Sample records for dipole selection rules

  1. An alternative mechanism for spin-forbidden photo-ionization of diatomic molecules and its rotation-electronic selection rules

    NASA Astrophysics Data System (ADS)

    Chiu, Ying-Nan; Chiu, Lue-Yung Chow

    1990-02-01

    The spin-forbidden photo-ionization of diatomic molecules is proposed. Spin orbit interaction is invoked, resulting in the correction and mixing of the wave functions of different multiplicities. The rotation-electronic selection rules given by Dixit and McKoy (1986) for Hund's case a based on the conventional mechanism of electric dipole transition are rederived and expressed in a different format. This new format permits the generalization of the selection rules to other photoionization transitions caused by the magnetic dipole, the electric quadrupole, and the two- and three-photon operators. These selection rules, which are for transitions from one specific rotational level of a given Kronig reflection symmetry to another, will help understand rotational branching and the dynamics of interaction in the excited state. They will also help in the selective preparation of well-defined rovibronic states in resonant-enhanced multi-photon ionization processes.

  2. Stark effect and dipole moments of the ammonia dimer in different vibration-rotation-tunneling states

    NASA Astrophysics Data System (ADS)

    Cotti, Gina; Linnartz, Harold; Meerts, W. Leo; van der Avoird, Ad; Olthof, Edgar H. T.

    1996-03-01

    In this paper we present Stark measurements on the G:K=-1 vibration-rotation-tunneling (VRT) transition, band origin 747.2 GHz, of the ammonia dimer. The observed splitting pattern and selection rules can be explained by considering the G36 and G144 symmetries of the inversion states involved, and almost complete mixing of these states by the applied electric field. The absolute values of the electric dipole moments of the ground and excited state are determined to be 0.763(15) and 0.365(10) D, respectively. From the theoretical analysis and the observed selection rules it is possible to establish that the dipole moments of the two interchange states must have opposite sign. The theoretical calculations are in good agreement with the experimental results: The calculated dipole moments are -0.74 D for the lower and +0.35 D for the higher state. Our results, in combination with the earlier dipole measurements on the G:K=0 ground state and the G:K=1 transition with band origin 486.8 GHz, confirm that the ammonia dimer is highly nonrigid. Its relatively small and strongly K-dependent dipole moment, which changes sign upon far-infrared excitation, originates from the difference in dynamical behavior of ortho and para NH3.

  3. Dipole polarizability, sum rules, mean excitation energies, and long-range dispersion coefficients for buckminsterfullerene C 60

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-11-01

    Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.

  4. Influence of the photon orbital angular momentum on electric dipole transitions: negative experimental evidence.

    PubMed

    Giammanco, F; Perona, A; Marsili, P; Conti, F; Fidecaro, F; Gozzini, S; Lucchesini, A

    2017-01-15

    We describe an experiment of atomic spectroscopy devoted to ascertaining whether the orbital angular momentum (OAM) of photons has the same property of interacting with atoms or molecules as occurs for the spin angular momentum (SAM). In our experiment, rubidium vapors are excited by means of laser radiation with different combinations of OAM and SAM, particularly selected to inhibit or enhance the fluorescence according to the selection rules for the electric dipole transitions between the fundamental state and the first excited doublet. Our results clearly show that an electric-dipole-type transition is insensitive to the OAM value, and provide an original validation of a problem long debated in theoretical works.

  5. Constrained dipole oscillator strength distributions, sum rules, and dispersion coefficients for Br2 and BrCN

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2017-03-01

    Dipole oscillator strength distributions for Br2 and BrCN are constructed from photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density and molar refractivity data when available. The distributions are used to predict dipole sum rules S (k) , mean excitation energies I (k) , and van der Waals C6 coefficients. Coupled-cluster calculations of the static dipole polarizabilities of Br2 and BrCN are reported for comparison with the values of S (- 2) extracted from the distributions.

  6. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers

    NASA Astrophysics Data System (ADS)

    Yu, Hongyi; Liu, Gui-Bin; Yao, Wang

    2018-07-01

    We investigate the optical properties of spin-triplet interlayer excitons in heterobilayer transition metal dichalcogenides in comparison with the spin-singlet ones. Surprisingly, the optical transition dipole of the spin-triplet exciton is found to be in the same order of magnitude to that of the spin-singlet exciton, in sharp contrast to the monolayer excitons where the spin-triplet species is considered as dark compared to the singlet. Unlike the monolayer excitons whose spin-conserved (spin-flip) transition dipole can only couple to light of in-plane (out-of-plane) polarisation, such restriction is removed for the interlayer excitons due to the breaking of the out-of-plane mirror symmetry. We find that as the interlayer atomic registry changes, the optical transition dipole of interlayer exciton crosses between in-plane ones of opposite circular polarizations and the out-of-plane one for both the spin-triplet and spin-singlet species. As a result, excitons of both species have non-negligible coupling into photon modes of both in-plane and out-of-plane propagations, another sharp difference from the monolayers where the exciton couples predominantly into the out-of-plane propagation channel. At given atomic registry, the spin-triplet and spin-singlet excitons have distinct valley polarisation selection rules, allowing the selective optical addressing of both the valley configuration and the spin-singlet/triplet configuration of interlayer excitons.

  7. Selection rule engineering of forbidden transitions of a hydrogen atom near a nanogap

    NASA Astrophysics Data System (ADS)

    Kim, Hyunyoung Y.; Kim, Daisik S.

    2018-01-01

    We perform an analytical study on the allowance of forbidden transitions for a hydrogen atom placed near line dipole sources, mimicking light emanating from a one-dimensional metallic nanogap. It is shown that the rapid variation of the electric field vector, inevitable in the near zone, completely breaks the selection rule of Δl=±1. While the forbidden transitions between spherically symmetric S states, such as 2S to 1S or 3S to 1S (Δl=0), are rather robust against selection rule breakage, Δl=±2 transitions such as between 3D and 1S or 3D and 2S states are very vulnerable to the spatial variation of the perturbing electric field. Transitions between 2S and 3D states are enhanced by many orders of magnitude, aided by the quadratic nature of both the perturbing Hamiltonian and D wavefunctions. The forbidden dipole moment, which approaches one Bohr radius times the electric charge in the vicinity of the gap, can be written in a simple closed form owing to the one-dimensional nature of our gap. With large enough effective volume together with the symmetric nature of the excited state wavefunctions, our work paves way towards atomic physics application of infinitely long nanogaps.

  8. Some effects of electron channeling on electron energy loss spectroscopy.

    PubMed

    Kirkland, Earl J

    2005-02-01

    As an electron beam (of order 100 keV) travels through a crystalline solid it can be channeled down a zone axis of the crystal to form a channeling peak centered on the atomic columns. The channeling peak can be similar in size to the outer atomic orbitals. Electron energy loss spectroscopy (EELS) measures the losses that the electron experiences as it passes through the solid yielding information about the unoccupied density of states in the solid. The interaction matrix element for this process typically produces dipole selection rules for small angle scattering. In this paper, a theoretical calculation of the EELS cross section in the presence of strong channeling is performed for the silicon L23 edge. The presence of channeling is found to alter both the intensity and selection rules for this EELS signal as a function of depth in the solid. At some depths in the specimen small but significant non-dipole transition components can be produced, which may influence measurements of the density of states in solids.

  9. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-01

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.

  10. Sum Rule for a Schiff-Like Dipole Moment

    NASA Astrophysics Data System (ADS)

    Raduta, A. A.; Budaca, R.

    The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.

  11. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field intensity, and mean geomagnetic dipole power excursion and axial dipole reversal frequencies. We conclude that McLeod's Rule helps unify geo-paleomagnetism, correctly relates theoretically predictable statistical properties of the core geodynamo to magnetic observation, and provides a priori information required for stochastic inversion of paleo-, archeo-, and/or historical geomagnetic measurements.

  12. One step beyond the electric dipole approximation: An experiment to observe the 5p → 6p forbidden transition in atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Ruiz-Martínez, E.; López-Hernández, O.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2018-01-01

    An advanced undergraduate experiment to study the 5 P 3 / 2 → 6 P 3 / 2 electric quadrupole transition in rubidium atoms is presented. The experiment uses two external cavity diode lasers, one operating at the D2 rubidium resonance line and the other built with commercial parts to emit at 911 nm. The lasers produce the 5 s → 5 p → 6 p excitation sequence in which the second step is the forbidden transition. Production of atoms in the 6 P 3 / 2 state is observed by detection of the 420 nm fluorescence that results from electric dipole decay into the ground state. Lines whose widths are significantly narrower than the Doppler width are used to study the hyperfine structure of the 6 P 3 / 2 state in rubidium. The spectra illustrate characteristics unique to electric dipole forbidden transitions, like the electric quadrupole selection rules; they are also used to show general aspects of two-color laser spectroscopy such as velocity selection and hyperfine pumping.

  13. Theory of pure rotational transitions in doubly degenerate torsional states of ethane

    NASA Technical Reports Server (NTRS)

    Rosenberg, A.; Susskind, J.

    1979-01-01

    It is shown that pure rotational transitions in doubly degenerate torsional states of C2H6 (with selection rules Delta K = 0, plus or minus 1) are made allowed by Coriolis interaction between torsion and dipole-allowed vibrations. Expressions are presented for integrated intensities from which strengths of lines in the millimeter region can be calculated.

  14. Probing cosmic anisotropy with gravitational waves as standard sirens

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Liu, Tong-Bo; Liu, Xue-Wen; Wang, Shao-Jiang; Yang, Tao

    2018-05-01

    The gravitational wave (GW) as a standard siren directly determines the luminosity distance from the gravitational waveform without reference to the specific cosmological model, of which the redshift can be obtained separately by means of the electromagnetic counterpart like GW events from binary neutron stars and massive black hole binaries (MBHBs). To see to what extent the standard siren can reproduce the presumed dipole anisotropy written in the simulated data of standard siren events from typical configurations of GW detectors, we find that (1) for the Laser Interferometer Space Antenna with different MBHB models during five-year observations, the cosmic isotropy can be ruled out at 3 σ confidence level (C.L.) and the dipole direction can be constrained roughly around 20% at 2 σ C.L., as long as the dipole amplitude is larger than 0.04, 0.06 and 0.03 for MBHB models Q3d, pop III and Q3nod with increasing constraining ability, respectively; (2) for the Einstein telescope with no less than 200 standard siren events, the cosmic isotropy can be ruled out at 3 σ C.L. if the dipole amplitude is larger than 0.06, and the dipole direction can be constrained within 20% at 3 σ C.L. if the dipole amplitude is near 0.1; (3) for the Deci-Hertz Interferometer Gravitational wave Observatory with no less than 100 standard siren events, the cosmic isotropy can be ruled out at 3 σ C.L. for dipole amplitude larger than 0.03, and the dipole direction can even be constrained within 10% at 3 σ C.L. if the dipole amplitude is larger than 0.07. Our work manifests the promising perspective of the constraint ability on the cosmic anisotropy from the standard siren approach.

  15. Ozone: Unresolved discrepancies for dipole oscillator strength distributions, dipole sums, and van der Waals coefficients

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-08-01

    Dipole oscillator strength distributions (DOSDs) for ozone are constructed from experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density, and molar refractivity data. A lack of photoabsorption data in the intermediate energy region from 24 to 524 eV necessitates the use of a mixture rule in that region. For this purpose, a DOSD for O2 is constructed first. The dipole properties for O2 are essentially the same as those obtained in earlier work even though most of the input data is from more recent experiments. A discrepancy is found between the refractivity data and photoabsorption data in the 10-20.6 eV range for ozone. A reliable ozone DOSD of the sort obtained for many other species remains out of reach. However, it is suggested that the true dipole properties of ozone lie between those predicted by two distributions that we present.

  16. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation.

    PubMed

    Neuman, Tomáš; Esteban, Ruben; Casanova, David; García-Vidal, Francisco J; Aizpurua, Javier

    2018-04-11

    As the size of a molecular emitter becomes comparable to the dimensions of a nearby optical resonator, the standard approach that considers the emitter to be a point-like dipole breaks down. By adoption of a quantum description of the electronic transitions of organic molecular emitters, coupled to a plasmonic electromagnetic field, we are able to accurately calculate the position-dependent coupling strength between a plasmon and an emitter. The spatial distribution of excitonic and photonic quantum states is found to be a key aspect in determining the dynamics of molecular emission in ultrasmall cavities both in the weak and strong coupling regimes. Moreover, we show that the extreme localization of plasmonic fields leads to the selection rule breaking of molecular excitations.

  17. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  18. Polarized excitons and optical activity in single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2018-05-01

    The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.

  19. Laser spectroscopy of the 5P3/2 → 6Pj (j = 1/2 and 3/2) electric dipole forbidden transitions in atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Hoyos, L. M.; Flores-Mijangos, J.; Ramírez-Martínez, F.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2018-04-01

    Doppler-free optical double-resonance spectroscopy is used to study the 5S1/2 → 5P3/2 → 6Pj (j = 3/2,1/2) excitation sequence in room-temperature rubidium atoms. This involves a 5S1/2 → 5P3/2 electric dipole preparation step followed by the 5P3/2 → 6Pj electric quadrupole excitation. The electric dipole forbidden transitions occur at 911.0 nm (j = 3/2) and 917.5 nm (j = 1/2). Production of atoms in the 6Pj states is detected by observing their direct decay to the ground state through emission of blue photons (λ ≈ 420 nm). A detailed experimental and theoretical study of the dependence on the relative linear polarizations of excitation beams is made. It is shown that specific electric quadrupole selection rules over magnetic quantum numbers are directly related to the relative orientation of the linear polarization of the excitation beams.

  20. Dipole oscillator strengths, dipole properties and dispersion energies for SiF4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.

  1. Low-energy isovector and isoscalar dipole response in neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Vretenar, D.; Niu, Y. F.; Paar, N.; Meng, J.

    2012-04-01

    The self-consistent random-phase approximation, based on the framework of relativistic energy density functionals, is employed in the study of isovector and isoscalar dipole response in 68Ni,132Sn, and 208Pb. The evolution of pygmy dipole states (PDSs) in the region of low excitation energies is analyzed as a function of the density dependence of the symmetry energy for a set of relativistic effective interactions. The occurrence of PDSs is predicted in the response to both the isovector and the isoscalar dipole operators, and its strength is enhanced with the increase in the symmetry energy at saturation and the slope of the symmetry energy. In both channels, the PDS exhausts a relatively small fraction of the energy-weighted sum rule but a much larger percentage of the inverse energy-weighted sum rule. For the isovector dipole operator, the reduced transition probability B(E1) of the PDSs is generally small because of pronounced cancellation of neutron and proton partial contributions. The isoscalar-reduced transition amplitude is predominantly determined by neutron particle-hole configurations, most of which add coherently, and this results in a collective response of the PDSs to the isoscalar dipole operator.

  2. Dipole oscillator strength properties and dispersion energies for SiH 4

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Mukesh; Meath, William J.

    2003-01-01

    A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH 4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH 4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C 6, for the interaction of silane with itself and with forty-four other species, and the triple-dipole dispersion energy coefficient C 9 for (SiH 4) 3.

  3. Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks

    NASA Astrophysics Data System (ADS)

    Pospelov, Maxim; Ritz, Adam

    2001-04-01

    Using QCD sum rules, we calculate the electric dipole moment of the neutron dn induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks d~i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments di. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and dn=(1+/-0.5)\\{0.55e(d~d+0.5d~u)+0.7(dd-0.25du)\\}.

  4. Electromagnetic moments and electric dipole transitions in carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-07-01

    We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.

  5. Multiple scattering calculations of relativistic electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Rehr, J. J.; Verbeeck, J.

    2010-04-01

    A generalization of the real-space Green’s-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite CK edge, for which we present an accurate magic angle measurement consistent with the predicted value.

  6. Demonstration of Protection of a Superconducting Qubit from Energy Decay

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hsiang; Nguyen, Long B.; Grabon, Nicholas; San Miguel, Jonathan; Pankratova, Natalia; Manucharyan, Vladimir E.

    2018-04-01

    Long-lived transitions occur naturally in atomic systems due to the abundance of selection rules inhibiting spontaneous emission. By contrast, transitions of superconducting artificial atoms typically have large dipoles, and hence their lifetimes are determined by the dissipative environment of a macroscopic electrical circuit. We designed a multilevel fluxonium artificial atom such that the qubit's transition dipole can be exponentially suppressed by flux tuning, while it continues to dispersively interact with a cavity mode by virtual transitions to the noncomputational states. Remarkably, energy decay time T1 grew by 2 orders of magnitude, proportionally to the inverse square of the transition dipole, and exceeded the benchmark value of T1>2 ms (quality factor Q1>4 ×107) without showing signs of saturation. The dephasing time was limited by the first-order coupling to flux noise to about 4 μ s . Our circuit validated the general principle of hardware-level protection against bit-flip errors and can be upgraded to the 0 -π circuit [P. Brooks, A. Kitaev, and J. Preskill, Phys. Rev. A 87, 052306 (2013), 10.1103/PhysRevA.87.052306], adding protection against dephasing and certain gate errors.

  7. Observation of isoscalar and isovector dipole excitations in neutron-rich 20O

    NASA Astrophysics Data System (ADS)

    Nakatsuka, N.; Baba, H.; Aumann, T.; Avigo, R.; Banerjee, S. R.; Bracco, A.; Caesar, C.; Camera, F.; Ceruti, S.; Chen, S.; Derya, V.; Doornenbal, P.; Giaz, A.; Horvat, A.; Ieki, K.; Inakura, T.; Imai, N.; Kawabata, T.; Kobayashi, N.; Kondo, Y.; Koyama, S.; Kurata-Nishimura, M.; Masuoka, S.; Matsushita, M.; Michimasa, S.; Million, B.; Motobayashi, T.; Murakami, T.; Nakamura, T.; Ohnishi, T.; Ong, H. J.; Ota, S.; Otsu, H.; Ozaki, T.; Saito, A.; Sakurai, H.; Scheit, H.; Schindler, F.; Schrock, P.; Shiga, Y.; Shikata, M.; Shimoura, S.; Steppenbeck, D.; Sumikama, T.; Syndikus, I.; Takeda, H.; Takeuchi, S.; Tamii, A.; Taniuchi, R.; Togano, Y.; Tscheuschner, J.; Tsubota, J.; Wang, H.; Wieland, O.; Wimmer, K.; Yamaguchi, Y.; Yoneda, K.; Zenihiro, J.

    2017-05-01

    The isospin characters of low-energy dipole excitations in neutron-rich unstable nucleus 20O were investigated, for the first time in unstable nuclei. Two spectra obtained from a dominant isovector probe (20O + Au) and a dominant isoscalar probe (20O + α) were compared and analyzed by the distorted-wave Born approximation to extract independently the isovector and isoscalar dipole strengths. Two known 1- states with large isovector dipole strengths at energies of 5.36(5) MeV (11-) and 6.84(7) MeV (12-) were also excited by the isoscalar probe. These two states were found to have different isoscalar dipole strengths, 2.70(32)% (11-) and 0.67(12)% (12-), respectively, in exhaustion of the isoscalar dipole-energy-weighted sum rule. The difference in isoscalar strength indicated that they have different underlying structures.

  8. Exotic Structure of Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-12-01

    Ground state properties of C isotopes, deformation and elecromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parities of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12 ~ 15% of the Thomas-Reiche-Kuhn sum rule value and 50 ~ 80% of the cluster sum rule value.

  9. Spontaneous light emission by atomic hydrogen: Fermi's golden rule without cheating

    NASA Astrophysics Data System (ADS)

    Debierre, V.; Durt, T.; Nicolet, A.; Zolla, F.

    2015-10-01

    Focusing on the 2 p- 1 s transition in atomic hydrogen, we investigate through first order perturbation theory the time evolution of the survival probability of an electron initially taken to be in the excited (2 p) state. We examine both the results yielded by the standard dipole approximation for the coupling between the atom and the electromagnetic field - for which we propose a cutoff-independent regularisation - and those yielded by the exact coupling function. In both cases, Fermi's golden rule is shown to be an excellent approximation for the system at hand: we found its maximal deviation from the exact behaviour of the system to be of order 10-8 /10-7. Our treatment also yields a rigorous prescription for the choice of the optimal cutoff frequency in the dipole approximation. With our cutoff, the predictions of the dipole approximation are almost indistinguishable at all times from the exact dynamics of the system.

  10. Dipole Excitation of Soft and Giant Resonances in 132Sn and neighboring unstable nuclei

    NASA Astrophysics Data System (ADS)

    Boretzky, Konstanze

    2006-04-01

    The evolution of dipole-strength distributions above the one-neutron threshold was investigated for exotic neutron-rich nuclei in a series of experiments using the electromagnetic projectile excitation at beam energies around 500 MeV/u. For halo nuclei, the large observed dipole strength (shown here for 11Be) is explained within the direct-breakup model to be of non-collective character. For neutron-rich oxygen isotopes, the origin of the observed low-lying strength is concluded to be due to single-particle transitions on theoretical grounds. The dipole strength spectra for 130,132Sn exhibit resonance-like structures observed at energies around 10 MeV exhausting a few percent of the Thomas-Reiche-Kuhn (TRK) sum rule, separated clearly from the dominant Giant Dipole Resonance (GDR). The data agree with predictions for a new dipole mode related to the oscillation of excess neutrons versus the core nucleons ("pygmy resonance").

  11. Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation

    NASA Astrophysics Data System (ADS)

    Cao, Li-Gang; Ma, Zhong-Yu

    2005-03-01

    The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.

  12. Understanding the Interface Dipole of Copper Phthalocyanine (CuPc)/C60: Theory and Experiment.

    PubMed

    Sai, Na; Gearba, Raluca; Dolocan, Andrei; Tritsch, John R; Chan, Wai-Lun; Chelikowsky, James R; Leung, Kevin; Zhu, Xiaoyang

    2012-08-16

    Interface dipole determines the electronic energy alignment in donor/acceptor interfaces and plays an important role in organic photovoltaics. Here we present a study combining first principles density functional theory (DFT) with ultraviolet photoemission spectroscopy (UPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to investigate the interface dipole, energy level alignment, and structural properties at the interface between CuPc and C60. DFT finds a sizable interface dipole for the face-on orientation, in quantitative agreement with the UPS measurement, and rules out charge transfer as the origin of the interface dipole. Using TOF-SIMS, we show that the interfacial morphology for the bilayer CuPc/C60 film is characterized by molecular intermixing, containing both the face-on and the edge-on orientation. The complementary experimental and theoretical results provide both insight into the origin of the interface dipole and direct evidence for the effect of interfacial morphology on the interface dipole.

  13. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  14. Radiation of a nonrelativistic particle during its finite motion in a central field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnakov, B. M., E-mail: karnak@theor.mephi.ru; Korneev, Ph. A., E-mail: korneev@theor.mephi.ru; Popruzhenko, S. V.

    The spectrum and expressions for the intensity of dipole radiation lines are obtained for a classical nonrelativistic charged particle that executes a finite aperiodic motion in an arbitrary central field along a non-closed trajectory. It is shown that, in this case of a conditionally periodic motion, the radiaton spectrum consists of two series of equally spaced lines. It is pointed out that, according to the correspondence principle, the rise of two such series in the classical theory corresponds to the well-known selection rule |{delta}l = 1 for the dipole radiation in a central field in quantum theory, where l ismore » the orbital angular momentum of the particle. The results obtained can be applied to the description of the radiation and the absorption of a classical collisionless electron plasma in nanoparticles irradiated by an intense laser field. As an example, the rate of collisionless absorption of electromagnetic wave energy in equilibrium isotropic nanoplasma is calculated.« less

  15. Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi

    2009-10-01

    We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.

  16. The role of angular momentum in the superrotor theory for rovibrational motion of extremely flexible molecules

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2017-12-01

    Recently, we proposed a novel approach to the description of the rotation-vibration motion for extremely flexible molecules (Schmiedt et al., 2016, 2017). Such molecules have multiple very "soft" vibrational modes and so, they lack a well-defined equilibrium structure. We have applied the new superrotor model to the prototype example of an extremely flexible molecule, CH5+, for which we combine two, essentially free vibrational modes (describing internal rotation) with the over-all rotation of the molecule and consider the resulting motion as a free rotation in five-dimensional space, with a Hamiltonian whose symmetry is described by SO(5), the five-dimensional rotation group. In the present work we discuss the correlation between the superrotor energies and those obtained in the more usual situation of the internal and over-all rotations being separable, and we give an initial discussion of the selection rules for electric dipole transitions obtained in the superrotor approach. Such selection rules are required for a detailed comparison between the superrotor predictions and the available, experimentally derived energy spacings (Asvany et al., 2015; Brackertz, 2016).

  17. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  18. Chiral separation and twin-beam photonics

    NASA Astrophysics Data System (ADS)

    Bradshaw, David S.; Andrews, David L.

    2016-03-01

    It is well-known that, in a homogeneous fluid medium, most optical means that afford discrimination between molecules of opposite handedness are intrinsically weak effects. The reason is simple: the wide variety of origins for differential response commonly feature real or virtual electronic transitions that break a parity condition. Despite being electric dipole allowed, they manifest the chirality of the material in which they occur by breaking a selection rule that would otherwise preclude the simultaneous involvement of magnetic dipole or electric quadrupole forms of coupling. Although the latter are typically weaker than electric dipole effects by several orders of magnitude, it is the involvement of these weak forms of interaction that are responsible for chiral sensitivity. There have been a number of attempts to cleverly exploit novel optical configurations to enhance the relative magnitude - and hence potentially the efficiency - of chiral discrimination. The prospect of success in any such venture is enticing, because of the huge impact that such an advance might be expected to have in the health, food and medical sectors. Some of these proposals have utilized mirror reflection, and others surface plasmon coupling, or optical binding methods. Several recent works in the literature have drawn attention to a further possibility: the deployment of optical beam interference as a means to achieve chiral separations of sizeable extent. In this paper the underlying theory is fully developed to identify the true scope and limitations of such an approach.

  19. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  20. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strengthmore » can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.« less

  1. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation.

    PubMed

    Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  2. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    NASA Astrophysics Data System (ADS)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong

    2015-12-01

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  3. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  4. High-harmonic generation by two-color mixing of circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.; Kopold, R.

    2000-06-01

    Dipole selection rules prevent harmonic generation by an atom in a circularly polarized laser field. However, this is not the case for a superposition of several circularly polarized fields, such as two circularly polarized fields with frequencies ω and 2ω that corotate or counter-rotate in the same plane. Harmonic generation in this environment has been observed and, in fact, found to be very intense in the counter-rotating case [1]. In a certain frequency region, the harmonics may be stronger than those radiated in a linearly polarized field of either frequency. The selection rules dictate that the harmonics are circularly polarized with a helicity that alternates from one harmonic to the next. Besides their practical interest, these harmonics are also intriguing from a fundamental point of view: the standard simple-man picture does not apply since orbits that start with zero velocity in this field almost never return to their point of departure. In terms of quantum trajectories, we discuss the mechanism that generates these harmonics. In several interesting ways, it is complementary to the case of linear polarization. [1] H. Eichmann et al., Phys. Rev. A 51, R3414 (1995)

  5. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  6. Structure-property correlation study through sum-over-state approach

    NASA Astrophysics Data System (ADS)

    Nandi, P. K.; Hatua, K.; Bansh, A. K.; Panja, N.; Ghanty, T. K.

    2015-01-01

    The use of Thomas Kuhn (TK) sum rule in the expanded sum-over-state (SOS) expression of hyperpolarizabilities leads to various relationships between different order of polarizabilities and ground state dipole moment etc.

  7. Prediction model for peninsular Indian summer monsoon rainfall using data mining and statistical approaches

    NASA Astrophysics Data System (ADS)

    Vathsala, H.; Koolagudi, Shashidhar G.

    2017-01-01

    In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.

  8. New method in muon-hadron absorption on Thx DUO2 nano material structure at 561 MHz quantum gyro-magnetic

    NASA Astrophysics Data System (ADS)

    Hardiyanto, M.; Ermawaty, I. R.

    2018-01-01

    We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.

  9. Numerical evaluation of electromagnetic fields due to dipole antennas in the presence of stratified media

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Brown, R.; Kong, J. A.; Simmons, G.

    1974-01-01

    Two numerical methods are used to evaluate the integrals that express the em fields due to dipole antennas radiating in the presence of a stratified medium. The first method is a direct integration by means of Simpson's rule. The second method is indirect and approximates the kernel of the integral by means of the fast Fourier transform. In contrast to previous analytical methods that applied only to two-layer cases the numerical methods can be used for any arbitrary number of layers with general properties.

  10. Gigantic transverse x-ray magnetic circular dichroism in ultrathin Co in Au/Co/Au(001)

    NASA Astrophysics Data System (ADS)

    Koide, T.; Mamiya, K.; Asakura, D.; Osatune, Y.; Fujimori, A.; Suzuki, Y.; Katayama, T.; Yuasa, S.

    2014-04-01

    Transverse-geometry x-ray magnetic circular dichroism (TXMCD) measurements on Au/Co-staircase/Au(001) reveal the orbital origin of intrinsic in-plane magnetic anisotropy A gigantic TXMCD was successfully observed at the Co L3,2 edges for Co thickness (tC0) in the 2-monolayer regime. A TXMCD-sum-rule analysis shows a remarkable enhancement of an orbital-moment anisotropy (Δmorb) and of an in-plane magnetic dipole moment (m||T). Both Δmorb and m||T exhibit close similarity in tCo dependence, reflecting the in-plane magnetic anisotropy These observations evidence that extremely strong, intrinsic, in-plane magnetic anisotropy originates from the anisotropic orbital part of the wave function, dominating the dipole-dipole-interaction-derived, extrinsic, in-plane magnetic anisotropy.

  11. Low-lying dipole resonance in neutron-rich Ne isotopes

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi; van Giai, Nguyen

    2008-07-01

    Microscopic structure of the low-lying isovector dipole excitation mode in neutron-rich Ne26,28,30 is investigated by performing deformed quasiparticle-random-phase-approximation (QRPA) calculations. The particle-hole residual interaction is derived from a Skyrme force through a Landau-Migdal approximation. We obtain the low-lying resonance in Ne26 at around 8.6 MeV. It is found that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule. This excitation mode is composed of several QRPA eigenmodes, one is generated by a ν(2s1/2-12p3/2) transition dominantly and the other mostly by a ν(2s1/2-12p1/2) transition. The neutron excitations take place outside of the nuclear surface reflecting the spatially extended structure of the 2s1/2 wave function. In Ne30, the deformation splitting of the giant resonance is large, and the low-lying resonance overlaps with the giant resonance.

  12. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    DOE PAGES

    Grosse, E.; Junghans, A. R.; Massarczyk, R.

    2017-11-28

    Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less

  13. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosse, E.; Junghans, A. R.; Massarczyk, R.

    Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less

  14. Electromagnon in the Y-type hexaferrite BaSrCoZnFe11AlO22

    NASA Astrophysics Data System (ADS)

    Vít, Jakub; Kadlec, Filip; Kadlec, Christelle; Borodavka, Fedir; Chai, Yi Sheng; Zhai, Kun; Sun, Young; Kamba, Stanislav

    2018-04-01

    We investigated static and dynamic magnetoelectric properties of single crystalline BaSrCoZnFe11AlO22 , which is a room-temperature multiferroic with Y-type hexaferrite crystal structure. Below 300 K, a purely electric-dipole-active electromagnon at ≈1.2 THz with the electric polarization oscillating along the hexagonal axis was observed by THz and Raman spectroscopies. We investigated the behavior of the electromagnon with applied dc magnetic field and linked its properties to static measurements of the magnetic structure. Our analytical calculations determined selection rules for electromagnons activated by the magnetostriction mechanism in various magnetic structures of Y-type hexaferrite. Comparison with our experiment supports that the electromagnon is indeed activated by the magnetostriction mechanism involving spin vibrations along the hexagonal axis.

  15. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    NASA Astrophysics Data System (ADS)

    Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.

    2017-11-01

    Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  16. Channel branching ratios in CH2CN- photodetachment: Rotational structure and vibrational energy redistribution in autodetachment

    NASA Astrophysics Data System (ADS)

    Lyle, Justin; Wedig, Olivia; Gulania, Sahil; Krylov, Anna I.; Mabbs, Richard

    2017-12-01

    We report photoelectron spectra of CH2CN-, recorded at photon energies between 13 460 and 15 384 cm-1, which show rapid intensity variations in particular detachment channels. The branching ratios for various spectral features reveal rotational structure associated with autodetachment from an intermediate anion state. Calculations using equation-of-motion coupled-cluster method with single and double excitations reveal the presence of two dipole-bound excited anion states (a singlet and a triplet). The computed oscillator strength for the transition to the singlet dipole-bound state provides an estimate of the autodetachment channel contribution to the total photoelectron yield. Analysis of the different spectral features allows identification of the dipole-bound and neutral vibrational levels involved in the autodetachment processes. For the most part, the autodetachment channels are consistent with the vibrational propensity rule and normal mode expectation. However, examination of the rotational structure shows that autodetachment from the ν3 (v = 1 and v = 2) levels of the dipole-bound state displays behavior counter to the normal mode expectation with the final state vibrational level belonging to a different mode.

  17. Magnetoencephalography evidence for different brain subregions serving two musical cultures.

    PubMed

    Matsunaga, Rie; Yokosawa, Koichi; Abe, Jun-ichi

    2012-12-01

    Individuals who have been exposed to two different musical cultures (bimusicals) can be differentiated from those exposed to only one musical culture (monomusicals). Just as bilingual speakers handle the distinct language-syntactic rules of each of two languages, bimusical listeners handle two distinct musical-syntactic rules (e.g., tonal schemas) in each musical culture. This study sought to determine specific brain activities that contribute to differentiating two culture-specific tonal structures. We recorded magnetoencephalogram (MEG) responses of bimusical Japanese nonmusicians and amateur musicians as they monitored unfamiliar Western melodies and unfamiliar, but traditional, Japanese melodies, both of which contained tonal deviants (out-of-key tones). Previous studies with Western monomusicals have shown that tonal deviants elicit an early right anterior negativity (mERAN) originating in the inferior frontal cortex. In the present study, tonal deviants in both Western and Japanese melodies elicited mERANs with characteristics fitted by dipoles around the inferior frontal gyrus in the right hemisphere and the premotor cortex in the left hemisphere. Comparisons of the nature of mERAN activity to Western and Japanese melodies showed differences in the dipoles' locations but not in their peak latency or dipole strength. These results suggest that the differentiation between a tonal structure of one culture and that of another culture correlates with localization differences in brain subregions around the inferior frontal cortex and the premotor cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The dipole anisotropy of AllWISE galaxies

    NASA Astrophysics Data System (ADS)

    Rameez, M.; Mohayaee, R.; Sarkar, S.; Colin, J.

    2018-06-01

    We determine the dipole in the WISE (Wide Infrared Satellite Explorer) galaxy catalogue. After reducing star contamination to < 0.1 per cent by rejecting sources with high apparent motion and those close to the Galactic plane, we eliminate low redshift sources to suppress the non-kinematic, clustering dipole. We remove sources within ±5° of the supergalactic plane, as well as those within 1ʺ of 2MRS sources at redshift z < 0.03. We enforce cuts on the source angular extent to preferentially select distant ones. As we progress along these steps, the dipole converges in direction to within 5° of the Cosmic Microwave Background (CMB) dipole and its magnitude also progressively reduces but stabilizes at ˜0.012, corresponding to a velocity >1000 km s-1 if it is solely of kinematic origin. However, previous studies have shown that only ˜ 70 per cent of the velocity of the Local Group as inferred from the CMB dipole is due to sources at z < 0.03. We examine the Dark Sky simulations to quantify the prevalence of such environments and find that <2.1 per cent of Milky Way-like observers in a ΛCDM universe should observe the bulk flow (>240 km s-1 extending to z > 0.03) that we do. We construct mock catalogues in the neighbourhood of such peculiar observers in order to mimic our final galaxy selection and quantify the residual clustering dipole. After subtracting this, the remaining dipole is 0.0048 ± 0.0022, corresponding to a velocity of 420 ± 213 km s-1, which is consistent with the CMB. However, the sources (at z > 0.03) of such a large clustering dipole remain to be identified.

  19. Spatial tuning of a RF frequency selective surface through origami

    NASA Astrophysics Data System (ADS)

    Fuchi, Kazuko; Buskohl, Philip R.; Bazzan, Giorgio; Durstock, Michael F.; Joo, James J.; Reich, Gregory W.; Vaia, Richard A.

    2016-05-01

    Origami devices have the ability to spatially reconfigure between 2D and 3D states through folding motions. The precise mapping of origami presents a novel method to spatially tune radio frequency (RF) devices, including adaptive antennas, sensors, reflectors, and frequency selective surfaces (FSSs). While conventional RF FSSs are designed based upon a planar distribution of conductive elements, this leaves the large design space of the out of plane dimension underutilized. We investigated this design regime through the computational study of four FSS origami tessellations with conductive dipoles. The dipole patterns showed increased resonance shift with decreased separation distances, with the separation in the direction orthogonal to the dipole orientations having a more significant effect. The coupling mechanisms between dipole neighbours were evaluated by comparing surface charge densities, which revealed the gain and loss of coupling as the dipoles moved in and out of alignment via folding. Collectively, these results provide a basis of origami FSS designs for experimental study and motivates the development of computational tools to systematically predict optimal fold patterns for targeted frequency response and directionality.

  20. Studies of singlet Rydberg series of LiH derived from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4

    NASA Astrophysics Data System (ADS)

    Gim, Yeongrok; Lee, Chun-Woo

    2014-10-01

    The 50 singlet states of LiH composed of 49 Rydberg states and one non-Rydberg ionic state derivable from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4, are studied using the multi-reference configuration interaction method combined with the Stuttgart/Köln group's effective core potential/core polarization potential method. Basis functions that can yield energy levels up to the 6g orbital of Li have been developed, and they are used with a huge number of universal Kaufmann basis functions for Rydberg states. The systematics and regularities of the physical properties such as potential energies, quantum defects, permanent dipole moments, transition dipole moments, and nonadiabatic coupling matrix elements of the Rydberg series are studied. The behaviors of potential energy curves and quantum defect curves are explained using the Fermi approximation. The permanent dipole moments of the Rydberg series reveal that they are determined by the sizes of the Rydberg orbitals, which are proportional to n2. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, with the rule Δl = ±1, except for s-d mixing, which is also accompanied by n-mixing. The members of the l-mixed Rydberg series have dipole moments with opposite directions. The first derivatives of the dipole moment curves, which show the charge-transfer component, clearly show not only mirror relationships in terms of direction but also oscillations. The transition dipole moment matrix elements of the Rydberg series are determined by the small-r region, with two consequences. One is that the transition dipole moment matrix elements show n-3/2 dependence. The other is that the magnitudes of the transition dipole moment matrix elements decrease rapidly as l increases.

  1. Dipole response of neutron-rich Sn isotopes

    NASA Astrophysics Data System (ADS)

    Klimkiewicz, A.; Adrich, P.; Boretzky, K.; Fallot, M.; Aumann, T.; Cortina-Gil, D.; Datta Pramanik, U.; Elze, Th. W.; Emling, H.; Geissel, H.; Hellstroem, M.; Jones, K. L.; Kratz, J. V.; Kulessa, R.; Leifels, Y.; Nociforo, C.; Palit, R.; Simon, H.; Surowka, G.; Sümmerer, K.; Typel, S.; Walus, W.

    2007-05-01

    The neutron-rich isotopes 129-133Sn were studied in a Coulomb excitation experiment at about 500 AMeV using the FRS-LAND setup at GSI. From the exclusive measurement of all projectile-like particles following the excitation and decay of the projectile in a high-Z target, the energy differential cross section can be extracted. At these beam energies dipole transitions are dominating, and within the semi-classical approach the Coulomb excitation cross sections can be transformed into photoabsorption cross sections. In contrast to stable Sn nuclei, a substantial fraction of dipole strength is observed at energies below the giant dipole resonance (GDR). For 130Sn and 132Sn this strength is located in a peak-like structure around 10 MeV excitation energy and exhibits a few percent of the Thomas-Reiche Kuhn (TRK) sum-rule strength. Several calculations predict the appearance of dipole strength at low excitation energies in neutron-rich nuclei. This low-lying strength is often referred to as pygmy dipole resonance (PDR) and, in a macroscopic picture, is discussed in terms of a collective oscillation of excess neutrons versus the core nucleons. Moreover, a sharp rise is observed at the neutron separation threshold around 5 MeV for the odd isotopes. A possible contribution of 'threshold strength', which can be described within the direct-breakup model is discussed. The results for the neutron-rich Sn isotopes are confronted with results on stable nuclei investigated in experiments using real photons.

  2. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  3. A neural network model of foraging decisions made under predation risk.

    PubMed

    Coleman, Scott L; Brown, Vincent R; Levine, Daniel S; Mellgren, Roger L

    2005-12-01

    This article develops the cognitive-emotional forager (CEF) model, a novel application of a neural network to dynamical processes in foraging behavior. The CEF is based on a neural network known as the gated dipole, introduced by Grossberg, which is capable of representing short-term affective reactions in a manner similar to Solomon and Corbit's (1974) opponent process theory. The model incorporates a trade-off between approach toward food and avoidance of predation under varying levels of motivation induced by hunger. The results of simulations in a simple patch selection paradigm, using a lifetime fitness criterion for comparison, indicate that the CEF model is capable of nearly optimal foraging and outperforms a run-of-luck rule-of-thumb model. Models such as the one presented here can illuminate the underlying cognitive and motivational components of animal decision making.

  4. Electron-selective contacts via ultra-thin organic interface dipoles for silicon organic heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.

    2018-01-01

    In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.

  5. Modeling and analysis of CSAMT field source effect and its characteristics

    NASA Astrophysics Data System (ADS)

    Da, Lei; Xiaoping, Wu; Qingyun, Di; Gang, Wang; Xiangrong, Lv; Ruo, Wang; Jun, Yang; Mingxin, Yue

    2016-02-01

    Controlled-source audio-frequency magnetotellurics (CSAMT) has been a highly successful geophysical tool used in a variety of geological exploration studies for many years. However, due to the artificial source used in the CSAMT technique, two important factors are considered during interpretation: non-plane-wave or geometric effects and source overprint effects. Hence, in this paper we simulate the source overprint effects and analyzed the rule and characteristics of its influence on CSAMT applications. Two-dimensional modeling was carried out using an adaptive unstructured finite element method to simulate several typical models. Also, we summarized the characteristics and rule of the source overprint effects and analyzed its influence on the data taken over several mining areas. The results obtained from the study shows that the occurrence and strength of the source overprint effect is dependent on the location of the source dipole, in relation to the receiver and the subsurface geology. In order to avoid source overprint effects, three principle were suggested to determine the best location for the grounded dipole source in the field.

  6. Dipole, quadrupole, and octupole terms in the long-range hyperfine frequency shift for hydrogen in the presence of inert gases

    NASA Astrophysics Data System (ADS)

    Greenwood, W. G.; Tang, K. T.

    1987-03-01

    The R-6, R-8, and R-10 terms in the long-range expansion for the hyperfine frequency shift are calculated for hydrogen in the presence of He, Ne, Ar, Kr, and Xe. The R-6 terms are based on the dipole oscillator strength sums. For helium, the R-8 and R-10 terms are based on quadrupole and octupole oscillator strength sums. For the heavier inert gases, the results for the R-8 and R-10 terms are obtained from the sum rules and the static polarizabilities. Upper bounds are also determined for the R-8 and R-10 terms.

  7. Studies of singlet Rydberg series of LiH derived from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gim, Yeongrok; Department of Chemistry, Ajou University, Suwon 443-749; Lee, Chun-Woo, E-mail: clee@ajou.ac.kr

    2014-10-14

    The 50 singlet states of LiH composed of 49 Rydberg states and one non-Rydberg ionic state derivable from Li(nl) + H(1s), with n ≤ 6 and l ≤ 4, are studied using the multi-reference configuration interaction method combined with the Stuttgart/Köln group's effective core potential/core polarization potential method. Basis functions that can yield energy levels up to the 6g orbital of Li have been developed, and they are used with a huge number of universal Kaufmann basis functions for Rydberg states. The systematics and regularities of the physical properties such as potential energies, quantum defects, permanent dipole moments, transition dipolemore » moments, and nonadiabatic coupling matrix elements of the Rydberg series are studied. The behaviors of potential energy curves and quantum defect curves are explained using the Fermi approximation. The permanent dipole moments of the Rydberg series reveal that they are determined by the sizes of the Rydberg orbitals, which are proportional to n{sup 2}. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, with the rule Δl = ±1, except for s–d mixing, which is also accompanied by n-mixing. The members of the l-mixed Rydberg series have dipole moments with opposite directions. The first derivatives of the dipole moment curves, which show the charge-transfer component, clearly show not only mirror relationships in terms of direction but also oscillations. The transition dipole moment matrix elements of the Rydberg series are determined by the small-r region, with two consequences. One is that the transition dipole moment matrix elements show n{sup −3/2} dependence. The other is that the magnitudes of the transition dipole moment matrix elements decrease rapidly as l increases.« less

  8. Total γ ⋆ }γ {⋆ cross section and the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Florkowski, W.

    1998-05-01

    In the framework of the dipole picture of the BFKL pomeron we discuss two possibilities of calculating the total γ^{star}γ^{star} cross section of the virtual photons. It is shown that the dipole model reproduces the results obtained earlier from k_T-factorization up to the selection of the scale determining the length of the QCD cascade. The choice of scale turns out to be important for the numerical outcome of the calculations.

  9. Isovector and isoscalar dipole excitations in 9Be and 10Be studied with antisymmetrized molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-02-01

    Isovector and isoscalar dipole excitations in 9Be and 10Be are investigated in the framework of antisymmetrized molecular dynamics, in which angular-momentum and parity projections are performed. In the present method, 1p-1h excitation modes built on the ground state and a large amplitude α -cluster mode are taken into account. The isovector giant dipole resonance (GDR) in E >20 MeV shows the two-peak structure, which is understood from the dipole excitation in the 2 α core part with the prolate deformation. Because of valence neutron modes against the 2 α core, low-energy E 1 resonances appear in E <20 MeV, exhausting about 20 % of the Thomas-Reiche-Kuhn sum rule and 10 % of the calculated energy-weighted sum. The dipole resonance at E ˜15 MeV in 10Be can be interpreted as the parity partner of the ground state having a 6He+α structure and has remarkable E 1 strength because of the coherent contribution of two valence neutrons. The isoscalar dipole strength for some low-energy resonances is significantly enhanced by the coupling with the α -cluster mode. For the E 1 strength of 9Be, the calculation overestimates the energy-weighted sum (EWS) in the low-energy (E <20 MeV) and GDR (20

  10. Sum rules and the role of pressure on the excitation spectrum of a confined hydrogen atom by a spherical cavity

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.

    2017-08-01

    Sum rule relations over the excitation spectrum of a quantum system contain information about both the energy spectrum and eigenfunctions of the system in a compact form, particularly regarding closure relations. In this work, the effects of pressure induced by a spherical cavity on an atomic hydrogen impurity on the dipole oscillator strength (DOS) sum rule, S k , and its logarithmic version, L k , are studied by means of a numerical approach based on a finite-difference solution to the Schrödinger equation. Pressure effects are accounted for by means of a spherical cavity of radius R 0 immersed in a medium characterized by a penetrable potential height V 0. The DOS sum rules S k and L k are investigated as a function of these cavity parameters and thus directly related to the impurity static pressure and surrounding material. One finds that the sum rules are fulfilled within the numerical precision for low pressure conditions. However, when the barrier height is large or infinite (a non-penetrable cavity), the sum rule, for positive k, differs from its closure relation. One finds that this occurs for a cavity radius {R}0< 6 au, corresponding to a pressure such that the first p-state that contributes to the sum rule has positive energy and it is due to the fact that the spherical confinement cavity potential dominates over the Coulombic interaction for the hydrogenic impurity. Thus, as pressure increases, the excitation spectrum approaches that of a particle confined by a spherical cavity while the ground state is slightly affected by the cavity and more closely resembles a hydrogenic atom. Therefore, the sum rule over the excitation spectrum tends to a particle confined by a spherical cavity, while the closure relation gives that of a confined hydrogen atom in the ground state. For negative k, low excitations are the most important and this behavior is not presented. As the {S}-2 sum rule is the static dipole polarizability, the results are compared to available data in the literature, showing excellent agreement. This behavior in the sum rule and oscillator strength in electron-impurity excitations affects optical transitions of importance in semiconductor nanostructures.

  11. A new dipole-free sum-over-states expression for the second hyperpolarizability

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2008-02-01

    The generalized Thomas-Kuhn sum rules are used to eliminate the explicit dependence on dipolar terms in the traditional sum-over-states (SOS) expression for the second hyperpolarizability to derive a new, yet equivalent, SOS expression. This new dipole-free expression may be better suited to study the second hyperpolarizability of nondipolar systems such as quadrupolar, octupolar, and dodecapolar structures. The two expressions lead to the same fundamental limits of the off-resonance second hyperpolarizability; and when applied to a particle in a box and a clipped harmonic oscillator, have the same frequency dependence. We propose that the new dipole-free equation, when used in conjunction with the standard SOS expression, can be used to develop a three-state model of the dispersion of the third-order susceptibility that can be applied to molecules in cases where normally many more states would have been required. Furthermore, a comparison between the two expressions can be used as a convergence test of molecular orbital calculations when applied to the second hyperpolarizability.

  12. Photoresponse of 60Ni below 10-MeV excitation energy: Evolution of dipole resonances in fp-shell nuclei near N=Z

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.

  13. Lineshapes of Dipole-Dipole Resonances in a Cold Rydberg Gas

    NASA Astrophysics Data System (ADS)

    Richards, B. G.; Jones, R. R.

    2015-05-01

    We have examined the lineshapes associated with Stark tuned, dipole-dipole resonances involving Rydberg atoms in a cold gas. Rb atoms in a MOT are laser excited from the 5 p level to 32p3 / 2 in the presence of a weak electric field. A fast rising electric field pulse Stark tunes the total energy of two 32 p atom pairs so it is (nearly) degenerate with that of the 32s1 / 2+33s1 / 2 states. Because of the dipole-dipole coupling, atom pairs separated by a distance R, develop 32s1 / 2+33s1 / 2 character. The maximum probability for finding atoms in s-states depends on the detuning from degeneracy and on the dipole-dipole coupling. We obtain the ``resonance'' lineshape by measuring, via state-selective field ionization, the s-state population as a function of the tuning field. The resonance width decreases with density due to R-3 dependence of the dipole-dipole coupling. In principle, the lineshape provides information about the distribution of Rydberg atom spacings in the sample. For equally spaced atoms, the lineshape should be Lorentzian while for a random nearest neighbor distribution it appears as a cusp. At low densities nearly Gaussian lineshapes are observed with widths that are too large to be the result of inhomogeneous electric or magnetic fields. Supported by the NSF.

  14. Magnetic field effect on photoionization cross-section of hydrogen-like impurity in cylindrical quantum wire

    NASA Astrophysics Data System (ADS)

    Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.

    2008-01-01

    We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.

  15. Analysis of X-ray adsorption edges: L 2,3 edge of FeCl 4 -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    We describe a detailed analysis of the features of the X-ray adsorption spectra at the Fe L 2,3 edge of FeCl 4. The objective of this analysis is to explain the origin of the complex features in relation to properties of the wavefunctions, especially for the excited states. These properties include spin-orbit and ligand field splittings where a novel aspect of the dipole selection rules is applied to understand the influence of these splittings on the spectra. We also explicitly take account of the intermediate coupling of the open core and valence shell electrons. Our analysis also includes comparison ofmore » theory and experiment for the Fe L 2,3 edge and comparison of theoretical predictions for the Fe 3+ cation and FeCl 4-. The electronic structure is obtained from theoretical wavefunctions for the ground and excited states.« less

  16. QRPA plus phonon coupling model and the photoabsorption cross section for 18,20,22O

    NASA Astrophysics Data System (ADS)

    Colò, G.; Bortignon, P. F.

    2001-12-01

    We have calculated the electric dipole strength distributions in the unstable neutron-rich oxygen isotopes 18,20,22O, in a model which include up to four quasiparticle-type configurations. The model is the extension, to include the effect of the pairing correlations, of a previous model very successful around closed shell nuclei, and it is based on the quasiparticle-phonon coupling. Low-lying dipole strength is found, which exhausts between 5 and 10% of the Thomas-Reiche-Kuhn (TRK) energy-weighted sum rule (EWSR) below 15 MeV excitation energy, in rather good agreement with recent experimental data. The role of the phonon coupling is shown to be crucial in order to obtain this result.

  17. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    PubMed Central

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  18. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  19. Separation of Pygmy Dipole and M1 Resonances in Zr90 by a High-Resolution Inelastic Proton Scattering Near 0°

    NASA Astrophysics Data System (ADS)

    Iwamoto, C.; Utsunomiya, H.; Tamii, A.; Akimune, H.; Nakada, H.; Shima, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Shimbara, Y.; Nagashima, M.; Suzuki, T.; Fujita, H.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Bilgier, B.; Kozer, H. C.; Lui, Y.-W.; Hatanaka, K.

    2012-06-01

    A high-resolution measurement of inelastic proton scattering off Zr90 near 0° was performed at 295 MeV with a focus on a pronounced strength previously reported in the low-energy tail of giant dipole resonance. A forest of fine structure was observed in the excitation energy region 7-12 MeV. A multipole decomposition analysis of the angular distribution for the forest was carried out using the ECIS95 distorted-wave Born approximation code with the Hartree-Fock plus random-phase approximation model of E1 and M1 transition densities and inclusion of E1 Coulomb excitation. The analysis separated pygmy dipole and M1 resonances in the forest at EPDR=9.15±0.18MeV with ΓPDR=2.91±0.64MeV and at EM1=9.53±0.06MeV with ΓM1=2.70±0.17MeV in the Lorentzian function, respectively. The B(E1)↑ value for pygmy dipole resonance over 7-11 MeV is 0.75±0.08e2fm2, which corresponds to 2.1±0.2% of the Thomas-Reiche-Kuhn sum rule.

  20. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng

    2017-07-01

    We report a photoelectron imaging and photodetachment study of cryogenically cooled 3-hydroxyphenoxide (3HOP) anions, m-HO(C6H4)O-. In a previous preliminary study, two conformations of the cold 3HOP anions with different dipole bound states were observed [D. L. Huang et al., J. Phys. Chem. Lett. 6, 2153 (2015)]. Five near-threshold vibrational resonances were revealed in the photodetachment spectrum from the dipole-bound excited states of the two conformations. Here, we report a more extensive investigation of the two conformers with observation of thirty above-threshold vibrational resonances in a wide spectral range between 18 850 and 19 920 cm-1 (˜1000 cm-1 above the detachment thresholds). By tuning the detachment laser to the vibrational resonances in the photodetachment spectrum, high-resolution conformation-selective resonant photoelectron images are obtained. Using information of the autodetachment channels and theoretical vibrational frequencies, we are able to assign the resonant peaks in the photodetachment spectrum: seventeen are assigned to vibrational levels of anti-3HOP, eight to syn-3HOP, and five to overlapping vibrational levels of both conformers. From the photodetachment spectrum and the conformation-selective resonant photoelectron spectra, we have obtained fourteen fundamental vibrational frequencies for the neutral syn- and anti-m-HO(C6H4)Oṡ radicals. The possibility to produce conformation-selected neutral beams using resonant photodetachment via dipole-bound excited states of anions is discussed.

  1. Systematics of strength function sum rules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Calvin W.

    2015-08-28

    Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink–Axel hypothesis, for example, does not hold for most cases, though it weakly holds in at least some cases for electric dipole transitions. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators. Seen through this lens,more » violation of the generalized Brink–Axel hypothesis is unsurprising: one expectssum rules to evolve with excitation energy. Moreover, to lowest order the slope of the secular evolution can be traced to a component of the Hamiltonian being positive (repulsive) or negative (attractive).« less

  2. Novel approach for calculating the charge carrier mobility and Hall factor for semiconductor materials

    NASA Astrophysics Data System (ADS)

    Colibaba, G. V.

    2018-06-01

    The additive Matthiessen's rule is the simplest and most widely used rule for the rapid experimental characterization and modeling of the charge carrier mobility. However, the error when using this rule can be higher than 40% and the contribution of the assumed additional scattering channels due to the difference between the experimental data and results calculated based on this rule can be misestimated by several times. In this study, a universal semi-additive equation is proposed for the total mobility and Hall factor, which is applicable to any quantity of scattering mechanisms, where it considers the energy dependence of the relaxation time and the error is 10-20 times lower compared with Matthiessen's rule. Calculations with accuracy of 99% are demonstrated for materials with polar-optical phonon, acoustic phonon via the piezoelectric potential, ionized, and neutral impurity scattering. The proposed method is extended to the deformation potential, dislocation, localized defect, alloy potential, and dipole scattering, for nondegenerate and partially degenerate materials.

  3. The gamma decay of the giant dipole resonance: from zero to finite temperature

    NASA Astrophysics Data System (ADS)

    Bracco, Angela; Camera, Franco

    2016-08-01

    This paper is intended to give a selected and rather brief overview of the work made in the last thirty years to study the properties of the giant dipole resonance focusing in particular on nuclei formed at finite temperatures using heavy ion reactions. The physical problems that are discussed (using examples of particular results) in this paper can be grouped into 3 major topics: (i) the temperature dependence of the GDR width; (ii) the dipole oscillation in reaction dynamics; (iii) the isospin mixing at finite temperature.

  4. Cavity BPM with Dipole-Mode-Selective Coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zenghai; Johnson, Ronald; Smith, Stephen R.

    2006-06-21

    In this paper, we present a novel position sensitive signal pickup scheme for a cavity BPM. The scheme utilizes the H-plane of the waveguide to couple magnetically to the side of the cavity, which results in a selective coupling to the dipole mode and a total rejection of the monopole mode. This scheme greatly simplifies the BPM geometry and relaxes machining tolerances. We will present detailed numerical studies on such a cavity BPM, analyze its resolution limit and tolerance requirements for a nanometer resolution. Finally present the measurement results of a X-band prototype.

  5. Empirically constructed dynamic electric dipole polarizability function of magnesium and its applications

    NASA Astrophysics Data System (ADS)

    Babb, James F.

    2015-08-01

    The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.

  6. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.

    2010-12-17

    Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less

  7. Estimation of hyper-parameters for a hierarchical model of combined cortical and extra-brain current sources in the MEG inverse problem.

    PubMed

    Morishige, Ken-ichi; Yoshioka, Taku; Kawawaki, Dai; Hiroe, Nobuo; Sato, Masa-aki; Kawato, Mitsuo

    2014-11-01

    One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneously estimates cortical and extra-brain source currents by placing dipoles on cortical surfaces as well as extra-brain sources. This method requires EOG data for an EOG forward model that describes the relationship between eye dipoles and electric potentials. In contrast, our improved approach requires no EOG and less a priori knowledge about the current variance of extra-brain sources. We propose a new method, "extra-dipole," that optimally selects hyper-parameter values regarding current variances of the cortical surface and extra-brain source dipoles. With the selected parameter values, the cortical and extra-brain dipole currents were accurately estimated from the simulated MEG data. The performance of this method was demonstrated to be better than conventional approaches, such as principal component analysis and independent component analysis, which use only statistical properties of MEG signals. Furthermore, we applied our proposed method to measured MEG data during covert pursuit of a smoothly moving target and confirmed its effectiveness. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Transition sum rules in the shell model

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  9. Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Jungwirth, Nicholas R.; Fuchs, Gregory D.

    2017-08-01

    We investigate the polarization selection rules of sharp zero-phonon lines (ZPLs) from isolated defects in hexagonal boron nitride (HBN) and compare our findings with the predictions of a Huang-Rhys model involving two electronic states. Our survey, which spans the spectral range ˜550 - 740 nm , reveals that, in disagreement with a two-level model, the absorption and emission dipoles are often misaligned. We relate the dipole misalignment angle (Δ θ ) of a ZPL to its energy shift from the excitation energy (Δ E ) and find that Δ θ ≈0 ° when Δ E corresponds to an allowed HBN phonon frequency and that 0 ° ≤Δ θ ≤90 ° when Δ E exceeds the maximum allowed HBN phonon frequency. Consequently, a two-level Huang-Rhys model succeeds at describing excitations mediated by the creation of one optical phonon but fails at describing excitations that require the creation of multiple phonons. We propose that direct excitations requiring the creation of multiple phonons are inefficient due to the low Huang-Rhys factors in HBN and that these ZPLs are instead excited indirectly via an intermediate electronic state. This hypothesis is corroborated by polarization measurements of an individual ZPL excited with two distinct wavelengths that indicate a single ZPL may be excited by multiple mechanisms. These findings provide new insight on the nature of the optical cycle of novel defect-based single-photon sources in HBN.

  10. Role of precursors and coating polymers in sol-gel chemistry toward enhanced selectivity and efficiency in solid phase microextraction.

    PubMed

    Bagheri, Habib; Piri-Moghadam, Hamed; Ahdi, Tayebeh

    2012-09-12

    To evaluate the selectivity and efficiency of solid phase microextraction (SPME) fiber coatings, synthesized by sol-gel technology, roles of precursors and coating polymers were extensively investigated. An on-line combination of capillary microextraction (CME) technique and high performance liquid chromatography (HPLC) was set up to perform the investigation. Ten different fiber coatings were synthesized in which five of them contained only the precursor and the rests were prepared using both the precursor and coating polymer. All the coatings were chemically bonded to the inner surface of copper tubes, intended to be used as the CME device and already functionalized by self-assembly monolayers of 3-(mercaptopropyl)trimethoxysilane (3MPTMOS). The selected precursors included tetramethoxysilane (TMOS), 3-(trimethoxysilyl)propylmethacrylate (TMSPMA), 3-(triethoxysilyl)-propylamine (TMSPA), 3MPTMOS, [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane (EPPTMOS) while poly(ethyleneglycol) (PEG) was chosen as the coating polymer. The effects of different precursors on the extraction efficiency and selectivity, was studied by selecting a list of compounds ranging from non-polar to polar ones, i.e. polycyclic aromatic hydrocarbon, herbicides, estrogens and triazines. The results from CME-HPLC analysis revealed that there is no significant difference between precursors, except TMOS, in which has the lowest extraction efficiency. Most of the selected precursors have rather similar interactions toward the selected analytes which include Van der Walls, dipole-dipole and hydrogen bond while TMOS has only dipole-dipole interaction and therefore the least efficiency. TMOS is silica but the other sorbents are organically modified silica (ORMOSIL). Our investigation revealed that it is rather impossible to prepare a selective coating using conventional sol-gel methodologies. The comparison study performed among the fiber coatings contained only a precursor and those synthesized by a precursor along with coating polymer proved that the extraction efficiency obtained for all coatings are the same. This is an indication that by selecting the appropriate precursor there is no need to use any coating polymer. In overall, a fiber coating in sol-gel process could be synthesize with no coating polymer which leads to faster, easier, cheaper and more controllable synthesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies.

    PubMed

    Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio

    2009-03-04

    Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

  12. Equivalent source modeling of the main field using MAGSAT data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Modeling and software development of the main field using MAGSAT data is discussed. The cause of the apparent bulge in the power spectrum of Dipole model no. 4 was investigated by simulation with POGO crustal anomaly field model. Results for cases with and without noise, and the spectra of selected reslts are given. It is indicated that the beginning of the bump in the spectrum of Dipole no. 4 is due to crustal influence, while the departure of the spectrum from that of MGST (12/80-2) around expansion order 17 is due to the resolution limits of the Dipole density.

  13. A new estimate of average dipole field strength for the last five million years

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Tauxe, L.; Halldorsson, S. A.

    2013-12-01

    The Earth's ancient magnetic field can be approximated by a geocentric axial dipole (GAD) where the average field intensity is twice as strong at the poles than at the equator. The present day geomagnetic field, and some global paleointensity datasets, support the GAD hypothesis with a virtual axial dipole moment (VADM) of about 80 ZAm2. Significant departures from GAD for 0-5 Ma are found in Antarctica and Iceland where paleointensity experiments on massive flows (Antarctica) (1) and volcanic glasses (Iceland) produce average VADM estimates of 41.4 ZAm2 and 59.5 ZAm2, respectively. These combined intensities are much closer to a lower estimate for long-term dipole field strength, 50 ZAm2 (2), and some other estimates of average VADM based on paleointensities strictly from volcanic glasses. Proposed explanations for the observed non-GAD behavior, from otherwise high-quality paleointensity results, include incomplete temporal sampling, effects from the tangent cylinder, and hemispheric asymmetry. Differences in estimates of average magnetic field strength likely arise from inconsistent selection protocols and experiment methodologies. We address these possible biases and estimate the average dipole field strength for the last five million years by compiling measurement level data of IZZI-modified paleointensity experiments from lava flows around the globe (including new results from Iceland and the HSDP-2 Hawaii drill core). We use the Thellier Gui paleointensity interpreter (3) in order to apply objective criteria to all specimens, ensuring consistency between sites. Specimen level selection criteria are determined from a recent paleointensity investigation of modern Hawaiian lava flows where the expected magnetic field strength was accurately recovered when following certain selection parameters. Our new estimate of average dipole field strength for the last five million years incorporates multiple paleointensity studies on lava flows with diverse global and temporal distributions, and objectively constrains site level estimates by applying uniform selection requirements on measurement level data. (1) Lawrence, K.P., L. Tauxe, H. Staudigel, C.G. Constable, A. Koppers, W. McIntosh, C.L. Johnson, Paleomagnetic field properties at high southern latitude, Geochemistry Geophysics Geosystems, 10, 2009. (2) Selkin, P.A., L. Tauxe, Long-term variations in palaeointensity, Phil. Trans. R. Soc. Lond., 358, 1065-1088, 2000. (3) Shaar, R., L. Tauxe, Thellier GUI: An integrated tool for analyzing paleointensity data from Thellier-type experiments, Geochemistry Geophysics Geosystems, 14, 2013

  14. Stereo-electro-encephalography-Guided Radiofrequency Thermocoagulation: From In Vitro and In Vivo Data to Technical Guidelines.

    PubMed

    Bourdillon, Pierre; Isnard, Jean; Catenoix, Hélène; Montavont, Alexandra; Rheims, Sylvain; Ryvlin, Philippe; Ostrowsky-Coste, Karine; Mauguiere, François; Guénot, Marc

    2016-10-01

    Deep brain electrodes have been used for the past 10 years to produce bipolar stereo-electro-encephalography-guided radiofrequency thermocoagulation (SEEG RF-TC). However, this technique is based on empiric knowledge. The aim of this study is 3-fold: 1) provide in vivo animal data concerning the effect of bipolar RF-TC on brain and its safety; 2) assess the parameters of this procedure (current delivery and dipole selection) that produce the most efficient lesion; and 3) provide technical guidelines. First we achieved in vivo RF-TC on rabbit brains with several conditions (power delivered and lesioning duration) and analyzed their influence on the lesion produced. Only a difference in terms of volume was found, and type of histologic lesions was similar whatever the settings were. We then performed multiple RF-TC in vitro on egg albumen, first with several parameters of radiofrequency and then with different dipole spatial selections. The end point was the size of the radiofrequency thermolesion produced. Using unfixed parameters of radiofrequency current delivery and increasing it until the power delivered by the generator collapsed produced significantly larger lesions (P = 0.008) than other conditions. Concerning the dipole selection, the use of contiguous contacts on electrodes led to lesions with a higher volume (P = 7.7 × 10 -13 ) than those produced with noncontiguous ones. Besides the target selection in SEEG RF-TC, which is summarized on the basis of a literature review, we report the optimal parameters: Radiofrequency current must be increased until the power delivered collapses, and dipoles should be constituted by contiguous electrode contacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Alpha-like resonances in nuclei

    NASA Astrophysics Data System (ADS)

    Baran, V. V.; Delion, D. S.

    2018-03-01

    We investigate normal dipole oscillations in a system of protons, neutrons and α-particles within the Brink approach. We introduce an effective mass of α-clusters in terms of the spectroscopic factor. The Pauli exclusion principle is taken into account by using the Wildermuth rule. The ratio between alpha and giant resonance energy weighted sum rule (EWSR) is investigated for N = Z and N> Z systems. In both cases we notice an unexpected decrease of this ratio versus the increase of the spectroscopic factor. Due to this fact the possibility to experimentally detect α-like oscillations is enhanced in nuclei above 100Sn. The occurrence of the pygmy mode in N> Z systems decreases the EWSR for the α-like oscillations.

  16. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  17. Transition sum rules in the shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yi; Johnson, Calvin W.

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less

  18. Transition sum rules in the shell model

    DOE PAGES

    Lu, Yi; Johnson, Calvin W.

    2018-03-29

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy- weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, in the case of the EWSR a double commutator. While most prior applications of the double-commutator have been to special cases, we derive general formulas for matrix elements of bothmore » operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We then apply this simple tool to a number of nuclides, and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E1) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground state electric quadrupole (E2) centroids in the $sd$-shell.« less

  19. Sum Rules, Classical and Quantum - A Pedagogical Approach

    NASA Astrophysics Data System (ADS)

    Karstens, William; Smith, David Y.

    2014-03-01

    Sum rules in the form of integrals over the response of a system to an external probe provide general analytical tools for both experiment and theory. For example, the celebrated f-sum rule gives a system's plasma frequency as an integral over the optical-dipole absorption spectrum regardless of the specific spectral distribution. Moreover, this rule underlies Smakula's equation for the number density of absorbers in a sample in terms of the area under their absorption bands. Commonly such rules are derived from quantum-mechanical commutation relations, but many are fundamentally classical (independent of ℏ) and so can be derived from more transparent mechanical models. We have exploited this to illustrate the fundamental role of inertia in the case of optical sum rules. Similar considerations apply to sum rules in many other branches of physics. Thus, the ``attenuation integral theorems'' of ac circuit theory reflect the ``inertial'' effect of Lenz's Law in inductors or the potential energy ``storage'' in capacitors. These considerations are closely related to the fact that the real and imaginary parts of a response function cannot be specified independently, a result that is encapsulated in the Kramers-Kronig relations. Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  20. Dipole-modified graphene with ultrahigh gas sensibility

    NASA Astrophysics Data System (ADS)

    Jia, Ruokun; Xie, Peng; Feng, Yancong; Chen, Zhuo; Umar, Ahmad; Wang, Yao

    2018-05-01

    This study reports the supramolecular assembly of functional graphene-based materials with ultrahigh gas sensing performances which are induced by charge transfer enhancement. Two typical Donor-π-Accepter (D-π-A) structure molecules 4-aminoquinoline (4AQ, μ = 3.17 Debye) and 4-hydroxyquinoline (4HQ, μ = 1.98 Debye), with different charge transfer enhancing effects, were selected to modify reduce oxide graphene (rGO) via supramolecular assembly. Notably, compared to the 4HQ-rGO, the 4AQ-rGO exhibits more significant increase of gas response (Ra/Rg = 3.79) toward 10 ppm NO2, which is ascribed to the larger dipole moment (μ) of 4AQ and hence the more intensive enhancing effect of charge transfer on the interface of rGO. Meanwhile, 4AQ-rGO sensors also reveal superior comprehensive gas sensing performances, including excellent gas sensing selectivity, linearity, repeatability and stability. It is believed that the present work demonstrates an effective supramolecular approach of modifying rGO with strong dipoles to significantly improve gas sensing properties of graphene-based materials.

  1. Millimeter-wave integrated-horn antennas. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Eleftheriades, George V.; Ali-Ahmad, Walid Y.; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1991-01-01

    Full-wave analysis is employed to determine the far-field pattern and input impedance of a dipole-fed horn antenna in a ground plane, and the theoretical results are compared with mm-wave and microwave data. The theoretical work exploits the Green's function corresponding to the horn structure and the method of moments. It is determined that the horn should have 70 sections/wavelength and 50 secondary modes for optimized accuracy, and certain dipole positions can reduce the resonance to zero. The experimentally derived impedance and radiation patterns agree with the constraints developed theoretically. The 70-degree flare-angle horn with selected dipole positions and horn apertures yields good radiation patterns, cross-polarization levels, and resonant dipole impedances. The conclusions are of interest to the development of the horn antennas etched in Si/GaAs for applications to zero-visibility tracking, radio astronomy, plasma diagnostics, and remote sensing.

  2. Theoretical study of the dipole moments of selected alkaline-earth halides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.; Ahlrichs, R.

    1986-01-01

    Ab initio calculations at the self-consistent-field (SCF), singles-plus-doubles configuration-interaction (SDCI), and coupled-pair functional (CPF) level, are reported for the dipole moments and dipole derivatives of the X2Sigma(+) ground states of BeF, BeCl, MgF, MgCl, CaF, CaCl, and SrF. For comparison, analogous calculations are performed for the X1Sigma(+) state of KCl. The CPF results are found to be in remarkably better agreement with experiment than are the SCF and SDCI results. Apparently higher excitations are required to properly describe the radial extent along the bond axis of the remaining valence electron on the alkaline-earth metal.

  3. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wei-Dong; Center of Super-Diamond and Advanced Films; Huang, Shu-Ping

    2015-10-07

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure π–π interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc andmore » CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface.« less

  4. Theoretical evaluation of the radiative lifetimes of LiCs and NaCs in the A1Σ+ state

    NASA Astrophysics Data System (ADS)

    Mabrouk, N.; Berriche, H.

    2017-08-01

    Calculations of the adiabatic potential energy curves and the transition dipole moments between the ground (A1Σ+) and the first excited (A1Σ+) states have been determined for the LiCs and NaCs molecules. The calculations are performed using an ab initio approach based on non-empirical pseudopotentials for Cs+, Li+ and Na+ cores, parameterized l-dependent polarization potentials and full configuration interaction calculations. The potential energy curves and the transition dipole moment are used to estimate the radiative lifetimes of the vibrational levels of the A+Σ+ state using the Franck-Condon (FC) approximation and the approximate sum rule method. The radiative lifetimes associated with the A+Σ+ state are presented here for the first time. These data can help experimentalists to optimize photoassociative formation of ultracold molecules and their longevity in a trap or in an optical lattice.

  5. Benchmarking Atomic Data for Astrophysics: Be-like Ions between B II and Ne VII

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Chen, Zhan Bin; Zhang, Chun Yu; Si, Ran; Jönsson, Per; Hartman, Henrik; Gu, Ming Feng; Chen, Chong Yang; Yan, Jun

    2018-02-01

    Large-scale self-consistent multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction calculations are reported for the n≤slant 6 levels in Be-like ions from B II to Ne VII. Effects from electron correlation are taken into account by means of large expansions in terms of a basis of configuration state functions, and a complete and accurate data set of excitation energies; lifetimes; wavelengths; electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole line strengths; transition rates; and oscillator strengths for these levels is provided for each ion. Comparisons are made with available experimental and theoretical results. The uncertainty of excitation energies is assessed to be 0.01% on average, which makes it possible to find and rule out misidentifications and aid new line identifications involving high-lying levels in astrophysical spectra. The complete data set is also useful for modeling and diagnosing astrophysical plasmas.

  6. Band lineup of lattice mismatched InSe/GaSe quantum well structures prepared by van der Waals epitaxy: Absence of interfacial dipoles

    NASA Astrophysics Data System (ADS)

    Lang, O.; Klein, A.; Pettenkofer, C.; Jaegermann, W.; Chevy, A.

    1996-10-01

    Epitaxial growth of the strongly lattice mismatched (6.5%) layered chalcogenides InSe and GaSe on each other is obtained with the concept of van der Waals epitaxy as proven by low-energy electron diffraction and scanning tunnel microscope. InSe/GaSe/InSe and GaSe/InSe/GaSe quantum well structures were prepared by molecular beam epitaxy and their interface properties were characterized by soft x-ray photoelectron spectroscopy. Valence and conduction band offsets are determined to be 0.1 and 0.9 eV, respectively, and do not depend on deposition sequence (commutativity). As determined from the measured work functions the interface dipole is 0.05 eV; the band lineup between the two materials is correctly predicted by the Anderson model (electron affinity rule).

  7. Dipolar sources of the early scalp somatosensory evoked potentials to upper limb stimulation. Effect of increasing stimulus rates.

    PubMed

    Valeriani, M; Restuccia, D; Di Lazzaro, V; Le Pera, D; Barba, C; Tonali, P; Mauguiere, F

    1998-06-01

    Brain electrical source analysis (BESA) of the scalp electroencephalographic activity is well adapted to distinguish neighbouring cerebral generators precisely. Therefore, we performed dipolar source modelling in scalp medium nerve somatosensory evoked potentials (SEPs) recorded at 1.5-Hz stimulation rate, where all the early components should be identifiable. We built a four-dipole model, which was issued from the grand average, and applied it also to recordings from single individuals. Our model included a dipole at the base of the skull and three other perirolandic dipoles. The first of the latter dipoles was tangentially oriented and was active at the same latencies as the N20/P20 potential and, with opposite polarity, the P24/N24 response. The second perirolandic dipole showed an initial peak of activity slightly earlier than that of the N20/P20 dipolar source and, later, it was active at the same latency as the central P22 potential. Lastly, the third perirolandic dipole explaining the fronto-central N30 potential scalp distribution was constantly more posterior than the first one. In order to evaluate the effect of an increasing repetition frequency on the activity of SEP dipolar sources, we applied the model built from 1.5-Hz SEPs to traces recorded at 3-Hz and 10-Hz repetition rates. We found that the 10-Hz stimulus frequency reduced selectively the later of the two activity phases of the first perirolandic dipole. The decrement in strength of this dipolar source can be explained if we assume that: (a) the later activity of the first perirolandic dipole can represent the inhibitory phase of a "primary response"; (b) two different clusters of cells generate the opposite activities of the tangential perirolandic dipole. An additional finding in our model was that two different perirolandic dipoles contribute to the centro-parietal N20 potential generation.

  8. R-charge conservation and more in factorizable and non-factorizable orbifolds

    NASA Astrophysics Data System (ADS)

    Bizet, Nana G. Cabo; Kobayashi, Tatsuo; Peña, Damián K. Mayorga; Parameswaran, Susha L.; Schmitz, Matthias; Zavala, Ivonne

    2013-05-01

    We consider the string theory origin of R-charge conservation laws in heterotic orbifold compactifications, deriving the corresponding string coupling selection rule for factorizable and non-factorizable orbifolds, with prime ordered and non-prime ordered point groups. R-charge conservation arises due to symmetries among the worldsheet instantons that can mediate the couplings. Among our results is a previously missed non-trivial contribution to the conserved R-charges from the γ-phases in non-prime orbifolds, which weakens the R-charge selection rule. Symmetries among the worldsheet instantons can also lead to additional selection rules for some couplings. We make a similar analysis for Rule 4 or the "torus lattice selection rule". Moreover, we identify a new string selection rule, that we call Rule 6 or the "coset vector selection rule".

  9. Comparison between the analysis of the loudness dependency of the auditory N1/P2 component with LORETA and dipole source analysis in the prediction of treatment response to the selective serotonin reuptake inhibitor citalopram in major depression.

    PubMed

    Mulert, C; Juckel, G; Augustin, H; Hegerl, U

    2002-10-01

    The loudness dependency of the auditory evoked potentials (LDAEP) is used as an indicator of the central serotonergic system and predicts clinical response to serotonin agonists. So far, LDAEP has been typically investigated with dipole source analysis, because with this method the primary and secondary auditory cortex (with a high versus low serotonergic innervation) can be separated at least in parts. We have developed a new analysis procedure that uses an MRI probabilistic map of the primary auditory cortex in Talairach space and analyzed the current density in this region of interest with low resolution electromagnetic tomography (LORETA). LORETA is a tomographic localization method that calculates the current density distribution in Talairach space. In a group of patients with major depression (n=15), this new method can predict the response to an selective serotonin reuptake inhibitor (citalopram) at least to the same degree than the traditional dipole source analysis method (P=0.019 vs. P=0.028). The correlation of the improvement in the Hamilton Scale is significant with the LORETA-LDAEP-values (0.56; P=0.031) but not with the dipole source analysis LDAEP-values (0.43; P=0.11). The new tomographic LDAEP analysis is a promising tool in the analysis of the central serotonergic system.

  10. Longitudinal Gradient Dipole Magnet Prototype for APS at ANL

    DOE PAGES

    Kashikhin, V. S.; Borland, M.; Chlachidze, G.; ...

    2016-01-26

    We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotationalmore » coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.« less

  11. Collisional x- and A-State Kinetics of CN Using Transient Sub-Doppler Hole Burning

    NASA Astrophysics Data System (ADS)

    Hause, Michael L.; Sears, Trevor J.; Hall, Gregory E.

    2010-06-01

    We examine the collisional kinetics of the CN radical using transient hole-burning and saturation recovery. Narrow velocity groups of individual hyperfine levels in CN are depleted (X2Σ^+) and excited (A2Π) with a saturation laser, and probed by a counterpropagating, frequency modulated probe beam. Recovery of the unsaturated absorption is recorded following abrupt termination of an electro optically switched pulse of saturation light. Pressure-dependent recovery kinetics are measured for precursors, ethane dinitrile, NCCN, and pyruvonitrile, CH_3COCN, and buffer gases, helium, argon and nitrogen with rate coefficients ranging from 0.7-2.0 x 10-9 cm3 s-1 molec-1. In the case of NCCN, recovery kinetics are for two-level saturation resonances, where the signal observed is a combination of X- and A-state kinetics. Similar rates occur for three-level crossover resonances, which can be chosen to probe selectively the hole-filling in the X state or the decay of velocity-selected A state radicals. However in the case of CH_3COCN, which has a dipole moment of 3.45 D, the X-state kinetics are faster than the A-state due to an efficient dipole-dipole rotational energy transfer mechanism as the X-state dipole moment is 1.5 D and the A-state dipole moment is 0.06 D. The observed recovery rates are 2-3 times faster than the estimated rotationally inelastic contribution and are a combination of inelastic and velocity-changing elastic collisions. Acknowledgment: This work was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

  12. Magnetic state selected by magnetic dipole interaction in the kagome antiferromagnet NaBa2Mn3F11

    NASA Astrophysics Data System (ADS)

    Hayashida, Shohei; Ishikawa, Hajime; Okamoto, Yoshihiko; Okubo, Tsuyoshi; Hiroi, Zenji; Avdeev, Maxim; Manuel, Pascal; Hagihala, Masato; Soda, Minoru; Masuda, Takatsugu

    2018-02-01

    We haved studied the ground state of the classical kagome antiferromagnet NaBa2Mn3F11 . Strong magnetic Bragg peaks observed for d spacings shorter than 6.0 Å were indexed by the propagation vector of k0=(0 ,0 ,0 ) . Additional peaks with weak intensities in the d -spacing range above 8.0 Å were indexed by the incommensurate vector of k1=[0.3209 (2 ) ,0.3209 (2 ) ,0 ] and k2=[0.3338 (4 ) ,0.3338 (4 ) ,0 ] . Magnetic structure analysis unveils a 120∘ structure with the tail-chase geometry having k0 modulated by the incommensurate vector. A classical calculation of the Heisenberg kagome antiferromagnet with antiferromagnetic second-neighbor interaction, for which the ground state a k0120∘ degenerated structure, reveals that the magnetic dipole-dipole (MDD) interaction including up to the fourth neighbor terms selects the tail-chase structure. The observed modulation of the tail-chase structure is attributed to a small perturbation such as the long-range MDD interaction or the interlayer interaction.

  13. Two body and multibody interaction in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing; Gallagher, Tom

    2009-05-01

    Cold Rydberg atoms trapped in a Magneto Optical Trap (MOT) are not isolated and they tend to bond through dipole-dipole and multiple-multiple interactions between Rydberg atoms. The dipole-dipole interaction and van der Waals interaction between two atoms have been intensively studied. However, the fact that the dipole-dipole interaction and van der Waals interaction show the same size of broadening, studied by Raithel's group, and there is transition between two molecular states, studied by Farooqi and Overstreet, can not be explained by the two atom picture. The purpose of this paper is to show the multibody nature of a dense cold Rydberg gas by studying the molecular state microwave spectrum. Specifically, single body, two body and three body interaction regions are separated. Moreover, the multibody energy levels for selected geometries are calculated. In addition, multibody blockade will be discussed. [3pt] [1] A. Reinhard, K. C. Younge, T. Cubel Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008).[0pt] [2] S.M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic,Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Cote, E.E. Eyler, and P.L. Gould, Phys. Rev. Lett. 91, 183002 (2003).[0pt] [3] K. Richard Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403 (2007).

  14. The assessment of pi-pi selective stationary phases for two-dimensional HPLC analysis of foods: application to the analysis of coffee.

    PubMed

    Mnatsakanyan, Mariam; Stevenson, Paul G; Shock, David; Conlan, Xavier A; Goodie, Tiffany A; Spencer, Kylie N; Barnett, Neil W; Francis, Paul S; Shalliker, R Andrew

    2010-09-15

    Differences between alkyl, dipole-dipole, hydrogen bonding, and pi-pi selective surfaces represented by non-resonance and resonance pi-stationary phases have been assessed for the separation of 'Ristretto' café espresso by employing 2DHPLC techniques with C18 phase selectivity detection. Geometric approach to factor analysis (GAFA) was used to measure the detected peaks (N), spreading angle (beta), correlation, practical peak capacity (n(p)) and percentage usage of the separations space, as an assessment of selectivity differences between regional quadrants of the two-dimensional separation plane. Although all tested systems were correlated to some degree to the C18 dimension, regional measurement of separation divergence revealed that performance of specific systems was better for certain sample components. The results illustrate that because of the complexity of the 'real' sample obtaining a truly orthogonal two-dimensional system for complex samples of natural origin may be practically impossible. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Mode Matching for Optical Antennas

    NASA Astrophysics Data System (ADS)

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2017-11-01

    The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  16. A new experimental limit on the electric dipole moment of the electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, C.; Gould, H.; Abdullah, K.

    1990-12-01

    We describe a search for the electric dipole moment d{sub e} of the electron, carried out with {sup 205}Tl atoms in the ground state. The experiment makes use of the separated-oscillating-field magnetic-resonance method, laser state selection, fluorescence detection, and two counter-propagating atomic beams. Very careful attention is paid to systematic effects. The result for the atomic electric dipole moment is d{sub a} = (1.6 {plus minus} 5.0) {times} 10{sup {minus}24} e cm. If we assume the theoretical ratio d{sub a}/d{sub e} = {minus}600, this yields d{sub e} = ({minus}2.7 {plus minus} 8.3) {times} 10{sup {minus}27} e cm. 17 refs., 7more » figs., 1 tab.« less

  17. Relative Intensity of a Cross-Over Resonance to Lamb Dips Observed in Stark Spectroscopy of Methane

    NASA Astrophysics Data System (ADS)

    Okuda, Shoko; Sasada, Hiroyuki

    2017-06-01

    Last ISMS, we reported on Stark effects of the νb{3} band of methane observed with a sub-Doppler resolution spectrometer. We determined the rotation-induced permanent dipole moment (PEDM) in the vibrational ground state and the vibration-, rotation-, and Coriolis-type-interaction-induced PEDMs in the v_{3}=1 state. Figure illustrates Stark modulation spectrum of the Q(6)E with the external electric field of 31.0 kV/cm and the selection rule of Δ M=±1, where M is the magnetic quantum number. The Δ M=1 and -1 components of the Lamb dips labeled by A and B are resolved, and the central component C is identified with the cross-over resonance. The Lamb dips are assigned to the magnetic quantum numbers of the lower and upper states, (M'',M') according to the Clebsch-Gordan coefficients. We found that the relative intensity of the cross-over resonance to the associated Lamb dips depends on the P, Q, and R branches. We ascribe the dependence to the collisional relaxation processes.

  18. Spin voltage generation through optical excitation of complementary spin populations

    NASA Astrophysics Data System (ADS)

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco

    2014-08-01

    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.

  19. Nanofocusing of structured light for quadrupolar light-matter interactions.

    PubMed

    Sakai, Kyosuke; Yamamoto, Takeaki; Sasaki, Keiji

    2018-05-17

    The spatial structure of an electromagnetic field can determine the characteristics of light-matter interactions. A strong gradient of light in the near field can excite dipole-forbidden atomic transitions, e.g., electric quadrupole transitions, which are rarely observed under plane-wave far-field illumination. Structured light with a higher-order orbital angular momentum state may also modulate the selection rules in which an atom can absorb two quanta of angular momentum: one from the spin and another from the spatial structure of the beam. Here, we numerically demonstrate a strong focusing of structured light with a higher-order orbital angular momentum state in the near field. A quadrupole field was confined within a gap region of several tens of nanometres in a plasmonic tetramer structure. A plasmonic crystal surrounding the tetramer structure provides a robust antenna effect, where the incident structured light can be strongly coupled to the quadrupole field in the gap region with a larger alignment tolerance. The proposed system is expected to provide a platform for light-matter interactions with strong multipolar effects.

  20. 77 FR 55888 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Approving a Proposed Rule Change Amending...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Rule 7.31(h) To Add a PL Select Order September 5, 2012. I. Introduction On May 22, 2012, NYSE Arca...,\\2\\ a proposed rule change to amend NYSE Arca Equities Rule 7.31(h) to add a PL Select Order. The... Rule Change Amending NYSE Arca Equities Rule 7.31(h) To Add a PL Select Order Type). II. Description of...

  1. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  2. Independent component analysis of EEG dipole source localization in resting and action state of brain

    NASA Astrophysics Data System (ADS)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-04-01

    EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.

  3. The Lore of the Hair

    NASA Astrophysics Data System (ADS)

    Yunes, Nicolas; Yagi, Kent; Stein, Leo

    2016-03-01

    Stars can be hairy beasts, especially in theories that go beyond Einstein's. In the latter, a scalar field can be sourced and anchored to a neutron star, and if the later is in a binary system, the scalar field will emit dipole radiation. This radiation removes energy from the binary, forcing the orbit to adiabatically decay much more rapidly than due to the emission of gravitational waves as predicted in General Relativity. The detailed radio observation of binary pulsars has constrained the orbital decay of compact binaries stringently, so much so that theories that predict neutron stars with scalar hair are believed to be essentially ruled out. In this talk I will explain why this ``lore'' is actually incorrect, providing a counter-example in which scalar hair is sourced by neutron stars, yet dipole radiation is absent. I will then describe what binary systems need to be observed to constrain such theories with future astrophysical observations. I acknowledge support from NSF CAREER Grant PHY-1250636.

  4. Z Boson Decay into Light and Darkness.

    PubMed

    Fabbrichesi, M; Gabrielli, E; Mele, B

    2018-04-27

    We study the Z→γγ[over ¯] process in which the Z boson decays into a photon γ and a massless dark photon γ[over ¯], when the latter couples to standard-model fermions via dipole moments. This is a simple yet nontrivial example of how the Landau-Yang theorem-ruling out the decay of a massive spin-1 particle into two photons-is evaded if the final particles can be distinguished. The striking signature of this process is a resonant monochromatic single photon in the Z-boson center of mass together with missing momentum. LEP experimental bounds allow a branching ratio up to about 10^{-6} for such a decay. In a simplified model of the dark sector, the dark-photon dipole moments arise from one-loop exchange of heavy dark fermions and scalar messengers. The corresponding prediction for the rare Z→γγ[over ¯] decay width can be explored with the large samples of Z bosons foreseen at future colliders.

  5. Z Boson Decay into Light and Darkness

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, M.; Gabrielli, E.; Mele, B.

    2018-04-01

    We study the Z →γ γ ¯ process in which the Z boson decays into a photon γ and a massless dark photon γ ¯, when the latter couples to standard-model fermions via dipole moments. This is a simple yet nontrivial example of how the Landau-Yang theorem—ruling out the decay of a massive spin-1 particle into two photons—is evaded if the final particles can be distinguished. The striking signature of this process is a resonant monochromatic single photon in the Z -boson center of mass together with missing momentum. LEP experimental bounds allow a branching ratio up to about 10-6 for such a decay. In a simplified model of the dark sector, the dark-photon dipole moments arise from one-loop exchange of heavy dark fermions and scalar messengers. The corresponding prediction for the rare Z →γ γ ¯ decay width can be explored with the large samples of Z bosons foreseen at future colliders.

  6. Secondary relaxation dynamics in rigid glass-forming molecular liquids with related structures.

    PubMed

    Li, Xiangqian; Wang, Meng; Liu, Riping; Ngai, Kia L; Tian, Yongjun; Wang, Li-Min; Capaccioli, Simone

    2015-09-14

    The dielectric relaxation in three glass-forming molecular liquids, 1-methylindole (1MID), 5H-5-Methyl-6,7-dihydrocyclopentapyrazine (MDCP), and Quinaldine (QN) is studied focusing on the secondary relaxation and its relation to the structural α-relaxation. All three glass-formers are rigid and more or less planar molecules with related chemical structures but have dipoles of different strengths at different locations. A strong and fast secondary relaxation is detected in the dielectric spectra of 1MID, while no resolved β-relaxation is observed in MDCP and QN. If the observed secondary relaxation in 1MID is identified with the Johari-Goldstein (JG) β-relaxation, then apparently the relation between the α- and β-relaxation frequencies of 1MID is not in accord with the Coupling Model (CM). The possibility of the violation of the prediction in 1MID as due to either the formation of hydrogen-bond induced clusters or the involvement of intramolecular degree of freedom is ruled out. The violation is explained by the secondary relaxation originating from the in-plane rotation of the dipole located on the plane of the rigid molecule, contributing to dielectric loss at higher frequencies and more intense than the JG β-relaxation generated by the out-of-plane rotation. MDCP has smaller dipole moment located in the plane of the molecule; however, presence of the change of curvature of dielectric loss, ε″(f), at some frequency on the high-frequency flank of the α-relaxation reveals the JG β-relaxation in MDCP and which is in accord with the CM prediction. QN has as large an in-plane dipole moment as 1MID, and the absence of the resolved secondary relaxation is explained by the smaller coupling parameter than the latter in the framework of the CM.

  7. Tunable antenna radome based on graphene frequency selective surface

    NASA Astrophysics Data System (ADS)

    Qu, Meijun; Rao, Menglou; Li, Shufang; Deng, Li

    2017-09-01

    In this paper, a graphene-based frequency selective surface (FSS) is proposed. The proposed FSS exhibits a tunable bandpass filtering characteristic due to the alterable conductivity of the graphene strips which is controlled by chemical potential. Based on the reconfigurable bandpass property of the proposed FSS, a cylindrical antenna radome is designed using the FSS unit cells. A conventional omnidirectional dipole can realize a two-beam directional pattern when it is placed into the proposed antenna radome. Forward and backward endfire radiations of the dipole loaded with the radome is realized by properly adjusting the chemical potential. The proposed antenna radome is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems when the gain of a conventional antenna needs to be enhanced.

  8. Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions.

    PubMed

    Choi, Bongseok; Iwanaga, Masanobu; Sugimoto, Yoshimasa; Sakoda, Kazuaki; Miyazaki, Hideki T

    2016-08-10

    Lanthanoid series are unique in atomic elements. One reason is because they have 4f electronic states forbidding electric-dipole (ED) transitions in vacuum and another reason is because they are very useful in current-day optical technologies such as lasers and fiber-based telecommunications. Trivalent Er ions are well-known as a key atomic element supporting 1.5 μm band optical technologies and also as complex photoluminescence (PL) band deeply mixing ED and magnetic-dipole (MD) transitions. Here we show large and selective enhancement of ED and MD radiations up to 83- and 26-fold for a reference bulk state, respectively, in experiments employing plasmonic nanocavity arrays. We achieved the marked PL enhancement by use of an optimal design for electromagnetic (EM) local density of states (LDOS) and by Er-ion doping in deep subwavelength precision. We moreover clarify the quantitative contribution of ED and MD radiations to the PL band, and the magnetic Purcell effect in the PL-decay temporal measurement. This study experimentally demonstrates a new scheme of EM-LDOS engineering in plasmon-enhanced photonics, which will be a key technique to develop loss-compensated and active plasmonic devices.

  9. Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te

    NASA Technical Reports Server (NTRS)

    Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.

    1997-01-01

    Transition metal doped solids are of significant current interest for the development of tunable solid-state lasers for the near and mid-infrared (1-4 pm) spectral region. Applications of these lasers include basic research in atomic, molecular, and solid-state physics, optical communication, medicine, and environmental studies of the atmosphere. In transition metal based laser materials, absorption and emission of light arises from electronic transitions between crystal field split energy levels of 3d transition metal ions. The optical spectra generally exhibit broad bands due to the strong interaction between dopant and host (electron-phonon coupling). Broad emission bands offer the prospect of tunable laser activity over a wide wavelength range, e.g. the tuning range of Ti:Sapphire extends from 700-1100 run. The only current transition metal laser operating in the mid-infrared wavelength region (1.8-2.4 micro-m) is CO(2+):MgF2, but its performance is severely limited due to strong nonradiative decay at room temperature. Based on lifetime data, the quantum efficiency is estimated to be less than 3 deg/0 11,21. In general, the probability for non-radiative decay via multi-phonon relaxation increases with decreasing energy gap between ground and excited state. Therefore, efficient transition metal lasers beyond -1.6 micro-m are rare. Recently, tunable laser activity around 2.3 micro-m was observed from Cr doped ZnS and ZnSe. The new lasing center in these materials was identified as Cr(2+) occupying the tetrahedral Zn site. Tetrahedrally coordinated optical centers are rather unusual among transition metal lasers. Their potential usefulness, however, has been demonstrated by the recent development of near infrared laser materials such as Cr:forsterite and Cr:YAG, which are based on tetrahedrally coordinated Cr(4+) ions. According to the Laporte selection rule, electric-dipole transition within the optically active 3d-electron shells are parity forbidden. However, a static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.

  10. Determination of π± meson polarizabilities from the γγ→π+π- process

    NASA Astrophysics Data System (ADS)

    Fil'Kov, L. V.; Kashevarov, V. L.

    2006-03-01

    A fit of the experimental data to the total cross section of the process γγ→π+π- in the energy region from threshold to 2500 MeV has been carried out using dispersion relations with subtractions for the invariant amplitudes, where the dipole and the quadrupole polarizabilities of the charged pion are free parameters. As a result, the sum and the difference of the electric and magnetic dipole and quadrupole polarizabilities of the charged pion have been found: (α1+β1)π±=(0.18-0.02+0.11)×10-4fm3,(α1-β1)π±=(13.0-1.9+2.6)×10-4fm3,(α2+β2)π±=(0.133±0.015)×10-4fm5,(α2-β2)π±=(25.0-0.3+0.8)×10-4fm5. These values agree with the dispersion sum rule predictions. The value found for the difference of the dipole polarizabilities is consistent with the results obtained from scattering of high energy π- mesons off the Coulomb field of heavy nuclei [Yu. M. Antipov , Phys. Lett. B121, 445 (1983)] and from radiative π+ photoproduction from the proton at MAMI [J. Ahrens , Eur. Phys. J. A 23, 113 (2005)], whereas it is at variance with the recent calculations in the framework of chiral perturbation theory.

  11. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Meng; Nakayama, Miki; Liu, Ping

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  12. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE PAGES

    Xue, Meng; Nakayama, Miki; Liu, Ping; ...

    2017-09-13

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  13. Microwave absorption in powders of small conducting particles for heating applications.

    PubMed

    Porch, Adrian; Slocombe, Daniel; Edwards, Peter P

    2013-02-28

    In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.

  14. Photoionisation of molecular wavepackets - the NaK( C1Σ +) case

    NASA Astrophysics Data System (ADS)

    Andersson, Renée; Kadi, Malin; Davidsson, Jan; Hansson, Tony

    2002-01-01

    The ultrafast photoionisation dynamics of NaK molecules in the C(3) 1Σ + state is investigated by pump-probe spectroscopy. The results are consistent with decreasing electronic transition dipole moment for photoionisation of the C state with increasing internuclear separation, due to increasing Na +K - ion pair character of the C state at the outer turning point of the wavepacket trajectory. Effects of a possible low-lying superexcited state cannot be ruled out, though, and in general future studies on ultrafast photoionisation processes need to address in more detail such effects.

  15. Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.

    PubMed

    Panaretos, Anastasios H; Werner, Douglas H

    2015-04-06

    In this paper we theoretically investigate the feasibility of creating a dual-mode plasmonic nanorod antenna. The proposed design methodology relies on adapting to optical wavelengths the principles of operation of trapped dipole antennas, which have been widely used in the low MHz frequency range. This type of antenna typically employs parallel LC circuits, also referred to as "traps", which are connected along the two arms of the dipole. By judiciously choosing the resonant frequency of these traps, as well as their position along the arms of the dipole, it is feasible to excite the λ/2 resonance of both the original dipole as well as the shorter section defined by the length of wire between the two traps. This effectively enables the dipole antenna to have a dual-mode of operation. Our analysis reveals that the implementation of this concept at the nanoscale requires that two cylindrical pockets (i.e. loading volumes) be introduced along the length of the nanoantenna, inside which plasmonic core-shell particles are embedded. By properly selecting the geometry and constitution of the core-shell particle as well as the constitution of the host material of the two loading volumes and their position along the nanorod, the equivalent effect of a resonant parallel LC circuit can be realized. This effectively enables a dual-mode operation of the nanorod antenna. The proposed methodology introduces a compact approach for the realization of dual-mode optical sensors while at the same time it clearly illustrates the inherent tuning capabilities that core-shell particles can offer in a practical framework.

  16. Monopole and dipole estimation for multi-frequency sky maps by linear regression

    NASA Astrophysics Data System (ADS)

    Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.; Banday, A. J.; Dickinson, C.; Ghosh, T.; Górski, K. M.; Lawrence, C. R.; Leahy, J. P.; Maino, D.; Reich, P.; Reich, W.

    2017-01-01

    We describe a simple but efficient method for deriving a consistent set of monopole and dipole corrections for multi-frequency sky map data sets, allowing robust parametric component separation with the same data set. The computational core of this method is linear regression between pairs of frequency maps, often called T-T plots. Individual contributions from monopole and dipole terms are determined by performing the regression locally in patches on the sky, while the degeneracy between different frequencies is lifted whenever the dominant foreground component exhibits a significant spatial spectral index variation. Based on this method, we present two different, but each internally consistent, sets of monopole and dipole coefficients for the nine-year WMAP, Planck 2013, SFD 100 μm, Haslam 408 MHz and Reich & Reich 1420 MHz maps. The two sets have been derived with different analysis assumptions and data selection, and provide an estimate of residual systematic uncertainties. In general, our values are in good agreement with previously published results. Among the most notable results are a relative dipole between the WMAP and Planck experiments of 10-15μK (depending on frequency), an estimate of the 408 MHz map monopole of 8.9 ± 1.3 K, and a non-zero dipole in the 1420 MHz map of 0.15 ± 0.03 K pointing towards Galactic coordinates (l,b) = (308°,-36°) ± 14°. These values represent the sum of any instrumental and data processing offsets, as well as any Galactic or extra-Galactic component that is spectrally uniform over the full sky.

  17. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jia-Xing; Hu, Yuan; Jin, Yu

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for bothmore » systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.« less

  18. Bonding of Alkali-Alkaline Earth Molecules in the Lowest Σ^+ States of Doublet and Quartet Multiplicity

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Hauser, Andreas W.; Ernst, Wolfgang E.

    2016-06-01

    n the present study the ground state as well as the lowest ^4Σ^+ state were determined for 16 AK-AKE molecules. Multireference configuration interaction calculations were carried out in order to understand the bonding of diatomic alkali-alkaline earth (AK-AKE) molecules. The correlations between molecular properties (disociation energy, bond distances, electric dipole moment) and atomic properties (electronegativity, polarizability) will be discussed. A correlation between the dissociation energy and the dipole moment of the lowest ^4Σ^+ state was observed, while the dipole moment of the lowest ^2Σ^+ state does not show such a simple dependency. In this case an empirical relation could be established. The class of AK-AKE molecules was selected for this investigation due to their possible applications in ultracold molecular physics. J. V. Pototschnig, A. W. Hauser and W. E. Ernst, Phys. Chem. Chem. Phys., 2016,18, 5964-5973

  19. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states.

    PubMed

    Han, Jia-Xing; Hu, Yuan; Jin, Yu; Zhang, Guo-Feng

    2016-04-07

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.

  20. Dipole source localization of event-related brain activity indicative of an early visual selective attention deficit in ADHD children.

    PubMed

    Jonkman, L M; Kenemans, J L; Kemner, C; Verbaten, M N; van Engeland, H

    2004-07-01

    This study was aimed at investigating whether attention-deficit hyperactivity disorder (ADHD) children suffer from specific early selective attention deficits in the visual modality with the aid of event-related brain potentials (ERPs). Furthermore, brain source localization was applied to identify brain areas underlying possible deficits in selective visual processing in ADHD children. A two-channel visual color selection task was administered to 18 ADHD and 18 control subjects in the age range of 7-13 years and ERP activity was derived from 30 electrodes. ADHD children exhibited lower perceptual sensitivity scores resulting in poorer target selection. The ERP data suggested an early selective-attention deficit as manifested in smaller frontal positive activity (frontal selection positivity; FSP) in ADHD children around 200 ms whereas later occipital and fronto-central negative activity (OSN and N2b; 200-400 ms latency) appeared to be unaffected. Source localization explained the FSP by posterior-medial equivalent dipoles in control subjects, which may reflect the contribution of numerous surrounding areas. ADHD children have problems with selective visual processing that might be caused by a specific early filtering deficit (absent FSP) occurring around 200 ms. The neural sources underlying these problems have to be further identified. Source localization also suggested abnormalities in the 200-400 ms time range, pertaining to the distribution of attention-modulated activity in lateral frontal areas.

  1. Metamaterial composition comprising frequency-selective-surface resonant element disposed on/in a dielectric flake, methods, and applications

    DOEpatents

    Shelton, David; Boreman, Glenn; D'Archangel, Jeffrey

    2015-11-10

    Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 .mu.m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.

  2. 78 FR 6385 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Approving a Proposed Rule Change Amending...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Rule 7.31(h)(7) To Permit PL Select Orders To Interact With Incoming Orders Larger Than the Size of the PL Select Order January 24, 2013. I. Introduction On November 27, 2012, NYSE Arca, Inc. (``Exchange... proposed rule change to amend NYSE Arca Equities Rule 7.31(h)(7) to permit PL Select Orders to interact...

  3. Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60.

    PubMed

    Xu, Minzhong; Jiménez-Ruiz, Mónica; Johnson, Mark R; Rols, Stéphane; Ye, Shufeng; Carravetta, Marina; Denning, Mark S; Lei, Xuegong; Bačić, Zlatko; Horsewill, Anthony J

    2014-09-19

    We report an inelastic neutron scattering (INS) study of a H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules.

  4. Vertical length scale selection for pancake vortices in strongly stratified viscous fluids

    NASA Astrophysics Data System (ADS)

    Godoy-Diana, Ramiro; Chomaz, Jean-Marc; Billant, Paul

    2004-04-01

    The evolution of pancake dipoles of different aspect ratio is studied in a stratified tank experiment. Two cases are reported here for values of the dipole initial aspect ratio alpha_0 = L_v/L_h (where L_v and L_h are vertical and horizontal length scales, respectively) of alpha_0 = 0.4 (case I) and alpha_0 = 1.2 (case II). In the first case, the usual decay scenario is observed where the dipole diffuses slowly with a growing thickness and a decaying circulation. In case II, we observed a regime where the thickness of the dipole decreases and the circulation in the horizontal mid-plane of the vortices remains constant. We show that this regime where the vertical length scale decreases can be explained by the shedding of two boundary layers at the top and bottom of the dipole that literally peel off vorticity layers. Horizontal advection and vertical diffusion cooperate in this regime and the decrease towards the viscous vertical length scale delta = L_hRe(-1/2) occurs on a time scale alpha_0 Re(1/2) T_A, T_A being the advection time L_h/U. From a scaling analysis of the equations for a stratified viscous fluid in the Boussinesq approximation, two dominant balances depending on the parameter R = ReF_h(2) are discussed, where F_h = U/NL_h is the horizontal Froude number and Re = UL_h/nu is the Reynolds number, U, N and nu being, respectively, the translation speed of the dipole, the Brunt Väisälä frequency and the kinematic viscosity. When R≫ 1 the vertical length scale is determined by buoyancy effects to be of order L_b = U/N. The experiments presented in this paper pertain to the case of small R, where viscous effects govern the selection of the vertical length scale. We show that if initially L_v ≤ delta, the flow diffuses on the vertical (case I), while if L_v ≫ delta (case II), vertically sheared horizontal advection decreases the vertical length scale down to delta. This viscous regime may explain results from experiments and numerical simulations on the late evolution of stratified flows where the decay is observed to be independent of the buoyancy frequency N.

  5. Experimental study of the electric dipole strength in the even Mo nuclei and its deformation dependence

    NASA Astrophysics Data System (ADS)

    Erhard, M.; Junghans, A. R.; Nair, C.; Schwengner, R.; Beyer, R.; Klug, J.; Kosev, K.; Wagner, A.; Grosse, E.

    2010-03-01

    Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental determination of the photon strength function covering the high excitation energy range above 4 MeV with its increasing level density. Photon scattering was used up to the neutron separation energies Sn and data up to the maximum of the isovector giant resonance (GDR) were obtained by photoactivation. After a proper correction for multistep processes the observed quasicontinuous spectra of scattered photons show a remarkably good match to the photon strengths derived from nuclear photoeffect data obtained previously by neutron detection and corrected in absolute scale by using the new activation results. The combined data form an excellent basis to derive a shape dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N=50 neutron shell (i.e., with the impact of quadrupole deformation and triaxiality). The wide energy coverage of the data allows for a stringent assessment of the dipole sum rule and a test of a novel parametrization developed previously which is based on it. This parametrization for the electric dipole strength function in nuclei with A>80 deviates significantly from prescriptions generally used previously. In astrophysical network calculations it may help to quantify the role the p-process plays in cosmic nucleosynthesis. It also has impact on the accurate analysis of neutron capture data of importance for future nuclear energy systems and waste transmutation.

  6. Isoscalar compression modes within fluid dynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolomietz, V. M.; Cyclotron Institute, Texas A and M University, College Station, Texas 77843-3366; Shlomo, S.

    2000-06-01

    We study the nuclear isoscalar monopole and dipole compression modes in nuclei within the fluid dynamic approach (FDA) with and without the effect of relaxation. For a wide region of the medium and heavy nuclei, the FDA predicts that the isoscalar giant monopole resonance (ISGMR) and the isoscalar giant dipole resonance (ISGDR) exhaust about 90% of the corresponding model-independent sum rules. In the case of neglecting the effect of relaxation, the FDA, when adjusted to reproduce the centroid energy E0 of the ISGMR, results with centroid energy E1 of the ISGDR which is in agreement with the predictions of themore » self-consistent Hartree-Fock random-phase approximation calculations and the scaling model but significantly larger than the experimental value. We also show that the FDA leads to the correct hydrodynamic limit for the ratio (E1/E0){sub FDA}. We find that the ratio (E1/E0){sub FDA} depends on the relaxation time and approaches the preliminary experimental value (E1/E0){sub exp}=1.5{+-}0.1 in a short relaxation time limit. (c) 2000 The American Physical Society.« less

  7. Investigating the Role of Adducts in Protein Supercharging with Sulfolane

    NASA Astrophysics Data System (ADS)

    Douglass, Kevin Aart; Venter, Andre R.

    2012-03-01

    The supercharging effect of sulfolane on cytochrome c (cyt c) during electrospray ionization mass spectrometry (ESI-MS) in the absence of conformational effects was investigated. The addition of sulfolane on the order of 1 mM or greater to denaturing solutions of cyt c results in supercharging independent of protein concentration over the range of 0.1 to 10 μM. While supercharging was observed in the positive mode, no change in the charge state distribution was observed in the negative mode, ruling out polarity-independent factors such as conformational changes or surface tension effects. A series of sulfolane adducts observed with increasing intensity concurrent with increasing charge state suggests that a direct interaction between sulfolane and the charged sites of cyt c plays an important role in supercharging. We propose that charge delocalization occurring through large-scale dipole reordering of the highly polar supercharging reagent reduces the electrostatic barrier for proximal charging along the cyt c amino acid chain. Supporting this claim, supercharging was shown to increase with increasing dipole moment for several supercharging reagents structurally related to sulfolane.

  8. Microscopic theory of optical absorption in graphene enhanced by lattices of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mueller, Niclas S.; Reich, Stephanie

    2018-06-01

    We present a microscopic description of plasmon-enhanced optical absorption in graphene, which is based on perturbation theory. We consider the interaction of graphene with a lattice of plasmonic nanoparticles, as was previously realized experimentally. By using tight-binding wave functions for the electronic states of graphene and the dipole approximation for the plasmon, we obtain analytic expressions for the coupling matrix element and enhanced optical absorption. The plasmonic nanostructure induces nonvertical optical transitions in the band structure of graphene with selection rules for the momentum transfer that depend on the periodicity of the plasmonic lattice. The plasmon-mediated optical absorption leads to an anisotropic carrier population around the K point in phase space, which depends on the polarization pattern of the plasmonic near field in the graphene plane. Using Fourier optics, we draw a connection to a macroscopic approach, which is independent from graphene-specific parameters. Each Fourier component of the plasmonic near field corresponds to the momentum transfer of an optical transition. Both approaches lead to the same expression for the integrated optical absorption enhancement, which is relevant for the photocurrent enhancement in graphene-based optoelectronic devices.

  9. Vibronic bands in the HOMO-LUMO excitation of linear polyyne molecules

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Tomonari; Wada, Yoriko; Iwahara, Naoya; Sato, Tohru

    2013-04-01

    Hydrogen-capped linear carbon chain molecules, namely polyynes H(C≡C)nH (n>=2), give rise to three excited states in the HOMO-LUMO excitation. Electric dipole transition from the ground state is fully allowed to one of the three excited states, while forbidden for the other two low-lying excited states. In addition to the strong absorption bands in the UV for the allowed transition, the molecules exhibit weak absorption and emission bands in the near UV and visible wavelength regions. The weak features are the vibronic bands in the forbidden transition. In this article, symmetry considerations are presented for the optical transitions in the centrosymmetric linear polyyne molecule. The argument includes Herzberg-Teller expansion for the state mixing induced by nuclear displacements along the normal coordinate of the molecule, intensity borrowing from fully allowed transitions, and inducing vibrational modes excited in the vibronic transition. The vibronic coupling considered here includes off-diagonal matrix elements for second derivatives along the normal coordinate. The vibronic selection rule for the forbidden transition is derived and associated with the transition moment with respect to the molecular axis. Experimental approaches are proposed for the assignment of the observed vibronic bands.

  10. 77 FR 34115 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change Amending...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Equities Rule 7.31(h) To Add a PL Select Order Type June 4, 2012. Pursuant to Section 19(b)(1) of the... Change The Exchange proposes to amend NYSE Arca Equities Rule 7.31(h) to add a PL Select Order type. The... add a PL Select Order type. Pursuant to NYSE Arca Equities Rule 7.31(h)(4), a Passive Liquidity (``PL...

  11. Tilt aftereffect following adaptation to translational Glass patterns

    PubMed Central

    Pavan, Andrea; Hocketstaller, Johanna; Contillo, Adriano; Greenlee, Mark W.

    2016-01-01

    Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention. PMID:27005949

  12. Teaching the Spin Selection Rule: An Inductive Approach

    ERIC Educational Resources Information Center

    Halstead, Judith A.

    2013-01-01

    In the group exercise described, students are guided through an inductive justification for the spin conservation selection rule ([delta]S = 0). Although the exercise only explicitly involves various states of helium, the conclusion is one of the most widely applicable selection rules for the interaction of light with matter, applying, in various…

  13. Efficiency in Rule- vs. Plan-Based Movements Is Modulated by Action-Mode.

    PubMed

    Scheib, Jean P P; Stoll, Sarah; Thürmer, J Lukas; Randerath, Jennifer

    2018-01-01

    The rule/plan motor cognition (RPMC) paradigm elicits visually indistinguishable motor outputs, resulting from either plan- or rule-based action-selection, using a combination of essentially interchangeable stimuli. Previous implementations of the RPMC paradigm have used pantomimed movements to compare plan- vs. rule-based action-selection. In the present work we attempt to determine the generalizability of previous RPMC findings to real object interaction by use of a grasp-to-rotate task. In the plan task, participants had to use prospective planning to achieve a comfortable post-handle rotation hand posture. The rule task used implementation intentions (if-then rules) leading to the same comfortable end-state. In Experiment A, we compare RPMC performance of 16 healthy participants in pantomime and real object conditions of the experiment, within-subjects. Higher processing efficiency of rule- vs. plan-based action-selection was supported by diffusion model analysis. Results show a significant response-time increase in the pantomime condition compared to the real object condition and a greater response-time advantage of rule-based vs. plan-based actions in the pantomime compared to the real object condition. In Experiment B, 24 healthy participants performed the real object RPMC task in a task switching vs. a blocked condition. Results indicate that plan-based action-selection leads to longer response-times and less efficient information processing than rule-based action-selection in line with previous RPMC findings derived from the pantomime action-mode. Particularly in the task switching mode, responses were faster in the rule compared to the plan task suggesting a modulating influence of cognitive load. Overall, results suggest an advantage of rule-based action-selection over plan-based action-selection; whereby differential mechanisms appear to be involved depending on the action-mode. We propose that cognitive load is a factor that modulates the advantageous effect of implementation intentions in motor cognition on different levels as illustrated by the varying speed advantages and the variation in diffusion parameters per action-mode or condition, respectively.

  14. 76 FR 4144 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... PHLX LLC Relating to Rebates and Fees for Adding and Removing Liquidity in Select Symbols January 14... Terms of Substance of the Proposed Rule Change The Exchange proposes to amend the Select Symbols in... Select Symbols. The text of the proposed rule change is available on the Exchange's Web site at http...

  15. On the search for the electric dipole moment of strange and charm baryons at LHC

    NASA Astrophysics Data System (ADS)

    Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J.

    2017-03-01

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in p p collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and \\overline{Λ} baryons. For short-lived {Λ} ^+c and {Ξ} ^+c baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.

  16. Lattice calculation of electric dipole moments and form factors of the nucleon

    NASA Astrophysics Data System (ADS)

    Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.

    2017-07-01

    We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.

  17. Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces

    NASA Astrophysics Data System (ADS)

    Burrow, Joshua A.; Yahiaoui, Riad; Sarangan, Andrew; Agha, Imad; Mathews, Jay; Searles, Thomas A.

    2017-12-01

    We report the polarization-dependent electromagnetic response from a series of novel terahertz (THz) metasurfaces where asymmetry is introduced through the displacement of two adjacent metallic arms separated by a distance $\\delta$. For all polarization states, the symmetric metasurface exhibits a low quality (Q) factor fundamental dipole mode. By breaking the symmetry, we experimentally observe a secondary dipole-like mode with a Q factor nearly $9\\times$ higher than the fundamental resonance. As $\\delta$ increases, the fundamental dipole mode $f_{1}$ redshifts and the secondary mode $f_{2}$ blueshifts creating a highly transmissive spectral window. Polarization-dependent measurements reveal a full suppression of $f_{2}$ for all asymmetries at $\\theta \\geq 60^\\circ$. Furthermore, at $\\delta \\geq 60 \\text{ }\\mu\\text{m}$, we observe a polarization selective electromagnetic induced transparency (EIT) for the fundamental mode. This work paves the way for applications in filtering, sensing and slow-light devices common to other high Q factor THz metasurfaces with EIT-like response.

  18. Criterion learning in rule-based categorization: Simulation of neural mechanism and new data

    PubMed Central

    Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd

    2015-01-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349

  19. Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

    PubMed

    Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd

    2015-04-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The research of selection model based on LOD in multi-scale display of electronic map

    NASA Astrophysics Data System (ADS)

    Zhang, Jinming; You, Xiong; Liu, Yingzhen

    2008-10-01

    This paper proposes a selection model based on LOD to aid the display of electronic map. The ratio of display scale to map scale is regarded as a LOD operator. The categorization rule, classification rule, elementary rule and spatial geometry character rule of LOD operator setting are also concluded.

  1. 75 FR 76065 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... PHLX, Inc. Relating to Rebates and Fees for Adding and Removing Liquidity in Select Symbols December 1... Select Symbols in Section I of the Fee Schedule. The text of the proposed rule change is available on the.... Purpose The purpose of the proposed rule change is to amend the list of Select Symbols in the Exchange's...

  2. Non-Dipole Features of the Geomagnetic Field May Persist for Millions of Years

    NASA Astrophysics Data System (ADS)

    Biasi, J.; Kirschvink, J. L.

    2017-12-01

    Here we present paleointensity results from within the South Atlantic Anomaly (SAA), which is a large non-dipole feature of the geomagnetic field. Within the area of the SAA, anomalous declinations, inclinations, and intensities are observed. Our results suggest that the SAA has been present for at least 5 Ma. This is orders-of-magnitude greater than any previous estimate, and suggests that some non-dipole features do not `average out' over geologic time, which is a fundamental assumption in all paleodirectional studies. The SAA has been steadily growing in size since the first magnetic measurements were made in the South Atlantic, and it is widely believed to have appeared 400 years ago. Recent studies from South Africa (Tarduno et al. (2015)) and Tristan da Cunha (Shah et al. (2016)) have suggested that the SAA has persisted for 1 ka and 96 ka respectively. We conducted paleointensity (PI) experiments on basaltic lavas from James Ross Island, on the Antarctic Peninsula. This large shield volcano has been erupting regularly over the last 6+ Ma (dated via Ar/Ar geochronology), and therefore contains the most complete volcanostratigraphic record in the south Atlantic. Our PI experiments used the Thellier-Thellier method, the IZZI protocol, and the same selection criteria as the Lawrence et al. (2009) study of Ross Island lavas (near McMurdo Station), which is the only comparable PI study on the Antarctic continent. We determined an average paleointensity at JRI of 13.8±5.2 μT, which is far lower than what we would expect from a dipole field (55 μT). In addition, this is far lower than the current value over James Ross Island of 36 μT. These results support the following conclusions: The time-averaged field model of Juarez et al. (1998) and Tauxe et al. (2013) is strongly favored by our PI data. The SAA has persisted over James Ross Island for at least 5 Ma, and has not drifted significantly over that time. The strength of non-dipole features such as the SAA scales with the dipole moment of the earth. Non-dipole features like the SAA can survive geomagnetic reversals. The fundamental assumption that non-dipole features of the geomagnetic field are `averaged out' over geologic timescales needs to be reconsidered.

  3. Efficiency in Rule- vs. Plan-Based Movements Is Modulated by Action-Mode

    PubMed Central

    Scheib, Jean P. P.; Stoll, Sarah; Thürmer, J. Lukas; Randerath, Jennifer

    2018-01-01

    The rule/plan motor cognition (RPMC) paradigm elicits visually indistinguishable motor outputs, resulting from either plan- or rule-based action-selection, using a combination of essentially interchangeable stimuli. Previous implementations of the RPMC paradigm have used pantomimed movements to compare plan- vs. rule-based action-selection. In the present work we attempt to determine the generalizability of previous RPMC findings to real object interaction by use of a grasp-to-rotate task. In the plan task, participants had to use prospective planning to achieve a comfortable post-handle rotation hand posture. The rule task used implementation intentions (if-then rules) leading to the same comfortable end-state. In Experiment A, we compare RPMC performance of 16 healthy participants in pantomime and real object conditions of the experiment, within-subjects. Higher processing efficiency of rule- vs. plan-based action-selection was supported by diffusion model analysis. Results show a significant response-time increase in the pantomime condition compared to the real object condition and a greater response-time advantage of rule-based vs. plan-based actions in the pantomime compared to the real object condition. In Experiment B, 24 healthy participants performed the real object RPMC task in a task switching vs. a blocked condition. Results indicate that plan-based action-selection leads to longer response-times and less efficient information processing than rule-based action-selection in line with previous RPMC findings derived from the pantomime action-mode. Particularly in the task switching mode, responses were faster in the rule compared to the plan task suggesting a modulating influence of cognitive load. Overall, results suggest an advantage of rule-based action-selection over plan-based action-selection; whereby differential mechanisms appear to be involved depending on the action-mode. We propose that cognitive load is a factor that modulates the advantageous effect of implementation intentions in motor cognition on different levels as illustrated by the varying speed advantages and the variation in diffusion parameters per action-mode or condition, respectively. PMID:29593612

  4. A Paleointensity-Based Test of the Geocentric Axial Dipole (GAD) Hypothesis

    NASA Astrophysics Data System (ADS)

    Heimpel, M. H.; Veikkolainen, T.; Evans, M. E.; Pesonen, L. J.; Korhonen, K.

    2016-12-01

    The GAD model is central to many aspects of geophysics, including plate tectonics and paleoclimate. However, significant departures from a GAD field over geologic time have not been ruled out, particularly for the Precambrian. Here, we investigate a test of the GAD model using published paleointensity data. Our goals are to determine if paleointensities can shed light on the validity of the GAD model, and hence to see if they provide constraints on the evolution of the geodynamo throughout earth history. Using numerical dynamo models, we show that intensity distributions can be fairly well characterized by the first three zonal Gauss coefficients (dipole, quadrupole and octupole), although time-averaging tends to broaden the range of intensities. The dynamo models indicate that the ancient core, prior to nucleation of the inner core, may have had a significant (up to 10%) contribution of the zonal octupole. We then investigate the connection between the measured paleointensities assembled in the PINT database and the GAD model by means of predicted theoretical frequency distributions for various simple models (GAD, GAD ± small zonal quadrupole or octupole components). Hitherto, paleointensities have often been analysed in terms of corresponding virtual dipole moments (VDMs). But this rather begs the question because a GAD model is assumed in order to derive a VDM. By using raw field values reported from each sampling site we eliminate dependence on the GAD hypothesis. We find that models consisting of one or two different GADs cannot explain the data, but 3- or 4-GAD models can fit the data surprisingly well, and adding a ±5% octupole significantly improves the fit.

  5. Low Profile Tunable Dipole Antennas Using BST Varactors for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas; Price, Tony; Miranda, Felix A.

    2013-01-01

    In this presentation a 2.4 GHz low profile (lambda45) tunable dipole antenna is evaluated in the presence of a human core model (HCM) body phantom. The antenna uses a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells and its performance is compared to a similar low profile antenna that uses an FSS with semiconductor varactor diodes. The measured data of the antenna demonstrate tunability from 2.2 GHz to 2.55 GHz in free space and impedance match improvement in the presence of a HCM at different distances. This antenna has smaller size, lower cost and less weight compared to the semiconductor varactor diode counterpart.

  6. Yellow to greenish-blue colour-tunable photoluminescence and 4f-centered slow magnetic relaxation in a cyanido-bridged Dy(III)(4-hydroxypyridine)-Co(III) layered material.

    PubMed

    Chorazy, Szymon; Wang, Junhao; Ohkoshi, Shin-Ichi

    2016-09-14

    A cyanido-bridged layered {[Dy(III)(4-OHpy)2(H2O)3][Co(III)(CN)6]}·0.5H2O (1) (4-OHpy = 4-hydroxypyridine) framework with dual photo-luminescence and magnetic properties was prepared. 1 exhibits visible emission whose color, yellow to greenish-blue, is switchable by selected wavelengths of UV excitation light. Magnetic data revealed that 1 shows not only the slow magnetic relaxation of a typical Dy(III) single-ion origin but also the relaxation process caused by the magnetic dipole-magnetic dipole interactions between the neighbouring Dy(III) centers.

  7. Low Profile Tunable Dipole Antenna Using BST Varactors for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas M.; Miranda, Felix A.; Price, Tony

    2013-01-01

    In this paper a 2.4 GHz low profile (lambda/47) tunable dipole antenna is evaluated in the presence of a human core model (HCM) body phantom. The antenna uses a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells and its performance is compared to a similar low profile antenna that uses an FSS with semiconductor varactor diodes. The measured data of the antenna demonstrate tunability from 2.2 GHz to 2.55 GHz in free space and impedance match improvement in the presence of a HCM at different distances. This antenna has smaller size, lower cost and less weight compared to the semiconductor varactor diode counterpart.

  8. Field tuning the g factor in InAs nanowire double quantum dots.

    PubMed

    Schroer, M D; Petersson, K D; Jung, M; Petta, J R

    2011-10-21

    We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society

  9. EM61-MK2 Response of Three Munitions Surrogates

    DTIC Science & Technology

    2009-03-12

    time-domain electromagnetic induction sensors, it produces a pulsed magnetic field (primary field) that induces a secondary field in metallic objects...selected and marked as potential metal targets. This initial list of anomalies is used as input to an analysis step that selects anomalies for digging...response of a metallic object to an Electromagnetic Induction sensor is most simply modeled as an induced dipole moment represented by a magnetic

  10. The Construct of Attention in Schizophrenia

    PubMed Central

    Luck, Steven J.; Gold, James M.

    2008-01-01

    Schizophrenia is widely thought to involve deficits of attention. However, the term attention can be defined so broadly that impaired performance on virtually any task could be construed as evidence for a deficit in attention, and this has slowed cumulative progress in understanding attention deficits in schizophrenia. To address this problem, we divide the general concept of attention into two distinct constructs: input selection, the selection of task-relevant inputs for further processing; and rule selection, the selective activation of task-appropriate rules. These constructs are closely tied to working memory, because input selection mechanisms are used to control the transfer of information into working memory and because working memory stores the rules used by rule selection mechanisms. These constructs are also closely tied to executive function, because executive systems are used to guide input selection and because rule selection is itself at key aspect of executive function. Within the domain of input selection, it is important to distinguish between the control of selection—the processes that guide attention to task-relevant inputs—and the implementation of selection—the processes that enhance the processing of the relevant inputs and suppress the irrelevant inputs. Current evidence suggests that schizophrenia involves a significant impairment in the control of selection but little or no impairment in the implementation of selection. Consequently, the CNTRICS participants agreed by consensus that attentional control should be a priority target for measurement and treatment research in schizophrenia. PMID:18374901

  11. Coulomb couplings in solubilised light harvesting complex II (LHCII): challenging the ideal dipole approximation from TDDFT calculations.

    PubMed

    López-Tarifa, P; Liguori, Nicoletta; van den Heuvel, Naudin; Croce, Roberta; Visscher, Lucas

    2017-07-19

    The light harvesting complex II (LHCII), is a pigment-protein complex responsible for most of the light harvesting in plants. LHCII harvests sunlight and transfers excitation energy to the reaction centre of the photo-system, where the water oxidation process takes place. The energetics of LHCII can be modulated by means of conformational changes allowing a switch from a harvesting to a quenched state. In this state, the excitation energy is no longer transferred but converted into thermal energy to prevent photooxidation. Based on molecular dynamics simulations at the microsecond time scale, we have recently proposed that the switch between different fluorescent states can be probed by correlating shifts in the chromophore-chromophore Coulomb interactions to particular protein movements. However, these findings are based upon calculations in the ideal point dipole approximation (IDA) where the Coulomb couplings are simplified as first order dipole-dipole interactions, also assuming that the chromophore transition dipole moments lay in particular directions of space with constant moduli (FIX-IDA). In this work, we challenge this approximation using the time-dependent density functional theory (TDDFT) combined with the frozen density embedding (FDE) approach. Our aim is to establish up to which limit FIX-IDA can be applied and which chromophore types are better described under this approximation. For that purpose, we use the classical trajectories of solubilised light harvesting complex II (LHCII) we have recently reported [Liguori et al., Sci. Rep., 2015, 5, 15661] and selected three pairs of chromophores containing chlorophyll and carotenoids (Chl and Car): Chla611-Chla612, Chlb606-Chlb607 and Chla612-Lut620. Using the FDE in the Tamm-Dancoff approximation (FDEc-TDA), we show that IDA is accurate enough for predicting Chl-Chl Coulomb couplings. However, the FIX-IDA largely overestimates Chl-Car interactions mainly because the transition dipole for the Cars is not trivially oriented on the polyene chain.

  12. Tackling the challenge of selective analytical clean-up of complex natural extracts: the curious case of chlorophyll removal.

    PubMed

    Bijttebier, Sebastiaan; D'Hondt, Els; Noten, Bart; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2014-11-15

    Alkaline saponification is often used to remove interfering chlorophylls and lipids during carotenoids analysis. However, saponification also hydrolyses esterified carotenoids and is known to induce artifacts. To avoid carotenoid artifact formation during saponification, Larsen and Christensen (2005) developed a gentler and simpler analytical clean-up procedure involving the use of a strong basic resin (Ambersep 900 OH). They hypothesised a saponification mechanism based on their Liquid Chromatography-Photodiode Array (LC-PDA) data. In the present study, we show with LC-PDA-accurate mass-Mass Spectrometry that the main chlorophyll removal mechanism is not based on saponification, apolar adsorption or anion exchange, but most probably an adsorption mechanism caused by H-bonds and dipole-dipole interactions. We showed experimentally that esterified carotenoids and glycerolipids were not removed, indicating a much more selective mechanism than initially hypothesised. This opens new research opportunities towards a much wider scope of applications (e.g. the refinement of oils rich in phytochemical content). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reasoning versus text processing in the Wason selection task: a nondeontic perspective on perspective effects.

    PubMed

    Almor, A; Sloman, S A

    2000-09-01

    We argue that perspective effects in the Wason four-card selection task are a product of the linguistic interpretation of the rule in the context of the problem text and not of the reasoning process underlying card selection. In three experiments, participants recalled the rule they used in either a selection or a plausibility rating task. The results showed that (1) participants tended to recall rules compatible with their card selection and not with the rule as stated in the problem and (2) recall was not affected by whether or not participants performed card selection. We conclude that perspective effects in the Wason selection task do not concern how card selection is reasoned about but instead reflect the inferential text processing involved in the comprehension of the problem text. Together with earlier research that showed selection performance in nondeontic contexts to be indistinguishable from selection performance in deontic contexts (Almor & Sloman, 1996; Sperber, Cara, & Girotto, 1995), the present results undermine the claim that reasoning in a deontic context elicits specialized cognitive processes.

  14. Electrically-induced polarization selection rules of a graphene quantum dot

    NASA Astrophysics Data System (ADS)

    Dong, Qing-Rui; Li, Yan; Jia, Chen; Wang, Fu-Li; Zhang, Ya-Ting; Liu, Chun-Xiang

    2018-05-01

    We study theoretically the single-electron triangular zigzag graphene quantum dot in uniform in-plane electric fields. The absorption spectra of the dot are calculated by the tight-binding method. The energy spectra and the distribution of wave functions are also presented to analyse the absorption spectra. The orthogonal zero-energy eigenstates are arranged along to the direction of the external field. The remarkable result is that all intraband transitions and some interband transitions are forbidden when the absorbed light is polarized along the direction of the electric field. With x-direction electric field, all intraband absorption is y polarized due to the electric-field-direction-polarization selection rule. Moreover, with y-direction electric field, all absorption is either x or y polarized due to the parity selection rule as well as to the electric-field-direction-polarization selection rule. Our calculation shows that the formation of the absorption spectra is co-decided by the polarization selection rules and the overlap between the eigenstates of the transition.

  15. Rule Encoding in Orbitofrontal Cortex and Striatum Guides Selection

    PubMed Central

    Castagno, Meghan D.; Hayden, Benjamin Y.

    2016-01-01

    Active maintenance of rules, like other executive functions, is often thought to be the domain of a discrete executive system. An alternative view is that rule maintenance is a broadly distributed function relying on widespread cortical and subcortical circuits. Tentative evidence supporting this view comes from research showing some rule selectivity in the orbitofrontal cortex and dorsal striatum. We recorded in these regions and in the ventral striatum, which has not been associated previously with rule representation, as macaques performed a Wisconsin Card Sorting Task. We found robust encoding of rule category (color vs shape) and rule identity (six possible rules) in all three regions. Rule identity modulated responses to potential choice targets, suggesting that rule information guides behavior by highlighting choice targets. The effects that we observed were not explained by differences in behavioral performance across rules and thus cannot be attributed to reward expectation. Our results suggest that rule maintenance and rule-guided selection of options are distributed processes and provide new insight into orbital and striatal contributions to executive control. SIGNIFICANCE STATEMENT Rule maintenance, an important executive function, is generally thought to rely on dorsolateral brain regions. In this study, we examined activity of single neurons in orbitofrontal cortex and in ventral and dorsal striatum of macaques in a Wisconsin Card Sorting Task. Neurons in all three areas encoded rules and rule categories robustly. Rule identity also affected neural responses to potential choice options, suggesting that stored information is used to influence decisions. These results endorse the hypothesis that rule maintenance is a broadly distributed mental operation. PMID:27807165

  16. 77 FR 43879 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Designation of a Longer Period for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Proposed Rule Change Amending NYSE Arca Equities Rule 7.31(h) To Add a PL Select Order Type July 20, 2012...(h) to add a PL Select Order type. The proposed rule change was published for comment in the Federal... security at a specified, undisplayed price. The PL Select Order would be a subset of the PL Order that...

  17. On the analysis of photo-electron spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, C.-Z., E-mail: gao@irsamc.ups-tlse.fr; CNRS, LPT; Dinh, P.M.

    2015-09-15

    We analyze Photo-Electron Spectra (PES) for a variety of excitation mechanisms from a simple mono-frequency laser pulse to involved combination of pulses as used, e.g., in attosecond experiments. In the case of simple pulses, the peaks in PES reflect the occupied single-particle levels in combination with the given laser frequency. This usual, simple rule may badly fail in the case of excitation pulses with mixed frequencies and if resonant modes of the system are significantly excited. We thus develop an extension of the usual rule to cover all possible excitation scenarios, including mixed frequencies in the attosecond regime. We find thatmore » the spectral distributions of dipole, monopole and quadrupole power for the given excitation taken together and properly shifted by the single-particle energies provide a pertinent picture of the PES in all situations. This leads to the derivation of a generalized relation allowing to understand photo-electron yields even in complex experimental setups.« less

  18. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  19. Selective testing strategies for diagnosing group A streptococcal infection in children with pharyngitis: a systematic review and prospective multicentre external validation study

    PubMed Central

    Cohen, Jérémie F.; Cohen, Robert; Levy, Corinne; Thollot, Franck; Benani, Mohamed; Bidet, Philippe; Chalumeau, Martin

    2015-01-01

    Background: Several clinical prediction rules for diagnosing group A streptococcal infection in children with pharyngitis are available. We aimed to compare the diagnostic accuracy of rules-based selective testing strategies in a prospective cohort of children with pharyngitis. Methods: We identified clinical prediction rules through a systematic search of MEDLINE and Embase (1975–2014), which we then validated in a prospective cohort involving French children who presented with pharyngitis during a 1-year period (2010–2011). We diagnosed infection with group A streptococcus using two throat swabs: one obtained for a rapid antigen detection test (StreptAtest, Dectrapharm) and one obtained for culture (reference standard). We validated rules-based selective testing strategies as follows: low risk of group A streptococcal infection, no further testing or antibiotic therapy needed; intermediate risk of infection, rapid antigen detection for all patients and antibiotic therapy for those with a positive test result; and high risk of infection, empiric antibiotic treatment. Results: We identified 8 clinical prediction rules, 6 of which could be prospectively validated. Sensitivity and specificity of rules-based selective testing strategies ranged from 66% (95% confidence interval [CI] 61–72) to 94% (95% CI 92–97) and from 40% (95% CI 35–45) to 88% (95% CI 85–91), respectively. Use of rapid antigen detection testing following the clinical prediction rule ranged from 24% (95% CI 21–27) to 86% (95% CI 84–89). None of the rules-based selective testing strategies achieved our diagnostic accuracy target (sensitivity and specificity > 85%). Interpretation: Rules-based selective testing strategies did not show sufficient diagnostic accuracy in this study population. The relevance of clinical prediction rules for determining which children with pharyngitis should undergo a rapid antigen detection test remains questionable. PMID:25487666

  20. Design rules for quasi-linear nonlinear optical structures

    NASA Astrophysics Data System (ADS)

    Lytel, Richard; Mossman, Sean M.; Kuzyk, Mark G.

    2015-09-01

    The maximization of the intrinsic optical nonlinearities of quantum structures for ultrafast applications requires a spectrum scaling as the square of the energy eigenstate number or faster. This is a necessary condition for an intrinsic response approaching the fundamental limits. A second condition is a design generating eigenstates whose ground and lowest excited state probability densities are spatially separated to produce large differences in dipole moments while maintaining a reasonable spatial overlap to produce large off-diagonal transition moments. A structure whose design meets both conditions will necessarily have large first or second hyperpolarizabilities. These two conditions are fundamental heuristics for the design of any nonlinear optical structure.

  1. Thomas-Reiche-Khun populations in X-CH 3 and X-C 2H 5 series of molecules

    NASA Astrophysics Data System (ADS)

    Zitto, M. E.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2000-09-01

    Calculations of nuclear electric shieldings, equivalent to dipole moment geometric derivatives, and related to atomic polar tensors, are presented for X-CH 3 and X-C 2H 5 molecules with X=NH 2, OH and F. The electric shielding tensors satisfy a constraint for the electrostatic equilibrium, i.e., the mixed length-acceleration Thomas-Reiche-Khun sum rule, which gives important indications on the reliability of theoretical predictions of IR intensities and leads to the definition of atomic populations. Numerical evidence was found for the additivity and transferability of atomic populations, within the X-substituted alkane series.

  2. Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops

    NASA Astrophysics Data System (ADS)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2018-04-01

    The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 < 0) is sufficiently small compared with that of the positive feedback α2 (> 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.

  3. Longitudinal magnet forces?

    NASA Astrophysics Data System (ADS)

    Graneau, P.

    1984-03-01

    The Ampere electrodynamics of metallic conductors and experiments supporting it predict that the interaction of a current-carrying wire with its own magnetic field should produce longitudinal mechanical forces in the conductor, existing in addition to the transverse Lorentz forces. The longitudinal forces should stretch the conductor and have been referred to as Ampere tension. In 1964 it was discovered that a current pulse would break a straight copper wire into many fragments without visible melting. A metallurgical examination of the pieces confirmed that the metal parted in the solid state. The same observation has now been made with aluminum wires. In the latest experiments the wire was bent into a semicircle and arc-connected to a capacitor discharge circuit. The arc connections ruled out rupture by Lorentz hoop tension and indicated the longitudinal forces may also arise in circular magnet windings. Explanations of wire fragmentation by thermal shock, longitudinal stress waves, Lorentz pinch-off, bending stresses, and material defects have been considered and found unconvincing. Computed Ampere tensions would be sufficient to fracture hot wires. The Ampere tension would double the hoop tension normally expected in dipole magnets. This should be borne in mind in the design of large dipole magnets contemplated for MHD power generators and railgun accelerators.

  4. Can we estimate total magnetization directions from aeromagnetic data using Helbig's integrals?

    USGS Publications Warehouse

    Phillips, J.D.

    2005-01-01

    An algorithm that implements Helbig's (1963) integrals for estimating the vector components (mx, my, mz) of tile magnetic dipole moment from the first order moments of the vector magnetic field components (??X, ??Y, ??Z) is tested on real and synthetic data. After a grid of total field aeromagnetic data is converted to vector component grids using Fourier filtering, Helbig's infinite integrals are evaluated as finite integrals in small moving windows using a quadrature algorithm based on the 2-D trapezoidal rule. Prior to integration, best-fit planar surfaces must be removed from the component data within the data windows in order to make the results independent of the coordinate system origin. Two different approaches are described for interpreting the results of the integration. In the "direct" method, results from pairs of different window sizes are compared to identify grid nodes where the angular difference between solutions is small. These solutions provide valid estimates of total magnetization directions for compact sources such as spheres or dipoles, but not for horizontally elongated or 2-D sources. In the "indirect" method, which is more forgiving of source geometry, results of the quadrature analysis are scanned for solutions that are parallel to a specified total magnetization direction.

  5. Band-edge engineering of Silicon by Surface Functionalization: a Combined Ab-initio and Photoemission Study

    NASA Astrophysics Data System (ADS)

    Li, Yan; O'Leary, Leslie; Lewis, Nathan; Galli, Giulia

    2012-02-01

    The electrode material choice is limited in solar to fuel formation devices because of the requirement of band-edge matching to the fixed fuel formation potential. This limitation can be relieved via band-edge engineering. The changes of band-edge positions of Si electrodes induced by the adsorption of H-, Cl-, Br- and short-chain alkyl groups were investigated by combining density functional (DFT), many-body perturbation theory (MBPT), and ultraviolet photoelectron spectroscopy. The band edge shifts are related to the formation of surface dipole moments, and determine the barrier height of electrons and holes in doped silicon surfaces. We find that the trends of the sign and magnitude of the computed surface dipoles as a function of the adsorbate may be explained by simple electronegative rules. We show that quasi-particle energies obtained within MBPT are in good agreement with experiment, while DFT values may exhibit substantial errors. However computed band edge differences are in good agreement with spectroscopic and electrical measurements even at the DFT level of theory. [1] Y. Li and G. Galli, Phys. Rev. B 82, 045321 (2010). [2] Y. Li, L. O'Leary, N. Lewis and G. Galli, to be submitted.

  6. Level densities and γ-ray strength functions in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-06-01

    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  7. Combined rule extraction and feature elimination in supervised classification.

    PubMed

    Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E

    2012-09-01

    There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.

  8. Civilian Health and Medical Program of the Uniformed Services (CHAMPUS); TRICARE Reserve Select for certain members of the selected reserve; Transitional Assistance Management Program; early eligibility for TRICARE for certain reserve component members. Interim final rule with comment period.

    PubMed

    2005-03-16

    This interim final rule establishes requirements and procedures for implementation of TRICARE Reserve Select. It also revises requirements and procedures for the Transitional Assistance Management Program. In addition, it establishes requirements and procedures for implementation of the earlier TRICARE eligibility for certain reserve component members. The rule is being published as an interim final rule with comment period in order to comply with statutory effective dates.

  9. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2016-03-11

    Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. 75 FR 6769 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Order Approving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... To Amend the Hearing Location Rules of the Codes of Arbitration Procedure for Customer and Industry... expand the criteria for selecting a hearing location for an arbitration proceeding. The proposed rule..., 2010. II. Description of the Proposed Rule Change Hearing Location Selection Under the Customer Code...

  11. Evaluation and Selection of Best Priority Sequencing Rule in Job Shop Scheduling using Hybrid MCDM Technique

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, Kalla; Nagaraju, Dega; Gayathri, S.; Narayanan, S.

    2017-05-01

    Priority Sequencing Rules provide the guidance for the order in which the jobs are to be processed at a workstation. The application of different priority rules in job shop scheduling gives different order of scheduling. More experimentation needs to be conducted before a final choice is made to know the best priority sequencing rule. Hence, a comprehensive method of selecting the right choice is essential in managerial decision making perspective. This paper considers seven different priority sequencing rules in job shop scheduling. For evaluation and selection of the best priority sequencing rule, a set of eight criteria are considered. The aim of this work is to demonstrate the methodology of evaluating and selecting the best priority sequencing rule by using hybrid multi criteria decision making technique (MCDM), i.e., analytical hierarchy process (AHP) with technique for order preference by similarity to ideal solution (TOPSIS). The criteria weights are calculated by using AHP whereas the relative closeness values of all priority sequencing rules are computed based on TOPSIS with the help of data acquired from the shop floor of a manufacturing firm. Finally, from the findings of this work, the priority sequencing rules are ranked from most important to least important. The comprehensive methodology presented in this paper is very much essential for the management of a workstation to choose the best priority sequencing rule among the available alternatives for processing the jobs with maximum benefit.

  12. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  13. Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications.

    PubMed

    Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon

    2015-12-07

    The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.

  14. Nanostructured double-layer FeO as nanotemplate for tuning adsorption of titanyl phthalocyanine molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuangzan; University of Chinese Academy of Sciences, Beijing 100049; Qin, Zhihui, E-mail: zhqin@wipm.ac.cn

    2014-06-23

    The growth, structure of Pt(111) supported double-layer FeO and the adsorption of titanyl phthalocyanine (TiOPc) molecules with tunable site and orientation were presented. According to the atomic-resolution STM image, the structure was rationalized as (8√3 × 8√3) R30°/Pt(111) nanostructure constructed by Fe species coordinated with different number of oxygen on top of non-rotated (8 × 8) FeO /Pt(111) structure. Due to the modulation of the stacking of Fe atoms in the second layer relative to the O atoms in the second layer and the underlying layer, the interface and total dipole moment periodically vary within (8√3 × 8√3) R30°/Pt(111) structure. The resulted periodically distributed dipole-dipole interactionmore » benefits the growth of TiOPc molecules with area-selective sites and molecular orientations. Thus, this study provides a reliable method to govern the adsorption process of the polar molecules for potential applications in future functional molecular devices.« less

  15. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviorsmore » are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.« less

  16. Is the Surface Potential Integral of a Dipole in a Volume Conductor Always Zero? A Cloud Over the Average Reference of EEG and ERP.

    PubMed

    Yao, Dezhong

    2017-03-01

    Currently, average reference is one of the most widely adopted references in EEG and ERP studies. The theoretical assumption is the surface potential integral of a volume conductor being zero, thus the average of scalp potential recordings might be an approximation of the theoretically desired zero reference. However, such a zero integral assumption has been proved only for a spherical surface. In this short communication, three counter-examples are given to show that the potential integral over the surface of a dipole in a volume conductor may not be zero. It depends on the shape of the conductor and the orientation of the dipole. This fact on one side means that average reference is not a theoretical 'gold standard' reference, and on the other side reminds us that the practical accuracy of average reference is not only determined by the well-known electrode array density and its coverage but also intrinsically by the head shape. It means that reference selection still is a fundamental problem to be fixed in various EEG and ERP studies.

  17. Lattice calculation of electric dipole moments and form factors of the nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramczyk, M.; Aoki, S.; Blum, T.

    In this paper, we analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)more » $$F_3$$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $$F_2$$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for $$F_3$$. In conclusion, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.« less

  18. Lattice calculation of electric dipole moments and form factors of the nucleon

    DOE PAGES

    Abramczyk, M.; Aoki, S.; Blum, T.; ...

    2017-07-10

    In this paper, we analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)more » $$F_3$$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $$F_2$$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for $$F_3$$. In conclusion, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.« less

  19. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    NASA Astrophysics Data System (ADS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Chiang, Hai-Pang

    2016-09-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  20. Neurons with object-centered spatial selectivity in macaque SEF: do they represent locations or rules?

    PubMed

    Tremblay, Léon; Gettner, Sonya N; Olson, Carl R

    2002-01-01

    In macaque monkeys performing a task that requires eye movements to the leftmost or rightmost of two dots in a horizontal array, some neurons in the supplementary eye field (SEF) fire differentially according to which side of the array is the target regardless of the array's location on the screen. We refer to these neurons as exhibiting selectivity for object-centered location. This form of selectivity might arise from involvement of the neurons in either of two processes: representing the locations of targets or representing the rules by which targets are selected. To distinguish between these possibilities, we monitored neuronal activity in the SEF of two monkeys performing a task that required the selection of targets by either an object-centered spatial rule or a color rule. On each trial, a sample array consisting of two side-by-side dots appeared; then a cue flashed on one dot; then the display vanished and a delay ensued. Next a target array consisting of two side-by-side dots appeared at an unpredictable location and another delay ensued; finally the monkey had to make an eye movement to one of the target dots. On some trials, the monkey had to select the dot on the same side as the cue (right or left). On other trials, he had to select the target of the same color as the cue (red or green). Neuronal activity robustly encoded the object-centered locations first of the cue and then of the target regardless of the whether the monkey was following a rule based on object-centered location or color. Neuronal activity was at most weakly affected by the type of rule the monkey was following (object-centered-location or color) or by the color of the cue and target (red or green). On trials involving a color rule, neuronal activity was moderately enhanced when the cue and target appeared on opposite sides of their respective arrays. We conclude that the general function of SEF neurons selective for object-centered location is to represent where the cue and target are in their respective arrays rather than to represent the rule for target selection.

  1. Physicochemical code for quinary protein interactions in Escherichia coli

    PubMed Central

    Mu, Xin; Choi, Seongil; Lang, Lisa; Mowray, David; Danielsson, Jens; Oliveberg, Mikael

    2017-01-01

    How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the Escherichia coli cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical−chemical rules: The proteins reveal a common dependence on (i) net charge density, (ii) surface hydrophobicity, and (iii) the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein’s behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics. PMID:28536196

  2. Comparing the Performance of Five Multidimensional CAT Selection Procedures with Different Stopping Rules

    ERIC Educational Resources Information Center

    Yao, Lihua

    2013-01-01

    Through simulated data, five multidimensional computerized adaptive testing (MCAT) selection procedures with varying test lengths are examined and compared using different stopping rules. Fixed item exposure rates are used for all the items, and the Priority Index (PI) method is used for the content constraints. Two stopping rules, standard error…

  3. 7 CFR 29.6104 - Rule 18.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSPECTION Standards Rules § 29.6104 Rule 18. Burn shall be determined as the average burning time of leaves selected at random from the sample. A minimum of 10 leaves shall be selected as representative regardless... on the same side of the leaf. The leaf shall be punctured to permit quick ignition when placed over a...

  4. 7 CFR 29.6104 - Rule 18.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION Standards Rules § 29.6104 Rule 18. Burn shall be determined as the average burning time of leaves selected at random from the sample. A minimum of 10 leaves shall be selected as representative regardless... on the same side of the leaf. The leaf shall be punctured to permit quick ignition when placed over a...

  5. 7 CFR 29.6104 - Rule 18.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSPECTION Standards Rules § 29.6104 Rule 18. Burn shall be determined as the average burning time of leaves selected at random from the sample. A minimum of 10 leaves shall be selected as representative regardless... on the same side of the leaf. The leaf shall be punctured to permit quick ignition when placed over a...

  6. 7 CFR 29.6104 - Rule 18.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSPECTION Standards Rules § 29.6104 Rule 18. Burn shall be determined as the average burning time of leaves selected at random from the sample. A minimum of 10 leaves shall be selected as representative regardless... on the same side of the leaf. The leaf shall be punctured to permit quick ignition when placed over a...

  7. 7 CFR 29.6104 - Rule 18.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSPECTION Standards Rules § 29.6104 Rule 18. Burn shall be determined as the average burning time of leaves selected at random from the sample. A minimum of 10 leaves shall be selected as representative regardless... on the same side of the leaf. The leaf shall be punctured to permit quick ignition when placed over a...

  8. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    NASA Astrophysics Data System (ADS)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  9. Cooperation and charity in spatial public goods game under different strategy update rules

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Jin, Xiaogang; Su, Xianchuang; Kong, Fansheng; Peng, Chengbin

    2010-03-01

    Human cooperation can be influenced by other human behaviors and recent years have witnessed the flourishing of studying the coevolution of cooperation and punishment, yet the common behavior of charity is seldom considered in game-theoretical models. In this article, we investigate the coevolution of altruistic cooperation and egalitarian charity in spatial public goods game, by considering charity as the behavior of reducing inter-individual payoff differences. Our model is that, in each generation of the evolution, individuals play games first and accumulate payoff benefits, and then each egalitarian makes a charity donation by payoff transfer in its neighborhood. To study the individual-level evolutionary dynamics, we adopt different strategy update rules and investigate their effects on charity and cooperation. These rules can be classified into two global rules: random selection rule in which individuals randomly update strategies, and threshold selection rule where only those with payoffs below a threshold update strategies. Simulation results show that random selection enhances the cooperation level, while threshold selection lowers the threshold of the multiplication factor to maintain cooperation. When charity is considered, it is incapable in promoting cooperation under random selection, whereas it promotes cooperation under threshold selection. Interestingly, the evolution of charity strongly depends on the dispersion of payoff acquisitions of the population, which agrees with previous results. Our work may shed light on understanding human egalitarianism.

  10. Study of a Flexible Low Profile Tunable Dipole Antenna Using Barium Strontium Titanate Varactors

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2014-01-01

    In this paper a flexible low profile dipole antenna using a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells is presented. The varactor chips were placed only along one dimension of the FSS to avoid the use of vias and simplify the DC bias network. The antenna uses overlapping metallic plates that resemble fish scales as a ground plane to improve the flexibility of the multi-material stack structure. The measured data of the antenna demonstrate tunability from 2.42 GHz to 2.66 GHz and 1.3 dB gain drop when using overlapping metallic plates instead of continuous ground plane. The total antenna thickness is approximately lambda/24.

  11. Selective protected state preparation of coupled dissipative quantum emitters

    PubMed Central

    Plankensteiner, D.; Ostermann, L.; Ritsch, H.; Genes, C.

    2015-01-01

    Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501

  12. Transfer of dipolar gas through the discrete localized mode.

    PubMed

    Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui

    2013-12-01

    By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.

  13. Determination of {pi}{sup {+-}} meson polarizabilities from the {gamma}{gamma}{yields}{pi}{sup +}{pi}{sup -} process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fil'kov, L.V.; Kashevarov, V.L.

    2006-03-15

    A fit of the experimental data to the total cross section of the process {gamma}{gamma}{yields}{pi}{sup +}{pi}{sup -} in the energy region from threshold to 2500 MeV has been carried out using dispersion relations with subtractions for the invariant amplitudes, where the dipole and the quadrupole polarizabilities of the charged pion are free parameters. As a result, the sum and the difference of the electric and magnetic dipole and quadrupole polarizabilities of the charged pion have been found: ({alpha}{sub 1}+{beta}{sub 1}){sub {pi}{sup {+-}}}=(0.18{sub -0.02}{sup +0.11})x10{sup -4} fm{sup 3},({alpha}{sub 1}-{beta}{sub 1}){sub {pi}{sup {+-}}}=(13.0{sub -1.9}{sup +2.6})x10{sup -4} fm{sup 3},({alpha}{sub 2}+{beta}{sub 2}){sub {pi}{sup {+-}}}=(0.133{+-}0.015)x10{supmore » -4} fm{sup 5},({alpha}{sub 2}-{beta}{sub 2}){sub {pi}{sup {+-}}}=(25.0{sub -0.3}{sup +0.8})x10{sup -4} fm{sup 5}. These values agree with the dispersion sum rule predictions. The value found for the difference of the dipole polarizabilities is consistent with the results obtained from scattering of high energy {pi}{sup -} mesons off the Coulomb field of heavy nuclei [Yu. M. Antipov et al., Phys. Lett. B121, 445 (1983)] and from radiative {pi}{sup +} photoproduction from the proton at MAMI [J. Ahrens et al., Eur. Phys. J. A 23, 113 (2005)], whereas it is at variance with the recent calculations in the framework of chiral perturbation theory.« less

  14. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Cameron, R. H.; Schüssler, M., E-mail: jiejiang@nao.cas.cn

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input basedmore » upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.« less

  15. Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo

    2016-03-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.

  16. 75 FR 20651 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... Proposed Rule Change To Amend the Global Select Market Initial Listing Requirements April 14, 2010... the Global Select initial listing requirements and to make a technical conforming correction to a rule...'s market capitalization at the time of listing. (f)-(h) No change. (i) A Company whose business plan...

  17. Rule-Selection and Action-Selection have a Shared Neuroanatomical Basis in the Human Prefrontal and Parietal Cortex

    PubMed Central

    Hughes, L.; Eckstein, D.; Owen, A.M.

    2008-01-01

    The human capacity for voluntary action is one of the major contributors to our success as a species. In addition to choosing actions themselves, we can also voluntarily choose behavioral codes or sets of rules that can guide future responses to events. Such rules have been proposed to be superordinate to actions in a cognitive hierarchy and mediated by distinct brain regions. We used event-related functional magnetic resonance imaging to study novel tasks of rule-based and voluntary action. We show that the voluntary selection of rules to govern future responses to events is associated with activation of similar regions of prefrontal and parietal cortex as the voluntary selection of an action itself. The results are discussed in terms of hierarchical models and the adaptive coding potential of prefrontal neurons and their contribution to a global workspace for nonautomatic tasks. These tasks include the choices we make about our behavior. PMID:18234684

  18. Rule Based Category Learning in Patients with Parkinson’s Disease

    PubMed Central

    Price, Amanda; Filoteo, J. Vincent; Maddox, W. Todd

    2009-01-01

    Measures of explicit rule-based category learning are commonly used in neuropsychological evaluation of individuals with Parkinson’s disease (PD) and the pattern of PD performance on these measures tends to be highly varied. We review the neuropsychological literature to clarify the manner in which PD affects the component processes of rule-based category learning and work to identify and resolve discrepancies within this literature. In particular, we address the manner in which PD and its common treatments affect the processes of rule generation, maintenance, shifting and selection. We then integrate the neuropsychological research with relevant neuroimaging and computational modeling evidence to clarify the neurobiological impact of PD on each process. Current evidence indicates that neurochemical changes associated with PD primarily disrupt rule shifting, and may disturb feedback-mediated learning processes that guide rule selection. Although surgical and pharmacological therapies remediate this deficit, it appears that the same treatments may contribute to impaired rule generation, maintenance and selection processes. These data emphasize the importance of distinguishing between the impact of PD and its common treatments when considering the neuropsychological profile of the disease. PMID:19428385

  19. 10 CFR 2.311 - Interlocutory review of rulings on requests for hearings/petitions to intervene, selection of...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Interlocutory review of rulings on requests for hearings/petitions to intervene, selection of hearing procedures, and requests by potential parties for access to sensitive unclassified non-safeguards information and safeguards information. 2.311 Section 2.311 Energy NUCLEAR REGULATORY COMMISSION RULES OF...

  20. Evaluation for the Allocation of University Research Project Funding: Can Rules Improve the Peer Review?

    ERIC Educational Resources Information Center

    Reale, Emanuela; Zinilli, Antonio

    2017-01-01

    Evaluation for the allocation of project-funding schemes devoted to sustain academic research often undergoes changes of the rules for the ex-ante selection, which are supposed to improve the capability of peer review to select the best proposals. How modifications of the rules realize a more accountable evaluation result? Do the changes suggest…

  1. A Method for the Comparison of Item Selection Rules in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Barrada, Juan Ramon; Olea, Julio; Ponsoda, Vicente; Abad, Francisco Jose

    2010-01-01

    In a typical study comparing the relative efficiency of two item selection rules in computerized adaptive testing, the common result is that they simultaneously differ in accuracy and security, making it difficult to reach a conclusion on which is the more appropriate rule. This study proposes a strategy to conduct a global comparison of two or…

  2. A mobile asset sharing policy for hospitals with real time locating systems.

    PubMed

    Demircan-Yıldız, Ece Arzu; Fescioglu-Unver, Nilgun

    2016-01-01

    Each year, hospitals lose a considerable amount of time and money due to misplaced mobile assets. In addition the assets which remain in departments that frequently use them depreciate early, while other assets of the same type in different departments are rarely used. A real time locating system can prevent these losses when used with appropriate asset sharing policies. This research quantifies the amount of time a medium size hospital saves by using real time locating system and proposes an asset selection rule to eliminate the asset usage imbalance problem. The asset selection rule proposed is based on multi objective optimization techniques. The effectiveness of this rule on asset to patient time and asset utilization rate variance performance measures were tested using discrete event simulation method. Results show that the proposed asset selection rule improved the usage balance significantly. Sensitivity analysis showed that the proposed rule is robust to changes in demand rates and user preferences. Real time locating systems enable saving considerable amount of time in hospitals, and they can still be improved by integrating decision support mechanisms. Combining tracking technology and asset selection rules helps improve healthcare services.

  3. Nonequivalence of updating rules in evolutionary games under high mutation rates.

    PubMed

    Kaiping, G A; Jacobs, G S; Cox, S J; Sluckin, T J

    2014-10-01

    Moran processes are often used to model selection in evolutionary simulations. The updating rule in Moran processes is a birth-death process, i. e., selection according to fitness of an individual to give birth, followed by the death of a random individual. For well-mixed populations with only two strategies this updating rule is known to be equivalent to selecting unfit individuals for death and then selecting randomly for procreation (biased death-birth process). It is, however, known that this equivalence does not hold when considering structured populations. Here we study whether changing the updating rule can also have an effect in well-mixed populations in the presence of more than two strategies and high mutation rates. We find, using three models from different areas of evolutionary simulation, that the choice of updating rule can change model results. We show, e. g., that going from the birth-death process to the death-birth process can change a public goods game with punishment from containing mostly defectors to having a majority of cooperative strategies. From the examples given we derive guidelines indicating when the choice of the updating rule can be expected to have an impact on the results of the model.

  4. Nonequivalence of updating rules in evolutionary games under high mutation rates

    NASA Astrophysics Data System (ADS)

    Kaiping, G. A.; Jacobs, G. S.; Cox, S. J.; Sluckin, T. J.

    2014-10-01

    Moran processes are often used to model selection in evolutionary simulations. The updating rule in Moran processes is a birth-death process, i. e., selection according to fitness of an individual to give birth, followed by the death of a random individual. For well-mixed populations with only two strategies this updating rule is known to be equivalent to selecting unfit individuals for death and then selecting randomly for procreation (biased death-birth process). It is, however, known that this equivalence does not hold when considering structured populations. Here we study whether changing the updating rule can also have an effect in well-mixed populations in the presence of more than two strategies and high mutation rates. We find, using three models from different areas of evolutionary simulation, that the choice of updating rule can change model results. We show, e. g., that going from the birth-death process to the death-birth process can change a public goods game with punishment from containing mostly defectors to having a majority of cooperative strategies. From the examples given we derive guidelines indicating when the choice of the updating rule can be expected to have an impact on the results of the model.

  5. Deviations from idealised geometries part 3: approximately tetrahedral molecules of form MX 2Y 2 studied by SCF and MP2 calculations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.

    1997-03-01

    The relatively minor deviations from true tetrahedral geometry for molecules of type MX 2Y 2 where M is tetravalent, and X, Y are either H, Me or halogen are discussed, in the light of ab initio calculations of equilibrium geometry with a large (triple zeta valence + polarisation) basis, at both the SCF and MP2 levels. The results are compared with known experimental structural and dipole moment data; in most cases a very close correlation with experiment is found, with slight improvements in the MP2 data. The study is coupled with a localised orbital study of relevance to Bent's Rule.

  6. Selecting Magnet Laminations Recipes Using the Meth-od of Sim-u-la-ted Annealing

    NASA Astrophysics Data System (ADS)

    Russell, A. D.; Baiod, R.; Brown, B. C.; Harding, D. J.; Martin, P. S.

    1997-05-01

    The Fermilab Main Injector project is building 344 dipoles using more than 7000 tons of steel. Budget and logistical constraints required that steel production, lamination stamping and magnet fabrication proceed in parallel. There were significant run-to-run variations in the magnetic properties of the steel (Martin, P.S., et al., Variations in the Steel Properties and the Excitation Characteristics of FMI Dipoles, this conference). The large lamination size (>0.5 m coil opening) resulted in variations of gap height due to differences in stress relief in the steel after stamping. To minimize magnet-to-magnet strength and field shape variations the laminations were shuffled based on the available magnetic and mechanical data and assigned to magnets using a computer program based on the method of simulated annealing. The lamination sets selected by the program have produced magnets which easily satisfy the design requirements. Variations of the average magnet gap are an order of magnitude smaller than the variations in lamination gaps. This paper discusses observed gap variations, the program structure and the strength uniformity results.

  7. Study of methyl- and phenyl-substituted thermostable polysiloxane-silarylene motionless phases for capillary gas chromatography

    NASA Astrophysics Data System (ADS)

    Komarova, A. O.; Shashkov, M. V.; Sidel'nikov, V. N.

    2017-11-01

    Capillary columns based on a number of thermostable polysiloxane-silarylene motionless phases are prepared and their properties are studied. Three polymers with different contents of methyl and phenyl groups are synthesized: dimethylsiloxanesilarylene (DMS), methylphenylsiloxanesilarylene (MPhS), and diphenylsiloxanesilarylene (DPhS). Studies of their thermostability show that the level of the background current of these columns upon heating to 350°C is several times lower than that of a column based on polydimethylsiloxane. Based on McReynolds' studies of polarity and Abraham's studies of the selectivity of prepared columns according to the parameters of intermolecular interactions, it is found that silarylene MLPs are more affected by the contributions from specific interactions (especially for dipole-dipole, π-π-, and n-π-interactions) than MLPs with no phenylene inserts. The effect on the selectivity of a phenyl group inside a chain differs from the one produced by the phenyl groups in side MLP chains. The effect on the selectivity of a phenyl group inside a chain differs from the one produced by the phenyl groups in side MLP chains. Examples of the separation of test mixtures of aromatic and oxygen-containing compounds are obtained, along with an extract of thistle oil containing tocopherols and phytosterols at a final temperature of analysis of 350°C.

  8. Acute knee injuries: use of decision rules for selective radiograph ordering.

    PubMed

    Tandeter, H B; Shvartzman, P; Stevens, Max A

    1999-12-01

    Family physicians often encounter patients with acute knee trauma. Radiographs of injured knees are commonly ordered, even though fractures are found in only 6 percent of such patients and emergency department physicians can usually discriminate clinically between fracture and nonfracture. Decision rules have been developed to reduce the unnecessary use of radiologic studies in patients with acute knee injury. The Ottawa knee rules and the Pittsburgh decision rules are the latest guidelines for the selective use of radiographs in knee trauma. Application of these rules may lead to a more efficient evaluation of knee injuries and a reduction in health costs without an increase in adverse outcomes.

  9. A polarizable dipole-dipole interaction model for evaluation of the interaction energies for N-H···O=C and C-H···O=C hydrogen-bonded complexes.

    PubMed

    Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng

    2014-03-05

    In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. Copyright © 2013 Wiley Periodicals, Inc.

  10. 77 FR 74528 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change Amending...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... Equities Rule 7.31(h)(7) To Permit PL Select Orders To Interact With Incoming Orders Larger Than the Size of the PL Select Order December 7, 2012. Pursuant to Section 19(b)(1) \\1\\ of the Securities Exchange... permit PL Select Orders to interact with incoming orders larger than the size of the PL Select Order. The...

  11. Improving the Optical Trapping Efficiency in the 225Ra Electric Dipole Moment Experiment via Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Fromm, Steven

    2017-09-01

    In an effort to study and improve the optical trapping efficiency of the 225Ra Electric Dipole Moment experiment, a fully parallelized Monte Carlo simulation of the laser cooling and trapping apparatus was created at Argonne National Laboratory and now maintained and upgraded at Michigan State University. The simulation allows us to study optimizations and upgrades without having to use limited quantities of 225Ra (15 day half-life) in experiment's apparatus. It predicts a trapping efficiency that differs from the observed value in the experiment by approximately a factor of thirty. The effects of varying oven geometry, background gas interactions, laboratory magnetic fields, MOT laser beam configurations and laser frequency noise were studied and ruled out as causes of the discrepancy between measured and predicted values of the overall trapping efficiency. Presently, the simulation is being used to help optimize a planned blue slower laser upgrade in the experiment's apparatus, which will increase the overall trapping efficiency by up to two orders of magnitude. This work is supported by Michigan State University, the Director's Research Scholars Program at the National Superconducting Cyclotron Laboratory, and the U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.

  12. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.

    PubMed

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-11-10

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.

  13. Communication: The H2@C60 inelastic neutron scattering selection rule: Expanded and explained

    NASA Astrophysics Data System (ADS)

    Poirier, Bill

    2015-09-01

    Recently [M. Xu et al., J. Chem. Phys. 139, 064309 (2013)], an unexpected selection rule was discovered for the title system, contradicting the previously held belief that inelastic neutron scattering (INS) is not subject to any selection rules. Moreover, the newly predicted forbidden transitions, which emerge only in the context of coupled H2 translation-rotation (TR) dynamics, have been confirmed experimentally. However, a simple physical understanding, e.g., based on group theory, has been heretofore lacking. This is provided in the present paper, in which we (1) derive the correct symmetry group for the H2@C60 TR Hamiltonian and eigenstates; (2) complete the INS selection rule, and show that the set of forbidden transitions is actually much larger than previously believed; and (3) evaluate previous theoretical and experimental results, in light of the new findings.

  14. Angular dependence of Raman scattering selection rules for long-wavelength optical phonons in short-period GaAs/AlAs superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volodin, V. A., E-mail: volodin@isp.nsc.ru; Sachkov, V. A.; Sinyukov, M. P.

    2016-07-15

    The angular dependence of Raman scattering selection rules for optical phonons in short-period (001) GaAs/AlAs superlattices is calculated and experimentally studied. Experiments are performed using a micro-Raman setup, in the scattering geometry with the wavevectors of the incident and scattered light lying in the plane of superlattices (so-called in-plane geometry). Phonon frequencies are calculated using the Born model taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra are calculated in the framework of the deformation potential and electro-optical mechanisms. Calculations show an angular dependence of the selection rules for optical phonons with different directions of themore » wavevectors. Drastic differences in the selection rules are found for experimental and calculated spectra. Presumably, these differences are due to the Fröhlich mechanism in Raman scattering for short-period superlattices.« less

  15. Communication: The H{sub 2}@C{sub 60} inelastic neutron scattering selection rule: Expanded and explained

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, Bill, E-mail: Bill.Poirier@ttu.edu

    Recently [M. Xu et al., J. Chem. Phys. 139, 064309 (2013)], an unexpected selection rule was discovered for the title system, contradicting the previously held belief that inelastic neutron scattering (INS) is not subject to any selection rules. Moreover, the newly predicted forbidden transitions, which emerge only in the context of coupled H{sub 2} translation-rotation (TR) dynamics, have been confirmed experimentally. However, a simple physical understanding, e.g., based on group theory, has been heretofore lacking. This is provided in the present paper, in which we (1) derive the correct symmetry group for the H{sub 2}@C{sub 60} TR Hamiltonian and eigenstates;more » (2) complete the INS selection rule, and show that the set of forbidden transitions is actually much larger than previously believed; and (3) evaluate previous theoretical and experimental results, in light of the new findings.« less

  16. The interaction of flavonoid-lysozyme and the relationship between molecular structure of flavonoids and their binding activity to lysozyme.

    PubMed

    Yang, Ran; Yu, Lanlan; Zeng, Huajin; Liang, Ruiling; Chen, Xiaolan; Qu, Lingbo

    2012-11-01

    In this work, the interactions of twelve structurally different flavonoids with Lysozyme (Lys) were studied by fluorescence quenching method. The interaction mechanism and binding properties were investigated. It was found that the binding capacities of flavonoids to Lys were highly depend on the number and position of hydrogen, the kind and position of glycosyl. To explore the selectivity of the bindings of flavonoids with Lys, the structure descriptors of the flavonoids were calculated under QSAR software package of Cerius2, the quantitative relationship between the structures of flavonoids and their binding activities to Lys (QSAR) was performed through genetic function approximation (GFA) regression analysis. The QSAR regression equation was K(A) = 37850.460 + 1630.01Dipole +3038.330HD-171.795MR. (r = 0.858, r(CV)(2) = 0.444, F((11,3)) = 7.48), where K(A) is binding constants, Dipole, HD and MR was dipole moment, number of hydrogen-bond donor and molecular refractivity, respectively. The obtained results make us understand better how the molecular structures influencing their binding to protein which may open up new avenues for the design of the most suitable flavonoids derivatives with structure variants.

  17. Optical fingerprint of non-covalently functionalized transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Feierabend, Maja; Malic, Ermin; Knorr, Andreas; Berghäuser, Gunnar

    2017-09-01

    Atomically thin transition metal dichalcogenides (TMDs) hold promising potential for applications in optoelectronics. Due to their direct band gap and the extraordinarily strong Coulomb interaction, TMDs exhibit efficient light-matter coupling and tightly bound excitons. Moreover, large spin orbit coupling in combination with circular dichroism allows for spin and valley selective optical excitation. As atomically thin materials, they are very sensitive to changes in the surrounding environment. This motivates a functionalization approach, where external molecules are adsorbed to the materials surface to tailor its optical properties. Here, we apply the density matrix theory to investigate the potential of non-covalently functionalized monolayer TMDs. Considering exemplary molecules with a strong dipole moment, we predict spectral redshifts and the appearance of an additional side peak in the absorption spectrum of functionalized TMDs. We show that the molecular characteristics, e.g. coverage, orientation and dipole moment, crucially influence the optical properties of TMDs, leaving a unique optical fingerprint in the absorption spectrum. Furthermore, we find that the molecular dipole moments open a channel for coherent intervalley coupling between the high-symmetry K and K\\prime points which may create new possibilities for spin-valleytronics application.

  18. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  19. Electrophysiological responses to feedback during the application of abstract rules.

    PubMed

    Walsh, Matthew M; Anderson, John R

    2013-11-01

    Much research focuses on how people acquire concrete stimulus-response associations from experience; however, few neuroscientific studies have examined how people learn about and select among abstract rules. To address this issue, we recorded ERPs as participants performed an abstract rule-learning task. In each trial, they viewed a sample number and two test numbers. Participants then chose a test number using one of three abstract mathematical rules they freely selected from: greater than the sample number, less than the sample number, or equal to the sample number. No one rule was always rewarded, but some rules were rewarded more frequently than others. To maximize their earnings, participants needed to learn which rules were rewarded most frequently. All participants learned to select the best rules for repeating and novel stimulus sets that obeyed the overall reward probabilities. Participants differed, however, in the extent to which they overgeneralized those rules to repeating stimulus sets that deviated from the overall reward probabilities. The feedback-related negativity (FRN), an ERP component thought to reflect reward prediction error, paralleled behavior. The FRN was sensitive to item-specific reward probabilities in participants who detected the deviant stimulus set, and the FRN was sensitive to overall reward probabilities in participants who did not. These results show that the FRN is sensitive to the utility of abstract rules and that the individual's representation of a task's states and actions shapes behavior as well as the FRN.

  20. Electrophysiological Responses to Feedback during the Application of Abstract Rules

    PubMed Central

    Walsh, Matthew M.; Anderson, John R.

    2017-01-01

    Much research focuses on how people acquire concrete stimulus–response associations from experience; however, few neuroscientific studies have examined how people learn about and select among abstract rules. To address this issue, we recorded ERPs as participants performed an abstract rule-learning task. In each trial, they viewed a sample number and two test numbers. Participants then chose a test number using one of three abstract mathematical rules they freely selected from: greater than the sample number, less than the sample number, or equal to the sample number. No one rule was always rewarded, but some rules were rewarded more frequently than others. To maximize their earnings, participants needed to learn which rules were rewarded most frequently. All participants learned to select the best rules for repeating and novel stimulus sets that obeyed the overall reward probabilities. Participants differed, however, in the extent to which they overgeneralized those rules to repeating stimulus sets that deviated from the overall reward probabilities. The feedback-related negativity (FRN), an ERP component thought to reflect reward prediction error, paralleled behavior. The FRN was sensitive to item-specific reward probabilities in participants who detected the deviant stimulus set, and the FRN was sensitive to overall reward probabilities in participants who did not. These results show that the FRN is sensitive to the utility of abstract rules and that the individualʼs representation of a taskʼs states and actions shapes behavior as well as the FRN. PMID:23915052

  1. 20 CFR 667.825 - What special rules apply to reviews of NFJP and WIA INA grant selections?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What special rules apply to reviews of NFJP and WIA INA grant selections? 667.825 Section 667.825 Employees' Benefits EMPLOYMENT AND TRAINING... competition and for the area and will select a grantee through the normal competitive process. ...

  2. Targeted training of the decision rule benefits rule-guided behavior in Parkinson's disease.

    PubMed

    Ell, Shawn W

    2013-12-01

    The impact of Parkinson's disease (PD) on rule-guided behavior has received considerable attention in cognitive neuroscience. The majority of research has used PD as a model of dysfunction in frontostriatal networks, but very few attempts have been made to investigate the possibility of adapting common experimental techniques in an effort to identify the conditions that are most likely to facilitate successful performance. The present study investigated a targeted training paradigm designed to facilitate rule learning and application using rule-based categorization as a model task. Participants received targeted training in which there was no selective-attention demand (i.e., stimuli varied along a single, relevant dimension) or nontargeted training in which there was selective-attention demand (i.e., stimuli varied along a relevant dimension as well as an irrelevant dimension). Following training, all participants were tested on a rule-based task with selective-attention demand. During the test phase, PD patients who received targeted training performed similarly to control participants and outperformed patients who did not receive targeted training. As a preliminary test of the generalizability of the benefit of targeted training, a subset of the PD patients were tested on the Wisconsin card sorting task (WCST). PD patients who received targeted training outperformed PD patients who did not receive targeted training on several WCST performance measures. These data further characterize the contribution of frontostriatal circuitry to rule-guided behavior. Importantly, these data also suggest that PD patient impairment, on selective-attention-demanding tasks of rule-guided behavior, is not inevitable and highlight the potential benefit of targeted training.

  3. Ideal Magnetic Dipole Scattering

    NASA Astrophysics Data System (ADS)

    Feng, Tianhua; Xu, Yi; Zhang, Wei; Miroshnichenko, Andrey E.

    2017-04-01

    We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters light as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Such a possibility was recently demonstrated for the so-called anapole mode, which is associated with zero electric dipole scattering. By spectrally overlapping the magnetic dipole resonance with the anapole mode, we achieve ideal magnetic dipole scattering in the far field with tunable strong scattering resonances in the near infrared spectrum. We demonstrate that such a condition can be realized at least for two subwavelength geometries. One of them is a core-shell nanosphere consisting of a Au core and silicon shell. It can be also achieved in other geometries, including nanodisks, which are compatible with current nanofabrication technology.

  4. Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled on-line with high performance liquid chromatography for selective determination of acesulfame.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz

    2015-03-01

    Sol-gel based molecularly imprinted polymer (MIP) nanofiber was successfully fabricated by electrospinning technique on the surface of a stainless steel bar. The manufactured tool was applied for on-line selective solid phase microextraction (SPME) and determination of acesulfame (ACF) as an artificial sweetener with high performance liquid chromatography (HPLC). The selective ability of method for the extraction of ACF was investigated in the presence of some selected sweeteners such as saccharine (SCH), aspartame (ASP) and caffeine (CAF). Electrospinning of MIP sol-gel solution on the stainless steel bar provided an unbreakable sorbent with high thermal, mechanical, and chemical stability. Moreover, application of the MIP-SPME tool revealed a unique approach for the selective microextraction of the analyte in beverage samples. In this work, 3-(triethoxysilyl)-propylamine (TMSPA) was chosen as a precursor due to its ability to imprint the analyte by hydrogen bonding, Van der Walls, and dipole-dipole interactions. Nylon 6 was also added as a backbone and support for the precursor in which sol could greatly growth during the sol-gel process and makes the solution electrospinable. Various effective parameters in the extraction efficiency of the MIP-SPME tool such as loading time, flow rate, desorption time, selectivity, and the sample volume were evaluated. The linearity for the ACF in beverage sample was in the range of 0.78-100.5 ng mL(-1). Limit of detection (LOD) and quantification (LOQ) were 0.23 and 0.78 ng mL(-1) respectively. The RSD values (n=5) were all below 3.5%at the 20 ng mL(-1) level. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A generalization of Hamilton's rule--love others how much?

    PubMed

    Alger, Ingela; Weibull, Jörgen W

    2012-04-21

    According to Hamilton's (1964a, b) rule, a costly action will be undertaken if its fitness cost to the actor falls short of the discounted benefit to the recipient, where the discount factor is Wright's index of relatedness between the two. We propose a generalization of this rule, and show that if evolution operates at the level of behavior rules, rather than directly at the level of actions, evolution will select behavior rules that induce a degree of cooperation that may differ from that predicted by Hamilton's rule as applied to actions. In social dilemmas there will be less (more) cooperation than under Hamilton's rule if the actions are strategic substitutes (complements). Our approach is based on natural selection, defined in terms of personal (direct) fitness, and applies to a wide range of pairwise interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Interactions of carbon nanotubes with the nitromethane-water mixture governing selective adsorption of energetic molecules from aqueous solution.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2015-03-14

    The structure and dynamics of the nitromethane-water (NM-WT) binary mixture surrounding single walled carbon nanotubes (SWNTs) have been investigated by molecular dynamics simulations. The simulation trajectories show that the NM molecules can be selectively adsorbed both outside the surface and inside the cavity of SWNTs mainly dominated by van der Waals attractions because SWNTs have a higher binding affinity for NM than WT. The binding energies of SWNTs with NM and WT obtained from electronic structure calculations at the M06-2X/6-31+G* level are 15.31 and 5.51 kcal mol(-1), respectively. Compared with the SWNT exterior, the selective adsorption of NM is preferentially occurred in the SWNT interior due to the hydrophobic interactions and the dipole-dipole interactions, which induces the decrease of the hydrogen-bond number of NM with WT and ordered structures of NM with preferred intermolecular orientation in the SWNT cavity. Furthermore, the selective adsorption dynamics of NM from the aqueous solution is regardless of the chirality and radius of SWNTs. The SWNT radius plays a negligible role in the mass density distributions of NM outside the SWNTs, while the mass density of NM in the SWNT interior decreases gradually as the SWNT radius increases. The structural arrangements and intermolecular orientations of NM in the SWNT cavity are greatly dependent on the SWNT radius due to the size effect.

  7. Electric-dipole absorption resonating with longitudinal optical phonon-plasmon system and its effect on dispersion relations of interface phonon polariton modes in metal/semiconductor-stripe structures

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro

    2018-01-01

    Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.

  8. Learning a New Selection Rule in Visual and Frontal Cortex.

    PubMed

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.

  9. Energy flow of electric dipole radiation in between parallel mirrors

    NASA Astrophysics Data System (ADS)

    Xu, Zhangjin; Arnoldus, Henk F.

    2017-11-01

    We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.

  10. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  11. Geometrical Simplification of the Dipole-Dipole Interaction Formula

    ERIC Educational Resources Information Center

    Kocbach, Ladislav; Lubbad, Suhail

    2010-01-01

    Many students meet dipole-dipole potential energy quite early on when they are taught electrostatics or magnetostatics and it is also a very popular formula, featured in encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that, for example, by reorienting the two dipoles, their attraction can become exactly twice…

  12. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  13. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.

    2012-03-01

    The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  14. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  15. Energy Pooling Upconversion in Free Space and Optical Cavities

    NASA Astrophysics Data System (ADS)

    LaCount, Michael D.

    The ability to efficiently convert the wavelength of light has value in a wide range of disciplines that include the fields of photovoltaics, plant growth, optics and medicine. The processes by which such transformations are carried out are known as upconversions and downconversions. There are several ways to up/down convert light, each with its own attributes, issues, and competing mechanisms. Most are associated with one-body or two-body processes. Three-body dynamics are also possible though, going by the names of quantum cutting (downconversion) and energy pooling (upconversion). These use virtual excited electronic states to mediate conversions as has been experimentally realized using lanthanide ions embedded in wide bandgap materials. The use of lanthanides to convert light is not ideal due to their relative scarcity, toxicity, and the limited range of light frequencies that can be absorbed and emitted. Organic molecules, on the other hand, are typically non-toxic, are made up of abundant elements, and can be designed with tailored spectral properties. At issue is whether or not they can be used to carry out efficient energy pooling, the central question to be answered in this thesis. The research presented here draws on a perturbative quantum electrodynamics framework previously established for generic energy pooling. It was used to develop a computational methodology for determining the rate of energy pooling and its competing processes. This, in turn, draws on a combination of time-dependent density functional theory, quantum electrodynamics, and perturbation theory to generate the requisite material property data. This computational model was applied to two test systems consisting of stilbene-fluorescein and hexabenzocoronene-oligothiophene. The stilbene-fluorescein system was found to have a maximum energy pooling rate efficiency (as compared to competing processes) of 17% and the hexabenzocoronene-oligothiophene system was found to have a maximum energy pooling rate efficiency of 99%. This demonstrates that the energy pooling rate can be made faster than its competing processes. Based on the results of this study, a set of design rules was developed to optimize the rate efficiency of energy pooling. Prior to this research, no attempt had been made to determine if energy pooling could be made to out-pace competing processes--i.e. whether or not a molecular system could be designed to utilize energy pooling as an efficient means of upconversion. This initial investigation was part of a larger effort involving a team of researchers at the University of Colorado, Boulder and at the National Renewable Energy Laboratory. After establishing our computational proof-of-concept, we collectively used the new design rules to select an improved system for energy pooling. This consisted of rhodamine 6G and stilbene-420. These molecules were fabricated into a thin film, and the maximum internal quantum yield was measured to be 36% under sufficiently high intensity light. To further increase the efficiency of energy pooling, encapsulation within optical cavities was considered as a way of changing the rate of processes characterized by electric dipole-dipole coupling. This was carried out using a combination of classical electromagnetism, quantum electrodynamics, and perturbation theory. It was found that, in the near field, if the distance of the energy transfer is smaller than the distance from the energy transfer site and the cavity wall, then the electric dipole-dipole coupling tensor is not influenced by the cavity environment and the rates of energy transfer processes are the same as those in free space. Any increase in energy transfer efficiencies that are experimentally measured must therefore be caused by changing the rate of light absorption and emission. This is an important finding because earlier, less rigorous studies had concluded otherwise. It has been previously demonstrated that an optical cavity can be used to inhibit the spontaneous emission of atoms or molecules placed within it. This too was examined as a possible means of increasing energy pooling efficiency. Using first-principles methods, quantum electrodynamics, perturbation theory, and a kinetic model, the efficiency of energy pooling upconversion within a tuned rectangular cavity was found to be significantly larger than in free space. A model system with a free-space energy pooling upconversion efficiency of 23% was found to increase to 47% when placed in a tuned rectangular cavity.

  16. Hamilton's missing link.

    PubMed

    van Veelen, Matthijs

    2007-06-07

    Hamilton's famous rule was presented in 1964 in a paper called "The genetical theory of social behaviour (I and II)", Journal of Theoretical Biology 7, 1-16, 17-32. The paper contains a mathematical genetical model from which the rule supposedly follows, but it does not provide a link between the paper's central result, which states that selection dynamics take the population to a state where mean inclusive fitness is maximized, and the rule, which states that selection will lead to maximization of individual inclusive fitness. This note provides a condition under which Hamilton's rule does follow from his central result.

  17. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0<0.01ppm. In many cases however, inherent properties of the objects under investigation, pulsating arteries, breathing lungs, tissue-air interfaces, surgical implants, etc., lead to fluctuations and losses of local homogeneity. A new method dubbed “long-lived-coherence correlation spectroscopy” (LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  18. Zeroth order regular approximation approach to electric dipole moment interactions of the electron.

    PubMed

    Gaul, Konstantin; Berger, Robert

    2017-07-07

    A quasi-relativistic two-component approach for an efficient calculation of P,T-odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.

  19. Zeroth order regular approximation approach to electric dipole moment interactions of the electron

    NASA Astrophysics Data System (ADS)

    Gaul, Konstantin; Berger, Robert

    2017-07-01

    A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.

  20. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.

    2016-01-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  1. AVNM: A Voting based Novel Mathematical Rule for Image Classification.

    PubMed

    Vidyarthi, Ankit; Mittal, Namita

    2016-12-01

    In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The kinematic dipole in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Maartens, Roy; Clarkson, Chris; Chen, Song

    2018-01-01

    In the concordance model of the Universe, the matter distribution—as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) —should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.

  3. Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions

    PubMed Central

    Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping

    2012-01-01

    The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954

  4. Language and music: differential hemispheric dominance in detecting unexpected errors in the lyrics and melody of memorized songs.

    PubMed

    Yasui, Takuya; Kaga, Kimitaka; Sakai, Kuniyoshi L

    2009-02-01

    Using magnetoencephalography (MEG), we report here the hemispheric dominance of the auditory cortex that is selectively modulated by unexpected errors in the lyrics and melody of songs (lyrics and melody deviants), thereby elucidating under which conditions the lateralization of auditory processing changes. In experiment 1 using familiar songs, we found that the dipole strength of responses to the lyrics deviants was left-dominant at 140 ms (M140), whereas that of responses to the melody deviants was right-dominant at 130 ms (M130). In experiment 2 using familiar songs with a constant syllable or pitch, the dipole strength of frequency mismatch negativity elicited by oddballs was left-dominant. There were significant main effects of experiment (1 and 2) for the peak latencies and for the coordinates of the dipoles, indicating that the M140 and M130 were not the frequency mismatch negativity. In experiment 3 using newly memorized songs, the right-dominant M130 was observed only when the presented note was unexpected one, independent of perceiving unnatural pitch transitions (i.e., perceptual saliency) and of selective attention to the melody of songs. The consistent right-dominance of the M130 between experiments 1 and 3 suggests that the M130 in experiment 1 is due to unexpected notes deviating from well-memorized songs. On the other hand, the left-dominant M140 was elicited by lyrics deviants, suggesting the influence of top-down linguistic information and the memory of the familiar songs. We thus conclude that the left- lateralized M140 and right-lateralized M130 reflect the expectation based on top-down information of language and music, respectively.

  5. Rapid depth estimation for compact magnetic sources using a semi-automated spectrum-based method

    NASA Astrophysics Data System (ADS)

    Clifton, Roger

    2017-04-01

    This paper describes a spectrum-based algorithmic procedure for rapid reconnaissance for compact bodies at depths of interest using magnetic line data. The established method of obtaining depth to source from power spectra requires an interpreter to subjectively select just a single slope along the power spectrum. However, many slopes along the spectrum are, at least partially, indicative of the depth if the shape of the source is known. In particular, if the target is assumed to be a point dipole, all spectral slopes are determined by the depth, noise permitting. The concept of a `depth spectrum' is introduced, where the power spectrum in a travelling window or gate of data is remapped so that a single dipole in the gate would be represented as a straight line at its depth on the y-axis of the spectrum. In demonstration, the depths of two known ironstones are correctly displayed. When a second body is in the gate, the two anomalies interfere, leaving interference patterns on the depth spectra that are themselves diagnostic. A formula has been derived for the purpose. Because there is no need for manual selection of slopes along the spectrum, the process runs rapidly along flight lines with a continuously varying display, where the interpreter can pick out a persistent depth signal among the more rapidly varying noise. Interaction is nevertheless necessary, because the interpreter often needs to pass across an anomaly of interest several times, separating out interfering bodies, and resolving the slant range to the body from adjacent flight lines. Because a look-up table is used rather than a formula, the elementary structure used for the mapping can be adapted by including an extra dipole, possibly with a different inclination.

  6. Positron scattering from pyridine

    NASA Astrophysics Data System (ADS)

    Stevens, D.; Babij, T. J.; Machacek, J. R.; Buckman, S. J.; Brunger, M. J.; White, R. D.; García, G.; Blanco, F.; Ellis-Gibbings, L.; Sullivan, J. P.

    2018-04-01

    We present a range of cross section measurements for the low-energy scattering of positrons from pyridine, for incident positron energies of less than 20 eV, as well as the independent atom model with the screening corrected additivity rule including interference effects calculation, of positron scattering from pyridine, with dipole rotational excitations accounted for using the Born approximation. Comparisons are made between the experimental measurements and theoretical calculations. For the positronium formation cross section, we also compare with results from a recent empirical model. In general, quite good agreement is seen between the calculations and measurements although some discrepancies remain which may require further investigation. It is hoped that the present study will stimulate development of ab initio level theoretical methods to be applied to this important scattering system.

  7. Model misspecification detection by means of multiple generator errors, using the observed potential map.

    PubMed

    Zhang, Z; Jewett, D L

    1994-01-01

    Due to model misspecification, currently-used Dipole Source Localization (DSL) methods may contain Multiple-Generator Errors (MulGenErrs) when fitting simultaneously-active dipoles. The size of the MulGenErr is a function of both the model used, and the dipole parameters, including the dipoles' waveforms (time-varying magnitudes). For a given fitting model, by examining the variation of the MulGenErrs (or the fit parameters) under different waveforms for the same generating-dipoles, the accuracy of the fitting model for this set of dipoles can be determined. This method of testing model misspecification can be applied to evoked potential maps even when the parameters of the generating-dipoles are unknown. The dipole parameters fitted in a model should only be accepted if the model can be shown to be sufficiently accurate.

  8. The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment.

    PubMed

    Takashima, S

    2001-04-05

    The large dipole moment of globular proteins has been well known because of the detailed studies using dielectric relaxation and electro-optical methods. The search for the origin of these dipolemoments, however, must be based on the detailed knowledge on protein structure with atomic resolutions. At present, we have two sources of information on the structure of protein molecules: (1) x-ray databases obtained in crystalline state; (2) NMR databases obtained in solution state. While x-ray databases consist of only one model, NMR databases, because of the fluctuation of the protein folding in solution, consist of a number of models, thus enabling the computation of dipole moment repeated for all these models. The aim of this work, using these databases, is the detailed investigation on the interdependence between the structure and dipole moment of protein molecules. The dipole moment of protein molecules has roughly two components: one dipole moment is due to surface charges and the other, core dipole moment, is due to polar groups such as N--H and C==O bonds. The computation of surface charge dipole moment consists of two steps: (A) calculation of the pK shifts of charged groups for electrostatic interactions and (B) calculation of the dipole moment using the pK corrected for electrostatic shifts. The dipole moments of several proteins were computed using both NMR and x-ray databases. The dipole moments of these two sets of calculations are, with a few exceptions, in good agreement with one another and also with measured dipole moments.

  9. Offshore rectenna feasbility

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Hervey, D.; Glaser, P.

    1980-01-01

    A preliminary study of the feasibility and cost of an offshore rectenna to serve the upper metropolitan east coast was performed. A candidate site at which to build a 5 GW rectenna was selected on the basis of proximity to load centers, avoidance of shipping lanes, sea floor terrain, and relocated conditions. Several types of support structures were selected for study based initially on the reference system rectenna concept of a wire mesh ground screen and dipoles each with its own rectifier and filter circuits. Possible secondary uses of an offshore rectenna were examined and are evaluated.

  10. Laser sculpting of atomic sp, sp(2) , and sp(3) hybrid orbitals.

    PubMed

    Liu, Chunmei; Manz, Jörn; Yang, Yonggang

    2015-01-12

    Atomic sp, sp(2) , and sp(3) hybrid orbitals were introduced by Linus Pauling to explain the nature of the chemical bond. Quantum dynamics simulations show that they can be sculpted by means of a selective series of coherent laser pulses, starting from the 1s orbital of the hydrogen atom. Laser hybridization generates atoms with state-selective electric dipoles, opening up new possibilities for the study of chemical reaction dynamics and heterogeneous catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Data Modeling, Feature Extraction, and Classification of Magnetic and EMI Data, ESTCP Discrimination Study, Camp Sibert, AL. Demonstration Report

    DTIC Science & Technology

    2008-09-01

    Figure 19. Misfit versus depth curve for the EM63 Pasion -Oldenburg model fit to anomaly 649. Two cases are considered: (i) using all the data which...selection of optimal models; c) Fitting of 2- and 3-dipole Pasion -Oldenburg models to the EM63 cued- interrogation data and selection of optimal models...Hart et al., 2001; Collins et al., 2001; Pasion & Oldenburg, 2001; Zhang et al., 2003a, 2003b; Billings, 2004). The most promising discrimination

  12. Structural Plasticity of Malaria Dihydroorotate Dehydrogenase Allows Selective Binding of Diverse Chemical Scaffolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xiaoyi; Gujjar, Ramesh; El Mazouni, Farah

    Malaria remains a major global health burden and current drug therapies are compromised by resistance. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) was validated as a new drug target through the identification of potent and selective triazolopyrimidine-based DHODH inhibitors with anti-malarial activity in vivo. Here we report x-ray structure determination of PfDHODH bound to three inhibitors from this series, representing the first of the enzyme bound to malaria specific inhibitors. We demonstrate that conformational flexibility results in an unexpected binding mode identifying a new hydrophobic pocket on the enzyme. Importantly this plasticity allows PfDHODH to bind inhibitors from different chemical classes andmore » to accommodate inhibitor modifications during lead optimization, increasing the value of PfDHODH as a drug target. A second discovery, based on small molecule crystallography, is that the triazolopyrimidines populate a resonance form that promotes charge separation. These intrinsic dipoles allow formation of energetically favorable H-bond interactions with the enzyme. The importance of delocalization to binding affinity was supported by site-directed mutagenesis and the demonstration that triazolopyrimidine analogs that lack this intrinsic dipole are inactive. Finally, the PfDHODH-triazolopyrimidine bound structures provide considerable new insight into species-selective inhibitor binding in this enzyme family. Together, these studies will directly impact efforts to exploit PfDHODH for the development of anti-malarial chemotherapy.« less

  13. Imaging Radar Studies of Atmospheric Winds and Waves

    DTIC Science & Technology

    1993-09-02

    3*ZAWindow - ZASpread(dir) do 10004 ant - 1,3 0 C "c Test #1: Reject this Doppler frequency if both quadrature "c components are too small on any...dipole) - pd23(dir,dipole) - 2*pi If (pd23(dir,dipole) .At. -pi) 1 pd23(dir,dipole) - pd23(dir,dipole) + 2*pi c "c Tests #2,3,6,&7: The two zenith...thetal+theta2)/2 10098 continue c "c Tests #4 and #8: Both dipoles have separately determined zenith "c angles for one direction. Do these two values

  14. Self-Interest and the Design of Rules.

    PubMed

    Singh, Manvir; Wrangham, Richard; Glowacki, Luke

    2017-12-01

    Rules regulating social behavior raise challenging questions about cultural evolution in part because they frequently confer group-level benefits. Current multilevel selection theories contend that between-group processes interact with within-group processes to produce norms and institutions, but within-group processes have remained underspecified, leading to a recent emphasis on cultural group selection as the primary driver of cultural design. Here we present the self-interested enforcement (SIE) hypothesis, which proposes that the design of rules importantly reflects the relative enforcement capacities of competing parties. We show that, in addition to explaining patterns in cultural change and stability, SIE can account for the emergence of much group-functional culture. We outline how this process can stifle or accelerate cultural group selection, depending on various social conditions. Self-interested enforcement has important bearings on the emergence, stability, and change of rules.

  15. Rules of thumb for superfund remedy selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    The guidance document describes key principles and expectations, interspersed with `best practices` based on program experience, that should be consulted during the Superfund remedy selection process. These remedy selection `Rules of Thumb` are organized into three major policy areas: (1) risk assessment and risk management, (2) developing remedial alternatives, and (3) ground-water response actions. The purpose of this guide is to briefly summarize key elements of various remedy selection guidance documents and policies in one publication.

  16. A gaussian model for simulated geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Meduri, Domenico G.

    2016-10-01

    Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.

  17. 77 FR 73500 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change Relating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Trading of Shares of the Horizons S&P 500 Covered Call ETF, Horizons S&P Financial Select Sector Covered Call ETF, and Horizons S&P Energy Select Sector Covered Call ETF Under NYSE Arca Equities Rule 5.2(j)(3... and trade shares (``Shares'') of the Horizons S&P 500 Covered Call ETF, Horizons S&P Financial Select...

  18. Electromagnetic toroidal excitations in matter and free space.

    PubMed

    Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

  19. Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators

    DOE PAGES

    Liu, Sheng; Vaskin, Aleksandr; Campione, Salvatore; ...

    2017-06-07

    Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. Here in this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrallymore » overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.« less

  20. Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N. (Inventor)

    1995-01-01

    An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.

  1. Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study.

    PubMed

    Mignot, Mélanie; Schammé, Benjamin; Tognetti, Vincent; Joubert, Laurent; Cardinael, Pascal; Peulon-Agasse, Valérie

    2017-10-13

    New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Pollution Police: How to Determine Spectroscopic Selection Rules

    ERIC Educational Resources Information Center

    Selco, Jodye I.; Beery, Janet

    2004-01-01

    Students employ mathematics and physical chemistry in a project called Pollution Police to establish spectroscopic selection rules, and apply them to detect environmental contaminants from infrared spectra. This interdisciplinary project enables students to gain multiple information on molecular symmetry, and its role in the development of…

  3. New Magnetic Field Model for Saturn From Cassini Radio and Magnetometers Observations: The Birotor Dipole

    NASA Astrophysics Data System (ADS)

    Galopeau, P. H. M.

    2017-12-01

    Since the insertion of Cassini in the Saturnian system in July 2004, the radio and plasma wave science (RPWS) experiment on board the spacecraft revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR) which were attributed to the northern and southern hemispheres respectively. The present study is based on the hypothesis that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A continuous wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. The rotation phases associated to the main two periods allow us to define a North and South longitude system essential for such a study. In this context, a dipole model ("birotor dipole") was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for modelling and constraining the planetary dynamo and they can be a starting point for the study of Saturn's inner structure and the comparison with the interior of Jupiter.

  4. Electric dipole polarizability from first principles calculations

    DOE PAGES

    Miorelli, M.; Bacca, S.; Barnea, N.; ...

    2016-09-19

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for themore » 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.« less

  5. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  6. Gravitational dynamos and the low-frequency geomagnetic secular variation

    PubMed Central

    Olson, P.

    2007-01-01

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  7. Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies.

    PubMed

    Lescop, Christophe

    2017-04-18

    One important concept associated with supramolecular chemistry is supramolecular self-assembly, which deals with the way discrete individual components interact via intermolecular interactions in order to build, upon their spontaneous association, high order functional assemblies. The accumulation of these very simple and localized noncovalent interactions (such as H-bonding, dipole-dipole, hydrophobic/hydrophilic, van der Waals, π-π, π-CH, etc.) is ubiquitous in the complexity of natural systems (such as DNA, proteins, membranes, micelles, etc.). It can also be transposed to the directed synthesis of intricate artificial scaffolds, which have anticipated geometries and properties. Among the synthetic strategies based on this concept, coordination-driven supramolecular chemistry uses the robust, reversible, and directional metal-to-ligand coordinative bond to build discrete metallo-supramolecular architectures. Within the last two decades, coordination-driven supramolecular chemistry has proved to be one of the most powerful contemporary synthetic approaches and has provided a significant number of increasingly complex supramolecular assemblies, which have predetermined sizes and geometries. While much focus has been devoted to architectures bearing internal cavities for host-guest chemistry or to generate specific reactivity, particular attention can also be paid to compact supramolecular assemblies given that their specific structures are characterized by peculiar synthetic guiding rules as well as by alternative long-range self-assembling properties. This Account describes how a preassembled Cu I bimetallic clip bearing short intermetallic distances can be used as a U-shaped molecular clip to give general and versatile access to a large variety of original compact supramolecular metallacycles. When this Cu I precursor is reacted with various cyano-capped ditopic linkers that have increasing lengths and complexities, specific effects guiding the selective and straightforward syntheses of such compact supramolecular objects are highlighted. Whereas a subtle compromise between the length of the ditopic linkers and the steric bulk of the molecular clip appears to be a purely stereogeometric preliminary parameter to master, lateral interlinker interactions (π-π stacking interactions or aurophilic interactions depending on the nature of the internal cores of the linkers) can circumvent these constraints regardless of the length of the linkers and allow the selective formation of new compact supramolecular structures. Generally, such derivatives presented a strong tendency to self-assemble in the solid state due to inter-supramolecule interactions. This approach thus opens a new door toward molecular materials having an attractive solid state structure for potential applications related to charge carrier mobility and luminescence properties. These compact supramolecular assemblies can therefore be considered as original secondary binding units directing the predictive preparation of such extended networks. The on-purpose design of original building blocks bearing specific cores allowed the formation of new compact supramolecular metallacycles such as "U-shaped" π-stacked assemblies or "pseudodouble paracyclophanes". Similarly, the control of the secondary structure of one-dimensional coordination polymers alternating π-stacked compact supramolecular metallacycles was also conducted. The results that are discussed in this Account illustrate how the rational design of both preassembled polymetallic precursors bearing short intermetallic distances and ditopic linkers able to induce cumulative lateral weak interactions can implement the general synthetic guiding rules of coordination driven supramolecular chemistry. This opens perspectives to use such compact supramolecular assemblies as secondary building blocks for the design of long-range organized functional molecular materials that have predictable architectures and targeted properties.

  8. Initial-state colour dipole emission associated with QCD Pomeron exchange

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1995-02-01

    The initial-state radiation of soft colour dipoles produced together with a single QCD Pomeron exchange (BFKL) in onium-onium scattering is calculated in the framework of Mueller's approach. The resulting dipole production grows with increasing energy and reveals an unexpected feature of a power-law tail at appreciably large transverse distances from the collision axis, this phenomenon being related to the scale-invariant structure of dipole-dipole correlations.

  9. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  10. A new dipole index of the salinity anomalies of the tropical Indian Ocean.

    PubMed

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-04-07

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.

  11. Selecting Pesticides and Nonchemical Alternatives: Green Thumbs' Rules of Thumb Decision Tools.

    ERIC Educational Resources Information Center

    Grieshop, James I.; And Others

    1992-01-01

    A sample of 78 (of 320) home gardeners use rules of thumb (heuristics) to choose between chemical pesticides and nonchemical alternatives. Pesticides rank low in 24 choice attributes where alternatives rank high, and vice versa. Gender, age, and years of pesticide use correlate with pesticide selection. (SK)

  12. Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.

    PubMed

    Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin

    2017-07-01

    The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Measurement and analysis of electronic energy transfer between Tb 3+ and Eu 3+ ions in Cs 2NaY 1-x-y Tb xEu yCl 6

    NASA Astrophysics Data System (ADS)

    Moran, Diane M.; May, P. Stanley; Richardson, F. S.

    1994-08-01

    Electronic energy-transfer processes between Tb 3+5D 4) and Eu 3+ ( 7F 0, 7F 1) ions in crystalline Cs 2NaY 1-x-yTb xEu yCl 6 compounds are examined over a wide range of relative Tb 3+ and Eu 3+ concentrations (at sample temperature of 77 and 295 K). In these systems, the Tb 3+ and Eu 3+ ions are located at centrosymmetric (O h) sites surrounded by six Cl - ions, and the minimum distance between these sites is ≈ 7.6 Å. The host lattice has a cubic structure (space group O h5-Fm3m), and the phonon spectrum of this lattice has a cut-off frequency of ≈ 300 cm -1. The optical spectra of Tb 3+ and Eu 3+ in Cs 2NaYCl 6 exhibit relatively sparse line structures, consisting almost entirely of magnetic-dipole origin lines and one-phonon-assisted electric-dipole vibronic lines that reflect O h selection rules and have relatively low oscillator strenghts. Overlap between Tb 3+ ( 5D 4) emission and Eu 3+ ( 7F 0, 7F 1) absorption spectra occurs only within the Tb 3+ ( 5D 4 → 7 F 4 and Eu 3+ ( 7F 0, 7F 1 → 5D 0 transition regions, and resonances between individual lines in these regions are used to identify possible pathways for Tb 3+ ( 5D 4)-to-Eu 3+ ( 7F 0, 7F 1) energy transfer. Rates of energy transfer are determined from time-resolved Tb 3+ ( 5D 4) luminescence intersity measurements, analyzed in terms of two different models for representing donor (Tb 3+)-acceptor (Eu 3+) site distributions in Cs 2NaY 1-x-yTb xEu yCl 6 systems. In one model, donor-accepator site distances are represented by a continuous radial distribution function, whereas in the second model, these distances are represented by a discrete distribution function. Both models are used to analyze donor luminescence decay data in terms of rate parameters that reflect specific mechanistic contributions to electronic energy transfer. Both electron-exchange and multipole-multipole mechanisms are considered in the analyses. Results from these analyses, combined with spectral overlap considerations and comparisons of 77 versus 295 K rate data, suggest an electric-quadrupole/electric-dipole mechanism in which a 5D 4(T 1g → 7F 4(T 1g) electric-quadrupole transition on Tb 3+ excites a 7F 0(A 1g) + v4(t 1u → 5D 0(A 1g) electric-dipole (vibronic) transition on Eu 3+. Rate data obtained on systems of stoichiometric formulae Cs 2NaY 0.95-xTb xEu 0.05Cl 6 show that Tb 3+( 5D 4)- to-Eu 3+ ( 7F 0, 7F 1) energy-transfer rates a Tb 3+-Tb 3+ energy-migration processes when tx > 0.05. Direct calculations of Tb 3+ ( 5D 4)-Eu 3+ ( 7F 0, 7F 1) and Tb 3+ ( 5D 4-Tb 3+ ( 7F 6) multipole-multipole interaction parameters are performed, and the parameters obtained from these calculations are compared to those derived from parametric fits of experimentally observed rate data. Discrepancies between calculated and ovserved rate parameters are large, and possible explanations for these discrepancies are discussed.

  14. Water Permeation Across Biological Membranes: Mechanism and Dynamics of Aquaporin-1 and GlpF

    NASA Astrophysics Data System (ADS)

    de Groot, Bert L.; Grubmüller, Helmut

    2001-12-01

    ``Real time'' molecular dynamics simulations of water permeation through human aquaporin-1 (AQP1) and the bacterial glycerol facilitator GlpF are presented. We obtained time-resolved, atomic-resolution models of the permeation mechanism across these highly selective membrane channels. Both proteins act as two-stage filters: Conserved fingerprint [asparagine-proline-alanine (NPA)] motifs form a selectivity-determining region; a second (aromatic/arginine) region is proposed to function as a proton filter. Hydrophobic regions near the NPA motifs are rate-limiting water barriers. In AQP1, a fine-tuned water dipole rotation during passage is essential for water selectivity. In GlpF, a glycerol-mediated ``induced fit'' gating motion is proposed to generate selectivity for glycerol over water.

  15. Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T.

    PubMed

    Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong

    2015-01-01

    Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.

  16. Interaction between colloidal particles on an oil-water interface in dilute and dense phases.

    PubMed

    Parolini, Lucia; Law, Adam D; Maestro, Armando; Buzza, D Martin A; Cicuta, Pietro

    2015-05-20

    The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher. This condition is thus explored in an alternative fashion, measuring the local mobility of colloids when confined by their neighbors. This method of extracting interaction potentials gives results that are consistent with dipolar repulsion throughout the concentration range, with the same magnitude as in the dilute limit. We are unable to rule out the density dependence based on the experimental accuracy of our data, but we show that incomplete equilibration of the experimental system, which would be possible despite long waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted potentials. We conclude that to within the precision of these measurements, the dilute pair potential remains valid at high density in this system.

  17. Effect of broken axial symmetry on the electric dipole strength and the collective enhancement of level densities in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Grosse, E.; Junghans, A. R.; Wilson, J. N.

    2017-11-01

    The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.

  18. Geophysical characterization of fractured bedrock at Site 8, former Pease Air Force Base, Newington, New Hampshire

    USGS Publications Warehouse

    Mack, Thomas J.; Degnan, James R.

    2003-01-01

    Borehole-geophysical logs collected from eight wells and direct-current resistivity data from three survey lines were analyzed to characterize the fractured bedrock and identify transmissive fractures beneath the former Pease Air Force Base, Newington, N.H. The following logs were used: caliper, fluid temperature and conductivity, natural gamma radiation, electromagnetic conductivity, optical and acoustic televiewer, and heat-pulse flowmeter. The logs indicate several foliation and fracture trends in the bedrock. Two fracture-correlated lineaments trending 28? and 29?, identified with low-altitude aerial photography, are coincident with the dominant structural trend. The eight boreholes logged at Site 8 generally have few fractures and have yields ranging from 0 to 40 gallons per minute. The fractures that probably resulted in high well yields (20?40 gallons per minute) strike northeast-southwest or by the right hand rule, have an orientation of 215?, 47?, and 51?. Two-dimensional direct-current resistivity methods were used to collect detailed subsurface information about the overburden, bedrock-fracture zone depths, and apparent-dip directions. Analysis of data inversions from data collected with dipole-dipole and Schlumberger arrays indicated electrically conductive zones in the bedrock that are probably caused by fractured rock. These zones are coincident with extensions of fracture-correlated lineaments. The fracture-correlated lineaments and geophysical-survey results indicate a possible northeast-southwest anisotropy to the fractured rock.

  19. Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons

    NASA Astrophysics Data System (ADS)

    Spohr, K. M.; Shaw, M.; Galster, W.; Ledingham, K. W. D.; Robson, L.; Yang, J. M.; McKenna, P.; McCanny, T.; Melone, J. J.; Amthor, K.-U.; Ewald, F.; Liesfeld, B.; Schwoerer, H.; Sauerbrey, R.

    2008-04-01

    Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena (I ~ 3-5×1019 W cm-2) produced hard bremsstrahlung photons (kT~2.9 MeV) via a laser-gas interaction which served to induce (γ, p) and (γ, n) reactions in Mg, Ti, Zn and Mo isotopes. Several (γ, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields. As the laser-generated bremsstrahlung spectra stretches over the energy regime dominated by the giant dipole resonance (GDR), these yield measurements were used in conjunction with theoretical estimates of the resonance energies Eres and their widths Γres to derive the integral reaction cross-section σint(γ,p) for 25Mn, 48, 49Ti, 68Zn and 97, 98Mo isotopes for the first time. This study enabled the determination of the previously unknown \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} cross-section ratios for these isotopes. The experiments were supported by extensive model calculations (Empire) and the results were compared to the Thomas-Reiche-Kuhn (TRK) dipole sum rule as well as to the experimental data in neighboring isotopes and good agreement was observed. The Coulomb barrier and the neutron excess strongly influence the \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} ratios for increasing target proton and neutron numbers.

  20. Absolute cross section measurements for the scattering of low- and intermediate-energy electrons from PF3. I. Elastic scattering

    NASA Astrophysics Data System (ADS)

    Hishiyama, N.; Hoshino, M.; Blanco, F.; García, G.; Tanaka, H.

    2017-12-01

    We report absolute elastic differential cross sections (DCSs) for electron collisions with phosphorus trifluoride, PF3, molecules (e- + PF3) in the impact energy range of 2.0-200 eV and over a scattering angle range of 10°-150°. Measured angular distributions of scattered electron intensities were normalized by reference to the elastic DCSs of He. Corresponding integral and momentum-transfer cross sections were derived by extrapolating the angular range from 0° to 180° with the help of a modified phase-shift analysis. In addition, due to the large dipole moment of the considered molecule, the dipole-Born correction for the forward scattering angles has also been applied. As a part of this study, independent atom model calculations in combination with screening corrected additivity rule were also performed for elastic and inelastic (electronic excitation plus ionization) scattering using a complex optical potential method. Rotational excitation cross sections have been estimated with a dipole-Born approximation procedure. Vibrational excitations are not considered in this calculation. Theoretical data, at the differential and integral levels, were found to reasonably agree with the present experimental results. Furthermore, we explore the systematics of the elastic DCSs for the four-atomic trifluoride molecules of XF3 (X = B, N, and P) and central P-atom in PF3, showing that, owing to the comparatively small effect of the F-atoms, the present angular distributions of elastic DCSs are essentially dominated by the characteristic of the central P-atom at lower impact energies. Finally, these quantitative results for e- - PF3 collisions were compiled together with the previous data available in the literature in order to obtain a cross section dataset for modeling purposes. To comprehensively describe such a considerable amount of data, we proceed by first discussing, in this paper, the vibrationally elastic scattering processes whereas vibrational and electronic excitation shall be the subject of our following paper devoted to inelastic collisions.

  1. Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd(3+)-DTPA chelate complexes.

    PubMed

    Yulikov, Maxim; Lueders, Petra; Warsi, Muhammad Farooq; Chechik, Victor; Jeschke, Gunnar

    2012-08-14

    Nanosized gold particles were functionalised with two types of paramagnetic surface tags, one having a nitroxide radical and the other one carrying a DTPA complex loaded with Gd(3+). Selective measurements of nitroxide-nitroxide, Gd(3+)-nitroxide and Gd(3+)-Gd(3+) distances were performed on this system and information on the distance distribution in the three types of spin pairs was obtained. A numerical analysis of the dipolar frequency distributions is presented for Gd(3+) centres with moderate magnitudes of zero-field splitting, in the range of detection frequencies and resonance fields where the high-field approximation is only roughly valid. The dipolar frequency analysis confirms the applicability of DEER for distance measurements in such complexes and gives an estimate for the magnitudes of possible systematic errors due to the non-ideality of the measurement of the dipole-dipole interaction.

  2. Palaeointensity determinations and rock magnetic properties on basalts from Shatsky Rise: new evidence for a Mesozoic dipole low

    NASA Astrophysics Data System (ADS)

    Carvallo, C.; Camps, P.; Ooga, M.; Fanjat, G.; Sager, W. W.

    2013-03-01

    IODP Expedition 324 cored igneous rocks from Shatsky Rise, an oceanic plateau in the northwest Pacific Ocean that formed mainly during late Jurassic and Early Cretaceous times. We selected 60 samples from 3 different holes for Thellier-Thellier palaeointensity determinations. Induced and remanent magnetization curves measured at low- and high-temperature suggest a diverse and complex magnetic mineralogy, with large variations in Ti content and oxidation state. Hysteresis and FORC measurements show that most samples contain single-domain magnetic grains. After carrying out the palaeointensity determinations, only 9 samples satisfied all reliability criteria. These gave palaeointensity values between 16.5 and 21.5 μT, which correspond to average VDM values of (4.9 ± 0.2) × 1022 Am2 for an estimated age of 140-142 Ma. This value is lower than that for the recent field, which agrees with the hypothesis of a Mesozoic Dipole Low.

  3. Second generation measurement of the electric dipole moment of the electron using trapped ThF+ ions

    NASA Astrophysics Data System (ADS)

    Ng, Kia Boon; Zhou, Yan; Gresh, Daniel; Cairncross, William; Grau, Matthew; Ni, Yiqi; Ye, Jun; Cornell, Eric

    2016-05-01

    ThF+ has been chosen as the candidate for a second generation measurement of the electric dipole moment of the electron (eEDM). Compared to the current HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states. Here, we present progress of our experimental setup, preliminary spectroscopic data of multi-photon ionization, and discussions of new features in ion trapping, state preparation and population readout.

  4. Dipole-relaxation parameters for Ce3+-Fint- complexes in CaF2:Ce and CaF2:Ce,Mn

    NASA Astrophysics Data System (ADS)

    Jassemnejad, B.; McKeever, S. W. S.

    1987-12-01

    Dipole-relaxation parameters for Ce3+-Fint- centers (C4v symmetry) in CaF2 are calculated using the method of ionic thermocurrents (ITC). The data indicate concentration-dependent effects if analyzed using the traditional ITC equation, assuming a single value for the reorientation activation energy. This analysis is unable to account for an observed broadening of the ITC peak as more Ce is added to the crystals. However, as has been published for other MF2:R3+ systems, we find that the broadening can be successfully accounted for by adopting a modified ITC equation which allows for a Gaussian distribution of activation energies about a mean value E0 and with a distribution width p. The parameter E0 is found to be independent of dipole content while p is found to increase with increasing dipole concentration. The data are consistent with a perturbation of the dipole-relaxation parameters due to interactions with other defects within the system. However, the strength of the observed effects is difficult to explain by invoking electrostatic dipole-dipole interactions only. Other perturbations, due perhaps to monopole-dipole interactions or elastic interactions, must be taking place. The data indicate that dipole concentrations calculated by ITC will be in error in the presence of such interactions due to a reduction in the mean contribution per dipole to the overall polarization density. For samples in which interaction effects are negligible, we calculate a dipole moment of 3.12×10-29 C m. The data further indicate that that the addition of Mn to the system causes a decrease in the interaction effects via a reduction in the Ce C4v center dipole moment. It appears that the broadening of the ITC curve is sensitive to the defect structure surrounding the dipoles.

  5. Equivalent source modeling of the core magnetic field using magsat data

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Estes, R. H.

    1983-01-01

    Experiments are carried out on fitting the main field using different numbers of equivalent sources arranged in equal area at fixed radii at and inside the core-mantle boundary. In fixing the radius for a given series of runs, the convergence problems that result from the extreme nonlinearity of the problem when dipole positions are allowed to vary are avoided. Results are presented from a comparison between this approach and the standard spherical harmonic approach for modeling the main field in terms of accuracy and computational efficiency. The modeling of the main field with an equivalent dipole representation is found to be comparable to the standard spherical harmonic approach in accuracy. The 32 deg dipole density (42 dipoles) corresponds approximately to an eleventh degree/order spherical harmonic expansion (143 parameters), whereas the 21 dipole density (92 dipoles) corresponds to approximately a seventeenth degree and order expansion (323 parameters). It is pointed out that fixing the dipole positions results in rapid convergence of the dipole solutions for single-epoch models.

  6. High-sensitivity multifunctional spinner magnetometer using a magneto-impedance sensor

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2017-01-01

    A novel spinner magnetometer was developed with a wide dynamic range from 10-10 to 10-4 Am2 and a resolution of 10-11 Am2. High sensitivity was achieved with the use of a magneto-impedance (MI) sensor, which is a compact, sensitive magnetic sensor used industrially. Its slow-spinning rate (5 Hz) and the incorporation of a unique mechanism for adjusting the spacing between the sensing unit and the spinning axis allows the measurement of fragile samples sized 10-50 mm. The sensor configuration, in which a pair of MI sensors is connected in opposite serial, along with an amplification circuit with a programmable low-pass filter, reduces the problems of external noise and sensor drift. The signal, with reference to the spinning frequency, is detected with a lock-in amplifier. The MI spinner has two selectable measurement modes: the fundamental mode (F mode) and the harmonic mode (H mode). Measurements in the F mode detect signals of the fundamental frequency (5 Hz), in the same way as conventional spinner magnetometers. In the H mode, the second (10 Hz) and the third (15 Hz) harmonic components are measured, in addition to the fundamental component. Tests in the H mode were performed using a small coil and a natural sample to simulate dipoles with various degrees of offset. The results revealed that the magnitude of the fundamental component of the offset dipole was systematically larger (by several percent) than that of the nonoffset dipole. These findings suggest that this novel MI spinner will be useful in estimating the inhomogeneity of the magnetization of a sample that can equivalently be described by an offset dipole.

  7. Fast geomagnetic Field Intensity Variations between 1400 and 400 BCE: New Archaeointensity Data from Germany

    NASA Astrophysics Data System (ADS)

    Hervé, G.; Schnepp, E.; Metzler-Nebelsick, C.; Lhuillier, F.; Gilder, S.; Genevey, A.; Fassbinder, J.; Gallet, Y.

    2017-12-01

    Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of 70 μT around 1000-900 BCE and another up to 90 μT around 600-500 BCE. The maximum rate of variation was 0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 20 ZA·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.

  8. Concise NMR approach for molecular dynamics characterizations in organic solids.

    PubMed

    Aliev, Abil E; Courtier-Murias, Denis

    2013-08-22

    Molecular dynamics characterisations in solids can be carried out selectively using dipolar-dephasing experiments. Here we show that the introduction of a sum of Lorentzian and Gaussian functions greatly improve fittings of the "intensity versus time" data for protonated carbons in dipolar-dephasing experiments. The Lorentzian term accounts for remote intra- and intermolecular (1)H-(13)C dipole-dipole interactions, which vary from one molecule to another or for different carbons within the same molecule. Thus, by separating contributions from weak remote interactions, more accurate Gaussian decay constants, T(dd), can be extracted for directly bonded (1)H-(13)C dipole-dipole interactions. Reorientations of the (1)H-(13)C bonds lead to the increase of T(dd), and by measuring dipolar-dephasing constants, insight can be gained into dynamics in solids. We have demonstrated advantages of the method using comparative dynamics studies in the α and γ polymorphs of glycine, cyclic amino acids L-proline, DL-proline and trans-4-hydroxy-L-proline, the Ala residue in different dipeptides, as well as adamantane and hexamethylenetetramine. It was possible to distinguish subtle differences in dynamics of different carbon sites within a molecule in polymorphs and in L- and DL-forms. The presence of overall molecular motions is shown to lead to particularly large differences in dipolar-dephasing experiments. The differences in dynamics can be attributed to differences in noncovalent interactions. In the case of hexamethylenetetramine, for example, the presence of C-H···N interactions leads to nearly rigid molecules. Overall, the method allows one to gain insight into the role of noncovalent interactions in solids and their influence on the molecular dynamics.

  9. Fast geomagnetic field intensity variations between 1400 and 400 BCE: New archaeointensity data from Germany

    NASA Astrophysics Data System (ADS)

    Hervé, Gwenaël; Faβbinder, Jörg; Gilder, Stuart A.; Metzner-Nebelsick, Carola; Gallet, Yves; Genevey, Agnès; Schnepp, Elisabeth; Geisweid, Leonhard; Pütz, Anja; Reuβ, Simone; Wittenborn, Fabian; Flontas, Antonia; Linke, Rainer; Riedel, Gerd; Walter, Florian; Westhausen, Imke

    2017-09-01

    Thirty-five mean archaeointensity data were obtained on ceramic sherds dated between 1400 and 400 BCE from sites located near Munich, Germany. The 453 sherds were collected from 52 graves, pits and wells dated by archaeological correlation, radiocarbon and/or dendrochronology. Rock magnetic analyses indicate that the remanent magnetization was mainly carried by magnetite. Data from Thellier-Thellier experiments were corrected for anisotropy and cooling rate effects. Triaxe and multispecimen (MSP-DSC) protocols were also measured on a subset of specimens. Around 60% of the samples provide reliable results when using stringent criteria selection. The 35 average archaeointensity values based on 154 pots are consistent with previous data and triple the Western Europe database between 1400 and 400 BCE. A secular variation curve for central-western Europe, built using a Bayesian approach, shows a double oscillation in geomagnetic field strength with intensity maxima of ∼70 μT around 1000-900 BCE and another up to ∼90 μT around 600-500 BCE. The maximum rate of variation was ∼0.25 μT/yr circa 700 BCE. The secular variation trend in Western Europe is similar to that observed in the Middle East and the Caucasus except that we find no evidence for hyper-rapid field variations (i.e. geomagnetic spikes). Virtual Axial Dipole Moments from Western Europe, the Middle East and central Asia differ by more than 2·1022 A·m2 prior to 600 BCE, which signifies a departure from an axial dipole field especially between 1000 and 600 BCE. Our observations suggest that the regional Levantine Iron Age anomaly has been accompanied by an increase of the axial dipole moment together with a tilt of the dipole.

  10. Magnetoencephalography recording and analysis.

    PubMed

    Velmurugan, Jayabal; Sinha, Sanjib; Satishchandra, Parthasarathy

    2014-03-01

    Magnetoencephalography (MEG) non-invasively measures the magnetic field generated due to the excitatory postsynaptic electrical activity of the apical dendritic pyramidal cells. Such a tiny magnetic field is measured with the help of the biomagnetometer sensors coupled with the Super Conducting Quantum Interference Device (SQUID) inside the magnetically shielded room (MSR). The subjects are usually screened for the presence of ferromagnetic materials, and then the head position indicator coils, electroencephalography (EEG) electrodes (if measured simultaneously), and fiducials are digitized using a 3D digitizer, which aids in movement correction and also in transferring the MEG data from the head coordinates to the device and voxel coordinates, thereby enabling more accurate co-registration and localization. MEG data pre-processing involves filtering the data for environmental and subject interferences, artefact identification, and rejection. Magnetic resonance Imaging (MRI) is processed for correction and identifying fiducials. After choosing and computing for the appropriate head models (spherical or realistic; boundary/finite element model), the interictal/ictal epileptiform discharges are selected and modeled by an appropriate source modeling technique (clinically and commonly used - single equivalent current dipole - ECD model). The equivalent current dipole (ECD) source localization of the modeled interictal epileptiform discharge (IED) is considered physiologically valid or acceptable based on waveform morphology, isofield pattern, and dipole parameters (localization, dipole moment, confidence volume, goodness of fit). Thus, MEG source localization can aid clinicians in sublobar localization, lateralization, and grid placement, by evoking the irritative/seizure onset zone. It also accurately localizes the eloquent cortex-like visual, language areas. MEG also aids in diagnosing and delineating multiple novel findings in other neuropsychiatric disorders, including Alzheimer's disease, Parkinsonism, Traumatic brain injury, autistic disorders, and so oon.

  11. Generation of dark solitons and their instability dynamics in two-dimensional condensates

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish

    2017-04-01

    We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.

  12. New rules for visual selection: Isolating procedural attention.

    PubMed

    Ramamurthy, Mahalakshmi; Blaser, Erik

    2017-02-01

    High performance in well-practiced, everyday tasks-driving, sports, gaming-suggests a kind of procedural attention that can allocate processing resources to behaviorally relevant information in an unsupervised manner. Here we show that training can lead to a new, automatic attentional selection rule that operates in the absence of bottom-up, salience-driven triggers and willful top-down selection. Taking advantage of the fact that attention modulates motion aftereffects, observers were presented with a bivectorial display with overlapping, iso-salient red and green dot fields moving to the right and left, respectively, while distracted by a demanding auditory two-back memory task. Before training, since the motion vectors canceled each other out, no net motion aftereffect (MAE) was found. However, after 3 days (0.5 hr/day) of training, during which observers practiced selectively attending to the red, rightward field, a significant net MAE was observed-even when top-down selection was again distracted. Further experiments showed that these results were not due to perceptual learning, and that the new rule targeted the motion, and not the color of the target dot field, and global, not local, motion signals; thus, the new rule was: "select the rightward field." This study builds on recent work on selection history-driven and reward-driven biases, but uses a novel paradigm where the allocation of visual processing resources are measured passively, offline, and when the observer's ability to execute top-down selection is defeated.

  13. 3D magnetic sources' framework estimation using Genetic Algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Ponte-Neto, C. F.; Barbosa, V. C.

    2008-05-01

    We present a method for inverting total-field anomaly for determining simple 3D magnetic sources' framework such as: batholiths, dikes, sills, geological contacts, kimberlite and lamproite pipes. We use GA to obtain magnetic sources' frameworks and their magnetic features simultaneously. Specifically, we estimate the magnetization direction (inclination and declination) and the total dipole moment intensity, and the horizontal and vertical positions, in Cartesian coordinates , of a finite set of elementary magnetic dipoles. The spatial distribution of these magnetic dipoles composes the skeletal outlines of the geologic sources. We assume that the geologic sources have a homogeneous magnetization distribution and, thus all dipoles have the same magnetization direction and dipole moment intensity. To implement the GA, we use real-valued encoding with crossover, mutation, and elitism. To obtain a unique and stable solution, we set upper and lower bounds on declination and inclination of [0,360°] and [-90°, 90°], respectively. We also set the criterion of minimum scattering of the dipole-position coordinates, to guarantee that spatial distribution of the dipoles (defining the source skeleton) be as close as possible to continuous distribution. To this end, we fix the upper and lower bounds of the dipole moment intensity and we evaluate the dipole-position estimates. If the dipole scattering is greater than a value expected by the interpreter, the upper bound of the dipole moment intensity is reduced by 10 % of the latter. We repeat this procedure until the dipole scattering and the data fitting are acceptable. We apply our method to noise-corrupted magnetic data from simulated 3D magnetic sources with simple geometries and located at different depths. In tests simulating sources such as sphere and cube, all estimates of the dipole coordinates are agreeing with center of mass of these sources. To elongated-prismatic sources in an arbitrary direction, we estimate dipole-position coordinates coincident with principal axis of sources. In tests with synthetic data, simulating the magnetic anomaly yielded by intrusive 2D structures such as dikes and sills, the estimates of the dipole coordinates are coincident with the principal plane of these 2D sources. We also inverted the aeromagnetic data from Serra do Cabral, in southeastern, Brazil, and we estimated dipoles distributed on a horizontal plane at depth of 30 km, with inclination and declination of 59.1° and -48.0°, respectively. The results showed close agreement with previous interpretation.

  14. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.

    PubMed

    Chen, Zhenyu; Li, Jianping; Wei, Liwei

    2007-10-01

    Recently, gene expression profiling using microarray techniques has been shown as a promising tool to improve the diagnosis and treatment of cancer. Gene expression data contain high level of noise and the overwhelming number of genes relative to the number of available samples. It brings out a great challenge for machine learning and statistic techniques. Support vector machine (SVM) has been successfully used to classify gene expression data of cancer tissue. In the medical field, it is crucial to deliver the user a transparent decision process. How to explain the computed solutions and present the extracted knowledge becomes a main obstacle for SVM. A multiple kernel support vector machine (MK-SVM) scheme, consisting of feature selection, rule extraction and prediction modeling is proposed to improve the explanation capacity of SVM. In this scheme, we show that the feature selection problem can be translated into an ordinary multiple parameters learning problem. And a shrinkage approach: 1-norm based linear programming is proposed to obtain the sparse parameters and the corresponding selected features. We propose a novel rule extraction approach using the information provided by the separating hyperplane and support vectors to improve the generalization capacity and comprehensibility of rules and reduce the computational complexity. Two public gene expression datasets: leukemia dataset and colon tumor dataset are used to demonstrate the performance of this approach. Using the small number of selected genes, MK-SVM achieves encouraging classification accuracy: more than 90% for both two datasets. Moreover, very simple rules with linguist labels are extracted. The rule sets have high diagnostic power because of their good classification performance.

  15. Probing the Cosmological Principle in the counts of radio galaxies at different frequencies

    NASA Astrophysics Data System (ADS)

    Bengaly, Carlos A. P.; Maartens, Roy; Santos, Mario G.

    2018-04-01

    According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxies. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is ~2 times larger than predicted by the mock data. For TGSS, the dipole is almost ~ 5 times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.

  16. A new dipole index of the salinity anomalies of the tropical Indian Ocean

    PubMed Central

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-01-01

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events. PMID:27052319

  17. Polymer chain collapse induced by many-body dipole correlations.

    PubMed

    Budkov, Yu A; Kalikin, N N; Kolesnikov, A L

    2017-04-01

    We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.

  18. 77 FR 28797 - Redundancy of Communications Systems: Backup Power Private Land Mobile Radio Services: Selection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Systems: Backup Power Private Land Mobile Radio Services: Selection and Assignment of Frequencies, and... certain rule provisions that are without current legal effect and obsolete. These nonsubstantive revisions... current legal effect and is deleted as obsolete. 2. This Order also deletes a rule providing that UHF...

  19. A Survey of Social-Regulatory Practices in Selected Michigan Community Colleges.

    ERIC Educational Resources Information Center

    Hollander, Martin Elliot

    This study surveyed social-regulatory practices of selected community colleges in Michigan to find out: origin and extent of written social-regulatory policies and the provisions for change; types of rules of conduct; and communication and enforcement of social-regulatory practices and rules. The study was limited to commuter-type publicly…

  20. 76 FR 79262 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Granting Approval of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ...-Regulatory Organizations; The NASDAQ Stock Market LLC; Order Granting Approval of Proposed Rule Change To... Select Markets December 15, 2011. I. Introduction On August 30, 2011, The NASDAQ Stock Market LLC... Global and Global Select Markets. The proposed rule change was published in the Federal Register on...

  1. Controllable phase transitions and novel selection rules in Josephson junctions with inherent orthogonality

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Kunhua; Ma, Hongyang

    2018-03-01

    We propose a new type of Josephson junction consisting of topologically nontrivial superconductors with inherent orthogonality and a ferromagnetic interface. It is found this type of junction can host rich ground states: 0 phase, π phase, 0 + π phase, φ0 phase and φ0 ± φ phase. Phase transitions can be controlled by changing the direction of the interfacial magnetization. Phase diagrams are presented in the orientation space. Novel selection rules for the lowest order current, sin ⁡ ϕ or cos ⁡ ϕ, of this kind of junction are derived. General conditions for the formation of various ground states are established, which possess guiding significance to the experimental design of required ground states for practical applications. We construct the succinct form of a Ginzburg-Landau type of free energy from the viewpoint of the interplay between topological superconductivity and ferromagnetism, which can immediately lead to the selection rules. The constructed terms are universally available to the topological Josephson junctions with or without inherent orthogonality reported recently. The spin supercurrent, its selection rules and their relations to the constructed energy are also investigated.

  2. Conformational analysis investigation into the influence of nano-porosity of ultra-permeable ultra-selective polyimides on its diffusivity as potential membranes for use in the "green" separation of natural gases

    NASA Astrophysics Data System (ADS)

    Madkour, Tarek M.

    2013-08-01

    Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the pentyl group has caused the polymeric chains to revert back to the fully extended configurations possibly due to the quite high potential energy barriers that the chains have to cross to reach the less extended configurational states.

  3. Correlations and sum rules in a half-space for a quantum two-dimensional one-component plasma

    NASA Astrophysics Data System (ADS)

    Jancovici, B.; Šamaj, L.

    2007-05-01

    This paper is the continuation of a previous one (Šamaj and Jancovici, 2007 J. Stat. Mech. P02002); for a nearly classical quantum fluid in a half-space bounded by a plain plane hard wall (no image forces), we had generalized the Wigner Kirkwood expansion of the equilibrium statistical quantities in powers of Planck's constant \\hbar . As a model system for a more detailed study, we consider the quantum two-dimensional one-component plasma: a system of charged particles of one species, interacting through the logarithmic Coulomb potential in two dimensions, in a uniformly charged background of opposite sign, such that the total charge vanishes. The corresponding classical system is exactly solvable in a variety of geometries, including the present one of a half-plane, when βe2 = 2, where β is the inverse temperature and e is the charge of a particle: all the classical n-body densities are known. In the present paper, we have calculated the expansions of the quantum density profile and truncated two-body density up to order \\hbar ^2 (instead of only to order \\hbar as in the previous paper). These expansions involve the classical n-body densities up to n = 4; thus we obtain exact expressions for these quantum expansions in this special case. For the quantum one-component plasma, two sum rules involving the truncated two-body density (and, for one of them, the density profile) have been derived, a long time ago, by using heuristic macroscopic arguments: one sum rule concerns the asymptotic form along the wall of the truncated two-body density; the other one concerns the dipole moment of the structure factor. In the two-dimensional case at βe2 = 2, we now have explicit expressions up to order \\hbar^2 for these two quantum densities; thus we can microscopically check the sum rules at this order. The checks are positive, reinforcing the idea that the sum rules are correct.

  4. Efficient Variable Selection Method for Exposure Variables on Binary Data

    NASA Astrophysics Data System (ADS)

    Ohno, Manabu; Tarumi, Tomoyuki

    In this paper, we propose a new variable selection method for "robust" exposure variables. We define "robust" as property that the same variable can select among original data and perturbed data. There are few studies of effective for the selection method. The problem that selects exposure variables is almost the same as a problem that extracts correlation rules without robustness. [Brin 97] is suggested that correlation rules are possible to extract efficiently using chi-squared statistic of contingency table having monotone property on binary data. But the chi-squared value does not have monotone property, so it's is easy to judge the method to be not independent with an increase in the dimension though the variable set is completely independent, and the method is not usable in variable selection for robust exposure variables. We assume anti-monotone property for independent variables to select robust independent variables and use the apriori algorithm for it. The apriori algorithm is one of the algorithms which find association rules from the market basket data. The algorithm use anti-monotone property on the support which is defined by association rules. But independent property does not completely have anti-monotone property on the AIC of independent probability model, but the tendency to have anti-monotone property is strong. Therefore, selected variables with anti-monotone property on the AIC have robustness. Our method judges whether a certain variable is exposure variable for the independent variable using previous comparison of the AIC. Our numerical experiments show that our method can select robust exposure variables efficiently and precisely.

  5. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  6. Electron-impact excitation of diatomic hydride cations II: OH+ and SH+

    NASA Astrophysics Data System (ADS)

    Hamilton, James R.; Faure, Alexandre; Tennyson, Jonathan

    2018-05-01

    R-matrix calculations combined with the adiabatic-nuclei-rotation and Coulomb-Born approximations are used to compute electron-impact rotational rate coefficients for two open-shell diatomic cations of astrophysical interest: the hydoxyl and sulphanyl ions, OH+ and SH+. Hyperfine resolved rate coefficients are deduced using the infinite-order-sudden approximation. The propensity rule ΔF = Δj = ΔN = ±1 is observed, as is expected for cations with a large dipole moment. A model for OH+ excitation in the Orion Bar photon-dominated region is presented which nicely reproduces Herschel observations for an electron fraction xe = 10-4 and an OH+ column density of 3 × 1013 cm-2. Electron-impact electronic excitation cross-sections and rate coefficients for the ions are also presented.

  7. Electromagnetic multipole moments of the P_c^+(4380) pentaquark in light-cone QCD

    NASA Astrophysics Data System (ADS)

    Özdem, U.; Azizi, K.

    2018-05-01

    We calculate the electromagnetic multipole moments of the P_c^+(4380) pentaquark by modeling it as the diquark-diquark-antiquark and {\\bar{D}}^*Σ _c molecular state with quantum numbers J^P = 3/2^-. In particular, the magnetic dipole, electric quadrupole and magnetic octupole moments of this particle are extracted in the framework of light-cone QCD sum rule. The values of the electromagnetic multipole moments obtained via two pictures differ substantially from each other, which can be used to pin down the underlying structure of P_c^+(4380). The comparison of any future experimental data on the electromagnetic multipole moments of the P_c^+(4380) pentaquark with the results of the present work can shed light on the nature and inner quark organization of this state.

  8. Accurate quantum calculations of translation-rotation eigenstates in electric-dipole-coupled H2O@C60 assemblies

    NASA Astrophysics Data System (ADS)

    Felker, Peter M.; Bačić, Zlatko

    2017-09-01

    We present methodology for variational calculation of the 6 n -dimensional translation-rotation (TR) eigenstates of assemblies of n H2O@C60 moieties coupled by dipole-dipole interactions. We show that the TR Hamiltonian matrix for any n can be constructed from dipole-dipole matrix elements computed for n = 2 . We present results for linear H2O@C60 assemblies. Two classes of eigenstates are revealed. One class comprises excitations of the 111 rotational level of H2O. The lowest-energy 111 -derived eigenstate for each assembly exhibits significant dipole ordering and shifts down in energy with the assembly size.

  9. Screened dipolar interactions in some molecular crystals

    NASA Astrophysics Data System (ADS)

    Munn, R. W.; Hurst, M.

    1990-10-01

    Screened dipole energies and dipole electric fields are calculated for the crystals of HCN, meta- and para-nitroaniline, the nonlinear optical compounds POM, MAP and DAN, meta-dinitrobenzene, and acetanilide. Only para-nitroaniline is centrosymmetric, but all the crystals have significant negative dipole energies (of the order of -20 kJ mol -1) except for POM and metadinitrobenzene, where they are positive but small in magnitude. Local dipole fields are of the order of 10 GV m -1. The results assume that surface charge annuls any macroscopic dipole field. It is speculated that the observed preponderance of centrosymmetric crystals of polar molecules may reflect a favourable dipole energy in the initial crystal nucleus rather than the macroscopic crystal.

  10. Proceedings of the RADC Spectrum Estimation Workshop (2nd) held 3, 4, & 5 October 1979, Griffiss AFB, NY

    DTIC Science & Technology

    1979-10-01

    However, this author’s ex- perience has shown that most order selection rules , including Akaike’s, are not enough to be effeutive against the line splitting...and reduced spectral peak frequency estimation biases. A set of sensitive stopping rules for order se- L lection has been found for the algorithm...7] as the rule for order selection, the minimum FPE of the 41-point sequence with tne Burg algorithm was found at order 23. The AR spectrum based on

  11. Five rules for the evolution of cooperation.

    PubMed

    Nowak, Martin A

    2006-12-08

    Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, multicellular organisms, social insects, and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple rule is derived that specifies whether natural selection can lead to cooperation.

  12. Five Rules for the Evolution of Cooperation

    NASA Astrophysics Data System (ADS)

    Nowak, Martin A.

    2006-12-01

    Cooperation is needed for evolution to construct new levels of organization. Genomes, cells, multicellular organisms, social insects, and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. For each mechanism, a simple rule is derived that specifies whether natural selection can lead to cooperation.

  13. Nanoscale shift of the intensity distribution of dipole radiation.

    PubMed

    Shu, Jie; Li, Xin; Arnoldus, Henk F

    2009-02-01

    The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case. Due to the spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radiation in the far field. This shift is shown to be independent of the distance to the source and, although of nanoscale dimension, should be experimentally observable.

  14. Control of the diocotron instability of a hollow electron beam with periodic dipole magnets

    DOE PAGES

    Jo, Y. H.; Kim, J. S.; Stancari, G.; ...

    2017-12-28

    A method to control the diocotron instability of a hollow electron beam with peri-odic dipole magnetic fields has been investigated by a two-dimensional particle-in-cell simulation. At first, relations between the diocotron instability and several physical parameters such as the electron number density, current and shape of the electron beam, and the solenoidal field strength are theoretically analyzed without periodic dipole magnetic fields. Then, we study the effects of the periodic dipole magnetic fields on the diocotron instability using the two-dimensional particle-in-cell simulation. In the simulation, we considered the periodic dipole magnetic field applied along the propagation direction of the beam,more » as a temporally varying magnetic field in the beam frame. Lastly, a stabilizing effect is observed when the oscillating frequency of the dipole magnetic field is optimally chosen, which increases with the increasing amplitude of the dipole magnetic field.« less

  15. Induced Polarization Surveying for Acid Rock Screening in Highway Design

    NASA Astrophysics Data System (ADS)

    Butler, K. E.; Al, T.; Bishop, T.

    2004-05-01

    Highway and pipeline construction agencies have become increasingly vigilant in their efforts to avoid cutting through sulphide-bearing bedrock that has potential to produce acid rock drainage. Blasting and fragmentation of such rock increases the surface area available for sulphide oxidation and hence increases the risk of acid rock drainage unless the rock contains enough natural buffering capacity to neutralize the pH. In December, 2001, the New Brunswick Department of Transportation (NBOT) sponsored a field trial of geophysical surveying in order to assess its suitability as a screening tool for locating near-surface sulphides along proposed highway alignments. The goal was to develop a protocol that would allow existing programs of drilling and geochemical testing to be targeted more effectively, and provide design engineers with the information needed to reduce rock cuts where necessary and dispose of blasted material in a responsible fashion. Induced polarization (IP) was chosen as the primary geophysical method given its ability to detect low-grade disseminated mineralization. The survey was conducted in dipole-dipole mode using an exploration-style time domain IP system, dipoles 8 to 25 m in length, and six potential dipoles for each current dipole location (i.e. n = 1 - 6). Supplementary information was provided by resistivity and VLF-EM surveys sensitive to lateral changes in electrical conductivity, and by magnetic field surveying chosen for its sensitivity to the magnetic susceptibility of pyrrhotite. Geological and geochemical analyses of samples taken from several IP anomalies located along 4.3 line-km of proposed highway confirmed the effectiveness of the screening technique. IP pseudosections from a region of metamorphosed shales and volcaniclastic rocks identified discrete, well-defined mineralized zones. Stronger, overlapping, and more laterally extensive IP anomalies were observed over a section of graphitic and sulphide-bearing metasedimentary rocks. Attempts to use spectral IP characteristics to determine relative abundances of sulphides and graphite were not conclusive. The overall effectiveness of the screening technique however encouraged NBDOT to apply it to an additional 50 km of planned rock cuts along the corridor selected for the new Trans-Canada Highway.

  16. Saturn's Magnetic Field Model: Birotor Dipole From Cassini RPWS and MAG Experiments

    NASA Astrophysics Data System (ADS)

    Galopeau, P. H. M.

    2016-12-01

    The radio and plasma wave science (RPWS) experiment on board the Cassini spacecraft, orbiting around Saturn since July 2004, revealed the presence of two distinct and variable rotation periods in the Saturnian kilometric radiation (SKR) which were attributed to the northern and southern hemispheres respectively. We believe that the periodic time modulations present in the SKR are mainly due to the rotation of Saturn's inner magnetic field. The existence of a double period implies that the inner field is not only limited to a simple rotation dipole but displays more complex structures having the same time periodicities than the radio emission. In order to build a model of this complex magnetic field, it is absolutely necessary to know the accurate phases of rotation linked with the two periods. The radio observations from the RPWS experiment allow a continuous and accurate follow-up of these rotation phases, since the SKR emission is permanently observable and produced very close to the planetary surface. A wavelet transform analysis of the intensity of the SKR signal received at 290 kHz between July 2004 and June 2012 was performed in order to calculate in the same time the different periodicities and phases. A dipole model was proposed for Saturn's inner magnetic field: this dipole presents the particularity to have North and South poles rotating around Saturn's axis at two different angular velocities; this dipole is tilted and not centered. 57 Cassini's revolutions, the periapsis of which is less than 5 Saturnian radii, have been selected for this study. For each of these chosen orbits, it is possible to fit with high precision the measurements of the MAG data experiment given by the magnetometers embarked on board Cassini. A nonrotating external magnetic field completes the model. This study suggests that Saturn's inner magnetic field is neither stationary nor fully axisymmetric. These results can be used as a boundary condition for modelling and constraining the planetary dynamo and they can be a starting point for the study of Saturn's inner structure and the comparison with the interior of Jupiter.

  17. Field Distribution and Coupling Investigation of an Eight-Channel RF Coil Consisting of Different Dipole Coil Elements for 7 T MRI.

    PubMed

    Chen, Zhichao; Solbach, Klaus; Erni, Daniel; Rennings, Andreas

    2017-06-01

    In this contribution, we investigate the [Formula: see text] distribution and coupling characteristics of a multichannel radio frequency (RF) coil consisting of different dipole coil elements for 7 T MRI, and explore the feasibility to achieve a compromise between field distribution and decoupling by combining different coil elements. Two types of dipole elements are considered here: the meander dipole element with a chip-capacitor-based connection to the RF shield which achieves a sufficient decoupling between the neighboring elements; and the open-ended meander dipole element which exhibits a broader magnetic field distribution. By nesting the open-ended dipole elements in between the ones with end-capacitors, the [Formula: see text] distribution, in terms of field penetration depth and homogeneity, is improved in comparison to the dipole coil consisting only of the elements with end-capacitors, and at the same time, the adjacent elements are less coupled to each other in comparison to the dipole coil consisting only of the open-ended elements. The proposed approach is validated by both full-wave simulation and experimental results.

  18. Electrostatic-Dipole (ED) Fusion Confinement Studies

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  19. Diagnostics of the Fermilab Tevatron using an AC dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of themore » beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.« less

  20. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr

    NASA Astrophysics Data System (ADS)

    Knudsen, Mads Faurschou; Riisager, Peter; Donadini, Fabio; Snowball, Ian; Muscheler, Raimund; Korhonen, Kimmo; Pesonen, Lauri J.

    2008-07-01

    All absolute paleointensity data published in peer-reviewed journals were recently compiled in the GEOMAGIA50 database. Based on the information in GEOMAGIA50, we reconstruct variations in the geomagnetic dipole moment over the past 50 kyr, with a focus on the Holocene period. A running-window approach is used to determine the axial dipole moment that provides the optimal least-squares fit to the paleointensity data, whereas associated error estimates are constrained using a bootstrap procedure. We subsequently compare the reconstruction from this study with previous reconstructions of the geomagnetic dipole moment, including those based on cosmogenic radionuclides ( 10Be and 14C). This comparison generally lends support to the axial dipole moments obtained in this study. Our reconstruction shows that the evolution of the dipole moment was highly dynamic, and the recently observed rates of change (5% per century) do not appear unique. We observe no apparent link between the occurrence of archeomagnetic jerks and changes in the geomagnetic dipole moment, suggesting that archeomagnetic jerks most likely represent drastic changes in the orientation of the geomagnetic dipole axis or periods characterized by large secular variation of the non-dipole field. This study also shows that the Holocene geomagnetic dipole moment was high compared to that of the preceding ˜ 40 kyr, and that ˜ 4 · 10 22 Am 2 appears to represent a critical threshold below which geomagnetic excursions and reversals occur.

  1. A hybrid learning method for constructing compact rule-based fuzzy models.

    PubMed

    Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W

    2013-12-01

    The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.

  2. Improvement of solar-cycle prediction: Plateau of solar axial dipole moment

    NASA Astrophysics Data System (ADS)

    Iijima, H.; Hotta, H.; Imada, S.; Kusano, K.; Shiota, D.

    2017-11-01

    Aims: We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods: We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results: We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60-80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions: The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.

  3. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish

    PubMed Central

    Jun, James Jaeyoon; Longtin, André; Maler, Leonard

    2013-01-01

    In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source localization. PMID:23805244

  4. Selecting Senior Acquisition Officials: Assessing the Current Processes and Practices for Recruiting, Confirming, and Retaining Senior Officials in the Acquisition Workforce

    DTIC Science & Technology

    2016-04-21

    Selecting Senior Acquisition Officials Assessing the Current Processes and Practices for Recruiting, Confirming, and Retaining Senior Officials...Task Group 2 Terms of Reference (TOR)  Selection of Senior Officials in the Acquisition Workforce – Consider ethics rules, congressional committee... Senior Acquisition positions – Re-validate the conflicts of interest and risk mitigation rules “[T]he committee directs the Chair of the Defense Business

  5. Bourdieu's Distinction between Rules and Strategies and Secondary Principal Practice: A Review of Selected Literature

    ERIC Educational Resources Information Center

    Anderson, Karen

    2016-01-01

    This paper reviews a selection of literature on secondary principal practice from which to propose an approach for further research. The review demonstrates that applications of Bourdieu's theory of practice have contributed to understandings about secondary principal practice, and that the distinction he made between rules and strategies has the…

  6. 76 FR 57781 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Global Select Markets (``Eligible Switches''). \\4\\ A company transferring from the OTCBB or Pink Sheets...-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing of Proposed Rule Change To Describe Complimentary Services That Are Offered to Certain New Listings on NASDAQ's Global and Global Select Markets...

  7. 77 FR 38701 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change Amending...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... process for the nomination and selection of fair representation directors for the NYSE Arca Board of Directors (``NYSE Arca Board''), and NYSE Arca Equities Rule 3.2 sets forth a similar process for the nomination and selection of fair representation directors for the NYSE Arca Equities Board of Directors...

  8. Strategy Selection for Cognitive Skill Acquisition Depends on Task Demands and Working Memory Capacity

    ERIC Educational Resources Information Center

    Hinze, Scott R.; Bunting, Michael F; Pellegrino, James W.

    2009-01-01

    The involvement of working memory capacity (WMC) in ruled-based cognitive skill acquisition is well-established, but the duration of its involvement and its role in learning strategy selection are less certain. Participants (N=610) learned four logic rules, their corresponding symbols, or logic gates, and the appropriate input-output combinations…

  9. Algorithm for Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar Gradiometer

    DTIC Science & Technology

    2016-06-01

    TECHNICAL REPORT Algorithm for Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar...Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar Gradiometer Leon Vaizer, Jesse Angle, Neil...of Magnetic Dipole Targets Using LSG i June 2016 TABLE OF CONTENTS INTRODUCTION

  10. The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.

    1991-12-01

    MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.

  11. Temperature coefficient of the dipole moment of poly(4-chlorostyrene, 4-methylstyrene) copolymers in benzene solutions

    NASA Astrophysics Data System (ADS)

    Mashimo, S.; Nozaki, R.; Work, R. N.

    1982-09-01

    Mean square values of the dipole moments of poly(4-chlorostyrene) and copolymers of poly(4-chlorostyrene, 4-methylstyrene) have been determined at up to five different temperatures. There is a significant positive temperature coefficient of the mean square dipole moment. Curves of the dipole moments and of the slopes, normalized to unity at P4CS, have essentially the same shapes. The copolymers in benzene solutions lead to values of the mean square dipole moments that are about 20% larger than measurements in p-xylene.

  12. Methods for Room Acoustic Analysis and Synthesis using a Monopole-Dipole Microphone Array

    NASA Technical Reports Server (NTRS)

    Abel, J. S.; Begault, Durand R.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    In recent work, a microphone array consisting of an omnidirectional microphone and colocated dipole microphones having orthogonally aligned dipole axes was used to examine the directional nature of a room impulse response. The arrival of significant reflections was indicated by peaks in the power of the omnidirectional microphone response; reflection direction of arrival was revealed by comparing zero-lag crosscorrelations between the omnidirectional response and the dipole responses to the omnidirectional response power to estimate arrival direction cosines with respect to the dipole axes.

  13. BKT phase transition in a 2D system with long-range dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Fedichev, P. O.; Men'shikov, L. I.

    2012-01-01

    We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.

  14. 26 CFR 31.6302-0 - Table of Contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Provisions of Special Application to Employment Taxes (Selected Provisions of Subtitle F, Internal Revenue.... (a) Introduction. (b) Determination of status. (1) In general. (2) Monthly depositor. (i) In General... rules. (1) Monthly rule. (2) Semi-Weekly rule. (i) In general. (ii) Semi-weekly period spanning two...

  15. Theory of elastic interaction between arbitrary colloidal particles in confined nematic liquid crystals.

    PubMed

    Tovkach, O M; Chernyshuk, S B; Lev, B I

    2012-12-01

    We develop the method proposed by Chernyshuk and Lev [Phys. Rev. E 81, 041701 (2010)] for theoretical investigation of elastic interactions between colloidal particles of arbitrary shape and chirality (polar as well as azimuthal anchoring) in the confined nematic liquid crystal (NLC). General expressions for six different types of multipole elastic interactions are obtained in the confined NLC: monopole-monopole (Coulomb type), monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions. The obtained formulas remain valid in the presence of the external electric or magnetic fields. The exact equations are found for all multipole coefficients for the weak anchoring case. For the strong anchoring coupling, the connection between the symmetry of the shape or director and multipole coefficients is obtained, which enables us to predict which multipole coefficients vanish and which remain nonzero. The particles with azimuthal helicoid anchoring are considered as an example. Dipole-dipole interactions between helicoid cylinders and cones are found in the confined NLC. In addition, the banana-shaped particles in homeotropic and planar nematic cells are considered. It is found that the dipole-dipole interaction between banana-shaped particles differs greatly from the dipole-dipole interaction between the axially symmetrical particles in the nematic cell. There is a crossover from attraction to repulsion between banana particles along some directions in nematic cells. It is shown that monopoles do not "feel" the type of nematic cell: monopole-monopole interaction turns out to be the same in homeotropic and planar nematic cells and converges to the Coulomb law as thickness increases, L→∞.

  16. Quantification of tracer plume transport parameters in 2D saturated porous media by cross-borehole ERT imaging

    NASA Astrophysics Data System (ADS)

    Lekmine, G.; Auradou, H.; Pessel, M.; Rayner, J. L.

    2017-04-01

    Cross-borehole ERT imaging was tested to quantify the average velocity and transport parameters of tracer plumes in saturated porous media. Seven tracer tests were performed at different flow rates and monitored by either a vertical or horizontal dipole-dipole ERT sequence. These sequences were tested to reconstruct the shape and temporally follow the spread of the tracer plumes through a background regularization procedure. Data sets were inverted with the same inversion parameters and 2D model sections of resistivity ratios were converted to tracer concentrations. Both array types provided an accurate estimation of the average pore velocity vz. The total mass Mtot recovered was always overestimated by the horizontal dipole-dipole and underestimated by the vertical dipole-dipole. The vertical dipole-dipole was however reliable to quantify the longitudinal dispersivity λz, while the horizontal dipole-dipole returned better estimation for the transverse component λx. λ and Mtot were mainly influenced by the 2D distribution of the cumulated electrical sensitivity and the Shadow Effects induced by the third dimension. The size reduction of the edge of the plume was also related to the inability of the inversion process to reconstruct sharp resistivity contrasts at the interface. Smoothing was counterbalanced by a non-realistic rise of the ERT concentrations around the centre of mass returning overpredicted total masses. A sensitivity analysis on the cementation factor m and the porosity ϕ demonstrated that a change in one of these parameters by 8% involved non negligible variations by 30 and 40% of the dispersion coefficients and mass recovery.

  17. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes.

    PubMed

    Jemel, Boutheina; Achenbach, Christiane; Müller, Bernhard W; Röpcke, Bernd; Oades, Robert D

    2002-01-01

    The event-related potential (ERP) reflecting auditory change detection (mismatch negativity, MMN) registers automatic selective processing of a deviant sound with respect to a working memory template resulting from a series of standard sounds. Controversy remains whether MMN can be generated in the frontal as well as the temporal cortex. Our aim was to see if frontal as well as temporal lobe dipoles could explain MMN recorded after pitch-deviants (Pd-MMN) and duration deviants (Dd-MMN). EEG recordings were taken from 32 sites in 14 healthy subjects during a passive 3-tone oddball presented during a simple visual discrimination and an active auditory discrimination condition. Both conditions were repeated after one month. The Pd-MMN was larger, peaked earlier and correlated better between sessions than the Dd-MMN. Two dipoles in the auditory cortex and two in the frontal lobe (left cingulate and right inferior frontal cortex) were found to be similarly placed for Pd- and Dd-MMN, and were well replicated on retest. This study confirms interactions between activity generated in the frontal and auditory temporal cortices in automatic attention-like processes that resemble initial brain imaging reports of unconscious visual change detection. The lack of interference between sessions shows that the situation is likely to be sensitive to treatment or illness effects on fronto-temporal interactions involving repeated measures.

  18. Dipole anisotropy in cosmic electrons and positrons: inspection on local sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manconi, S.; Donato, F.; Mauro, M. Di, E-mail: manconi@to.infn.it, E-mail: mdimauro@slac.stanford.edu, E-mail: donato@to.infn.it

    The cosmic electrons and positrons have been measured with unprecedented statistics up to several hundreds GeV, thus permitting to explore the role that close single sources can have in shaping the flux at different energies. In the present analysis, we consider electrons and positrons in cosmic rays to be produced by spallations of hadron fluxes with the interstellar medium, by a smooth Supernova Remnant (SNR) population, by all the ATNF catalog pulsars, and by few discrete, local SNRs. We test several source models on the e {sup ++} e {sup −} and e {sup +} AMS-02 flux data. For themore » configurations compatible with the data, we compute the dipole anisotropy in e {sup ++} e {sup −}, e {sup +}, e {sup +}/ e {sup −} from single sources. Our study includes a dedicated analysis to the Vela SNR. We show that Fermi -LAT present data on dipole anisotropy of e {sup ++} e {sup −} start to explore some of the models for the Vela SNR selected by AMS-02 flux data. We also investigate how the observed anisotropy could result from a combination of local sources. Our analysis shows that the search of anisotropy in the lepton fluxes up to TeV energies can be an interesting tool for the inspection of properties of close SNRs, complementary to the high precision flux data.« less

  19. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    NASA Astrophysics Data System (ADS)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  20. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurationsmore » improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.« less

  1. Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…

  2. Effects of Changes to Arc Dipole Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepikian, Steven

    1994-06-01

    The arc dipole magnetic length in the design is 9.45m. The first arc magnets were made with BNL parts and have the proper length, however, the dipoles made with Grumman parts has a shorter magnetic length. The current projected magnet length of the Grumman dipoles is 9.422m. In this note we discuss the consequences of this change.

  3. Broad-band UHF dipole array

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1985-01-01

    A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.

  4. Selecting Statistical Quality Control Procedures for Limiting the Impact of Increases in Analytical Random Error on Patient Safety.

    PubMed

    Yago, Martín

    2017-05-01

    QC planning based on risk management concepts can reduce the probability of harming patients due to an undetected out-of-control error condition. It does this by selecting appropriate QC procedures to decrease the number of erroneous results reported. The selection can be easily made by using published nomograms for simple QC rules when the out-of-control condition results in increased systematic error. However, increases in random error also occur frequently and are difficult to detect, which can result in erroneously reported patient results. A statistical model was used to construct charts for the 1 ks and X /χ 2 rules. The charts relate the increase in the number of unacceptable patient results reported due to an increase in random error with the capability of the measurement procedure. They thus allow for QC planning based on the risk of patient harm due to the reporting of erroneous results. 1 ks Rules are simple, all-around rules. Their ability to deal with increases in within-run imprecision is minimally affected by the possible presence of significant, stable, between-run imprecision. X /χ 2 rules perform better when the number of controls analyzed during each QC event is increased to improve QC performance. Using nomograms simplifies the selection of statistical QC procedures to limit the number of erroneous patient results reported due to an increase in analytical random error. The selection largely depends on the presence or absence of stable between-run imprecision. © 2017 American Association for Clinical Chemistry.

  5. Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.

    PubMed

    Yu, Hongling; Ho, Tak-San; Rabitz, Herschel

    2018-05-09

    Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.

  6. Hidden momentum and the Abraham-Minkowski debate

    NASA Astrophysics Data System (ADS)

    Saldanha, Pablo L.; Filho, J. S. Oliveira

    2017-04-01

    We use an extended version of electrodynamics, which admits the existence of magnetic charges and currents, to discuss how different models for electric and magnetic dipoles do or do not carry hidden momentum under the influence of external electromagnetic fields. Based on that, we discuss how the models adopted for the electric and magnetic dipoles from the particles that compose a material medium influence the expression for the electromagnetic part of the light momentum in the medium. We show that Abraham expression is compatible with electric dipoles formed by electric charges and magnetic dipoles formed by magnetic charges, while Minkowski expression is compatible with electric dipoles formed by magnetic currents and magnetic dipoles formed by electric currents. The expression ɛ0E ×B , on the other hand, is shown to be compatible with electric dipoles formed by electric charges and magnetic dipoles formed by electric currents, which are much more natural models. So this expression has an interesting interpretation in the Abraham-Minkowski debate about the momentum of light in a medium: It is the expression compatible with the nonexistence of magnetic charges. We also provide a simple justification of why Abraham and Minkowski momenta can be associated with the kinetic and canonical momentum of light, respectively.

  7. Effects of hydrophobic and dipole-dipole interactions on the conformational transitions of a model polypeptide

    NASA Astrophysics Data System (ADS)

    Mu, Yan; Gao, Yi Qin

    2007-09-01

    We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.

  8. A master equation for strongly interacting dipoles

    NASA Astrophysics Data System (ADS)

    Stokes, Adam; Nazir, Ahsan

    2018-04-01

    We consider a pair of dipoles such as Rydberg atoms for which direct electrostatic dipole–dipole interactions may be significantly larger than the coupling to transverse radiation. We derive a master equation using the Coulomb gauge, which naturally enables us to include the inter-dipole Coulomb energy within the system Hamiltonian rather than the interaction. In contrast, the standard master equation for a two-dipole system, which depends entirely on well-known gauge-invariant S-matrix elements, is usually derived using the multipolar gauge, wherein there is no explicit inter-dipole Coulomb interaction. We show using a generalised arbitrary-gauge light-matter Hamiltonian that this master equation is obtained in other gauges only if the inter-dipole Coulomb interaction is kept within the interaction Hamiltonian rather than the unperturbed part as in our derivation. Thus, our master equation depends on different S-matrix elements, which give separation-dependent corrections to the standard matrix elements describing resonant energy transfer and collective decay. The two master equations coincide in the large separation limit where static couplings are negligible. We provide an application of our master equation by finding separation-dependent corrections to the natural emission spectrum of the two-dipole system.

  9. Dipole response of 76Se above 4 MeV

    NASA Astrophysics Data System (ADS)

    Goddard, P. M.; Cooper, N.; Werner, V.; Rusev, G.; Stevenson, P. D.; Rios, A.; Bernards, C.; Chakraborty, A.; Crider, B. P.; Glorius, J.; Ilieva, R. S.; Kelley, J. H.; Kwan, E.; Peters, E. E.; Pietralla, N.; Raut, R.; Romig, C.; Savran, D.; Schnorrenberger, L.; Smith, M. K.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Yates, S. W.

    2013-12-01

    The dipole response of 3476Se in the energy range from 4 to 9 MeV has been analyzed using a (γ⃗,γ') polarized photon scattering technique, performed at the High Intensity γ-Ray Source facility at Triangle Universities Nuclear Laboratory, to complement previous work performed using unpolarized photons. The results of this work offer both an enhanced sensitivity scan of the dipole response and an unambiguous determination of the parities of the observed J=1 states. The dipole response is found to be dominated by E1 excitations, and can reasonably be attributed to a pygmy dipole resonance. Evidence is presented to suggest that a significant amount of directly unobserved excitation strength is present in the region, due to unobserved branching transitions in the decays of resonantly excited states. The dipole response of the region is underestimated when considering only ground state decay branches. We investigate the electric dipole response theoretically, performing calculations in a three-dimensional (3D) Cartesian-basis time-dependent Skyrme-Hartree-Fock framework.

  10. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen; Agarwal, Girish S.

    2017-02-01

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  11. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.

    PubMed

    Hughes, Stephen; Agarwal, Girish S

    2017-02-10

    We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate how the dipole-dipole coupling can control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double-field pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow triplet regime, we explore the emitted spectra from the driven dipoles and show how a nonpumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.

  12. Radiation patterns of interfacial dipole antennas

    NASA Technical Reports Server (NTRS)

    Engheta, N.; Papas, C. H.; Elachi, C.

    1982-01-01

    The radiation pattern of an infinitesimal electric dipole is calculated for the case where the dipole is vertically located on the plane interface of two dielectric half spaces and for the case where the dipole is lying horizontally along the interface. For the vertical case, it is found that the radiation pattern has nulls at the interface and along the dipole axis. For the horizontal case, it is found that the pattern has a null at the interface; that the pattern in the upper half space, whose index of refraction is taken to be less than that of the lower half space, has a single lobe whose maximum is normal to the interface; and that in the lower half space, in the plane normal to the interface and containing the dipole, the pattern has three lobes, whereas in the plane normal to the interface and normally bisecting the dipole, the pattern has two maxima located symmetrically about a minimum. Interpretation of these results in terms of the Cerenkov effect is given.

  13. Comparison between electric dipole and magnetic loop antennas for emitting whistler modes

    NASA Astrophysics Data System (ADS)

    Stenzel, R.; Urrutia, J. M.

    2016-12-01

    In a large uniform and unbounded laboratory plasma low frequency whistler modes are excited from an electric dipole and a magnetic loop. The excited waves are measured with a magnetic probe which resolves the three field components in 3D space and time. This yields the group velocity and energy density, from which one obtains the emitted power. The same rf generator is used for both antennas and the radiated power is measured under identical plasma conditions. The magnetic loop radiates 8000 times more power than the electric dipole. The reason is that the loop antenna carries a large conduction current while the electric dipole current is a much smaller displacement current through the sheath. The current, hence magnetic field excites whistlers, not the dipole electric field. Incidentally, a dipole antenna does not launch plane waves but m = 1 helicon modes. The findings suggest that active wave injections into the magnetosphere should be done with magnetic antennas. Two parallel dipoles connected at the free end could serve as an elongated loop.

  14. Nanoscale probing of image-dipole interactions in a metallic nanostructure

    PubMed Central

    Ropp, Chad; Cummins, Zachary; Nah, Sanghee; Fourkas, John T.; Shapiro, Benjamin; Waks, Edo

    2015-01-01

    An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young’s interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications. PMID:25790228

  15. Women with Intellectual Disabilities Talk about Their Perceptions of Sex

    ERIC Educational Resources Information Center

    Bernert, D. J.; Ogletree, R. J.

    2013-01-01

    Background: Sexuality is learned through sexual socialisation that women with intellectual disabilities (IDs) understand and express. Rules of sexual engagement for these women can include barriers for their socialisation, intimate partner selection, and sexual expression. These rules can become more limiting when coupled with rules of femininity…

  16. Brief Report: Impaired Flexible Item Selection Task (FIST) in School-Age Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yerys, Benjamin E.; Wolff, Brian C.; Moody, Eric; Pennington, Bruce F.; Hepburn, Susan L.

    2012-01-01

    Cognitive flexibility has been measured with inductive reasoning or explicit rule tasks in individuals with autism spectrum disorders (ASD). The "Flexible Item Selection Task" (FIST) differs from previous cognitive flexibility tasks in ASD research by giving children an abstract, ambiguous rule to switch. The ASD group (N = 22; Mean age = 8.28…

  17. Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils

    NASA Astrophysics Data System (ADS)

    Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.

    2017-09-01

    In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.

  18. Broken selection rule in the quantum Rabi model

    PubMed Central

    Forn-Díaz, P.; Romero, G.; Harmans, C. J. P. M.; Solano, E.; Mooij, J. E.

    2016-01-01

    Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with a single photon at all regimes of coupling strength. We report the spectroscopic observation of a resonant transition that breaks a selection rule in the quantum Rabi model, implemented using an LC resonator and an artificial atom, a superconducting qubit. The eigenstates of the system consist of a superposition of bare qubit-resonator states with a relative sign. When the qubit-resonator coupling strength is negligible compared to their own frequencies, the matrix element between excited eigenstates of different sign is very small in presence of a resonator drive, establishing a sign-preserving selection rule. Here, our qubit-resonator system operates in the ultrastrong coupling regime, where the coupling strength is 10% of the resonator frequency, allowing sign-changing transitions to be activated and, therefore, detected. This work shows that sign-changing transitions are an unambiguous, distinctive signature of systems operating in the ultrastrong coupling regime of the quantum Rabi model. These results pave the way to further studies of sign-preserving selection rules in multiqubit and multiphoton models. PMID:27273346

  19. Five rules for the evolution of cooperation

    PubMed Central

    Nowak, Martin A.

    2011-01-01

    Cooperation is needed for evolution to construct new levels of organization. The emergence of genomes, cells, multi-cellular organisms, social insects and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity and group selection. For each mechanism, a simple rule is derived which specifies whether natural selection can lead to cooperation. PMID:17158317

  20. A CLIPS-based expert system for the evaluation and selection of robots

    NASA Technical Reports Server (NTRS)

    Nour, Mohamed A.; Offodile, Felix O.; Madey, Gregory R.

    1994-01-01

    This paper describes the development of a prototype expert system for intelligent selection of robots for manufacturing operations. The paper first develops a comprehensive, three-stage process to model the robot selection problem. The decisions involved in this model easily lend themselves to an expert system application. A rule-based system, based on the selection model, is developed using the CLIPS expert system shell. Data about actual robots is used to test the performance of the prototype system. Further extensions to the rule-based system for data handling and interfacing capabilities are suggested.

  1. Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations

    NASA Astrophysics Data System (ADS)

    Muller, Andreas; Wang, Qu-Quan; Bianucci, Pablo; Xue, Qi-Kun; Shih, Chih-Kang

    2004-03-01

    By investigating the polarization-dependent Rabi oscillations using photoluminescence spectroscopy, we determined the respective transition dipole moments of the two excited excitonic states |Ex> and |Ey> of a single self-assembled quantum dot that are nondegenerate due to shape anisotropy. We find that the ratio of the two dipole moments is close to the physical elongation ratio of the quantum dot. We also measured the ground state radiative lifetimes of several quantum dots. The dipole moments calculated from the latter are in reasonable agreement with the dipole moments determined from the periodicity of the Rabi oscillations.

  2. Polarizable polymer chain under external electric field: Effects of many-body electrostatic dipole correlations.

    PubMed

    Budkov, Yu A; Kolesnikov, A L

    2016-11-01

    We present a new simple self-consistent field theory of a polarizable flexible polymer chain under an external constant electric field with account for the many-body electrostatic dipole correlations. We show the effects of electrostatic dipole correlations on the electric-field-induced globule-coil transition. We demonstrate that only when the polymer chain is in the coil conformation, the electrostatic dipole correlations of monomers can be considered as pairwise. However, when the polymer chain is in a collapsed state, the dipole correlations have to be considered at the many-body level.

  3. Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers.

    PubMed

    Codreanu, Iulian; Boreman, Glenn D

    2002-04-01

    We report on the influence of the dielectric substrate on the performance of microstrip dipole-antenna-coupled microbolometers. The location, the width, and the magnitude of the resonance of a printed dipole are altered when the dielectric substrate is backed by a ground plane. A thicker dielectric substrate shifts the antenna resonance toward shorter dipole lengths and leads to a stronger and slower detector response. The incorporation of an air layer into the antenna substrate further increases thermal impedance, leading to an even stronger response and shifting the antenna resonance toward longer dipole lengths.

  4. Forty years of Clar's aromatic π-sextet rule

    PubMed Central

    Solà, Miquel

    2013-01-01

    In 1972 Erich Clar formulated his aromatic π-sextet rule that allows discussing qualitatively the aromatic character of benzenoid species. Now, 40 years later, Clar's aromatic π-sextet rule is still a source of inspiration for many chemists. This simple rule has been validated both experimentally and theoretically. In this review, we select some particular examples to highlight the achievement of Clar's aromatic π-sextet rule in many situations and we discuss two recent successful cases of its application. PMID:24790950

  5. Selectively transporting small chiral particles with circularly polarized Airy beams.

    PubMed

    Lu, Wanli; Chen, Huajin; Guo, Sandong; Liu, Shiyang; Lin, Zhifang

    2018-05-01

    Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

  6. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft-tissue contrast in clinical magnetic resonance imaging.

  7. Multilevel effects on the balance of dipole-allowed to dipole-forbidden transitions in Rydberg atoms induced by a dipole interaction with slow charged projectiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syrkin, M.I.

    1996-02-01

    In collisions of Rydberg atoms with charged projectiles at velocities approximately matching the speed of the Rydberg electron {ital v}{sub {ital n}} (matching velocity), {ital n} being the principal quantum number of the Rydberg level, the dipole-forbidden transitions with large angular-momentum transfer {Delta}{ital l}{gt}1 substantially dominate over dipole-allowed transitions {Delta}{ital l}=1, although both are induced by the dipole interaction. Here it is shown that as the projectile velocity decreases the adiabatic character of the depopulation depends on the energy distribution of states in the vicinity of the initial level. If the spectrum is close to degeneracy (as for high-{ital l}more » levels) the dipole-forbidden depopulation prevails practically over the entire low-velocity region, down to velocities {approximately}{ital n}{sup 3}[{Delta}{ital E}/Ry]{ital v}{sub {ital n}}, where {Delta}{ital E} is the energy spacing adjoining to the level due to either a quantum defect or the relevant level width or splitting, whichever is greater. If the energy gaps are substantial (as for strongly nonhydrogenic {ital s} and {ital p} levels in alkali-metal atoms), then the fraction of dipole transitions in the total depopulation reaches a flat minimum just below the matching velocity and then grows again, making the progressively increasing contribution to the low-velocity depopulation. The analytic models based on the first-order Born amplitudes (rather than the two-level adiabatic approximation) furnish reasonable estimates of the fractional dipole-allowed and dipole-forbidden depopulations. {copyright} {ital 1996 The American Physical Society.}« less

  8. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime

    NASA Astrophysics Data System (ADS)

    Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.

    2017-10-01

    We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.

  9. Evaluation of a rule base for decision making in general practice.

    PubMed Central

    Essex, B; Healy, M

    1994-01-01

    BACKGROUND. Decision making in general practice relies heavily on judgmental expertise. It should be possible to codify this expertise into rules and principles. AIM. A study was undertaken to evaluate the effectiveness, of rules from a rule base designed to improve students' and trainees' management decisions relating to patients seen in general practice. METHOD. The rule base was developed after studying decisions about and management of thousands of patients seen in one general practice over an eight year period. Vignettes were presented to 93 fourth year medical students and 179 general practitioner trainees. They recorded their perception and management of each case before and after being presented with a selection of relevant rules. Participants also commented on their level of agreement with each of the rules provided with the vignettes. A panel of five independent assessors then rated as good, acceptable or poor, the participants' perception and management of each case before and after seeing the rules. RESULTS. Exposure to a few selected rules of thumb improved the problem perception and management decisions of both undergraduates and trainees. The degree of improvement was not related to previous experience or to the stated level of agreement with the proposed rules. The assessors identified difficulties students and trainees experienced in changing their perceptions and management decisions when the rules suggested options they had not considered. CONCLUSION. The rules developed to improve decision making skills in general practice are effective when used with vignettes. The next phase is to transform the rule base into an expert system to train students and doctors to acquire decision making skills. It could also be used to provide decision support when confronted with difficult management decisions in general practice. PMID:8204334

  10. Intuitive and deliberate judgments are based on common principles.

    PubMed

    Kruglanski, Arie W; Gigerenzer, Gerd

    2011-01-01

    A popular distinction in cognitive and social psychology has been between intuitive and deliberate judgments. This juxtaposition has aligned in dual-process theories of reasoning associative, unconscious, effortless, heuristic, and suboptimal processes (assumed to foster intuitive judgments) versus rule-based, conscious, effortful, analytic, and rational processes (assumed to characterize deliberate judgments). In contrast, we provide convergent arguments and evidence for a unified theoretical approach to both intuitive and deliberative judgments. Both are rule-based, and in fact, the very same rules can underlie both intuitive and deliberate judgments. The important open question is that of rule selection, and we propose a 2-step process in which the task itself and the individual's memory constrain the set of applicable rules, whereas the individual's processing potential and the (perceived) ecological rationality of the rule for the task guide the final selection from that set. Deliberate judgments are not generally more accurate than intuitive judgments; in both cases, accuracy depends on the match between rule and environment: the rules' ecological rationality. Heuristics that are less effortful and in which parts of the information are ignored can be more accurate than cognitive strategies that have more information and computation. The proposed framework adumbrates a unified approach that specifies the critical dimensions on which judgmental situations may vary and the environmental conditions under which rules can be expected to be successful.

  11. Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models

    DOE PAGES

    Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela; ...

    2018-01-17

    Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less

  12. Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela

    Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less

  13. MUSIC electromagnetic imaging with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Chen, Xudong; Zhong, Yu

    2009-01-01

    This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply.

  14. A new MUSIC electromagnetic imaging method with enhanced resolution for small inclusions

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Chen, Xudong

    2008-11-01

    This paper investigates the influence of test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply.

  15. Dipolar interactions and miscibility in binary Langmuir monolayers with opposite dipole moments of the hydrophilic heads.

    PubMed

    Petrov, Jordan G; Andreeva, Tonya D; Moehwald, Helmuth

    2009-04-09

    We investigate unusual binary Langmuir monolayers with the same long CH3(CH2)21 hydrocarbon chains and fluorinated -O-CH2CF3 (FEE) versus nonfluorinated -O-CH2CH3 (EE) hydrophilic heads, whose opposite dipoles assist miscibility, in contrast to the equally oriented polar head dipoles of almost all natural or synthetic amphiphiles that minister to phase separation. Although two-component bulk micelles, lipid bilayers, and monolayers with fluorinated and nonfluorinated chains, which also have opposite dipoles, often show phase separation, we find complete miscibility and nonideality of the FEE-EE mixtures demonstrated via deviation of the composition dependencies of the mean molecular area at fixed surface pressure from the additivity rule. The composition dependencies of the excess molecular areas exhibit minima and maxima which show specific structural changes at particular compositions. They originate from the dipolar and steric interactions between the polar heads, because the interactions between the same chains of FEE and EE do not vary. The pi/A isotherms and the pi/X(FEE) phase diagram reveal that mixtures with molar fractions X(FEE) > or = 0.3 exist in an upright solid phase even in uncompressed state. This result is confirmed by the compressibility values and via Brewster angle microscopy, which does not show optical anisotropy at X(FEE) > or = 0.3. Comparison of the collapse and phase-transition molecular areas with literature data suggests that the upright architecture corresponds to LS-phase or S-phase with more defects as the S-phase in the pure monolayers. The mixtures with X(FEE) < 0.3 exist in tilted L2' phase at low surface pressures. Their mean molecular areas are smaller than the corresponding values in the EE film, which manifests reduction of the tilt of the EE chains with increasing FEE content. We ascribe the chain erection to partial dehydration of the EE heads caused by dipolar attraction between the EE and FEE heads. The excess free energy of mixing deltaG(exc)pi is positive but much smaller than the negative total free energy of mixing AG mix(pi) showing a spontaneous miscibility at all compositions due to an entropy increase. The analysis of the conflict between the deltaG(mix)pi minimum at molar fraction X(FEE) = 0.5 and the minimum and negative value of the excess molecular area A(pi,exc) at X(FEE) = 0.8 shows that the A(pi,exc)/X(FEE) minimum has not an electrostatic but a short-range structural origin.

  16. Electric-dipole-induced universality for Dirac fermions in graphene.

    PubMed

    De Martino, Alessandro; Klöpfer, Denis; Matrasulov, Davron; Egger, Reinhold

    2014-05-09

    We study electric dipole effects for massive Dirac fermions in graphene and related materials. The dipole potential accommodates towers of infinitely many bound states exhibiting a universal Efimov-like scaling hierarchy. The dipole moment determines the number of towers, but there is always at least one tower. The corresponding eigenstates show a characteristic angular asymmetry, observable in tunnel spectroscopy. However, charge transport properties inferred from scattering states are highly isotropic.

  17. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by langmuir adsorption isotherms alone.

    PubMed Central

    Cseh, R; Benz, R

    1998-01-01

    Phloretin and its analogs adsorb to the surfaces of lipid monolayers and bilayers and decrease the dipole potential. This reduces the conductance for anions and increases that for cations on artificial and biological membranes. The relationship between the change in the dipole potential and the aqueous concentration of phloretin has been explained previously by a Langmuir adsorption isotherm and a weak and therefore negligible contribution of the dipole-dipole interactions in the lipid surface. We demonstrate here that the Langmuir adsorption isotherm alone is not able to properly describe the effects of dipole molecule binding to lipid surfaces--we found significant deviations between experimental data and the fit with the Langmuir adsorption isotherm. We present here an alternative theoretical treatment that takes into account the strong interaction between membrane (monolayer) dipole field and the dipole moment of the adsorbed molecule. This treatment provides a much better fit of the experimental results derived from the measurements of surface potentials of lipid monolayers in the presence of phloretin. Similarly, the theory provides a much better fit of the phloretin-induced changes in the dipole potential of lipid bilayers, as assessed by the transport kinetics of the lipophilic ion dipicrylamine. PMID:9512036

  18. Changes in earth's dipole.

    PubMed

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  19. Symmetric Simple Map with Dipole Map for a Single-Null Divertor Tokamak

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Watson, Michael; Punjabi, Alkesh; Boozer, Allen

    1996-11-01

    This investigation focuses on the effects of an externally placed dipole coil on the magnetic topology of a single-null divertor tokamak with a stochastic scrape-off layer using the Method of Maps (Punjabi A, Verma A and Boozer A, Phys Rev Lett), 69, 3322 (1992) and J Plasma Phys, 52, 91 (1994). The unperturbed magnetic topology is represented by the Symmetric Simple Map (Ali H, Watson M, Mayer C, Punjabi A and Boozer A, Bull Am Phys Soc), 40, 1855 (1995). The effect of dipole perturbation is repesented by the Dipole Map (Ali H, Watson M, Punjabi A and Boozer A, Sherwood Mtg), paper 1C20 (1996). A single dipole coil is placed across from the X-point below the last good surface. The strength of the dipole perturbation and the distance of the coil from the last good surface are varied. We observe that the dipole perturbation causes spatially intermittent chaos. This has significant implications for radiative divertor concepts as well for impurity control. We also present the detailed results on the effects of the dipole coil on the properties of the stochastic layer and the footprint of the field lines on the divertor plate. This work is supported by the US DOE OFES.

  20. The evolution of social learning rules: payoff-biased and frequency-dependent biased transmission.

    PubMed

    Kendal, Jeremy; Giraldeau, Luc-Alain; Laland, Kevin

    2009-09-21

    Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning.

  1. Logical recoding of S-R rules can reverse the effects of spatial S-R correspondence.

    PubMed

    Wühr, Peter; Biebl, Rupert

    2009-02-01

    Two experiments investigated competing explanations for the reversal of spatial stimulus-response (S-R) correspondence effects (i.e., Simon effects) with an incompatible S-R mapping on the relevant, nonspatial dimension. Competing explanations were based on generalized S-R rules (logical-recoding account) or referred to display-control arrangement correspondence or to S-S congruity. In Experiment 1, compatible responses to finger-name stimuli presented at left/right locations produced normal Simon effects, whereas incompatible responses to finger-name stimuli produced an inverted Simon effect. This finding supports the logical-recoding account. In Experiment 2, spatial S-R correspondence and color S-R correspondence were varied independently, and main effects of these variables were observed. The lack of an interaction between these variables, however, disconfirms a prediction of the display-control arrangement correspondence account. Together, the results provide converging evidence for the logical-recoding account. This account claims that participants derive generalized response selection rules (e.g., the identity or reversal rule) from specific S-R rules and inadvertently apply the generalized rules to the irrelevant (spatial) S-R dimension when selecting their response.

  2. QPM Analysis of 205Tl Nuclear Excitations below the Giant Dipole Resonance

    NASA Astrophysics Data System (ADS)

    Benouaret, N.; Beller, J.; Isaak, J.; Kelley, J. H.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2015-05-01

    We analysed our experimental recent findings of the dipole response of the odd-mass stable nucleus 205Tl within the quasi-particle phonon model. Using the phonon basis constructed for the neighbouring 204Hg and wave function configurations for 205Tl consisting of a mixture of quasiparticle ⊗ N-phonon configurations (N=0,1,2), only one group of fragmented dipole excited states has been reproduced at 5.5 MeV in comparison to the experimental distribution which shows a second group at about 5 MeV. The computed dipole transition strengths are mainly of E1 character which could be associated to the pygmy dipole resonance.

  3. Reshaping and linking of molecules in ion-pair traps

    NASA Astrophysics Data System (ADS)

    Cochrane, Bryce; Naumkin, Fedor Y.

    2016-01-01

    A series of insertion complexes of small molecules trapped between alkali-halide counter-ions are investigated ab initio. The molecular shape is altered inside the complexes and varies in corresponding anions. Stabilities and charge distributions are investigated. Strong charge-transfer in the alkali-halide component effectively through the almost neutral molecule results in very large dipole moments. The most stable species is used to construct a dimer significantly bound via dipole-dipole interaction. Another complex with two alkali-halide diatoms trapping the molecule represents a unit of corresponding longer oligomer. This completes the array of systems with the molecule effectively in ion-pair, ion-dipole, dipole-pair electric fields.

  4. Spin dephasing in a magnetic dipole field.

    PubMed

    Ziener, C H; Kampf, T; Reents, G; Schlemmer, H-P; Bauer, W R

    2012-05-01

    Transverse relaxation by dephasing in an inhomogeneous field is a general mechanism in physics, for example, in semiconductor physics, muon spectroscopy, or nuclear magnetic resonance. In magnetic resonance imaging the transverse relaxation provides information on the properties of several biological tissues. Since the dipole field is the most important part of the multipole expansion of the local inhomogeneous field, dephasing in a dipole field is highly important in relaxation theory. However, there have been no analytical solutions which describe the dephasing in a magnetic dipole field. In this work we give a complete analytical solution for the dephasing in a magnetic dipole field which is valid over the whole dynamic range.

  5. Emission quenching of magnetic dipole transitions near an absorbing nanoparticle (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chigrin, Dmitry N.; Kumar, Deepu; von Plessen, Gero

    2016-09-01

    Emission quenching is analysed at nanometer distances from the surface of an absorbing nanoparticle. It is demonstrated that emission quenching at small distances to the surface is much weaker for magnetic-dipole (MD) than for electric-dipole (ED) transitions. This difference is explained by the fact that the electric field induced by a magnetic dipole has a weaker distance dependence than the electric field of an electric dipole. It is also demonstrated that in the extreme near-field regime the non-locality of the optical response of the metal results in additional emission quenching for both ED and MD transitions.

  6. Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains

    NASA Technical Reports Server (NTRS)

    Draine, B. T.; Goodman, Jeremy

    1993-01-01

    We derive the dispersion relation for electromagnetic waves propagating on a lattice of polarizable points. From this dispersion relation we obtain a prescription for choosing dipole polarizabilities so that an infinite lattice with finite lattice spacing will mimic a continuum with dielectric constant. The discrete dipole approximation is used to calculate scattering and absorption by a finite target by replacing the target with an array of point dipoles. We compare different prescriptions for determining the dipole polarizabilities. We show that the most accurate results are obtained when the lattice dispersion relation is used to set the polarizabilities.

  7. Rules of meridians and acupoints selection in treatment of Parkinson's disease based on data mining techniques.

    PubMed

    Li, Zhe; Hu, Ying-Yu; Zheng, Chun-Ye; Su, Qiao-Zhen; An, Chang; Luo, Xiao-Dong; Liu, Mao-Cai

    2018-01-15

    To help selecting appropriate meridians and acupoints in clinical practice and experimental study for Parkinson's disease (PD), the rules of meridians and acupoints selection of acupuncture and moxibustion were analyzed in domestic and foreign clinical treatment for PD based on data mining techniques. Literature about PD treated by acupuncture and moxibustion in China and abroad was searched and selected from China National Knowledge Infrastructure and MEDLINE. Then the data from all eligible articles were extracted to establish the database of acupuncture-moxibustion for PD. The association rules of data mining techniques were used to analyze the rules of meridians and acupoints selection. Totally, 168 eligible articles were included and 184 acupoints were applied. The total frequency of acupoints application was 1,090 times. Those acupoints were mainly distributed in head and neck and extremities. Among all, Taichong (LR 3), Baihui (DU 20), Fengchi (GB 20), Hegu (LI 4) and Chorea-tremor Controlled Zone were the top five acupoints that had been used. Superior-inferior acupoints matching was utilized the most. As to involved meridians, Du Meridian, Dan (Gallbladder) Meridian, Dachang (Large Intestine) Meridian, and Gan (Liver) Meridian were the most popular meridians. The application of meridians and acupoints for PD treatment lay emphasis on the acupoints on the head, attach importance to extinguishing Gan wind, tonifying qi and blood, and nourishing sinews, and make good use of superior-inferior acupoints matching.

  8. Partial Photoneutron Cross Sections for 207,208Pb

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2014-05-01

    Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacinti, Gwenael; Kirk, John G.

    We calculate the large-scale cosmic-ray (CR) anisotropies predicted for a range of Goldreich–Sridhar (GS) and isotropic models of interstellar turbulence, and compare them with IceTop data. In general, the predicted CR anisotropy is not a pure dipole; the cold spots reported at 400 TeV and 2 PeV are consistent with a GS model that contains a smooth deficit of parallel-propagating waves and a broad resonance function, though some other possibilities cannot, as yet, be ruled out. In particular, isotropic fast magnetosonic wave turbulence can match the observations at high energy, but cannot accommodate an energy dependence in the shape ofmore » the CR anisotropy. Our findings suggest that improved data on the large-scale CR anisotropy could provide a valuable probe of the properties—notably the power-spectrum—of the interstellar turbulence within a few tens of parsecs from Earth.« less

  10. Nonlinear optical selection rule based on valley-exciton locking in monolayer ws 2

    DOE PAGES

    Xiao, Jun; Ye, Ziliang; Wang, Ying; ...

    2015-12-18

    Optical selection rules fundamentally determine the optical transitions between energy states in a variety of physical systems, from hydrogen atoms to bulk crystals such as gallium arsenide. These rules are important for optoelectronic applications such as lasers, energy-dispersive X-ray spectroscopy, and quantum computation. Recently, single-layer transition metal dichalcogenides have been found to exhibit valleys in momentum space with nontrivial Berry curvature and excitons with large binding energy. However, there has been little study of how the unique valley degree of freedom combined with the strong excitonic effect influences the nonlinear optical excitation. Here in this paper, we report the discoverymore » of nonlinear optical selection rules in monolayer WS 2, an important candidate for visible 2D optoelectronics because of its high quantum yield and large direct bandgap. We experimentally demonstrated this principle for second-harmonic generation and two-photon luminescence (TPL). Moreover, the circularly polarized TPL and the study of its dynamics evince a sub-ps interexciton relaxation (2p → 1s). The discovery of this new optical selection rule in a valleytronic 2D system not only considerably enhances knowledge in this area but also establishes a foundation for the control of optical transitions that will be crucial for valley optoelectronic device applications such as 2D valley-polarized THz sources with 2p-1s transitions, optical switches, and coherent control for quantum computing.« less

  11. Calix[3]carbazole: A C3-symmetrical receptor for barium ion

    NASA Astrophysics Data System (ADS)

    Yang, Zhaozheng; Tian, Zhangmin; Yang, Peng; Deng, Tuo; Li, Gang; Zhou, Xue; Chen, Yan; Zhao, Liang; Shen, Hongyan

    2017-03-01

    The binding ability of calix[3]carbazole (1) to metal ions has been investigated. It is found that 1 could serve as a non crown ether based, C3-symmetrical receptor for Ba2 + via the marriage of cation-π and cation-dipole interactions. FID assay further illustrates that 1 could selectively interact with Ba2 + over Pd2 +. A possible binding mechanism for [1-Ba2 +] complex is proposed.

  12. Continuous millennial decrease of the Earth's magnetic axial dipole

    NASA Astrophysics Data System (ADS)

    Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe

    2018-01-01

    Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.

  13. Spatiotemporal mapping of scalp potentials.

    PubMed

    Fender, D H; Santoro, T P

    1977-11-01

    Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.

  14. Controlling spontaneous emission with the local density of states of honeycomb photonic crystals

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Chih; Lin, Chien-Fan; Chang, Jui-Wen

    2009-05-01

    We calculated the local density of state for various positions in a photonic crystal of honeycomb lattice to study how the spontaneous emission rate of a radiating dipole is altered in the presence of the photonic crystal. The local density of states is found to be position-sensitive and its value can be enhanced or depressed relative to the density of states, depending on the location of the dipole. Our study shows that the density of states tends to underestimate the effect of a photonic crystal on the prohibition of light propagation, while on the contrary tends to overestimate the effect on the enhancement of light emission. The calculations also indicate that it is possible to tailor the spontaneous emission of an active medium by careful selecting its location in the photonic crystal. The results are helpful in determining the insertion location of the active medium and in evaluating the efficiency of active photonic crystal devices such as light-emitting diodes or lasers.

  15. Probing the Importance of Charge Flux in Force Field Modeling.

    PubMed

    Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank

    2017-08-08

    We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.

  16. Isotropy of low redshift type Ia supernovae: A Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Andrade, U.; Bengaly, C. A. P.; Alcaniz, J. S.; Santos, B.

    2018-04-01

    The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z <0.1 ). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.

  17. Using Time-Dependent Density Functional Theory to Probe the Nature of Donor-Acceptor Stenhouse Adduct Photochromes.

    PubMed

    Laurent, Adèle D; Medveď, Miroslav; Jacquemin, Denis

    2016-06-17

    We present the first theoretical investigation of a recently proposed class of photochromes, namely donor-acceptor Stenhouse adduct (DASA) switches [J. Am. Chem. Soc. 2014, 136, 8169-8172]. By using density functional theory and its time-dependent counterpart, we investigate the ground- and excited-state structures, electronic transition energies, and several properties of the two isomeric forms. In addition to demonstrating that the selected level of theory is able to reproduce the main experimental facts, we show that 1) the two forms of the DASA photochromes are close to isoenergetic; 2) the two isomers possess similar total dipole moments, in spite of their very different sizes; 3) both isomers have a zwitterionic nature; 4) the nature of the dipole-allowed electronic excited state is vastly different in the two forms; and 5) the specific band shape of the extended DASA can be reproduced by vibronic calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental evidences of quantum confined 2D indirect excitons in single barrier GaAs/AlAs/GaAs heterostructure using photocapacitance at room temperature

    NASA Astrophysics Data System (ADS)

    Bhunia, Amit; Singh, Mohit Kumar; Galvão Gobato, Y.; Henini, Mohamed; Datta, Shouvik

    2018-01-01

    We investigated excitonic absorptions in a GaAs/AlAs/GaAs single barrier heterostructure using both photocapacitance and photocurrent spectroscopies at room temperature. Photocapacitance spectra show well defined resonance peaks of indirect excitons formed around the Γ-AlAs barrier. Unlike DC-photocurrent spectra, frequency dependent photocapacitance spectra interestingly red shift, sharpen up, and then decrease with increasing tunneling at higher biases. Such dissimilarities clearly point out that different exciton dynamics govern these two spectral measurements. We also argue why such quantum confined dipoles of indirect excitons can have thermodynamically finite probabilities to survive even at room temperature. Finally, our observations demonstrate that the photocapacitance technique, which was seldom used to detect excitons in the past, is useful for selective detection and experimental tuning of relatively small numbers (˜1011/cm2) of photo-generated indirect excitons having large effective dipole moments in this type of quasi-two dimensional heterostructures.

  19. Solvent effects on the photophysical properties of coumarin dye

    NASA Astrophysics Data System (ADS)

    Bhavya, P.; Melavanki, Raveendra; Manjunatha, M. N.; Koppal, Varsha; Patil, N. R.; Muttannavar, V. T.

    2018-05-01

    The absorption and emission spectrum of fluorescent coumarin dye namely, 3-Hydroxy-3-[2-oxo-2-(3-oxo-3H-benzo[f]chromen-2-yl)-ethyl]-1,3-dihydro-indol-2-one [3HBCD] has been recorded at room temperature in solvents of different polarities. The exited state dipole moments (μe) were estimated from Lippert's, Bakhshiev's and Kawski-Chamma-Viallet's equations using the variation of Stoke's shift with the solvent dielectric constant and refractive index. The geometry of the molecule was fully optimized and the μg was also calculated theoretically by Gaussian 03 software using B3LYP/6-31g* level of theory. The μg and μg were calculated by means of solvatochromic shift method. It was observed that μe was higher than μg, indicating a substantial redistribution of the π-electron densities in a more polar excited state for the selected coumarin dye. Further, the changes in the dipole moment (Δμ) was calculated from solvatochromic shift method.

  20. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.

    PubMed

    Suyatin, Dmitry B; Jain, Vishal; Nebol'sin, Valery A; Trägårdh, Johanna; Messing, Maria E; Wagner, Jakob B; Persson, Olof; Timm, Rainer; Mikkelsen, Anders; Maximov, Ivan; Samuelson, Lars; Pettersson, Håkan

    2014-01-01

    Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.

  1. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  2. Search for Cosmic-Ray Electron and Positron Anisotropies with Seven Years of Fermi Large Area Telescope Data.

    PubMed

    Abdollahi, S; Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Barbiellini, G; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bruel, P; Buson, S; Caragiulo, M; Cavazzuti, E; Chekhtman, A; Ciprini, S; Costanza, F; Cuoco, A; Cutini, S; D'Ammando, F; de Palma, F; Desiante, R; Digel, S W; Di Lalla, N; Di Mauro, M; Di Venere, L; Donaggio, B; Drell, P S; Favuzzi, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Green, D; Guiriec, S; Harding, A K; Jogler, T; Jóhannesson, G; Kamae, T; Kuss, M; Larsson, S; Latronico, L; Li, J; Longo, F; Loparco, F; Lubrano, P; Magill, J D; Malyshev, D; Manfreda, A; Mazziotta, M N; Meehan, M; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Negro, M; Nuss, E; Ohsugi, T; Omodei, N; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Principe, G; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strong, A W; Tajima, H; Thayer, J B; Torres, D F; Troja, E; Vandenbroucke, J; Zaharijas, G; Zimmer, S

    2017-03-03

    The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10^{-3}. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. The present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.

  3. Transition properties from the Hermitian formulation of the coupled cluster polarization propagator

    NASA Astrophysics Data System (ADS)

    Tucholska, Aleksandra M.; Modrzejewski, Marcin; Moszynski, Robert

    2014-09-01

    Theory of one-electron transition density matrices has been formulated within the time-independent coupled cluster method for the polarization propagator [R. Moszynski, P. S. Żuchowski, and B. Jeziorski, Coll. Czech. Chem. Commun. 70, 1109 (2005)]. Working expressions have been obtained and implemented with the coupled cluster method limited to single, double, and linear triple excitations (CC3). Selected dipole and quadrupole transition probabilities of the alkali earth atoms, computed with the new transition density matrices are compared to the experimental data. Good agreement between theory and experiment is found. The results obtained with the new approach are of the same quality as the results obtained with the linear response coupled cluster theory. The one-electron density matrices for the ground state in the CC3 approximation have also been implemented. The dipole moments for a few representative diatomic molecules have been computed with several variants of the new approach, and the results are discussed to choose the approximation with the best balance between the accuracy and computational efficiency.

  4. Directed Assembly of Molecules on Graphene/Ru(0001)

    NASA Astrophysics Data System (ADS)

    Zhang, L. Z.; Zhang, H. G.; Sun, J. T.; Pan, Y.; Liu, Q.; Mao, J. H.; Zhou, H. T.; Low, T.; Guo, H. M.; Du, S. X.; Gao, H.-J.

    2012-02-01

    Recently, the graphene monolayers have been seen to adopt a superstructure - moir'e pattern - on Ru(0001). By using low temperature scanning tunneling spectroscopy, we identified the laterally localized electronic states on this system. The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances with energies that relate to the corrugation of the graphene layer. By using scanning tunneling microscopy/spectroscopy, we demonstrate the selective adsorption and formation of ordered molecular arrays of FePc and pentacene molecules on the graphene/Ru(0001) templates. With in-depth investigations of the molecular adsorption and assembly processes we reveal the existence lateral electric dipoles in the epitaxial graphene monolayers and the capability of the dipoles in directing and driving the molecular adsorption and assembly. When increasing the molecular coverage, we observed the formation of regular Kagome lattices that duplicate the lattice of the moir'e pattern of monolayer graphene.

  5. The Dynamical Dipole Radiation in Dissipative Collisions with Exotic Beams

    NASA Astrophysics Data System (ADS)

    di Toro, M.; Colonna, M.; Rizzo, C.; Baran, V.

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. We will review in detail all the main properties, yield, spectrum, damping and angular distributions, revealing important isospin effects. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. Predictions are also presented for deep-inelastic and fragmentation collisions induced by neutron rich projectiles. The importance of studying violent collisions with radioactive beams at low and Fermi energies is finally stressed.

  6. Silicon quantum processor with robust long-distance qubit couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosi, Guilherme; Mohiyaddin, Fahd A.; Schmitt, Vivien

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowingmore » selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.« less

  7. Teaching Ion-Ion, Ion-Dipole, and Dipole-Dipole Interactions

    ERIC Educational Resources Information Center

    Yoder, Claude H.

    1977-01-01

    Discusses how electrostatic interactions can be taught quantitatively through Coulomb's Law at a variety of points in a chemistry curriculum. Each type of interaction is shown at both the intramolecular and the inter-"molecular" levels. (MR)

  8. Position and Momentum Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Opatrný, T.; Kolář, M.; Kurizki, G.

    We consider a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The Einstein-Podolsky-Rosen (EPR) "paradox" [Einstein 1935] with translational variables is then modified by lattice-diffraction effects. We study a possible mechanism of creating such diatom entangled states by varying the effective mass of the atoms.

  9. Electric dipole moment of the diatomic tif in its higher vibrational states

    NASA Astrophysics Data System (ADS)

    Nair, K. P. R.; Hoeft, J.

    1983-04-01

    The electric dipole moment of 205Tl 19F has been measured in its higher vibrational states up to ν = 7 by studying the Statk effect in the J = O → 1 rotational transitions. The variation of the electric dipole moment with vibrational states is discussed. The electric dipole moment can be written as lμ νl = 4.1941 (15) + 0.0681(12) (ν + 1/2) D.

  10. Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.

    2014-11-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.

  11. Nonlinear theory of transverse beam echoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Tanaji; Li, Yuan Shen

    Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less

  12. Local electric dipole moments for periodic systems via density functional theory embedding.

    PubMed

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  13. Systematics of the electric dipole response in stable tin isotopes

    NASA Astrophysics Data System (ADS)

    Bassauer, Sergej; von Neumann-Cosel, Peter; Tamii, Atsushi

    2018-05-01

    The electric dipole is an important property of heavy nuclei. Precise information on the electric dipole response provides information on the electric dipole polarisability which in turn allows to extract important constraints on neutron-skin thickness in heavy nuclei and parameters of the symmetry energy. The tin isotope chain is particularly suited for a systematic study of the dependence of the electric dipole response on neutron excess as it provides a wide mass range of accessible isotopes with little change of the underlying structure. Recently an inelastic proton scattering experiment under forward angles including 0º on 112,116,124Sn was performed at the Research Centre for Nuclear Physics (RCNP), Japan with a focus on the low-energy dipole strength and the polarisability. First results are presented here. Using data from an earlier proton scattering experiment on 120Sn the gamma strength function and level density are determined for this nucleus.

  14. Nonlinear theory of transverse beam echoes

    DOE PAGES

    Sen, Tanaji; Li, Yuan Shen

    2018-02-23

    Transverse beam echoes can be excited with a single dipole kick followed by a single quadrupole kick. They have been used to measure diffusion in hadron beams and have other diagnostic capabilities. Here we develop theories of the transverse echo nonlinear in both the dipole and quadrupole kick strengths. The theories predict the maximum echo amplitudes and the optimum strength parameters. We find that the echo amplitude increases with smaller beam emittance and the asymptotic echo amplitude can exceed half the initial dipole kick amplitude. We show that multiple echoes can be observed provided the dipole kick is large enough.more » The spectrum of the echo pulse can be used to determine the nonlinear detuning parameter with small amplitude dipole kicks. Simulations are performed to check the theoretical predictions. In the useful ranges of dipole and quadrupole strengths, they are shown to be in reasonable agreement.« less

  15. Theoretical and observational analysis of spacecraft fields

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Schatten, K. H.

    1972-01-01

    In order to investigate the nondipolar contributions of spacecraft magnetic fields a simple magnetic field model is proposed. This model consists of randomly oriented dipoles in a given volume. Two sets of formulas are presented which give the rms-multipole field components, for isotropic orientations of the dipoles at given positions and for isotropic orientations of the dipoles distributed uniformly throughout a cube or sphere. The statistical results for an 8 cu m cube together with individual examples computed numerically show the following features: Beyond about 2 to 3 m distance from the center of the cube, the field is dominated by an equivalent dipole. The magnitude of the magnetic moment of the dipolar part is approximated by an expression for equal magnetic moments or generally by the Pythagorean sum of the dipole moments. The radial component is generally greater than either of the transverse components for the dipole portion as well as for the nondipolar field contributions.

  16. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    NASA Astrophysics Data System (ADS)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-09-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  17. Spectral and physicochemical properties of difluoroboranyls containing N,N-dimethylamino group studied by solvatochromic methods

    NASA Astrophysics Data System (ADS)

    Jędrzejewska, Beata; Grabarz, Anna; Bartkowiak, Wojciech; Ośmiałowski, Borys

    2018-06-01

    The solvatochromism of the dyes was analyzed based on the four-parameter scale including: polarizability (SP), dipolarity (SdP), acidity (SA) and basicity (SB) parameters by method proposed by Catalán. The change of solvent to more polar caused the red shift of absorption and fluorescence band position. The frequency shifts manifest the change in the dipole moment upon excitation. The ground-state dipole moment of the difluoroboranyls was estimated based on changes in molecular polarization with temperature. Moreover, the Stokes shifts were used to calculate the excited state dipole moments of the dyes. For the calculation, the ground-state dipole moments and Onsager cavity radius were also determined theoretically using density functional theory (DFT). The experimentally determined excited-state dipole moments for the compounds are higher than the corresponding ground-state values. The increase in the dipole moment is described in terms of the nature of the excited state.

  18. Master equation with quantized atomic motion including dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  19. An Insightful Problem Involving the Electromagnetic Radiation from a Pair of Dipoles

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2010-01-01

    The time-average power radiated by a pair of infinitesimal dipoles is examined as their spacing is varied. The results elucidate the effect of the interaction of the dipoles on their radiation. (Contains 4 figures.)

  20. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  1. Health Insurance: Understanding Your Health Plan's Rules

    MedlinePlus

    ... Point of service (POS) plan Preferred provider organization (PPO) Rules for selecting doctors and hospitals Managed care ... If you have a POS plan or a PPO, the insurance company will probably pay for you ...

  2. Theory for electric dipole superconductivity with an application for bilayer excitons.

    PubMed

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C

    2015-07-08

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.

  3. Higher Order Multipole Potentials and Electrostatic Screening Effects on Cohesive Energy and Bulk Modulus of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Barakat, T.

    2011-12-01

    Higher order multipole potentials and electrostatic screening effects are introduced to incorporate the dangling bonds on the surface of a metallic nanopaticle and to modify the coulomb like potential energy terms, respectively. The total interaction energy function for any metallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terms are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.

  4. Analysis of the iteratively regularized Gauss-Newton method under a heuristic rule

    NASA Astrophysics Data System (ADS)

    Jin, Qinian; Wang, Wei

    2018-03-01

    The iteratively regularized Gauss-Newton method is one of the most prominent regularization methods for solving nonlinear ill-posed inverse problems when the data is corrupted by noise. In order to produce a useful approximate solution, this iterative method should be terminated properly. The existing a priori and a posteriori stopping rules require accurate information on the noise level, which may not be available or reliable in practical applications. In this paper we propose a heuristic selection rule for this regularization method, which requires no information on the noise level. By imposing certain conditions on the noise, we derive a posteriori error estimates on the approximate solutions under various source conditions. Furthermore, we establish a convergence result without using any source condition. Numerical results are presented to illustrate the performance of our heuristic selection rule.

  5. ERIC Processing Manual. Rules and Guidelines for the Acquisition, Selection, and Technical Processing of Documents and Journal Articles by the Various Components of the ERIC Network.

    ERIC Educational Resources Information Center

    Brandhorst, Ted, Ed.; And Others

    This loose-leaf manual provides the detailed rules, guidelines, and examples to be used by the components of the Educational Resources Information Center (ERIC) Network in acquiring and selecting documents and in processing them (i.e., cataloging, indexing, abstracting) for input to the ERIC computer system and subsequent announcement in…

  6. 76 FR 63691 - Self-Regulatory Organizations; Notice of Filing of Proposed Rule Change by International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Short Term Options Series Program October 6, 2011. Pursuant to Section 19(b)(1) of the Securities... Proposed Rule Change The Exchange proposes to amend its rules to expand the Short Term Option Series... Term Option Series Program (``STOS Program'') \\3\\ so that the Exchange may select twenty-five option...

  7. 76 FR 12778 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... FX Options only. See ISE Rule 2213. \\8\\ A FXCMM is a competitive market maker selected by the... rule change will further the Exchange's goal of promoting trading of its FX options through competitive pricing. 2. Statutory Basis The Exchange believes that the proposed rule change is consistent with the...

  8. Mining association rule based on the diseases population for recommendation of medicine need

    NASA Astrophysics Data System (ADS)

    Harahap, M.; Husein, A. M.; Aisyah, S.; Lubis, F. R.; Wijaya, B. A.

    2018-04-01

    Selection of medicines that is inappropriate will lead to an empty result at medicines, this has an impact on medical services and economic value in hospital. The importance of an appropriate medicine selection process requires an automated way to select need based on the development of the patient's illness. In this study, we analyzed patient prescriptions to identify the relationship between the disease and the medicine used by the physician in treating the patient's illness. The analytical framework includes: (1) patient prescription data collection, (2) applying k-means clustering to classify the top 10 diseases, (3) applying Apriori algorithm to find association rules based on support, confidence and lift value. The results of the tests of patient prescription datasets in 2015-2016, the application of the k-means algorithm for the clustering of 10 dominant diseases significantly affects the value of trust and support of all association rules on the Apriori algorithm making it more consistent with finding association rules of disease and related medicine. The value of support, confidence and the lift value of disease and related medicine can be used as recommendations for appropriate medicine selection. Based on the conditions of disease progressions of the hospital, there is so more optimal medicine procurement.

  9. Frequency selection rule for high definition and high frame rate Lissajous scanning.

    PubMed

    Hwang, Kyungmin; Seo, Yeong-Hyeon; Ahn, Jinhyo; Kim, Pilhan; Jeong, Ki-Hun

    2017-10-26

    Lissajous microscanners are very attractive in compact laser scanning applications such as endomicroscopy or pro-projection display owing to high mechanical stability and low operating voltages. The scanning frequency serves as a critical factor for determining the scanning imaging quality. Here we report the selection rule of scanning frequencies that can realize high definition and high frame-rate (HDHF) full-repeated Lissajous scanning imaging. The fill factor (FF) monotonically increases with the total lobe number of a Lissajous curve, i.e., the sum of scanning frequencies divided by the great common divisor (GCD) of bi-axial scanning frequencies. The frames per second (FPS), called the pattern repeated rate or the frame rate, linearly increases with GCD. HDHF Lissajous scanning is achieved at the bi-axial scanning frequencies, where the GCD has the maximum value among various sets of the scanning frequencies satisfying the total lobe number for a target FF. Based on this selection rule, the experimental results clearly demonstrate that conventional Lissajous scanners substantially increase both FF and FPS by slightly modulating the scanning frequencies at near the resonance within the resonance bandwidth of a Lissajous scanner. This selection rule provides a new guideline for HDHF Lissajous scanning in compact laser scanning systems.

  10. Destructive interference between electric and toroidal dipole moments in TiO2 cylinders and frustums with coaxial voids

    NASA Astrophysics Data System (ADS)

    Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.

    2017-11-01

    We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.

  11. On Dipole Moment of Impurity Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Konobeeva, N. N.; Ten, A. V.; Belonenko, M. B.

    2017-04-01

    Propagation of a two-dimensional electromagnetic pulse in an array of semiconductor carbon nanotubes with impurities is investigated. The parameters of dipole moments of impurities are determined. The Maxwell equation and the equation of motion for dipole polarization are jointly solved. The dynamics of the electromagnetic pulse is examined as a function of the dipole moment. It is shown that taking polarization into account does not have a substantial effect on the propagation process, but alters the optical pulse shape.

  12. Fermion dipole moment and holography

    NASA Astrophysics Data System (ADS)

    Kulaxizi, Manuela; Rahman, Rakibur

    2015-12-01

    In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.

  13. On equatorially symmetric and antisymmetric geomagnetic secular variation timescales

    NASA Astrophysics Data System (ADS)

    Amit, Hagay; Coutelier, Maélie; Christensen, Ulrich R.

    2018-03-01

    It has been suggested that the secular variation (SV) timescales of the geomagnetic field vary as 1 / ℓ (where ℓ is the spherical harmonic degree), except for the dipole. Here we propose that the same scaling law applies for SV timescales defined for different symmetry classes of the geomagnetic field and SV. We decompose the field and its SV into symmetric and antisymmetric parts and show in geomagnetic field models and numerical dynamo simulations that the corresponding SV timescales also vary as 1 / ℓ , again except for the dipole. The time-average antisymmetric/symmetric SV timescales are larger/smaller than the total, respectively. The difference in SV timescales between these two symmetry classes is probably due to different degrees of alignment of the core flow with different magnetic field structures at the core-mantle boundary. The symmetric dipole SV timescale in the recent geomagnetic field and in long-term time-averages from numerical dynamos is below the extrapolated 1 / ℓ curve, whereas before ∼ 1965 the geomagnetic dipole tilt was rather steady and the symmetric dipole SV timescale exceeded the extrapolated 1 / ℓ curve. We hypothesize that the period of nearly steady geomagnetic dipole tilt between 1810-1965 was anomalous for the geodynamo. Overall, the deviation of the dipole SV timescales from the 1 / ℓ curves may indicate that magnetic diffusion contributes to the dipole SV more than it does for higher degrees.

  14. A Sensitive, Multifunctional Spinner Magnetometer Using Magneto-impedance Sensor: a Rapid and Convenient Tool for the Quantification of Inhomogeneity of Magnetization

    NASA Astrophysics Data System (ADS)

    Kodama, K.

    2016-12-01

    A new type of spinner magnetometer with wide dynamic range from 10-7 mAm2 to 10-1 mAm2 and the resolution of 10-8 mAm2 was developed. The high sensitivity was achieved by using magneto-impedance (MI) sensor, a compact, high-performance magnetic sensor used in industrial fields. The slow spinning speed (5 Hz) and the unique mechanism enabling the adjustment of the sample-sensor distance allow measurements of fragile samples in any shape and size. A differential arrangement connecting a pair of the MI sensors in opposite serial reduces external noise and temperature drift. The differential sensor output is transferred to an amplification circuit associated with a programmable low-pass filter. The signal with reference to the spinning frequency is detected with a digital lock-in amplifier. The spinner magnetometer has two selectable measurement modes, the fundamental-mode (F-mode) and the harmonic-mode (H-mode). Measurements in the F-mode detect signals oscillating at the fundamental frequency (5 Hz) as conventional spinner magnetometers do. In the H-mode, additionally, the second (10 Hz) and the third (15 Hz) harmonic components can be measured. Tests in the H-mode were performed using a small coil and changing its position to simulate an offset-dipole. The results demonstrate that the dipole moment of the fundamental component is systematically biased by both quadrupole and octupole components arising in practice from inhomogeneity of magnetization or irregularity of sample shape. This study proposes, combined with theoretical and numerical analyses, quantification of such non-dipole effects and associated errors in the determination of dipole moment of a sample, as well as their correction that may be necessary, for example, when measuring irregular-shaped samples in the proximity of the sensor.

  15. Assessments of higher-order ionospheric effects on GPS coordinate time series: A case study of CMONOC with longer time series

    NASA Astrophysics Data System (ADS)

    Jiang, Weiping; Deng, Liansheng; Zhou, Xiaohui; Ma, Yifang

    2014-05-01

    Higher-order ionospheric (HIO) corrections are proposed to become a standard part for precise GPS data analysis. For this study, we deeply investigate the impacts of the HIO corrections on the coordinate time series by implementing re-processing of the GPS data from Crustal Movement Observation Network of China (CMONOC). Nearly 13 year data are used in our three processing runs: (a) run NO, without HOI corrections, (b) run IG, both second- and third-order corrections are modeled using the International Geomagnetic Reference Field 11 (IGRF11) to model the magnetic field, (c) run ID, the same with IG but dipole magnetic model are applied. Both spectral analysis and noise analysis are adopted to investigate these effects. Results show that for CMONOC stations, HIO corrections are found to have brought an overall improvement. After the corrections are applied, the noise amplitudes decrease, with the white noise amplitudes showing a more remarkable variation. Low-latitude sites are more affected. For different coordinate components, the impacts vary. The results of an analysis of stacked periodograms show that there is a good match between the seasonal amplitudes and the HOI corrections, and the observed variations in the coordinate time series are related to HOI effects. HOI delays partially explain the seasonal amplitudes in the coordinate time series, especially for the U component. The annual amplitudes for all components are decreased for over one-half of the selected CMONOC sites. Additionally, the semi-annual amplitudes for the sites are much more strongly affected by the corrections. However, when diplole model is used, the results are not as optimistic as IGRF model. Analysis of dipole model indicate that HIO delay lead to the increase of noise amplitudes, and that HIO delays with dipole model can generate false periodic signals. When dipole model are used in modeling HIO terms, larger residual and noise are brought in rather than the effective improvements.

  16. On Geomagnetism and Paleomagnetism

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    A statistical description of Earth's broad scale, core-source magnetic field has been developed and tested. The description features an expected, or mean, spatial magnetic power spectrum that is neither "flat" nor "while" at any depth, but is akin to spectra advanced by Stevenson and McLeod. This multipole spectrum describes the magnetic energy range; it is not steep enough for Gubbins' magnetic dissipation range. Natural variations of core multipole powers about their mean values are to be expected over geologic time and are described via trial probability distribution functions that neither require nor prohibit magnetic isotropy. The description is thus applicable to core-source dipole and low degree non-dipole fields despite axial dipole anisotropy. The description is combined with main field models of modem satellite and surface geomagnetic measurements to make testable predictions of: (1) the radius of Earth's core, (2) mean paleomagnetic field intensity, and (3) the mean rates and durations of both dipole power excursions and durable axial dipole reversals. The predicted core radius is 0.7% above the 3480 km seismologic value. The predicted root mean square paleointensity (35.6 mu T) and mean Virtual Axial Dipole Moment (about 6.2 lx 1022 Am(exp 2)) are within the range of various mean paleointensity estimates. The predicted mean rate of dipole power excursions, as defined by an absolute dipole moment <20% of the 1980 value, is 9.04/Myr and 14% less than obtained by analysis of a 4 Myr paleointensity record. The predicted mean rate of durable axial dipole reversals (2.26/Myr) is 2.3% more than established by the polarity time-scale for the past 84 Myr. The predicted mean duration of axial dipole reversals (5533 yr) is indistinguishable from an observational value. The accuracy of these predictions demonstrates the power and utility of the description, which is thought to merit further development and testing. It is suggested that strong stable stratification of Earth's uppermost outer core leads to a geologically long interval of no dipole reversals and a very nearly axisymmetric field outside the core. Statistical descriptions of other planetary magnetic fields are outlined.

  17. QTAIM charge-charge flux-dipole flux interpretation of electronegativity and potential models of the fluorochloromethane mean dipole moment derivatives.

    PubMed

    Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E

    2011-11-17

    Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results. Substitution effects of the hydrogen, fluorine, and chlorine atoms on the charge and dipole flux QTAIM contributions are found to be additive for the mean dipole derivatives of the fluorochloromethanes.

  18. Constructing Compact Takagi-Sugeno Rule Systems: Identification of Complex Interactions in Epidemiological Data

    PubMed Central

    Zhou, Shang-Ming; Lyons, Ronan A.; Brophy, Sinead; Gravenor, Mike B.

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data. PMID:23272108

  19. Constructing compact Takagi-Sugeno rule systems: identification of complex interactions in epidemiological data.

    PubMed

    Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.

  20. A simple method for EEG guided transcranial electrical stimulation without models.

    PubMed

    Cancelli, Andrea; Cottone, Carlo; Tecchio, Franca; Truong, Dennis Q; Dmochowski, Jacek; Bikson, Marom

    2016-06-01

    There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a 'gold standard' numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.

  1. A simple method for EEG guided transcranial electrical stimulation without models

    NASA Astrophysics Data System (ADS)

    Cancelli, Andrea; Cottone, Carlo; Tecchio, Franca; Truong, Dennis Q.; Dmochowski, Jacek; Bikson, Marom

    2016-06-01

    Objective. There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. Approach. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a ‘gold standard’ numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Main results. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. Significance. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.

  2. Cognitive Control Functions of Anterior Cingulate Cortex in Macaque Monkeys Performing a Wisconsin Card Sorting Test Analog

    PubMed Central

    Kuwabara, Masaru; Mansouri, Farshad A.; Buckley, Mark J.

    2014-01-01

    Monkeys were trained to select one of three targets by matching in color or matching in shape to a sample. Because the matching rule frequently changed and there were no cues for the currently relevant rule, monkeys had to maintain the relevant rule in working memory to select the correct target. We found that monkeys' error commission was not limited to the period after the rule change and occasionally occurred even after several consecutive correct trials, indicating that the task was cognitively demanding. In trials immediately after such error trials, monkeys' speed of selecting targets was slower. Additionally, in trials following consecutive correct trials, the monkeys' target selections for erroneous responses were slower than those for correct responses. We further found evidence for the involvement of the cortex in the anterior cingulate sulcus (ACCs) in these error-related behavioral modulations. First, ACCs cell activity differed between after-error and after-correct trials. In another group of ACCs cells, the activity differed depending on whether the monkeys were making a correct or erroneous decision in target selection. Second, bilateral ACCs lesions significantly abolished the response slowing both in after-error trials and in error trials. The error likelihood in after-error trials could be inferred by the error feedback in the previous trial, whereas the likelihood of erroneous responses after consecutive correct trials could be monitored only internally. These results suggest that ACCs represent both context-dependent and internally detected error likelihoods and promote modes of response selections in situations that involve these two types of error likelihood. PMID:24872558

  3. Comparison of different sets of array configurations for multichannel 2D ERT acquisition

    NASA Astrophysics Data System (ADS)

    Martorana, R.; Capizzi, P.; D'Alessandro, A.; Luzio, D.

    2017-02-01

    Traditional electrode arrays such Wenner-Schlumberger or dipole-dipole are still widely used thanks to their well-known properties but the array configurations are generally not optimized for multi-channel resistivity measures. Synthetic datasets relating to four different arrays, dipole-dipole (DD), pole-dipole (PD), Wenner-Schlumberger (WS) and a modified version of multiple gradient (MG), have been made for a systematic comparison between 2D resistivity models and their inverted images. Different sets of array configurations generated from simple combinations of geometric parameters (potential dipole lengths and dipole separation factors) were tested with synthetic and field data sets, even considering the influence of errors and the acquisition velocity. The purpose is to establish array configurations capable to provide reliable results but, at the same time, not involving excessive survey costs, even linked to the acquiring time and therefore to the number of current dipoles used. For DD, PD and WS arrays a progression of different datasets were considered increasing the number of current dipoles trying to get about the same amount of measures. A multi-coverage MG array configuration is proposed by increasing the lateral coverage and so the number of current dipoles. Noise simulating errors both on the electrode positions and on the electric potential was added. The array configurations have been tested on field data acquired in the landfill site of Bellolampo (Palermo, Italy), to detect and locate the leachate plumes and to identify the HDPE bottom of the landfill. The inversion results were compared using a quantitative analysis of data misfit, relative model resolution and model misfit. The results show that the trends of the first two parameters are linked on the array configuration and that a cumulative analysis of these parameters can help to choose the best array configuration in order to obtain a good resolution and reliability of a survey, according to generally short acquisition times.

  4. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  5. The dipole moment of the electron carrier adrenodoxin is not critical for redox partner interaction and electron transfer.

    PubMed

    Hannemann, Frank; Guyot, Arnaud; Zöllner, Andy; Müller, Jürgen J; Heinemann, Udo; Bernhardt, Rita

    2009-07-01

    Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.

  6. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  7. Self-force on an electric dipole in the spacetime of a cosmic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B., E-mail: valdir@ufpb.br

    2014-01-15

    We calculate the electrostatic self-force on an electric dipole in the spacetime generated by a static, thin, infinite and straight cosmic string. The electric dipole is held fixed in different configurations, namely, parallel, perpendicular to the cosmic string and oriented along the azimuthal direction around this topological defect, which is stretched along the z axis. We show that the self-force is equivalent to an interaction of the electric dipole with an effective dipole moment which depends on the linear mass density of the cosmic string and on the configuration. The plots of the self-forces as functions of the parameter whichmore » determines the angular deficit of the cosmic string are shown for those different configurations. -- Highlights: •Review of regularized Green’s function applied to the problem. •Self-force on an electric dipole in the string spacetime for some orientations. •Representation via graphs of the self-forces versus angular parameter of the cosmic string. •Self-force induced by the string seen as an interaction between two dipoles. •Discussion about the superposition principle in this non-trivial background.« less

  8. Localization of heart vectors produced by epicardial burns and ectopic stimuli; validation of a dipole ranging method.

    PubMed

    Ideker, R E; Bandura, J P; Larsen, R A; Cox, J W; Keller, F W; Brody, D A

    1975-01-01

    Location of the equivalent cardiac dipole has been estimated but not fully verified in several laboratories. To test the accuracy of such a procedure, injury vectors were produced in 14 isolated, perfused rabbit hearts by epicardial searing. Strongly dipolar excitation fronts were produced in 6 additional hearts by left ventricular pacing. Twenty computer-processed signals, derived from surface electrodes on a spherical electrolyte-filled tank containing the test preparation, were optimally fitted with a locatable cardiac dipole that accounted for over 99% of the root-mean-square surface potential. For the 14 burns (mean radius 5.0 mm), the S-T injury dipole was located 3.4 plus or minus 0.7 (SD) mm from the burn center. For the 6 paced hearts, the dipole early in the ectopic beat was located 3.7 mm (range 2.6 to 4.6 mm) from the stimulating electrode. Phase inhomogeneities within the chamber appeared to have a small but predictable effect on dipole site determination. The study demonstrates that equivalent dipole location can be determined with acceptable accuracy from potential measurements of the external cardiac field.

  9. The Dipole Segment Model for Axisymmetrical Elongated Asteroids

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangyuan; Zhang, Yonglong; Yu, Yang; Liu, Xiangdong

    2018-02-01

    Various simplified models have been investigated as a way to understand the complex dynamical environment near irregular asteroids. A dipole segment model is explored in this paper, one that is composed of a massive straight segment and two point masses at the extremities of the segment. Given an explicitly simple form of the potential function that is associated with the dipole segment model, five topological cases are identified with different sets of system parameters. Locations, stabilities, and variation trends of the system equilibrium points are investigated in a parametric way. The exterior potential distribution of nearly axisymmetrical elongated asteroids is approximated by minimizing the acceleration error in a test zone. The acceleration error minimization process determines the parameters of the dipole segment. The near-Earth asteroid (8567) 1996 HW1 is chosen as an example to evaluate the effectiveness of the approximation method for the exterior potential distribution. The advantages of the dipole segment model over the classical dipole and the traditional segment are also discussed. Percent error of acceleration and the degree of approximation are illustrated by using the dipole segment model to approximate four more asteroids. The high efficiency of the simplified model over the polyhedron is clearly demonstrated by comparing the CPU time.

  10. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium.

    PubMed

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-12-17

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s(2) → 1 snp(n = 3-7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules.

  11. A 100J-level nanosecond pulsed DPSSL for pumping high-efficiency, high-repetition rate PW-class lasers

    NASA Astrophysics Data System (ADS)

    De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2017-02-01

    In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.

  12. Driven assembly with multiaxial fields: Creating a soft mode in assemblies of anisometric induced dipoles

    DOE PAGES

    Martin, James E.; Swol, Frank Van

    2015-07-10

    We show that multiaxial fields can induce time-averaged, noncentrosymmetric interactions between particles having polarization anisotropy, yet the multiaxial field itself does not exert either a force or a torque on an isolated particle. These induced interactions lead to particle assemblies whose energy is strongly dependent on both the translational and orientational degrees of freedom of the system. The situation is similar to a collection of permanent dipoles, but the symmetry of the time-averaged interaction is quite distinct, and the scale of the system energy can be dynamically controlled by the magnitude of the applied multiaxial field. In our paper, themore » case of polarizable rods is considered in detail, and it is suggested that collections of rods embedded in spheres can be used to create a material with a dynamically tunable magnetic permeability or dielectric permittivity. We report on Monte Carlo simulations performed to investigate the behavior of assemblies of both multiaxial-field induced dipoles and permanent dipoles arranged onto two-dimensional lattices. Lastly, the ground state of the induced dipoles is an orientational soft mode of aligned dipoles, whereas that of the permanent dipoles is a vortex state.« less

  13. Beyond the Boost: Measuring the Intrinsic Dipole of the Cosmic Microwave Background Using the Spectral Distortions of the Monopole and Quadrupole.

    PubMed

    Yasini, Siavash; Pierpaoli, Elena

    2017-12-01

    We present a general framework for the accurate spectral modeling of the low multipoles of the cosmic microwave background (CMB) as observed in a boosted frame. In particular, we demonstrate how spectral measurements of the low multipoles can be used to separate the motion-induced dipole of the CMB from a possible intrinsic dipole component. In a moving frame, the leakage of an intrinsic dipole moment into the CMB monopole and quadrupole induces spectral distortions with distinct frequency functions that, respectively, peak at 337 and 276 GHz. The leakage into the quadrupole moment also induces a geometrical distortion to the spatial morphology of this mode. The combination of these effects can be used to lift the degeneracy between the motion-induced dipole and any intrinsic dipole that the CMB might possess. Assuming the current peculiar velocity measurements, the leakage of an intrinsic dipole with an amplitude of ΔT=30  μK into the monopole and quadrupole moments will be detectable by a PIXIE-like experiment at ∼40  nK (2.5σ) and ∼130  nK (11σ) level at their respective peak frequencies.

  14. Angle-selective all-dielectric Huygens’ metasurfaces

    NASA Astrophysics Data System (ADS)

    Arslan, D.; Chong, K. E.; Miroshnichenko, A. E.; Choi, D.-Y.; Neshev, D. N.; Pertsch, T.; Kivshar, Y. S.; Staude, I.

    2017-11-01

    We experimentally and numerically study the angularly resolved transmission properties of dielectric metasurfaces consisting of silicon nanodisks which support electric and magnetic dipolar Mie-type resonances in the near-infrared spectral range. First, we concentrate on Huygens’ metasurfaces which are characterised by a spectral overlap of the fundamental electric and magnetic dipole resonances of the silicon nanodisks at normal incidence. Huygens’ metasurfaces exhibit a high transmitted intensity over the spectral width of the resonances due to impedance matching, while the transmitted phase shows a variation of 2π as the wavelength is swept across the width of the resonances. We observe that the transmittance of the Huygens’ metasurfaces depends on the incidence angle and is sensitive to polarisation for non-normal incidence. As the incidence angle is increased starting from normal incidence, the two dipole resonances are shifted out of the spectral overlap and the resonant features appear as pronounced transmittance minima. Next, we consider a metasurface with an increased nanodisk radius as compared to the Huygens’ metasurface, which supports spectrally separate electric and magnetic dipole resonances at normal incidence. We show that for TM polarisation, we can shift the resonances of this metasurface into spectral overlap and regain the high resonant transmittance characteristic of Huygens’ metasurfaces at a particular incidence angle. Furthermore, both metasurfaces are demonstrated to reject all TM polarised light incident under angles other than the design overlap angle at their respective operation frequency. Our experimental observations are in good qualitative agreement with numerical calculations.

  15. Electric dipole moment of the electron and of the neutron

    NASA Technical Reports Server (NTRS)

    Barr, S. M.; Zee, A.

    1990-01-01

    It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.

  16. Proposal for Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Opatrný, Tomáš; Deb, Bimalendu; Kurizki, Gershon

    2003-06-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [

    Phys. Rev. 47, 777 (1935)
    ] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR “paradox” with translational variables is then modified by lattice-diffraction effects and can be verified to a high degree of accuracy in this scheme.

  17. Frequency shifts of an electric-dipole resonance near a conducting surface

    NASA Technical Reports Server (NTRS)

    Holland, W. R.; Hall, D. G.

    1984-01-01

    The resonance frequency of an electric dipole placed near a conducting surface is shifted by the dipole-surface interaction. The observation and measurement of these shifts at optical frequencies is reported for an experimental system that consists of a metal-island film spaced a distance d from a continuous Ag film. The dependence of the shift in the frequency of the island resonance on d shows good agreement with that predicted by a classical theory of the dipole-surface interaction.

  18. Dipole and quadrupole synthesis of electric potential fields. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tilley, D. G.

    1979-01-01

    A general technique for expanding an unknown potential field in terms of a linear summation of weighted dipole or quadrupole fields is described. Computational methods were developed for the iterative addition of dipole fields. Various solution potentials were compared inside the boundary with a more precise calculation of the potential to derive optimal schemes for locating the singularities of the dipole fields. Then, the problem of determining solutions to Laplace's equation on an unbounded domain as constrained by pertinent electron trajectory data was considered.

  19. Dipole and spin-dipole strength distributions in ^{124,126,128,130} Te isotopes

    NASA Astrophysics Data System (ADS)

    Cakmak, Necla; Cakmak, Sadiye; Selam, Cevad; Unlu, Serdar

    2018-02-01

    We try to present the structure of 1- excitations in open-shell ^{124,126,128,130} Te isotopes. Electric dipole states are investigated within a translational and Galilean invariant model. Also, a theoretical description of charge-conserving spin-dipole {1}- excitations is presented for the same isotopes. The energy spectra for both kinds of excitations are analysed in detail. Furthermore, a comparison of the calculated cross-sections and energies with the available experimental data is given.

  20. QCD dipole model and k T factorization

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    2001-01-01

    It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k T factorization at the leading logarithm approximation (in - logx Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.

  1. Quantum phases of dipolar rotors on two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  2. Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.

    PubMed

    Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric

    2017-06-01

    This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.

  3. Quantum theory of atoms in molecules charge-charge flux-dipole flux models for the infrared intensities of X(2)CY (X = H, F, Cl; Y = O, S) molecules.

    PubMed

    Faria, Sergio H D M; da Silva, João Viçozo; Haiduke, Roberto L A; Vidal, Luciano N; Vazquez, Pedro A M; Bruns, Roy E

    2007-08-16

    The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.

  4. Unique dielectric dipole and hopping ion dipole relaxation in disordered systems

    NASA Astrophysics Data System (ADS)

    Govindaraj, G.

    2018-04-01

    Dielectric or ac conductivity measurements of dielectric and ion conducting glass and crystalline systems provide considerable insight into the nature of the dipolar and ionic motions in disordered solids. However, interpreting the dielectric or ac conductivity has been a matter of considerable debate based on the existing models and empirical formalism, particularly in regards to how best to represent the relaxation process that is the result of a transition from correlated to uncorrelated dipolar and ionic motions. A unique dipole interaction process has been proposed for the (a) dielectric dipole process (b) the hopping ion conducting dipole process and the (c) combination (a) and (b) for the description of dielectric spectra and ac conductivityspectra and results are reported.

  5. The North American winter 'dipole' and extremes activity: A CMIP5 assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shih-Yu Simon; Huang, Wan -Ru; Yoon, Jin -Ho

    The 2013-2014 winter in North American brought intense drought in the West and severe cold in the East. The circulation anomalies were characterized as a dipole: an amplified upper-level ridge over the West Coast and a deepened trough over the central-eastern United States. A previous study using a single model has linked the dipole to the El Nino precursor and found that this link has strengthened in recent years. Here, 17 models from the Coupled Model Intercomparison Project Phase 5 are used to examine the dipole activity. As a result, most models capture the dipole and its association with Elmore » Nino precursor and project this association to strengthen.« less

  6. Quasi-Static Electric Field Generator

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  7. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking.

    PubMed

    Picardi, Michela F; Zayats, Anatoly V; Rodríguez-Fortuño, Francisco J

    2018-03-16

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  8. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    NASA Astrophysics Data System (ADS)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  9. The North American winter 'dipole' and extremes activity: A CMIP5 assessment

    DOE PAGES

    Wang, Shih-Yu Simon; Huang, Wan -Ru; Yoon, Jin -Ho

    2015-02-13

    The 2013-2014 winter in North American brought intense drought in the West and severe cold in the East. The circulation anomalies were characterized as a dipole: an amplified upper-level ridge over the West Coast and a deepened trough over the central-eastern United States. A previous study using a single model has linked the dipole to the El Nino precursor and found that this link has strengthened in recent years. Here, 17 models from the Coupled Model Intercomparison Project Phase 5 are used to examine the dipole activity. As a result, most models capture the dipole and its association with Elmore » Nino precursor and project this association to strengthen.« less

  10. Theory for electric dipole superconductivity with an application for bilayer excitons

    PubMed Central

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X. C.

    2015-01-01

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current. PMID:26154838

  11. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Wan-Jian; Department of Physics & Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606; Yang, Ji-Hui

    2015-10-05

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surfacemore » structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.« less

  12. Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5'-triphosphate solutions.

    PubMed

    Puzenko, Alexander; Levy, Evgeniya; Shendrik, Andrey; Talary, Mark S; Caduff, Andreas; Feldman, Yuri

    2012-11-21

    In this, the third part of our series on the dielectric spectrum symmetrical broadening of water, we consider the nucleotide aqueous solutions. Where in Parts I [E. Levy et al., J. Chem. Phys. 136, 114502 (2012)] and II [E. Levy et al., J. Chem. Phys. 136, 114503 (2012)], the dipole-dipole or ion-dipole interaction had a dominant feature, now the interplay between these two types of dipole-matrix interactions will be considered. We present the results of high frequency dielectric measurements of different concentrations of adenosine monophosphate/adenosine-5'-triphosphate aqueous solutions. We observed the Cole-Cole broadening of the main relaxation peak of the solvent in the solutions. Moreover, depending on the nucleotide concentration, we observed both types of dipole-matrix interaction. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the two types of interaction.

  13. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    NASA Astrophysics Data System (ADS)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  14. A 7T Spine Array Based on Electric Dipole Transmitters

    PubMed Central

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut

    2015-01-01

    Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585

  15. Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.

    2018-01-01

    We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.

  16. Detection of quantum well induced single degenerate-transition-dipoles in ZnO nanorods.

    PubMed

    Ghosh, Siddharth; Ghosh, Moumita; Seibt, Michael; Rao, G Mohan

    2016-02-07

    Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.

  17. Simulating the cold dark matter-neutrino dipole with TianNu

    DOE PAGES

    Inman, Derek; Yu, Hao-Ran; Zhu, Hong-Ming; ...

    2017-04-20

    Measurements of neutrino mass in cosmological observations rely on two-point statistics that are hindered by significant degeneracies with the optical depth and galaxy bias. The relative velocity effect between cold dark matter and neutrinos induces a large scale dipole in the matter density field and may be able to provide orthogonal constraints to standard techniques. In this paper, we numerically investigate this dipole in the TianNu simulation, which contains cold dark matter and 50 meV neutrinos. We first compute the dipole using a new linear response technique where we treat the displacement caused by the relative velocity as a phasemore » in Fourier space and then integrate the matter power spectrum over redshift. Then, we compute the dipole numerically in real space using the simulation density and velocity fields. We find excellent agreement between the linear response and N-body methods. Finally, utilizing the dipole as an observational tool requires two tracers of the matter distribution that are differently biased with respect to the neutrino density.« less

  18. Chaos of energetic positron orbits in a dipole magnetic field and its potential application to a new injection scheme

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn

    2016-10-01

    We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, R.; Brandino, G. P.; El Araby, O.

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  20. Radiative and Nonradiative Transitions of the Rare-Earth Ions Tm(3+) and Ho(3+) in Y3AI5O12 and LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.

    1995-01-01

    The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.

Top