy decay time T1 grew by 2 orders of magnitude, proportionally to the inverse square of the transition dipole, and exceeded the benchmark value of T1>2 ms (quality factor Q1>4 ×107) without showing signs of saturation. The dephasing time was limited by the first-order coupling to flux noise to about 4 μ s . Our circuit validated the general principle of hardware-level protection against bit-flip errors and can be upgraded to the 0 -π circuit [P. Brooks, A. Kitaev, and J. Preskill, Phys. Rev. A 87, 052306 (2013), 10.1103/PhysRevA.87.052306], adding protection against dephasing and certain gate errors.
NASA Astrophysics Data System (ADS)
Zhou, Dan; Wang, Kedong; Li, Xue
2018-07-01
This study calculates the potential energy curves of 18 Λ-S and 50 Ω states, which arise from the C(3Pg) + P+(3Pg) dissociation channel of the CP+ cation. The calculations are made using the CASSCF method, followed by the icMRCI approach with the Davidson correction. Core-valence correlation and scalar relativistic corrections, as well as extrapolation to the complete basis set limit are included. The transition dipole moments are computed for 25 pairs of Λ-S states. The spin-orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The Franck-Condon factors and Einstein coefficients of emissions are calculated. Radiative lifetimes are obtained for several vibrational levels of some states. The transitions are evaluated and spectroscopic measurement schemes for observing these Λ-S states are proposed. The potential energy curves, spectroscopic constants, vibrational levels, transition dipole moments, and transition probabilities reported in this paper can be considered to be very accurate and reliable. Because no experimental observations are currently available, the results obtained here can be used as guidelines for the detection of these states in appropriate spectroscopy experiments, in particular for observations in stellar atmospheres and in interstellar space.
NLO evolution of 3-quark Wilson loop operator
Balitsky, I.; Grabovsky, A. V.
2015-01-07
It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in themore » next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.« less
Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; ...
2016-02-11
Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Becausemore » of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.« less
NASA Astrophysics Data System (ADS)
Carvallo, C.; Camps, P.; Ooga, M.; Fanjat, G.; Sager, W. W.
2013-03-01
IODP Expedition 324 cored igneous rocks from Shatsky Rise, an oceanic plateau in the northwest Pacific Ocean that formed mainly during late Jurassic and Early Cretaceous times. We selected 60 samples from 3 different holes for Thellier-Thellier palaeointensity determinations. Induced and remanent magnetization curves measured at low- and high-temperature suggest a diverse and complex magnetic mineralogy, with large variations in Ti content and oxidation state. Hysteresis and FORC measurements show that most samples contain single-domain magnetic grains. After carrying out the palaeointensity determinations, only 9 samples satisfied all reliability criteria. These gave palaeointensity values between 16.5 and 21.5 μT, which correspond to average VDM values of (4.9 ± 0.2) × 1022 Am2 for an estimated age of 140-142 Ma. This value is lower than that for the recent field, which agrees with the hypothesis of a Mesozoic Dipole Low.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1971-01-01
Expressions for the excitation cross section of the highly excited states of the hydrogenlike atoms by fast charged particles have been derived in the dipole approximation of the semiclassical impact parameter and the Born approximations, making use of a formula for the asymptotic expansion of the oscillator strength of the hydrogenlike atoms given by Menzel. When only the leading term in the asymptotic expansion is retained, the expression for the cross section becomes identical to the expression obtained by the method of the classical collision and correspondence principle given by Percival and Richards. Comparisons are made between the Bethe coefficients obtained here and the Bethe coefficients of the Born approximation for transitions where the Born calculation is available. Satisfactory agreement is obtained only for n yields n + 1 transitions, with n the principal quantum number of the excited state.
NASA Astrophysics Data System (ADS)
Vettegren', V. I.; Machalaba, N. N.; Zharov, V. B.; Kulik, V. B.; Savitskii, A. V.
2011-06-01
The mechanism of solidifying a solution of polyacrylonitrile (PAN) in dimethylsulfoxide (DMSO) into which ethylene glycol is added is studied by the method of Raman spectroscopy. In the absence of ethylene glycol, DMSO molecules produce dipole-dipole bonds to PAN molecules. Upon adding ethylene glycol, DMSO molecules form hydrogen bonds with it and a line at 1000 cm-1 appears in the Raman spectrum, which is assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. After DMSO is removed, ethylene glycol molecules produce hydrogen bonds with two neighboring PAN molecules, giving rise to a band at 2264 cm-1, which is assigned to the valence vibrations of C≡N bonds involved in these hydrogen bonds. A high-viscosity gel consisting of PAN molecules arises in which these molecules are bonded to each other through ethylene glycol molecules.
Sekihara, K; Poeppel, D; Marantz, A; Koizumi, H; Miyashita, Y
1997-09-01
This paper proposes a method of localizing multiple current dipoles from spatio-temporal biomagnetic data. The method is based on the multiple signal classification (MUSIC) algorithm and is tolerant of the influence of background brain activity. In this method, the noise covariance matrix is estimated using a portion of the data that contains noise, but does not contain any signal information. Then, a modified noise subspace projector is formed using the generalized eigenvectors of the noise and measured-data covariance matrices. The MUSIC localizer is calculated using this noise subspace projector and the noise covariance matrix. The results from a computer simulation have verified the effectiveness of the method. The method was then applied to source estimation for auditory-evoked fields elicited by syllable speech sounds. The results strongly suggest the method's effectiveness in removing the influence of background activity.
NASA Technical Reports Server (NTRS)
Peyghambarian, Nasser (Inventor); Hendrickx, Eric (Inventor); Volodin, Boris (Inventor); Marder, Seth R. (Inventor); Kippelen, Bernard (Inventor)
2000-01-01
Fused ring bridge, ring locked dyes that form thermally stable photorfractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging.
Thermally stable molecules with large dipole moments and polarizabilities and applications thereof
NASA Technical Reports Server (NTRS)
Marder, Seth R. (Inventor); Peyghambarian, Nasser (Inventor); Kippelen, Bernard (Inventor); Volodin, Boris (Inventor); Hendrickx, Eric (Inventor)
2002-01-01
Disclosed are fused ring bridge, ring-locked dyes that form thermally stable photorefractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging.
Non-integral-spin bosonic excitations in untextured magnets
NASA Astrophysics Data System (ADS)
Kamra, Akashdeep; Agrawal, Utkarsh; Belzig, Wolfgang
Interactions are responsible for intriguing physics, e.g. emergence of exotic ground states and excitations, in a wide range of systems. Here we theoretically demonstrate that dipole-dipole interactions lead to bosonic eigen-excitations with spin ranging from zero to above ℏ in magnets with uniformly magnetized ground states. These exotic excitations can be interpreted as quantum coherent conglomerates of magnons, the eigen-excitations when the dipolar interactions are disregarded. We further find that the eigenmodes in an easy-axis antiferromagnet are spin-zero quasiparticles instead of the widely believed spin +/- ℏ magnons. The latter re-emerge when the symmetry is broken by a sufficiently large applied magnetic field. The spin greater than ℏ is accompanied by vacuum fluctuations and may be considered a weak form of frustration. We acknowledge financial support from the Alexander von Humboldt Foundation and the DFG through SFB 767.
Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII
NASA Astrophysics Data System (ADS)
Aggarwal, Sunny; Singh, J.; Jha, A. K. S.; Mohan, Man
2014-07-01
Fine-structure energies of the 67 levels belonging to the 1s2, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.
Nanoscale shift of the intensity distribution of dipole radiation.
Shu, Jie; Li, Xin; Arnoldus, Henk F
2009-02-01
The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case. Due to the spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radiation in the far field. This shift is shown to be independent of the distance to the source and, although of nanoscale dimension, should be experimentally observable.
Control of the diocotron instability of a hollow electron beam with periodic dipole magnets
Jo, Y. H.; Kim, J. S.; Stancari, G.; ...
2017-12-28
A method to control the diocotron instability of a hollow electron beam with peri-odic dipole magnetic fields has been investigated by a two-dimensional particle-in-cell simulation. At first, relations between the diocotron instability and several physical parameters such as the electron number density, current and shape of the electron beam, and the solenoidal field strength are theoretically analyzed without periodic dipole magnetic fields. Then, we study the effects of the periodic dipole magnetic fields on the diocotron instability using the two-dimensional particle-in-cell simulation. In the simulation, we considered the periodic dipole magnetic field applied along the propagation direction of the beam,more » as a temporally varying magnetic field in the beam frame. Lastly, a stabilizing effect is observed when the oscillating frequency of the dipole magnetic field is optimally chosen, which increases with the increasing amplitude of the dipole magnetic field.« less
Chen, Zhichao; Solbach, Klaus; Erni, Daniel; Rennings, Andreas
2017-06-01
In this contribution, we investigate the [Formula: see text] distribution and coupling characteristics of a multichannel radio frequency (RF) coil consisting of different dipole coil elements for 7 T MRI, and explore the feasibility to achieve a compromise between field distribution and decoupling by combining different coil elements. Two types of dipole elements are considered here: the meander dipole element with a chip-capacitor-based connection to the RF shield which achieves a sufficient decoupling between the neighboring elements; and the open-ended meander dipole element which exhibits a broader magnetic field distribution. By nesting the open-ended dipole elements in between the ones with end-capacitors, the [Formula: see text] distribution, in terms of field penetration depth and homogeneity, is improved in comparison to the dipole coil consisting only of the elements with end-capacitors, and at the same time, the adjacent elements are less coupled to each other in comparison to the dipole coil consisting only of the open-ended elements. The proposed approach is validated by both full-wave simulation and experimental results.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2010-02-01
The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.
Electrostatic-Dipole (ED) Fusion Confinement Studies
NASA Astrophysics Data System (ADS)
Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert
2004-11-01
The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH
Diagnostics of the Fermilab Tevatron using an AC dipole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyamoto, Ryoichi
2008-08-01
The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of themore » beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.« less
Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr
NASA Astrophysics Data System (ADS)
Knudsen, Mads Faurschou; Riisager, Peter; Donadini, Fabio; Snowball, Ian; Muscheler, Raimund; Korhonen, Kimmo; Pesonen, Lauri J.
2008-07-01
All absolute paleointensity data published in peer-reviewed journals were recently compiled in the GEOMAGIA50 database. Based on the information in GEOMAGIA50, we reconstruct variations in the geomagnetic dipole moment over the past 50 kyr, with a focus on the Holocene period. A running-window approach is used to determine the axial dipole moment that provides the optimal least-squares fit to the paleointensity data, whereas associated error estimates are constrained using a bootstrap procedure. We subsequently compare the reconstruction from this study with previous reconstructions of the geomagnetic dipole moment, including those based on cosmogenic radionuclides ( 10Be and 14C). This comparison generally lends support to the axial dipole moments obtained in this study. Our reconstruction shows that the evolution of the dipole moment was highly dynamic, and the recently observed rates of change (5% per century) do not appear unique. We observe no apparent link between the occurrence of archeomagnetic jerks and changes in the geomagnetic dipole moment, suggesting that archeomagnetic jerks most likely represent drastic changes in the orientation of the geomagnetic dipole axis or periods characterized by large secular variation of the non-dipole field. This study also shows that the Holocene geomagnetic dipole moment was high compared to that of the preceding ˜ 40 kyr, and that ˜ 4 · 10 22 Am 2 appears to represent a critical threshold below which geomagnetic excursions and reversals occur.
Improvement of solar-cycle prediction: Plateau of solar axial dipole moment
NASA Astrophysics Data System (ADS)
Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.
2017-11-01
Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.
Jun, James Jaeyoon; Longtin, André; Maler, Leonard
2013-01-01
In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source localization. PMID:23805244
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, D. T.; Mauel, M. E.; Roberts, T. M.
Here, we report measurements of the turbulent evolution of the plasma density profile following the fast injection of lithium pellets into the Levitated Dipole Experiment (LDX) [Boxer et al., Nat. Phys. 6, 207 (2010)]. As the pellet passes through the plasma, it provides a significant internal particle source and allows investigation of density profile evolution, turbulent relaxation, and turbulent fluctuations. The total electron number within the dipole plasma torus increases by more than a factor of three, and the central density increases by more than a factor of five. During these large changes in density, the shape of the densitymore » profile is nearly “stationary” such that the gradient of the particle number within tubes of equal magnetic flux vanishes. In comparison to the usual case, when the particle source is neutral gas at the plasma edge, the internal source from the pellet causes the toroidal phase velocity of the fluctuations to reverse and changes the average particle flux at the plasma edge. An edge particle source creates an inward turbulent pinch, but an internal particle source increases the outward turbulent particle flux. Statistical properties of the turbulence are measured by multiple microwave interferometers and by an array of probes at the edge. The spatial structures of the largest amplitude modes have long radial and toroidal wavelengths. Estimates of the local and toroidally averaged turbulent particle flux show intermittency and a non-Gaussian probability distribution function. The measured fluctuations, both before and during pellet injection, have frequency and wave number dispersion consistent with theoretical expectations for interchange and entropy modes excited within a dipole plasma torus having warm electrons and cool ions.« less
Effect of the cyclobutane cytidine dimer on the properties of Escherichia coli DNA photolyase.
Murphy, Anar K; Tammaro, Margaret; Cortazar, Frank; Gindt, Yvonne M; Schelvis, Johannes P M
2008-11-27
Cyclobutane pyrimidine dimer (CPD) photolyases are structure specific DNA-repair enzymes that specialize in the repair of CPDs, the major photoproducts that are formed upon irradiation of DNA with ultraviolet light. The purified enzyme binds a flavin adenine dinucleotide (FAD), which is in the neutral radical semiquinone (FADH(*)) form. The CPDs are repaired by a light-driven, electron transfer from the anionic hydroquinone (FADH(-)) singlet excited state to the CPD, which is followed by reductive cleavage of the cyclobutane ring and subsequent monomerization of the pyrimidine bases. CPDs formed between two adjacent thymidine bases (T< >T) are repaired with greater efficiency than those formed between two adjacent cytidine bases (C< >C). In this paper, we investigate the changes in Escherichia coli photolyase that are induced upon binding to DNA containing C< >C lesions using resonance Raman, UV-vis absorption, and transient absorption spectroscopies, spectroelectrochemistry, and computational chemistry. The binding of photolyase to a C< >C lesion modifies the energy levels of FADH(*), the rate of charge recombination between FADH(-) and Trp(306)(*), and protein-FADH(*) interactions differently than binding to a T< >T lesion. However, the reduction potential of the FADH(-)/FADH(*) couple is modified in the same way with both substrates. Our calculations show that the permanent electric dipole moment of C< >C is stronger (12.1 D) and oriented differently than that of T< >T (8.7 D). The possible role of the electric dipole moment of the CPD in modifying the physicochemical properties of photolyase as well as in affecting CPD repair will be discussed.
2016-06-01
TECHNICAL REPORT Algorithm for Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar...Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar Gradiometer Leon Vaizer, Jesse Angle, Neil...of Magnetic Dipole Targets Using LSG i June 2016 TABLE OF CONTENTS INTRODUCTION
NASA Astrophysics Data System (ADS)
Mashimo, S.; Nozaki, R.; Work, R. N.
1982-09-01
Mean square values of the dipole moments of poly(4-chlorostyrene) and copolymers of poly(4-chlorostyrene, 4-methylstyrene) have been determined at up to five different temperatures. There is a significant positive temperature coefficient of the mean square dipole moment. Curves of the dipole moments and of the slopes, normalized to unity at P4CS, have essentially the same shapes. The copolymers in benzene solutions lead to values of the mean square dipole moments that are about 20% larger than measurements in p-xylene.
Methods for Room Acoustic Analysis and Synthesis using a Monopole-Dipole Microphone Array
NASA Technical Reports Server (NTRS)
Abel, J. S.; Begault, Durand R.; Null, Cynthia H. (Technical Monitor)
1998-01-01
In recent work, a microphone array consisting of an omnidirectional microphone and colocated dipole microphones having orthogonally aligned dipole axes was used to examine the directional nature of a room impulse response. The arrival of significant reflections was indicated by peaks in the power of the omnidirectional microphone response; reflection direction of arrival was revealed by comparing zero-lag crosscorrelations between the omnidirectional response and the dipole responses to the omnidirectional response power to estimate arrival direction cosines with respect to the dipole axes.
BKT phase transition in a 2D system with long-range dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Fedichev, P. O.; Men'shikov, L. I.
2012-01-01
We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.
[Measurement of the electric field of the heart in a homogeneous volume conductor].
Tsukerman, B M; Titomir, L I
1975-01-01
The paper describes a technique and some results of experimental measurements of electrical potentials generated by an isolated dog heart in homogeneous conductor, drawing equipotential maps of the field, and calculating the characteristics of the dipole equivalent generator of the heart. The form of potential distribution on a spherical surface around the heart and its ideal orthogonal vectorcardiograms are discussed.
Phased Array Theory and Technology
1981-07-01
Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays
NASA Astrophysics Data System (ADS)
Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi
2016-08-01
To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al2O3 films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al2O3 metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO2 capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al2O3 capacitors are found to outperform the SiO2 capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al2O3 interface. The Al2O3 electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al2O3 capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al2O3. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al2O3 capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al2O3/underlying SiO2 interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al2O3 films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450 °C ALD process is presently the most promising technology for growing high-reliability Al2O3 films.
Four-body calculation of {sup 12}C(α, γ){sup 16}O radiative capture reaction at stellar energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, H., E-mail: H-Sadeghi@Araku.ac.ir; Firoozabadi, M. M.
2016-01-15
On the basis of the four-alphamodel, the {sup 12}C(α, γ){sup 16}Oradiative capture process is investigated by using the four-body Faddeev–Yakubovsky equations as well as the two- and three-body electromagnetic currents. The present calculation is an application of our current conservation realistic potentials method for the {sup 12}C(α, γ){sup 16}Oradiative capture process. This work clears the way formore refinedmodels of radiative capture based on two- and three-body realistic potentials and current conservation. The calculation is carried out by considering the {sup 4}He + {sup 12}C (1 + 3) and the {sup 8}Be + {sup 8}Be (2 + 2) subamplitudes, respectively. Radiativemore » capture {sup 12}C(α, γ){sup 16}Oreaction is one of the most important reactions in nuclear astrophysics. For this reaction, the electric dipole transitions between states with the same isospin are forbidden in the first order. Because the state 1{sup +} and 0{sup +} ground state nuclei {sup 16}O have zero isospin, thus the electric dipole radiations are not at the first order between two levels and electric dipole radiation will be the second order and electric dipole radiation is the same order as the electric quadrupole radiation. Therefore, we must consider the effects of both radiations. In comparison with other theoretical methods and available experimental data, good agreement is achieved for the E{sub 1} and E{sub 2} contribution to the cross section and the astrophysical S factor for this process.« less
NASA Astrophysics Data System (ADS)
Renner, Christian; Holak, Tad A.
2000-08-01
Based on the measurement of cross-correlation rates between 15N CSA and 15N-1H dipole-dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R2 = 1/T2) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T1/T2 ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T1/T2 ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N-H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or β-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T1/T2 ratios. The 15N CSA tensor of the residues for this β-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T2 relaxation times for several residues could be mistaken as indications for exchange processes.
NASA Astrophysics Data System (ADS)
Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey
2012-07-01
A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0<0.01ppm. In many cases however, inherent properties of the objects under investigation, pulsating arteries, breathing lungs, tissue-air interfaces, surgical implants, etc., lead to fluctuations and losses of local homogeneity. A new method dubbed “long-lived-coherence correlation spectroscopy” (LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.
NASA Astrophysics Data System (ADS)
Hapuarachchi, Harini; Premaratne, Malin; Bao, Qiaoliang; Cheng, Wenlong; Gunapala, Sarath D.; Agrawal, Govind P.
2017-06-01
A metal nanoparticle coupled to a semiconductor quantum dot forms a tunable hybrid system which exhibits remarkable optical phenomena. Small metal nanoparticles possess nanocavitylike optical concentration capabilities due to the presence of strong dipolar excitation modes in the form of localized surface plasmons. Semiconductor quantum dots have strong luminescent capabilities widely used in many applications such as biosensing. When a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole coupling occurs between the two nanoparticles giving rise to various optical signatures in the scattered spectra. This coupling makes the two nanoparticles behave like a single hybrid molecule. Hybrid molecules made of metal nanoparticles (MNPs) and quantum dots (QDs) under the influence of an external driving field have been extensively studied in literature, using the local response approximation (LRA). However, such previous work in this area was not adequate to explain some experimental observations such as the size-dependent resonance shift of metal nanoparticles which becomes quite significant with decreasing diameter. The nonlocal response of metallic nanostructures which is hitherto disregarded by such studies is a main reason for such nonclassical effects. The generalized nonlocal optical response (GNOR) model provides a computationally less-demanding path to incorporate such properties into the theoretical models. It allows unified theoretical explanation of observed experimental phenomena which previously seemed to require ab initio microscopic theory. In this paper, we analyze the hybrid molecule in an external driving field as an open quantum system using a cavity-QED approach. In the process, we quantum mechanically model the dipole moment operator and the dipole response field of the metal nanoparticle taking the nonlocal effects into account. We observe that the spectra resulting from the GNOR based model effectively demonstrate the experimentally observed size dependent amplitude scaling, linewidth broadening, and resonance shift phenomena compared to the respective LRA counterparts. Then, we provide a comparison between our suggested GNOR based cavity-QED model and the conventional LRA model, where it becomes evident that our analytical model provides a close match to the experimentally suggested behavior. Furthermore, we show that the Rayleigh scattering spectra of the MNP-QD hybrid molecule possess an asymmetric Fano interference pattern that is tunable to suit various applications.
Base Level Management of Radio Frequency Radiation Protection Program
1989-04-01
Antennae ....... 17 5 Estimated Hazard Distance for Vertical Monopole Antennae ....... 17 6 Permissible Exposure Limits...36 H-1 Monopole Antennas .............................................. 83 H-2 Radiation Pattern of Monopole Antennas...correction factors for determining power density values in the near-field of an emitter. Power Density = (4 x P av)/(Antenna Area) (14) For dipole, monopole
Tiny Electromagnetic Explosions
NASA Astrophysics Data System (ADS)
Thompson, Christopher
2017-08-01
This paper considers electromagnetic transients of a modest total energy ({ E }≳ {10}40 erg) and small initial size ({ R }≳ {10}-1 cm). They could be produced during collisions between relativistic field structures (e.g., macroscopic magnetic dipoles) that formed around or before cosmic electroweak symmetry breaking. The outflowing energy has a dominant electromagnetic component; a subdominant thermal component (temperature > 1 GeV) supplies inertia in the form of residual {e}+/- . A thin shell forms, expanding subluminally and attaining a Lorentz factor ˜ {10}6{--7} before decelerating. Drag is supplied by the reflection of an ambient magnetic field and deflection of ambient free electrons. Emission of low-frequency (GHz-THz) superluminal waves takes place through three channels: (I) reflection of the ambient magnetic field; (II) direct linear conversion of the embedded magnetic field into a superluminal mode; and (III) excitation outside the shell by corrugation of its surface. The escaping electromagnetic pulse is very narrow (a few wavelengths), so the width of the detected transient is dominated by propagation effects. GHz radio transients are emitted from (I) the dark matter halos of galaxies and (II) the near-horizon regions of supermassive black holes that formed via direct gas collapse and now accrete slowly. Brighter and much narrower 0.01-1 THz pulses are predicted at a rate at least comparable to fast radio bursts, experiencing weaker scattering and absorption. The same explosions also accelerate protons up to ˜ {10}19 eV, and heavier nuclei up to 1020-21 eV.
g-factor measurements of isomeric states in 174W
NASA Astrophysics Data System (ADS)
Rocchini, M.; Nannini, A.; Benzoni, G.; Melon, B.; John, P. R.; Ur, C. A.; Avigo, R.; Bazzacco, D.; Blasi, N.; Bocchi, G.; Bottoni, S.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; Georgiev, G.; Giaz, A.; Gottardo, A.; Leoni, S.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Million, B.; Modamio, V.; Morales, A. I.; Napoli, D. R.; Ottanelli, M.; Pellegri, L.; Perego, A.; Valiente-Dobon, J. J.; Wieland, O.
2016-05-01
The experimental setup GAMIPE used for gyro magnetic factor measurements at Laboratori Nazionali di Legnaro and a recent experimental work regarding K-isomers in 174W are described. Aim of the experiment is to study the detailed structure of the isomeric states wave functions, by the measurement of the magnetic dipole moments. This piece of information can provide interesting hints for theoretical models. Preliminary results concerning the population of the isomers of interest and half-lives are presented.
Tovkach, O M; Chernyshuk, S B; Lev, B I
2012-12-01
We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.
Multiple transparency windows and Fano interferences induced by dipole-dipole couplings
NASA Astrophysics Data System (ADS)
Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.
2018-04-01
We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.
Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed
ERIC Educational Resources Information Center
Smith, Glenn S.
2011-01-01
The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…
Effects of Changes to Arc Dipole Length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tepikian, Steven
1994-06-01
The arc dipole magnetic length in the design is 9.45m. The first arc magnets were made with BNL parts and have the proper length, however, the dipoles made with Grumman parts has a shorter magnetic length. The current projected magnet length of the Grumman dipoles is 9.422m. In this note we discuss the consequences of this change.
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1985-01-01
A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.
A master equation for strongly interacting dipoles
NASA Astrophysics Data System (ADS)
Stokes, Adam; Nazir, Ahsan
2018-04-01
We consider a pair of dipoles such as Rydberg atoms for which direct electrostatic dipole–dipole interactions may be significantly larger than the coupling to transverse radiation. We derive a master equation using the Coulomb gauge, which naturally enables us to include the inter-dipole Coulomb energy within the system Hamiltonian rather than the interaction. In contrast, the standard master equation for a two-dipole system, which depends entirely on well-known gauge-invariant S-matrix elements, is usually derived using the multipolar gauge, wherein there is no explicit inter-dipole Coulomb interaction. We show using a generalised arbitrary-gauge light-matter Hamiltonian that this master equation is obtained in other gauges only if the inter-dipole Coulomb interaction is kept within the interaction Hamiltonian rather than the unperturbed part as in our derivation. Thus, our master equation depends on different S-matrix elements, which give separation-dependent corrections to the standard matrix elements describing resonant energy transfer and collective decay. The two master equations coincide in the large separation limit where static couplings are negligible. We provide an application of our master equation by finding separation-dependent corrections to the natural emission spectrum of the two-dipole system.
Moderately reverberant learning ultrasonic pinch panel.
Nikolovski, Jean-Pierre
2013-10-01
Tactile sensing is widely used in human-computer interfaces. However, mechanical integration of touch technologies is often perceived as difficult by engineers because it often limits the freedom of style or form factor requested by designers. Recent work in active ultrasonic touch technologies has made it possible to transform thin glass plates, metallic sheets, or plastic shells into interactive surfaces. The method is based on a learning process of touch-induced, amplitude-disturbed diffraction patterns. This paper proposes, first, an evolution in the design with multiple dipole transducers that improves touch sensitivity or maximum panel size by a factor of ten, and improves robustness and usability in moderately reverberant panels, and second, defines a set of acoustic variables in the signal processing for the evaluation of sensitivity and radiating features. For proof of concept purposes, the design and process are applied to 3.2- and 6-mm-thick glass plates with variable damping conditions. Transducers are bonded to only one short side of the rectangular substrates. Measurements show that the highly sensitive free lateral sides are perfectly adapted for pinch-touch and pinch-slide interactions. The advantage of relative versus absolute touch disturbance measurement is discussed, together with tolerance to abutting contaminants.
Dipole response of 76Se above 4 MeV
NASA Astrophysics Data System (ADS)
Goddard, P. M.; Cooper, N.; Werner, V.; Rusev, G.; Stevenson, P. D.; Rios, A.; Bernards, C.; Chakraborty, A.; Crider, B. P.; Glorius, J.; Ilieva, R. S.; Kelley, J. H.; Kwan, E.; Peters, E. E.; Pietralla, N.; Raut, R.; Romig, C.; Savran, D.; Schnorrenberger, L.; Smith, M. K.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Yates, S. W.
2013-12-01
The dipole response of 3476Se in the energy range from 4 to 9 MeV has been analyzed using a (γ⃗,γ') polarized photon scattering technique, performed at the High Intensity γ-Ray Source facility at Triangle Universities Nuclear Laboratory, to complement previous work performed using unpolarized photons. The results of this work offer both an enhanced sensitivity scan of the dipole response and an unambiguous determination of the parities of the observed J=1 states. The dipole response is found to be dominated by E1 excitations, and can reasonably be attributed to a pygmy dipole resonance. Evidence is presented to suggest that a significant amount of directly unobserved excitation strength is present in the region, due to unobserved branching transitions in the decays of resonantly excited states. The dipole response of the region is underestimated when considering only ground state decay branches. We investigate the electric dipole response theoretically, performing calculations in a three-dimensional (3D) Cartesian-basis time-dependent Skyrme-Hartree-Fock framework.
Understanding the Interface Dipole of Copper Phthalocyanine (CuPc)/C60: Theory and Experiment.
Sai, Na; Gearba, Raluca; Dolocan, Andrei; Tritsch, John R; Chan, Wai-Lun; Chelikowsky, James R; Leung, Kevin; Zhu, Xiaoyang
2012-08-16
Interface dipole determines the electronic energy alignment in donor/acceptor interfaces and plays an important role in organic photovoltaics. Here we present a study combining first principles density functional theory (DFT) with ultraviolet photoemission spectroscopy (UPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to investigate the interface dipole, energy level alignment, and structural properties at the interface between CuPc and C60. DFT finds a sizable interface dipole for the face-on orientation, in quantitative agreement with the UPS measurement, and rules out charge transfer as the origin of the interface dipole. Using TOF-SIMS, we show that the interfacial morphology for the bilayer CuPc/C60 film is characterized by molecular intermixing, containing both the face-on and the edge-on orientation. The complementary experimental and theoretical results provide both insight into the origin of the interface dipole and direct evidence for the effect of interfacial morphology on the interface dipole.
Radiation patterns of interfacial dipole antennas
NASA Technical Reports Server (NTRS)
Engheta, N.; Papas, C. H.; Elachi, C.
1982-01-01
The radiation pattern of an infinitesimal electric dipole is calculated for the case where the dipole is vertically located on the plane interface of two dielectric half spaces and for the case where the dipole is lying horizontally along the interface. For the vertical case, it is found that the radiation pattern has nulls at the interface and along the dipole axis. For the horizontal case, it is found that the pattern has a null at the interface; that the pattern in the upper half space, whose index of refraction is taken to be less than that of the lower half space, has a single lobe whose maximum is normal to the interface; and that in the lower half space, in the plane normal to the interface and containing the dipole, the pattern has three lobes, whereas in the plane normal to the interface and normally bisecting the dipole, the pattern has two maxima located symmetrically about a minimum. Interpretation of these results in terms of the Cerenkov effect is given.
Comparison between electric dipole and magnetic loop antennas for emitting whistler modes
NASA Astrophysics Data System (ADS)
Stenzel, R.; Urrutia, J. M.
2016-12-01
In a large uniform and unbounded laboratory plasma low frequency whistler modes are excited from an electric dipole and a magnetic loop. The excited waves are measured with a magnetic probe which resolves the three field components in 3D space and time. This yields the group velocity and energy density, from which one obtains the emitted power. The same rf generator is used for both antennas and the radiated power is measured under identical plasma conditions. The magnetic loop radiates 8000 times more power than the electric dipole. The reason is that the loop antenna carries a large conduction current while the electric dipole current is a much smaller displacement current through the sheath. The current, hence magnetic field excites whistlers, not the dipole electric field. Incidentally, a dipole antenna does not launch plane waves but m = 1 helicon modes. The findings suggest that active wave injections into the magnetosphere should be done with magnetic antennas. Two parallel dipoles connected at the free end could serve as an elongated loop.
Nanoscale probing of image-dipole interactions in a metallic nanostructure
Ropp, Chad; Cummins, Zachary; Nah, Sanghee; Fourkas, John T.; Shapiro, Benjamin; Waks, Edo
2015-01-01
An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young’s interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications. PMID:25790228
Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils
NASA Astrophysics Data System (ADS)
Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.
2017-09-01
In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.
Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations
NASA Astrophysics Data System (ADS)
Muller, Andreas; Wang, Qu-Quan; Bianucci, Pablo; Xue, Qi-Kun; Shih, Chih-Kang
2004-03-01
By investigating the polarization-dependent Rabi oscillations using photoluminescence spectroscopy, we determined the respective transition dipole moments of the two excited excitonic states |Ex> and |Ey> of a single self-assembled quantum dot that are nondegenerate due to shape anisotropy. We find that the ratio of the two dipole moments is close to the physical elongation ratio of the quantum dot. We also measured the ground state radiative lifetimes of several quantum dots. The dipole moments calculated from the latter are in reasonable agreement with the dipole moments determined from the periodicity of the Rabi oscillations.
Budkov, Yu A; Kolesnikov, A L
2016-11-01
We present a new simple self-consistent field theory of a polarizable flexible polymer chain under an external constant electric field with account for the many-body electrostatic dipole correlations. We show the effects of electrostatic dipole correlations on the electric-field-induced globule-coil transition. We demonstrate that only when the polymer chain is in the coil conformation, the electrostatic dipole correlations of monomers can be considered as pairwise. However, when the polymer chain is in a collapsed state, the dipole correlations have to be considered at the many-body level.
Codreanu, Iulian; Boreman, Glenn D
2002-04-01
We report on the influence of the dielectric substrate on the performance of microstrip dipole-antenna-coupled microbolometers. The location, the width, and the magnitude of the resonance of a printed dipole are altered when the dielectric substrate is backed by a ground plane. A thicker dielectric substrate shifts the antenna resonance toward shorter dipole lengths and leads to a stronger and slower detector response. The incorporation of an air layer into the antenna substrate further increases thermal impedance, leading to an even stronger response and shifting the antenna resonance toward longer dipole lengths.
Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks
NASA Astrophysics Data System (ADS)
Pospelov, Maxim; Ritz, Adam
2001-04-01
Using QCD sum rules, we calculate the electric dipole moment of the neutron dn induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks d~i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments di. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and dn=(1+/-0.5)\\{0.55e(d~d+0.5d~u)+0.7(dd-0.25du)\\}.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2017-03-01
Dipole oscillator strength distributions for Br2 and BrCN are constructed from photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density and molar refractivity data when available. The distributions are used to predict dipole sum rules S (k) , mean excitation energies I (k) , and van der Waals C6 coefficients. Coupled-cluster calculations of the static dipole polarizabilities of Br2 and BrCN are reported for comparison with the values of S (- 2) extracted from the distributions.
Two-Dimensional Wetting of a Stepped Copper Surface
NASA Astrophysics Data System (ADS)
Lin, C.; Avidor, N.; Corem, G.; Godsi, O.; Alexandrowicz, G.; Darling, G. R.; Hodgson, A.
2018-02-01
Highly corrugated, stepped surfaces present regular 1D arrays of binding sites, creating a complex, heterogeneous environment to water. Rather than decorating the hydrophilic step sites to form 1D chains, water on stepped Cu(511) forms an extended 2D network that binds strongly to the steps but bridges across the intervening hydrophobic Cu(100) terraces. The hydrogen-bonded network contains pentamer, hexamer, and octomer water rings that leave a third of the stable Cu step sites unoccupied in order to bind water H down close to the step dipole and complete three hydrogen bonds per molecule.
Dielectric aggregation kinetics of cells in a uniform AC electric field.
Tada, Shigeru; Natsuya, Tomoyuki; Tsukamoto, Akira
2014-01-01
Cell manipulation and separation technologies have potential biological and medical applications, including advanced clinical protocols such as tissue engineering. An aggregation model was developed for a human carcinoma (HeLa) cell suspension exposed to a uniform AC electric field, in order to explore the field-induced structure formation and kinetics of cell aggregates. The momentum equations of cells under the action of the dipole-dipole interaction were solved theoretically and the total time required to form linear string-like cluster was derived. The results were compared with those of a numerical simulation. Experiments using HeLa cells were also performed for comparison. The total time required to form linear string-like clusters was derived from a simple theoretical model of the cell cluster kinetics. The growth rates of the average string length of cell aggregates showed good agreement with those of the numerical simulation. In the experiment, cells were found to form massive clusters on the bottom of a chamber. The results imply that the string-like cluster grows rapidly by longitudinal attraction when the electric field is first applied and that this process slows at later times and is replaced by lateral coagulation of short strings. The findings presented here are expected to enable design of methods for the organization of three-dimensional (3D) cellular structures without the use of micro-fabricated substrates, such as 3D biopolymer scaffolds, to manipulate cells into spatial arrangement.
The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neill, Duff
Here, we develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. Furthermore, this equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We also compute the decay width analytically, giving a closed form expression, and find it to be jet geometrymore » independent, up to the number of legs of the dipole in the active jet. By enabling the asymptotic expansion we find that the perturbative seed is correct; we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.« less
The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts
Neill, Duff
2017-01-25
Here, we develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. Furthermore, this equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We also compute the decay width analytically, giving a closed form expression, and find it to be jet geometrymore » independent, up to the number of legs of the dipole in the active jet. By enabling the asymptotic expansion we find that the perturbative seed is correct; we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syrkin, M.I.
1996-02-01
In collisions of Rydberg atoms with charged projectiles at velocities approximately matching the speed of the Rydberg electron {ital v}{sub {ital n}} (matching velocity), {ital n} being the principal quantum number of the Rydberg level, the dipole-forbidden transitions with large angular-momentum transfer {Delta}{ital l}{gt}1 substantially dominate over dipole-allowed transitions {Delta}{ital l}=1, although both are induced by the dipole interaction. Here it is shown that as the projectile velocity decreases the adiabatic character of the depopulation depends on the energy distribution of states in the vicinity of the initial level. If the spectrum is close to degeneracy (as for high-{ital l}more » levels) the dipole-forbidden depopulation prevails practically over the entire low-velocity region, down to velocities {approximately}{ital n}{sup 3}[{Delta}{ital E}/Ry]{ital v}{sub {ital n}}, where {Delta}{ital E} is the energy spacing adjoining to the level due to either a quantum defect or the relevant level width or splitting, whichever is greater. If the energy gaps are substantial (as for strongly nonhydrogenic {ital s} and {ital p} levels in alkali-metal atoms), then the fraction of dipole transitions in the total depopulation reaches a flat minimum just below the matching velocity and then grows again, making the progressively increasing contribution to the low-velocity depopulation. The analytic models based on the first-order Born amplitudes (rather than the two-level adiabatic approximation) furnish reasonable estimates of the fractional dipole-allowed and dipole-forbidden depopulations. {copyright} {ital 1996 The American Physical Society.}« less
Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime
NASA Astrophysics Data System (ADS)
Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.
2017-10-01
We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.
Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.
Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue
2018-06-06
Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.
Effect of phloretin on the permeability of thin lipid membranes
1976-01-01
Phloretin dramatically increases cation conductances and decreases anion conductances of membranes treated with ion carriers (nonactin, valinomycin, carbonyl-cyanide-m-chlorophenylhydrazone [CCCP], and Hg(C6F5)2) or lipophilic ions (tetraphenylarsonium [tphAs+] and tetraphenylborate [TPhB-]). For example, on phosphatidylethanolamine membranes, 10(-4) M phloretin increases K+ -nonactin and TPhAs+ conductances and decreases CCCP- and TPhB- conductances 10(3)-fold; on lecithin: cholesterol membranes, it increases K+-nonactin conductance 10(5)-fold and decreases CCCP- conductance 10(3)-fold. Similar effects are obtained with p- and m-nitrophenol at 10(-2) M. These effects are produced by the un-ionized form of phloretin and the nitrophenols. We believe that phloretin, which possesses a large dipole moment, adsorbs and orients at the membrane surface to introduce a dipole potential of opposite polarity to the preexisting positive one, thus increasing the partition coefficient of cations into the membrane interior and decreasing the partition coefficient of anions. (Phloretin may also increase the fluidity of cholesterol-containing membranes; this is manifested by its two- to three-fold increase in nonelectrolyte permeability and its asymmetrical effect on cation and anion conductances in cholesterol-containing membranes.) It is possible that pholoretin's inhibition of chloride, urea, and glucose transport in biological membranes results from the effects of these intense intrafacial dipole fields on the translocator(s) of these molecules. PMID:946975
Flexoelectricity as a bulk property
NASA Astrophysics Data System (ADS)
Resta, Raffaele
2010-03-01
Piezoelectric composites can be created using nonpiezoelectric materials, by exploiting flexoelectricity. This is by definition the linear response of polarization to strain gradient, and is symmetry-allowed even in elemental crystals. However, the basic issue whether flexoelectricity is a bulk or a surface material property is open. We mention that the analogous issue about piezoelectricity is nontrivial either.^1 In this first attempt towards a full theory of flexoelectricity we prove that, for a simple class of strain and strain gradients, flexoelectricity is indeed a bulk effect. The key ingredients of the present theory are the long-range perturbations linearly induced by a unit displacement of a single nucleus in an otherwise perfect crystal: to leading order these are dipolar, quadrupolar, and octupolar. The corresponding tensors have rank 2, 3, and 4, respectively. Whereas dipoles and quadrupoles provide the piezoelectric response,^1 we show that dipoles and octupoles provide the flexoelectric response in nonpiezoelectric crystals. We conjecture that the full dipole and octupole tensors provide the flexoelectric response to the most general form of strain gradient. Our problem has a close relationship to the one of the ``absolute'' deformation potentials, which is based on a similar kind of dipolar and octupolar tensors.^2 ^1 R. M. Martin, Phys. Rev. B 5, 1607 (1972). ^2 R. Resta, L. Colombo and S. Baroni, Phys. Rev. B 41, 12538 (1990).
Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes
Klymchenko, Andrey S.; Duportail, Guy; Mély, Yves; Demchenko, Alexander P.
2003-01-01
The principle of electrochromic modulation of excited-state intramolecular proton-transfer reaction was applied for the design of fluorescence probes with high two-color sensitivity to dipole potential, Ψd, in phospholipid bilayers. We report on the effect of Ψd variation on excitation and fluorescence spectra of two new 3-hydroxyflavone probes, which possess opposite orientations of the fluorescent moiety in the lipid bilayer. The dipole potential in the bilayer was modulated by the addition of 6-ketocholestanol or phloretin and by substitution of dimyristoyl phosphatidylcholine lipid with its ether analog 1,2-di-o-tetradecyl-sn-glycero-3-phosphocholine, and its value was estimated by the reference styryl dye 1-(3-sulfonatopropyl)-4-{β[2-(di-n-octylamino)-6-naphthyl]vinyl}pyridinium betaine. We demonstrate that after Ψd changes, the probe orienting in the bilayer similarly to the reference dye shows similar shifts in the excitation spectra, whereas the probe with the opposite orientation shows the opposite shifts. The new observation is that the response of 3-hydroxyflavone probes to Ψd in excitation spectra is accompanied by and quantitatively correlated with dramatic changes of relative intensities of the two well separated emission bands that belong to the initial normal and the product tautomer forms of the excited-state intramolecular proton-transfer reaction. This provides a strong response to Ψd by change in emission color. PMID:12972636
NASA Astrophysics Data System (ADS)
Karpuškienė, R.; Bogdanovich, P.; Kisielius, R.
2017-05-01
The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions was used to derive transition data for the tungsten ion W34+. The configuration interaction method was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit-Pauli approximation. The level energies, radiative lifetimes τ, Landé g-factors are determined for the ground configuration 4p64d4 and two excited configurations 4p64d34f and 4p54d5. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the levels of these configurations are produced.
NASA Technical Reports Server (NTRS)
Harvey, Karen L.
1993-01-01
Using NSO/KP magnetograms, the pattern and rate of the emergence of magnetic flux and the development of the large-scale patterns of unipolar fields are considered in terms of the solar magnetic cycle. Magnetic flux emerges in active regions at an average rate of 2 x 10(exp 21) Mx/day, approximately 10 times the estimated rate in ephemeral regions. Observations are presented that demonstrate that the large-scale unipolar fields originate in active regions and activity nests. For cycle 21, the net contribution of ephemeral regions to the axial dipole moment of the Sun is positive, and is of opposite sign to that of active regions. Its amplitude is smaller by a factor of 6, assuming an average lifetime of ephemeral regions of 8 hours. Active regions larger than 4500 Mm(sup 2) are the primary contributor to the cycle variation of Sun's axial dipole moment.
NASA Astrophysics Data System (ADS)
Ribierre, J. C.; Ruseckas, A.; Samuel, I. D. W.; Staton, S. V.; Burn, P. L.
2008-02-01
We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)3] -cored dendrimer and in its blend with a 4,4' -bis( N -carbazolyl)biphenyl host for the temperature range of 77-300K . The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7meV , which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials.