Seismological constraints on the down-dip shape of normal faults
NASA Astrophysics Data System (ADS)
Reynolds, Kirsty; Copley, Alex
2018-04-01
We present a seismological technique for determining the down-dip shape of seismogenic normal faults. Synthetic models of non-planar source geometries reveal the important signals in teleseismic P and SH waveforms that are diagnostic of down-dip curvature. In particular, along-strike SH waveforms are the most sensitive to variations in source geometry, and have significantly more complex and larger-amplitude waveforms for curved source geometries than planar ones. We present the results of our forward-modelling technique for 13 earthquakes. Most continental normal-faulting earthquakes that rupture through the full seismogenic layer are planar and have dips of 30°-60°. There is evidence for faults with a listric shape from some of the earthquakes occurring in two regions; Tibet and East Africa. These ruptures occurred on antithetic faults, or minor faults within the hanging walls of the rifts affected, which may suggest a reason for the down-dip curvature. For these earthquakes, the change in dip across the seismogenic part of the fault plane is ≤30°.
Structural controls of the Tuscarora geothermal field, Elko County, Nevada
NASA Astrophysics Data System (ADS)
Dering, G.; Faulds, J. E.
2012-12-01
Tuscarora is an amagmatic geothermal system located ~90 km northwest of Elko, Nevada, in the northern part of the Basin and Range province ~15 km southeast of the Snake River Plain. Detailed geologic mapping, structural analysis, and well data have been integrated to identify the structural controls of the Tuscarora geothermal system. The structural framework of the geothermal field is defined by NNW- to NNE-striking normal faults that are approximately orthogonal to the present extension direction. Boiling springs, fumaroles, and siliceous sinter emanate from a single NNE-striking, west-dipping normal fault. Normal faults west of these hydrothermal features mostly dip steeply east, whereas normal faults east of the springs primarily dip west. Thus, the springs, fumaroles, and sinter straddle a zone of interaction between fault sets that dip toward each other, classified as a strike-parallel anticlinal accommodation zone. Faults within the geothermal area are mostly discontinuous along strike with offsets of tens to hundreds of meters, whereas the adjacent range-bounding fault systems of the Bull Run and Independence Mountains accommodate several kilometers of displacement. The geothermal field lies within a broad step over between the southward terminating west-dipping Bull Run fault zone and the northward terminating west-dipping Independence Mountains fault zone. Neither of these major fault zones is known to host high temperature geothermal systems. The accommodation zone lies within the broad step over and contains both east-dipping antithetic and west-dipping synthetic faults. Accommodation zones are relatively common structural components of extended terranes that transfer strain between oppositely dipping fault sets via a network of subsidiary normal faults. This study has identified the hinge zone of an anticlinal accommodation zone as the site most conducive to fluid up-flow. The recognition of this specific portion of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. This type of information may ultimately help to reduce the risks of targeting successful geothermal wells in such settings.
3D Model of the McGinness Hills Geothermal Area
Faulds, James E.
2013-12-31
The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.
Effects induced by an earthquake on its fault plane:a boundary element study
NASA Astrophysics Data System (ADS)
Bonafede, Maurizio; Neri, Andrea
2000-04-01
Mechanical effects left by a model earthquake on its fault plane, in the post-seismic phase, are investigated employing the `displacement discontinuity method'. Simple crack models, characterized by the release of a constant, unidirectional shear traction are investigated first. Both slip components-parallel and normal to the traction direction-are found to be non-vanishing and to depend on fault depth, dip, aspect ratio and fault plane geometry. The rake of the slip vector is similarly found to depend on depth and dip. The fault plane is found to suffer some small rotation and bending, which may be responsible for the indentation of a transform tectonic margin, particularly if cumulative effects are considered. Very significant normal stress components are left over the shallow portion of the fault surface after an earthquake: these are tensile for thrust faults, compressive for normal faults and are typically comparable in size to the stress drop. These normal stresses can easily be computed for more realistic seismic source models, in which a variable slip is assigned; normal stresses are induced in these cases too, and positive shear stresses may even be induced on the fault plane in regions of high slip gradient. Several observations can be explained from the present model: low-dip thrust faults and high-dip normal faults are found to be facilitated, according to the Coulomb failure criterion, in repetitive earthquake cycles; the shape of dip-slip faults near the surface is predicted to be upward-concave; and the shallower aftershock activity generally found in the hanging block of a thrust event can be explained by `unclamping' mechanisms.
Henry, Christopher S.; Colgan, Joseph P.
2011-01-01
The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are precluded by the depths of the earthquake and aftershocks, about 8 km and as deep as 12 km, respectively. These depths are below where an antithetic fault would intersect any main fault, and a tilted, formerly shallow and sub-horizontal thrust fault would not extend to depths of more than about 5–6 km. The east-dipping, high-angle, earthquake fault cuts older west-dipping faults rather than reactivating them, highlighting a change in the structural style of Basin and Range extension in this region from closely-spaced, west-dipping faults that rotated significantly during slip and accommodated large-magnitude extension, to widely-spaced, high-angle faults that accommodate much less total strain over a long time span.
Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins
NASA Astrophysics Data System (ADS)
Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.
2017-12-01
Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.
3D Model of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.
3D Model of the San Emidio Geothermal Area
James E. Faulds
2013-12-31
The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.
Eigenvector of gravity gradient tensor for estimating fault dips considering fault type
NASA Astrophysics Data System (ADS)
Kusumoto, Shigekazu
2017-12-01
The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.
Folding associated with extensional faulting: Sheep Range detachment, southern Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, P.L.
1985-01-01
The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least threemore » landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.« less
Fault and joint geometry at Raft River Geothermal Area, Idaho
NASA Astrophysics Data System (ADS)
Guth, L. R.; Bruhn, R. L.; Beck, S. L.
1981-07-01
Raft River geothermal reservoir is formed by fractures in sedimentary strata of the Miocene and Pliocene salt lake formation. The fracturing is most intense at the base of the salt lake formation, along a decollement that dips eastward at less than 50 on top of metamorphosed precambrian and lower paleozoic rocks. Core taken from less than 200 m above the decollement contains two sets of normal faults. The major set of faults dips between 500 and 700. These faults occur as conjugate pairs that are bisected by vertical extension fractures. The second set of faults dips 100 to 200 and may parallel part of the basal decollement or reflect the presence of listric normal faults in the upper plate. Surface joints form two suborthogonal sets that dip vertically. East-northeast-striking joints are most frequent on the limbs of the Jim Sage anticline, a large fold that is associated with the geothermal field.
Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
NASA Astrophysics Data System (ADS)
Jiang, Lishuai; Wang, Pu; Zhang, Peipeng; Zheng, Pengqiang; Xu, Bin
2017-10-01
The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.
NASA Astrophysics Data System (ADS)
Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.
2016-12-01
While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge-style accommodation structures on a continental MCC.
NASA Astrophysics Data System (ADS)
Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.
2010-10-01
Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.
3D Model of the Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.
Spencer, J.E.
2011-01-01
Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.
Varga, R.J.; Faulds, J.E.; Snee, L.W.; Harlan, S.S.; Bettison-Varga, L.
2004-01-01
Recent studies demonstrate that rifts are characterized by linked tilt domains, each containing a consistent polarity of normal faults and stratal tilt directions, and that the transition between domains is typically through formation of accommodation zones and generally not through production of throughgoing transfer faults. The mid-Miocene Black Mountains accommodation zone of southern Nevada and western Arizona is a well-exposed example of an accommodation zone linking two regionally extensive and opposing tilt domains. In the southeastern part of this zone near Kingman, Arizona, east dipping normal faults of the Whipple tilt domain and west dipping normal faults of the Lake Mead domain coalesce across a relatively narrow region characterized by a series of linked, extensional folds. The geometry of these folds in this strike-parallel portion of the accommodation zone is dictated by the geometry of the interdigitating normal faults of opposed polarity. Synclines formed where normal faults of opposite polarity face away from each other whereas anticlines formed where the opposed normal faults face each other. Opposed normal faults with small overlaps produced short folds with axial trends at significant angles to regional strike directions, whereas large fault overlaps produce elongate folds parallel to faults. Analysis of faults shows that the folds are purely extensional and result from east/northeast stretching and fault-related tilting. The structural geometry of this portion of the accommodation zone mirrors that of the Black Mountains accommodation zone more regionally, with both transverse and strike-parallel antithetic segments. Normal faults of both tilt domains lose displacement and terminate within the accommodation zone northwest of Kingman, Arizona. However, isotopic dating of growth sequences and crosscutting relationships show that the initiation of the two fault systems in this area was not entirely synchronous and that west dipping faults of the Lake Mead domain began to form between 1 m.y. to 0.2 m.y. prior to east dipping faults of the Whipple domain. The accommodation zone formed above an active and evolving magmatic center that, prior to rifting, produced intermediate-composition volcanic rocks and that, during rifting, produced voluminous rhyolite and basalt magmas. Copyright 2004 by the American Geophysical Union.
Fault orientations in extensional and conjugate strike-slip environments and their implications
Thatcher, W.; Hill, D.P.
1991-01-01
Seismically active conjugate strike-slip faults in California and Japan typically have mutually orthogonal right- and left-lateral fault planes. Normal-fault dips at earthquake nucleation depths are concentrated between 40?? and 50??. The observed orientations and their strong clustering are surprising, because conventional faulting theory suggests fault initiation with conjugate 60?? and 120?? intersecting planes and 60?? normal-fault dip or fault reactivation with a broad range of permitted orientations. The observations place new constraints on the mechanics of fault initiation, rotation, and evolutionary development. We speculate that the data could be explained by fault rotation into the observed orientations and deactivation for greater rotation or by formation of localized shear zones beneath the brittle-ductile transition in Earth's crust. Initiation as weak frictional faults seems unlikely. -Authors
High resolution t-LiDAR scanning of an active bedrock fault scarp for palaeostress analysis
NASA Astrophysics Data System (ADS)
Reicherter, Klaus; Wiatr, Thomas; Papanikolaou, Ioannis; Fernández-Steeger, Tomas
2013-04-01
Palaeostress analysis of an active bedrock normal fault scarp based on kinematic indicators is carried applying terrestrial laser scanning (t-LiDAR or TLS). For this purpose three key elements are necessary for a defined region on the fault plane: (i) the orientation of the fault plane, (ii) the orientation of the slickenside lineation or other kinematic indicators and (iii) the sense of motion of the hanging wall. We present a workflow to obtain palaeostress data from point cloud data using terrestrial laser scanning. The entire case-study was performed on a continuous limestone bedrock normal fault scarp on the island of Crete, Greece, at four different locations along the WNW-ESE striking Spili fault. At each location we collected data with a mobile terrestrial light detection and ranging system and validated the calculated three-dimensional palaeostress results by comparison with the conventional palaeostress method with compass at three of the locations. Numerous kinematics indicators for normal faulting were discovered on the fault plane surface using t-LiDAR data and traditional methods, like Riedel shears, extensional break-outs, polished corrugations and many more. However, the kinematic indicators are more or less unidirectional and almost pure dip-slip. No oblique reactivations have been observed. But, towards the tips of the fault, inclination of the striation tends to point towards the centre of the fault. When comparing all reconstructed palaeostress data obtained from t-LiDAR to that obtained through manual compass measurements, the degree of fault plane orientation divergence is around ±005/03 for dip direction and dip. The degree of slickenside lineation variation is around ±003/03 for dip direction and dip. Therefore, the percentage threshold error of the individual vector angle at the different investigation site is lower than 3 % for the dip direction and dip for planes, and lower than 6 % for strike. The maximum mean variation of the complete calculated palaeostress tensors is ±005/03. So, technically t-LiDAR measurements are in the error range of conventional compass measurements. The advantages is that remote palaeostress analysis is possible. Further steps in our research will be studying reactivated faults planes with multiple kinematic indicators or striations with t-LiDAR.
The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California
NASA Astrophysics Data System (ADS)
Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.
2016-12-01
We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.
Earthquake scaling laws for rupture geometry and slip heterogeneity
NASA Astrophysics Data System (ADS)
Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro
2016-04-01
We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip distributions. To further characterize the spatial correlations of slip heterogeneity, we analyze the power spectral decay of slip applying the 2-D von Karman auto-correlation function (parameterized by the Hurst exponent, H, and correlation lengths along strike and down-slip). The Hurst exponent is scale invariant, H = 0.83 (± 0.12), while the correlation lengths scale with source dimensions (seismic moment), thus implying characteristic physical scales of earthquake ruptures. Our self-consistent scaling relationships allow constraining the generation of slip-heterogeneity scenarios for physics-based ground-motion and tsunami simulations.
Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.
2003-01-01
Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.
NASA Astrophysics Data System (ADS)
Lavecchia, Giusy; de nardis, Rita; Ferrarini, Federica; Cirillo, Daniele; Brozzetti, Francesco
2017-04-01
The Central Italy 2016 seismic sequence, with its three major events (24 August, Mw 6.0/6.2; 26 October Mw5.9/6.0; 30 October Mw6.5/6.6), activated a well-known active west-dipping extensional fault alignment of central Italy (Vettore-Gorzano faults, VEGO). Soon after the first event, based on geological, interferometric and at that moment available seismological data, a preliminary 3D fault model of VEGO was built. Such a model is here updated and improved at the light of a large amount of relocated earthquake data (time interval 24 August to 30 November 2016, 0.1≤ML ≤6.5, Chiaraluce at al., submitted to SRL) plus additional geological information. The 3D modeling was done using the software package MOVE from the Midland Valley. All the available data were taken into consideration (surface traces, fault-slip data, primary co-seismic surface fractures, geological maps and cross-sections, hypocentral locations and focal mechanisms of both background seismicity and seismic sequences). The VEGO geometric configuration did not substantially changed with respect to the previous model, but some additional structures involved in the sequence were reconstructed. In particular, four additional faults are well evident: a NE-dipping normal fault (dip-angle 50˚ ) antithetic to Vettore Fault, located at depths between 1 and 5 km; a WNW dipping plane (dip-angle 30˚ ) located at depth between 1 and 4 km within the Vettore footwall volume; this structure represents a splay of the late Miocene Sibillini thrust, which is evidently cross-cut and dislocated by the Vettore normal fault; a SW-dipping normal fault representing an unknown northward prosecution of the VEGO alignment, where since 26 October a relevant seismic activity was released; an unknown east-dipping low-angle detachment, where VEGO detaches at a depth of about 10-11 km. An uninterrupted microseismic activity has illuminated such a detachment not only during the overall sequence, but also in the previous months. At the light of the reconstructed geometric pattern integrated with the evidences of primary co-seismic fractures, it results evident that the Central Italy seismic sequence represents a "classic", although complex, intra-Apennine normal-faulting event, reactivating a long-term quiescent seismogenic alignment (e.g. VEGO). The reactivated and inverted compressional structures are confined at shallow depth within the Vettore footwall, and in no way control the major events of the sequence. Conversely, an important regional role is played by the east-dipping detachment. It represents the missing geometric link between the Altotiberina LANF of northern Umbria and the recently discovered LANF of Latium-Abruzzi.
NASA Astrophysics Data System (ADS)
Ueta, K.; Tani, K.
2001-12-01
Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.
NASA Astrophysics Data System (ADS)
Pinzuti, P.; Mignan, A.; King, G. C.
2009-12-01
Mechanical stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localized magma injection, with normal faults accommodating extension and subsidence above the maximum reach of the magma column. In these magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Using mechanical and kinematics concepts and vertical profiles of normal fault scarps from an Asal Rift campaign, where normal faults are sub-vertical on surface level, we discuss the creation and evolution of normal faults in massive fractured rocks (basalt). We suggest that the observed fault scarps correspond to sub-vertical en echelon structures and that at greater depth, these scarps combine and give birth to dipping normal faults. Finally, the geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.
NASA Astrophysics Data System (ADS)
Styron, R. H.; Hetland, E. A.; Zhang, G.
2013-12-01
The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.
NASA Astrophysics Data System (ADS)
Barchi, Massimiliano R.; Ciaccio, Maria Grazia
2009-12-01
The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.
Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, R.P.; Drake, R.M. II
This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less
Janecke, S.U.; Blankenau, J.J.; VanDenburg, C.J.; VanGosen, B.S.
2001-01-01
Compilation of a 1:100,000-scale map of normal faults and extensional folds in southwest Montana and adjacent Idaho reveals a complex history of normal faulting that spanned at least the last 50 m.y. and involved six or more generations of normal faults. The map is based on both published and unpublished mapping and shows normal faults and extensional folds between the valley of the Red Rock River of southwest Montana and the Lemhi and Birch Creek valleys of eastern Idaho between latitudes 45°05' N. and 44°15' N. in the Tendoy and Beaverhead Mountains. Some of the unpublished mapping has been compiled in Lonn and others (2000). Many traces of the normal faults parallel the generally northwest to north-northwest structural grain of the preexisting Sevier fold and thrust belt and dip west-southwest, but northeastand east-striking normal faults are also prominent. Northeaststriking normal faults are subparallel to the traces of southeast-directed thrusts that shortened the foreland during the Laramide orogeny. It is unlikely that the northeast-striking normal faults reactivated fabrics in the underlying Precambrian basement, as has been documented elsewhere in southwestern Montana (Schmidt and others, 1984), because exposures of basement rocks in the map area exhibit north-northwest- to northwest-striking deformational fabrics (Lowell, 1965; M’Gonigle, 1993, 1994; M’Gonigle and Hait, 1997; M’Gonigle and others, 1991). The largest normal faults in the area are southwest-dipping normal faults that locally reactivate thrust faults (fig. 1). Normal faulting began before middle Eocene Challis volcanism and continues today. The extension direction flipped by about 90° four times.
NASA Astrophysics Data System (ADS)
Allison, K.; Reinen, L. A.
2011-12-01
Slip on non-planar faults produces stress perturbations in the surrounding host rock that can yield secondary faults at a scale too small to be resolved on seismic surveys. Porosity changes during failure may affect the ability of the rock to transmit fluids through dilatant cracking or, in porous rocks, shear-enhanced compaction (i.e., cataclastic flow). Modeling the mechanical behavior of the host rock in response to slip on non-planar faults can yield insights into the role of fault geometry on regions of enhanced or inhibited fluid flow. To evaluate the effect of normal fault geometry on deformation in porous sandstones, we model the system as a linear elastic, homogeneous, whole or half space using the boundary-element modeling program Poly3D. We consider conditions leading to secondary deformation using the maximum Coulomb shear stress (MCSS) as an index of brittle deformation and proximity to an elliptical yield envelope (Y), determined experimentally for porous sandstone (Baud et al., JGR, 2006), for cataclastic flow. We model rectangular faults consisting of two segments: an upper leg with a constant dip of 60° and a lower leg with dips ranging 15-85°. We explore far-field stress models of constant and gradient uniaxial strain. We investigate the potential damage in the host rock in two ways: [1] the size of the damage zone, and [2] regions of enhanced deformation indicated by elevated MCSS or Y. Preliminary results indicate that, along a vertical transect passing through the fault kink, [1] the size of the damage zone increases in the footwall with increasing lower leg dip and remains constant in the hanging wall. [2] In the footwall, the amount of deformation does not change as a function of lower leg dip in constant stress models; in gradient stress models, both MCSS and Y increase with dip. In the hanging wall, Y decreases with increasing lower leg dip for both constant and gradient stress models. In contrast, MCSS increases: as lower leg dip increases for constant stress models, and as the difference between lower leg dip and 60° increases for gradient stress models. These preliminary results indicate that the dip of the lower fault segment significantly affects the amount and style of deformation in the host rock.
NASA Astrophysics Data System (ADS)
Park, J. O.; Tsuru, T.; Fujie, G.; Kagoshima, T.; Sano, Y.
2017-12-01
A lot of fluids at subduction zones are exchanged between the solid Earth and ocean, affecting the earthquake and tsunami generation. New multi-channel seismic reflection and sub-bottom profiling data reveal normal and reverse faults as the fluid pathways in the coseismic slip area of the 2011 Tohoku earthquake (M9.0). Based on seismic reflection characteristics and helium isotope anomalies, we recognize variations in fluid pathways (i.e., faults) from the mantle wedge up to forearc seafloor in the Japan Trench margin. Some fluids are migrated from the mantle wedge along plate interface and then normal or reverse faults cutting through the overriding plate. Others from the mantle wedge are migrated directly up to seafloor along normal faults, without passing through the plate interface. Locations of the normal faults are roughly consistent with aftershocks of the 2011 Tohoku earthquake, which show focal mechanism of normal faulting. It is noticeable that landward-dipping normal faults developing down into Unit C (Cretaceous basement) from seafloor are dominant in the middle slope region where basal erosion is inferred to be most active. A high-amplitude, reverse-polarity reflection of the normal faults within Unit C suggests that the fluids are locally trapped along the faults in high pore pressures. The 2011 Tohoku mainshock and subsequent aftershocks could lead the pre-existing normal faults to be reactive and more porous so that the trapped fluids are easily transported up to seafloor through the faults. Elevated fluid pressures can decrease the effective normal stress for the fault plane, allowing easier slip of the landward-dipping normal fault and also enhancing its tsunamigenic potential.
The emergence of asymmetric normal fault systems under symmetric boundary conditions
NASA Astrophysics Data System (ADS)
Schöpfer, Martin P. J.; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Nicol, Andrew; Grasemann, Bernhard
2017-11-01
Many normal fault systems and, on a smaller scale, fracture boudinage often exhibit asymmetry with one fault dip direction dominating. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing. Moreover, domains of parallel faults are frequently used to infer the presence of a décollement. Using Distinct Element Method (DEM) modelling we show, that asymmetric fault systems can emerge under symmetric boundary conditions. A statistical analysis of DEM models suggests that the fault dip directions and system polarities can be explained using a random process if the strength contrast between the brittle layer and the surrounding material is high. The models indicate that domino and shear band boudinage are unreliable shear-sense indicators. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults alone.
Marine forearc extension in the Hikurangi Margin: New insights from high-resolution 3D seismic data
NASA Astrophysics Data System (ADS)
Böttner, Christoph; Gross, Felix; Geersen, Jacob; Mountjoy, Joshu; Crutchley, Gareth; Krastel, Sebastian
2017-04-01
In subduction zones upper-plate normal faults have long been considered a tectonic feature primarily associated with erosive margins. However, increasing data coverage has proven that similar features also occur in accretionary margins, such as Cascadia, Makran, Nankai or Central Chile, where kinematics are dominated by compression. Considering their wide distribution there is, without doubt, a significant lack of qualitative and quantitative knowledge regarding the role and importance of normal faults and zones of extension for the seismotectonic evolution of accretionary margins. We use a high-resolution 3D P-Cable seismic volume from the Hikurangi Margin acquired in 2014 to analyze the spatial distribution and mechanisms of upper-plate normal faulting. The study area is located at the upper continental slope in the area of the Tuaheni landslide complex. In detail we aim to (1) map the spatial distribution of normal faults and characterize their vertical throws, strike directions, and dip angles; (2) investigate their possible influence on fluid migration in an area, where gas hydrates are present; (3) discuss the mechanisms that may cause extension of the upper-slope in the study area. Beneath the Tuaheni Landslide Complex we mapped about 200 normal faults. All faults have low displacements (<15 m) and dip at high (> 65°) angles. About 71% of the faults dip landward. We found two main strike directions, with the majority of faults striking 350-10°, parallel to the deformation front. A second group of faults strikes 40-60°. The faults crosscut the BSR, which indicates the base of the gas hydrate zone. In combination with seismically imaged bright-spots and pull-up structures, this indicates that the normal faults effectively transport fluids vertically across the base of the gas hydrate zone. Localized uplift, as indicated by the presence of the Tuaheni Ridge, might support normal faulting in the study area. In addition, different subduction rates across the margin may also favor extension between the segments. Future work will help to further untangle the mechanisms that cause extension of the upper continental slope.
Structural control on the CO2 release west of Mt. Epomeo resurgent block (Ischia, Italy)
NASA Astrophysics Data System (ADS)
de Vita, S.; Marotta, E.; Ventura, G.; Chiodini, G.
2003-04-01
Volcanism at Ischia started more than 150 ka B.P. and continued until the last eruption occurred in 1302 A.D. Ischia is dominated by the caldera forming eruption of Mt. Epomeo Green Tuff (55 ka), which was followed by block resurgence inside the caldera from 33 ka B.P. Resurgence influenced the volcanic activity determining the conditions for magma ascent mainly along the eastern edge of the resurgent block. The resurgent area has a poligonal shape resulting from reactivation of regional faults and by activation of faults related to volcanotectonism. The western sector is bordered by inward dipping, high angle strike-slip/reverse faults testifying a compressional stress regime in this area. These features are cut by late outward dipping normal faults due to gravitational stress. The activity of the volcanic system is testified by seismicity and thermal manifestations. Fumarolic activity concentrates along the faults that borders westward the Mt. Epomeo resurgent block, where the Green Tuff overlies fractured lavas. The structural data show that, outside the most active degassing zone, fractures show a NNW-SSE strike and dip toward Mt. Epomeo. These fractures delimit the northern sector of Mt. Epomeo and show strike and dip consistent with the inward dipping reverse faults. Inside the degassing area fractures show a NW-SE strike and dip outward Mt. Epomeo. These gravity-related faults cut the lavas where the hydrothermal circulation is active. The dip direction of the NW-SE striking fractures within the degassing zone is not consistent with that of the strike-slip/reverse faults (i.e. towards NE) but agrees well with that of the gravity-induced faults (dip direction towards SW). Inside the degassing zone, NW-SE striking faults with lengths not exceeding the hydrothermalized extension occur. This arrangement indicate that the syn-resurgence faults act as permeability barriers, whereas the youngest faults act as the main fluid pathway.
NASA Astrophysics Data System (ADS)
Manning, Andrew H.; Bartley, John M.
1994-06-01
Much of the recent debate over low-angle normal faults exposed in metamorphic core complexes has centered on the rolling hinge model. The model predicts tilting of seismogenic high-angle normal faults to lower dips by footwall deformation in response to isostatic forces caused by footwall exhumation. This shallow brittle deformation should visibly overprint the mylonitic fabric in the footwall of a metamorphic core complex. The predicted style and magnitude of rolling hinge strain depends upon the macroscopic mechanism by which the footwall deforms. Two end-members have been proposed: subvertical simple shear and flexural failure. Each mechanism should generate a distinctive pattern of structures that strike perpendicular to the regional extension direction. Subvertical simple shear (SVSS) should generate subvertical faults and kink bands with a shear sense antithetic to the detachment. For an SVSS hinge, the hinge-related strain magnitude should depend only on initial fault dip; rolling hinge structures should shorten the mylonitic foliation by >13% for an initial fault dip of >30°. In flexural failure the footwall behaves as a flexed elastic beam that partially fails in response to bending stresses. Resulting structures include conjugate faults and kink bands that both extend and contract the mylonitic foliation. Extensional sets could predominate as a result of superposition of far-field and flexural stresses. Strain magnitudes do not depend on fault dip but depend on the thickness and radius of curvature of the flexed footwall beam and vary with location within that beam. Postmylonitic structures were examined in the footwall of the Raft River metamorphic core complex in northwestern Utah to test these predictions. Observed structures strike perpendicular to the regional extension direction and include joints, normal faults, tension-gash arrays, and both extensional and contractional kink bands. Aside from the subvertical joints, the extensional structures dip moderately to steeply and are mainly either synthetic to the detachment or form conjugate sets. Range-wide, the extensional structures accomplish about 4% elongation of the mylonitic foliation. Contractional structures dip steeply, mainly record shear antithetic to the detachment, and accomplish <1% contraction of the foliation. These observations are consistent with the presence of a rolling hinge in the Raft River Mountains, but a rolling hinge that reoriented a high-angle normal fault by SVSS is excluded. The pattern and magnitudes of strain favor hinge-related deformation mainly by flexural failure with a subordinate component of SVSS.
Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip
NASA Astrophysics Data System (ADS)
Tatard, L.; Grasso, J. R.
2013-06-01
compare the spatial distributions of seven databases of landslides triggered by Mw=5.6-7.9 earthquakes, using distances normalized by the earthquake fault length. We show that the normalized landslide distance distributions collapse, i.e., the normalized distance distributions overlap whatever the size of the earthquake, separately for the events associated with dip-slip, buried-faulting earthquakes, and surface-faulting earthquakes. The dip-slip earthquakes triggered landslides at larger normalized distances than the oblique-slip event of Loma Prieta. We further identify that the surface-faulting earthquakes of Wenchuan, Chi-Chi, and Kashmir triggered landslides at normalized distances smaller than the ones expected from their Mw ≥ 7.6 magnitudes. These results support a control of the seismic slip (through amplitude, rake, and surface versus buried slip) on the distances at which landslides are triggered. In terms of coseismic landslide management in mountainous areas, our results allow us to propose distances at which 95 and 75% of landslides will be triggered as a function of the earthquake focal mechanism.
NASA Astrophysics Data System (ADS)
Hammond, K. Jill; Evans, James P.
2003-05-01
We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as a localized conduit to hydrocarbon-bearing calcite veins. The results of this study show that fault-zone character may change dramatically over short, deposit- or reservoir-scale distances. The presence of damage zones may not be well correlated at the fine scale with geochemically defined regions of the fault, even though a gross spatial correlation may exist.
Taking apart the Big Pine fault: Redefining a major structural feature in southern California
Onderdonk, N.W.; Minor, S.A.; Kellogg, K.S.
2005-01-01
New mapping along the Big Pine fault trend in southern California indicates that this structural alignment is actually three separate faults, which exhibit different geometries, slip histories, and senses of offset since Miocene time. The easternmost fault, along the north side of Lockwood Valley, exhibits left-lateral reverse Quaternary displacement but was a north dipping normal fault in late Oligocene to early Miocene time. The eastern Big Pine fault that bounds the southern edge of the Cuyama Badlands is a south dipping reverse fault that is continuous with the San Guillermo fault. The western segment of the Big Pine fault trend is a north dipping thrust fault continuous with the Pine Mountain fault and delineates the northern boundary of the rotated western Transverse Ranges terrane. This redefinition of the Big Pine fault differs greatly from the previous interpretation and significantly alters regional tectonic models and seismic risk estimates. The outcome of this study also demonstrates that basic geologic mapping is still needed to support the development of geologic models. Copyright 2005 by the American Geophysical Union.
Colgan, Joseph P.; Henry, Christopher D.; John, David A.
2014-01-01
The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (
NASA Astrophysics Data System (ADS)
Zhou, Z.; Lin, J.
2017-12-01
We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending, normal fault characteristics, and geodynamic modeling. It was observed that most of the normal faults were initiated along the outer-rise region and grew toward the trench axis with strikes that are mostly subparallel to the local trend of the trench axis. The average trench relief is more than 5 km in the southern region while only about 2 km in the northern and central regions. Fault throws were measured to be significantly greater in the southern region (maximum 320 m) than the northern and central regions (maximum 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading along the trench axis. The "apparent" slab-pull dip angle of the subducting plate, calculated from the ratio of the inverted vertical loading versus horizontal tensional force, was significantly larger in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which is consistent with the seismologically determined dip angle within the shallow part of the subducting slab. This result suggests that the differences in the plate flexure and normal faulting characteristics along the Mariana Trench might be influenced, at least in part, by significant variations in the dip angle within the shallow part of the subducting plate. Normal faults were modeled to penetrate to a maximum depth of 15, 14, and 25 km in the upper mantle for the northern, central, and southern regions, respectively, which is consistent with the depths of available relocated normal faulting earthquakes in the central region. We calculated that the average reduction of the effective elastic plate thickness Te due to normal faulting is 31% in the southern region, which is almost twice that in both the northern and central regions ( 16%). Furthermore, model results revealed that the stress reduction associated with individual normal faults could also decrease Te locally.
NASA Astrophysics Data System (ADS)
Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit
2017-02-01
The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.
Brocher, T.M.; Hunter, W.C.; Langenheim, V.E.
1998-01-01
Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate- to high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. Deeper, low-angle detachment surface(s) within Proterozoic-Paleozoic bedrock cannot be ruled out by our geophysical data, but are inconsistent with other geologic and geophysical observations in this vicinity. Beneath Crater Flat, the base of the seismogenic crust at 12 km depth is close to the top of the reflective (ductile) lower crust at 14 to 15 km depth, where brittle fault motions in the upper crust may be converted to pure shear in the ductile lower crust. Thus, our preferred interpretation of these geophysical data is that moderate- to high-angle faults extend to 12-15-km depth beneath Yucca Mountain and Crater Flat, with only modest changes in dip. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64????5??. Within Crater Flat, east-dipping high-angle normal faults offset the pre-Tertiary-Tertiary contact as well as a reflector within the Miocene tuff sequence, tilting both to the west. The diffuse eastern boundary of the Amargosa Desert rift zone is formed by a broad series of high-angle down-to-the-west normal faults extending eastward across Yucca Mountain. Along our profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging.
High-angle faults control the geometry and morphology of the Corinth Rift
NASA Astrophysics Data System (ADS)
Bell, R. E.; Duclaux, G.; Nixon, C.; Gawthorpe, R.; McNeill, L. C.
2016-12-01
Slip along low-angle normal faults is mechanically difficult, and the existence of low angle detachment faults presents one of most important paradoxes in structural geology. Only a few examples of young continental rifts where low-angle faults may be a mechanism for accommodating strain have been described in the literature, and an important example is the Gulf of Corinth, central Greece. Here, microseismicity, the geometry of onshore faults and deep seismic reflection images have been used to argue for the presence of <30o dipping faults. However, new and reinterpreted data calls into question whether low-angle faults have been influential in controlling rift geometry. We seek to definitively test whether slip on a mature low-angle normal fault can reproduce the long-term geometry and morphology of the Corinth Rift, which involves i) significant uplift of the southern margin, ii) long-term uplift to subsidence ratios across south coast faults of 1 -2, and iii) a northern margin that does not undergo significant long-term uplift. We use PyLith, an open-source finite-element code for quasi-static viscoelastic simulations of crustal deformation and model the uplift and subsidence fields associated with the following fault geometries: i) planar faults with dips of 45-60° that sole onto a 10° detachment at a depth of 6 to 8 km, ii) 45-60° faults, which change to a dip angle of 25-45° at a depth of 3 km and continue to a brittle-ductile transition at 10 km and iii) planar faults which dip 45-60° to the brittle-ductile transition at a depth of 10 km. We show that models involving low-angle detachments, shallower than 8 km produce very minor coseismic uplift of the southern margin and post-seismic relaxation results in the southern margin experiencing net subsidence over many seismic cycles, incompatible with geological observations. Models involving planar faults produce long-term displacement fields involving uplifted southern margin with uplift to subsidence ratios of c. 1:2 and subsidence of the northern margin, compatible with geological observations. We propose that low-angle detachment faults cannot have controlled the long-term geometry of the Corinth rift, and that the rift should no longer be used as an example of low-angle normal faulting.
Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece
NASA Astrophysics Data System (ADS)
Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.
2012-04-01
A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads to additional ENE-WSW shortening, normal to the Hellenic Arc, west of the Peloponnesus.
NASA Astrophysics Data System (ADS)
LaForge, J.; John, B. E.; Grimes, C. B.; Stunitz, H.; Heilbronner, R.
2016-12-01
The Chemehuevi detachment fault system, part of the regionally developed Colorado River extensional corridor, hosts exceptional exposures of a denuded fault system related to Miocene extension. Here, we characterize the early history of extension associated with a small slip (1-2 km) low-angle normal fault, the Mohave Wash fault (MWF), initially active across the brittle-plastic transition. Strain localized in three principal ways across the 23-km down-dip exposure (T <150° to >400°C): a brittle fault zone, localized, disseminated quartz mylonites, and syntectonic dikes hosting mylonitic fabrics. Brittle deformation in these crystalline rocks was concentrated into a 10-62-m thick brittle fault zone hosting localized, unmineralized to chlorite-epidote-quartz mineralized zones of cataclasite series fault rocks ≤3 m thick and rare pseudotachylite. Mylonitic deformation played an increased role in deformation down dip (NE), with mylonites increasing in quantity and average thickness. At shallow structural levels, footwall mylonites are absent; at 9-18 km down dip, cm-scale quartz mylonites are common; ≥18 km down dip, meter-scale syntectonic intermediate-felsic dikes are mylonitic, are attenuated into parallelism with the MWF, and host well-developed L-S fabric; 23 km down dip, the footwall hosts meter-thick zones of disseminated mylonitic quartz of varying intensities. These mylonites host microstructures that record progressively higher deformation temperature down dip, with dislocation-creep in quartz indicative of T of 280-400°C to ≥500°C, and diffusion creep with grain boundary sliding in dikes suggestive of even higher T deformation. Dike emplacement in the system is syntectonic with MWF slip; mafic-intermediate composition dikes intruded damage zone fractures and cataclasites, and were in turn fractured; Pb/U zircon ages of intermediate-felsic dikes range from ca. 1.5 ± 1 Ma to 3.8 ± 1 Ma after the onset of regional extension, but predate rapid slip. Cross cutting relations and absolute dating suggest the early history of the MWF evolved in two distinct phases: 1) seismogenic rupture with contemporaneous localized footwall mylonitization, followed by 2) additional cataclasis, episodic localized and magmatism, mylonitization and fluid-flow.
Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...
Mechanics of graben formation in crustal rocks - A finite element analysis
NASA Technical Reports Server (NTRS)
Melosh, H. J.; Williams, C. A., Jr.
1989-01-01
The mechanics of the initial stages of graben formation are examined, showing that the configuration of a graben (a pair of antithetically dipping normal faults) is the most energetically favorable fault configuration in elastic-brittle rocks subjected to pure extension. The stress field in the vicinity of a single initial normal fault is computed with a two-dimensional FEM. It is concluded that the major factor controlling graben width is the depth of the initial fault.
Deformation associated with continental normal faults
NASA Astrophysics Data System (ADS)
Resor, Phillip G.
Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master normal fault illustrate how these secondary structures influence the deformation in ways that are similar to fault/fold geometry mapped in the western Grand Canyon. Specifically, synthetic faults amplify hanging wall bedding dips, antithetic faults reduce dips, and joints act to localize deformation. The distribution of aftershocks in the hanging wall of the Kozani-Grevena earthquake suggests that secondary structures may accommodate strains associated with slip on a master fault during postseismic deformation.
Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.
2004-01-01
Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.
Fault zone processes in mechanically layered mudrock and chalk
NASA Astrophysics Data System (ADS)
Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach
2017-04-01
A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.
NASA Astrophysics Data System (ADS)
Martin, K. M.; Gulick, S. P.; Bangs, N. L.; Ashi, J.; Moore, G. F.; Nakamura, Y.; Tobin, H. J.
2008-12-01
A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan images the Nankai accretionary prism, forearc basin and the subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel ~1200 m deep depression (a "notch") along the seaward edge of the Kumano forearc basin, just landward of the shallowest branch of the previously- mapped splay-fault system. The shape of this feature varies along strike, from a single, steep-walled, ~3.5 km wide notch in the northeast, to a broader, ~6 km wide zone with several shallower linear bathymetric lows in the southwest. We have mapped the area below the notch and found both vertical faults and faults which dip toward the central axis of the depression. Some dipping faults appear to have normal offset, consistent with the formation of a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is more difficult to determine, but the dip and along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. Possible causes for such a system in the forearc include variations in splay fault geometry and strain partitioning. By considering only the along-strike variability of the mapped splay fault, we were unable to explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of forearc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollment strength variations which control the location of the forearc basins may therefore play a role in the position where the along-strike component of deformation is localized. While the obliquity of convergence in the Nankai trough is comparatively small (13-30 degrees), we believe it is still significant enough to account for the formation of the observed notch.
NASA Technical Reports Server (NTRS)
John, B. E.; Howard, K. A.
1985-01-01
A transect across the 100 km wide Colorado River extensional corridor of mid-Tertiary age shows that the upper 10 to 15 km of crystalline crust extended along an imbricate system of brittle low-angle normal faults. The faults cut gently down a section in the NE-direction of tectonic transport from a headwall breakaway in the Old Woman Mountains, California. Successively higher allochthons above a basal detachment fault are futher displaced from the headwall, some as much as tens of kilometers. Allochthonous blocks are tilted toward the headwall as evidenced by the dip of the cappoing Tertiary strata and originally horizontal Proterozoic diabase sheets. On the down-dip side of the corridor in Arizona, the faults root under the unbroken Hualapai Mountains and the Colorado Plateau. Slip on faults at all exposed levels of the crust was unidirectional. Brittle thinning above these faults affected the entire upper crust, and wholly removed it locally along the central corridor or core complex region. Isostatic uplift exposed metamorphic core complexes in the domed footwall. These data support a model that the crust in California moved out from under Arizona along an asymmetric, rooted normal-slip shear system. Ductile deformation must have accompanied mid-Tertiary crustal extension at deeper structural levels in Arizona.
NASA Astrophysics Data System (ADS)
Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre
2017-04-01
To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.
Extensional tectonics and collapse structures in the Suez Rift (Egypt)
NASA Technical Reports Server (NTRS)
Chenet, P. Y.; Colletta, B.; Desforges, G.; Ousset, E.; Zaghloul, E. A.
1985-01-01
The Suez Rift is a 300 km long and 50 to 80 km wide basin which cuts a granitic and metamorphic shield of Precambrian age, covered by sediments of Paleozoic to Paleogene age. The rift structure is dominated by tilted blocks bounded by NW-SE normal faults. The reconstruction of the paleostresses indicates a N 050 extension during the whole stage of rifting. Rifting began 24 My ago with dikes intrusions; main faulting and subsidence occurred during Early Miocene producing a 80 km wide basin (Clysmic Gulf). During Pliocene and Quaternary times, faulting is still active but subsidence is restricted to a narrower area (Present Gulf). On the Eastern margin of the gulf, two sets of fault trends are predominant: (1) N 140 to 150 E faults parallel to the gulf trend with pure dip-slip displacement; and (2) cross faults, oriented NOO to N 30 E that have a strike-slip component consistent with the N 050 E distensive stress regime. The mean dip cross fault is steeper (70 to 80 deg) than the dip of the faults parallel to the Gulf (30 to 70 deg). These two sets of fault define diamond shaped tilted block. The difference of mechanical behavior between the basement rocks and the overlying sedimentary cover caused structural disharmony and distinct fault geometries.
NASA Astrophysics Data System (ADS)
Hudson, M. R.; Minor, S. A.; Caine, J. S.
2015-12-01
Permanent strain in sediments associated with shallow fault zones can be difficult to characterize. Anisotropy of magnetic susceptibility (AMS) data were obtained from 120 samples at 6 sites to assess the nature of fault-related AMS fabrics for 4 faults cutting Miocene-Pliocene basin fill sediments of the Rio Grande rift of north-central New Mexico. The San Ysidro (3 sites), Sand Hill, and West Paradise faults within the northern Albuquerque basin have normal offset whereas an unnamed fault near Buckman in the western Española basin has oblique strike-slip offset. Previous studies have shown that detrital magnetite controls magnetic susceptibility in rift sandstones, and in a 50-m-long hanging wall traverse of the San Ysidro fault, non-gouge samples have typical sedimentary AMS fabrics with Kmax and Kint axes (defining magnetic foliation) scattered within bedding. For the 5 normal-fault sites, samples from fault cores or adjacent mixed zones that lie within 1 m of the principal slip surface developed common deformation fabrics with (1) magnetic foliation inclined in the same azimuth but more shallowly dipping than the fault plane, and (2) magnetic lineation plunging down foliation dip with nearly the same trend as the fault striae, although nearer for sand versus clay gouge samples. These relations suggest that the sampled fault materials deformed by particulate flow with alignment of magnetite grains in the plane of maximum shortening. For a 2-m-long traverse at the Buckman site, horizontal sedimentary AMS foliation persists to < 15 cm to the fault slip surface, wherein foliation in sand and clay gouge rotates toward the steeply dipping fault plane in a sense consistent with sinistral offset. Collectively these data suggest permanent deformation fabrics were localized within < 1 m of fault surfaces and that AMS fabrics from gouge samples can provide kinematic information for faults in unconsolidated sediments which may lack associated slickenlines.
Sherrod, Brian L.; Barnett, Elizabeth; Schermer, Elizabeth; Kelsey, Harvey M.; Hughes, Jonathan; Foit, Franklin F.; Weaver, Craig S.; Haugerud, Ralph; Hyatt, Tim
2013-01-01
We use LiDAR imagery to identify two fault scarps on latest Pleistocene glacial outwash deposits along the North Fork Nooksack River in Whatcom County, Washington (United States). Mapping and paleoseismic investigation of these previously unknown scarps provide constraints on the earthquake history and seismic hazard in the northern Puget Lowland. The Kendall scarp lies along the mapped trace of the Boulder Creek fault, a south-dipping Tertiary normal fault, and the Canyon Creek scarp lies in close proximity to the south-dipping Canyon Creek fault and the south-dipping Glacier Extensional fault. Both scarps are south-side-up, opposite the sense of displacement observed on the nearby bedrock faults. Trenches excavated across these scarps exposed folded and faulted late Quaternary glacial outwash, locally dated between ca. 12 and 13 ka, and Holocene buried soils and scarp colluvium. Reverse and oblique faulting of the soils and colluvial deposits indicates at least two late Holocene earthquakes, while folding of the glacial outwash prior to formation of the post-glacial soil suggests an earlier Holocene earthquake. Abrupt changes in bed thickness across faults in the Canyon Creek excavation suggest a lateral component of slip. Sediments in a wetland adjacent to the Kendall scarp record three pond-forming episodes during the Holocene—we infer that surface ruptures on the Boulder Creek fault during past earthquakes temporarily blocked the stream channel and created an ephemeral lake. The Boulder Creek and Canyon Creek faults formed in the early to mid-Tertiary as normal faults and likely lay dormant until reactivated as reverse faults in a new stress regime. The most recent earthquakes—each likely Mw > 6.3 and dating to ca. 8050–7250 calendar years B.P. (cal yr B.P.), 3190–2980 cal. yr B.P., and 910–740 cal. yr B.P.—demonstrate that reverse faulting in the northern Puget Lowland poses a hazard to urban areas between Seattle (Washington) and Vancouver, British Columbia (Canada).
Quaternary low-angle slip on detachment faults in Death Valley, California
Hayman, N.W.; Knott, J.R.; Cowan, D.S.; Nemser, E.; Sarna-Wojcicki, A. M.
2003-01-01
Detachment faults on the west flank of the Black Mountains (Nevada and California) dip 29??-36?? and cut subhorizontal layers of the 0.77 Ma Bishop ash. Steeply dipping normal faults confined to the hanging walls of the detachments offset layers of the 0.64 Ma Lava Creek B tephra and the base of 0.12-0.18 Ma Lake Manly gravel. These faults sole into and do not cut the low-angle detachments. Therefore the detachments accrued any measurable slip across the kinematically linked hanging-wall faults. An analysis of the orientations of hundreds of the hanging-wall faults shows that extension occurred at modest slip rates (<1 mm/yr) under a steep to vertically oriented maximum principal stress. The Black Mountain detachments are appropriately described as the basal detachments of near-critical Coulomb wedges. We infer that the formation of late Pleistocene and Holocene range-front fault scarps accompanied seismogenic slip on the detachments.
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
Hanging-wall deformation above a normal fault: sequential limit analyses
NASA Astrophysics Data System (ADS)
Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand
2015-04-01
The deformation in the hanging wall above a segmented normal fault is analysed with the sequential limit analysis (SLA). The method combines some predictions on the dip and position of the active fault and axial surface, with geometrical evolution à la Suppe (Groshong, 1989). Two problems are considered. The first followed the prototype proposed by Patton (2005) with a pre-defined convex, segmented fault. The orientation of the upper segment of the normal fault is an unknown in the second problem. The loading in both problems consists of the retreat of the back wall and the sedimentation. This sedimentation starts from the lowest point of the topography and acts at the rate rs relative to the wall retreat rate. For the first problem, the normal fault either has a zero friction or a friction value set to 25o or 30o to fit the experimental results (Patton, 2005). In the zero friction case, a hanging wall anticline develops much like in the experiments. In the 25o friction case, slip on the upper segment is accompanied by rotation of the axial plane producing a broad shear zone rooted at the fault bend. The same observation is made in the 30o case, but without slip on the upper segment. Experimental outcomes show a behaviour in between these two latter cases. For the second problem, mechanics predicts a concave fault bend with an upper segment dip decreasing during extension. The axial surface rooting at the normal fault bend sees its dips increasing during extension resulting in a curved roll-over. Softening on the normal fault leads to a stepwise rotation responsible for strain partitioning into small blocks in the hanging wall. The rotation is due to the subsidence of the topography above the hanging wall. Sedimentation in the lowest region thus reduces the rotations. Note that these rotations predicted by mechanics are not accounted for in most geometrical approaches (Xiao and Suppe, 1992) and are observed in sand box experiments (Egholm et al., 2007, referring to Dahl, 1987). References: Egholm, D. L., M. Sandiford, O. R. Clausen, and S. B. Nielsen (2007), A new strategy for discrete element numerical models: 2. sandbox applications, Journal of Geophysical Research, 112 (B05204), doi:10.1029/2006JB004558. Groshong, R. H. (1989), Half-graben structures: Balanced models of extensional fault-bend folds, Geological Society of America Bulletin, 101 (1), 96-105. Patton, T. L. (2005), Sandbox models of downward-steepening normal faults, AAPG Bulletin, 89 (6), 781-797. Xiao, H.-B., and J. Suppe (1992), Orgin of rollover, AAPG Bulletin, 76 (4), 509-529.
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.
2012-04-01
A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m, twice as large as coseismic vertical component of slip, indicative of penultimate seismic event prior to the 2011 earthquake. Abrupt thickening of overlying Unit I may also suggest preexisting topographic relief prior to its deposition. Radiocarbon dating of charred materials included in event horizons and tephrostratigraphy at two sites indicate that penultimate event prior to the 2011 event might occurred at about 40 ka. This normal fault earthquake is in contrast to compressional or neutral stress regimes in Tohoku region before the 2011 megaquake and rarity of the normal faulting earthquake inferred from these paleoseismic studies may reflect its mechanical relation to the gigantic megathrust earthquakes, such as unusual, enhanced extensional stress on the hangingwall block induced by mainshock and/or postseismic creep after the M~9 earthquake.
NASA Astrophysics Data System (ADS)
Martin, Kylara M.; Gulick, Sean P. S.; Bangs, Nathan L. B.; Moore, Gregory F.; Ashi, Juichiro; Park, Jin-Oh; Kuramoto, Shin'ichi; Taira, Asahiko
2010-05-01
A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan, images the accretionary prism, fore-arc basin, and subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel depression (a "notch") along the seaward edge of the fore-arc Kumano Basin, just landward of the megasplay fault system. This bathymetric feature varies along strike, from a single, steep-walled, ˜3.5 km wide notch in the northeast to a broader, ˜5 km wide zone with several shallower linear depressions in the southwest. Below the notch we found both vertical faults and faults which dip toward the central axis of the depression. Dipping faults appear to have normal offset, consistent with the extension required to form a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is difficult to determine, but the along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. By considering only the along-strike variability of the megasplay fault, we could not explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of fore-arc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollement strength variations which control the location of the fore-arc basins may therefore play a role in the position where an along-strike component of strain is localized. While the obliquity of convergence in the Nankai Trough is comparatively small (˜15°), we believe it generated the Kumano Basin Edge Fault Zone, which has implications for interpreting local measured stress orientations and suggests potential locations for strain-partitioning-related deformation in other subduction zones.
3D Dynamic Rupture Simulations along Dipping Faults, with a focus on the Wasatch Fault Zone, Utah
NASA Astrophysics Data System (ADS)
Withers, K.; Moschetti, M. P.
2017-12-01
We study dynamic rupture and ground motion from dip-slip faults in regions that have high-seismic hazard, such as the Wasatch fault zone, Utah. Previous numerical simulations have modeled deterministic ground motion along segments of this fault in the heavily populated regions near Salt Lake City but were restricted to low frequencies ( 1 Hz). We seek to better understand the rupture process and assess broadband ground motions and variability from the Wasatch Fault Zone by extending deterministic ground motion prediction to higher frequencies (up to 5 Hz). We perform simulations along a dipping normal fault (40 x 20 km along strike and width, respectively) with characteristics derived from geologic observations to generate a suite of ruptures > Mw 6.5. This approach utilizes dynamic simulations (fully physics-based models, where the initial stress drop and friction law are imposed) using a summation by parts (SBP) method. The simulations include rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) in addition to off-fault plasticity. Energy losses from heat and other mechanisms, modeled as anelastic attenuation, are also included, as well as free-surface topography, which can significantly affect ground motion patterns. We compare the effect of material structure and both rate and state and slip-weakening friction laws have on rupture propagation. The simulations show reduced slip and moment release in the near surface with the inclusion of plasticity, better agreeing with observations of shallow slip deficit. Long-wavelength fault geometry imparts a non-uniform stress distribution along both dip and strike, influencing the preferred rupture direction and hypocenter location, potentially important for seismic hazard estimation.
NASA Astrophysics Data System (ADS)
Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.
2016-12-01
A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.
NASA Astrophysics Data System (ADS)
Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František
2017-09-01
On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.
Basement control of structure in the Gettysburg rift basin, Pennsylvania and Maryland
NASA Astrophysics Data System (ADS)
Root, Samuel I.
1989-09-01
Jurassic faulting formed the 93 km long Gettysburg basin as an extensional half graben paralleling the basement structural grain. Preserved in the basin are rift-related Carnian to Rhaetian strata that were tilted 20-30° NW into a SE dipping, listric normal fault at the northwest border of the basin. Vertical displacement on the border fault approaches 10 km. The border fault developed parallel to the trend of the terminal Paleozoic Alleghenian South Mountain cleavage of the Blue Ridge basement along 80% of its extent. However, it is only roughly parallel to discordant to dip of the cleavage. Relationship of cleavage and later border faulting may be the result of persistent reactivation of the original Appalachian continental margin. Local complex structures in the half graben are related to reactivation of two subvertical, pre-Mesozoic faults that transect basement structural grain (cleavage) at a large angle. The northern Shippensburg fault was reactivated during basin normal faulting, offsetting the border fault in a right-lateral sense by 3.5 km and forming within the basin a fold and a fault sliver of basement. The southern Carbaugh-Marsh Creek fault was not reactivated, but is the locus of a 20°-30° change of trend of both the basement cleavage and later border fault. However, two large, NW trending, left-lateral wrench faults, antithetic to the Carbaugh-March Creek fault, developed here offsetting the border fault and forming en echelon folds and horst blocks of basement rock within the basin.
Pre-existing normal faults have limited control on the rift geometry of the northern North Sea
NASA Astrophysics Data System (ADS)
Claringbould, Johan S.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Robert L.; Odinsen, Tore
2017-10-01
Many rifts develop in response to multiphase extension with numerical and physical models suggesting that reactivation of first-phase normal faults and rift-related variations in bulk crustal rheology control the evolution and final geometry of subsequent rifts. However, many natural multiphase rifts are deeply buried and thus poorly exposed in the field and poorly imaged in seismic reflection data, making it difficult to test these models. Here we integrate recent 3D seismic reflection and borehole data across the entire East Shetland Basin, northern North Sea, to constrain the long-term, regional development of this multiphase rift. We document the following key stages of basin development: (i) pre-Triassic to earliest Triassic development of multiple sub-basins controlled by widely distributed, NNW- to NE-trending, east- and west-dipping faults; (ii) Triassic activity on a single major, NE-trending, west-dipping fault located near the basins western margin, and formation of a large half-graben; and (iii) Jurassic development of a large, E-dipping, N- to NE-trending half-graben near the eastern margin of the basin, which was associated with rift narrowing and strain focusing in the Viking Graben. In contrast to previous studies, which argue for two discrete periods of rifting during the Permian-Triassic and Late Jurassic-Early Cretaceous, we find that rifting in the East Shetland Basin was protracted from pre-Triassic to Cretaceous. We find that, during the Jurassic, most pre-Jurassic normal faults were buried and in some cases cross-cut by newly formed faults, with only a few being reactivated. Previously developed faults thus had only a limited control on the evolution and geometry of the later rift. We instead argue that strain migration and rift narrowing was linked to the evolving thermal state of the lithosphere, an interpretation supporting the predictions of lithosphere-scale numerical models. Our study indicates that additional regional studies of natural rifts are required to test and refine the predictions of physical and numerical models, more specifically, our study suggests models not explicitly recognising or including thermal or rheological effects might over emphasise the role of discrete pre-existing rift structures such as normal faults.
Bruno, Pier Paolo G.; Duross, Christopher; Kokkalas, Sotirios
2017-01-01
The 1934 Ms 6.6 Hansel Valley, Utah, earthquake produced an 8-km-long by 3-km-wide zone of north-south−trending surface deformation in an extensional basin within the easternmost Basin and Range Province. Less than 0.5 m of purely vertical displacement was measured at the surface, although seismologic data suggest mostly strike-slip faulting at depth. Characterization of the origin and kinematics of faulting in the Hansel Valley earthquake is important to understand how complex fault ruptures accommodate regions of continental extension and transtension. Here, we address three questions: (1) How does the 1934 surface rupture compare with faults in the subsurface? (2) Are the 1934 fault scarps tectonic or secondary features? (3) Did the 1934 earthquake have components of both strike-slip and dip-slip motion? To address these questions, we acquired a 6.6-km-long, high-resolution seismic profile across Hansel Valley, including the 1934 ruptures. We observed numerous east- and west-dipping normal faults that dip 40°−70° and offset late Quaternary strata from within a few tens of meters of the surface down to a depth of ∼1 km. Spatial correspondence between the 1934 surface ruptures and subsurface faults suggests that ruptures associated with the earthquake are of tectonic origin. Our data clearly show complex basin faulting that is most consistent with transtensional tectonics. Although the kinematics of the 1934 earthquake remain underconstrained, we interpret the disagreement between surface (normal) and subsurface (strike-slip) kinematics as due to slip partitioning during fault propagation and to the effect of preexisting structural complexities. We infer that the 1934 earthquake occurred along an ∼3-km wide, off-fault damage zone characterized by distributed deformation along small-displacement faults that may be alternatively activated during different earthquake episodes.
Ruiz, Javier A.; Hayes, Gavin P.; Carrizo, Daniel; Kanamori, Hiroo; Socquet, Anne; Comte, Diana
2014-01-01
On 2010 March 11, a sequence of large, shallow continental crust earthquakes shook central Chile. Two normal faulting events with magnitudes around Mw 7.0 and Mw 6.9 occurred just 15 min apart, located near the town of Pichilemu. These kinds of large intraplate, inland crustal earthquakes are rare above the Chilean subduction zone, and it is important to better understand their relationship with the 2010 February 27, Mw 8.8, Maule earthquake, which ruptured the adjacent megathrust plate boundary. We present a broad seismological analysis of these earthquakes by using both teleseismic and regional data. We compute seismic moment tensors for both events via a W-phase inversion, and test sensitivities to various inversion parameters in order to assess the stability of the solutions. The first event, at 14 hr 39 min GMT, is well constrained, displaying a fault plane with strike of N145°E, and a preferred dip angle of 55°SW, consistent with the trend of aftershock locations and other published results. Teleseismic finite-fault inversions for this event show a large slip zone along the southern part of the fault, correlating well with the reported spatial density of aftershocks. The second earthquake (14 hr 55 min GMT) appears to have ruptured a fault branching southward from the previous ruptured fault, within the hanging wall of the first event. Modelling seismograms at regional to teleseismic distances (Δ > 10°) is quite challenging because the observed seismic wave fields of both events overlap, increasing apparent complexity for the second earthquake. We perform both point- and extended-source inversions at regional and teleseismic distances, assessing model sensitivities resulting from variations in fault orientation, dimension, and hypocentre location. Results show that the focal mechanism for the second event features a steeper dip angle and a strike rotated slightly clockwise with respect to the previous event. This kind of geological fault configuration, with secondary rupture in the hanging wall of a large normal fault, is commonly observed in extensional geological regimes. We propose that both earthquakes form part of a typical normal fault diverging splay, where the secondary fault connects to the main fault at depth. To ascertain more information on the spatial and temporal details of slip for both events, we gathered near-fault seismological and geodetic data. Through forward modelling of near-fault synthetic seismograms we build a kinematic k−2 earthquake source model with spatially distributed slip on the fault that, to first-order, explains both coseismic static displacement GPS vectors and short-period seismometer observations at the closest sites. As expected, the results for the first event agree with the focal mechanism derived from teleseismic modelling, with a magnitude Mw 6.97. Similarly, near-fault modelling for the second event suggests rupture along a normal fault, Mw 6.90, characterized by a steeper dip angle (dip = 74°) and a strike clockwise rotated (strike = 155°) with respect to the previous event.
Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada
NASA Astrophysics Data System (ADS)
Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.
2006-12-01
During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line was also run across a large active scarp in Queen Valley near Boundary Peak. Due to slope steepness and extensive boulder armoring shot and receiver locations had to be skipped within several meters of the actual scarp location. Initial structural and stratigraphic interpretations are similar to those in the Fish Lake Valley location. Overall the data prove that the actively deforming fans can be imaged in detail sufficient to perform structural and possibly seismic stratigraphic analysis within the upper one hundred meters of the fans, if not deeper.
Normal Faulting at the Western Margin of the Altiplano Plateau, Southern Peru
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Hodges, K. V.; Whipple, K. X.; Perignon, M.; Smith, T. M.
2004-12-01
Although the western margin of the Altiplano Plateau is commonly used to illustrate the marked differences in the evolution of a mountain range with strong latitudinal and longitudinal precipitation gradients, the nature of tectonism in this semi-arid region is poorly understood and much debated. The western margin of the Altiplano in southern Peru and northern Chile marks an abrupt transition from the forearc region of the Andes to the high topography of the Cordillera Occidental. This transition has been interpreted by most workers as a monocline, with modifications due to thrust faulting, normal faulting, and gravity slides. Based on recent fieldwork and satellite image analysis, we suggest that, at least in the semi-arid climate of southern Peru, this transition has been the locus of significant high-angle normal faulting related to the block uplift of the Cordillera Occidental. We have focused our initial work in the vicinity of 15\\deg S latitude, 71\\deg W longitude, where the range front crosses Colca Canyon, a major antecedent drainage northwest of Arequipa. In that area, Oligocene to Miocene sediments of the Moquegua Formation, which were eroded from uplifted terrain to the northeast, presently dip to the northeast at angles between 2 and 10º. Field observations of a normal fault contact between the Moquegua sedimentary rocks and Jurassic basement rocks, as well as 15-m resolution 3-D images generated from ASTER satellite imagery, show that the Moquegua units are down-dropped to the west across a steeply SW-dipping normal fault of regional significance. Morphology of the range front throughout southern Peru suggests that normal faulting along the range front has characterized the recent tectonic history of the region. We present geochronological data to constrain the timing of movement both directly from the fault zone as well as indirectly from canyon incision that likely responded to fault movement.
Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60° dipping fault segments have the highest tendency to slip. Under these stress condition...
NASA Astrophysics Data System (ADS)
Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe
2017-04-01
A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.
Style of Cenozoic extensional deformation in the central Beaverhead Mountains, Idaho-Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellogg, K.S.
1993-04-01
Cenozoic extension in the upper Medicine Lodge Creek area in the Beaverhead Mountains was accommodated along numerous low- to high-angle, west-facing normal faults. These faults have repeated moderately east-dipping (by 20--40[degree]) Tertiary rocks that are as old as the Eocene Medicine Lodge Volcanics and that include conformably overlying Miocene and Oligocene conglomerate, tuffaceous sandstone, siltstone, and limestone; a reasonable restoration of Tertiary faulting suggests that the region has extended about 20 percent. At least one normal fault soles into the Late Cretaceous Cabin thrust, one of at least four major Cordilleran thrusts in the Beaverhead Mountains and the Tendoy Mountainsmore » immediately to the east. The Cabin thrust places enigmatic quartzite (age is between Middle Proterozoic and Lower Cambrian) and Archean gneiss above Mississippian to Ordovician rocks. The formation of the north-northwest-trending upper Medicine Lodge Valley was controlled mostly by low-angle normal faults along its east side, where Eocene volcanics and overlying sedimentary rocks dip about 25[degree] eastward against Archean rocks. Faceted spurs are prominent but no scarps are visible, suggesting that last movement is pre-Holocene. Other large-displacement normal faults at higher elevations show relatively little topographic expression. The Late Proterozoic or Cambrian Beaverhead impact structure, defined by wide-spread shatter-coning, pseudotachylite formation, and localized brecciation, make interpretation of some extensive breccia zones in Archean rocks along the east side of Medicine Lodge Valley problematic. The proximity of the breccias to Tertiary normal faults makes a Tertiary age attractive, yet the breccias are older than pseudotachylite interpreted to have been produced by the impact.« less
NASA Astrophysics Data System (ADS)
Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio
2016-04-01
Fault-related folding kinematic models are widely used to explain accommodation of crustal shortening. These models, however, include simplifications, such as the assumption of constant growth rate of faults. This value sometimes is not constant in isotropic materials, and even more variable if one considers naturally anisotropic geological systems. , This means that these simplifications could lead to incorrect interpretations of the reality. In this study, we use analogue models to evaluate how thin, mechanical discontinuities, such as beddings or thin weak layers, influence the propagation of reverse faults and related folds. The experiments are performed with two different settings to simulate initially-blind master faults dipping at 30° and 45°. The 30° dip represents one of the Andersonian conjugate fault, and 45° dip is very frequent in positive reactivation of normal faults. The experimental apparatus consists of a clay layer placed above two plates: one plate, the footwall, is fixed; the other one, the hanging wall, is mobile. Motor-controlled sliding of the hanging wall plate along an inclined plane reproduces the reverse fault movement. We run thirty-six experiments: eighteen with dip of 30° and eighteen with dip of 45°. For each dip-angle setting, we initially run isotropic experiments that serve as a reference. Then, we run the other experiments with one or two discontinuities (horizontal precuts performed into the clay layer). We monitored the experiments collecting side photographs every 1.0 mm of displacement of the master fault. These images have been analyzed through PIVlab software, a tool based on the Digital Image Correlation method. With the "displacement field analysis" (one of the PIVlab tools) we evaluated, the variation of the trishear zone shape and how the master-fault tip and newly-formed faults propagate into the clay medium. With the "strain distribution analysis", we observed the amount of the on-fault and off-fault deformation with respect to the faulting pattern and evolution. Secondly, using MOVE software, we extracted the positions of fault tips and folds every 5 mm of displacement on the master fault. Analyzing these positions in all of the experiments, we found that the growth rate of the faults and the related fold shape vary depending on the number of discontinuities in the clay medium. Other results can be summarized as follows: 1) the fault growth rate is not constant, but varies especially while the new faults interacts with precuts; 2) the new faults tend to crosscut the discontinuities when the angle between them is approximately 90°; 3) the trishear zone change its shape during the experiments especially when the main fault interacts with the discontinuities.
Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.
NASA Astrophysics Data System (ADS)
Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.
2016-12-01
The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di implies the existence of 3D-like structure with E-W trend around the segment boundary. The distribution of dip angle β along the fault zone implies a reverse faulting, corresponding to the faulting type of this fault zone reported by previous studies.
Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area
Faulds, James E.
2013-12-31
Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...
NASA Astrophysics Data System (ADS)
Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao
2018-02-01
The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.
Activation of preexisting transverse structures in an evolving magmatic rift in East Africa
NASA Astrophysics Data System (ADS)
Muirhead, J. D.; Kattenhorn, S. A.
2018-01-01
Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.
The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications
NASA Astrophysics Data System (ADS)
Lei, Jianshe; Zhang, Guangwei; Xie, Furen
2014-02-01
Using the double-difference relocation algorithm, we relocated the 20 April 2013 Lushan, Sichuan, earthquake ( M S 7.0), and its 4,567 aftershocks recorded during the period between 20 April and May 3, 2013. Our results showed that most aftershocks are relocated between 10 and 20 km depths, but some large aftershocks were relocated around 30 km depth and small events extended upward near the surface. Vertical cross sections illustrate a shovel-shaped fault plane with a variable dip angle from the southwest to northeast along the fault. Furthermore, the dip angle of the fault plane is smaller around the mainshock than that in the surrounding areas along the fault. These results suggest that it may be easy to generate the strong earthquake in the place having a small dip angle of the fault, which is somewhat similar to the genesis of the 2008 Wenchuan earthquake. The Lushan mainshock is underlain by the seismically anomalous layers with low-VP, low-VS, and high-Poisson's ratio anomalies, possibly suggesting that the fluid-filled fractured rock matrices might significantly reduce the effective normal stress on the fault plane to bring the brittle failure. The seismic gap between Lushan and Wenchuan aftershocks is suspected to be vulnerable to future seismic risks at greater depths, if any.
Marine geology and earthquake hazards of the San Pedro Shelf region, southern California
Fisher, Michael A.; Normark, William R.; Langenheim, V.E.; Calvert, Andrew J.; Sliter, Ray
2004-01-01
High-resolution seismic-reflection data have been com- bined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro Shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington Graben, the Palos Verdes Fault Zone, various faults below the western part of the shelf and slope, and the deep-water San Pedro Basin. The structure of the Palos Verdes Fault Zone changes mark- edly southeastward across the San Pedro Shelf and slope. Under the northern part of the shelf, this fault zone includes several strands, but the main strand dips west and is probably an oblique-slip fault. Under the slope, this fault zone con- sists of several fault strands having normal separation, most of which dip moderately east. To the southeast near Lasuen Knoll, the Palos Verdes Fault Zone locally is a low-angle fault that dips east, but elsewhere near this knoll the fault appears to dip steeply. Fresh sea-floor scarps near Lasuen Knoll indi- cate recent fault movement. The observed regional structural variation along the Palos Verdes Fault Zone is explained as the result of changes in strike and fault geometry along a master strike-slip fault at depth. The shallow summit and possible wavecut terraces on Lasuen knoll indicate subaerial exposure during the last sea-level lowstand. Modeling of aeromagnetic data indicates the presence of a large magnetic body under the western part of the San Pedro Shelf and upper slope. This is interpreted to be a thick body of basalt of Miocene(?) age. Reflective sedimentary rocks overlying the basalt are tightly folded, whereas folds in sedimentary rocks east of the basalt have longer wavelengths. This difference might mean that the basalt was more competent during folding than the encasing sedimentary rocks. West of the Palos Verdes Fault Zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because age dates on deformed or offset sediment are lacking.
Marine forearc tectonics in the unbroken segment of the Northern Chile seismic gap
NASA Astrophysics Data System (ADS)
Geersen, J.; Behrmann, J.; Ranero, C. R.; Klaucke, I.; Kopp, H.; Lange, D.; Barckhausen, U.; Reichert, C. J.; Diaz-Naveas, J.
2016-12-01
While clearly occurring within the well-defined Northern Chile seismic gap, the 2014 Mw. 8.1 Iquique Earthquake only ruptured part of this gap, leaving large and possibly highly coupled areas untouched. These non-ruptured areas now may pose an elevated seismic hazard due to the transfer of stresses resulting from the 2014 rupture. Here we use recently collected multibeam bathymetric data, covering 90% of the North Chilean marine forearc, in combination with unpublished seismic reflection images to derive a tectonic map of the marine forearc in the unbroken segment of the seismic gap. In the entire study area we find evidence for widespread normal faulting. Seaward dipping normal faults locally extend close to the deformation front at the deep-sea trench under 8 km of water. Similar normal faults on the lower slope are neither observed further north (2014 Iquique earthquake area) nor further south (2007 Tocopilla earthquake area). On the upper continental slope, some of the normal faults dip towards the continent, defining N-S trending ridges that can be traced over tens of kilometers. The spatial variations in normal faulting do not correlate with obvious changes in the structural and tectonic setting of the subduction zone (e.g. plate convergence rate and direction, trench sediment thickness, subducting plate roughness). Thus, the permanent deformation recorded in the spatial distribution of faults may hold crucial information about the long-term seismic behavior of the Northern Chile seismic gap over multiple earthquake cycles. Although the structural interpretations cannot directly be translated into seismic hazard, the tectonic map serves to better understand deformation in the marine forearc in relation to the seismic cycle, historic seismicity, and the spatial distribution of plate-coupling.
Seismic Reflectivity of the Crust in the Northern Salton Trough
NASA Astrophysics Data System (ADS)
Bauer, K.; Fuis, G. S.; Goldman, M.; Persaud, P.; Ryberg, T.; Langenheim, V. E.; Scheirer, D. S.; Rymer, M. J.; Hole, J. A.; Stock, J. M.; Catchings, R.
2015-12-01
The Salton Trough in southern California is a tectonically active pull-apart basin that was formed by migrating step-overs between strike-slip faults, of which the San Andreas Fault (SAF) and the Imperial Fault are the current, northernmost examples. The Salton Seismic Imaging Project (SSIP) was undertaken to improve our knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF. Such data are useful as input for modeling scenarios of strong ground shaking in the surrounding high-population areas. We used pre-stack depth migration of line segments from shot gathers in several seismic profiles that were acquired in the northern part of the SSIP study area (Lines 4 - 7). Our migration approach can be considered as an infinite-frequency approximation of the Fresnel volume pre-stack depth migration method. We use line segments instead of the original waveform data. We demonstrate the method using synthetic data and analyze real data from Lines 4 - 7 to illustrate the relationship between distinct phases in the time domain and their resulting image at depth. We show both normal-moveout reflections from sub-horizontal interfaces and reverse-moveout reflections from steep interfaces, such as faults. Migrated images of dipping faults, such as the SAF and the Pinto Mountain Fault, are presented in this way. The SAF is imaged along Line 4, through the Mecca Hills, as a number of steeply dipping fault segments that collectively form a flower structure, above 5 km depth, that sole into a moderately NE-dipping fault below that depth. The individual migrated reflection packages correlate with mapped surface fault traces in the Mecca Hills. A similar geometry is seen on Line 6, from Palm Springs through Yucca Valley, where fault splays sole or project into a moderately dipping SAF below 10-km depth. We also show and discuss the reflectivity pattern of the middle and lower crust for Lines 4 - 7.
Personius, Stephen; Briggs, Richard; Maharrey, J. Zebulon; Angster, Stephen J.; Mahan, Shannon
2017-01-01
We use new and existing data to compile a record of ∼18 latest Quaternary large-magnitude surface-rupturing earthquakes on 7 fault zones in the northwestern Basin and Range Province of northwestern Nevada and northeastern California. The most recent earthquake on all faults postdates the ca. 18–15 ka last glacial highstand of pluvial Lake Lahontan and other pluvial lakes in the region. These lacustrine data provide a window in which we calculate latest Quaternary vertical slip rates and compare them with rates of modern deformation in a global positioning system (GPS) transect spanning the region. Average vertical slip rates on these fault zones range from 0.1 to 0.8 mm/yr and total ∼2 mm/yr across a 265-km-wide transect from near Paradise Valley, Nevada, to the Warner Mountains in California. We converted vertical slip rates to horizontal extension rates using fault dips of 30°–60°, and then compared the extension rates to GPS-derived rates of modern (last 7–9 yr) deformation. Our preferred fault dip values (45°–55°) yield estimated long-term extension rates (1.3–1.9 mm/yr) that underestimate our modern rate (2.4 mm/yr) by ∼21%–46%. The most likely sources of this underestimate are geologically unrecognizable deformation from moderate-sized earthquakes and unaccounted-for coseismic off-fault deformation from large surface-rupturing earthquakes. However, fault dip values of ≤40° yield long-term rates comparable to or greater than modern rates, so an alternative explanation is that fault dips are closer to 40° than our preferred values. We speculate that the large component of right-lateral shear apparent in the GPS signal is partitioned on faults with primary strike-slip displacement, such as the Long Valley fault zone, and as not easily detected oblique slip on favorably oriented normal faults in the region.
INL Seismic Monitoring Annual Report: January 1, 2006 - December 31, 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. J. Payne; N. S. Carpenter; J. M. Hodges
During 2006, the Idaho National Laboratory (INL) recorded 1998 independent triggers from earthquakes both within the region and from around the world. Fifteen small to moderate size earthquakes ranging in magnitude from 3.0 to 4.5 occurred within and outside the 161-km (100-mile) radius of INL. There were 357 earthquakes with magnitudes up to 4.5 that occurred within the 161-km radius of the INL. The majority of earthquakes occurred in the Basin and Range Province surrounding the eastern Snake River Plain (ESRP). The largest of these earthquakes had a body-wave magnitude (mb) 4.5 and occurred on February 5, 2006. It wasmore » located northeast of Spencer, Idaho near the east-west trending Centennial fault along the Idaho-Montana border. The earthquake did not trigger SMAs located within INL buildings. Three earthquakes occurred within the ESRP, two of which occurred within the INL boundaries. One earthquake of coda magnitude (Mc) 1.7 occurred on October 18, 2006 and was located southeast of Pocatello, Idaho. The two earthquakes within the INL boundaries included the local magnitude (ML) 2.0 on July 31, 2006 located near the southern termination of the Lemhi fault and the Mc 0.4 on August 6, 2006 located near the center of INL. The ML 2.0 earthquake was well recorded by most of the INL seismic stations and had a focal depth of 8.98 km. First motions were used to compute a focal mechanism, which indicated normal faulting along one of two possible fault planes that may strike N76ºW and dip 70±3ºSW or strike N55ºW and dip 20±13ºNE. Slip along a normal fault that strikes N76ºW and dips 70±3ºSW is consistent with slip along a possible segment of the NW-trending Lemhi normal fault.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sercombe, W.J.; Smith, G.W.; Morse, J.D.
1996-01-01
The October field, a sub-salt giant in the extensional Gulf of Suez (Egypt) has been structurally reinterpreted for new reserve opportunities. Quantitative SCAT analyses of the wellbore dip data have been integrated with 3D seismic by using dip isogons to construct local structural sections. SCAT dip analysis was critical to the reinterpretation because SCAT revealed important structural information that previously was unresolvable using conventional tadpole plots. In gross aspect, the October Field is a homocline that trends NW-SE, dips to the NE, and is closed on the SW (updip) by the major Clysmic Normal Fault. SCAT accurately calculated the overallmore » trend of the field, but also identified important structural anomalies near the Clysmic fault and in the northwest and southeast plunge ends. In the northwest plunge end, SCAT has identified new, south dipping blocks that are transitional to the structurally-higher North October field. The southeast plunge end has been reinterpreted with correct azimuthal trends and new fault-block prospects. These new SCAT results have successfully improved the 3D seismic interpretation by providing a foundation of accurate in-situ structural control in an area of poor-to-fair seismic quality below the Miocene salt package.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sercombe, W.J.; Smith, G.W.; Morse, J.D.
1996-12-31
The October field, a sub-salt giant in the extensional Gulf of Suez (Egypt) has been structurally reinterpreted for new reserve opportunities. Quantitative SCAT analyses of the wellbore dip data have been integrated with 3D seismic by using dip isogons to construct local structural sections. SCAT dip analysis was critical to the reinterpretation because SCAT revealed important structural information that previously was unresolvable using conventional tadpole plots. In gross aspect, the October Field is a homocline that trends NW-SE, dips to the NE, and is closed on the SW (updip) by the major Clysmic Normal Fault. SCAT accurately calculated the overallmore » trend of the field, but also identified important structural anomalies near the Clysmic fault and in the northwest and southeast plunge ends. In the northwest plunge end, SCAT has identified new, south dipping blocks that are transitional to the structurally-higher North October field. The southeast plunge end has been reinterpreted with correct azimuthal trends and new fault-block prospects. These new SCAT results have successfully improved the 3D seismic interpretation by providing a foundation of accurate in-situ structural control in an area of poor-to-fair seismic quality below the Miocene salt package.« less
Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin
2015-01-01
Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.
NASA Astrophysics Data System (ADS)
Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.
2015-06-01
Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.
Methods to enhance seismic faults and construct fault surfaces
NASA Astrophysics Data System (ADS)
Wu, Xinming; Zhu, Zhihui
2017-10-01
Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities. These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips. For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples. We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault surfaces and complete fault surfaces without holes.
The 13 January 2001 El Salvador earthquake: A multidata analysis
NASA Astrophysics Data System (ADS)
ValléE, Martin; Bouchon, Michel; Schwartz, Susan Y.
2003-04-01
On 13 January 2001, a large normal faulting intermediate depth event (Mw = 7.7) occurred 40 km off the El Salvadorian coast (Central America). We analyze this earthquake using teleseismic, regional, and local data. We first build a kinematic source model by simultaneously inverting P and SH displacement waveforms and source time functions derived from surface waves using an empirical Green's function analysis. In an attempt to discriminate between the two nodal planes (30° trenchward dipping and 60° landward dipping), we perform identical inversions using both possible fault planes. After relocating the hypocentral depth at 54 km, we retrieve the kinematic features of the rupture using a combination of the Neighborhood algorithm of [1999] and the Simplex method allowing for variable rupture velocity and slip. We find updip rupture propagation yielding a centroid depth around 47 km for both assumed fault planes with a larger variance reduction obtained using the 60° landward dipping nodal plane. We test the two possible fault models using regional broadband data and near-field accelerograms provided by [2001]. Near-field data confirm that the steeper landward dipping nodal plane is preferred. Rupture propagated mostly updip and to the northwest, resulting in a main moment release zone of approximately 25 km × 50 km with an average slip of ˜3.5 m. The large slip occurs near the interplate interface at a location where the slab steepens dip significantly. The occurrence of this event is well-explained by bending of the subducting plate.
NASA Astrophysics Data System (ADS)
Wu, Schuman
1989-12-01
In a low-temperature environment, the thin-section scale rock-deformation mode is primarily a function of confining pressure and total strain at geological strain rates. A deformation mode diagram is constructed from published experimental data by plotting the deformation mode on a graph of total strain versus the confining pressure. Four deformation modes are shown on the diagram: extensional fracturing, mesoscopic faulting, incipient faulting, and uniform flow. By determining the total strain and the deformation mode of a naturally deformed sample, the confining pressure and hence the depth at which the rock was deformed can be evaluated. The method is applied to normal faults exposed on the gently dipping southeast limb of the Birmingham anticlinorium in the Red Mountain expressway cut in Birmingham, Alabama. Samples of the Ordovician Chickamauga Limestone within and adjacent to the faults contain brittle structures, including mesoscopic faults and veins, and ductile deformation features including calcite twins, intergranular and transgranular pressure solution, and deformed burrows. During compaction, a vertical shortening of about 45 to 80% in shale is indicated by deformed burrows and relative compaction of shale to burrows, about 6% in limestone by stylolites. The normal faults formed after the Ordovician rocks were consolidated because the faults and associated veins truncate the deformed burrows and stylolites, which truncate the calcite cement. A total strain of 2.0% was caused by mesoscopic faults during normal faulting. A later homogenous deformation, indicated by the calcite twins in veins, cement and fossil fragments, has its major principal shortening strain in the dip direction at a low angle (about 22°) to bedding. The strain magnitude is about 2.6%. By locating the observed data on the deformation mode diagram, it is found that the normal faulting characterized by brittle deformation occurred under low confining pressure (< 18 MPa) at shallow depth (< 800 m), and the homogenous horizontal compression characterized by uniform flow occurred under higher confining pressure (at least 60 MPa) at greater depth (> 2.5 km).
NASA Astrophysics Data System (ADS)
Sato, K.; Ikesawa, E.; Kimura, G.
2003-12-01
The Mugi mélange in the Shimanto Belt, SW Japan, is a mixture of terrigenous and oceanic materials of late Cretaceous to Paleocene. Intermittent bedding planes trend ENE-WSW to E-W (subparallel to the Nankai trough axis) and dip steeply northward. The Mugi mélange consists of several duplex units accompanied by shear zones of basalt layers at their boundaries. Systematic shear fabrics and P-T conditions estimated from analyses of vitrinite reflectance and fluid inclusions indicate that the Mugi mélange had once been subducted to a significant depth (6-7 km below sea floor, which appears to coincide with the up-dip limit of the seismogenic zone), then underplated to the Shimanto accretionary prism, and is now exhumed on ground surface. In this study, for the purpose of determining paleostress fields related to the processes in which subducted materials were deformed, underplated and uplifted to surface, orientations of meso-scale faults and striations were analyzed. Stress inversion techniques including Angelier's Inversion, Multiple Inversion and Ginkgo Method were applied to fault-slip data obtained in each duplex unit of the Mugi mélange, and the results were almost consistent with each other. Most of the resultant σ 1 axes trend N-S horizontally, and are parallel to poles of shale cleavages, which are roughly parallel to bedding planes. Although the cleavages slightly vary their orientations according to later rotation, σ 1 axis changes together with them. This cleavage-controlled paleostress has a low Bishop's stress ratio (i.e. low magnitude of σ 2), therefore is an axial compressional stress normal to cleavages. The restored paleostress was probably exerted just before or at the same time of the formation of duplex structure and the rotation of bedding planes. The meso-scale faults appear to have been formed as normal ones due to overburden. P-T conditions estimated by analysis of fluid inclusions, which occur in the mineral veins sealing measured faults, and cross-cutting relationships between the faults and unit boundary shear zones indicate the simultaneity of these faulting and duplexing. The duplex structure is thought to be formed at the moment of underplating and be caused by stepdown of the décollement. A great variety of drastic changes in properties of material and circumstance such as stress field may occur at the very point of the stepdown, underplating of subducted material, and the up-dip limit of the seismogenic zone.
Thin-skinned tectonics of upper Ojai Valley and Sulfur Mountain vicinity, Ventura basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huftile, G.J.
1988-03-01
The Upper Ojai Valley is a tectonic depression between opposing reverse faults. The active, north-dipping San Cayetano fault forms its northern border and has 5.8 km of dip-slip displacement at the Silverthread oil field and 2.6 km of displacement west of Sisar Creek. The fault dies out farther west in Ojai Valley. The southern border is formed by the late Quaternary Sisar-Big-Canyon-Lion fault set, which dips south and merges into a decollement within the south-dipping, ductile Rincon Formation. Folds with north-dipping fold axes, including the Lion Mountain anticline and Reeves syncline, are probably Pliocene. During the late Quaternary, the Sulfurmore » Mountain anticlinorium began forming as a fault-propagation fold, followed closely by the ramping of the south-dipping faults to the surface. One, the Lion fault, cuts the Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the south-dipping faults. Cross-section balancing shows that the Miocene and younger rocks above the decollement are shortened 6.1 km more than the more competent rocks below. A solution to this bed-length problem is that the decollement becomes a ramp and merges at depth with the steeply south-dipping Oak Ridge fault. This implies that the Sisar, Big Canyon, and Lion faults are frontal thrusts to the Oak Ridge fault. Oil is produced primarily from Mohnian sands and shales north of the Big Canyon fault and from fractured Mohnian shale beneath the Sisar fault.« less
Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters
Golombek, M.P.; Tanaka, K.L.; Franklin, B.J.
1996-01-01
Two independent methods, with no common assumptions, have been used to estimate the extension across the heavily deformed Tempe Terra province of the Tharsis region of Mars. One method uses measurements of normal fault scarp width with average scarp slope data for simple grabens and rifts on Mars to estimate the fault throw, which, combined with sparse fault dip data, can be used to estimate extension. Formal uncertainties in this method are only slightly greater than those in other methods, given that the total uncertainty is dominated by the likely uncertainty in the fault dip (assumed to be 60????15??). Measurement of normal fault scarp widths along two N25??-50??W directed traverses across Tempe Terra both yield about 22??16 km of extension (or ???2% strain across the northern traverse and nearly 3% across the southern one). About three quarters of the extension has occurred during the two main phases of Tharsis-related deformation from Middle/Late Noachian to Early Hesperian and from Late Hesperian to Early Amazonian, with more extension closer to the center of Tharsis during the first phase. Extension across the region was also determined by measuring the elongation and elongation direction of all ancient Noachian impact craters without ejecta blankets, which predate most of the deformation. Results have been corrected for initial non circularity of craters, established from similar measurements of young (post deformation) impact craters, yielding a statistically significant mean strain of 1.96??0.35% in a N38????10??W direction across Tempe Terra (extension of ???20??4, comparable in magnitude and direction to the average result from the scarp measurement method). Both methods indicate an average extension for single normal fault scarps (and shortening across wrinkle ridges for the crater method) of ???100 m. The agreement between the results of the two independent methods in overall extension and average single normal fault extension argues that the average scarp slope and fault dip data in the fault scarp width method accurately represent the actual extension across the observed structures. This conclusion supports existing geometric and kinematic models for structural features on Mars. A preliminary estimate of the total circumferential extension around Tharsis (at a radius of ???2500 km) is roughly 60??42 km; total hoop strain is about 0.4% distributed heterogeneously (Tempe Terra is the most highly strained region on Mars). Copyright 1997 by the American Geophysical Union.
Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters
NASA Astrophysics Data System (ADS)
Golombek, M. P.; Tanaka, K. L.; Franklin, B. J.
Two independent methods, with no common assumptions, have been used to estimate the extension across the heavily deformed Tempe Terra province of the Tharsis region of Mars. One method uses measurements of normal fault scarp width with average scarp slope data for simple grabens and rifts on Mars to estimate the fault throw, which, combined with sparse fault dip data, can be used to estimate extension. Formal uncertainties in this method are only slightly greater than those in other methods, given that the total uncertainty is dominated by the likely uncertainty in the fault dip (assumed to be 60°+/-15°). Measurement of normal fault scarp widths along two N25°-50°W directed traverses across Tempe Terra both yield about 22+/-16 km of extension (or ~2% strain across the northern traverse and nearly 3% across the southern one). About three quarters of the extension has occurred during the two main phases of Tharsis-related deformation from Middle/Late Noachian to Early Hesperian and from Late Hesperian to Early Amazonian, with more extension closer to the center of Tharsis during the first phase. Extension across the region was also determined by measuring the elongation and elongation direction of all ancient Noachian impact craters without ejecta blankets, which predate most of the deformation. Results have been corrected for initial non circularity of craters, established from similar measurements of young (post deformation) impact craters, yielding a statistically significant mean strain of 1.96+/-0.35% in a N38°+/-10°W direction across Tempe Terra (extension of ~20+/-4, comparable in magnitude and direction to the average result from the scarp measurement method). Both methods indicate an average extension for single normal fault scarps (and shortening across wrinkle ridges for the crater method) of ~100 m. The agreement between the results of the two independent methods in overall extension and average single normal fault extension argues that the average scarp slope and fault dip data in the fault scarp width method accurately represent the actual extension across the observed structures. This conclusion supports existing geometric and kinematic models for structural features on Mars. A preliminary estimate of the total circumferential extension around Tharsis (at a radius of ~2500 km) is roughly 60+/-42 km; total hoop strain is about 0.4% distributed heterogeneously (Tempe Terra is the most highly strained region on Mars).
NASA Astrophysics Data System (ADS)
Polun, S. G.; Stockman, M. B.; Hickcox, K.; Horrell, D.; Tesfaye, S.; Gomez, F. G.
2015-12-01
As the only subaerial exposure of a ridge - ridge - ridge triple junction, the Afar region of Ethiopia and Djibouti offers a rare opportunity to assess strain partitioning within this type of triple junction. Here, the plate boundaries do not link discretely, but rather the East African rift meets the Red Sea and Gulf of Aden rifts in a zone of diffuse normal faulting characterized by a lack of magmatic activity, referred to as the central Afar. An initial assessment of Late Quaternary strain partitioning is based on faulted landforms in the Dobe - Hanle graben system in Ethiopia and Djibouti. These two extensional basins are connected by an imbricated accommodation zone. Several fault scarps occur within terraces formed during the last highstand of Lake Dobe, around 5 ka - they provide a means of calibrating a numerical model of fault scarp degradation. Additional timing constraints will be provided by pending exposure ages. The spreading rates of both grabens are equivalent, however in Dobe graben, extension is partitioned 2:1 between northern, south dipping faults and the southern, north dipping fault. Extension in Hanle graben is primarily focused on the north dipping Hanle fault. On the north margin of Dobe graben, the boundary fault bifurcates, where the basin-bordering fault displays a significantly higher modeled uplift rate than the more distal fault, suggesting a basinward propagation of faulting. On the southern Dobe fault, surveyed fault scarps have ages ranging from 30 - 5 ka with uplift rates of 0.71, 0.47, and 0.68 mm/yr, suggesting no secular variation in slip rates from the late Plestocene through the Holocene. These rates are converted into horizontal stretching estimates, which are compared with regional strain estimated from velocities of relatively sparse GPS data.
Kusky, Timothy M.
1997-01-01
The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ1 or σ2 nearly vertical) at shallower crustal levels.We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal de´collement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.
Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon
NASA Astrophysics Data System (ADS)
Edwards, J. H.; Faulds, J. E.
2012-12-01
Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks, show various dip directions and gentle tilting. Extensive alluvial fan cover hinders collection of fault kinematic data, which coupled with limited regional seismicity, precludes careful calculation of local stress field orientations. However, the proximity of Neal (4 km) to the active, N- to NW-striking, oblique-normal slip Cottonwood Mountain fault and active hot springs (~90°C), opaline sinter mounds, and geothermal fluid flow at Neal suggest that the geothermal field lies within a reactived (Quaternary), southward-terminating, left-stepping, fault zone, which probably accommodates oblique-slip with a dominant normal component. Sugarloaf Butte (completely silicified and replaced) lies within a left step of this fault zone, ~5 km of Neal Hot Springs and is possibly related to the evolution of the geothermal system. Epithermal deposits and argillic to propylitic alteration in other nearby areas (e.g., Hope Butte, ~3 Ma, 5 km N) indicate previous geothermal activity.
The geology and ore deposits of Upper Mayflower Gulch, Summit County, Colorado
Randall, John Alexander
1958-01-01
Upper Mayflower Gulch is on the highly glaciated western side of the Tenmile Range near Kokomo in central Colorado. Somewhat less than $500,000 in silver and gold has been produced from the area since the first mining in the 1880' s. In the mapped area high grade regional metamorphism has produced two varieties of gneiss and a granulite. Total thickness of the rocks is about 5,000 feet. Relict bedding is preserved in compositional banding which strikes north to N. 20 ? E. and dips 70 ? to 80 ? southeast. No significant folding was observed. Normal faulting has occurred since the Precambrian; two major sets of faults are recognizable: (1) a set striking N. 70 ? to 85 ? E. and dipping 75?-85 ? NW; and (2) a set striking N. 70?-50 ? W. and dipping 50?-60 ? SW. Tabular bodies of pegmatite and retrogressively metamorphosed schist along many faults indicate Precambrian movement. The Mayflower fault, a 90 to 300 foot wide zone of siltification and shattered rock, strikes about N. 40 ? W. It extends the entire length of the gulch and appears to form the northern terminus for the northeast trending Mosquito Fault. The Mayflower fault shows repeated movement since the Precambrian, totaling about 3,000 feet of apparent dip slip and 640 feet of apparent strike slip. Faulting during the Tertiary includes both additional movement along Precambrian faults and development of shears trending N. to N. 20 ? E. The shears served as channels for the intrusion of two varieties of quartz latite porphyry dikes. Specular hematite and base-metal sulfide mineralization followed intrusion of the porphyry dikes; the minerals were deposited in open fault zones by high temperature solutions in a low pressure environment. The principal metallic minerals in order of deposition are: hematite, pyrite, chalcopyrite, sphalerite, galena, and rarer argentite. The major mines are the Gold Crest, Payrock, Nova Scotia Boy, and Bird's Nest.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.
2007-12-01
Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas from the flexure in Iceland suggests a mean flow direction to the northeast, that is, away from the fossil-ridge axis, demonstrating that the fossil spreading center from which the lavas were extruded was located to the west. Despite the distinct differences in spreading rates, the high magma supply in both environments resulted in a very similar upper crustal architecture.
NASA Astrophysics Data System (ADS)
Deans, J. R.; Crispini, L.; Cheadle, M. J.; Harris, M.; Kelemen, P. B.; Teagle, D. A. H.; Matter, J. M.; Takazawa, E.; Coggon, J. A.
2017-12-01
Oman Drilling Project Holes GT1A and GT2A were drilled into the Wadi Tayin massif, Samail ophiolite and both recovered ca. 400 m of continuous core through a section of the layered gabbros and the foliated-layered gabbro transition. Hole GT1A is cut by a discrete fault system including localized thin ultracataclastic fault zones. Hole GT2A is cut by a wider zone of brittle deformation and incipient brecciation. Here we report the structural history of the gabbros reflecting formation at the ridge to later obduction. Magmatic and high temperature history- 1) Both cores exhibit a pervasive, commonly well-defined magmatic foliation delineated by plagioclase, olivine and in places clinopyroxene. Minor magmatic deformation is present. 2) The dip of the magmatic foliation varies cyclically, gradually changing dip by 30o from gentle to moderate over a 50 m wavelength. 3) Layering is present throughout both cores, is defined by changes in mode and grain size ranging in thickness from 2 cm to 3 m and is commonly sub-parallel to the foliation. 4) There are no high temperature crystal-plastic shear zones in the core. Key observations include: no simple, systematic shallowing of dip with depth across the foliated-layered gabbro transition and layering is continuous across this transition. Cyclic variation of magmatic foliation dip most likely reflects the process of plate separation at the ridge axis. Near-axis faulting- i) On or near-axis structures consist of epidote-amphibole bearing hydraulic breccias and some zones of intense cataclasis with intensely deformed epidote and seams of clay and chlorite accompanied by syntectonic alteration of the wall rock. Early veins are filled with amphibole, chlorite, epidote, and anhydrite. ii) The deformation ranges from brittle-ductile, causing local deflection of the magmatic foliation, to brittle offset of the foliation and core and mantle structures in anhydrite veins. iii) The prevalent sense of shear is normal and slickenfibers indicate oblique offset. Obduction related faulting- i) Low temperature brittle faults and veins with laumontite, clay, and gypsum crosscut all structures. ii) Faults show a reverse sense of shear and crosscut, possibly reactivate, normal faults. Our observations suggest formation of reverse faults and late veins during obduction of the ophiolite.
Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico
NASA Astrophysics Data System (ADS)
McDonald, David Wilson
The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant trends are NNE to NNW related to the PPF, NE related to the Embudo fault, and ENE to ESE and NW related to Laramide and younger tectonic events. Recent faults are characterized by a significant increase in fracture density near the fault while ancient faults show a lesser increase. The results from this study suggest that in regions where sigma1 is vertical and sigma2 ≈ sigma 3, fractures orthogonal to the main faults are as likely as fractures parallel to the main faults.
NASA Astrophysics Data System (ADS)
Cox, R. T.; Hatcher, R. D., Jr.; Forman, S. L.; Gamble, E. D. S.; Warrell, K. F.
2017-12-01
The eastern Tennessee seismic zone (ETSZ) trends 045o from NE Alabama and NW Georgia through Tennessee to SE Kentucky, and seismicity is localized 5-26 km deep in the basement. The ETSZ is the second most seismically active region in North America east of the Rocky Mountains, although no historic earthquakes larger than Mw 4.8 have been recorded here. Late Quaternary paleoiseismic evidence suggests that the ETSZ is capable of M7+ earthquakes and that neotectonic faults may have significantly influenced the regional relief. We have identified an 80 km-long, 060o-trending corridor in eastern Tennessee that contains collinear northeast-striking thrust, strike-slip, and normal Quaternary faults with displacements of 1-2 m, herein termed the Dandridge-Vonore fault zone (DVFZ). French Broad River alluvium in the northeast DVFZ near Dandridge, TN, is displaced by a 050o-striking, SE-dipping thrust fault and by a set of related fissures that record at least two significant post 25 ka paleo-earthquakes. Southwest of Dandridge near Alcoa, TN, a 060o-striking, SE-dipping thrust fault cuts Little River alluvium and records two significant post-15 ka paleo-earthquakes. Farther southwest at Vonore, colluvium with alluvial cobbles is thrust >1 m by a 057o-striking, steeply SE-dipping fault that may also have a significant strike-slip component, and Little Tennessee River alluvium is dropped >2 m along a 070o- striking normal fault. The DVFZ partly overlaps and is collinear with a local trend of maximum seismicity that extends 30 km farther SW of the DVFZ (as currently mapped), for a total length of 110 km. The DVFZ is coincident with a steep gradient in S-wave velocities (from high velocity on the SE to low velocity on the NW) at mid-crustal depths of 20 to 24 km, consistent with a fault and source zone at hypocentral depths in the crystalline basement. Moreover, the DVFZ parallels the NW foot of Blue Ridge Mountains, and the sense of thrusting at all sites of Quaternary faulting in the DVFZ is consistent with uplift of the Blue Ridge.
McBride, J.H.; Nelson, W.J.
2001-01-01
High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.
Neotectonic Geomorphology of the Owen Stanley Oblique-slip Fault System, Eastern Papua New Guinea
NASA Astrophysics Data System (ADS)
Watson, L.; Mann, P.; Taylor, F.
2003-12-01
Previous GPS studies have shown that the Australia-Woodlark plate boundary bisects the Papuan Peninsula of Papua New Guinea and that interplate motion along the boundary varies from about 19 mm/yr of orthogonal opening in the area of the western Woodlark spreading center and D'Entrecasteaux Islands, to about 12 mm/yr of highly oblique opening in the central part of the peninsula, to about 10 mm/yr of transpressional motion on the western part of the peninsula. We have compiled a GIS database for the peninsula that includes a digital elevation model, geologic map, LANDSAT and radar imagery, and earthquake focal mechanisms. This combined data set demonstrates the regional importance of the 600-km-long Owen Stanley fault system (OSFS) in accommodating interplate motion and controlling the geomorphology and geologic exposures of the peninsula. The OSFS originated as a NE-dipping, reactivated Oligocene-Early Miocene age ophiolitic suture zone between an Australian continental margin and the Melanesian arc system. Pliocene to recent motion on the plate boundary has reactivated motion on the former NE-dipping thrust fault either as a NE-dipping normal fault in the eastern area or as a more vertical strike-slip fault in the western area. The broadly arcuate shape of the OSFS is probably an inherited feature from the original thrust fault. Faults in the eastern area (east of 148° E) exhibit characteristics expected for normal and oblique slip faults including: discontinuous fault traces bounding an upthrown highland block and a downthrown coastal plain or submarine block, transfer faults parallel to the opening direction, scarps facing to both the northeast and southwest, and spatial association with recent volcanism. Faults in the western area (west of 148° E) exibit characteristics expected for left-lateral strike-slip faults including: linear and continuous fault trace commonly confined to a deep, intermontane valley and sinistral offsets and deflections of rivers and streams by 0.5 to 1.2 km. The northern edge of the OSFS merges with the Ramu-Markham strike-slip fault near Lae. SW tilting of the footwall block (Papuan Peninsula) is responsible for the asymmetrical topographic profile of the peninsula and drowned topography along the southern coast of the peninsula.
NASA Astrophysics Data System (ADS)
Jiang, Zhongshan; Yuan, Linguo; Huang, Dingfa; Yang, Zhongrong; Chen, Weifeng
2017-12-01
We reconstruct two types of fault models associated with the 2008 Mw 7.9 Wenchuan earthquake, one is a listric fault connecting a shallowing sub-horizontal detachment below ∼20 km depth (fault model one, FM1) and the other is a group of more steeply dipping planes further extended to the Moho at ∼60 km depth (fault model two, FM2). Through comparative analysis of the coseismic inversion results, we confirm that the coseismic models are insensitive to the above two type fault geometries. We therefore turn our attention to the postseismic deformation obtained from GPS observations, which can not only impose effective constraints on the fault geometry but also, more importantly, provide valuable insights into the postseismic afterslip. Consequently, FM1 performs outstandingly in the near-, mid-, and far-field, whether considering the viscoelastic influence or not. FM2 performs more poorly, especially in the data-model consistency in the near field, which mainly results from the trade-off of the sharp contrast of the postseismic deformation on both sides of the Longmen Shan fault zone. Accordingly, we propose a listric fault connecting a shallowing sub-horizontal detachment as the optimal fault geometry for the Wenchuan earthquake. Based on the inferred optimal fault geometry, we analyse two characterized postseismic deformation phenomena that differ from the coseismic patterns: (1) the postseismic opposite deformation between the Beichuan fault (BCF) and Pengguan fault (PGF) and (2) the slightly left-lateral strike-slip motions in the southwestern Longmen Shan range. The former is attributed to the local left-lateral strike-slip and normal dip-slip components on the shallow BCF. The latter places constraints on the afterslip on the southwestern BCF and reproduces three afterslip concentration areas with slightly left-lateral strike-slip motions. The decreased Coulomb Failure Stress (CFS) change ∼0.322 KPa, derived from the afterslip with viscoelastic influence removed at the hypocentre of the Lushan earthquake, indicates that the postseismic left-lateral strike-slip and normal dip-slip motions may have a mitigative effect on the fault loading in the southwestern Longmen Shan range. Nevertheless, it is much smaller than the total increased CFS changes (∼8.368 KPa) derived from the coseismic and viscoelastic deformations.
NASA Astrophysics Data System (ADS)
Little, T. A.; Boulton, C. J.; Webber, S. M.; Mizera, M.; Oesterle, J.; Ellis, S. M.; Norton, K. P.; Wallace, L.; Biemiller, J.; Seward, D.; Boles, A.
2016-12-01
The Mai'iu Fault is a corrugated low-angle normal fault (LANF) that has slipped >24 km. It emerges near sea level at 21° N dip, and flattens southward over the dome crest at 3000 m. This reactivated Paleogene suture is slipping at up to 1 cm/year based on previous GPS data and preliminary 10Be cosmogenic nuclide exposure scarp dating. An alignment of microseismicity (Eilon et al. 2015) suggests a dip of 30° N at 15-25 km depth. Pseudotachylites are abundant in lower, mylonitic parts of the footwall. One vein yielded 40Ar/39Ar ages of 1.9-2.2 Ma, implying seismicity at 8-10 km depth at the above slip rate. Widespread, antithetic normal faults in the footwall are attributed to rolling-hinge controlled yielding during exhumation. A single rider block is downfolded into synformal megamullion. Unconformities within this block, and ductile folding and conjugate strike-slip faulting of mylonitic footwall fabrics record prolonged EW shortening and constriction. Many normal and strike-slip faults cut the metabasaltic footwall recording Andersonian stresses and flipping between σ1 and σ2. To exhume the steep faults, the LANF must have remained active despite differential stress being locally high enough to initiate well-oriented faults—relationships that bracket the frictional strength of the LANF. Quantitative XRD on mafic and serpentinitic gouges reveal the Mai'iu fault core is enriched in weak clays corrensite and saponite. Hydrothermal friction experiments were done at effective normal stresses of 30-210 MPa, and temperatures of 50-450oC. At shallow depths (T≤200 oC), clay-rich fault gouges are frictionally weak (μ=0.13-0.15 and 0.20-0.28) and velocity-strengthening. At intermediate depths (T>200 oC), the footwall is frictionally strong (μ=0.71-0.78 and 0.50-0.64) and velocity-weakening. Velocity-strengthening is observed at T≥400 oC. The experiments provide evidence for deep unstable slip, consistent with footwall pseudotachylites and microseismicity at depth
Zhang, Edward; Fuis, Gary S.; Catchings, Rufus D.; Scheirer, Daniel S.; Goldman, Mark; Bauer, Klaus
2018-06-13
We reexamine the geometry of the causative fault structure of the 1989 moment-magnitude-6.9 Loma Prieta earthquake in central California, using seismic-reflection, earthquake-hypocenter, and magnetic data. Our study is prompted by recent interpretations of a two-part dip of the San Andreas Fault (SAF) accompanied by a flower-like structure in the Coachella Valley, in southern California. Initially, the prevailing interpretation of fault geometry in the vicinity of the Loma Prieta earthquake was that the mainshock did not rupture the SAF, but rather a secondary fault within the SAF system, because network locations of aftershocks defined neither a vertical plane nor a fault plane that projected to the surface trace of the SAF. Subsequent waveform cross-correlation and double-difference relocations of Loma Prieta aftershocks appear to have clarified the fault geometry somewhat, with steeply dipping faults in the upper crust possibly connecting to the more moderately southwest-dipping mainshock rupture in the middle crust. Examination of steep-reflection data, extracted from a 1991 seismic-refraction profile through the Loma Prieta area, reveals three robust fault-like features that agree approximately in geometry with the clusters of upper-crustal relocated aftershocks. The subsurface geometry of the San Andreas, Sargent, and Berrocal Faults can be mapped using these features and the aftershock clusters. The San Andreas and Sargent Faults appear to dip northeastward in the uppermost crust and change dip continuously toward the southwest with depth. Previous models of gravity and magnetic data on profiles through the aftershock region also define a steeply dipping SAF, with an initial northeastward dip in the uppermost crust that changes with depth. At a depth 6 to 9 km, upper-crustal faults appear to project into the moderately southwest-dipping, planar mainshock rupture. The change to a planar dipping rupture at 6–9 km is similar to fault geometry seen in the Coachella Valley.
Aftershocks of the june 20, 1978, Greece earthquake: A multimode faulting sequence
Carver, D.; Bollinger, G.A.
1981-01-01
A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated. The epicenters for four large (M ??? 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58?? or 73??, respectively. A preferred nodal-plane dip of 36?? was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required. ?? 1981.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry
2017-12-01
The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.
The offshore Palos Verdes fault zone near San Pedro, Southern California
Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.
2004-01-01
High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.
NASA Astrophysics Data System (ADS)
Chiarabba, Claudio; De Gori, Pasquale; Improta, Luigi; Lucente, Francesco Pio; Moretti, Milena; Govoni, Aladino; Di Bona, Massimo; Margheriti, Lucia; Marchetti, Alessandro; Nardi, Anna
2014-12-01
The evolution of the Apennines thrust-and-fold belt is related to heterogeneous process of subduction and continental delamination that generates extension within the mountain range and compression on the outer front of the Adria lithosphere. While normal faulting earthquakes diffusely occur along the mountain chain, the sparse and poor seismicity in the compressional front does not permit to resolve the ambiguity that still exists about which structure accommodates the few mm/yr of convergence observed by geodetic data. In this study, we illustrate the 2012 Emilia seismic sequence that is the most significant series of moderate-to-large earthquakes developed during the past decades on the compressional front of the Apennines. Accurately located aftershocks, along with P-wave and Vp/Vs tomographic models, clearly reveal the geometry of the thrust system, buried beneath the Quaternary sediments of the Po Valley. The seismic sequence ruptured two distinct adjacent thrust faults, whose different dip, steep or flat, accounts for the development of the arc-like shape of the compressional front. The first shock of May 20 (Mw 6.0) developed on the middle Ferrara thrust that has a southward dip of about 30°. The second shock of May 29 (Mw 5.8) ruptured the Mirandola thrust that we define as a steep dipping (50-60°) pre-existing (Permo-Triassic) basement normal fault inverted during compression. The overall geometry of the fault system is controlled by heterogeneity of the basement inherited from the older extension. We also observe that the rupture directivity during the two main-shocks and the aftershocks concentration correlate with low Poisson ratio volumes, probably indicating that portions of the fault have experienced intense micro-damage.
Faulting and hydration of the Juan de Fuca plate system
NASA Astrophysics Data System (ADS)
Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.
2009-06-01
Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.
Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.
2014-01-01
While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.
NASA Astrophysics Data System (ADS)
Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo
2018-02-01
Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.
Tertiary extension and mineral deposits, southwestern U.S.
Rehrig, William A.; Hardy, James.J.
1996-01-01
Starting in Las Vegas, we will traverse through many of the geometric elements and complexities of hanging wall deformation above the regional detachment systems of the Colorado River extensional terrane. We will study the interaction of normal faults as arranged in regional, crustal-scale mega-domains and the bounding structures that separate these tilt domains. As we progress through the classic Eldorado Mountains-Hoover Dam region, where many of the ideas of listric normal faulting were first popularized, we will see both the real rocks and the historic rationale for their deformation. By examining the listric versus domino models for normal faulting, we will utilize different geometric techniques for determining the depth to the detachment structures and percent extension. Continuing further south toward southernmost Nevada, we will cross the accommodation zone that separates the Lake Mead and Whipple dip domains and further descend to deeper structural levels to examine lower levels of the major normal faults and their tilting of upper-crustal blocks and associated offset along the regional detachment faults. Fluid flow within the shattered fault zones and its relationship to the 3-D geometries of the fault surfaces will be studied both along the faults and within the hydrothermally altered and mineralized wallrocks.
Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...
NASA Astrophysics Data System (ADS)
Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.
2014-12-01
Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.
NASA Astrophysics Data System (ADS)
Improta, L.; Bagh, S.; De Gori, P.; Pastori, M.; Piccinini, D.; Valoroso, L.; Anselmi, M.; Buttinelli, M.; Chiarabba, C.
2015-12-01
The Val d'Agri (VA) Quaternary basin in the southern Apennines extensional belt hosts the largest oilfield in onshore Europe and normal-fault systems with high (up to M7) seismogenic potential. Frequent small-magnitude swarms related to both active crustal extension and anthropogenic activity have occurred in the region. Causal factors for induced seismicity are a water impoundment with severe seasonal oscillations and a high-rate wastewater injection well. We analyzed around 1200 earthquakes (ML<3.3) occurred in the VA and surrounding regions between 2001-2014. We integrated waveforms recorded at 46 seismic stations belonging to 3 different networks: a dense temporary network installed by INGV in 2005-2006, the permanent national network of INGV, and the trigger-mode monitoring network managed by the local operator ENI petroleum company. We used local earthquake tomography to investigate static and transient features of the crustal velocity structure and to accurately locate earthquakes. Vp and Vp/Vs models are parameterized by a 3x3x2 km spacing and well resolved down to about 12 km depth. The complex Vp model illuminates broad antiformal structures corresponding to wide ramp-anticlines involving Mesozoic carbonates of the Apulia hydrocarbon reservoir, and NW-SE trending low Vp regions related to thrust-sheet-top clastic basins. The VA basin corresponds to shallow low-Vp region. Focal mechanisms show normal faulting kinematics with minor strike slip solutions in agreement with the local extensional regime. Earthquake locations and focal solutions depict shallow (< 5 km depth) E-dipping extensional structures beneath the artificial lake located in the southern sector of the basin, and along the western margin of the VA. A few swarms define relatively deep transfer structures accommodating the differential extension between main normal faults. The spatio-temporal distribution of around 220 events correlates with wastewater disposal activity, illuminating a NE-dipping fault between 2-5 km depth in the carbonate reservoir. The fault measures 5 km along dip and corresponds to a pre-existing thrust fault favorably oriented with respect to the local extensional field.
Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .
Effects of listricity on near field ground motions: the kinematic case
NASA Astrophysics Data System (ADS)
Passone, Luca; Mai, P. Martin
2016-04-01
Listric faults are defined as curved faults in which the dip decreases with depth, resulting in a concave upwards shape. Previous works show that breaking the symmetry of faults affects rupture dynamics and near field ground motions (e.g. Oglesby et al., 1998; Nielsen, 1998; Oglesby et al., 2000b; O'Connell et al. 2007). In recent years listric faults have been associated with devastating events, such as the 2008 Mw 7.9 Wenchuan earthquake that caused almost 150 billion of damage, and the 1999 Mw 7.6 Chi- Chi earthquake that caused 10 billion worth of damage, each of them responsible also for tens of thousands of injured and dead. We focus on quantifying near field ground motions as a function of initial dip, style (normal or reverse) and a listricity. To construct a listric profile for the simulations we use an exponential function (Wang et al., 2009) that approximates the dip angle for a certain depth as a function of the depth itself, the initial dip angle and a listricity factor. We then generate an ensemble of source models, with initial dip ranging from 10 to 90 degrees and a listricity factor from 5 to 20. Finally, heterogeneous slip distributions are created for a magnitude Mw 6.8 earthquake. Choosing different hypocenter locations and rupture velocities, we construct a range of kinematic source models that are resolved on both the listric and planar-fault geometry. We then compute the near-source seismic wavefield within a uniform isotropic medium using a generalized 3D finite-difference method. The listric and planar simulations are then compared, and their differences quantified. Initial results show a secondary directivity effect once the listricity factor exceeds 10 for the larger initial dip faults, thus inducing a change in the azimuthal angle with respect of the epicenter where peak ground motions are experienced. At the same time, overall PGV values are decreased, more so for geometries with higher listricity factors. With the knowledge acquired, a ground motion reduction factor can be applied to ground motion prediction equations when the fault is considered to be listric and hazard maps should re-adjusted to cater for the relocation of peak ground motions due to directivity effects.
Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece
NASA Astrophysics Data System (ADS)
Gallen, S. F.; Wegmann, K. W.; Bohnenstiehl, D. R.; Pazzaglia, F. J.; Brandon, M. T.; Fassoulas, C.
2014-07-01
The island of Crete occupies a forearc high in the central Hellenic subduction zone and is characterized by sustained exhumation, surface uplift and extension. The processes governing orogenesis and topographic development here remain poorly understood. Dramatic topographic relief (2-6 km) astride the southern coastline of Crete is associated with large margin-parallel faults responsible for deep bathymetric depressions known as the Hellenic troughs. These structures have been interpreted as both active and inactive with either contractional, strike-slip, or extensional movement histories. Distinguishing between these different structural styles and kinematic histories here allows us to explore more general models for improving our global understanding of the tectonic and geodynamic processes of syn-convergent extension. We present new observations from the south-central coastline of Crete that clarifies the role of these faults in the late Cenozoic evolution of the central Hellenic margin and the processes controlling Quaternary surface uplift. Pleistocene marine terraces are used in conjunction with optically stimulated luminesce dating and correlation to the Quaternary eustatic curve to document coastal uplift and identify active faults. Two south-dipping normal faults are observed, which extend offshore, offset these marine terrace deposits and indicate active N-S (margin-normal) extension. Further, marine terraces preserved in the footwall and hanging wall of both faults demonstrate that regional net uplift of Crete is occurring despite active extension. Field mapping and geometric reconstructions of an active onshore normal fault reveal that the subaqueous range-front fault of south-central Crete is synthetic to the south-dipping normal faults on shore. These findings are inconsistent with models of active horizontal shortening in the upper crust of the Hellenic forearc. Rather, they are consistent with topographic growth of the forearc in a viscous orogenic wedge, where crustal thickening and uplift are a result of basal underplating of material that is accompanied by extension in the upper portions of the wedge. Within this framework a new conceptual model is presented for the late Cenozoic vertical tectonics of the Hellenic forearc.
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia
2015-04-01
Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic pattern seems to be related to other strike-slip fault systems developed to the E of the UNFZ. The structural revision together with updated kinematic data suggest that the Colmenar Fault is cut and downthrown by a younger normal fault zone, the UNFZ, which would have contributed to accommodate arc-parallel stretching until the Quaternary. This stretching provokes along-strike relief segmentation, being the UNFZ the main fault zone causing the final drop of the Subbetic ranges towards the SW within the Western Gibraltar Arc. Our results show displacement variations in each fault segment of the UNFZ, diminishing to their tips. This suggests fault segment linkage finally evolved to build the nearly continuous current fault zone. The development of current large through-going faults linked inside the UNFZ is similar to those ones simulated in some numerical modelling of rift systems [2]. Acknowledgements: RNM-415 and CGL-2013-46368-P [1]Peacock, D.C.P., Knipe, R.J., Sanderson, D.J., 2000. Glossary of normal faults. Journal Structural Geology, 22, 291-305. [2]Cowie, P.A., Gupta, S., Dawers, N.H., 2000. Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 12, 241-261.
Steeply-dipping extension fractures in the Newark basin, New Jersey
Herman, G.C.
2009-01-01
Late Triassic and Early Jurassic bedrock in the Newark basin is pervasively fractured as a result of Mesozoic rifting of the east-central North American continental margin. Tectonic rifting imparted systematic sets of steeply-dipping, en ??chelon, Mode I, extension fractures in basin strata including ordinary joints and veins. These fractures are arranged in transitional-tensional arrays resembling normal dip-slip shear zones. They contributed to crustal stretching, sagging, and eventual faulting of basin rift deposits. Extension fractures display progressive linkage and spatial clustering that probably controlled incipient fault growth. They cluster into three prominent strike groups correlated to early, intermediate, and late-stage tectonic events reflecting about 50- 60?? of counterclockwise rotation of incremental stretching directions. Finite strain analyses show that extension fractures allowed the stretching of basin strata by a few percent, and these fractures impart stratigraphic dips up to a few degrees in directions opposing fracture dips. Fracture groups display three-dimensional spatial variability but consistent geometric relations. Younger fractures locally cut across and terminate against older fractures having more complex vein-cement morphologies and bed-normal folds from stratigraphic compaction. A fourth, youngest group of extension fractures occur sporadically and strike about E-W in obliquely inverted crustal blocks. A geometric analysis of overlapping fracture sets shows how fracture groups result from incremental rotation of an extending tectonic plate, and that old fractures can reactivate with oblique slip components in the contemporary, compressive stress regime. ?? 2008 Elsevier Ltd. All rights reserved.
3D geometries of normal faults in a brittle-ductile sedimentary cover: Analogue modelling
NASA Astrophysics Data System (ADS)
Vasquez, Lina; Nalpas, Thierry; Ballard, Jean-François; Le Carlier De Veslud, Christian; Simon, Brendan; Dauteuil, Olivier; Bernard, Xavier Du
2018-07-01
It is well known that ductile layers play a major role in the style and location of deformation. However, at the scale of a single normal fault, the impact of rheological layering is poorly constrained and badly understood, and there is a lack of information regarding the influence of several décollement levels within a sedimentary cover on the single fault geometry under purely extensive deformation. We present small-scale experiments that were built with interbedded layers of brittle and ductile materials and with minimum initial constraints (only a velocity discontinuity at the base of the experiment) on the normal fault geometry in order to investigate the influence of controlled parameters such as extension velocity, rate of extension, ductile thickness and varying stratigraphy on the 3D fault geometry. These experiments showed a broad-spectrum of tectonic features such as grabens, ramp-flat-ramp normal faults and reverse faults. Forced folds are associated with fault flats that develop in the décollement levels (refraction of the fault angle). One of the key points is that the normal fault geometry displays large variations in both direction and dip, despite the imposed homogeneous extension. This result is exclusively related to the presence of décollement levels, and is not associated with any global/regional variation in extension direction and/or inversion.
Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review
NASA Astrophysics Data System (ADS)
Cemen, I.
2017-12-01
The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.
NASA Astrophysics Data System (ADS)
Morley, Chris K.
2009-10-01
At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.
A teleseismic analysis of the New Brunswick earthquake of January 9, 1982.
Choy, G.L.; Boatwright, J.; Dewey, J.W.; Sipkin, S.A.
1983-01-01
The analysis of the New Brunswick earthquake of January 9, 1982, has important implications for the evaluation of seismic hazards in eastern North America. Although moderate in size (mb, 5.7), it was well-recorded teleseismically. Source characteristics of this earthquake have been determined from analysis of data that were digitally recorded by the Global Digital Seismography Network. From broadband displacement and velocity records of P waves, we have obtained a dynamic description of the rupture process as well as conventional static properties of the source. The depth of the hypocenter is estimated to be 9km from depth phases. The focal mechanism determined from the broadband data corresponds to predominantly thrust faulting. From the variation in the waveforms the direction of slip is inferred to be updip on a west dipping NNE striking fault plane. The steep dip of the inferred fault plane suggests that the earthquake occurred on a preexisting fault that was at one time a normal fault. From an inversion of body wave pulse durations, the estimated rupture length is 5.5km.-from Authors
The 1999 Hector Mine Earthquake, Southern California: Vector Near-Field Displacements from ERS InSAR
NASA Technical Reports Server (NTRS)
Sandwell, David T.; Sichoix, Lydie; Smith, Bridget
2002-01-01
Two components of fault slip are uniquely determined from two line-of-sight (LOS) radar interferograms by assuming that the fault-normal component of displacement is zero. We use this approach with ascending and descending interferograms from the ERS satellites to estimate surface slip along the Hector Mine earthquake rupture. The LOS displacement is determined by visually counting fringes to within 1 km of the outboard ruptures. These LOS estimates and uncertainties are then transformed into strike- and dip-slip estimates and uncertainties; the transformation is singular for a N-S oriented fault and optimal for an E-W oriented fault. In contrast to our previous strike-slip estimates, which were based only on a descending interferogram, we now find good agreement with the geological measurements, except at the ends of the rupture. The ascending interferogram reveals significant west-sidedown dip-slip (approximately 1.0 m) which reduces the strike-slip estimates by 1 to 2 m, especially along the northern half of the rupture. A spike in the strike-slip displacement of 6 m is observed in central part of the rupture. This large offset is confirmed by subpixel cross correlation of features in the before and after amplitude images. In addition to strike slip and dip slip, we identify uplift and subsidence along the fault, related to the restraining and releasing bends in the fault trace, respectively. Our main conclusion is that at least two look directions are required for accurate estimates of surface slip even along a pure strike-slip fault. Models and results based only on a single look direction could have major errors. Our new estimates of strike slip and dip slip along the rupture provide a boundary condition for dislocation modeling. A simple model, which has uniform slip to a depth of 12 km, shows good agreement with the observed ascending and descending interferograms.
NASA Astrophysics Data System (ADS)
Pauselli, Cristina; Ranalli, Giorgio
2017-11-01
The Northern Apennines (NA) are characterized by formerly compressive structures partly overprinted by subsequent extensional structures. The area of extensional tectonics migrated eastward since the Miocene. The youngest and easternmost major expression of extension is the Alto Tiberina Fault (ATF). We estimate 2D rheological profiles across the NA, and conclude that lateral rheological crustal variations have played an important role in the formation of the ATF and similar previously active faults to the west. Lithospheric delamination and mantle degassing resulted in an easterly-migrating extension-compression boundary, coinciding at present with the ATF, where (i) the thickness of the upper crust brittle layer reaches a maximum; (ii) the critical stress difference required to initiate faulting at the base of the brittle layer is at a minimum; and (iii) the total strengths of both the brittle layer and the whole lithosphere are at a minimum. Although the location of the fault is correlated with lithospheric rheological properties, the rheology by itself does not account for the low dip ( 20°) of the ATF. Two hypotheses are considered: (a) the low dip of the ATF is related to a rotation of the stress tensor at the time of initiation of the fault, caused by a basal shear stress ( 100 MPa) possibly related to corner flow associated with delamination; or (b) the low dip is associated to low values of the friction coefficient (≤ 0.5) coupled with high pore pressures related to mantle degassing. Our results establishing the correlation between crustal rheology and the location of the ATF are relatively robust, as we have examined various possible compositions and rheological parameters. They also provide possible general indications on the mechanisms of localized extension in post-orogenic extensional setting. The hypotheses to account for the low dip of the ATF, on the other hand, are intended simply to suggest possible solutions worthy of further study.
NASA Astrophysics Data System (ADS)
Adewole, E. O.; Healy, D.
2017-03-01
Accurate information on fault networks, the full stress tensor, and pore fluid pressures are required for quantifying the stability of structure-bound hydrocarbon prospects, carbon dioxide sequestration, and drilling prolific and safe wells, particularly fluid injections wells. Such information also provides essential data for a proper understanding of superinduced seismicities associated with areas of intensive hydrocarbon exploration and solid minerals mining activities. Pressure and stress data constrained from wells and seismic data in the Northern Niger Delta Basin (NNDB), Nigeria, have been analysed in the framework of fault stability indices by varying the maximum horizontal stress direction from 0° to 90°, evaluated at depths of 2 km, 3.5 km and 4 km. We have used fault dips and azimuths interpreted from high resolution 3D seismic data to calculate the predisposition of faults to failures in three faulting regimes (normal, pseudo-strike-slip and pseudo-thrust). The weighty decrease in the fault stability at 3.5 km depth from 1.2 MPa to 0.55 MPa demonstrates a reduction of the fault strength by high magnitude overpressures. Pore fluid pressures > 50 MPa have tendencies to increase the risk of faults to failure in the study area. Statistical analysis of stability indices (SI) indicates faults dipping 50°-60°, 80°-90°, and azimuths ranging 100°-110° are most favourably oriented for failure to take place, and thus likely to favour migrations of fluids given appropriate pressure and stress conditions in the dominant normal faulting regime of the NNDB. A few of the locally assessed stability of faults show varying results across faulting regimes. However, the near similarities of some model-based results in the faulting regimes explain the stability of subsurface structures are greatly influenced by the maximum horizontal stress (SHmax) direction and magnitude of pore fluid pressures.
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Smith, K. D.
2012-12-01
The Mina Deflection (MD) region of the central Walker Lane of eastern California and western Nevada, is a complex zone of northeast-trending normal, and primarily left-lateral strike-slip to oblique-slip faulting that separates the Southern Walker Lane (SWL) from a series of east-tilted normal fault blocks in the Central Walker Lane (CWL) (Faulds and Henry, 2008; Surpless, 2008). The MD accommodates the transfer of right-lateral strike-slip motion from northwest-striking faults in the SWL to a series of left-stepping northwest-striking right-lateral strike-slip faults in the CWL, east of the Wassuk Range near Hawthorne, NV. The ~50 km wide ~80 km long right-step is a distinct transition in regional physiography that has been attributed to strain accommodation through pre-Cenozoic lithospheric structures. Several slip transfer mechanisms have been proposed within the MD, from clockwise rotation of high-angle fault blocks (Wesnousky, 2005), to low-angle displacement within the Silver Peak-Lone Mountain complex (Oldow et al., 2001), and curved fault arrays associated with localized basins and tectonic depressions (Ferranti et al., 2009). The region has been a regular source of M4+ events, the most recent being an extended sequence that included twenty-seven M 3.5+ earthquakes (largest event M 4.6) south of Hawthorne in 2011. These earthquakes (< 5 km depth) define shallow W-dipping (dip ~56°) and NW-dipping (dip ~70°) normal faulting constrained by moment tensor (MT) solutions and earthquake relocations. Temporary stations deployed in the source area provide good control. A distributed sequence in 2004, between Queen Valley and Mono Lake, primarily associated with the Huntoon Valley fault, included three M 5+ left-lateral strike-slip faulting events. A 1997 sequence in northern Fish Lake Valley (east of the White Mountains), with mainshock Mw 5.3 (Ichinose et al., 2003), also showed high-angle northeast-striking left-lateral strike-slip motion. Historical events include the 1934 M 6.5 Excelsior Mountains event south of Mina, NV, and the 1932 M 7.1 Cedar Mountains earthquake east of the Pilot Mountains. Another persistent feature in the seismicity is an ~40 km long arcuate distribution of activity extending from approximately Queen Valley, north of the White Mountains, to Mono Lake that appears to reflect a southwestern boundary to northeast-striking structures in the MD. Here we develop high-precision relocations of instrumental seismicity in the MD from 1984 through 2012, including relocations of the 2004 sequence, and account for the historical seismic record. MT solutions from published reports and computed from recent M 3.5+ earthquakes as well as available and developed short-period focal mechanisms are compiled to evaluate the stress field to assess mechanisms of slip accommodation. Based on the complex distribution of fault orientations, the stress field varies locally northward from the SWL throughout the MD; however, in many cases, fault plane alignments can be isolated from high-precision locations, providing better constraints on stress and slip orientations.
Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab
NASA Astrophysics Data System (ADS)
Arai, Ryuta; Kodaira, Shuichi; Yamada, Tomoaki; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki; Nishizawa, Azusa; Oikawa, Mitsuhiro
2017-06-01
The role of seamounts on interplate earthquakes has been debated. However, its impact on intraslab deformation is poorly understood. Here we present unexpected evidence for large normal-fault earthquakes intersecting the slab just ahead of a subducting seamount. In 1995, a series of earthquakes with maximum magnitude of 7.1 occurred in northern Ryukyu where oceanic plateaus are subducting. The aftershock distribution shows that conjugate faults with an unusually high dip angle of 70-80° ruptured the entire subducting crust. Seismic reflection images reveal that the plate interface is displaced over 1 km along one of the fault planes of the 1995 events. These results suggest that a lateral variation in slab buoyancy can produce sufficient differential stress leading to near-vertical normal-fault earthquakes within the slab. On the contrary, the upper surface of the seamount (plate interface) may correspond to a weakly coupled region, reflecting the dual effects of seamounts/plateaus on subduction earthquakes.
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio
2016-09-01
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).
Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California
Parsons, T.; Hart, P.E.
1999-01-01
The San Francisco Bay area is crossed by several right-lateral strike-slip faults of the San Andreas fault zone. Fault-plane reflections reveal that two of these faults, the San Andreas and Hayward, dip toward each other below seismogenic depths at 60?? and 70??, respectively, and persist to the base of the crust. Previously, a horizontal detachment linking the two faults in the lower crust beneath San Francisco Bay was proposed. The only near-vertical-incidence reflection data available prior to the most recent experiment in 1997 were recorded parallel to the major fault structures. When the new reflection data recorded orthogonal to the faults are compared with the older data, the highest, amplitude reflections show clear variations in moveout with recording azimuth. In addition, reflection times consistently increase with distance from the faults. If the reflectors were horizontal, reflection moveout would be independent of azimuth, and reflection times would be independent of distance from the faults. The best-fit solution from three-dimensional traveltime modeling is a pair of high-angle dipping surfaces. The close correspondence of these dipping structures with the San Andreas and Hayward faults leads us to conclude that they are the faults beneath seismogenic depths. If the faults retain their observed dips, they would converge into a single zone in the upper mantle -45 km beneath the surface, although we can only observe them in the crust.
NASA Astrophysics Data System (ADS)
Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil
2014-05-01
The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.
Howard, Keith A.
2005-01-01
Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.
NASA Astrophysics Data System (ADS)
Perez, Nicholas D.; Horton, Brian K.; Carlotto, Victor
2016-03-01
Structural, stratigraphic, and geochronologic constraints from the Eastern Cordillera in the central Andean plateau of southern Peru (14-15°S) demonstrate the existence and position of major pre-Andean structures that controlled the accumulation of Triassic synrift fill and guided subsequent Cenozoic deformation. The timing of initial clastic deposition of the Triassic Mitu Group is here constrained to ~ 242-233 Ma on the basis of detrital and volcanic zircon U-Pb geochronology. Regionally distinct provenance variations, as provided by U-Pb age populations from localized synrift accumulations, demonstrate Triassic erosion of multiple diagnostic sources from diverse rift-flank uplifts. Stratigraphic correlations suggest synchronous initiation of extensional basins containing the Mitu Group, in contrast with previous interpretations of southward rift propagation. Triassic motion along the NE-dipping San Anton normal fault accommodated up to 7 km of throw and hanging-wall deposition of a synrift Mitu succession > 2.5 km thick. The contrasting orientation of a non-reactivated Triassic normal fault suggests selective inversion of individual structures in the Eastern Cordillera was dependent on fault dip and strike. Selective preservation of a ~ 4 km thick succession of Carboniferous-Permian strata in the down-dropped San Anton hanging wall, beneath the synrift Mitu Group, suggests large-scale erosional removal in the uplifted footwall. Field and map observations identify additional pre-Andean thrust faults and folds attributed to poorly understood Paleozoic orogenic events preserved in the San Anton hanging wall. Selective thrust reactivation of normal and reverse faults during later compression largely guided Cenozoic deformation in the Eastern Cordillera. The resulting structural compartmentalization and across-strike variations in kinematics and deformation style highlight the influence of inherited Paleozoic structures and Triassic normal faults on the long-term history of convergent margin deformation in the Andes.
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2017-01-01
By applying conventional cross-track InSAR and multiple-aperture InSAR (MAI) techniques with ALOS-2 SAR data to foreshocks of the 2016 Kumamoto earthquake, ground displacement fields in range (line-of-sight) and azimuth components have been successfully mapped. The most concentrated crustal deformation with ground displacement exceeding 15 cm is located on the western side of the Hinagu fault zone. A locally distributed displacement which appears along the strike of the Futagawa fault can be identified in and around Mashiki town, suggesting that a different local fault slip also contributed toward foreshocks. Inverting InSAR, MAI, and GNSS data, distributed slip models are obtained that show almost pure right-lateral fault motion on a plane dipping west by 80° for the Hinagu fault and almost pure normal fault motion on a plane dipping south by 70° for the local fault beneath Mashiki town. The slip on the Hinagu fault reaches around the junction of the Hinagu and Futagawa faults. The slip in the north significantly extends down to around 10 km depth, while in the south the slip is concentrated near the ground surface, perhaps corresponding to the M j 6.5 and the M j 6.4 events, respectively. The focal mechanism of the distributed slip model for the Hinagu fault alone shows pure right-lateral motion, which is inconsistent with the seismically estimated mechanism that includes a significant non-double couple component. On the other hand, when taking the contribution of normal fault motion into account, the focal mechanism appears similar to that of the seismic analysis. This result may suggest that local fault motion occurred just beneath Mashiki town, simultaneously with the M j 6.5 event, thereby increasing the degree of damage to the town.[Figure not available: see fulltext.
Aagaard, Brad T.; Hall, J.F.; Heaton, T.H.
2004-01-01
We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak velocities and displacements. Strong shear-wave directivity requires that (1) the observer is located in the direction of rupture propagation and (2) the rupture propagates parallel to the direction of the fault slip vector. We show that predominantly along-strike rupture of a thrust fault (geometry similar in the Chi-Chi earthquake) minimizes the area subjected to large-amplitude velocity pulses associated with rupture directivity, because the rupture propagates perpendicular to the slip vector; that is, the rupture propagates in the direction of a node in the shear-wave radiation pattern. In our simulations with a shallow hypocenter, the maximum peak-to-peak horizontal velocities exceed 1.5 m/sec over an area of only 200 km2 for the 30??-dipping fault (geometry similar to the Chi-Chi earthquake), whereas for the 60??- and 75??-dipping faults this velocity is exceeded over an area of 2700 km2 . These simulations indicate that the area subjected to large-amplitude long-period ground motions would be larger for events of the same size as Chi-Chi that have different styles of faulting or a deeper hypocenter.
Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado
Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.
2018-04-24
The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.
Construction Foundation Report for Seepage Control Adits Abiquiu Dam and Reservoir, New Mexico
1990-02-02
by broad folds and gentle regional dips to the north and west. Steeply dipping normal faults with a general north to northeast trend are common and...often exhibit throws in excess of 200 feet. Jointing is generally north-west to north-east and are nearly vertical to vertical. [1] The close of the...numerous minor joints. Joints faces in the mudstone are commonly striated and slickensided in random orientations. [1] The Agua Zarca Sandstone member of
NASA Astrophysics Data System (ADS)
Rawling, Geoffrey C.; Goodwin, Laurel B.; Wilson, John L.
2001-01-01
The Sand Hill fault is a steeply dipping, large-displacement normal fault that cuts poorly lithified Tertiary sediments of the Albuquerque basin, New Mexico, United States. The fault zone does not contain macroscopic fractures; the basic structural element is the deformation band. The fault core is composed of foliated clay flanked by structurally and lithologically heterogeneous mixed zones, in turn flanked by damage zones. Structures present within these fault-zone architectural elements are different from those in brittle faults formed in lithified sedimentary and crystalline rocks that do contain fractures. These differences are reflected in the permeability structure of the Sand Hill fault. Equivalent permeability calculations indicate that large-displacement faults in poorly lithified sediments have little potential to act as vertical-flow conduits and have a much greater effect on horizontal flow than faults with fractures.
Trace, Robert Denny
1962-01-01
The fault systems of the Levias-Keystone and Dike-Eaton areas, in the Kentucky-Illinois fiuorspar district, are a complex northeastward-trending sys- tem and a simple northwestward-trending system of steeply dipping normal faults, associated in part with a lamprophyre dike. Fluorspar mining started in the area about 1900 and, as of 1945, more than 200,000 tons of crude ore probably has been mined; most of the ore was from the Levias-Keystone area. A small quantity of zinc and lead ore also is present in the Dike-Eaton area. The deposits are localized along faults that displace fiat-lying or low-dipping limestones, sandstones, and shales of the Meramec and Chester series of Missis- sippian age. Movement along most of the faults was principally vertical, with displacement as much as 600 feet. Some horizontal movement occurred along at least one fault. Geologic mapping of the surface and data from underground workings have revealed 13 faults in an area of four-fifths of a square mile. Only a few of these faults are known to contain economically important deposits of fiuorspar. The most abundant vein minerals are calcite and fiuorite with subordinate quantities of sphalerite, galena, barite, and quartz. Some weathering products of sphalerite and galena are present also. The veins are dominantly calcite that contains fiuorite lenses but in places are mainly fiuorite having lesser quantities of calcite. Sphalerite- and galena-bearing deposits are present in the Dike-Eaton area. The ore bodies mainly are the result of fissure filling and replacement of calcite by fiuorite; in addition a small amount of limestone wallrock probably has been replaced. Residual concentrations of high-grade fluorspar in the overburden above faults have yielded some so-called gravel fiuorspar. The position of the veins within the faults may be related to one or more factors such as type of wallrock, change in dip of the fault, and amount of displacement.
NASA Astrophysics Data System (ADS)
Axen, Gary J.; Bartley, John M.; Selverstone, Jane
1995-12-01
The kinematic and temporal sequence of structures observed to overprint mylonites along the Brenner Line low-angle normal fault may record passage of the footwall through two rolling hinges, at the top and bottom of a ramp in the shear zone. The structures comprise west down brittle and brittle-ductile structures and east down brittle structures. PT conditions of formation (250° to >400°C and 2-23 km depth), obtained from analysis of oriented fluid inclusion planes, indicate that west down structures were formed at greater depths and temperatures, and therefore earlier, than the east down structures. These data suggest that the brittle structures formed under conditions that permit crystal-plastic deformation at long-term geologic strain rates and therefore probably reflect transient rapid strain rates and/or high fluid pressure. Structures inferred to have formed at a lower hinge are consistent with viscous flow models of rolling-hinge deformation and support the concept of a crustal asthenosphere. Such high temperatures at shallow crustal depth also suggest significant upward advection of heat by extensional unroofing of warm rocks, which may have reduced the flexural rigidity of the footwall and thus affected mechanical behavior at the upper rolling hinge. Exposed mylonitic foliation within a few hundred meters of the Brenner line and on top of the east-west trending anticlines in the footwall dips ˜15° west. Our data favor a ramp dip of ˜25° but permit a dip as great as 45°. Fluid inclusion data suggest that structures related to the hinge at the base of the ramp formed at depths of 12-25 km. If the average dip of the Brenner shear zone to those depths was 20°, intermediate between the favored ramp dip and the dip of exposed foliation, then the horizontal component of slip could be as high as 33-63 km. The two discrete sets of structures with opposite shear senses, formed in the temporal sequence indicated by PT data, are consistent with subvertical simple shear models of rolling-hinge strain. This kinematic pattern is not predicted by the flexural-failure model for rolling hinges. However, the predominance of normal slip at the upper hinge, which extends rather than shortens the mylonitic foliation, fails to match the subvertical simple shear model, which predicts shortening of the foliation there. One possible solution is that superposition of regional extension upon hinge-related stresses modified the rolling-hinge kinematics. Such a modified subvertical shear model can account for the observed small foliation-parallel extensional strains if the foliation was bent <5°-10° passing through the upper hinge. If more bending than that occurred, the data suggest rolling-hinge kinematics in which deformation is achieved by uniform-sense simple shear across the shear zone as in the subvertical simple shear model but in which material lines parallel to the shear-zone foliation and the detachment fault undergo very small length changes, presumably indicating that footwall rocks retained significant resistance to shear and underwent minimal permanent strain. The mechanics that would generate such a rolling hinge are uncertain but may incorporate aspects of both subvertical simple shear and flexural failure. An important kinematic consequence of such a rolling hinge is that all of the net slip across a normal fault, not only its horizontal component, is converted into horizontal extension. This implies a significantly larger magnitude of crustal extension across dipping normal faults whose footwalls passed through a rolling hinge than for those that did not develop along with a hinge.
NASA Astrophysics Data System (ADS)
Gusman, A. R.; Satake, K.; Mulia, I. E.
2017-12-01
An intraplate normal fault earthquake (Mw 8.2) occurred on 8 September 2017 in the Tehuantepec seismic gap of the Middle America Trench. The submarine earthquake generated a tsunami which was recorded by coastal tide gauges and offshore DART buoys. We used the tsunami waveforms recorded at 16 stations to estimate the fault slip distribution and an optimum sea surface displacement of the earthquake. A steep fault dipping to the northeast with strike of 315°, dip of 73°and rake of -96° based on the USGS W-phase moment tensor solution was assumed for the slip inversion. To independently estimate the sea surface displacement without assuming earthquake fault parameters, we used the B-spline function for the unit sources. The distribution of the unit sources was optimized by a Genetic Algorithm - Pattern Search (GA-PS) method. Tsunami waveform inversion resolves a spatially compact region of large slip (4-10 m) with a dimension of 100 km along the strike and 80 km along the dip in the depth range between 40 km and 110 km. The seismic moment calculated from the fault slip distribution with assumed rigidity of 6 × 1010 Nm-2 is 2.46 × 1021 Nm (Mw 8.2). The optimum displacement model suggests that the sea surface was uplifted up to 0.5 m and subsided down to -0.8 m. The deep location of large fault slip may be the cause of such small sea surface displacements. The simulated tsunami waveforms from the optimum sea surface displacement can reproduce the observations better than those from fault slip distribution; the normalized root mean square misfit for the sea surface displacement is 0.89, while that for the fault slip distribution is 1.04. We simulated the tsunami propagation using the optimum sea surface displacement model. Large tsunami amplitudes up to 2.5 m were predicted to occur inside and around a lagoon located between Salina Cruz and Puerto Chiapas. Figure 1. a) Sea surface displacement for the 2017 Tehuantepec earthquake estimated by tsunami waveforms. b) Map of simulated maximum tsunami amplitude and comparison between observed (blue circles) and simulated (red circles) tsunami maximum amplitude along the coast.
NASA Astrophysics Data System (ADS)
Brandsdottir, B.; Magnusdottir, S.; Karson, J. A.; Detrick, R. S.; Driscoll, N. W.
2015-12-01
The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ), located on the coast and offshore Northern Iceland, is a complex transform linking the northern rift zone (NVZ) on land with the Kolbeinsey Ridge offshore. Extension across TFZ is partitioned across three N-S trending rift basins; Eyjafjarðaráll, Skjálfandadjúp (SB) and Öxarfjörður and three WNW-NW oriented seismic lineaments; the Grímsey Oblique Rift, Húsavík-Flatey Faults (HFFs) and Dalvík Lineament. We compile the tectonic framework of the TFZ ridge-transform from aerial photos, satellite images, multibeam bathymetry and high-resolution seismic reflection data (Chirp). The rift basins are made up of normal faults with vertical displacements of up to 50-60 m, and post-glacial sediments of variable thickness. The SB comprises N5°W obliquely trending, eastward dipping normal faults as well as N10°E striking, westward dipping faults oriented roughly perpendicular to the N104°E spreading direction, indicative of early stages of rifting. Correlation of Chirp reflection data and tephrachronology from a sediment core within SB reveal major rifting episodes between 10-12.1 kyrs BP activating the whole basin, followed by smaller-scale fault movements throughout Holocene. Onshore faults have the same orientations as those mapped offshore and provide a basis for the interpretation of the kinematics of the faults throughout the region. These include transform parallel right-lateral, strike-slip faults separating domains dominated by spreading parallel left-lateral bookshelf faults. Shearing is most prominent along the HFFs, a system of right-lateral strike-slip faults with vertical displacement up to 15 m. Vertical fault movements reflect increased tectonic activity during early postglacial time coinciding with isostatic rebound enhancing volcanism within Iceland.
CO2 Push-Pull Single Fault Injection Simulations
Borgia, Andrea; Oldenburg, Curtis (ORCID:0000000201326016); Zhang, Rui; Pan, Lehua; Daley, Thomas M.; Finsterle, Stefan; Ramakrishnan, T.S.; Doughty, Christine; Jung, Yoojin; Lee, Kyung Jae; Altundas, Bilgin; Chugunov, Nikita
2017-09-21
ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a damage zone, a fault gouge and a slip plane. The runs are described in detail in the following: Borgia A., Oldenburg C.M., Zhang R., Jung Y., Lee K.J., Doughty C., Daley T.M., Chugunov N., Altundas B, Ramakrishnan T.S., 2017. Carbon Dioxide Injection for Enhanced Characterization of Faults and Fractures in Geothermal Systems. Proceedings of the 42st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-17.
NASA Astrophysics Data System (ADS)
Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Cella, Federico; Fedi, Maurizio; Florio, Giovanni
2014-05-01
The Southern Apennines is one of the Italian most active areas from a geodynamic point of view since it is characterized by occurrence of intense and widely spread seismic activity. Most seismicity of the area is concentrated along the chain, affecting mainly the Irpinia and Sannio-Matese areas. The seismogenetic sources responsible for the destructive events of 1456, 1688, 1694, 1702, 1732, 1805, 1930, 1962 and 1980 (Io = X-XI MCS) occurred mostly on NW-SE faults, and the relative hypocenters are concentrated within the upper 20 km of the crust. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW-SE trending faults and normal to dextral for the NE-SW trending structures. The available focal mechanisms of the largest events show normal solutions consistent with NE-SW extension of the chain. After the 1980 Irpinia large earthquake, the release of seismic energy in the Southern Apennines has been characterized by occurrence of moderate energy sequences of main shock-aftershocks type and swarm-type activity with low magnitude sequences. Low-magnitude (Md<5) historical and recent earthquakes, generally clustered in swarms, have commonly occurred along the NE-SW faults. This paper deals with integrated analysis of geological and geophysical data in GIS environment to identify surface, buried and hidden active faults and to characterize their geometry. In particular we have analyzed structural data, earthquake space distribution and gravimetric data. The main results of the combined analysis indicate good correlation between seismicity and Multiscale Derivative Analysis (MDA) lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) through the application of the DEXP method (Depth from Extreme Points).
NASA Astrophysics Data System (ADS)
Toda, S.; Ishimura, D.; Homma, S.; Mukoyama, S.; Niwa, Y.
2015-12-01
The Mw = 6.2 Nagano-ken-hokubu earthquake struck northern Nagano, central Japan, on November 22, 2014, and accompanied a 9-km-long surface rupture mostly along the previously mapped N-NW trending Kamishiro fault, one of the segments of the 150-km-long Itoigawa-Shizuoka Tectonic Line active fault system. While we mapped the rupture and measured vertical displacement of up to 80 cm at the field, interferometric synthetic aperture radar (InSAR) shows densely spaced fringes on the hanging wall side, suggesting westward or uplift movement associated with thrust faulting. The mainshock focal mechanism and aftershock hypocenters indicate the source fault dips to the east but the InSAR images cannot exactly differentiate between horizontal and vertical movements and also lose coherence within and near the fault zone itself. To reveal near-field deformation and shallow fault slip, here we demonstrate a differential LiDAR analysis using a pair of 1 m-resolution pre-event and post-event bare Earth digital terrain models (DTMs) obtained from commercial LiDAR provider. We applied particle image velocity (PIV) method incorporating elevation change to obtain 3-D vectors of coseismic displacements (Mukoyama, 2011, J. Mt. Sci). Despite sporadic noises mostly due to local landslides, we detected up to 1.5 m net movement at the tip of the hanging wall, more than the field measurement of 80 cm. Our result implies that a 9-km-long rupture zone is not a single continuous fault but composed of two bow-shaped fault strands, suggesting a combination of shallow fault dip and modest amount (< 1.5 m) of slip. Eastward movement without notable subsidence on the footwall also supports the low angle fault dip near the surface, and significant fault normal contraction, observed as buckled cultural features across the fault zone. Secondary features, such as subsidiary back-thrust faults confirmed at the field, are also visible as a significant contrast of vector directions and slip amounts.
NASA Astrophysics Data System (ADS)
Cogné, Nathan; Cobbold, Peter R.; Riccomini, Claudio; Gallagher, Kerry
2013-03-01
In southeastern Brazil, a series of onshore Tertiary basins provides good evidence for post-rift tectonic activity. So as better to constrain their tectonic setting, we have revisited outcrops in the Taubaté and Resende basins and have reinterpreted 11 seismic profiles of the Taubaté Basin. Where Eocene to Oligocene strata crop out, syn-sedimentary faults are common and their senses of slip are mainly normal. In contrast, for two outcrops in particular, where syn-sedimentary faults have put Precambrian crystalline basement against Eocene strata, senses of slip are strongly left-lateral, as well as normal. Thus we distinguish between thin-skinned and thick-skinned faulting. Furthermore, at four outcrops, Precambrian basement has overthrust Tertiary or Quaternary strata. On the seismic profiles, basal strata onlap basement highs. Structures and stratigraphic relationships are not typical of a rift basin. Although normal faults are common, they tend to be steeply dipping, their stratigraphic offsets are small (tens of metres) and the faults do not bound large stratigraphic wedges or tilted blocks. At the edges of the basin, Eocene or Oligocene strata dip basinward, have been subject to exhumation, and in places form gentle anticlines, so that we infer post-Oligocene inversion. We conclude that, after an earlier phase of deformation, probably during the Late Cretaceous, the Taubaté Basin formed under left-lateral transtension during the Palaeogene, but was subject to right-lateral transpression during the Neogene. Thus the principal directions of stress varied in time. Because they did so consistently with those of the adjacent regions, as well as those of the Incaic and Quechua phases of Andean orogeny, we argue that the Tertiary basins of southeast Brazil have resulted from reactivation of Precambrian shear zones under plate-wide stress.
Stein, R.S.; King, G.C.P.; Rundle, J.B.
1988-01-01
A strong test of our understanding of the earthquake cycle is the ability to reproduce extant faultbounded geological structures, such as basins and ranges, which are built by repeated cycles of deformation. Three examples are considered for which the structure and fault geometry are well known: the White Wolf reverse fault in California, site of the 1952 Kern County M=7.3 earthquake, the Lost River normal fault in Idaho, site of the 1983 Borah Peak M=7.0 earthquake, and the Cricket Mountain normal fault in Utah, site of Quaternary slip events. Basin stratigraphy and seismic reflection records are used to profile the structure, and coseismic deformation measured by leveling surveys is used to estimate the fault geometry. To reproduce these structures, we add the deformation associated with the earthquake cycle (the coseismic slip and postseismic relaxation) to the flexure caused by the observed sediment load, treating the crust as a thin elastic plate overlying a fluid substrate. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B; Faulds, James E
Detailed geologic analyses have elucidated the kinematics, stress state, structural controls, and past surface activity of a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Reservation, western Nevada. The Emerson Pass area resides near the boundary of the Basin and Range and Walker Lane provinces and at the western edge of a broad left step or relay ramp between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The step-over provides a structurally favorable setting for deep circulation of meteoric fluids. Strata in the area are comprised of late Miocene to Pliocene sedimentary rocks andmore » the middle Miocene Pyramid sequence mafic to intermediate volcanic rocks, all overlying Mesozoic metasedimentary and intrusive rocks. A thermal anomaly was discovered in Emerson Pass by use of 2-m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The 2-m temperature surveys define a north-south elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeast-striking normal fault. Although the active geothermal system is expressed solely as a soil heat anomaly, late Pleistocene travertine and tufa mounds, chalcedonic silica/calcite veins, and silica cemented Pleistocene lacustrine gravels indicate a robust geothermal system was active at the surface in the recent past. The geothermal system is controlled primarily by the broad step-over between two major range-bounding normal faults. In detail, the system likely results from enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and north-northeast-striking normal faults. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a west-northwest-trending (~280° azimuth) extension direction. Therefore, geothermal activity in the Emerson Pass area is probably hosted on north-to north-northeast striking normal faults.« less
Style of extensional tectonism during rifting, Red Sea and Gulf of Aden
Bohannon, R.G.
1989-01-01
Geologic and geophysical studies from the Arabian continental margin in the southern Red Sea and LANDSAT analysis of the northern Somalia margin in the Gulf of Aden suggest that the early continental rifts were long narrow features that formed by extension on closely spaced normal faults above moderate- to shallow-dipping detachments with break-away zones defining one rift flank and root zones under the opposing rift flank. The rift flanks presently form the opposing continental margins across each ocean basin. The detachment on the Arabian margin dips gently to the west, with a breakaway zone now eroded above the deeply dissected terrain of the Arabian escarpment. A model is proposed in which upper crustal breakup occurs on large detachment faults that have a distinct polarity. -from Author
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.; Dick, H. J.; Faul, U.
2005-12-01
Large degrees (up to 90°) of tectonic rotation may be the norm at slow-spreading, non-volcanic ridges. Vertically upwelling mantle beneath all mid-ocean ridges must undergo corner flow to move horizontally with the spreading plate. Because little or no volcanic crust is produced at some slow-spreading ridges, the uppermost lithospheric mantle must undergo this rotation in the regime of localized, rather than distributed deformation. Anomalous paleomagnetic inclinations in peridotite and gabbro cores drilled near the 15-20 Fracture Zone (Mid-Atlantic Ridge, ODP Leg 209) support such large rotations, with sub-Curie-temperature rotations up to 90° (Garces et al., 2004). Here, we present two end-member tectonic mechanisms, with supporting data from Leg 209 cores and bathymetry, to show how rotation is accomplished via extensional faults and shear zones: 1) long-lived detachment faults, and 2) multiple generations of high-angle normal faults. Detachment faults accommodate rotation by having a moderate to steep dip at depth, and rotating to horizontal through a rolling hinge as the footwall is tectonically denuded. Multiple generations of high-angle normal faults accommodate large rotations in a domino fashion; early faults become inactive when rotated to inopportune slip angles, and are cut by younger high-angle faults. Thus, each generation of high-angle faults accommodates part of the total rotation. There is likely a gradation between the domino and detachment mechanisms; transition from domino to detachment faulting occurs when a single domino fault remains active at inopportune slip angles and evolves into a detachment that accommodates all corner flow for that region. In both cases, the original attitude of layering within mantle-emplaced gabbro bodies must be significantly different than present day observed attitudes; sub-horizontal bodies may have been formed sub-vertically and vice-versa. Leg 209 cores record an average major brittle fault spacing of approximately 100 m, suggesting that the width of individual rotating fault blocks may be on the order of 100-200 m. Numerous fault bounded domino slices could therefore be formed within a 10km wide axial valley, with large rotations (and commensurate extension) leading to the exposure of 1km wide shallow-dipping fault surfaces, as are seen in the 15-20 FZ region bathymetry. The region's bathymetry is dominated by irregular, low-relief ridges that were likely formed by domino faulting of lithosphere with a small elastic thickness. The region contains relatively few corrugated detachment fault domes, suggesting that domino faulting may be the normal mode of lithospheric corner flow at non-volcanic ridges.
The 2016 Central Italy "reverse" seismic sequence
NASA Astrophysics Data System (ADS)
Chiaraluce, Lauro; Di Stefano, Raffaele; Tinti, Elisa; Scognamiglio, Laura; Michele, Maddalena; Cattaneo, Marco; De Gori, Pasquale; Chiarabba, Claudio; Monachesi, Giancarlo; Lombardi, Annamaria; Valoroso, Luisa; Latorre, Diana; Marzorati, Simone
2017-04-01
The 2016 seismic sequence consists so far of a series of moderate to large earthquakes that within three month's time activated a 60 km long segmented normal fault system located in the Central Italy and almost contiguous to the 1997 Colfiorito and 2009 L'Aquila normal fault systems. The first mainshock of the sequence occurred with MW6.0 on the 24th of August at 01:36 UTC close to the Accumoli and Amatrice villages producing evidence for centimetres' surface ruptures along the Mt. Vettore normal fault outcrop. Two months later on the 26th of October at 19:18 UTC another mainshock with MW5.9 occurred 25 km to the north activating another normal fault segment approximately on the along strike continuation of the first structure. Then, four days later on the 30th of October at 06:40 UTC the largest shock of the sequence with MW6.5 close to Norcia, in the middle part of the fault system activated two months before. We reconstruct the first order anatomy of the activated normal faults system, by analysing the spatial and temporal distribution of 25,354 aftershocks with 0.1
Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan
NASA Astrophysics Data System (ADS)
Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.
2017-12-01
The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface structures of the MTLFZ based on newly obtained data and previous research results. And then, we discuss how the relationship between the surface fault geometry and the deep subsurface structures changes through the MTLFZ which is under the heterogeneous regional stress condition.
NASA Astrophysics Data System (ADS)
Zhou, Zhiyuan; Lin, Jian
2018-06-01
We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending and normal fault characteristics together with geodynamic modeling. Most normal faults were initiated at the outer-rise region and grew toward the trench axis with strikes mostly subparallel to the local trench axis. The average trench relief and maximum fault throws were measured to be significantly greater in the southern region (5 km and 320 m, respectively) than the northern and central regions (2 km and 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading at the trench axis. The calculated strain rates and velocities revealed an array of normal fault-like shear zones in the upper plate, resulting in significant faulting-induced reduction in the deviatoric stresses. We then inverted for solutions that best fit the observed flexural bending and normal faulting characteristics, revealing normal fault penetration to depths of 21, 20, and 32 km beneath the seafloor for the northern, central, and southern regions, respectively, which is consistent with the observed depths of the relocated normal faulting earthquakes in the central Mariana Trench. The calculated deeper normal faults of the southern region might lead to about twice as much water being carried into the mantle per unit trench length than the northern and central regions. We further calculated that normal faulting has reduced the effective elastic plate thickness Te by up to 52% locally in the southern region and 33% in both the northern and central regions. The best-fitting solutions revealed a greater apparent angle of the pulling force in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which correlates with a general southward increase in the seismically-determined dip angle of the subducting slab along the Mariana Trench.
Seismic reflection study of the East Potrillo Fault, southwestern Dona Ana County, New Mexico
NASA Astrophysics Data System (ADS)
Carley, Shane Alan
The East Potrillo Mountains are located just north of the U.S.-Mexico border in southwestern Dona Ana County, New Mexico. Laramide and Rio Grande rift deformation has formed low-angle and high-angle Tertiary normal faults that are exposed in the area. Along the east flank of the range is the East Potrillo Fault identified on the surface as a north-striking scarp. Fault scarps associated with the East Potrillo Fault have been dated using slope degradation models and they range between 56 ka and 377 ka in age. Offset of geomorphic surfaces interpreted to be tectonic terraces records at least four earthquakes over that period of time, leading to an estimated recurrence interval of 33.5 kyr. Because of this paleoseismic history, the East Potrillo Fault potentially poses a significant seismic hazard to the over 2 million residents living in the border region. Our study presents two 2D seismic reflection profiles to give the first subsurface image of the East Potrillo Fault and potentially other subsidiary faults that have not broken the surface. Three faults are identified in the subsurface, two of which were previously unknown. The range bounding fault is identified 300 m west of observed fault scarps. The fault scarp is found to be formed from one of two secondary faults. It dips 75°s east and has a fault offset of 150 m. The other secondary fault is an antithetic fault dipping 75°s west and forms a graben within the EPF system. The vibroseis source data acquisition is found to be beneficial for characterizing unknown subsurface features.
NASA Astrophysics Data System (ADS)
Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry
2016-04-01
Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.
Deformation along the leading edge of the Maiella thrust sheet in central Italy
NASA Astrophysics Data System (ADS)
Aydin, Atilla; Antonellini, Marco; Tondi, Emanuele; Agosta, Fabrizio
2010-09-01
The eastern forelimb of the Maiella anticline above the leading edge of the underlying thrust displays a complex system of fractures, faults and a series of kink bands in the Cretaceous platform carbonates. The kink bands have steep limbs, display top-to-the-east shear, parallel to the overall transport direction, and are brecciated and faulted. A system of pervasive normal faults, trending sub-parallel to the strike of the mechanical layers, accommodates local extension generated by flexural slip. Two sets of strike-slip faults exist: one is left-lateral at a high angle to the main Maiella thrust; the other is right-lateral, intersecting the first set at an acute angle. The normal and strike-slip faults were formed by shearing across bed-parallel, strike-, and dip-parallel pressure solution seams and associated splays; the thrust faults follow the tilted mechanical layers along the steeper limb of the kink bands. The three pervasive, mutually-orthogonal pressure solution seams are pre-tilting. One set of low-angle normal faults, the oldest set in the area, is also pre-tilting. All other fault/fold structures appear to show signs of overlapping periods of activity accounting for the complex tri-shear-like deformation that developed as the front evolved during the Oligocene-Pliocene Apennine orogeny.
NASA Astrophysics Data System (ADS)
Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific
2015-04-01
IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and extensional fractures. Faults observed at sites 352-U1440 and 352-U1441 show mainly strike-slip. The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.
Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield
Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.
2001-01-01
Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.
Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada
Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.
2010-01-01
Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (<60°C) since the Cretaceous. We interpret these data to record rapid unroofing of the southern Ruby Mountains during slip on the west dipping brittle detachment between 17–16 and 10–12 Ma, followed by minor high-angle faulting. We interpret published Oligocene to early Miocene K-Ar biotite and zircon fission track dates from the Harrison Pass pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.
NASA Astrophysics Data System (ADS)
Lacroix, S.; Sawyer, E. W.; Chown, E. H.
1998-01-01
The Lake Abitibi area within the late Archaean Abitibi Greenstone Belt exhibits an interlinked plutonic, structural and metamorphic evolution that may characterize segmented strike-slip faults at upper-to-mid-crustal levels. Along the major, southeastward propagating Macamic D2 dextral strike-slip fault, Theological and preexisting D1 structural heterogeneities induced the development of NNW-trending dextral-oblique splays which evolved into an extensional trailing fan and created an extensional, NNW-dipping stepover. Magma flowing upwards from deeper parts of the Macamic Fault spread towards the southeast at upper crustal levels along both the oblique-slip and extensional D2 splays, and built several plutons in a pull-apart domain between 2696 and 2690 Ma. Different emplacement and material transfer mechanisms operated simultaneously in different parts of the system, including fault dilation and wedging, lateral expansion, wall-rock ductile flow and stoping. Transfer of movement between D2 splays occurred under ductile conditions during syn-emplacement, amphibolite-grade metamorphism (500-700 °C). During cooling (< 2690 Ma), narrower brittle-ductile zones of greenschist-grade shearing were concentrated along the pluton-wall rock contacts, but the extensional stepover locked since both normal and reverse movements occurred along NNW-dipping faults. Pluton emplacement, contact metamorphism and propagation of D2 faults appear to have been closely linked during the Superior Province-wide late transpressional event.
Focal mechanisms and tidal modulation for tectonic tremors in Taiwan
NASA Astrophysics Data System (ADS)
Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.
2015-12-01
Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.
NASA Astrophysics Data System (ADS)
Elifritz, E. A.; Johnson, S.; Beresh, S. C. M.; Mendez, K.; Mynatt, W. G.; Mayle, M.; Laó-Dávila, D. A.; Atekwana, E. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalindekafe, L.; Kalaguluka, D.; Salima, J.
2017-12-01
The NW-SE Bilila-Mtakataka Fault is suggested to be 100 km in length and is located in the Malawi Rift, a portion of the magma-poor Western Branch of the East African Rift System. This fault is exposed south of Lake Malawi and occurs close to the epicenter of the 1989 6.2 magnitude Salima Earthquake. Moreover, it traverses rocks with inherited Precambrian fabrics that may control the modern rifting process. The effect of the orientation of the pre-existing fabric on the formation of this potentially seismogenic fault has not been well studied. In this project, we measured the older foliations, dikes, and joints in addition to younger faults and striations to understand how the active faulting of the Bilila-Mtakataka Fault is affected by the older fabric. The Fault is divided into 5 segments and 4 linkage zones. All four linkage zones were studied in detail and a Brunton compass was used to determine orientations of structures. The linkage zone between segments 1 and 2 occurs between a regional WNW-ESE joint and the border fault, which is identified by a zig-zag pattern in SRTM data. Precambrian gneiss is cut by oblique steeply-dipping faults in this area. Striations and layer offsets suggest both right-lateral and normal components. This segment strikes NE-SW, in contrast with the NW-SE average strike of the entire fault. The foliations, faults, dikes, and joints collected in this area strike NE-SW, therefore running parallel to the segment. The last 3 southern linkage zones all strike NW-SE and the linkage zone between segment 3 and 4 has a steep dip angle. Dip angles of structures vary from segment to segment, having a wide range of results. Nonetheless, all four linkage zones show structures striking parallel to its segment direction. The results show that pre-existing meso-scale and regional structures and faults strike parallel to the fault scarp. The parallelism of the structures suggest that they serve as planes of weakness, controlling the localization of extension expressed as the border fault. Thus, further studies of the Precambrian foliation in the subsurface are necessary to understand the characterization of the fault where it is unexposed at depth.
Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander
2015-01-01
We systematically mapped (scales >1:500) the surface rupture of the 4 April 2010 Mw (moment magnitude) 7.2 El Mayor-Cucapah earthquake through the Sierra Cucapah (Baja California, northwestern Mexico) to understand how faults with similar structural and lithologic characteristics control rupture zone fabric, which is here defined by the thickness, distribution, and internal configuration of shearing in a rupture zone. Fault zone thickness and master fault dip are strongly correlated with many parameters of rupture zone fabric. Wider fault zones produce progressively wider rupture zones and both of these parameters increase systematically with decreasing dip of master faults, which varies from 20° to 90° in our dataset. Principal scarps that accommodate more than 90% of the total coseismic slip in a given transect are only observed in fault sections with narrow rupture zones (<25 m). As rupture zone thickness increases, the number of scarps in a given transect increases, and the scarp with the greatest relative amount of coseismic slip decreases. Rupture zones in previously undeformed alluvium become wider and have more complex arrangements of secondary fractures with oblique slip compared to those with pure normal dip-slip or pure strike-slip. Field relations and lidar (light detection and ranging) difference models show that as magnitude of coseismic slip increases from 0 to 60 cm, the links between kinematically distinct fracture sets increase systematically to the point of forming a throughgoing principal scarp. Our data indicate that secondary faults and penetrative off-fault strain continue to accommodate the oblique kinematics of coseismic slip after the formation of a thoroughgoing principal scarp. Among the widest rupture zones in the Sierra Cucapah are those developed above buried low angle faults due to the transfer of slip to widely distributed steeper faults, which are mechanically more favorably oriented. The results from this study show that the measureable parameters that define rupture zone fabric allow for testing hypotheses concerning the mechanics and propagation of earthquake ruptures, as well as for siting and designing facilities to be constructed in regions near active faults.
The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece
NASA Astrophysics Data System (ADS)
Taylor, Brian; Weiss, Jonathan R.; Goodliffe, Andrew M.; Sachpazi, Maria; Laigle, Mireille; Hirn, Alfred
2011-06-01
A multichannel seismic and bathymetry survey of the central and eastern Gulf of Corinth (GoC), Greece, reveals the offshore fault geometry, seismic stratigraphy and basin evolution of one of Earths most active continental rift systems. Active, right-stepping, en-echelon, north-dipping border faults trend ESE along the southern Gulf margin, significantly overlapping along strike. The basement offsets of three (Akrata-Derveni, Sithas and Xylocastro) are linked. The faults are biplanar to listric: typically intermediate angle (˜35° in the centre and 45-48° in the east) near the surface but decreasing in dip and/or intersecting a low- or shallow-angle (15-20° in the centre and 19-30° in the east) curvi-planar reflector in the basement. Major S-dipping border faults were active along the northern margin of the central Gulf early in the rift history, and remain active in the western Gulf and in the subsidiary Gulf of Lechaio, but unlike the southern border faults, are without major footwall uplift. Much of the eastern rift has a classic half-graben architecture whereas the central rift has a more symmetric w- or u-shape. The narrower and shallower western Gulf that transects the >40-km-thick crust of the Hellenides is associated with a wider distribution of overlapping high-angle normal faults that were formerly active on the Peloponnesus Peninsula. The easternmost sector includes the subsidiary Gulfs of Lechaio and Alkyonides, with major faults and basement structures trending NE, E-W and NW. The basement faults that control the rift architecture formed early in the rift history, with little evidence (other than the Vrachonisida fault along the northern margin) in the marine data for plan view evolution by subsequent fault linkage. Several have maximum offsets near one end. Crestal collapse graben formed where the hanging wall has pulled off the steeper onto the shallower downdip segment of the Derveni Fault. The dominant strikes of the Corinth rift faults gradually rotate from 090-120° in the basement and early rift to 090-100° in the latest rift, reflecting a ˜10° rotation of the opening direction to the 005° presently measured by GPS. The sediments include a (locally >1.5-km-) thick, early-rift section, and a late-rift section (also locally >1.5-km-thick) that we subdivide into three sequences and correlate with seven 100-ka glacio-eustatic cycles. The Gulf depocentre has deepened through time (currently >700 mbsl) as subsidence has outpaced sedimentation. We measure the minimum total horizontal extension across the central and eastern Gulf as varying along strike between 4 and 10 km, and estimate full values of 6-11 km. The rift evolution is strongly influenced by the inherited basement fabric. The regional NNW structural fabric of the Hellenic nappes changes orientation to ESE in the Parnassos terrane, facilitating the focused north-south extension observed offshore there. The basement-penetrating faults lose seismic reflectivity above the 4-14-km-deep seismogenic zone. Multiple generations and dips of normal faults, some cross-cutting, accommodate extension beneath the GoC, including low-angle (15-20°) interfaces in the basement nappes. The thermally cool forearc setting and cross-orogen structures unaccompanied by magmatism make this rift a poor analogue and unlikely precursor for metamorphic core complex formation.
NASA Astrophysics Data System (ADS)
Warsitzka, M.; Kukowski, N.; Kley, J.
2018-04-01
Salt flow induced by subsalt normal faulting is mainly controlled by tilting of the salt layer, the amount of differential loading due to syn-kinematic deposition, and tectonic shearing at the top or the base of the salt layer. Our study addresses the first two mechanisms and aims to examine salt flow patterns above a continuously moving subsalt normal fault and beneath a syn-kinematic minibasin. In such a setting, salt either tends to flow down towards the basin centre driven by its own weight or is squeezed up towards the footwall side owing to loading differences between the minibasin and the region above the footwall block. Applying isostatic balancing in analytical models, we calculated the steady-state flow velocity in a salt layer. This procedure gives insights into (1) the minimum vertical offset required for upward flow to occur, (2) the magnitude of the flow velocity, and (3) the average density of the supra-salt cover layer at the point at which upward flow starts. In a sensitivity study, we examined how the point of flow reversal and the velocity patterns are influenced by changes of the salt and cover layer thickness, the geometry of the cover flexure, the dip of the subsalt fault, compaction parameters of the supra-salt cover, the salt viscosity and the salt density. Our model results reveal that in most geological scenarios, salt flow above a continuously displacing subsalt normal fault goes through an early phase of downward flow. At sufficiently high fault offset in the range of 700-2600 m, salt is later squeezed upward towards the footwall side. This flow reversal occurs at smaller vertical fault displacement, if the thickness of the pre-kinematic layer is larger, the sedimentation rate of the syn-kinematic cover is higher, the compaction coefficient of cover sediments (i.e. the density increase with depth) is larger or the average density of the salt is lower. Other geometrical parameters such as the width of the cover monocline, the dip of the basement fault or the thickness of the salt layer have no significant influence on the point of reversal, but modify the velocity of the salt flow.
NASA Astrophysics Data System (ADS)
Sayab, Mohammad; Khan, Muhammad Asif
2010-10-01
Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.
NASA Astrophysics Data System (ADS)
Charalambakis, E.; Hauber, E.; Knapmeyer, M.; Grott, M.; Gwinner, K.
2007-08-01
For Earth, data sets and models have shown that for a fault loaded by a constant remote stress, the maximum displacement on the fault is linearly related to its length by d = gamma · l [1]. The scaling and structure is self-similar through time [1]. The displacement-length relationship can provide useful information about the tectonic regime.We intend to use it to estimate the seismic moment released during the formation of Martian fault systems and to improve the seismicity model [2]. Only few data sets have been measured for extraterrestrial faults. One reason is the limited number of reliable topographic data sets. We used high-resolution Digital Elevation Models (DEM) [3] derived from HRSC image data taken from Mars Express orbit 1437. This orbit covers an area in the Acheron Fossae region, a rift-like graben system north of Olympus Mons with a "banana"-shaped topography [4]. It has a fault trend which runs approximately WNW-ESE. With an interactive IDL-based software tool [5] we measured the fault length and the vertical offset for 34 faults. We evaluated the height profile by plotting the fault lengths l vs. their observed maximum displacement (dmax-model). Additionally, we computed the maximum displacement of an elliptical fault scarp where the plane has the same area as in the observed case (elliptical model). The integration over the entire fault length necessary for the computation of the area supresses the "noise" introduced by local topographic effects like erosion or cratering. We should also mention that fault planes dipping 60 degree are usually assumed for Mars [e.g., 6] and even shallower dips have been found for normal fault planes [7]. This dip angle is used to compute displacement from vertical offset via d = h/(h*sinα), where h is the observed topographic step height, and ? is the fault dip angle. If fault dip angles of 30 degree are considered, the displacement differs by 40% from the one of dip angles of 60 degree. Depending on the data quality, especially the lighting conditions in the region, different errors can be made by determining the various values. Based on our experiences, we estimate that the error measuring the length of the fault is smaller than 10% and that the measurement error of the offset is smaller than 5%. Furthermore the horizontal resolution of the HRSC images is 12.5 m/pixel or 25 m/pixel and of the DEM derived from HRSC images 50 m/pixel because of re-sampling. That means that image resolution does not introduce a significant error at fault lengths in kilometer range. For the case of Mars it is known that in the growth of fault populations linkage is an essential process [8]. We obtained the d/l-values from selected examples of faults that were connected via a relay ramp. The error of ignoring an existing fault linkage is 20% to 50% if the elliptical fault model is used and 30% to 50% if only the dmax value is used to determine d l . This shows an advantage of the elliptic model. The error increases if more faults are linked, because the underestimation of the relevant length gets worse the longer the linked system is. We obtained a value of gamma=d/l of about 2 · 10-2 for the elliptic model and a value of approximately 2.7 · 10-2 for the dmax-model. The data show a relatively large scatter, but they can be compared to data from terrestrial faults ( d/l= ~1 · 10-2...5 · 10-2; [9] and references therein). In a first inspection of the Acheron Fossae 2 region in the orbit 1437 we could confirm our first observations [10]. If we consider fault linkage the d/l values shift towards lower d/l-ratios, since linkage means that d remains essentially constant, but l increases significantly. We will continue to measure other faults and obtain values for linked faults and relay ramps. References: [1] Cowie, P. A. and Scholz, C. H. (1992) JSG, 14, 1133-1148. [2] Knapmeyer, M. et al. (2006) JGR, 111, E11006. [3] Neukum, G. et al. (2004) ESA SP-1240, 17-35. [4] Kronberg, P. et al. (2007) J. Geophys. Res., 112, E04005, doi:10.1029/2006JE002780. [5] Hauber, E. et al. (2007) LPSC, XXXVIII, abstract 1338. [6] Wilkins, S. J. et al. (2002) GRL, 29, 1884, doi: 10.1029/2002GL015391. [7] Fueten, F. et al. (2007) LPSC, XXXVIII, abstract 1388. [8] Schultz, R. A. (2000) Tectonophysics, 316, 169-193. [9] Schultz, R. A. et al. (2006) JSG, 28, 2182-2193. [10] Hauber, E. et al. (2007) 7th Mars Conference, submitted.
NASA Astrophysics Data System (ADS)
Janecke, Susanne U.
1992-12-01
Cenozoic crustal extension in east central Idaho began about 50 Ma and continues at present. Three distinct episodes characterize one of the longest intervals of Cenozoic extension yet documented in the North America Cordillera. Crosscutting relationships between NE striking normal faults and volcanic rocks, regional dike trends, and slickenline data indicate NW-SE extension during peak Eocene volcanism about 49-48 Ma (episode 1). NE striking normal faults, with at most a few kilometers of offset, formed in an intraarc setting during rapid NE subduction of oceanic plates under the Pacific Northwest. North to NNW striking and west dipping normal faults, with offsets up to 10-15 km, formed during a younger middle Eocene to Oligocene basin-forming event (episode 2). This newly documented episode was the most important extensional event in east central Idaho and began during the waning phases of Challis volcanism. WSW-ENE to SW-NE extension during episode 2 was nearly perpendicular to the extension direction during episode 1 and perpendicular to the grain of the Idaho-Montana fold and thrust belt. The flip in extension direction between episode 1 and episode 2 is tightly constrained by 40Ar/39Ar age determinations to have taken place at the end of Eocene Challis magmatism about 46-48 Ma. I infer that plate boundary forces controlled the geometry of normal faults and dikes during episode 1, whereas internal stresses within previously thickened crust drove major SW to WSW directed extension during episode 2. A drop in convergence rates between the North American and Farallon plates between 59 Ma and 42 Ma (Stock and Molnar, 1988) may coincide with the onset of gravitational spreading during episode 2 and may also explain the abrupt end of Eocene magmatism in the Pacific Northwest. Miocene and younger SW dipping Basin and Range faults (episode 3) extended the region in a NE-SW direction. Although faults formed during episode 2 and episode 3 are not parallel, slickenlines indicate only small changes in slip vector trends, suggesting little rotation of the extension direction in east central Idaho since 46 Ma.
Structure of Kilauea's southwest rift zone and western south flank defined by relocated earthquakes
NASA Astrophysics Data System (ADS)
Rinard, Bethany D.
This study is the first detailed seismic investigation of the southwest rift and western south flank of Kilauea Volcano. Earthquakes outline the tectonic and magmatic systems of the volcano. In this study, more than 4800 earthquakes from the years 1981--2001 were relocated with a double-difference method, and almost 500 were relocated with cross-correlation. The result is a much-improved image of Kilauea's south flank structure. The shallowest of the earthquakes on Kilauea (<5km) are usually related to magma movement, and occur almost exclusively in the actively intruded rift. The few tectonic earthquakes that occur at this depth are along the Koae and Hilina Fault systems. Focal mechanisms indicate that the shallow events on the Hilina system have [normal, right-lateral] oblique-slip motion. Beneath the entire south flank are earthquakes that occur on a decollement, located at a depth of 7--10km. The inland-dipping decollement structure is clearly imaged with this new data set. Earthquakes on the volcano's south flank normal faults appear to extend downward to the decollement. Earthquakes at intermediate depths image the decollement, a plane that dips inland. This is the boundary between the volcano and the old oceanic crust beneath it. Movement on faults at decollement depths of 7--10km have [right-lateral thrust] oblique-slip motion. When intrusions occur in the rift zones, the flank is forced seaward along the decollement. Since the decollement dips inland, the south flank must move up an incline as it slides seaward. Hawaii also experiences deep (>25km) earthquakes, which are the most intriguing events in this study. These earthquakes are significant because the Moho is located at a depth of 13--15km, so they are clearly occurring in the mantle. The deep events examined in this study are tectonic earthquakes, not attributable to melt migration. A high strain rate in the mantle, largely due to the geologically rapid formation of the island that has quickly increased the load on the underlying mantle, may account for the occurrence of these deep earthquakes. Focal mechanisms indicate [normal, right-lateral] oblique-slip motion on faults below 25km depth.
NASA Astrophysics Data System (ADS)
WANG, X.; Wei, S.; Bradley, K. E.
2017-12-01
Global earthquake catalogs provide important first-order constraints on the geometries of active faults. However, the accuracies of both locations and focal mechanisms in these catalogs are typically insufficient to resolve detailed fault geometries. This issue is particularly critical in subduction zones, where most great earthquakes occur. The Slab 1.0 model (Hayes et al. 2012), which was derived from global earthquake catalogs, has smooth fault geometries, and cannot adequately address local structural complexities that are critical for understanding earthquake rupture patterns, coseismic slip distributions, and geodetically monitored interseismic coupling. In this study, we conduct careful relocation and waveform modeling of earthquake source parameters to reveal fault geometries in greater detail. We take advantage of global data and conduct broadband waveform modeling for medium size earthquakes (M>4.5) to refine their source parameters, which include locations and fault plane solutions. The refined source parameters can greatly improve the imaging of fault geometry (e.g., Wang et al., 2017). We apply these approaches to earthquakes recorded since 1990 in the Mentawai region offshore of central Sumatra. Our results indicate that the uncertainty of the horizontal location, depth and dip angle estimation are as small as 5 km, 2 km and 5 degrees, respectively. The refined catalog shows that the 2005 and 2009 "back-thrust" sequences in Mentawai region actually occurred on a steeply landward-dipping fault, contradicting previous studies that inferred a seaward-dipping backthrust. We interpret these earthquakes as `unsticking' of the Sumatran accretionary wedge along a backstop fault that separates accreted material of the wedge from the strong Sunda lithosphere, or reactivation of an old normal fault buried beneath the forearc basin. We also find that the seismicity on the Sunda megathrust deviates in location from Slab 1.0 by up to 7 km, with along strike variation. The refined megathrust geometry will improve our understanding of the tectonic setting in this region, and place further constraints on rupture processes of the hazardous megathrust.
Lindsey, D.A.
1998-01-01
Laramide structure of the central Sangre de Cristo Mountains (Culebra Range) is interpreted as a system of west-dipping, basement-involved thrusts and reverse faults. The Culebra thrust is the dominant structure in the central part of the range; it dips 30 -55?? west and brings Precambrian metamorphic base-ment rocks over unmetamorphosed Paleozoic rocks. East of the Culebra thrust, thrusts and reverse faults break the basement and overlying cover rocks into north-trending fault blocks; these boundary faults probably dip 40-60?? westward. The orientation of fault slickensides indicates oblique (northeast) slip on the Culebra thrust and dip-slip (ranging from eastward to northward) movement on adjacent faults. In sedimentary cover rocks, east-vergent anticlines overlie and merge with thrusts and reverse faults; these anticlines are interpreted as fault-propagation folds. Minor east-dipping thrusts and reverse faults (backthrusts) occur in both the hanging walls and footwalls of thrusts. The easternmost faults and folds of the Culebra Range form a continuous structural boundary between the Laramide Sangre de Cristo highland and the Raton Basin. Boundary structures consist of west-dipping frontal thrusts flanked on the basinward side by poorly exposed, east-dipping backthrusts. The backthrusts are interpreted to overlie structural wedges that have been emplaced above blind thrusts in the basin margin. West-dipping frontal thrusts and blind thrusts are interpreted to involve basement, but backthrusts are rooted in basin-margin cover rocks. At shallow structural levels where erosion has not exposed a frontal thrust, the structural boundary of the basin is represented by an anticline or monocline. Based on both regional and local stratigraphic evidence, Laramide deformation in the Culebra Range and accompanying synorogenic sedimentation in the western Raton Basin probably took place from latest Cretaceous through early Eocene time. The earliest evidence of uplift and erosion of a highland is the appearance of abundant feldspar in the Late Cretaceous Vermejo Formation. Above the Vermejo, unconformities overlain by conglomerate indicate continued thrusting and erosion of highlands from late Cretaceous (Raton) through Eocene (Cuchara) time. Eocene alluvial-fan conglomerates in the Cuchara Formation may represent erosion of the Culebra thrust block. Deposition in the Raton Basin probably shifted north from New Mexico to southern Colorado from Paleocene to Eocene time as movement on individual thrusts depressed adjacent segments of the basin.
Sudden aseismic fault slip on the south flank of Kilauea volcano.
Cervelli, Peter; Segall, Paul; Johnson, Kaj; Lisowski, Michael; Miklius, Asta
2002-02-28
One of the greatest hazards associated with oceanic volcanoes is not volcanic in nature, but lies with the potential for catastrophic flank failure. Such flank failure can result in devastating tsunamis and threaten not only the immediate vicinity, but coastal cities along the entire rim of an ocean basin. Kilauea volcano on the island of Hawaii, USA, is a potential source of such flank failures and has therefore been monitored by a network of continuously recording geodetic instruments, including global positioning system (GPS) receivers, tilt meters and strain meters. Here we report that, in early November 2000, this network recorded transient southeastward displacements, which we interpret as an episode of aseismic fault slip. The duration of the event was about 36 hours, it had an equivalent moment magnitude of 5.7 and a maximum slip velocity of about 6[?]cm per day. Inversion of the GPS data reveals a shallow-dipping thrust fault at a depth of 4.5[?]km that we interpret as the down-dip extension of the Hilina Pali--Holei Pali normal fault system. This demonstrates that continuously recording geodetic networks can detect accelerating slip, potentially leading to warnings of volcanic flank collapse.
NASA Astrophysics Data System (ADS)
Xuan, Songbai; Shen, Chongyang; Shen, Wenbin; Wang, Jiapei; Li, Jianguo
2018-06-01
The crustal deformation beneath the Chuan-Dian rhombic block (CDB) and surrounding regions has been studied in geological and geodetic methods, and provide important insights into the kinematics and dynamics about the clockwise movement of this tectonic block. In this work, we present images of the normalized full gradient (NFG) of the Bouguer gravity anomalies from five gravity profiles across the boundary faults of the CDB measured in recent years, and investigate the distribution characteristics of the crustal anomalous bodies along the profiles. Firstly, an anomalous body with eastward dipping exist beneath the Xianshuihe fault, suggesting that crustal mass move to east. Secondly, near the Xiaojiang fault, two anomalous bodies dip westward with depth increasing. The inferred movement direction of the north one is from west to east, and the south one is from east to west. Thirdly, anomalous bodies on the northeast and southwest sides of the Red River fault suggest the directions of crustal movement is from northeast to southwest. These results are also consistent with GPS solutions, and provide gravity evidence for crustal deformation of the CDB with clockwise rotation.
A study of microseismicity in northern Baja California, Mexico
NASA Technical Reports Server (NTRS)
Johnson, T. L.; Koczynski, T.; Madrid, J.
1976-01-01
Five microearthquake instruments were operated for 2 months in 1974 in a small mobile array deployed at various sites near the Agua Blanca and San Miguel faults. An 80-km-long section of the San Miguel fault zone is presently active seismically, producing the vast majority of recorded earthquakes. Very low activity was recorded on the Agua Blanca fault. Events were also located near normal faults forming the eastern edge of the Sierra Juarez suggesting that these faults are active. Hypocenters on the San Miguel fault range in depth from 0 to 20 km although two-thirds are in the upper 10 km. A composite focal mechanism showing a mixture of right-lateral and dip slip, east side up, is similar to a solution obtained for the 1956 San Miguel earthquake which proved consistent with observed surface deformation.
Focal mechanisms and the stress regime in NE and SW Tanzania, East Africa
NASA Astrophysics Data System (ADS)
Brazier, Richard A.; Nyblade, Andrew A.; Florentin, Juliette
2005-07-01
We report 12 new focal mechanisms from earthquakes in NE and SW Tanzania where the stress regime within the East African rift system is not well constrained. Focal mechanisms for events at the intersection of the Lake Tanganyika and Rukwa rifts in SW Tanzania indicate a complicated stress pattern with possible dextral strike-slip motion on some faults but oblique motion on others (either sinistral on NW striking faults or dextral on NE striking faults). Within the Rukwa rift, focal mechanisms indicate normal dip-slip motion with NE-SW opening. In NE Tanzania where the Eastern rift impinges on the margin of the Tanzania Craton, fault motions are consistent with a zone of distributed block faults and sub E-W extension. All twelve earthquakes likely nucleated within the crust.
On the use of imaginary faults in palaeostress analysis
NASA Astrophysics Data System (ADS)
Shan, Yehua; Liang, Xinquan
2017-11-01
The imaginary fault refers to the counterpart of a certain given fault that has a similar expression about the Wallace-Bott hypothesis. It is included to further reduce the feasible fields for the principal stress directions using the right dihedra method. The given fault and its imaginary fault have a similar dip-slip sense under the extensional or compressional regime but, as proved in this paper, a different dip-slip sense under the strike-slip regime. Their relation in dip-slip sense does no change with the rotation of the coordinate system, thus making possible the general use in the reduction of the imaginary faults under any tectonic regime. A procedure for this use is proposed and applied to a real example to demonstrate the feasibility of this method.
NASA Astrophysics Data System (ADS)
De Matteo, Ada; Massa, Bruno; Milano, Girolamo; D'Auria, Luca
2018-01-01
In this paper we investigate the border between the Sannio and Irpinia seismogenic regions, a sector of the southern Apennine chain considered among the most active seismic areas of the Italian peninsula, to shed further light on its complex seismotectonic setting. We integrated recent seismicity with literature data. A detailed analysis of the seismicity that occurred in the 2013-2016 time interval was performed. The events were relocated, after manual re-picking, using different approaches. To retrieve information about the stress field active in the area, inversion of Fault Plane Solutions was also carried out. Hypocentral distribution of the relocated events (ML ≤ 3.5), whose depth is included between 5 and 25 km with the deepest ones located in the NW sector of the study area, shows a different pattern between the northern sector and the southern one. The computed Fault Plane Solutions can be grouped in three depth ranges: < 12 km, dominated by normal dip-slip kinematics; 12-18 km, characterized by normal dip-slip and strike-slip kinematics; > 18 km, dominated by strike-slip kinematics. Stress field inversion across the whole area shows that we are dealing with an heterogeneous set of data, apparently governed by distinct stress fields. We built an upper crustal model profile through integration of geological data, well logs and seismic tomographic profiles. Our results suggest the co-existence of different tectonic styles at distinct crustal depths: the upper crust seems to be affected mostly by normal faulting, whereas strike-slip faulting prevails in the intermediate and lower crust. We infer about the existence of a transitional volume, located between 12 and 18 km depth, between the Sannio and Irpinia regions, acting as a vertical transfer zone.
Fluid Pressure in the Shallow Plate Interface at the Nankai Trough Subduction Zone
NASA Astrophysics Data System (ADS)
Tobin, H. J.; Saffer, D.
2003-12-01
The factors controlling the occurrence, magnitude, and other characteristics of great earthquakes is a fundamental outstanding question in fault physics. Pore fluid pressure is perhaps the most critical yet poorly known parameter governing the strength and seismogenic character of plate boundary faults, but unfortunately cannot be directly inferred through available geophysical sensing methods. Moreover, true in situ fluid pressure has proven difficult to measure even in boreholes. At the Nankai Trough, several hundred meters of sediment are subducted beneath the frontal portion of the accretionary prism. The up-dip portion of the plate interface is therefore hosted in these fine-grained marine sedimentary rocks. ODP Leg 190 and 196 showed that these rapidly-loaded underthrust sediments are significantly overpressured near the deformation front. Here, we attempt to quantitatively infer porosity, pore pressure, and effective normal stress at the plate interface at depths currently inaccessible to drilling. Using seismic reflection interval velocity calibrated at the boreholes to porosity, we quantitatively infer pore pressure to ˜ 20 km down-dip of the deformation front, to a plate interface depth of ˜ 6 km. We have developed a Nankai-specific velocity-porosity transform using ODP cores and logs. We use this function to derive a porosity profile for each of two down-dip seismic sections extracted from a 3-D dataset from the Cape Muroto region. We then calculate pore fluid pressure and effective vertical (fault-normal) stress for the underthrust sediment section using a compaction disequilibrium approach and core-based consolidation test data. Because the pore fluid pressure at the fault interface is likely controlled by that of the top of the underthrust section, this calculation represents a quantitative profile of effective stress and pore pressure at the plate interface. Results show that seismic velocity and porosity increase systematically downdip in the underthrust section, but the increase is suppressed relative to that expected from normally consolidating sediments. The computed pore pressure increases landward from an overpressure ratio (λ * = hydrostatic pressure divided by the lithostatic overburden) of ˜ 0.6 at the deformation front to ˜ 0.77 where sediments have been subducted 15 km. The results of this preliminary analysis suggest that a 3-dimensional mapping of predicted effective normal stress in the seismic data volume is possible.
NASA Astrophysics Data System (ADS)
Vannoli, Paola; Bernardi, Fabrizio; Palombo, Barbara; Vannucci, Gianfranco; Console, Rodolfo; Ferrari, Graziano
2016-11-01
On 21 August 1962 an earthquake sequence set off near the city of Benevento, in Italy's southern Apennines. Three earthquakes, the largest having Mw 6.1, struck virtually the same area in less than 40 min (at 18:09, 18:19 and 18:44 UTC, respectively). Several historical earthquakes hit this region, and its seismic hazard is accordingly among the highest countrywide. Although poorly understood in the past, the seismotectonics of this region can be revealed by the 1962 sequence, being the only significant earthquake in the area for which modern seismograms are available. We determine location, magnitude, and nodal planes of the first event (18:09 UTC) of the sequence. The focal mechanism exhibits dominant strike-slip rupture along a north-dipping, E-W striking plane or along a west-dipping, N-S striking plane. Either of these solutions is significantly different from the kinematics of the typical large earthquakes occurring along the crest of the Southern Apennines, such as the 23 November 1980 Irpinia earthquake (Mw 6.9), caused by predominant normal faulting along NW-SE-striking planes. The epicentre of the 21 August 1962, 18:09 event is located immediately east of the chain axis, near one of the three north-dipping, E-W striking oblique-slip sources thought to have caused one of the three main events of the December 1456 sequence (Io XI MCS), the most destructive events in the southern Apennines known to date. We maintain that the 21 August 1962, 18:09 earthquake occurred along the E-W striking fault system responsible for the southernmost event of the 1456 sequence and for two smaller but instrumentally documented events that occurred on 6 May 1971 (Mw 5.0) and 27 September 2012 (Mw 4.6), further suggesting that normal faulting is not the dominant tectonic style in this portion of the Italian peninsula.
Smith, D.E.; Aagaard, Brad T.; Heaton, T.H.
2005-01-01
We investigate whether a shallow-dipping thrust fault is prone to waveslip interactions via surface-reflected waves affecting the dynamic slip. If so, can these interactions create faults that are opaque to radiated energy? Furthermore, in this case of a shallow-dipping thrust fault, can incorrectly assuming a transparent fault while using dislocation theory lead to underestimates of seismic moment? Slip time histories are generated in three-dimensional dynamic rupture simulations while allowing for varying degrees of wave-slip interaction controlled by fault-friction models. Based on the slip time histories, P and SH seismograms are calculated for stations at teleseismic distances. The overburdening pressure caused by gravity eliminates mode I opening except at the tip of the fault near the surface; hence, mode I opening has no effect on the teleseismic signal. Normalizing by a Haskell-like traditional kinematic rupture, we find teleseismic peak-to-peak displacement amplitudes are approximately 1.0 for both P and SH waves, except for the unrealistic case of zero sliding friction. Zero sliding friction has peak-to-peak amplitudes of 1.6 for P and 2.0 for SH waves; the fault slip oscillates about its equilibrium value, resulting in a large nonzero (0.08 Hz) spectral peak not seen in other ruptures. These results indicate wave-slip interactions associated with surface-reflected phases in real earthquakes should have little to no effect on teleseismic motions. Thus, Haskell-like kinematic dislocation theory (transparent fault conditions) can be safety used to simulate teleseismic waveforms in the Earth.
Crustal-scale tilting of the central Salton block, southern California
Dorsey, Rebecca; Langenheim, Victoria
2015-01-01
The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.
NASA Astrophysics Data System (ADS)
Magee, Craig; McDermott, Kenneth G.; Stevenson, Carl T. E.; Jackson, Christopher A.-L.
2014-05-01
Continental rifting is commonly accommodated by the nucleation of normal faults, slip on pre-existing fault surfaces and/or magmatic intrusion. Because crystallised igneous intrusions are pervasive in many rift basins and are commonly more competent (i.e. higher shear strengths and Young's moduli) than the host rock, it is theoretically plausible that they locally intersect and modify the mechanical properties of pre-existing normal faults. We illustrate the influence that crystallised igneous intrusions may have on fault reactivation using a conceptual model and observations from field and subsurface datasets. Our results show that igneous rocks may initially resist failure, and promote the preferential reactivation of favourably-oriented, pre-existing faults that are not spatially-associated with solidified intrusions. Fault segments situated along strike from laterally restricted fault-intrusion intersections may similarly be reactivated. This spatial and temporal control on strain distribution may generate: (1) supra-intrusion folds in the hanging wall; (2) new dip-slip faults adjacent to the igneous body; or (3) sub-vertical, oblique-slip faults oriented parallel to the extension direction. Importantly, stress accumulation within igneous intrusions may eventually initiate failure and further localise strain. The results of our study have important implications for the structural of sedimentary basins and the subsurface migration of hydrocarbons and mineral-bearing fluids.
Page, W.R.; Harris, A.G.; Poole, F.G.; Repetski, J.E.
2003-01-01
New geologic mapping and fossil data in the vicinity of Rancho Las Norias, 30 km east of Hermosillo, Sonora, Mexico, show that rocks previously mapped as Precambrian instead are Paleozoic. Previous geologic maps of the Rancho Las Norias area show northeast-directed, southwest-dipping reverse or thrust faults deforming both Precambrian and Paleozoic rocks. The revised stratigraphy requires reinterpretation of some of these faults as high-angle normal or oblique-slip faults and the elimination of other faults. We agree with earlier geologic map interpretations that compressional structures have affected the Paleozoic rocks in the area, but our mapping suggests that the direction of compression is from southeast to northwest. Published by Elsevier Ltd.
Geology of the region of Guadalajara, Mexico, and its relationships with processes of subsidence
NASA Astrophysics Data System (ADS)
Suarez-Plascencia, C.; Delgado-Argote, L. A.; Nuñez-Cornu, F. J.; Sanchez, J. J.
2008-12-01
The city of Guadalajara, Mexico, began an accelerated urban growth in early 1950. During a span of 25 years a large number of gullies were artificially filled, with the aim of incorporating new areas for urbanization, particularly in the areas north and west of the city. These gullies originally formed a complex dendritic-type system, whose evolution may be associated with faults or fracture zones whose current identification are only possible based on escarpments along the Canyon of the Rio Grande de Santiago (CRGS), north of Guadalajara. Reports of affectations documented in the 80's described subsidence in buildings and infrastructure, a process that has been continued during 2008. We present the results of work done in the CRGS, which is a tectonic erosive-depression with an average depth of 500 m and exhibits a sequence of volcanic and sedimentary deposits with rapid lateral facies changes. The stratigraphic column spans a 15 km-long section along the Matatlán-Arcediano road, and, from top to bottom contains: 1) Unconsolidated pumice and tuffs with an average thickness of 12 m; 2) basaltic lavas with average thickness of 60 m; 3) the San Gaspar ignimbrite; 4) fluvial- sedimentary deposits with a thickness of approximately 20 meters that include both sub-rounded and angular volcanic clasts, with sizes up to 0.15 m; 5) a thick sequence of ignimbrites and dacitic lavas. At a depth of 1200 m.a.s.l. in the town of Arcediano, the basal sequence is composed of dacites and andesites with interbedded pumice-rich ignimbrites with 10-20 m thickness. The Rio Grande de Santiago talweg to 1018 m.a.s.l. (apparently the base of the sequence) is formed by andesite lava. In the area of San Gaspar we identified oblique-normal left-lateral faults in lavas, with a strike 191° and a dip 89°. In the Colimilla dam, 1297 m.a.s.l., we observed normal faulting (strike 267° and dip 81°), with 20-30 m jumps with reference to a unit of tephra of 3-10 m thickness. The lavas in this site present deformation, the main shear being parallel to the Rio Verde. At the site of the San Gaspar river the faults have a strike of 285° and a dip of 83v and affect ignimbrites that overlie dacitic lavas. In the area of the Arcediano bridge the normal faulting has a strike 188v and dip of 75° in andesites, and in the pumice-rich ignimbrites a shear direction with strike of 92° and dip of 84° that is parallel to the Rio Verde. During the past two years we identified approximately 1100 cases of sinking with varying magnitude in the urban area of Guadalajara. Some of these can be grouped to form alignments that are oriented with the faults identified in the CRGS region. The process of subsidence can be controlled by structures that affect the pumice sequence laying under the city of Guadalajara, facilitating the movement of groundwater through areas of weakness, removing tuffs and pumice and creating voids that later collapse, affecting buildings and infrastructure in the city.
Geologic map of the northern White Hills, Mohave County, Arizona
Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.
2017-07-10
IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.
NASA Astrophysics Data System (ADS)
Watt, J. T.; Hardebeck, J.; Johnson, S. Y.; Kluesner, J.
2016-12-01
Characterizing active structures within structurally complex fault intersections is essential for unraveling the deformational history and for assessing the importance of fault intersections in regional earthquake hazard assessments. We employ an integrative, multi-scale geophysical approach to describe the 3D geometry and active tectonics of the offshore Los Osos fault (LOF) in Estero Bay, California. The shallow structure of the LOF, as imaged with multibeam and high-resolution seismic-reflection data, reveals a complex west-diverging zone of active faulting that bends into and joins the Hosgri fault. The down-dip geometry of the LOF as revealed by gravity, magnetic, and industry multi-channel seismic data, is vertical to steeply-dipping and varies along strike. As the LOF extends offshore, it is characterized by SW-side-up motion on a series of W-NW trending, steeply SW-dipping reverse faults. The LOF bends to the north ( 23°) as it approaches the Hosgri fault and dips steeply to the NE along a magnetic basement block. Inversion of earthquake focal mechanisms within Estero Bay yields maximum compressive stress axes that are near-horizontal and trend approximately N15E. This trend is consistent with dextral strike-slip faulting along NW-SE trending structures such as the Hosgri fault and northern LOF, and oblique dip-slip motion along the W-NW trending section of the LOF. Notably, NW-SE trending structures illuminated by seismicity in Estero Bay coincide with, but also appear to cross-cut, LOF structures imaged in the near-surface. We suggest this apparent disconnect reflects ongoing fault reorganization at a dynamic and inherently unstable fault intersection, in which the seismicity reflects active deformation at depth that is not clearly expressed in the near-surface geology. Direct connectivity between the Hosgri and Los Osos faults suggests a combined earthquake rupture is possible; however, the geometrical complexity along the offshore LOF may limit the extent of rupture.
NASA Astrophysics Data System (ADS)
Abbey, A. L.; Niemi, N. A.
2017-12-01
Low-temperature thermochronometry in the Rio Grande rift (RGR) in CO and NM, USA, allows for quantification of exhumation magnitudes and rates across the rift and reveals insights into rift basin segmentation and symmetry as well as the timing of extensional fault initiation and dominant mechanisms for rift accommodation. We combine new apatite helium (AHe) and zircon helium (ZHe) thermochronologic data with previously published AHe and apatite fission track (AFT) data to compile 17 vertical transects, each consisting of at least four samples, spanning more than >800 km along the RGR axis. Inverse thermal modeling (QTQt; Gallagher, 2012) of these vertical transects and compilation of bimodal rift related volcanism highlight transfer regions that separate several asymmetric basins with opposing fault dip directions. The Tularosa, Jornada and Albuquerque basins, in the southern RGR show extension initiation ca. 15 Ma with 3-4 km of exhumation accommodated on east dipping faults. Northward, the Española basin, a transfer zone of several strike slip, oblique-slip and smaller normal faults, does not record significant exhumation since the early Cenozoic. In the north-central part of the rift data from the San Luis Basin reveals 3-5 km of exhumation on west dipping faults began 20-15 Ma. East dipping faults in the upper Arkansas and Blue River grabens represent the northern extent of the rift and accommodate 3-5 km of exhumation beginning 15-10 Ma. RGR extension and magmatism initiation is commonly cited at 28 Ma (Tweto, 1979) however, our low-temperature thermochronometry modeling indicates that the majority of upper crustal extension initiated somewhat synchronously 15 Ma along the entire length of the rift. Rift related volcanism increased significantly in volume at 15 Ma, as well, but the locus of this volcanism is the Jemez lineament rather than the rift axis. As a result rifting within the RGR appears to be accommodated primarily by extensional faulting, with the exception of the central part of the rift (Española Basin) where the rift intersects the Jemez lineament. Widespread pre-rift thermochronometric ages in the Española Basin suggest that rifting in the central RGR is accommodated by, non-tectonic processes, most-likely magmatism.
NASA Astrophysics Data System (ADS)
Hiramatsu, Y.; Matsumoto, N.; Sawada, A.
2016-12-01
We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault structure along the fault zone. A geological map indicates that this structure boundary corresponds to a boundary between the metamorphic rock and the sedimentary rock. The active area of the aftershocks does not extend to the south beyond this structure boundary, implying that the spatial extent of the source fault is controlled by this boundary.
NASA Astrophysics Data System (ADS)
Bernard, P.; Lyon-Caen, H.; Deschamps, A.; Briole, P.; Lambotte, S.; Ford, M.; Scotti, O.; Beck, C.; Hubert-Ferrari, A.; Boiselet, A.; Godano, M.; Matrullo, E.; Meyer, N.; Albini, P.; Elias, P.; Nercessian, A.; Katsonopoulou, D.; Papadimitriou, P.; Voulgaris, N.; Kapetanidis, V.; Sokos, E.; Serpetsidaki, A.; el Arem, S.; Dublanchet, P.; Duverger, C.; Makropoulos, K.; Tselentis, A.
2014-12-01
The western rift of Corinth (Greece) is one of the most active tectonic structures of the euro-mediterranean area. Its NS opening rate is 1.5 cm/yr ( strain rate of 10-6/yr) results into a high microseismicity level and a few destructive, M>6 earthquakes per century, activating a system of mostly north dipping normal faults. Since 2001, monitoring arrays of the European Corinth Rift Laboratory (CRL, www.crlab.eu) allowed to better track the mechanical processes at work, with short period and broad band seismometers, cGPS, borehole strainmeters, EM stations, …). The recent (300 kyr) tectonic history has been revealed by onland (uplifted fan deltas and terraces) and offshore geological studies (mapping, shallow seismic, coring), showing a fast evolution of the normal fault system. The microseismicity, dominated by swarms lasting from days to months, mostly clusters in a layer 1 to 3 km thick, between 6 and 9 km in depth, dipping towards north, on which most faults are rooting. The diffusion of the microseismicity suggests its triggering by pore pressure transients, with no or barely detected strain. Despite a large proportion of multiplets, true repeaters seem seldom, suggesting a minor contribution of creep in their triggering, although transient or steady creep is clearly detected on the shallow part of some majors faults. The microseismic layer may thus be an immature, downward growing detachment, and the dominant rifting mechanism might be a mode I, anelastic strain beneath the rift axis , for which a mechanical model is under development. Paleoseismological (trenching, paleoshorelines, turbidites), archeological and historical studies completed the catalogues of instrumental seismicity, motivating attempts of time dependent hazard assessment. The Near Fault Observatory of CRL is thus a multidisciplinary research infrastructure aiming at a better understanding and modeling of multiscale, coupled seismic/aseismic processes on fault systems.
Normal Faulting in the 1923 Berdún Earthquake and Postorogenic Extension in the Pyrenees
NASA Astrophysics Data System (ADS)
Stich, Daniel; Martín, Rosa; Batlló, Josep; Macià, Ramón; Mancilla, Flor de Lis; Morales, Jose
2018-04-01
The 10 July 1923 earthquake near Berdún (Spain) is the largest instrumentally recorded event in the Pyrenees. We recover old analog seismograms and use 20 hand-digitized waveforms for regional moment tensor inversion. We estimate moment magnitude Mw 5.4, centroid depth of 8 km, and a pure normal faulting source with strike parallel to the mountain chain (N292°E), dip of 66° and rake of -88°. The new mechanism fits into the general predominance of normal faulting in the Pyrenees and extension inferred from Global Positioning System data. The unique location of the 1923 earthquake, near the south Pyrenean thrust front, shows that the extensional regime is not confined to the axial zone where high topography and the crustal root are located. Together with seismicity near the northern mountain front, this indicates that gravitational potential energy in the western Pyrenees is not extracted locally but induces a wide distribution of postorogenic deformation.
NASA Astrophysics Data System (ADS)
Seelig, William George
The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source, 2-D seismic reflection/refraction data, collected as part of project INDEPTH IV (International Deep Profiling of Tibet and the Himalaya, phase IV) in 2007, was used to examine the structure and the dip of the Kunlun fault. The INDEPTH IV data was acquired to better understand the tectonic evolution of the northeastern Tibetan Plateau, such as the far-field deformation associated with the continent-continent collision and the potential subduction of the Asian continent beneath northern Tibet. Seismic reflection common depth point (CDP) stacks were examined to look for reflectivity patterns that may be associated with faulting. A possible reflection from the buried North Kunlun Thrust (NKT) is identified at 18-21 km underneath the East Kunlun Mountains, with an estimated apparent dip of 15°S and thrusting to the north. Minimally-processed shot gathers were also inspected for reflections off near-vertical structures such as faults and information on first-order velocity structure. Shot offset and nearest receiver number to reflection was catalogued to increase confidence of picks. Reflections off the North Kunlun (NKF) and South Kunlun Faults (SKF) were identified and analyzed for apparent dip and subsurface geometry. Fault reflection analysis found that the North Kunlun Fault had an apparent dip of approximately 68ºS to an estimated depth of 5 km, while the South Kunlun Fault dipped at approximately 78ºN to an estimated 3.5 km depth. Constraints on apparent dip and geometry of the NKF/SKF and NKT provide information valuable for seismic hazard analysis.
NASA Technical Reports Server (NTRS)
Gomberg, Joan; Ellis, Michael
1994-01-01
We present results of a series of numerical experiments designed to test hypothetical mechanisms that derive deformation in the New Madrid seismic zone. Experiments are constrained by subtle topography and the distribution of seismicity in the region. We use a new boundary element algorithm that permits calcuation of the three-dimensional deformation field. Surface displacement fields are calculated for the New Madrid zone under both far-field (plate tectonics scale) and locally derived driving strains. Results demonstrate that surface displacement fields cannot distinguish between either a far-field simple or pure shear strain field or one that involves a deep shear zone beneath the upper crustal faults. Thus, neither geomorphic nor geodetic studies alone are expected to reveal the ultimate driving mechanism behind the present-day deformation. We have also tested hypotheses about strain accommodation within the New Madrid contractional step-over by including linking faults, two southwest dipping and one vertical, recently inferred from microearthquake data. Only those models with step-over faults are able to predict the observed topography. Surface displacement fields for long-term, relaxed deformation predict the distribution of uplift and subsidence in the contractional step-over remarkably well. Generation of these displacement fields appear to require slip on both the two northeast trending vertical faults and the two dipping faults in the step-over region, with very minor displacements occurring during the interseismic period when the northeast trending vertical faults are locked. These models suggest that the gently dippling central step-over fault is a reverse fault and that the steeper fault, extending to the southeast of the step-over, acts as a normal fault over the long term.
Static stress changes associated with normal faulting earthquakes in South Balkan area
NASA Astrophysics Data System (ADS)
Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.
2007-10-01
Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.
NASA Astrophysics Data System (ADS)
Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.
2017-06-01
The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.
NASA Astrophysics Data System (ADS)
Barth, N. C.; Toy, V. G.; Boulton, C. J.; Carpenter, B. M.
2010-12-01
New Zealand's Alpine Fault is mostly a moderately SE-dipping dextral reverse plate boundary structure, but at its southern end, strike-slip-normal motion is indicated by offset of recent surfaces, juxtaposition of sediments, and both brittle and ductile shear sense indicators. At the location of uplift polarity reversal fault rocks exhumed from both the hangingwall Pacific and footwall Australian Plates are juxtaposed, offering a remarkably complete cross section of the plate boundary at shallow crustal levels. We describe Alpine Fault damage zone and fault core structures overprinted on Pacific and Australian plate mylonites of a variety of compositions, in a fault-strike perpendicular composite section spanning the reversal in dip-slip polarity. The damage zone is asymmetric; on the Australian Plate 160m of quartzose paragneiss-derived mylonites are overprinted by brittle faults and fractures that increase in density towards the principal slip surface (PSS). This damage zone fabric consists of 1-10m-spaced, moderately to steeply-dipping, 1-20cm-thick gouge-filled faults, overprinted on and sub-parallel to a mylonitic foliation sub-parallel to the PSS. On the Pacific Plate, only 40m of the 330m section of volcaniclastic-derived mylonites have brittle damage in the form of unhealed fractures and faults, as well as a pervasive greenschist facies hydrothermal alteration absent in the footwall. These damage-related structures comprise a network of small-offset faults and fractures with increasing density and intensity towards the PSS. The active Pacific Plate fault core is composed of ~1m of cataclasite grading into folded protocataclasite that is less folded and fractured with increasing distance from the PSS. The active Australian Plate fault core is <1.5m wide and consists of 3 distinct foliated clay gouges, as well as a 4cm thick brittle ultracataclasite immediately adjacent to the active PSS. The Australian Plate foliated clay gouge contains stringers of quartz that become less continuous and more sigmoidal toward the PSS, indicating a strain gradient across the gouge zone. Gouge textures are consistent with deformation by pressure solution. Intact wafers from one of the gouges, experimentally -sheared in a biaxial configuration under true-triaxial loading at σn’= 31MPa and Pf = 10MPa, yielded a friction coefficient, μss = 0.32 and displayed velocity strengthening behavior. No significant re-strengthening was observed during hold periods of slide-hold tests. Well-cemented glacial till (~8000 years old), which caps many outcrops, is a marker that shows that the damage zone is not active in the near-surface, but most of the fault core is. The active near-surface damage zone here is <40m wide and the active fault core is <2.5m wide. Both overprint a much wider, inactive damage zone. The combination of rheologically-weak Australian Plate fault rocks with surface rupture traces indicates distinctly different coseismic and interseismic behaviors along the southern strike-slip-normal segment of the Alpine Fault.
Detailed Surface Rupture Geometry from the 2016 Amatrice Earthquake
NASA Astrophysics Data System (ADS)
Mildon, Z. K.; Iezzi, F.; Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M. W.; Faure Walker, J.; Roberts, G.; Livio, F.; Vittori, E.; Michetti, A.; Frigerio, C.; Ferrario, F.; Blumetti, A. M.; Guerrieri, L.; Di Manna, P.; Comerci, V.
2016-12-01
The Amatrice earthquake was generated by co-rupture of the Mt. Vettore and Laga faults at depth. Surface ruptures were observed for 5km along the Mt. Vettore fault, with no clear observations on the Laga fault reported to date. The surface rupture on Mt. Vettore manifests as a 15-20cm pale stripe at the base of a 60-80o dipping bedrock fault scarp and similar magnitude vertical offsets of colluvial deposits. We have measured the strike and dip of the fault alongside the coseismic throw, heave, and slip azimuth along the length of the rupture with high spatial resolution (c.2-6m, >2000 measurements). The slip azimuth is relatively constant between 210-270° even where the rupture faces uphill at its SE termination which is consistent with the regional NW-SE extension direction, defined by focal mechanisms and borehole break-out data. The simplest coseismic throw profile that would be expected is quasi-symmetric. However we found the highest values of throw (Inter Quartile Range 15-19.5cm) are skewed towards the NW end on a 1.7 km section of the fault that is oblique relative to the overall fault strike. In the centre of the rupture, orientated close to the overall fault strike, the throw is lower (IQR 7.5-13cm) and discontinuous along strike. We suggest that the skewed throw profile occurs because the strike, dip and throw must vary systematically in order to preserve the principal strain rate across a fault, in agreement with previous publications. The density of our measurements, crucially including the slip azimuth, allows us to resolve the regional debate over whether normal fault ruptures are primary tectonic features or landslides of hangingwall sediments. If the surface offsets are due to landslides, then the slip azimuth should correlate with the downslope direction of the hangingwall. We show using an available 10m DEM that this is not the case and hence the surface offsets described herein are a primary tectonic feature. This presentation offers new insights into rupture processes because of the high resolution of the dataset collected rapidly after the earthquake, but crucially because it includes the slip vector azimuth, allowing a full description of the kinematics of the faulting relative to the regional stress field and local topographic variations.
Fault geometries in basement-induced wrench faulting under different initial stress states
NASA Astrophysics Data System (ADS)
Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.
Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.
NASA Astrophysics Data System (ADS)
Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José
2018-03-01
The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the extension related normal faulting has been operating as a mechanism in the evolution of this rift. Analysis of seismicity affecting the study area and neighborhood indicates the inferred faults are active.
NASA Technical Reports Server (NTRS)
Fielding, Eric J.; Wright, Tim J.; Muller, Jordan; Parsons, Barry E.; Walker, Richard
2004-01-01
At depth, many fold-and-thrust belts are composed of a gently dipping, basal thrust fault and steeply dipping, shallower splay faults that terminate beneath folds at the surface. Movement on these buried faults is difficult to observe, but synthetic aperture radar (SAR) interferometry has imaged slip on at least 600 square kilometers of the Shahdad basal-thrust and splay-fault network in southeast Iran.
NASA Astrophysics Data System (ADS)
Nonn, Chloé; Leroy, Sylvie; Khanbari, Khaled; Ahmed, Abdulhakim
2017-11-01
Here, we focus on the yet unexplored eastern Gulf of Aden, on Socotra Island (Yemen), Southeastern Oman and offshore conjugate passive margins between the Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fracture zones. Our interpretation leads to onshore-offshore stratigraphic correlation between the passive margins. We present a new map reflecting the boundaries between the crustal domains (proximal, necking, hyper-extended, exhumed mantle, proto-oceanic and oceanic domains) and structures using bathymetry, magnetic surveys and seismic reflection data. The most striking result is that the magma-poor conjugate margins exhibit asymmetrical architecture since the thinning phase (Upper Rupelian-Burdigalian). Their necking domains are sharp ( 40-10 km wide) and their hyper-extended domains are narrow and asymmetric ( 10-40 km wide on the Socotra margin and 50-80 km wide on the Omani margin). We suggest that this asymmetry is related to the migration of the rift center producing significant lower crustal flow and sequential faulting in the hyper-extended domain. Throughout the Oligo-Miocene rifting, far-field forces dominate and the deformation is accommodated along EW to N110°E northward-dipping low angle normal faults. Convection in the mantle near the SHFZ may be responsible of change in fault dip polarity in the Omani hyper-extended domain. We show the existence of a northward-dipping detachment fault formed at the beginning of the exhumation phase (Burdigalien). It separates the northern upper plate (Oman) from southern lower plate (Socotra Island) and may have generated rift-induced decompression melting and volcanism affecting the upper plate. We highlight multiple generations of detachment faults exhuming serpentinized subcontinental mantle in the ocean-continent transition. Associated to significant decompression melting, final detachment fault may have triggered the formation of a proto-oceanic crust at 17.6 Ma and induced late volcanism up to 10 Ma. Finally, the setting up of a steady-state oceanic spreading center occurs at 17 Ma.
Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults
NASA Astrophysics Data System (ADS)
Abdelrahman, E. M.; Essa, K. S.
2015-02-01
We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.
NASA Astrophysics Data System (ADS)
Boston, B.; Moore, G. F.; Jurado, M. J.; Sone, H.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.
2014-12-01
The deeper, inner parts of active accretionary prisms have been poorly studied due the lack of drilling data, low seismic image quality and typically thick overlying sediments. Our project focuses on the interior of the Nankai Trough inner accretionary prism using deep scientific drilling and a 3D seismic cube. International Ocean Discovery Program (IODP) Expedition 348 extended the existing riser hole to more than 3000 meters below seafloor (mbsf) at Site C0002. Logging while drilling (LWD) data included gamma ray, resistivity, resistivity image, and sonic logs. LWD analysis of the lower section revealed on the borehole images intense deformation characterized by steep bedding, faults and fractures. Bedding plane orientations were measured throughout, with minor gaps at heavily deformed zones disrupting the quality of the resistivity images. Bedding trends are predominantly steeply dipping (60-90°) to the NW. Interpretation of fractures and faults in the image log revealed the existence of different sets of fractures and faults and variable fracture density, remarkably high at fault zones. Gamma ray, resistivity and sonic logs indicated generally homogenous lithology interpretation along this section, consistent with the "silty-claystone" predominant lithologies described on cutting samples. Drops in sonic velocity were observed at the fault zones defined on borehole images. Seismic reflection interpretation of the deep faults in the inner prism is exceedingly difficult due to a strong seafloor multiple, high-angle bedding dips, and low frequency of the data. Structural reconstructions were employed to test whether folding of seismic horizons in the overlying forearc basin could be from an interpreted paleothrust within the inner prism. We used a trishear-based restoration to estimate fault slip on folded horizons landward of C0002. We estimate ~500 m of slip from a steeply dipping deep thrust within the last ~0.9 Ma. Folding is not found in the Kumano sediments near C0002, where normal faults and tilting dominate the modern basin deformation. Both logging and seismic are consistent in characterizing a heavily deformed inner prism. Most of this deformation must have occurred during or before formation of the overlying modern Kumano forearc basin sediments.
Experimental Modeling of Dynamic Shallow Dip-Slip Faulting
NASA Astrophysics Data System (ADS)
Uenishi, K.
2010-12-01
In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland, Japan in 2008, for example, seem to support the need for careful mechanical consideration. In this contribution, utilizing two-dimensional dynamic photoelasticity in conjunction with high speed digital cinematography, we try to perform "fully controlled" laboratory experiments of dip-slip faulting and observe the propagation of interface pulses and corner waves mentioned above. A birefringent material containing a (model) dip-slip fault plane is prepared, and rupture is initiated in that material using an Nd:YAG laser system, and the evolution of time-dependent isochromatic fringe patterns (contours of maximum in-plane shear stress) associated with the dynamic process of shallow dip-slip faulting is recorded. Use of Nd:YAG laser pulses, instead of ignition of explosives, for rupture initiation may enhance the safety of laboratory fracture experiments and enable us to evaluate the energy entering the material (and hence the energy balance in the system) more precisely, possibly in a more controlled way.
Saltus, Richard W.; Stanley, Richard G.; Haeussler, Peter J.; Jones, James V.; Potter, Christopher J.; Lewis, Kristen A.
2016-01-01
The Cenozoic Susitna basin lies within an enigmatic lowland surrounded by the Central Alaska Range, Western Alaska Range (including the Tordrillo Mountains), and Talkeetna Mountains in south-central Alaska. Some previous interpretations show normal faults as the defining structures of the basin (e.g., Kirschner, 1994). However, analysis of new and existing geophysical data shows predominantly (Late Oligocene to present) thrust and reverse fault geometries in the region, as previously proposed by Hackett (1978). A key example is the Beluga Mountain fault where a 50-mGal gravity gradient, caused by the density transition from the igneous bedrock of Beluga Mountain to the >4-km-thick Cenozoic sedimentary section of Susitna basin, spans a horizontal distance of ∼40 km and straddles the topographic front. The location and shape of the gravity gradient preclude a normal fault geometry; instead, it is best explained by a southwest-dipping thrust fault, with its leading edge located several kilometers to the northeast of the mountain front, concealed beneath the shallow glacial and fluvial cover deposits. Similar contractional fault relationships are observed for other basin-bounding and regional faults as well. Contractional structures are consistent with a regional shortening strain field inferred from differential offsets on the Denali and Castle Mountain right-lateral strike-slip fault systems.
NASA Astrophysics Data System (ADS)
Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.
2016-12-01
The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.
NASA Astrophysics Data System (ADS)
Inoue, N.
2017-12-01
The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source fault would be performed in order to examine the amount of the displacement and conditional probability quantitatively.
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Wright, T. J.
2006-12-01
We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.
NASA Astrophysics Data System (ADS)
Kettermann, M.; van Gent, H. W.; Urai, J. L.
2012-04-01
Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally, stereo-photography at the final stage of deformation enabled the creation of 3D models to preserve basic geometric information. The models showed that at the surface the deformation localized always along preexisting joints, even when they strike at an angle to the basement-fault. In most cases faults intersect precisely at the maximum depth of the joints. With increasing fault-joint angle the deformation occurred distributed over several joints by forming stepovers with fractures oriented normal to the strike of the joints. No fractures were observed parallel to the basement fault. At low angles stepovers coincided with wedge-shaped structures between two joints that remain higher than the surrounding joint-fault intersection. The wide opening gap along the main fault allowed detailed observations of the fault planes at depth, which revealed (1) changing dips according to joint-fault angles, (2) slickenlines, (3) superimposed steepening fault-planes, causing sharp sawtooth-shaped structures. Comparison to a field analogue at Canyonlands National Park, Utah/USA showed similar structures and features such as vertical fault escarpments at the surface coinciding with joint-surfaces. In the field and in the models stepovers were observed as well as conjugate faulting and incremental fault-steepening.
3-D simulation of hanging wall effect at dam site
NASA Astrophysics Data System (ADS)
Zhang, L.; Xu, Y.
2017-12-01
Hanging wall effect is one of the near fault effects. This paper focuses on the difference of the ground motions on the hanging wall side between the footwall side of the fault at dam site considering the key factors, such as actual topography, the rupture process. For this purpose, 3-D ground motions are numerically simulated by the spectrum element method (SEM), which takes into account the physical mechanism of generation and propagation of seismic waves. With the SEM model of 548 million DOFs, excitation and propagation of seismic waves are simulated to compare the difference between the ground motion on the hanging wall side and that on the footwall side. Take Dagangshan region located in China as an example, several seismogenic finite faults with different dip angle are simulated to investigate the hanging wall effect. Furthermore, by comparing the ground motions of the receiving points, the influence of several factors on hanging wall effect is investigated, such as the dip of the fault and the fault type (strike slip fault or dip-slip fault). The peak acceleration on the hanging wall side is obviously larger than those on the footwall side, which numerically evidences the hanging wall effect. Besides, the simulation shows that only when the dip is less than 70° does the hanging wall effect deserve attention.
NASA Astrophysics Data System (ADS)
Lekkas, Efthymios L.; Mavroulis, Spyridon D.
2016-01-01
The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.
Block modeling of crustal deformation in Tierra del Fuego from GNSS velocities
NASA Astrophysics Data System (ADS)
Mendoza, L.; Richter, A.; Fritsche, M.; Hormaechea, J. L.; Perdomo, R.; Dietrich, R.
2015-05-01
The Tierra del Fuego (TDF) main island is divided by a major transform boundary between the South America and Scotia tectonic plates. Using a block model, we infer slip rates, locking depths and inclinations of active faults in TDF from inversion of site velocities derived from Global Navigation Satellite System observations. We use interseismic velocities from 48 sites, obtained from field measurements spanning 20 years. Euler vectors consistent with a simple seismic cycle are estimated for each block. In addition, we introduce far-field information into the modeling by applying constraints on Euler vectors of major tectonic plates. The difference between model and observed surface deformation near the Magallanes Fagnano Fault System (MFS) is reduced by considering finite dip in the forward model. For this tectonic boundary global plate circuits models predict relative movements between 7 and 9 mm yr- 1, while our regional model indicates that a strike-slip rate of 5.9 ± 0.2 mm yr- 1 is accommodated across the MFS. Our results indicate faults dipping 66- 4+ 6° southward, locked to a depth of 11- 5+ 5 km, which are consistent with geological models for the MFS. However, normal slip also dominates the fault perpendicular motion throughout the eastern MFS, with a maximum rate along the Fagnano Lake.
Personius, Stephen F.; Crone, Anthony J.; Burns, Patricia A.C.; Beget, James E.; Seitz, Gordon G.; Bemis, Sean P.
2010-01-01
This report contains field and laboratory data from a paleoseismic study of the Susitna Glacier fault, Alaska. The initial M 7.2 subevent of the November 3, 2002, M 7.9 Denali fault earthquake sequence produced a 48-km-long set of complex fault scarps, folds, and aligned landslides on the previously unknown, north-dipping Susitna Glacier thrust fault along the southern margin of the Alaska Range in central Alaska. Most of the 2002 folds and fault scarps are 1-3 m high, implying dip-slip thrust offsets (assuming a near-surface fault dip of approximately 20 degrees)of 3-5 m. Locally, some of the 2002 ruptures were superimposed on preexisting scarps that have as much as 5-10 m of vertical separation and are evidence of previous surface-rupturing earthquakes on the Susitna Glacier fault. In 2003-2005, we focused follow-up studies on several of the large scarps at the 'Wet fan' site in the central part of the 2002 rupture to determine the pre-2002 history of large surface-rupturing earthquakes on the fault. We chose this site for several reasons: (1) the presence of pre-2002 thrust- and normal-fault scarps on a gently sloping, post-glacial alluvial fan; (2) nearby natural exposures of underlying fan sediments revealed fine-grained fluvial silts with peat layers and volcanic ash beds useful for chronological control; and (3) a lack of permafrost to a depth of more than 1 m. Our studies included detailed mapping, fault-scarp profiling, and logging of three hand-excavated trenches. We were forced to restrict our excavations to 1- to 2-m-high splay faults and folds because the primary 2002 ruptures mostly were superimposed on such large scarps that it was impossible to hand dig through the hanging wall to expose the fault plane. Additional complications are the pervasive effects of cryogenic processes (mainly solifluction) that can mask or mimic tectonic deformation. The purpose of this report is to present photomosaics, trench logs, scarp profiles, and fault slip, radiocarbon, tephrochronologic, and unit description data obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of the Susitna Glacier fault; that history will be the subject of a future report. When completed, our results will be used to compare the Susitna Glacier fault paleoseismic record with results of similar studies on the nearby Denali fault to determine if the simultaneous rupture of these two faults during the 2002 Denali fault earthquake sequence is typical or atypical of their long-term interaction.
Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data
Chen, Ting; Huang, Lianjie
2015-07-30
For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less
NASA Astrophysics Data System (ADS)
Gil, Antonio J.; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos; Borque, Maria Jesús; Sánchez-Alzola, Alberto; Martinez-Martos, Manuel; Alfaro, Pedro
2017-08-01
The Padul Fault is located in the Central Betic Cordillera, formed in the framework of the NW-SE Eurasian-African plate convergence. In the Internal Zone, large E-W to NE-SW folds of western Sierra Nevada accommodated the greatest NW-SE shortening and uplift of the cordillera. However, GPS networks reveal a present-day dominant E-W to NE-SW extensional setting at surface. The Padul Fault is the most relevant and best exposed active normal fault that accommodates most of the NE-SW extension of the Central Betics. This WSW-wards dipping fault, formed by several segments of up to 7 km maximum length, favored the uplift of the Sierra Nevada footwall away from the Padul graben hanging wall. A non-permanent GPS network installed in 1999 constrains an average horizontal extensional rate of 0.5 mm/yr in N66°E direction. The fault length suggests that a (maximum) 6 magnitude earthquake may be expected, but the absence of instrumental or historical seismic events would indicate that fault activity occurs at least partially by creep. Striae on fault surfaces evidence normal-sinistral kinematics, suggesting that the Padul Fault may have been a main transfer fault of the westernmost end of the Sierra Nevada antiform. Nevertheless, GPS results evidence: (1) shortening in the Sierra Nevada antiform is in its latest stages, and (2) the present-day fault shows normal with minor oblique dextral displacements. The recent change in Padul fault kinematics will be related to the present-day dominance of the ENE-WSW regional extension versus NNW-SSE shortening that produced the uplift and northwestwards displacement of Sierra Nevada antiform. This region illustrates the importance of heterogeneous brittle extensional tectonics in the latest uplift stages of compressional orogens, as well as the interaction of folding during the development of faults at shallow crustal levels.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
Automatic fault tracing of active faults in the Sutlej valley (NW-Himalayas, India)
NASA Astrophysics Data System (ADS)
Janda, C.; Faber, R.; Hager, C.; Grasemann, B.
2003-04-01
In the Sutlej Valley the Lesser Himalayan Crystalline Sequence (LHCS) is actively extruding between the Munsiari Thrust (MT) at the base, and the Karcham Normal Fault (KNF) at the top. The clear evidences for ongoing deformation are brittle faults in Holocene lake deposits, hot springs activity near the faults and dramatically younger cooling ages within the LHCS (Vannay and Grasemann, 2001). Because these brittle fault zones obviously influence the morphology in the field we developed a new method for automatically tracing the intersections of planar fault geometries with digital elevation models (Faber, 2002). Traditional mapping techniques use structure contours (i.e. lines or curves connecting points of equal elevation on a geological structure) in order to construct intersections of geological structures with topographic maps. However, even if the geological structure is approximated by a plane and therefore structure contours are equally spaced lines, this technique is rather time consuming and inaccurate, because errors are cumulative. Drawing structure contours by hand makes it also impossible to slightly change the azimuth and dip direction of the favoured plane without redrawing everything from the beginning on. However, small variations of the fault position which are easily possible by either inaccuracies of measurement in the field or small local variations in the trend and/or dip of the fault planes can have big effects on the intersection with topography. The developed method allows to interactively view intersections in a 2D and 3D mode. Unlimited numbers of planes can be moved separately in 3 dimensions (translation and rotation) and intersections with the topography probably following morphological features can be mapped. Besides the increase of efficiency this method underlines the shortcoming of classical lineament extraction ignoring the dip of planar structures. Using this method, areas of active faulting influencing the morphology, can be mapped near the MT and the KNF suggesting that the most active zones are restricted to the Sutlej Valley. Faber R., 2002: WinGeol - Software for Analyzing and Visualization of Geological data, Department of Geological Sciences, University of Vienna. Vannay, J.-C., Grasemann, B., 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol. Mag. 138 (3), 253-276.
NASA Astrophysics Data System (ADS)
Adriano, Bruno; Fujii, Yushiro; Koshimura, Shunichi; Mas, Erick; Ruiz-Angulo, Angel; Estrada, Miguel
2018-01-01
On September 8, 2017 (UTC), a normal-fault earthquake occurred 87 km off the southeast coast of Mexico. This earthquake generated a tsunami that was recorded at coastal tide gauge and offshore buoy stations. First, we conducted a numerical tsunami simulation using a single-fault model to understand the tsunami characteristics near the rupture area, focusing on the nearby tide gauge stations. Second, the tsunami source of this event was estimated from inversion of tsunami waveforms recorded at six coastal stations and three buoys located in the deep ocean. Using the aftershock distribution within 1 day following the main shock, the fault plane orientation had a northeast dip direction (strike = 320°, dip = 77°, and rake =-92°). The results of the tsunami waveform inversion revealed that the fault area was 240 km × 90 km in size with most of the largest slip occurring on the middle and deepest segments of the fault. The maximum slip was 6.03 m from a 30 × 30 km2 segment that was 64.82 km deep at the center of the fault area. The estimated slip distribution showed that the main asperity was at the center of the fault area. The second asperity with an average slip of 5.5 m was found on the northwest-most segments. The estimated slip distribution yielded a seismic moment of 2.9 × 10^{21} Nm (Mw = 8.24), which was calculated assuming an average rigidity of 7× 10^{10} N/m2.
NASA Astrophysics Data System (ADS)
Alt, J.; Crispini, L.; Gaggero, L.; Shanks, W. C., III; Gulbransen, C.; Lavagnino, G.
2017-12-01
Normal faults cutting oceanic core complexes are observed at the seafloor and through geophysics, and may act as flow pathways for hydrothermal fluids, but we know little about such faults in the subsurface. We present bulk rock geochemistry and stable isotope data for a fault that acted as a hydrothermal upflow zone in a seafloor ultramafic-hosted hydrothermal system in the northern Apennines, Italy. Peridotites were exposed on the seafloor by detachment faulting, intruded by MORB gabbros, and are overlain by MORB lavas and pelagic sediments. North of the village of Reppia are fault shear zones in serpentinite, oriented at a high angle to the detachment surface and extending 300 m below the paleo-seafloor. The paleo-seafloor strikes roughly east-west, dipping 30˚ to the north. At depth the fault zone occurs as an anticlinal form plunging 40˚ to the west. A second fault strikes approximately north-south, with a near vertical dip. The fault rock outcrops as reddish weathered talc + sulfide in 0.1-2 m wide anastomosing bands, with numerous splays. Talc replaces serpentinite in the fault rocks, and the talc rocks are enriched in Si, metals (Fe, Cu, Pb), Light Rare Earth Elements (LREE), have variable Eu anomalies, and have low Mg, Cr and Ni contents. In some cases gabbro dikes are associated with talc-alteration and may have enhanced fluid flow. Sulfide from a fault rock has d34S=5.7‰. The mineralogy and chemistry of the fault rocks indicate that the fault acted as the upflow pathway for high-T black-smoker type fluids. Traverses away from the fault (up to 1 km) and with depth below the seafloor (up to 500 m) reveal variable influences of hydrothermal fluids, but there are no consistent trends with distance. Background serpentinites 500 m beneath the paleoseafloor have LREE depleted trends. Other serpentinites exhibit correlations of LREE with HFSE as the result of melt percolation, but there is significant scatter, and hydrothermal effects include LREE enrichment, positive Eu anomalies, decreased MgO/SiO2, and increases in Sr and Cs. One serpentinite 40 m from the fault has d34S = 4.5‰, consistent with a hydrothermal sulfur source. Far from the fault (1 km) ophicalcites near the paleo-seafloor have negative Ce anomalies indicating seawater alteration, and suggesting a limit to hydrothermal influence on the length scale of 1 km.
NASA Astrophysics Data System (ADS)
Steier, A.; Mann, P.
2017-12-01
Gravity slides on salt or shale detachment surfaces linking updip extension with down dip compression have been described from several margins of the Gulf of Mexico (GOM). In a region 250 km offshore from the southwestern coast of Florida, the late Jurassic section near Destin Dome and Desoto Canyon has undergone late Jurassic to Cretaceous gravity sliding and downdip dispersion of rigid blocks along the top of the underlying Louann salt. Yet there has been no previous study of similar structural styles on the slope and deep basin of its late Jurassic conjugate margin located 200 km offshore of the northern margin of the Yucatan Peninsula. This study describes an extensive area of Mesozoic gravity sliding from the northern Yucatan slope using a grid of 2D seismic data covering a 134,000 km2 area of the northern Yucatan margin tied to nine wells. These data allow the northern Yucatan margin to be divided into three slope and basinal provinces: 1) a 225 km length of the northeastern margin consisting of late Jurassic-Cretaceous section that is not underlain by salt, exhibits no gravity sliding features, and has sub-horizontal dips; 2) a 120 km length of the north-central Yucatan margin with gravity slide features characterized by an 80-km-wide updip zone of normal faults occupying the shelf edge and upper slope and a 50-km-wide downdip zone of folds and thrust faults at the base of the slope; the slide area exhibits multiple detached slide blocks composed of late Jurassic sandstones and marine mudstones separated by intervening salt rollers; growth wedges adjacent to listric, normal faults suggest a gradual and long-lived downdip motion of rigid fault blocks throughout much of the late Jurassic and Cretaceous rather than a catastrophic and instantaneous collapse of the shelf edge; the basal, normal detachment fault averages 3° in dip and is overlain by salt that varies from 0-500 ms in time thickness; by the end of the Cretaceous, most gravity sliding and vertical salt movement off the north-central Yucatan had ceased and was capped by the post-sliding Cretaceous-Paleocene boundary deposit (KPBD); and 3) a 150 km length of the southwestern margin with the largest thicknesses of salt; smaller salt rollers are less common as large diapirs are frequent and extensively deform the late Mesozoic section as well as overlying younger strata.
Geometry of Thrust Faults Beneath Amenthes Rupes, Mars
NASA Technical Reports Server (NTRS)
Vidal, A.; Mueller, K. M.; Golombek, M. P.
2005-01-01
Amenthes Rupes is a 380 km-long lobate fault scarp located in the eastern hemisphere of Mars near the dichotomy boundary. The scarp is marked by about 1 km of vertical separation across a northeast dipping thrust fault (top to the SW) and offsets heavily-cratered terrain of Late Noachian age, the visible portion of which was in place by 3.92 Ga and the buried portion in place between 4.08 and 4.27 Ga. The timing of scarp formation is difficult to closely constrain. Previous geologic mapping shows that near the northern end of Amenthes Rupes, Hesperian age basalts terminate at the scarp, suggesting that fault slip predated the emplacement of these flows at 3.69 to 3.9 Ga. Maxwell and McGill also suggest the faulting ceased before the final emplacement of the Late Hesperian lavas on Isidis Planitia. The trend of the faults at Amenthes, like many thrust faults at the dichotomy boundary, parallels the boundary itself. Schultz and Watters used a dislocation modeling program to match surface topography and vertical offset of the scarp at Amenthes Rupes, varying the dip and depth of faulting, assuming a slip of 1.5 km on the fault. They modeled faulting below Amenthes Rupes as having a dip of between 25 and 30 degrees and a depth of 25 to 35 km, based on the best match to topography. Assuming a 25 degree dip and surface measurements of vertical offset of between 0.3 and 1.2 km, Watters later estimated the maximum displacement on the Amenthes Rupes fault to be 2.90 km. However, these studies did not determine the geometry of the thrust using quantitative constraints that included shortening estimates. Amenthes Rupes deforms large preexisting impact craters. We use these craters to constrain shortening across the scarp and combine this with vertical separation to infer fault geometry. Fault dip was also estimated using measurements of scarp morphology. Measurements were based on 460 m (1/128 per pixel) digital elevation data from the Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor (MGS) satellite.
NASA Astrophysics Data System (ADS)
Graymer, R. W.
2014-12-01
Assignment of the South Napa earthquake to a mapped fault is difficult, as it occurred where three large, northwest-trending faults converge and may interact in the subsurface. The surface rupture did not fall on the main trace of any of these faults, but instead between the Carneros and West Napa faults and northwest along strike from the northern mapped end of the Franklin Fault. The 2014 rupture plane appears to be nearly vertical, based on focal mechanisms of the mainshock and connection of the surface trace/rupture to the relocated hypocenter (J. Hardebeck, USGS). 3D surfaces constructed from published data show that the Carneros Fault is a steeply west-dipping fault that runs just west of the near-vertical 2014 rupture plane. The Carneros Fault does not appear to have been involved in the earthquake, although relocated aftershocks suggest possible minor triggered slip. The main West Napa Fault is also steeply west-dipping and that its projection intersects the 2014 rupture plane at around the depth of the mainshock hypocenter. UAVSAR data (A. Donnellan, JPL) and relocated aftershocks suggest that the main West Napa Fault experienced triggered slip/afterslip along a length of roughly 20 km. It is possible that the 2014 rupture took place along a largely unrecognized westerly strand of the West Napa Fault. The Franklin Fault is a steeply east-dipping fault (with a steeply west-dipping subordinate trace east of Mare Island) that has documented late Quaternary offset. Given the generally aligned orientation of the 3D fault surfaces, an alternative interpretation is that the South Napa earthquake occurred on the northernmost reach of the Franklin Fault within it's 3D junction with the West Napa Fault. This interpretation is supported, but not proven, by a short but prominent linear feature in the UAVSAR data at Slaughterhouse Point west of Vallejo, along trend south-southeast of the observed coseismic surface rupture.
Flexure in the Corinth rift: reconciling marine terraces, rivers, offshore data and fault modeling
NASA Astrophysics Data System (ADS)
de Gelder, G.; Fernández-Blanco, D.; Jara-Muñoz, J.; Melnick, D.; Duclaux, G.; Bell, R. E.; Lacassin, R.; Armijo, R.
2016-12-01
The Corinth rift (Greece) is an exceptional area to study the large-scale mechanics of a young rift system, due to its extremely high extension rates and fault slip rates. Late Pleistocene activity of large normal faults has created a mostly asymmetric E-W trending graben, mainly driven by N-dipping faults that shape the southern margin of the Corinth Gulf. Flexural footwall uplift of these faults is evidenced by Late Pleistocene coastal fan deltas that are presently up to 1700m in elevation, a drainage reversal of some major river systems, and flights of marine terraces that have been uplifted along the southern margin of the Gulf. To improve constraints on this footwall uplift, we analysed the extensive terrace sequence between Xylokastro and Corinth - uplifted by the Xylokastro Fault - using 2m-resolution digital surface models developed from Pleiades satellite imagery (acquired through the Isis and Tosca programs of the French CNES). We refined and improved the spatial uplift pattern and age correlation of these terraces, through a detailed analysis of the shoreline angles using the graphical interface TerraceM, and 2D numerical modeling of terrace formation. We combine the detailed record of flexure provided by this analysis with a morphometric analysis of the major river systems along the southern shore, obtaining constraints of footwall uplift on a longer time scale and larger spatial scale. Flexural subsidence of the hanging wall is evidenced by offshore seismic sections, for which we depth-converted a multi-channel seismic section north of the Xylokastro Fault. We use the full profile of the fault geometry and its associated deformation pattern as constraints to reproduce the long-term flexural wavelength and uplift/subsidence ratio through fault modeling. Using PyLith, an open-source finite element code for quasi-static viscoelastic simulations, we find that a steep-dipping planar fault to the brittle-ductile transition provides the best fit to reproduce the observed deformation pattern on- and offshore. The combined results of this study allow us to compare flexural normal faulting on different scales, and recorded in different elements of the Corinth rift, allowing us to put forward a comprehensive discussion on the deformation mechanisms and the mechanical behavior of this crustal scale feature.
Extensional faulting in the southern Klamath Mountains, California
Schweickert, R.A.; Irwin, W.P.
1989-01-01
Large northeast striking normal faults in the southern Klamath Mountains may indicate that substantial crustal extension occurred during Tertiary time. Some of these faults form grabens in the Jurassic and older bedrock of the province. The grabens contain continental Oligocene or Miocene deposits (Weaverville Formation), and in two of them the Oligocene or Miocene is underlain by Lower Cretaceous marine formations (Great Valley sequence). At the La Grange gold placer mine the Oligocene or Miocene strata dip northwest into the gently southeast dipping mylonitic footwall surface of the La Grange fault. The large normal displacement required by the relations at the La Grange mine is also suggested by omission of several kilometers of structural thickness of bedrock units across the northeast continuation of the La Grange fault, as well as by significant changes in bedrock across some northeast striking faults elsewhere in the Central Metamorphic and Eastern Klamath belts. The Trinity ultramafic sheet crops out in the Eastern Klamath terrane as part of a broad northeast trending arch that may be structurally analogous to the domed lower plate of metamorphic core complexes found in eastern parts of the Cordillera. The northeast continuation of the La Grange fault bounds the southeastern side of the Trinity arch in the Eastern Klamath terrane and locally cuts out substantial lower parts of adjacent Paleozoic strata of the Redding section. Faults bounding the northwestem side of the Trinity arch generally trend northeast and juxtapose stacked thrust sheets of lower Paleozoic strata of the Yreka terrane against the Trinity ultramafic sheet. Geometric relations suggest that the Tertiary extension of the southern Klamath Mountains was in NW-SE directions and that the Redding section and the southern part of the Central Metamorphic terrane may be a large Tertiary allochthon detached from the Trinity ultramafic sheet. Paleomagnetic data indicate a lack of rotation about a vertical axis during the extension. We propose that the Trinity ultramafic sheet is structurally analogous to a metamorphic core complex; if so, it is the first core complex to be described that involves ultramafic rocks. We infer that Mesozoic terrane accretion produced a large gravitational instability in the crust that spread laterally during Tertiary extension
NASA Astrophysics Data System (ADS)
Solaro, G.; Bonano, M.; Boncio, P.; Brozzetti, F.; Castaldo, R.; Casu, F.; Cirillo, D.; Cheloni, D.; De Luca, C.; De Nardis, R.; De Novellis, V.; Ferrarini, F.; Lanari, R.; Lavecchia, G.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; Tizzani, P.; Zinno, I.
2017-12-01
The 2016 Central Italy seismic sequence started on 24th August with a MW 6.1 event, where the intra-Apennine WSW-dipping Vettore-Gorzano extensional fault system released a destructive earthquake, causing 300 casualties and extensive damage to the town of Amatrice and surroundings. We generated several interferograms by using ALOS and Sentinel 1-A and B constellation data acquired on both ascending and descending orbits to show that most displacement is characterized by two main subsiding lobes of about 20 cm on the fault hanging-wall. By inverting the generated interferograms, following the Okada analytical approach, the modelling results account for two sources related to main shock and more energetic aftershock. Through Finite Element numerical modelling that jointly exploits DInSAR deformation measurements and structural-geological data, we reconstruct the 3D source of the Amatrice 2016 normal fault earthquake which well fit the main shock. The inversion shows that the co-seismic displacement area was partitioned on two distinct en echelon fault planes, which at the main event hypocentral depth (8 km) merge in one single WSW-dipping surface. Slip peaks were higher along the southern half of the Vettore fault, lower along the northern half of Gorzano fault and null in the relay zone between the two faults; field evidence of co-seismic surface rupture are coherent with the reconstructed scenario. The following seismic sequence was characterized by numerous aftershocks located southeast and northwest of the epicenter which decreased in frequency and magnitude until the end of October, when a MW 5.9 event occurred on 26th October about 25 km to the NW of the previous mainshock. Then, on 30th October, a third large event of magnitude MW 6.5 nucleated below the town of Norcia, striking the area between the two preceding events and filling the gap between the previous ruptures. Also in this case, we exploit a large dataset of DInSAR and GPS measurements to investigate the ground displacement field and to determine, by using elastic dislocation modelling, the geometries and slip distributions of the causative normal fault segments.
Geometrical and mechanical constraints on the formation of ring-fault calderas
NASA Astrophysics Data System (ADS)
Folch, A.; Martí, J.
2004-04-01
Ash-flow, plate-subsidence (piston-like) calderas are bounded by a set of arcuated sub-vertical collapse faults named ring-faults. Experimental studies on caldera formation, performed mostly using spherical or cylindrical magma chamber geometries, find that the resulting ring-faults correspond to steeply outward dipping reverse faults, and show that pre-existing fractures developed during pre-eruptive phases of pressure increase may play a major role in controlling the final collapse mechanism, a situation that should be expected in small to medium sized ring-fault calderas developed on top of composite volcanoes or volcanic clusters. On the other hand, some numerical experiments indicate that large sill-like, elongated magma chambers may induce collapse due to roof bending without fault reactivation, as seems to occur in large plate-subsidence calderas formed independently of pre-existing volcanoes. Also, numerical experiments allow the formation of nearly vertical or steeply inward dipping normal ring-faults, in contrast with most of the analogue models. Using a thermoelastic model, we investigate the geometrical and mechanical conditions to form ring-fault calderas, in particular the largest ones, without needing a previous crust fracturing. Results are given in terms of two dimensionless geometrical parameters, namely λ and e. The former is the chamber extension to chamber depth ratio, whereas the latter stands for the chamber eccentricity. We propose that the ( λ, e) pair determinates two different types of ring-fault calderas with different associated collapse regimes. Ring-fault region A is related to large plate-subsidence calderas (i.e. Andean calderas or Western US calderas), for which few depressurisation is needed to set up a collapse initially governed by flexural bending of the chamber roof. In contrast, ring-fault region B is related to small to moderate sized calderas (i.e. composite volcano calderas), for which much depressurisation is needed. Our opinion is that collapse requires, in the latter case, reactivation of pre-existing fractures and it is therefore more complex and history dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruikshank, K.M.; Johnson, A.M.; Fleming, R.W.
1996-12-31
Measurements of normalized length changes of streets over an area of 9 km{sup 2} in San Fernando Valley of Los Angeles, California, define a distinctive strain pattern that may well reflect blind faulting during the 1994 Northridge earthquake. Strain magnitudes are about 3 {times} 10{sup {minus}4}, locally 10{sup {minus}3}. They define a deformation zone trending diagonally from near Canoga Park in the southwest, through Winnetka, to near Northridge in the northeast. The deformation zone is about 4.5 km long and 1 km wide. The northwestern two-thirds of the zone is a belt of extension of streets, and the southeastern one-thirdmore » is a belt of shortening of streets. On the northwest and southeast sides of the deformation zone the magnitude of the strains is too small to measure, less than 10{sup {minus}4}. Complete states of strain measured in the northeastern half of the deformation zone show that the directions of principal strains are parallel and normal to the walls of the zone, so the zone is not a strike-slip zone. The magnitudes of strains measured in the northeastern part of the Winnetka area were large enough to fracture concrete and soils, and the area of larger strains correlates with the area of greater damage to such roads and sidewalks. All parts of the pattern suggest a blind fault at depth, most likely a reverse fault dipping northwest but possibly a normal fault dipping southeast. The magnitudes of the strains in the Winnetka area are consistent with the strains produced at the ground surface by a blind fault plane extending to depth on the order of 2 km and a net slip on the order of 1 m, within a distance of about 100 to 500 m of the ground surface. The pattern of damage in the San Fernando Valley suggests a fault segment much longer than the 4.5 km defined by survey data in the Winnetka area. The blind fault segment may extend several kilometers in both directions beyond the Winnetka area. This study of the Winnetka area further supports observations that a large earthquake sequence can include rupture along both a main fault and nearby faults with quite different senses of slip. Faults near the main fault that approach the ground surface or cut the surface in an area have the potential of moving coactively in a major earthquake. Movement on such faults is associated with significant damage during an earthquake. The fault that produced the main Northridge shock and the faults that moved coactively in the Northridge area probably are parts of a large structure. Such interrelationships may be key to understanding earthquakes and damage caused by tectonism.« less
NASA Astrophysics Data System (ADS)
Iglseder, C.; Grasemann, B.; Schneider, D.; Rice, A. H. N.; Stöckli, D.; Rockenschaub, M.
2009-04-01
The overall tectonic regime in the Cyclades since the Oligocene has been characterized by crustal extension, accommodated by movements on low-angle normal faults (LANFs). On Kea, structural investigations have demonstrated the existence of an island-wide LANF within a large-scale ductile-brittle shear-zone traceable over a distance of 19.5 km parallel to the stretching lineation. The tectonostratigraphy comprises Attic-Cycladic Crystalline lithologies with a shallowly-dipping schist-calcite marble unit overlain by calcitic and dolomitic fault rocks. Notably, the calcitic marbles have been mylonitized, with a mean NNE/NE-SSW/SW trending, pervasive stretching lineation and intense isoclinal folding with fold axes parallel to the stretching lineation. Numerous SC-SCĆ-fabrics and monoclinic clast-geometries show a consistent top-to-SSW shear-sense. Recorded within all lithologies is a consistent WNW/NW-ESE/SE and NNE/NE-SSW/SW striking network of conjugated brittle, brittle-ductile high-angle faults perpendicular and (sub)parallel to the main stretching direction. Field evidence and microstructural investigations indicate high-angle normal faults formed synchronously with movement on LANFs. This interplay of LANFs with high-angle structures, initiated and evolved from brittle-ductile to brittle conditions, indicates initial stages of movement below the calcite brittle-ductile transition but above the dolomite transition. Weakening processes related to syntectonic fluid-rock interactions highlight these observations. In particular, grain-size reduction and strain localisation in fine-grained (ultra)-cataclasites and fine-grained aggregates of phyllosilicate-rich fault-rocks promoted fluid-flow and pressure-solution-accommodated ‘frictional-viscous' creep. These mechanisms show the importance for LANF slip and movement in the progressive development and interaction between contemporaneous active normal faults in the Andersonian-Byerlee frictional mechanics.
NASA Astrophysics Data System (ADS)
Vadacca, Luigi; Anderlini, Letizia; Casarotti, Emanuele; Serpelloni, Enrico; Chiaraluce, Lauro; Polcari, Marco; Albano, Matteo; Stramondo, Salvatore
2014-05-01
The Alto Tiberina fault (ATF) is a low-angle (east-dipping at 15°) normal fault (LANF) 70 km long placed in the Umbria-Marche Apennines (central Italy), characterized by SW-NE oriented extension occurring at rates of 2-3 mm/yr. These rates were measured by continuous GPS stations belonging to several networks, which are denser in the study area thanks to additional sites recently installed in the framework of the INGV national RING network and of the ATF observatory. In this area historical and instrumental earthquakes mainly occur on west-dipping high-angle normal faults. Within this context the ATF has accumulated 2 km of displacement over the past 2 Ma, but at the same time the deformation processes active along this misoriented fault, as well as its mechanical behavior, are still unknown. We tackle this issue by solving for interseismic deformation models obtained by two different methods. At first, through the 2D and 3D finite element modeling, we define the effects of locking depth, synthetic and antithetic fault activity and lithology on the velocity gradient measured along the ATF system. Subsequently through a block modeling approach, we model the GPS velocities by considering the major fault systems as bounds of rotating blocks, while estimating the corresponding geodetic fault slip-rates and maps of heterogeneous fault coupling. Thanks to the latest imaging of the ATF deep structure obtained from seismic profiles, we improve the proposed models by modeling the fault as a complex rough surface to understand where the stress accumulations are located and the interseismic coupling changes. The preliminary results obtained show firstly that the observed extension is mainly accommodated by interseismic deformation on both the ATF and antithetic faults, highlighting the important role of this LANF inside an active tectonic contest. Secondarily, using the ATF surface "topography", we find an interesting correlation between microseismicty and creeping portions of the ATF. Future perspectives within this study is to validate these models using velocity maps and temporal series provided by Differential Interferometric SAR (DInSAR) technique applied to a datasets of ERS 1-2 and ENVISAT SAR images. These data cover a time interval spanning from 1992 to 2010 and have been acquired along both ascending and descending orbit. In addition we will deploy a network of SAR passive Corner Reflectors (CRs) in the proximity of GPS monuments in order to calibrate the results of processing a set of COSMO-SkyMed SAR data and derive velocity maps. Thus the availability of high-resolution data will contribute to understand the mechanics of the LANFs and to evaluate the seismic potential associated to these geologic structures.
Evaluating Failure Mechanics of the Malpais Landslide, Eureka County, Nevada
NASA Astrophysics Data System (ADS)
Wilhite, C. P.; Carr, J. R.; Wallace, A. R.; Watters, R. J.
2008-12-01
The Malpais Landslide is located on the northeast end of the Shoshone Mountains in north-central Nevada. The 2.3 square kilometer slide originated near the crest of the Malpais Rim and flowed north into Whirlwind Valley. Given the proximity to Holocene faulting and active geothermal conditions, destabilizing forces include seismic activity, hydrothermal alteration, and changes in groundwater conditions. Approximately 3 km west of the slide is the Beowawe Geothermal Field, which is partially recharged along local faults and has altered geologic units throughout the slide area. The area contains two major normal faults (the approximately east striking Malpais Fault and the approximately north striking Dunphy Pass Fault) and numerous smaller faults. The most recent offset along the Malpais fault was approximately 7450 years B.P. (Wesnousky et al., 2005). The resulting scarp cannot be traced through the slide, therefore sliding occurred after that time (though previous sliding has not been ruled out). The stratigraphy in the slide area consists of a basal Paleozoic quartzite, unconformably overlain by Oligocene to Miocene conglomeratic to tuffaceous sediments with interbedded volcanic flows, capped by a sequence of mafic flow units. Except for the lowest sedimentary unit, Tts, all units dip approximately 25 degrees southeast. Tts was measured in outcrops east of the site and dips approximately 20 degrees north; since these outcrops could not be traced into the slide area, the dip of Tts at the slide is unknown. Point-load testing showed Tts to have a tensile strength of 3.12 MPa which is 55% weaker than the next weakest unit in the area. These factors, as well as Tts" semiconsolidated nature, suggest that Tts was the unit of failure. Further testing of the Malpais Landslide, as well as computer simulation, will be used to determine the cause of failure. This information and the examination of other nearby landslides may be helpful in assessing landslide risk in north-central Nevada and regions with similar characteristics. Reference: Wesnousky, S., Barron, A., Briggs, R., Caskey, S., Kumar, S., and Owen, L., 2005, Paleoseismic Transect Across the Northern Great Basin, Journal of Geophysical Research, v. 110.
Geology of Saipan, Mariana Islands; Part 4, Submarine topography and shoal-water ecology
Cloud, Preston E.
1959-01-01
The topography of the sea floor within 10 miles of Saipan broadly resembles that of the land. Eastward, toward the Mariana trench, slopes are about 6°, without prominent benches or scarps. This is inferred to indicate easterly continuation of generally pyroclastic bedrock. The westward slope averages 2° to 3° and consists mainly of nearly flat benches and westfacing scarps. This is taken to imply westward continuation of a limestone bench-and-fault-scarp topography. Projection of known faults to sea and through Tinian, on the basis of topographic trends, suggests a pattern of west-dipping normal faults that parallel the strike of the Mariana ridge and affect the shape and position of islands at the crest of the ridge.
NASA Astrophysics Data System (ADS)
Lymer, Gaël; Cresswell, Derren; Reston, Tim; Stevenson, Carl; Bull, Jon; Sawyer, Dale; Morgan, Julia
2017-04-01
The west Galicia margin has been at the forefront 2D models of breakup subsequently applied to other margins. In summer 2013, a 3D multi-channel seismic dataset was acquired over the Galicia margin with the aim to revisit the margin from a 3D perspective and understand processes of continental extension and break-up through seismic imaging. The volume has been processed through to prestack time migration, followed by depth conversion using velocities extracted from new velocity models based on wide-angle data. Our first interpretations have shown that the most recent block-bounding faults detach downward on a bright reflector, the S reflector, corresponding to a rooted detachment fault and locally the crust-mantle boundary. The 3D topographic and amplitude maps of the S reveal a series of slip surface "corrugations" whose orientation changes oceanward from E-W to ESE-WNW and that we relate to the slip direction during the rifting. We now focus our investigations on the distal part of the S, just east of the Peridotite Ridge, a ridge of exhumed serpentinized mantle. While the S is mainly a continuous surface beneath the continental crust, it suddenly loses its reflectivity oceanward nearby the eastern flank of the ridge. It is likely that the S stops abruptly because it has been offset for almost 1 STWTT by some landward-dipping faults associated with the development of the ridge. This configuration is particularly defendable in the north of the dataset. The implication would be that in this area, the S is shallow and lies below very thin or inexistent basement, thus providing an ideal target for ODP drilling. Alternatively, the S could be intensively segmented by small-offset, but abundant, west-dipping normal faults that root downward on a persistent landward dipping fault that bounds the eastern flank of the ridge. Such a dissection of the S could also explain its lack of reflectivity nearby the ridge; similar reduced reflectivity is locally observed in other parts of the 3D volume in the vicinity of the faults that bound the continental crustal blocks. The implication would be that the S is still located at depth below intensively broken slices of crust and stops against the eastern flank of the Peridotite Ridge. Both cases show that rifting to break-up was a complex and time-variant 3D process that involved several generations of faulting, including late potential landward-dipping structures that controlled the development of the peridotite ridge.
Slip localization on the southern Alpine Fault, New Zealand
NASA Astrophysics Data System (ADS)
Barth, N. C.; Boulton, C.; Carpenter, B. M.; Batt, G. E.; Toy, V. G.
2013-06-01
of a detailed field study of the southern onshore portion of New Zealand's Alpine Fault reveal that for 75 km along-strike, dextral-normal slip on this long-lived structure is highly localized in phyllosilicate-rich fault core gouges and along their contact with more competent rocks. At three localities (Martyr River, McKenzie Creek, and Hokuri Creek), we document complete cross sections through the fault. New 40Ar/39Ar dates on mylonites, combined with microstructural and mechanical data on phyllosilicate-rich fault core gouges show that modern slip is localized onto a single, steeply dipping 1 to 12 m-thick fault core composed of impermeable (k = 10-20 to 10-22 m2), frictionally weak (μs = 0.12-0.37), velocity-strengthening, illite-chlorite, and saponite-chlorite-lizardite fault gouges. Fault core materials are (1) comparable to those of other major weak-cored faults (e.g., San Andreas Fault) and (2) most compatible with fault creep, despite paleoseismic evidence of quasiperiodic large magnitude earthquakes (Mw > 7) on this portion of the Alpine Fault. We conclude that frictional properties of gouges at the surface do not characterize the overall seismogenic behavior of the southern Alpine Fault.
NASA Astrophysics Data System (ADS)
Atgın, O.; Çifçi, G.; Sorlien, C.; Seeber, L.; Steckler, M.; Sillington, D.; Kurt, H.; Dondurur, D.; Okay, S.; Gürçay, S.; Sarıtaş, H.; Küçük, H. M.
2012-04-01
The Sea of Marmara is becoming a natural laboratory for structure, sedimentation, and fluid flow within the North Anatolian fault (NAF) system. Much marine geological and geophysical data has been collected there since the deadly 1999 M=7.2. Izmit earthquake. The Sea of Marmara occupies 3 major basins, with the study area located in the eastern Cinarcik basin near Istanbul. These basins are the results of an extensional component in releasing segments between bends in this right-lateral tranmsform. It is controversial whether the extensional component is taken up by partitioned normal slip on separate faults, or instead by oblique right-normal slip on the non-vertical main northern branch of the NAF. High resolution multichannel seismic reflection (MCS) and multibeam bathymetry data collected by R/V K.Piri Reis and R/V Le-Suroit as part of two different projects respectively entitled "SeisMarmara", "TAMAM" and "ESONET". 3000 km of multichannel seismic reflection profiles were collected in 2008 and 2010 using 72, 111, and 240 channels of streamer with a 6.25 m group interval. The generator-injector airgun was fired every 12.5 or 18.75 m and the resulting MCS data has 10-230 Hz frequency band. The aim of the study is to investigate continuation of North Anatolian Fault along the Sea of Marmara, in order to investigate migration of depo-centers past a fault bend. We also test and extend a recently-published age model, quantify extension across short normal faults, and investigate whether a major surface fault exists along the southern edge of Çınarcık Basin. MCS profiles indicate that main NAF strand is located at the northern boundary of Çınarcık Basin and has a large vertical component of slip. The geometry of the eastern (Tuzla) bend and estimated right-lateral slip rates from GPS data requires as much of ten mm/yr of extension across Çınarcık Basin. Based on the published age model, we calculate about 2 mm/yr of extension on short normal faults in the southeast basin. Furthermore, MCS do not image any major East-West striking fault along the South boundary of Çınarcık Basin, at least not in strata of less than a half million years. This situation probably means that the northern NAF in Çınarcık Basin dips south to accommodate most of the extension by oblique right-normal slip. Thickness maps between stratigraphic horizons show that depocenters formed near Tuzla bend are transported westward with time. We assume constant tilt rates in southeast Çınarcık Basin and use dip vs. age scaling to produce an age model since the last major bathyal onlap expected during the last interglacial at ~120,000 years.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Yarai, H.; Morishita, Y.; Kawamoto, S.; Fujiwara, S.; Nakano, T.
2016-12-01
We report ground displacement associated with the 2016 Kumamoto Earthquake obtained by ALOS-2 SAR and GNSS data. For the SAR analyses, we applied InSAR, MAI, and pixel offset methods, which has successfully provided a 3D displacement field showing the widely- and locally-distributed deformation. The obtained displacement field shows clear displacement boundaries linearly along the Futagawa, the Hinagu, and the Denokuchi faults across which the sign of displacement component turns to be opposite, suggesting that the fault ruptures occurred there. Our fault model for the main shock suggests that the main rupture occurred on the Futagawa fault with a right-lateral motion including a slight normal fault motion. Due to the normal faulting movement, the northern side of the active fault subsides with approximately 2 m. The rupture on the Futagawa fault extends into the Aso caldera with slightly shifting the position northward. Of note, the fault plane oppositely dips toward southeast. It may be a conjugate fault against the main fault. In the western side of the Futagawa fault, the slip on the Hinagu fault, in which the Mj6.5 and Mj6.4 foreshocks occurred with a pure right-lateral motion, is also deeply involved with the main shock. This fault rupture released the amount of approximately 30 percent of the total seismic moment. The hypocenter is determined near the fault and its focal mechanism is consistent with the estimated slip motion of this fault plane, maybe suggesting that the rupture started at this fault and proceeded toward the Futagawa fault eastward. Acknowledgements: ALOS-2 data were provided from the Earthquake Working Group under a cooperative research contract with JAXA (Japan Aerospace Exploration Agency). The ownership of ALOS-2 data belongs to JAXA.
Fosdick, J.C.; Colgan, J.P.
2008-01-01
The East Range in northwestern Nevada is a large, east-tilted crustal block bounded by west-dipping normal faults. Detailed mapping of Tertiary stratigraphic units demonstrates a two-phase history of faulting and extension. The oldest sedimentary and volcanic rocks in the area record cumulative tilting of -30??-45??E, whereas younger olivine basalt flows indicate only a 15??-20??E tilt since ca. 17-13 Ma. Cumulative fault slip during these two episodes caused a minimum of 40% extensional strain across the East Range, and Quaternary fault scarps and seismic activity indicate that fault motion has continued to the present day. Apatite fission track and (U-Th)/He data presented here show that faulting began in the East Range ca. 17-15 Ma, coeval with middle Miocene extension that occurred across much of the Basin and Range. This phase of extension occurred contemporaneously with middle Miocene volcanism related to the nearby northern Nevada rifts, suggesting a link between magmatism and extensional stresses in the crust that facilitated normal faulting in the East Range. Younger fault slip, although less well constrained, began after 10 Ma and is synchronous with the onset of low-magnitude extension in many parts of northwestern Nevada and eastern California. These findings imply that, rather than migrating west across a discrete boundary, late Miocene extension in western Nevada is a distinct, younger period of faulting that is superimposed on the older, middle Miocene distribution of extended and unextended domains. The partitioning of such middle Miocene deformation may reflect the influence of localized heterogeneities in crustal structure, whereas the more broadly distributed late Miocene extension may reflect a stronger influence from regional plate boundary processes that began in the late Miocene. ?? 2008 Geological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, M.P.
1990-09-01
Significant new gas reserves have recently been discovered in the Marginulina texana sands along the Oligocene trend at the Maurice field. Detailed subsurface maps and seismic data are presented to exhibit the extent and nature of this local buried structure and to demonstrate future opportunities along the Oligocene trend. Since discovery in 1988, the MARG. TEX. RC has extended the Maurice field one-half mile south and has encountered over 170 ft of Marginulina texana pay Estimated reserves are in the order of 160 BCFG with limits of the reservoir still unknown. This reserve addition would increase the estimated ultimate ofmore » the Maurice field by over 70% from 220 BCFG to 380 BCFG. Cross sections across the field depict the new reservoir trap as a buried upthrown fault closure with an anticipated gas column of 700 ft. Interpretation of the origin of this local structure is that of a buried rotated fault block on an overall larger depositional structure. Detailed subsurface maps at the Marginulina texana and the overlying Miogypsinoides level are presented. These maps indicate that one common fault block is productive from two different levels. The deeper Marginulina texana sands are trapped on north dip upthrown to a southern boundary fault, Fault B. The overlying Miogypsinoides sands are trapped on south dip downthrown to a northern boundary fault, Fault A. The northern boundary fault, Fault A, was the Marginulina texana expansion fault and rotated that downthrown section to north dip. Because of the difference in dip between the two levels, the apex of the deeper Marginulina texana fault closure is juxtaposed by one mile south relative to the overlying Miogypsinoides fault closure. Analysis indicates that important structural growth occur-red during Marginulina texana deposition with a local unconformity covering the apex of the upthrown fault closure. State-of-the-art reconnaissance seismic data clearly exhibit this buried rotated fault block.« less
NASA Astrophysics Data System (ADS)
Gaki-Papanastassiou, K.; Karymbalis, E.; Papanastassiou, D.; Maroukian, H.
2009-03-01
Along the southern coast of the island of Crete, a series of east-west oriented Late Pleistocene marine terraces exist, demonstrating the significant coastal uplift of this area. Five uplifted terraces were mapped in detail and correlated with Middle-Late Pleistocene sea-level stands following the global sea-level fluctuations. These terraces are deformed by the vertical movements of the NNE-SSW trending and dipping west Ierapetra normal fault. The elevation of the inner edges of the terraces was estimated at several sites by using aerial photographs and detailed topographic maps and diagrams, supported by extensive field observations. In this way detailed geomorphological maps were constructed utilizing GIS technology. All these allowed us to obtain rates of 0.3 mm/yr for the regional component of uplift and 0.1 mm/yr for the vertical slip movements of the Ierapetra fault. Based on the obtained rates and the existence of coastal archaeological Roman ruins it is concluded that Ierapetra fault should have been reactivated sometime after the Roman period.
NASA Astrophysics Data System (ADS)
Ocakoğlu, Neslihan; Nomikou, Paraskevi; İşcan, Yeliz; Loreto, Maria Filomena; Lampridou, Danai
2018-06-01
The interpretation of new multichannel seismic profiles and previously published high-resolution swath and seismic reflection data from the Gökova Gulf and southeast of Kos Island in the eastern Aegean Sea revealed new morphotectonic features related to the July 20, 2017 Mw6.6 Bodrum-Kos earthquake offshore between Kos Island and the Bodrum Peninsula. The seafloor morphology in the northern part of the gulf is characterized by south-dipping E-W-oriented listric normal faults. These faults bend to a ENE-WSW direction towards Kos Island, and then extend parallel to the southern coastline. A left-lateral SW-NE strike-slip fault zone is mapped with segments crossing the Gökova Gulf from its northern part to south of Kos Island. This fault zone intersects and displaces the deep basins in the gulf. The basins are thus interpreted as the youngest deformed features in the study area. The strike-slip faults also produce E-W-oriented ridges between the basin segments, and the ridge-related vertical faults are interpreted as reverse faults. This offshore study reveals that the normal and strike-slip faults are well correlated with the focal mechanism solutions of the recent earthquake and general seismicity of the Gökova Gulf. Although the complex morphotectonic features could suggest that the area is under a transtensional regime, kinematic elements normally associated with a transtensional system are missing. At present, the Gökova Gulf is experiencing strike-slip motion with dominant extensional deformation, rather than transtensional deformation.
The Eastern Tennessee Seismic Zone: Reactivation of an Ancient Continent-Continent Suture Zone
NASA Astrophysics Data System (ADS)
Powell, C. A.
2014-12-01
The eastern Tennessee seismic zone (ETSZ) may represent reactivation of an ancient shear zone that accommodated left-lateral, transpressive motion of the Amazon craton during the Grenville orogeny. Several different lines of evidence support this concept including velocity models for the crust, earthquake hypocenter alignments, focal mechanism solutions, potential field anomalies, paleomagnetic pole positions, and isotopic geochemical studies. The ETSZ trends NE-SW for about 300 km and displays remarkable correlation with the prominent New York - Alabama (NY-AL) aeromagnetic lineament. Vp and Vs models for the crust derived from a local ETSZ earthquake tomography study reveal the presence of a narrow, NE-SW trending, steeply dipping zone of low velocities that extends to a depth of at least 24 km and is associated with the vertical projection of the NY-AL aeromagnetic lineament. The low velocity zone is interpreted as a major basement fault. The recent Mw 4.2 Perry County eastern Kentucky earthquake occurred north of the ETSZ but has a focal depth and mechanism that are similar to those for ETSZ earthquakes. We investigate the possibility that the proposed ancient shear zone extends into eastern Kentucky using Bouguer and aeromagnetic maps. The southern end of the ETSZ is characterized by hypocenters that align along planes dipping at roughly 45 degrees and focal mechanisms that contain large normal faulting components. The NY-AL aeromagnetic lineament also changes trend in the southern end of the ETSZ and the exact location of the lineament is ambiguous. We suggest that the southern portion of the ETSZ involves reactivation of reverse faults (now as normal faults) that mark the ancient transition between a collisional to a more transpressive boundary between Amazonia and Laurentia during the formation of the super continent Rodinia.
Greb, S.F.; Eble, C.F.; Williams, D.A.; Nelson, W.J.
2001-01-01
The Western Kentucky No. 4 coal is a high-volatile B to high-volatile C bituminous coal that has been heavily mined along the southern margin of the Western Kentucky Coal Field. The seam has a reputation for rolling floor elevation. Elongate trends of floor depressions are referred to as "dips" and "rolls" by miners. Some are relatively narrow and straight to slightly curvilinear in plan view, with generally symmetric to slightly asymmetric cross-sections. Others are broader and asymmetric in section, with sharp dips on one limb and gradual, ramp-like dips on the other. Some limbs change laterally from gradual dip, to sharp dip, to offset of the coal. Lateral changes in the rate of floor elevation dip are often associated with changes in coal thickness, and in underground mines, changes in floor elevation are sometimes associated with roof falls and haulage problems. In order to test if coal thickness changes within floor depressions were associated with changes in palynology, petrography and coal quality, the coal was sampled at a surface mine across a broad. ramp-like depression that showed down-dip coal thickening. Increment samples of coal from a thick (150 cm), down-ramp and thinner (127 cm), up-ramp position at one surface mine correlate well between sample sites (a distance of 60 m) except for a single increment. The anomalous increment (31 cm) in the lower-middle part of the thick coal bed contained 20% more Lycospora orbicula spores. The rolling floor elevations noted in the study mines are inferred to have been formed as a result of pre-peat paleotopographic depressions, syn-depositional faulting, fault-controlled pre-peat paleotopography, and from compaction beneath post-depositional channels and slumps. Although the association of thick coal with linear trends and inferred faults has been used in other basins to infer syn-depositional faulting, changes in palynology within increment samples of the seam along a structural ramp in this study provide subtle evidence of faulting within a specific increment of the coal itself. The sudden increase in L. orbicula (produced by Paralycopodites) in a single increment of a down-ramp sample of the Western Kentucky No. 4 coal records the reestablishment of a rheotrophic mire following a sudden change in edaphic conditions. Paralycopodites was a colonizing lycopod, which in this case became locally abundant after the peat was well established along a fault with obvious growth during peat accumulation. Because many coal-mire plants were susceptible to sudden edaphic changes as might accompany faulting or flooding, changes in palynology would be expected in coals affected by syn-depositional faulting. ?? 2001 Elsevier Science B.V. All rights reserved.
Movement sense determination in sheared rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, C.
1985-01-01
Deformation within fault zones produces sheared rocks that range from cataclasites at high structural level, to mylonites and mylonitic gneiss at deeper levels. These rocks are easily recognized and mapped in the field and the strike and dip of the fault zone established. However, present-day geometry of the fault zone does not necessarily indicate relative motion - a zone dipping at 15/sup 0/ could represent a listric normal, thrust, oblique-slip or tilted strike-slip fault. Where offset stratigraphic or lithological markers are absent, the movement sense may be determined from meso- and micro-structural features within the sheared rocks. Of prime importancemore » is the orientation of mineral elongation or stretching lineations which record the finite X direction of strain in the rock; this direction approaches the bulk movement direction with increase in strain. At mesoscopic scale the most reliable shear sense indicators are shear bands and associated features. Use of fold vergence requires caution. On a micro-structural scale, shear bands, mica fish, microfolds, rotated grains, asymmetrical augen structure and fiber growth patterns all give reliable results. Thin sections should be cut parallel to lineation and perpendicular to foliation in order to view maximum rotational component. Asymmetry of crystallographic fabric patterns gives consistent results in zones of relatively simple movement history. For high confidence shear sense determination, all structural elements should be internally consistent. If inconsistency occurs this may indicate a complex, multidirectional movement history for the fault zone.« less
Evidence of post-Pleistocene faults on New Jersey Atlantic outer continental shelf
Sheridan, R.E.; Knebel, H.J.
1976-01-01
Recently obtained high-resolution seismic profiles (400-4,000-Hz band) show evidence of faults in shallow sedimentary strata near the edge of the Atlantic continental shelf off New Jersey. Apparent normal faults having a throw of about 1.5 m displace sediments to within 7 m of the sea floor. The faults appear to be overlain by undeformed horizontal beds of relatively recent age. Several faults 1 to 2 km apart strike approximately N70°E and dip northwest. The data suggest that the faults are upthrown on the southeast.Projection of the faults on the high-resolution profiles to a nearby multichannel seismic-reflection profile indicates that these shallow faults might be the near-surface expression of a more fundamental deep-seated fault. Several prominent reflectors in the multichannel records are offset by a high-angle normal fault reaching depths of 4.0 to 5.0 sec (6.0 to 6.5 km). The deep fault on the multichannel line also is upthrown on the southeast. Throws of as much as 90 m are apparent at depth, but offsets of as much as 10 m could be present in the shallower parts of the section that may not be resolved in the multichannel data.The position and strike of these faults coincide with and parallel the East Coast magnetic anomaly interpreted as the fundamental seaward basement boundary of the Baltimore Canyon trough. Recurring movements along such boundary faults are expected theoretically if the marginal basins are subsiding in response to the plate rotation of North America and seafloor spreading in the Atlantic.
Gravity investigations of the Chickasaw National Recreation Area, south-central Oklahoma
Scheirer, Daniel S.; Scheirer, Allegra Hosford
2006-01-01
The geological configuration of the Arbuckle Uplift in the vicinity of Chickasaw National Recreation Area in south-central Oklahoma plays a governing role in the distribution of fresh and mineral springs within the park and in the existence of artesian wells in and around the park. A confining layer of well-cemented conglomerate lies immediately below the surface of the recreation area, and groundwater migrates from an area of meteoric recharge where rocks of the Arbuckle-Simpson Aquifer crop out as close as two kilometers to the east of the park. Prominent, Pennsylvanian-aged faults are exposed in the aquifer outcrop, and two of the fault traces project beneath the conglomerate cover toward two groups of springs within the northern section of the park. We conducted gravity fieldwork and analysis to investigate the subsurface extensions of these major faults beneath Chickasaw National Recreation Area. By defining gravity signatures of the faults where they are exposed, we infer that the Sulphur and Mill Creek Faults bend to the south-west where they are buried. The South Sulphur Fault may project westward linearly if it juxtaposes rocks that have a density contrast opposite that of that fault's density configuration in the Sulphur Syncline area. The Sulphur Syncline, whose eastern extent is exposed in the outcrop area of the Arbuckle-Simpson Aquifer, does not appear to extend beneath Chickasaw National Recreation Area nor the adjacent City of Sulphur. The South Sulphur Fault dips steeply northward, and its normal sense of offset suggests that the Sulphur Syncline is part of a graben. The Mill Creek Fault dips vertically, and the Reagan Fault dips southward, consistent with its being mapped as a thrust fault. The Sulphur and Mill Creek Synclines may have formed as pull-apart basins in a left-lateral, left-stepping strike-slip environment. The character of the gravity field of Chickasaw National Recreation Area is different from the lineated gravity field in the area of Arbuckle-Simpson Aquifer outcrop. This change in character is not due to the presence of the overlying conglomerate layer, which is quite thin (<100 m) in the area of the park with the springs. The presence of relatively high-density Precambrian basement rocks in a broader region suggests that significant gravity anomalies may arise from variations in basement topography. Understanding of the geological configuration of Chickasaw National Recreation Area can be improved by expanding the study area and by investigating complementary geophysical and borehole constraints of the subsurface.
NASA Astrophysics Data System (ADS)
Matsu'ura, Tabito
2015-04-01
Tectonic uplift rates across the Muroto Peninsula, in the southwest Japan forearc (the overriding plate in the southwest Japan oblique subduction zone), were estimated by mapping the elevations of the inner edges of marine terrace surfaces. The uplift rates inferred from marine terraces M1 and M2, which were correlated by tephrochronology with marine isotope stages (MIS) 5e and 5c, respectively, include some vertical offset by local faults but generally decrease northwestward from 1.2-1.6 m ky- 1 on Cape Muroto to 0.3-0.7 m ky- 1 in the Kochi Plain. The vertical deformation of the Muroto Peninsula since MIS 5e and 5c was interpreted as a combination of regional uplift and folding related to the arc-normal offshore Muroto-Misaki fault. A regional uplift rate of 0.46 m ky- 1 was estimated from terraces on the Muroto Peninsula, and the residual deformation of these terraces was attributed to fault-related folding. A mass-balance calculation yielded a shortening rate of 0.71-0.77 m ky- 1 for the Muroto Peninsula, with the Muroto-Misaki fault accounting for 0.60-0.71 m ky- 1, but these rates may be overestimated by as much as 10% given variations of several meters in the elevation difference between the buried shoreline angles and terrace inner edges in the study area. A thrust fault model with flat (5-10° dip) and ramp (60° dip) components is proposed to explain the shortening rate and uplift rate of the Muroto-Misaki fault since MIS 5e. Bedrock deformation also indicates that the northern extension of this fault corresponds to the older Muroto Flexure.
Structural Controls of the Tuscarora Geothermal Field, Elko County, Nevada
NASA Astrophysics Data System (ADS)
Dering, Gregory M.
Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range province, ˜15 km southeast of the Snake River Plain and ˜90 km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently produces 18 MWe from an ˜170°C reservoir in metasedimentary rocks at a depth of 1740 m. Analysis of drill core reveals that the subsurface geology is dominated to depths of ˜700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic nonconformity within the geothermal field has been recognized as the margin of this Eocene caldera. Structural relations combined with geochronologic data from previous studies indicate that Tuscarora has undergone extension since the late Eocene, with significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic analysis of fault slip data reveal an east-west-trending least principal paleostress direction, which probably reflects an earlier episode of Miocene extension. Two distinct structural settings at different scales appear to control the geothermal field. The regional structural setting is a 10-km wide complexly faulted left step or relay ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal fault system. Geothermal activity occurs within the step-over where sets of east- and west-dipping normal faults overlap in a northerly trending accommodation zone. The distribution of hot wells and hydrothermal surface features, including boiling springs, fumaroles, and siliceous sinter, indicate that the geothermal system is restricted to the narrow (< 1 km) axial part of the accommodation zone, where permeability is maintained at depth around complex fault intersections. Shallow up-flow appears to be focused along several closely spaced steeply west-dipping north-northeast-striking normal faults within the axial part of the accommodation zone. These faults are favorably oriented for extension and fluid flow under the present-day northwest-trending regional extension direction indicated by previous studies of GPS geodetic data, earthquake focal mechanisms, and kinematic data from late Quaternary faults. The recognition of the axial part of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. Preliminary analysis of broad step-overs similar to Tuscarora reveals that geothermal activity occurs in a variety of subsidiary structural settings within these regions. In addition, the presence of several high-temperature systems in northeastern Nevada demonstrates the viability of electrical-grade geothermal activity in this region despite low present-day strain rates as indicated by GPS geodetic data. Geothermal exploration potential in northeastern Nevada may therefore be higher than previously recognized.
Langenheim, V.E.; Jachens, R.C.; Graymer, R.W.; Colgan, J.P.; Wentworth, C.M.; Stanley, R.G.
2012-01-01
Estimates of the dip, depth extent, and amount of cumulative displacement along the major faults in the central California Coast Ranges are controversial. We use detailed aeromagnetic data to estimate these parameters for the San Gregorio–San Simeon–Hosgri and other faults. The recently acquired aeromagnetic data provide an areally consistent data set that crosses the onshore-offshore transition without disruption, which is particularly important for the mostly offshore San Gregorio–San Simeon–Hosgri fault. Our modeling, constrained by exposed geology and in some cases, drill-hole and seismic-reflection data, indicates that the San Gregorio–San Simeon–Hosgri and Reliz-Rinconada faults dip steeply throughout the seismogenic crust. Deviations from steep dips may result from local fault interactions, transfer of slip between faults, or overprinting by transpression since the late Miocene. Given that such faults are consistent with predominantly strike-slip displacement, we correlate geophysical anomalies offset by these faults to estimate cumulative displacements. We find a northward increase in right-lateral displacement along the San Gregorio–San Simeon–Hosgri fault that is mimicked by Quaternary slip rates. Although overall slip rates have decreased over the lifetime of the fault, the pattern of slip has not changed. Northward increase in right-lateral displacement is balanced in part by slip added by faults, such as the Reliz-Rinconada, Oceanic–West Huasna, and (speculatively) Santa Ynez River faults to the east.
NASA Astrophysics Data System (ADS)
Alder, S.; Smith, S. A. F.; Scott, J. M.
2016-10-01
The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the MFZ further suggests that the wide, phyllosilicate-rich fault core acted as an efficient hydrological barrier, resulting in a relatively hydrous footwall and fault core but a relatively dry hanging-wall.
Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah
Jackson, M.D.; Pollard, D.D.
1990-01-01
A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central magma chamber. Radial dikes pierced the dome and accommodated some of the circumferential stretching. ?? 1990.
NASA Astrophysics Data System (ADS)
Firth, Emily A.; Holwell, David A.; Oliver, Nicholas H. S.; Mortensen, James K.; Rovardi, Matthew P.; Boyce, Adrian J.
2015-08-01
Mineral de Talca is a rare occurrence of Mesozoic, gold-bearing quartz vein mineralisation situated within the Coastal Range of northern Chile. Quartz veins controlled by NNW-SSE-trending faults are hosted by Devonian-Carboniferous metasediments of greenschist facies and younger, undeformed granitoid and gabbro intrusions. The principal structural control in the area is the easterly dipping, NNW-SSE-trending El Teniente Fault, which most likely developed as an extensional normal fault in the Triassic but was later reactivated as a strike-slip fault during subsequent compression. A dilational zone in the El Teniente Fault appears to have focussed fluid flow, and an array of NW-SE-trending veins is present as splays off the El Teniente Fault. Mineralised quartz veins typically up to a metre thick occur in three main orientations: (1) parallel to and within NNW-SSE-trending, E-dipping faults throughout the area; (2) along NW-SE-trending, NE-dipping structures which may also host andesite dykes; and (3) rarer E-W-trending, subvertical veins. All mineralised quartz veins show evidence of multiple fluid events with anastomosing and crosscutting veins and veinlets, some of which contain up to 3.5 vol.% base metal sulphides. Mineralogically, Au is present in three textural occurrences, identified by 3D CT scanning: (1) with arsenopyrite and pyrite in altered wall rock and along the margins of some of the veins; (2) with Cu-Pb-Zn sulphides within quartz veins; and (3) as nuggets and clusters of native Au within quartz. Fluid inclusion work indicates the presence of CO2-CH4-bearing fluids with homogenisation temperatures of ˜350 °C and aqueous fluids with low-moderate salinities (0.4-15.5 wt% NaCl eq.) with homogenisation temperatures in the range of 161-321 °C. The presence of Au with arsenopyrite and pyrite in structurally controlled quartz veins and in greenschist facies rocks with evidence of CO2-bearing fluids is consistent with an orogenic style classification for the mineralisation. However, the significant amounts of base metals and the moderate salinity of some of the fluids and the proximity to felsic granitoid intrusions have raised the possibility of an intrusion-related origin for the mineralisation. Vein sulphides display S isotope signatures (δ34S +2.1 to +4.3 ‰) that are intermediate between the host rock metasediments (δ34S +5.3 to +7.5 ‰) and the local granitoids (δ34S +1.3 to +1.4 ‰), indicating a distinct crustal source of some of the S in the veins and possibly a mixed magmatic-crustal S source. The local granite and granodiorite give U-Pb zircon ages of 219.6 ± 1 and 221.3 ± 2.8 Ma, respectively. Lead isotopic compositions of galena in the veins are consistent, suggesting derivation from a homogeneous source. Differences, however, between the isotopic signatures of the veins and igneous feldspars from nearby intrusions imply that these bodies were not the source of the metals though an igneous source from depth cannot be discounted. The Triassic age of the granitoids is consistent with emplacement during regional crustal extension, with the El Teniente Fault formed as an easterly dipping normal fault. The change to a compressional regime in the mid-Jurassic caused reactivation of the El Teniente Fault as a strike-slip fault and provided a structural setting suitable for orogenic style mineralisation. The intrusions may, however, have provided a structural competency contrast that focused the mineralising fluids in a dilational jog along the El Teniente Fault to form WNW-trending veins. As such, the mineralisation is classified as orogenic style, and the identification of the key mineralogical, isotopic and structural features has implications for exploration and the development of similar deposits along the Coastal Range.
Langenheim, V.E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.
2000-01-01
Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.
Structural Controls of the Emerson Pass Geothermal System, Washoe County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B; Faulds, James E
We have conducted a detailed geologic study to better characterize a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Tribe Reservation, western Nevada. A thermal anomaly was discovered in Emerson Pass by use of 2 m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The anomaly lies at the western edge of a broad left step at the northeast end of Pyramid Lake between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The 2-m temperature surveys have defined a N-S elongate thermal anomaly that hasmore » a maximum recorded temperature of ~60°C and resides on a north- to north-northeaststriking fault. Travertine mounds, chalcedonic silica veins, and silica cemented Pleistocene lacustrine gravels in Emerson Pass indicate a robust geothermal system active at the surface in the recent past. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a WNW-trending (~280° azimuth) extension direction. The geothermal system is likely hosted in Emerson Pass as a result of enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and northnortheast- striking faults.« less
NASA Astrophysics Data System (ADS)
Heidarzadeh, Mohammad; Harada, Tomoya; Satake, Kenji; Ishibe, Takeo; Gusman, Aditya Riadi
2016-05-01
The July 2015 Mw 7.0 Solomon Islands tsunamigenic earthquake occurred ~40 km north of the February 2013 Mw 8.0 Santa Cruz earthquake. The proximity of the two epicenters provided unique opportunities for a comparative study of their source mechanisms and tsunami generation. The 2013 earthquake was an interplate event having a thrust focal mechanism at a depth of 30 km while the 2015 event was a normal-fault earthquake occurring at a shallow depth of 10 km in the overriding Pacific Plate. A combined use of tsunami and teleseismic data from the 2015 event revealed the north dipping fault plane and a rupture velocity of 3.6 km/s. Stress transfer analysis revealed that the 2015 earthquake occurred in a region with increased Coulomb stress following the 2013 earthquake. Spectral deconvolution, assuming the 2015 tsunami as empirical Green's function, indicated the source periods of the 2013 Santa Cruz tsunami as 10 and 22 min.
NASA Astrophysics Data System (ADS)
Marchandon, Mathilde; Vergnolle, Mathilde; Sudhaus, Henriette; Cavalié, Olivier
2018-02-01
In this study, we reestimate the source model of the 1997 Mw 7.2 Zirkuh earthquake (northeastern Iran) by jointly optimizing intermediate-field Interferometry Synthetic Aperture Radar data and near-field optical correlation data using a two-step fault modeling procedure. First, we estimate the geometry of the multisegmented Abiz fault using a genetic algorithm. Then, we discretize the fault segments into subfaults and invert the data to image the slip distribution on the fault. Our joint-data model, although similar to the Interferometry Synthetic Aperture Radar-based model to the first order, highlights differences in the fault dip and slip distribution. Our preferred model is ˜80° west dipping in the northern part of the fault, ˜75° east dipping in the southern part and shows three disconnected high slip zones separated by low slip zones. The low slip zones are located where the Abiz fault shows geometric complexities and where the aftershocks are located. We interpret this rough slip distribution as three asperities separated by geometrical barriers that impede the rupture propagation. Finally, no shallow slip deficit is found for the overall rupture except on the central segment where it could be due to off-fault deformation in quaternary deposits.
NASA Astrophysics Data System (ADS)
Aldiss, Don; Haslam, Richard
2013-04-01
In parts of London, faulting introduces lateral heterogeneity to the local ground conditions, especially where construction works intercept the Palaeogene Lambeth Group. This brings difficulties to the compilation of a ground model that is fully consistent with the ground investigation data, and so to the design and construction of engineering works. However, because bedrock in the London area is rather uniform at outcrop, and is widely covered by Quaternary deposits, few faults are shown on the geological maps of the area. This paper discusses a successful resolution of this problem at a site in east central London, where tunnels for a new underground railway station are planned. A 3D geological model was used to provide an understanding of the local geological structure, in faulted Lambeth Group strata, that had not been possible by other commonly-used methods. This model includes seven previously unrecognised faults, with downthrows ranging from about 1 m to about 12 m. The model was constructed in the GSI3D geological modelling software using about 145 borehole records, including many legacy records, in an area of 850 m by 500 m. The basis of a GSI3D 3D geological model is a network of 2D cross-sections drawn by a geologist, generally connecting borehole positions (where the borehole records define the level of the geological units that are present), and outcrop and subcrop lines for those units (where shown by a geological map). When the lines tracing the base of each geological unit within the intersecting cross-sections are complete and mutually consistent, the software is used to generate TIN surfaces between those lines, so creating a 3D geological model. Even where a geological model is constructed as if no faults were present, changes in apparent dip between two data points within a single cross-section can indicate that a fault is present in that segment of the cross-section. If displacements of similar size with the same polarity are found in a series of adjacent cross-sections, the presence of a fault can be substantiated. If it is assumed that the fault is planar and vertical, then the pairs of constraining data points in each cross-section form a two-dimensional envelope within which the surface trace of the fault must lie. Generally, the broader the area of the model, the longer the envelope defined by the pairs of boreholes is, resulting in better constraint of the fault zone width and azimuth. Repetition or omission of the local stratigraphy in the constraining boreholes can demonstrate reverse or normal dip-slip motion. Even if this is not possible, borehole intercepts at the base of the youngest bedrock unit or at the top of the oldest bedrock unit can constrain the minimum angle of dip of the fault plane. Assessment of the maximum angle of dip requires intrusive investigation. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an NERC copyright. This license does not conflict with the regulations of the Crown Copyright.
The 2016 Mw7.0 Kumamoto, Japan earthquake: the rupture propagation under extensional stress
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shan, X.; Zhang, G.; Gong, W.
2016-12-01
On April 16, 2016, the Kumamoto city was hit by an Mw7.0 earthquake, the largest earthquake since 1900 in the central part of Kyushu Island in Japan. It is an event with two foreshocks and rather complex source faults and surface rupture scarps. The Mw7.0 Kumamoto earthquake and its foreshocks and aftershocks occurred on the Futagawa and Hinagu faults, which are previously mapped and formed the southwest portion of the median tectonic line on Kyushu Island. These faults are mainly controlled by extensional and right-lateral shear stress. In this study, we obtained the deformation filed of the Kumamoto earthquake using both of descending and ascending Sentinel-1A data. We then invert the fault slip distribution based on the displacements obtained by InSAR. A three-segment fault model is established by trial and error. We analyze the rupture propagation and the conclusions are listed as following: The Mw 7.0 earthquake is a right-lateral striking event with a slight normal component. Most of the slip distributed on the Futagawa fault segment, with a maximum slip of 4.9 m at 5 km depth below the surface. The energy released on this Futagawa fault segment is equivalent to an Mw6.9 event. The slip distribution on the Hinagu fault segment is also right-lateral, but with a maximum slip of 2 m. Compared to the southern two segments, the northern source fault segment has the steepest dipping segment, which is almost vertical, with a dip as high as 80°; The normal component of the Kumamoto event is controlled by extensional stress due to the tectonic background. The Beppu-Shimabara half graben is the largest extensional structure on Kyushu Island and its formation could strongly be affected by Philippine Sea slab (PHS) convergence and Okinawa Trough extension, so we argue the Kumamoto event maybe exhibits the concrete manifestation of Okinawa Trough extension to Kyushu Island; Continuous surface rupture trace is observed from InSAR coseismic deformation and field investigation, based on which we confirm that the Kumamoto event jumped a 1 km wide step over of the Kiyama fault and two 0.6km wide gaps. However, the mainshock do not jump a 1.7 km wide step over of the Futagawa fault, so its magnitude moment is constrained. In addition, both the Mw6.4 and Mw6.5 events could not go through a 2 km wide at the northeast termination of the Hinagu faults.
Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.
2013-01-01
Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.
Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huftile, G.J.
1991-08-01
By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field andmore » 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.« less
NASA Astrophysics Data System (ADS)
Craig, T. J.; Parnell-Turner, R.
2017-12-01
Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived detachment faults. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths, resulting in a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains debated. In this presentation we will show a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13o20'N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger, teleseismically-observed earthquakes. The coincidence of these two datasets provides a more complete characterisation of rupture on the fault, from its initial beginnings within the uppermost mantle to its exposure at the surface. Our results demonstrate that although slip on the steeply-dipping portion of detachment fault is accommodated by failure in numerous microearthquakes, the shallower-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
Building geomechanical characteristic model in Ilan geothermal area, NE Taiwan
NASA Astrophysics Data System (ADS)
Chiang, Yu-Hsuan; Hung, Jih-Hao
2015-04-01
National Energy Program-Phase II (NEPPII) was initiated to understand the geomechanical characteristic in Ilan geothermal area. In this study, we integrate well cores and logs (e.g. Nature Gamma-ray, Normal resistivity, Formation Micro Imager) which were acquired in HongChaiLin (HCL), Duck-Field (DF) and IC21 to determine the depth of fracture zone, in-situ stress state, the depth of basement and lithological characters. In addition, the subsurface in-situ stress state will be helpful to analyze the fault reactivation potential and slip tendency. By retrieved core from HCL well and the results of geophysical logging, indicated that the lithological character is slate (520m ~ 1500m) and the basement depth is around 520m. To get the minimum and maximum horizontal stress, several hydraulic fracturing tests were conducted in the interval of 750~765m on HCL well. The horizontal maximum and minimum stresses including the hydrostatic pressure are calculated as 15.39MPa and 13.57MPa, respectively. The vertical stress is decided by measuring the core density from 738m to 902m depth. The average core density is 2.71 g/cm3, and the vertical stress is 19.95 MPa (at 750m). From DF well, the basement depth is 468.9m. Besides, by analyzing the IC21 well logging data, we know the in-situ orientation of maximum horizontal stress is NE-SW. Using these parameters, the fault reactivation potential and slip tendency can be analyzed with 3DStress, Traptester software and demonstrated on model. On the other hand, we interpreted the horizons and faults from the nine seismic profiles including six N-S profiles, two W-E profiles and one NE-SW profile to construct the 3D subsurface structure model with GOCAD software. The result shows that Zhuosui fault and Kankou Formation are dip to north, but Hanxi fault and Xiaonanao fault are dip to south. In addition, there is a syncline-like structure on Nansuao Formation and the Chingshuihu member of the Lushan Formation. However, there is a conflict on Szeleng sandstone. We need to more drilling data to confirm the dip of Szeleng sandstone.
NASA Astrophysics Data System (ADS)
Vandenburg, Colby J.; Janecke, Susanne U.; McIntosh, William C.
1998-12-01
The Horse Prairie basin of southwestern Montana is a complex, east-dipping half-graben that contains three angular unconformity-bounded sequences of Tertiary sedimentary rocks overlying middle Eocene volcanic rocks. New mapping of the basin and its hanging wall indicate that five temporally and geometrically distinct phases of normal faulting and at least three generations of fault-related extensional folding affected the area during the late Mesozoic (?) to Cenozoic. All of these phases of extension are evident over regional or cordilleran-scale domains. The extension direction has rotated ˜90° four times in the Horse Prairie area resulting in a complex three-dimensional strain field with ≫60% east-west and >25% north-south bulk extension. Extensional folds with axes at high angles to the associated normal fault record most of the three-dimensional strain during individual phases of extension (phases 3a, 3b, and 4). Cross-cutting relationships between normal faults and Tertiary volcanic and sedimentary rocks constrain the ages of each distinct phase of deformation and show that extension continued episodically for more than 50 My. Gravitational collapse of the Sevier fold and thrust belt was the ultimate cause of most of the extension.
High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs
NASA Astrophysics Data System (ADS)
Hu, Feng; Wen, Jian; Chen, Xiaofei
2018-03-01
We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.
Pseudotachylyte: Reading the Record of Paleoseismicity in Low-Angle Normal Faults
NASA Astrophysics Data System (ADS)
Smith, D. M.; Goodwin, L. B.; Feinberg, J. M.; Ellis, A. P.
2012-12-01
Whether or not low-angle normal faults (LANFs, dipping <30°) can produce earthquakes is hotly debated. Pseudotachylyte - rapidly quenched frictional melt generated during seismic failure - has been noted in several LANF sites but not extensively studied. We recently documented significant pseudotachylyte exposures in both the South Mountains and Catalina-Rincon metamorphic core complexes of Arizona. In both field areas, pseudotachylyte is located below detachment faults, where it is best exposed in fractured areas beneath chlorite breccia zones. Generation veins dip 7-24°, are locally parallel to host rock foliations, and range from 1 mm to 3 cm thick. Where subvertical exposures are available, generation and injection veins either form networks up to 1 m thick or are stacked, such that multiple veins spaced < 1m apart are exposed in zones 2 to 3 m thick. Outcrops do not permit mapping of pseudotachylytes' full lateral extent, but do allow a minimum length of 50 m oblique to strike to be estimated. The magnitude of pseudotachylyte exposure in these core complexes implies significant seismicity. A key question is whether the generation surfaces were in their present orientations when they failed seismically. To answer this, we are applying a fault paleogeometry test. The cornerstone of this test is a comparison of two paleomagnetic vectors. The first will be determined through standard paleomagnetic analyses of oriented pseudotachylyte samples. The second will represent the vector expected if no LANF rotation has occurred and will be determined through correlation of a sample's 40Ar/39Ar age with its coeval magnetic pole location. Any discrepancy between the vectors will be interpreted to represent rotation of the fault since seismicity. Anderson-Byerlee compatible slip will be supported by discrepancies requiring a seismically active dip >30°. An active dip of <30° suggests that additional factors have reduced effective stress and/or frictional resistance to allow seismicity. A third, similarly extensive zone of pseudotachylyte veins in Central Otago, New Zealand will be included with our Arizona sites in this analysis. Previous work in this location shows more than 100 veins dipping 10-30°, from 1- 3 cm thick, extending up to 200 m along strike (Barker, 2005). The Otago site emphasizes seismicity as a component of LANF development in different tectonic regions, and will allow comparison of LANF pseudotachylytes of disparate host rock and ages (Miocene in U.S. sites, Cretaceous in NZ). Preliminary data demonstrate a range in magnetic characteristics of the samples we have collected. Veins within felsic granodiorite and alaskite in the South Mountains show susceptibilities ranging from 0.48 -1.06 x 10-3 SI. These values are indistinguishable from host rock susceptibilities (0.48 - 1.32 x 10-3 SI). In contrast, Rincon pseudotachylyte has magnetic susceptibilities ranging from 29.3 to >80.0 x 10-3 SI and porphyroclastic gneiss host rock values are a considerably lower 7.44 - 8.64 x 10-3 SI. We therefore anticipate this test will only be successfully applied toward some of our samples. Our presentation will include both descriptions of pseudotachlylyte zones and networks and preliminary paleomagnetic data.
A Seismic Source Model for Central Europe and Italy
NASA Astrophysics Data System (ADS)
Nyst, M.; Williams, C.; Onur, T.
2006-12-01
We present a seismic source model for Central Europe (Belgium, Germany, Switzerland, and Austria) and Italy, as part of an overall seismic risk and loss modeling project for this region. A separate presentation at this conference discusses the probabilistic seismic hazard and risk assessment (Williams et al., 2006). Where available we adopt regional consensus models and adjusts these to fit our format, otherwise we develop our own model. Our seismic source model covers the whole region under consideration and consists of the following components: 1. A subduction zone environment in Calabria, SE Italy, with interface events between the Eurasian and African plates and intraslab events within the subducting slab. The subduction zone interface is parameterized as a set of dipping area sources that follow the geometry of the surface of the subducting plate, whereas intraslab events are modeled as plane sources at depth; 2. The main normal faults in the upper crust along the Apennines mountain range, in Calabria and Central Italy. Dipping faults and (sub-) vertical faults are parameterized as dipping plane and line sources, respectively; 3. The Upper and Lower Rhine Graben regime that runs from northern Italy into eastern Belgium, parameterized as a combination of dipping plane and line sources, and finally 4. Background seismicity, parameterized as area sources. The fault model is based on slip rates using characteristic recurrence. The modeling of background and subduction zone seismicity is based on a compilation of several national and regional historic seismic catalogs using a Gutenberg-Richter recurrence model. Merging the catalogs encompasses the deletion of double, fake and very old events and the application of a declustering algorithm (Reasenberg, 2000). The resulting catalog contains a little over 6000 events, has an average b-value of -0.9, is complete for moment magnitudes 4.5 and larger, and is used to compute a gridded a-value model (smoothed historical seismicity) for the region. The logic tree weighs various completeness intervals and minimum magnitudes. Using a weighted scheme of European and global ground motion models together with a detailed site classification map for Europe based on Eurocode 8, we generate hazard maps for recurrence periods of 200, 475, 1000 and 2500 yrs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Donald M.; Smith, Kenneth D.; Parashar, Rishi
Regional stress may exert considerable control on the permeability and hydraulic function (i.e., barrier to and/or conduit for fluid flow) of faults and fractures at Pahute Mesa, Nevada National Security Site (NNSS). In-situ measurements of the stress field are sparse in this area, and short period earthquake focal mechanisms are used to delineate principal horizontal stress orientations. Stress field inversion solutions to earthquake focal mechanisms indicate that Pahute Mesa is located within a transtensional faulting regime, represented by oblique slip on steeply dipping normal fault structures, with maximum horizontal stress ranging from N29°E to N63°E and average of N42°E. Averagemore » horizontal stress directions are in general agreement with large diameter borehole breakouts from Pahute Mesa analyzed in this study and with stress measurements from other locations on the NNSS.« less
Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand
NASA Astrophysics Data System (ADS)
Nicol, Andrew; Van Dissen, Russell
2002-09-01
Active strike-slip faults in New Zealand occur within an obliquely-convergent plate boundary zone. Although the traces of these faults commonly delineate the base of mountain ranges, they do not always accommodate significant shortening at the free surface. Along the active trace of Clarence Fault in northeastern South Island, New Zealand, displaced landforms and slickenside striations indicate predominantly horizontal displacements at the ground surface, and a right-lateral slip rate of ca. 3.5-5 mm/year during the Holocene. The Inland Kaikoura mountain range occupies the hanging wall of the fault and rises steeply from the active trace to altitudes of ca. 3 km. The geomorphology of the range indicates active uplift and mountain building, which is interpreted to result, in part, from a vertical component of fault slip at depth. These data are consistent with the fault accommodating oblique-slip at depth aligned parallel to the plate-motion vector and compatible with regional geodetic data and earthquake focal-mechanisms. Oblique-slip on the Clarence Fault at depth is partitioned at the free surface into: (1) right-lateral displacement on the fault, and (2) hanging wall uplift produced by distributed displacement on small-scale faults parallel to the main fault. Decoupling of slip components reflects an up-dip transfer of fault throw to an off-fault zone of distributed uplift. Such zones are common in the hanging walls of thrusts and reverse faults, and support the idea that the dip of the oblique-slip Clarence Fault steepens towards the free surface.
Probable Mid-Miocene Caldera in the Modoc Plateau, Northeast California
NASA Astrophysics Data System (ADS)
Bowens, T. E.; Grose, T. L.
2001-12-01
Regional geologic mapping within the Modoc Plateau has resulted in the discovery of a large volcanotectonic anomaly some 21-km in diameter approximately 50-km WSW of the city of Alturas in Modoc County, California. Centrally located within this anomaly lies a structural depression some 11-km in diameter which, based on structural, lithologic, and geophysical characteristics, is believed to represent a deeply eroded mid-Miocene caldera. The region extending outward some 5-km from the proposed caldera displays a sharp, localized structural deflection from a NNW to a WNW structural grain. Lying inboard of this deflection, a series of regionally discordant E-W to NE trending, generally down to the north, normal faults were discovered which are believed to represent rim faults to an ancient caldera. Bedding within the hanging wall of these discordant structures displays highly contorted and regionally anomalous dips. By stereographic removal of the regional northeast dip overprinting the area, the anomalous dips were found to display a radial, steeply inward dipping pattern in close proximity to the proposed rim structures while dips located further inboard are generally flat-lying. Lithologies within the proposed caldera are regionally anomalous and include abundant tuffaceous and flow dominated breccias, closed basin organic sedimentary facies, and an anomalous concentration of volcanic centers of both mafic and felsic compositions. One of these intrusives was age dated at 12.9 Ma indicating the anomaly formed during mid-Miocene time. The location of the proposed caldera is associated with a +20 mgal gravity high, which stands in contrast to a lesser high of +10 mgal associated with the Medicine Lake Caldera some 50-km to the northwest. This combination of structural, lithologic, and geophysical evidence leads to the interpretation of a caldera at this location, herein termed the Stone Coal Valley Caldera.
Fisher, M.A.; Langenheim, V.E.; Sorlien, C.C.; Dartnell, P.; Sliter, R.W.; Cochrane, G.R.; Wong, F.L.
2005-01-01
Offshore faults west of Point Dume, southern California, are part of an important regional fault system that extends for about 206 km, from near the city of Los Angeles westward along the south flank of the Santa Monica Mountains and through the northern Channel Islands. This boundary fault system separates the western Transverse Ranges, on the north, from the California Continental Borderland, on the south. Previous research showed that the fault system includes many active fault strands; consequently, the entire system is considered a serious potential earthquake hazard to nearby Los Angeles. We present an integrated analysis of multichannel seismic- and high-resolution seismic-reflection data and multibeam-bathymetric information to focus on the central part of the fault system that lies west of Point Dume. We show that some of the main offshore faults have cumulative displacements of 3-5 km, and many faults are currently active because they deform the seafloor or very shallow sediment layers. The main offshore fault is the Dume fault, a large north-dipping reverse fault. In the eastern part of the study area, this fault offsets the seafloor, showing Holocene displacement. Onshore, the Malibu Coast fault dips steeply north, is active, and shows left-oblique slip. The probable offshore extension of this fault is a large fault that dips steeply in its upper part but flattens at depth. High-resolution seismic data show that this fault deforms shallow sediment making up the Hueneme fan complex, indicating Holocene activity. A structure near Sycamore knoll strikes transversely to the main faults and could be important to the analysis of the regional earthquake hazard because the structure might form a boundary between earthquake-rupture segments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, L.K.
1987-05-01
Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into themore » nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.« less
Ball-and-socket tectonic rotation during the 2013 Mw 7.7 Balochistan earthquake
NASA Astrophysics Data System (ADS)
Barnhart, W. D.; Hayes, G. P.; Briggs, R. W.; Gold, R. D.; Bilham, R.
2014-10-01
The September 2013 Mw 7.7 Balochistan earthquake ruptured a ∼200-km-long segment of the curved Hoshab fault in southern Pakistan with 10 ± 0.2 m of peak sinistral and ∼ 1.7 ± 0.8 m of dip slip. This rupture is unusual because the fault dips 60 ± 15° towards the focus of a small circle centered in northwest Pakistan, and, despite a 30° increase in obliquity along strike, the ratios of strike and dip slip remain relatively uniform. Surface displacements and geodetic and teleseismic source inversions quantify a bilateral rupture that propagated rapidly at shallow depths from a transtensional jog near the northern end of the rupture. Static friction prior to rupture was unusually weak (μ < 0.05), and friction may have approached zero during dynamic rupture. Here we show that the inward-dipping Hoshab fault defines the northern rim of a structural unit in southeast Makran that rotates - akin to a 2-D ball-and-socket joint - counter-clockwise in response to India's penetration into the Eurasian plate. This rotation accounts for complexity in the Chaman fault system and, in principle, reduces seismic potential near Karachi; nonetheless, these findings highlight deficiencies in strong ground motion equations and tectonic models that invoke Anderson-Byerlee faulting predictions.
Ball-and-socket tectonic rotation during the 2013 Mw7.7 Balochistan earthquake
Barnhart, William D.; Hayes, Gavin P.; Briggs, Richard W.; Gold, Ryan D.; Bilham, R.
2014-01-01
The September 2013 Mw7.7 Balochistan earthquake ruptured a ∼200-km-long segment of the curved Hoshab fault in southern Pakistan with 10±0.2 m of peak sinistral and ∼1.7±0.8 m of dip slip. This rupture is unusual because the fault dips 60±15° towards the focus of a small circle centered in northwest Pakistan, and, despite a 30° increase in obliquity along strike, the ratios of strike and dip slip remain relatively uniform. Surface displacements and geodetic and teleseismic source inversions quantify a bilateral rupture that propagated rapidly at shallow depths from a transtensional jog near the northern end of the rupture. Static friction prior to rupture was unusually weak (μ<0.05), and friction may have approached zero during dynamic rupture. Here we show that the inward-dipping Hoshab fault defines the northern rim of a structural unit in southeast Makran that rotates – akin to a 2-D ball-and-socket joint – counter-clockwise in response to India's penetration into the Eurasian plate. This rotation accounts for complexity in the Chaman fault system and, in principle, reduces seismic potential near Karachi; nonetheless, these findings highlight deficiencies in strong ground motion equations and tectonic models that invoke Anderson–Byerlee faulting predictions.
NASA Astrophysics Data System (ADS)
Okuwaki, R.; Yagi, Y.
2017-12-01
A seismic source model for the Mw 8.1 2017 Chiapas, Mexico, earthquake was constructed by kinematic waveform inversion using globally observed teleseismic waveforms, suggesting that the earthquake was a normal-faulting event on a steeply dipping plane, with the major slip concentrated around a relatively shallow depth of 28 km. The modeled rupture evolution showed unilateral, downdip propagation northwestward from the hypocenter, and the downdip width of the main rupture was restricted to less than 30 km below the slab interface, suggesting that the downdip extensional stresses due to the slab bending were the primary cause of the earthquake. The rupture front abruptly decelerated at the northwestern end of the main rupture where it intersected the subducting Tehuantepec Fracture Zone, suggesting that the fracture zone may have inhibited further rupture propagation.
Geometry of the southern San Andreas fault and its implications for seismic hazard
NASA Astrophysics Data System (ADS)
Langenheim, V. E.; Dorsey, R. J.; Fuis, G. S.; Cooke, M. L.; Fattaruso, L.; Barak, S.
2015-12-01
The southern San Andreas fault (SSAF) provides rich opportunities for studying the geometry and connectivity of fault stepovers and intersections, including recently recognized NE tilting of the Salton block between the SSAF and San Jacinto fault (SJF) that likely results from slight obliquity of relative plate motion to the strike of the SSAF. Fault geometry and predictions of whether the SSAF will rupture through the restraining bend in San Gorgonio Pass (SGP) are controversial, with significant implications for seismic hazard. The evolution of faulting in SGP has led to various models of strain accommodation, including clockwise rotation of fault-bounded blocks east of the restraining bend, and generation of faults that siphon strike slip away from the restraining bend onto the SJF (also parallel to the SSAF). Complex deformation is not restricted to the upper crust but extends to mid- and lower-crustal depths according to magnetic data and ambient-noise surface-wave tomography. Initiation of the SJF ~1.2 Ma led to formation of the relatively intact Salton block, and end of extension on the West Salton detachment fault on the west side of Coachella Valley. Geologic and geomorphic data show asymmetry of the southern Santa Rosa Mountains, with a steep fault-bounded SW flank produced by active uplift, and gentler topographic gradients on the NE flank with tilted, inactive late Pleistocene fans that are incised by modern upper fan channels. Gravity data indicate the basin floor beneath Coachella Valley is also asymmetric, with a gently NE-dipping basin floor bound by a steep SSAF; seismic-reflection data suggest that NE tilting took place during Quaternary time. 3D numerical modeling predicts gentle NE dips in the Salton block that result from the slight clockwise orientation of relative motion across a NE-dipping SSAF. A NE dip of the SSAF, supported by various geophysical datasets, would reduce shaking in Coachella Valley compared to a vertical fault.
Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Craig, Timothy J.; Parnell-Turner, Ross
2017-12-01
Extension at slow- and intermediate-spreading mid-ocean ridges is commonly accommodated through slip on long-lived faults called oceanic detachments. These curved, convex-upward faults consist of a steeply-dipping section thought to be rooted in the lower crust or upper mantle which rotates to progressively shallower dip-angles at shallower depths. The commonly-observed result is a domed, sub-horizontal oceanic core complex at the seabed. Although it is accepted that detachment faults can accumulate kilometre-scale offsets over millions of years, the mechanism of slip, and their capacity to sustain the shear stresses necessary to produce large earthquakes, remains subject to debate. Here we present a comprehensive seismological study of an active oceanic detachment fault system on the Mid-Atlantic Ridge near 13°20‧N, combining the results from a local ocean-bottom seismograph deployment with waveform inversion of a series of larger teleseismically-observed earthquakes. The unique coincidence of these two datasets provides a comprehensive definition of rupture on the fault, from the uppermost mantle to the seabed. Our results demonstrate that although slip on the deep, steeply-dipping portion of detachment faults is accommodated by failure in numerous microearthquakes, the shallow, gently-dipping section of the fault within the upper few kilometres is relatively strong, and is capable of producing large-magnitude earthquakes. This result brings into question the current paradigm that the shallow sections of oceanic detachment faults are dominated by low-friction mineralogies and therefore slip aseismically, but is consistent with observations from continental detachment faults. Slip on the shallow portion of active detachment faults at relatively low angles may therefore account for many more large-magnitude earthquakes at mid-ocean ridges than previously thought, and suggests that the lithospheric strength at slow-spreading mid-ocean ridges may be concentrated at shallow depths.
NASA Astrophysics Data System (ADS)
Barnhart, W. D.; Hayes, G. P.; Briggs, R. W.; Gold, R. D.; Bilham, R. G.
2014-12-01
The September 2013 Mw7.7 Balochistan strike-slip earthquake ruptured a ~200 km long segment of the curved Hoshab fault within the Makran accretionary prism - the active zone of convergence between the northward subducting Arabia plate and overriding Eurasia. The Hoshab fault ruptured bilaterally with ~10 m of mean sinistral and ~1.7 m of dip slip along the length of the rupture, quantified jointly from geodetic and seismological observations. This rupture is unusual because the fault dips ~60o towards the focus of a small circle centered in northwest Pakistan, and, despite a 30o increase in obliquity along the curving strike of the fault with respect to Arabia:Eurasia convergence, the ratio of strike and dip slip remain relatively uniform. Static friction prior to rupture was unusually weak ( <0.05) as inferred from topographic and slab profiles, and friction may have approached zero during dynamic rupture, thus permitting in part this unusual event. In this presentation, we argue that the northward dipping Hosab fault defines the northern rim of a structural unit in southeast Makran. This unit rotates - akin to a 2-D ball-and-socket joint - counter clockwise in response to India's penetration into the Eurasia plate. According to this interpretation, the mechanically weak Makran accretionary prism is subjected to a highly heterogeneous strain and deforms in response to convergence from both the Arabia and India plates. Rotation of the southeast Makran block accounts for complexity in the Chaman fault system and, in principle, reduces the seismic potential near Karachi by accommodating some slip along the southern Ornach-Nal fault. At the same time, geological indicators and along-strike fault slip profiles indicate that the Hoshab fault may also slip as a reverse fault in response to Arabia:Eurasia convergence - indicating that a single fault may accommodate multiple components of strain partitioning in a heterogeneous strain field over several seismic cycles.
Hickman, Stephen; Barton, Colleen; Zoback, Mark; Morin, Roger; Sass, John; Benoit, Richard; ,
1997-01-01
As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, Shmin, is S57 ??E. As the Stillwater fault at this location dips S50 ??E at approximately 3??, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of Shmin is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of Shmin is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of Shmin in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures. Comparison of these stress and hydrologic data with fracture orientations from the televiewer log indicates that hydraulically conductive fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active normal faults in the current west-northwest extensional stress regime at Dixie Valley.
Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.; Rymer, M.J.; Bawden, G.W.
2008-01-01
High-resolution seismic-reflection and seismic-refraction imaging, combined with existing borehole, earthquake, and paleoseismic trenching data, suggest that the Santa Monica fault zone in Los Angeles consists of multiple strands from several kilometers depth to the near surface. We interpret our seismic data as showing two shallow-depth low-angle fault strands and multiple near-vertical (???85??) faults in the upper 100 m. One of the low-angle faults dips northward at about 28?? and approaches the surface at the base of a topographic scarp on the grounds of the Wadsworth VA Hospital (WVAH). The other principal low-angle fault dips northward at about 20?? and projects toward the surface about 200 m south of the topographic scarp, near the northernmost areas of the Los Angeles Basin that experienced strong shaking during the 1994 Northridge earthquake. The 20?? north-dipping low-angle fault is also apparent on a previously published seismic-reflection image by Pratt et al. (1998) and appears to extend northward to at least Wilshire Boulevard, where the fault may be about 450 m below the surface. Slip rates determined at the WVAH site could be significantly underestimated if it is assumed that slip occurs only on a single strand of the Santa Monica fault or if it is assumed that the near-surface faults dip at angles greater than 20-28??. At the WVAH, tomographic velocity modeling shows a significant decrease in velocity across near-surface strands of the Santa Monica fault. P-wave velocities range from about 500 m/sec at the surface to about 4500 m/sec within the upper 50 m on the north side of the fault zone at WVAH, but maximum measured velocities on the south side of the low-angle fault zone at WVAH are about 3500 m/sec. These refraction velocities compare favorably with velocities measured in nearby boreholes by Gibbs et al. (2000). This study illustrates the utility of com- bined seismic-reflection and seismic-refraction methods, which allow more accurate reflection imaging and compositional estimations across areas with highly variable velocities, a property that is characteristic of most fault zones.
Slip re-orientation in the oblique Abiquiu embayment, northern Rio Grande rift
NASA Astrophysics Data System (ADS)
Liu, Y.; Murphy, M. A.; Andrea, R. A.
2015-12-01
Traditional models of oblique rifting predict that an oblique fault accommodates both dip-slip and strike-slip kinematics. However, recent analog experiments suggest that slip can be re-oriented to almost pure dip-slip on oblique faults if a preexisting weak zone is present at the onset of oblique extension. In this study, we use fault slip data from the Abiquiu embayment in northern Rio Grande rift to test the new model. The Rio Grande rift is a Cenozoic oblique rift extending from southern Colorado to New Mexico. From north to south, it comprises three major half grabens (San Luis, Española, and Albuquerque). The Abiquiu embayment is a sub-basin of the San Luis basin in northern New Mexico. Rift-border faults are generally older and oblique to the trend of the rift, whereas internal faults are younger and approximately N-S striking, i.e. orthogonal to the regional extension direction. Rift-border faults are deep-seated in the basement rocks while the internal faults only cut shallow stratigraphic sections. It has been suggested by many that inherited structures may influence the Rio Grande rifting. Particularly, Laramide structures (and possibly the Ancestral Rockies as well) that bound the Abiquiu embayment strike N- to NW. Our data show that internal faults in the Abiquiu embayment exhibit almost pure dip-slip (rake of slickenlines = 90º ± 15º), independent of their orientations with respect to the regional extension direction. On the contrary, border faults show two sets of rakes: almost pure dip-slip (rake = 90º ± 15º) where the fault is sub-parallel to the foliation, and moderately-oblique (rake = 30º ± 15º) where the fault is high angle to the foliation. We conclude that slip re-orientation occurs on most internal faults and some oblique border faults under the influence of inherited structures. Regarding those border faults on which slip is not re-oriented, we hypothesize that it may be caused by the Jemez volcanism or small-scale mantle convection.
NASA Astrophysics Data System (ADS)
Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji
2013-04-01
The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion in the late Pleistocene). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.
Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation
NASA Astrophysics Data System (ADS)
Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro
2017-01-01
Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.
Wilmarth, V.R.; Vickers, R.C.
1953-01-01
Uranium deposits that contain uraniferous pyrobitumen of possible hydrothermal origin occur at the Weatherly and Robinson properties near Placerville, San Miguel County, Colo. These deposits were mined for copper, silver, and gold more than 50 years ago and were developed for uranium in 1950. The Robinson property, half a mile east of Placerville, consists of the White Spar, New Discovery Lode, and Barbara Jo claims. The rocks in this area are nearly horizontal sandstones, shales, limestones, and conglomerates of the Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. These rocks have been faulted extensively and intruded by a Tertiary (?) andesite porphyry dike. Uranium-bearing pyrobitumen associated with tennantite, tetrahedrite, galena, sphalerite, chalcopyrite, bornite, azurite, malachite, calcite, barite, and quartz occurs in a lenticular body as much as 40 feet long and 6 feet wide along a northwest-trending, steeply dipping normal fault. The uranium content of eleven samples from the uranium deposit ranges from 0.001 to 0.045 percent uranium and averages about 0.02 percent uranium. The Weatherly property, about a mile northwest of Placerville, consists of the Black King claims nos. 1, 4, and 5. The rocks in this area include the complexly faulted Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. Uranium-bearing pyrobitumen arid uranophane occur, along a northwest-trending, steeply dipping normal fault and in the sedimentary rocks on the hanging wall of the fault. Lens-shaped deposits in the fault zone are as much as 6 feet long and 2 feet wide and contain as much as 9 percent uranium; whereas channel samples across the fault zone contain from 0.001 to 0.014 percent uranium. Tetrahedrite, chalcopyrite, galena, sphalerite, fuchsite, malachite, azurite, erythrite, bornite, and molybdite in a gangue of pyrite, calcite, barite, and quartz are associated with the uraniferous material. In the sedimentary rocks on the hanging wall, uranium-bearing pyrobitumen occurs in replacement lenses as much as,8 inches wide and 6 feet long, and in nodules as much as 6 inches in diameter for approximately 100 feet away from the fault. Pyrite and calcite are closely associated with the uraniferous material in the sedimentary rocks. Samples from the replacement bodies contain from 0. 007 to 1.4 percent uranium.
Relationships between tectonism, volcano-tectonism and volcanism: the Ischia island (Italy) case.
NASA Astrophysics Data System (ADS)
Marotta, E.; de Vita, S.; Orsi, G.; Sansivero, F.
2005-12-01
The resurgent calderas of Ischia, Campi Flegrei and Pantelleria are characterized by differentially displaced blocks, and distribution of later eruption vents in a well defined sector of the resurgent area. These features suggest a simple shearing block resurgence mechanism. Moreover, the studies carried out on Ischia and Campi Flegrei evidenced a very complex structural pattern due to deformation related to the local stress regime induced by magmatism and volcanism and also to reactivation of regional structures. In order to better define the relationships among tectonic, volcano-tectonic and caldera resurgence mechanism, a structural study has been carried out at Ischia, where the Mt. Epomeo has been uplifted of about 900 m in the past 30 ka. The measures taken on 1,400 planar surfaces (faults, joints and fracture cleavages) show that the resurgent area is composed of differentially displaced blocks whose uplifting is maximum for the Mt. Epomeo and decreases southeastward. The resurgent area has a poligonal shape resulting from the reactivation of regional faults and by the activation of faults directly related to volcano-tectonism. The limit of the resurgent area is not defined towards the north, as beach deposits displaced at variable elevation by E-W and NW-SE trending faults, are exposed along the coastline. The western sector is bordered by inward-dipping, high-angle reverse faults, whose directions vary from N40E to NS and N50W from NW to SW of the block, testifying a compressional stress regime active in this area. These features are cut by late outward-dipping normal faults due to gravitational readjustment of the slopes. Vertical faults border the block at NE ad SW with right transtensive and left transpressive movements, respectively. The area located to the east of the most uplifted block, characterized by a tensile stress regime, has been deformed by N-S, N40-70E and N15W trending normal faults, with maximum elongation direction along N50W. The results of our study and the volcanological data of the past 3 ka, suggest that the eastern part of the resurgent block is the area with highest probability of vent opening in case of renewal of volcanism. Occurrence of landslides just before and after eruptions, suggest that resurgence occurs through discontinuous vertical movements which likely trigger the volcanic activity.
NASA Astrophysics Data System (ADS)
Buck, W. R.; Lavier, L. L.; Petersen, K. D.
2015-12-01
The Tohoku-oki earthquake was not only the costliest natural disaster in history it was the best monitored. The unprecedented data set showed that anomalously large lateral motion of the seafloor near the trench contributed to the size of the tsunami. Also, for the first time it was shown that a large subduction earthquake was followed by extensional aftershocks in a broad region of the upper plate (up to 250 km from the Japan Trench). Several observations suggest that the near-trench seafloor motion and the extensional aftershocks are linked. For example, a seismically imaged fault, just landward of the region of large seafloor motion, slipped in a normal sense during the earthquake. Also, inspired by the Tohoku data, researchers have searched for and found upper plate extensional aftershocks associated with several other subduction earthquakes that produced large tsunami. Extension of the upper plate can be driven by a reduction in the dip of a subducting slab. Such a dip change is suggested by the post-Miocene westward migration of the volcanic arc in Honshu. Numerical models show that a long-term reduction in slab dip can generate enough extensional stress to cause normal faulting over a broad region of the upper plate. The time step of the numerical model is then reduced to treat the inter-seismic time scale of 100-1000 years, when the subduction interface is locked. The interface dip continues to be reduced during the inter-seismic period, but extensional fault slip is suppressed by the relative compression of the upper plate caused by continued convergence. The relief of compressional stresses during dynamic weakening of the megathrust triggers a release of bending-related extensional strain energy. This extensional yielding can add significantly to the co-seismic radiated seismic energy and seafloor deformation. This mechanism is analogous to the breaking of a pre-stressed concrete beam supporting a bending moment when the compressional pre-stress is removed. It is plausible that similar bending is occurring at a number of subduction zones. A testable prediction of this bending model is that inter-seismic stresses can be compressional near the surface of the upper plate, but should become extensional at depths accessible to drilling.
Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms
NASA Astrophysics Data System (ADS)
Gusman, Aditya Riadi; Satake, Kenji; Shinohara, Masanao; Sakai, Shin'ichi; Tanioka, Yuichiro
2017-08-01
The 2016 Fukushima normal-faulting earthquake (Mjma 7.4) occurred 40 km off the coast of Fukushima within the upper crust. The earthquake generated a moderate tsunami which was recorded by coastal tide gauges and offshore pressure gauges. First, the sensitivity of tsunami waveforms to fault dimensions and depths was examined and the best size and depth were determined. Tsunami waveforms computed based on four available focal mechanisms showed that a simple fault striking northeast-southwest and dipping southeast (strike = 45°, dip = 41°, rake = -95°) yielded the best fit to the observed waveforms. This fault geometry was then used in a tsunami waveform inversion to estimate the fault slip distribution. A large slip of 3.5 m was located near the surface and the major slip region covered an area of 20 km × 20 km. The seismic moment, calculated assuming a rigidity of 2.7 × 1010 N/m2 was 3.70 × 1019 Nm, equivalent to Mw = 7.0. This is slightly larger than the moments from the moment tensor solutions (Mw 6.9). Large secondary tsunami peaks arrived approximately an hour after clear initial peaks were recorded by the offshore pressure gauges and the Sendai and Ofunato tide gauges. Our tsunami propagation model suggests that the large secondary tsunami signals were from tsunami waves reflected off the Fukushima coast. A rather large tsunami amplitude of 75 cm at Kuji, about 300 km north of the source, was comparable to those recorded at stations located much closer to the epicenter, such as Soma and Onahama. Tsunami simulations and ray tracing for both real and artificial bathymetry indicate that a significant portion of the tsunami wave was refracted to the coast located around Kuji and Miyako due to bathymetry effects.
NASA Astrophysics Data System (ADS)
Kiratzi, Anastasia
2018-01-01
On 12 June 2017 (UTC 12:28:38.26) a magnitude Mw 6.3 earthquake occurred offshore Lesvos Island in SE Aegean Sea, which was widely felt, caused 1 fatality, and partially ruined the village of Vrisa on the south-eastern coast of the island. I invert broad band and strong motion waveforms from regional stations to obtain the source model and the distribution of slip onto the fault plane. The hypocentre is located at a depth of 7 km in the upper crust. The mainshock ruptured a WNW-ESE striking, SW dipping, normal fault, projecting offshore and bounding the Lesvos Basin. The strongest and most aftershocks clustered away from the hypocentre, at the eastern edge of the activated area. This cluster indicates the activation of a different fault segment, exhibiting sinistral strike-slip motions, along a plane striking WNW-ESE. The slip of the mainshock is confined in a single large asperity, WNW from the hypocentre, with dimensions 20 km × 10 km along fault strike and dip, respectively. The average slip of the asperity is 50 cm and the peak slip is 1 m. The rupture propagated unilaterally towards WNW to the coastline of Lesvos island at a relatively high speed ( 3.1 km/s). The imaged slip model and forward modelling was used to calculate peak ground velocities (PGVs) in the near-field. The damage pattern produced by this earthquake, especially in the village of Vrisa is compatible with the combined effect of rupture directivity, proximity to the slip patch and the fault edge, spectral content of motions, and local site conditions.
Faulting, Seismicity and Stress Interaction in the Salton Sea Region of Southern California
NASA Astrophysics Data System (ADS)
Kilb, D. L.; Brothers, D. S.; Lin, G.; Kent, G.; Newman, R. L.; Driscoll, N.
2009-12-01
The Salton Sea region in southern California provides an ideal location to study the relationship between transcurrent and extensional motion in the northern Gulf of California margin, allowing us to investigate the spatial and temporal interaction of faults in the area and better understand their kinematics. In this region, the San Andreas Fault (SAF) and Imperial Fault present two major transform faults separated by the Salton Sea transtensional domain. Earthquakes over magnitude 4 in this area almost always have associated aftershock sequences. Recent seismic reflection surveys in the Salton Sea reveal that the majority of faults under the southern Salton Sea trend ~N15°E, appear normal-dominant and have very minimal associated microseismicity. These normal faults rupture every 100-300 years in large earthquakes and most of the nearby microseismicity locates east of the mapped surface traces. For example, there is profuse microseismicity in the Brawley Seismic Zone (BSZ), which is coincident with the southern terminus of the SAF as it extends offshore into the Salton Sea. Earthquakes in the BSZ are dominantly swarm-like, occurring along short (<5 km) ~N45°E oriented sinistral and N35°W oriented dextral fault planes. This mapped seismicity makes a rung-and-ladder pattern. In an effort to reconcile differences between processes at the surface and those at seismogenic depths we integrate near surface fault kinematics, geometry and paleoseismic history with seismic data. We identify linear and planer trends in these data (20 near surface faults, >20,000 relocated earthquakes and >2,000 earthquake focal mechanisms) and when appropriate estimate the fault strike and dip using principal component analysis. With our more detailed image of the fault structure we assess how static stress changes imparted by magnitude ~6.0 ruptures along N15E oriented normal faults beneath the Salton Sea can modulate the stress field in the BSZ and along the SAF. These tests include exploring sensitivity of the results to parameter uncertainties. In general, we find rupture of the normal faults produces a butterfly pattern of static stress changes on the SAF with decreases along the southernmost portion below latitude 33.3±0.1 and increases on segments above these latitudes. Additionally, simulated ruptures on the normal faults predict optimally oriented sinistral faults that align with the “rungs” in the BSZ and optimally oriented dextral faults that are parallel to the SAF. Given these observations and results, we favor the scenario that normal faults beneath the Salton Sea accommodate most of the strain budget, rupturing as magnitude ~6.0-6.6 events every 100 years or so, and the consequent stress field generated within the relatively weak crust shapes the orientation of the short faults in the BSZ.
Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado
Scott, Robert B.; Shroba, Ralph R.; Egger, Anne
2001-01-01
New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid-Tertiary(?) Rifle Falls normal fault, that dips southward placing Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side and presumably was injected into older strata on the upthrown block creating a blister-like, steeply north-dipping sequence of Mississippian and older strata. Also, removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks that form distinctly different styles of compressive deformation called the Elk Park fold and fault complex at different parts of the toe of the slide. The major geologic hazard in the area consist of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Significant uranium and vanadium deposits were mined prior to 1980.
NASA Astrophysics Data System (ADS)
Sanny, Teuku A.
2017-07-01
The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as graben structure.
Tectonic aspects of the guatemala earthquake of 4 february 1976.
Plafker, G
1976-09-24
The locations of surface ruptures and the main shock epicenter indicate that the disastrous Guatemala earthquake of 4 February 1976 was tectonic in origin and generated mainly by slip on the Motagua fault, which has an arcuate roughly east-west trend across central Guatemala. Fault breakage was observed for 230 km. Displacement is predominantly horizontal and sinistral with a maximum measured offset of 340 cm and an average of about 100 cm. Secondary fault breaks trending roughly north-northeast to south-southwest have been found in a zone about 20 km long and 8 km wide extending from the western suburbs of Guatemala City to near Mixco, and similar faults with more subtle surface expression probably occur elsewhere in the Guatemalan Highlands. Displacements on the secondary faults are predominantly extensional and dip-slip, with as much as 15 cm vertical offset on a single fracture. The primary fault that broke during the earthquake involved roughly 10 percent of the length of the great transform fault system that defines the boundary between the Caribbean and North American plates. The observed sinistral displacement is striking confirmation of deductions regarding the late Cenozoic relative motion between these two crustal plates that were based largely on indirect geologic and geophysical evidence. The earthquake-related secondary faulting, together with the complex pattern of geologically young normal faults that occur in the Guatemalan Highlands and elsewhere in western Central America, suggest that the eastern wedge-shaped part of the Caribbean plate, roughly between the Motagua fault system and the volcanic arc, is being pulled apart in tension and left behind as the main mass of the plate moves relatively eastward. Because of their proximity to areas of high population density, shallow-focus earthquakes that originate on the Motagua fault system, on the system of predominantly extensional faults within the western part of the Caribbean plate, and in association with volcanism may pose a more serious seismic hazard than the more numerous (but generally more distant) earthquakes that are generated in the eastward-dipping subduction zone beneath Middle America.
Seismic reflection profile of the Blake Ridge near sites 994, 995, and 997: Chapter 4
Dillon, William P.; Hutchinson, Deborah R.; Drury, Rebecca M.
1996-01-01
Seismic reflection profiles near Sites 994, 995, and 997 were collected with seismic sources that provide maximum resolution with adequate power to image the zone of gas hydrate stability and the region direction beneath it. The overall structure of the sediment drift deposit that constitutes the Blake Ridge consists of southwestward-dipping strata. These strata are approximately conformal to the seafloor on the southwest side of the ridge and are truncated by erosion on the northeast side. A bottom-simulating reflection (BSR) marks the velocity contrast between gas hydrate-bearing sediment and regions containing free gas beneath the zone of gas hydrate stability. The BSR is strong and continuous near the ridge crest but becomes discontinuous on the flanks, where concentration of gas is reduced and dipping strata pass through the level of the base o fgas hydrate stability or the strata are disrupted by faults. Seismic reflection amplitudes appear to be reduced in the region of gas hydrate formation compared to normal amplitudes. A faulted zone ~0.5-0.6 s thick parallels reflections from strata. We infer that this may represent a formerly gas hydrate-bearing zone that was faulted because of a breakdown of hydrate near its phase limit (at the base of the zone). Strong reflections at the top of the faulted zone are caused by free-gas acccumulation at Site 994. Similar strong reflections probably are caused by free-gas accumulations where the top of the faulted zone rises above the BSR, although this would require local free gas within the hydrate-stable zone.
NASA Astrophysics Data System (ADS)
Mohan, Kapil; Chaudhary, Peush; Patel, Pruthul; Chaudhary, B. S.; Chopra, Sumer
2018-02-01
The Kachchh Mainland Fault (KMF) is a major E-W trending fault in the Kachchh region of Gujarat extending >150 km from Lakhpat village in the west to the Bhachau town in the east. The Katrol Hill Fault (KHF) is an E-W trending intrabasinal fault located in the central region of Kachchh Basin and the south of KMF. The western parts of both of the faults are characterized, and the sediment thickness has been estimated in the region using a Magnetotelluric (MT) survey at 17 sites along a 55 km long north-south profile with a site spacing of 2-3 km. The analysis reveals that the maximum sediment thickness is 2.3 km (Quaternary, Tertiary, and Mesozoic) in the region, out of which, the Mesozoic sediments feature a maximum thickness of 2 km. The estimated sediment thickness is found consistent with the thickness suggested by a deep borehole (depth approx. 2.5 km) drilled by Oil and Natural Gas Corporation (ONGC) at Nirona (Northern part of the study area). From 2-D inversion of the MT data, three conductive zones are identified from north to south. The first conductive zone is dipping nearly vertical down to 7-8 km depth. It becomes north-dipping below 8 km depth and is inferred as KMF. The second conductive zone is found steeply dipping into the southern limbs near Manjal village (28 km south of Nirona), which is inferred as the KHF. A vertical-dipping (down to 20 km depth) conductive zone has also been observed near Ulat village, located 16 km north of Manjal village and 12 km south of Nirona village. This conductive zone becomes listric north-dipping beyond 20 km depth. It is reported first time by a Geophysical survey in the region.
Mendoza, C.; Fukuyama, E.
1996-01-01
We employ a finite fault inversion scheme to infer the distribution of coseismic slip for the July 12, 1993, Hokkaido-Nansei-Oki earthquake using strong ground motions recorded by the Japan Meteorological Agency within 400 km of the epicenter and vertical P waveforms recorded by the Global Digital Seismograph Network at teleseismic distances. The assumed fault geometry is based on the location of the aftershock zone and comprises two fault segments with different orientations: a northern segment striking at N20??E with a 30?? dip to the west and a southern segment with a N20??W strike. For the southern segment we use both westerly and easterly dip directions to test thrust orientations previously proposed for this portion of the fault. The variance reduction is greater using a shallow west dipping segment, suggesting that the direction of dip did not change as the rupture propagated south from the hypocenter. This indicates that the earthquake resulted from the shallow underthrusting of Hokkaido beneath the Sea of Japan. Static vertical movements predicted by the corresponding distribution of fault slip are consistent with the general pattern of surface deformation observed following the earthquake. Fault rupture in the northern segment accounts for about 60% of the total P wave seismic moment of 3.4 ?? 1020 N m and includes a large circular slip zone (4-m peak) near the earthquake hypocenter at depths between 10 and 25 km. Slip in the southern segment is also predominantly shallower than 25 km, but the maximum coseismic displacements (2.0-2.5 m) are observed at a depth of about 5 km. This significant shallow slip in the southern portion of the rupture zone may have been responsible for the large tsunami that devastated the small offshore island of Okushiri. Localized shallow faulting near the island, however, may require a steep westerly dip to reconcile the measured values of ground subsidence.
NASA Astrophysics Data System (ADS)
Gasser, D.; Mancktelow, N. S.
2009-04-01
The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of < 15 km. All three Neogene fault sets (2-4) could have been active under the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.
Resolving the fault systems with the magnetotelluric method in the western Ilan plain of NE Taiwan
NASA Astrophysics Data System (ADS)
Chang, P. Y.; Chen, C. S.
2017-12-01
In the study we attempt to use the magnetotelluric (MT) surveys to delineate the basement topography of the western part of the Ilan plain. The triangular plain is located on the extension part of the Okinawa Trough, and is thought to be a subsidence basin bounded by the Hsueshan Range in the north and the Central Range in the south. The basement of the basin is composed of Tertiary metamorphic rocks such as argillites and slates. The recent extension of the Okinawa Trough started from approximately 0.1 Ma and involved ENE- and WSW-trending normal faults that may extended into the Ilan plain area. However, high sedimentation rates as well as the frequent human activities have resulted in unconsolidated sediments with a thickness of over 100 meters, and caused the difficulties in observing the surface traces of the active faults in the area. Hence we deployed about 70 MT stations across the southwestern tip of the triangular plain. We also tried to resolve the subsurface faults the relief variations of the basement with the inverted resistivity images, since the saturated sediments are relatively conductive and the consolidated rocks are resistive. With the inverted MT images, we found that there are a series of N-S trending horsts and grabens in addition to the ENE-WSW normal fault systems. The ENE-WSW trending faults are dipping mainly toward the north in our study area in the western tip of the Ilan plain. The preliminary results suggest that a younger N-S trending normal fault system may modify the relief of the basement in the recent stage after the activation of the ENE-WSW normal faults. The findings of the MT resistivity images provide new information to further review the tectonic explanations of the region in the future.
Jayko, A. S.; Marshall, G.A.; Carver, G.A.
1992-01-01
Elevation changes, as well as horizontal displacements of the Earth's surface, are an expected consequence of dip-slip displacement on earthquake faults. the rock surrounding and overlying the fault is forced to stretch and bend to accommodate fault slip. Slip in the case of the April 25 mainshock is thought to have occurred on a gently inclined plane dipping to the northeast at a small angle (see article on preliminary seismological results in this issue).The associated fault-plane solution implies that rock overlying the fault plane (the hanging-wall block west and south of the epicenter) rose and shifted to the northeast. The map on the next page shows the location of the epicenter and approximate extent of uplift and subsidence derived from estimates of the geometry, location. and slip on the buried fault plane.
NASA Astrophysics Data System (ADS)
Doubre, C.; Peltzer, G.; Manighetti, I.; Jacques, E.
2005-12-01
The volcano-tectonic Asal-Ghoubbet rift (Djibouti) is the youngest spreading segment of the Aden oceanic ridge propagating inland into the Afar Depression. The deformation in the rift is characterized by magmatic inflation and dilatation (dyking), distributed extension, fissure opening, and normal faulting, contributing to a far field opening velocity of ~1.5 cm/yr. We use radar interferometry data acquired by the Canadian satellite Radarsat on 24-day repeat, descending passes to measure the surface deformation in a 100 km wide region centered on the rift. The data set defines 87 epochs of acquisitions distributed between 1997 and 2005. We combined the SAR data into 354 full-resolution interferograms and solved for incremental displacements between epochs using a least-square approach [Berardino et al., 2002]. The resulting line of sight displacement map time series shows the following features: - A 40 km-wide zone centered on the rift is uplifted as a dome at a steady rate. - The central rift is subsiding with respect to the north and south shoulders. The velocity field shows a marked asymmetry with faster rates occurring along the northern edge of the rift. The mean velocity of the relative movement of the subsiding inner floor with respect to the northern up-lifting shoulder reaches 7 mm/yr. - Subsidence is faster in the north half of the inner floor of the rift and is associated with episodic creep events on normal faults. These includes a slip of 16 mm on the north-dipping δ fault in 2003 and an episode of accelerated creep of 10 mm occurring in 2000 on the γ fault, which is creeping at a steady rate of 3.5 mm/yr. A northern-dipping normal fault is slipping with a mean rate of 1.4 mm/yr and accommodates also the subsidence of the northern part of the inner floor. Unlike other active faults, this one does not coincide with a topographic scarp but shows evidence of surface creep in the velocity field. - The southeastern part of F fault system is the only fault clearly active on the south side of the rift axis and shows a creep event of 9 mm in 2002. We investigate the spatial and temporal relationship between deformation events observed in the SAR data and the catalog of seismicity collected by the Djibouti Observatory and during field campaign in the winter 2000/2001. We observe that creep events are generally associated with bursts of micro-seismicity distributed in the vicinity of the fault, or with swarms of small events concentrated below the fault. These observations suggest that while the overall region is deforming in response to the steady inflation of a magmatic chamber below the central rift, the faults and dykes that accommodate the deformation at the surface are sensitive and respond rapidly to small stress changes occurring episodically within the rift.
NASA Astrophysics Data System (ADS)
Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea
2016-04-01
The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be considered active (or at least active till the Holocene-Pleistocene boundary), and that the cumulative horizontal displacement is consistent with a relevant WSW-ENE stretching, that can be associated to the bending moment applied to the Apulian Plate by the combined effect of the Appennines and Hellenides subduction.
Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling
NASA Astrophysics Data System (ADS)
Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.
2007-08-01
Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration assessments. Model results may also be used to help predict the location of basement discontinuities which may have focused hydrothermal fluids during basin formation and inversion.
NASA Astrophysics Data System (ADS)
Singh, S. C.; Carton, H.; Chauhan, A.; Dyment, J.; Cannat, M.; Hananto, N.; Hartoyo, D.; Tapponnier, P.; Davaille, A.
2007-12-01
Recently, we acquired deep seismic reflection data using a state-of-the-art technology of Schlumberger having a powerful source (10,000 cubic inch) and a 12 km long streamer along a 250 km long trench parallel line offshore Sumatra in the Indian Ocean deformation zone that provides seismic reflection image down to 40 km depth over the old oceanic lithosphere formed at Wharton spreading centre about 55-57 Ma ago. We observe deep penetrating faults that go down to 37 km depth (~24 km in the oceanic mantle), providing the first direct evidence for full lithospheric-scale deformation in an intra-plate oceanic domain. These faults dip NE and have dips between 25 and 40 degrees. The majority of faults are present in the mantle and are spaced at about 5 km, and do not seem cut through the Moho. We have also imaged active strike-slip fault zones that seem to be associated with the re-activation of ancient fracture zones, which is consistent with previous seismological and seafloor observations. The geometries of the deep penetrating faults neither seem to correspond to faulting associated with the plate bending at the subduction front nor with the re-activation of fracture zone that initiated about 7.5 Ma ago, and therefore, we suggest that these deep mantle faults were formed due to compressive stress at the beginning of the hard collision between India and Eurasia, soon after the cessation of seafloor spreading in the Wharton basin. We also find that the crust generated at the fast Wharton spreading centre 55-57 Ma ago is only 3.5-4.5 km thick, the thinnest crust ever observed in a fast spreading environment. We suggest that this extremely thin crust is due to 40-50°C lower than normal mantle temperature in this part of the Indian Ocean during its formation.
Williams, R.A.; Simpson, R.W.; Jachens, R.C.; Stephenson, W.J.; Odum, J.K.; Ponce, D.A.
2005-01-01
A 1.6-km-long seismic reflection profile across the creeping trace of the southern Hayward fault near Fremont, California, images the fault to a depth of 650 m. Reflector truncations define a fault dip of about 70 degrees east in the 100 to 650 m depth range that projects upward to the creeping surface trace, and is inconsistent with a nearly vertical fault in this vicinity as previously believed. This fault projects to the Mission seismicity trend located at 4-10 km depth about 2 km east of the surface trace and suggests that the southern end of the fault is as seismically active as the part north of San Leandro. The seismic hazard implication is that the Hayward fault may have a more direct connection at depth with the Calaveras fault, affecting estimates of potential event magnitudes that could occur on the combined fault surfaces, thus affecting hazard assessments for the south San Francisco Bay region.
NASA Astrophysics Data System (ADS)
Okamoto, J.; Hashimoto, M.; Fukushima, Y.
2011-12-01
On April 4th, 2010, the Mw 7.2 El Mayor-Cucapah earthquake occurred in northeast Baja California, near the US-Mexico border. Since then, ALOS/PALSAR observed this region twenty times, which provides a rich data set to study the co- and post-seismic deformation. We first estimated the slip distribution and dip angle of the fault plane by inverting InSAR data with the method developed by Fukahata and Wright (2008). With this method, we can obtain the slip distribution on a plane fault and its dip angle simultaneously by minimizing the ABIC (Akaike's Bayesian Information Criterion). In southeastern area near the Gulf of California, we could recognize effects of liquefaction, so we did not use the data in such areas in the inversion. We assumed one sufficiently large rectangular plane fault and the strike is assumed to be 313 degrees from the north. After trials and errors, we restricted the search of the dip angle in a range of 30-90 degrees, dipping northeastward. The optimal dip angle was estimated 68 degrees, which is smaller than 82 degrees of the CMT solution (USGS). Right lateral strike slips with slight normal component were estimated, and the maximum slip of about 3m was obtained in the northwestern vicinity of the hypocenter. The total geodetic moment of our best-fitting model was in a good agreement with the seismic moment. In the postseismic period, we detected signals at two locations that can be attributed to postseismic deformation. First, we recognize some signals near the northwestern edge of the source fault in all the early postseismic interferograms (46 days after the earthquake) of both ascending and descending directions. In this area, the coseismic slip was estimated to be about 2m. We performed some forward calculations to confirm that this signal is not likely to be due to aftershocks. We computed the poroelastic deformation based on our coseismic slip model and found that the observed signal has the opposite sense. Moreover, a 2.5 dimensional analysis showed several centimeters of westward displacements, but almost none vertical component. These results suggest that this signal is due to an afterslip and/or visco-elastic response. The second postseismic signal is observed along Laguna Salada fault by a relatively long (half a year) descending interferogram. This signal is not well correlated with topography, which reduces the possibility of atmospheric noise. On the other hand, it can be reasonably explained by an afterslip above a large coseismic slip patch, although there still remains the possibility of atmospheric noise as only one interferogram captures this signal.
Geologic map of the Storm King Mountain quadrangle, Garfield County, Colorado
Bryant, Bruce; Shroba, Ralph R.; Harding, Anne E.; Murray, Kyle E.
2002-01-01
New 1:24,000-scale geologic mapping in the Storm King Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new data on the structure on the south margin of the White River uplift and the Grand Hogback and on the nature, history, and distribution of surficial geologic units. Rocks ranging from Holocene to Proterozoic in age are shown on the map. The Canyon Creek Conglomerate, a unit presently known to only occur in this quadrangle, is interpreted to have been deposited in a very steep sided local basin formed by dissolution of Pennsylvanian evaporite late in Tertiary time. At the top of the Late Cretaceous Williams Fork Formation is a unit of sandstone, siltstone, and claystone from which Late Cretaceous palynomorphs were obtained in one locality. This interval has been mapped previously as Ohio Creek Conglomerate, but it does not fit the current interpretation of the origin of the Ohio Creek. Rocks previously mapped as Frontier Sandstone and Mowry Shale are here mapped as the lower member of the Mancos Shale and contain beds equivalent to the Juana Lopez Member of the Mancos Shale in northwestern New Mexico. The Pennsylvanian Eagle Valley Formation in this quadrangle grades into Eagle Valley Evaporite as mapped by Kirkham and others (1997) in the Glenwood Springs area. The Storm King Mountain quadrangle spans the south margin of the White River uplift and crosses the Grand Hogback monocline into the Piceance basin. Nearly flat lying Mississippian through Cambrian sedimentary rocks capping the White River uplift are bent into gentle south dips and broken by faults at the edge of the uplift. South of these faults the beds dip moderately to steeply to the south and are locally overturned. These dips are interrupted by a structural terrace on which are superposed numerous gentle minor folds and faults. This terrace has an east-west extent similar to that of the Canyon Creek Conglomerate to the north. We interpret that the terrace formed by movement of Eagle Evaporite from below in response to dissolution and diapirism in the area underlain by the conglomerate. A low-angle normal fault dipping gently north near the north margin of the quadrangle may have formed also in response to diapirism and dissolution in the area of the Canyon Creek Conglomerate. Along the east edge of the quadrangle Miocene basalt flows are offset by faults along bedding planes in underlying south-dipping Cretaceous rocks, probably because of diapiric movement of evaporite into the Cattle Creek anticline (Kirkham and Widmann, 1997). Steep topography and weak rocks combine to produce a variety of geologic hazards in the quadrangle.
Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin
2018-01-01
At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.
NASA Astrophysics Data System (ADS)
Andrade, Daniel; van Wyk de Vries, Benjamin; Robin, Claude
2014-05-01
Volcano-basement interactions can deeply determine the structural development of volcanoes basically by the propagation of stress and strain fields from the basement into the volcanic edifice, and vice versa. An extensively studied case of such interactions is the propagation of a strike-slip fault through a volcanic edifice, which gives place to a strong tendency of major volcanic construction and destruction events to occur in a sub-parallel trend with respect to the strike of the fault. During precedent studies, however, both scaled and natural prototypes have always considered that the surfaces on which volcanoes stand (i.e. the sub-volcanic slope) are horizontal. The scaled experiments presented here show that the dip-angle and dip-direction of the subvolcanic slopes can systematically and significantly change the deformation patterns developed by the volcanic edifice during strike-slip faulting. When the dip-direction of the sub-volcanic slope and the strike of the fault are nearly parallel, an increased development and concentration of the deformation on the down-slope side of the volcanic cone occurs. In medium to long-term, this would imply again a tendency of major volcanic structures growing in a sub-parallel trend with respect to the strike of the fault, but with one preferred direction: that of the dip-direction. In the experiments, the dip-direction of the sub-volcanic slope was set progressively oblique, up to perpendicular, with respect to the strike of the fault by: 1) rotating in the same sense as the strike-slip fault, or 2) rotating in the opposite sense as the fault. In both cases, the downslope side of the volcanic cone still concentrates the deformation, but the deformed sectors progressively rotate which results in a structural development (construction and destruction) of the edifice occurring clearly oblique with respect to the strike of the fault. Imbabura volcano (Ecuador) is traversed by the strike-slip El Angel-Río Ambi fault, whose sense of movement (left- or right-lateral) has not been clearly established yet. Aditionally, Imbabura has been constructed on the NW, medium to lower flank of the neighbor Cubilche volcano. The application of the experimental results presented above to the case of Imbabura volcano helps to understand the particular structure of this volcano which displays a complex history of construction and destruction events. Additionally, the experiments strongly suggests that the El Angel-Río Ambi fault is left-lateral.
Can footwall unloading explain late Cenozoic uplift of the Sierra Nevada crest?
Thompson, G.A.; Parsons, T.
2009-01-01
Globally, normal-fault displacement bends and warps rift flanks upwards, as adjoining basins drop downwards. Perhaps the most evident manifestations are the flanks of the East African Rift, which cuts across the otherwise minimally deformed continent. Flank uplift was explained by Vening Meinesz (1950, Institut Royal Colonial Belge, Bulletin des Seances, v. 21, p. 539-552), who recognized that isostasy should cause uplift of a normal-faulted footwall and subsidence of its hanging wall. Uplift occurs because slip on a dipping normal fault creates a broader root of less-dense material beneath the footwall, and a narrowed one beneath the hanging wall. In this paper, we investigate the potential influence of this process on the latest stages of Sierra Nevada uplift. Through theoretical calculations and 3D finite element modelling, we find that cumulative slip of about 4km on range-front faults would have produced about 1.3km peak isostatic uplift at the ridge crest. Numerical models suggest that the zone of uplift is narrow, with the width controlled by bending resistance of the seismogenic crust. We conclude that footwall unloading cannot account for the entire elevation of the Sierran crest above sea level, but if range-front faulting initiated in an already elevated plateau like the adjacent Basin and Range Province, then a hybrid model of pre-existing regional uplift and localized footwall unloading can account for the older and newer uplift phases suggested by the geologic record.
Davatzes, N.C.; Aydin, A.
2005-01-01
We examined the distribution of fault rock and damage zone structures in sandstone and shale along the Moab fault, a basin-scale normal fault with nearly 1 km (0.62 mi) of throw, in southeast Utah. We find that fault rock and damage zone structures vary along strike and dip. Variations are related to changes in fault geometry, faulted slip, lithology, and the mechanism of faulting. In sandstone, we differentiated two structural assemblages: (1) deformation bands, zones of deformation bands, and polished slip surfaces and (2) joints, sheared joints, and breccia. These structural assemblages result from the deformation band-based mechanism and the joint-based mechanism, respectively. Along the Moab fault, where both types of structures are present, joint-based deformation is always younger. Where shale is juxtaposed against the fault, a third faulting mechanism, smearing of shale by ductile deformation and associated shale fault rocks, occurs. Based on the knowledge of these three mechanisms, we projected the distribution of their structural products in three dimensions along idealized fault surfaces and evaluated the potential effect on fluid and hydrocarbon flow. We contend that these mechanisms could be used to facilitate predictions of fault and damage zone structures and their permeability from limited data sets. Copyright ?? 2005 by The American Association of Petroleum Geologists.
Ching, K.-E.; Rau, R.-J.; Zeng, Y.
2007-01-01
A coseismic source model of the 2003 Mw 6.8 Chengkung, Taiwan, earthquake was well determined with 213 GPS stations, providing a unique opportunity to study the characteristics of coseismic displacements of a high-angle buried reverse fault. Horizontal coseismic displacements show fault-normal shortening across the fault trace. Displacements on the hanging wall reveal fault-parallel and fault-normal lengthening. The largest horizontal and vertical GPS displacements reached 153 and 302 mm, respectively, in the middle part of the network. Fault geometry and slip distribution were determined by inverting GPS data using a three-dimensional (3-D) layered-elastic dislocation model. The slip is mainly concentrated within a 44 ?? 14 km slip patch centered at 15 km depth with peak amplitude of 126.6 cm. Results from 3-D forward-elastic model tests indicate that the dome-shaped folding on the hanging wall is reproduced with fault dips greater than 40??. Compared with the rupture area and average slip from slow slip earthquakes and a compilation of finite source models of 18 earthquakes, the Chengkung earthquake generated a larger rupture area and a lower stress drop, suggesting lower than average friction. Hence the Chengkung earthquake seems to be a transitional example between regular and slow slip earthquakes. The coseismic source model of this event indicates that the Chihshang fault is divided into a creeping segment in the north and the locked segment in the south. An average recurrence interval of 50 years for a magnitude 6.8 earthquake was estimated for the southern fault segment. Copyright 2007 by the American Geophysical Union.
Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.
2017-01-01
The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3 km">∼2–3 km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (T<1 s">T<1 s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault.
Streaks of Aftershocks Following the 2004 Sumatra-Andaman Earthquake
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.; Engdahl, E. R.; Diehl, T.
2009-12-01
Five years after the devastating 26 December, 2004 M 9.3 Sumatra-Andaman earthquake, regional and global seismic networks have recorded tens of thousands of aftershocks. We use bulletin data from the International Seismological Centre (ISC) and the National Earthquake Information Center (NEIC), and waveforms from IRIS, to relocate more than 20,000 hypocenters between 1964 and 2008 using teleseimic cross-correlation and double-difference methods. Relative location uncertainties of a few km or less allow for detailed analysis of the seismogenic faults activated as a result of the massive stress changes associated with the mega-thrust event. We focus our interest on an area of intense aftershock activity off-shore Banda Aceh in northern Sumatra, where the relocated epicenters reveal a pattern of northeast oriented streaks. The two most prominent streaks are ~70 km long with widths of only a few km. Some sections of the streaks are formed by what appear to be small, NNE striking sub-streaks. Hypocenter depths indicate that the events locate both on the plate interface and in the overriding Sunda plate, within a ~20 km wide band overlying the plate interface. Events on the plate interface indicate that the slab dip changes from ~20° to ~30° at around 50 km depth. Locations of the larger events in the overriding plate indicate an extension of the steeper dipping mega thrust fault to the surface, imaging what appears to be a major splay fault that reaches the surface somewhere near the western edge of the Aceh basin. Additional secondary splay faults, which branch off the plate interface at shallower depths, may explain the diffuse distribution of smaller events in the overriding plate, although their relative locations are less well constrained. Focal mechanisms support the relocation results. They show a narrowing range of fault dips with increasing distance from the trench. Specifically, they show reverse faulting on ~30° dipping faults above the shallow (20°) dipping plate interface. The observation of active splay faults associated with the mega thrust event is consistent with co- and post-seismic motion data, and may have significant implications on the generation and size of the tsunami that caused 300,000 deaths.
Nucleation and kinematic rupture of the 2017 Mw 8.2 Chiapas Mexico earthquake
NASA Astrophysics Data System (ADS)
Meng, L.; Huang, H.; Xie, Y.; Feng, T.; Dominguez, L. A.; Han, J.; Davis, P. M.
2017-12-01
Integrated geophysical observations from the 2017 Mw 8.2 Oaxaca, Mexico earthquake allow the exploration of one of the largest recorded normal faulting events inside a subducting slab. In this study, we collect seismic data from regional and teleseismic stations, and regional tsunami recordings to better understand the preparation and rupture processes. The mainshock occurred on the steeply dipping plane of a mega-normal fault, confirmed by time reversal analysis of tsunami waves. We utilize a template matching approach to detect possible missing earthquakes within a 2-month period before the Oaxaca mainshock. The seismicity rate (M > 3.7) shows an abrupt increase in the last day within 30 km around the mainshock hypocenter. The largest one is a M 4.6 event with similar normal faulting as the mainshock located at about 18 km updip from the hypocenter. The waveforms of the subsequent foreshocks are not similar, supporting the diversity of their locations or focal mechanisms. The nucleation process can be explained by a cascading process which eventually triggers the mainshock. Back-projection using the USArray network in Alaska reveals that the mainshock rupture propagated northwestward unilaterally at a speed of 3.1 km/s, for about 200 km and terminated near the Tehuantepec Fracture Zone. We also document the tectonic fabric of bending related faulting of the incoming Cocos plate. The mainshock is likely a reactivation of subducted outer rise faults, supported by the similarity of the strike angle between the mainshock and the outer rise faults. The surprisingly large magnitude is consistent with the exceedingly large dimensions of outer rise faulting in this particular segment of the central Mexican trench.
NASA Astrophysics Data System (ADS)
Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi
2018-03-01
Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.
NASA Astrophysics Data System (ADS)
Pei, Yangwen; Paton, Douglas A.; Wu, Kongyou; Xie, Liujuan
2017-08-01
The application of trishear algorithm, in which deformation occurs in a triangle zone in front of a propagating fault tip, is often used to understand fault related folding. In comparison to kink-band methods, a key characteristic of trishear algorithm is that non-uniform deformation within the triangle zone allows the layer thickness and horizon length to change during deformation, which is commonly observed in natural structures. An example from the Lenghu5 fold-and-thrust belt (Qaidam Basin, Northern Tibetan Plateau) is interpreted to help understand how to employ trishear forward modelling to improve the accuracy of seismic interpretation. High resolution fieldwork data, including high-angle dips, 'dragging structures', thinning hanging-wall and thickening footwall, are used to determined best-fit trishear model to explain the deformation happened to the Lenghu5 fold-and-thrust belt. We also consider the factors that increase the complexity of trishear models, including: (a) fault-dip changes and (b) pre-existing faults. We integrate fault dip change and pre-existing faults to predict subsurface structures that are apparently under seismic resolution. The analogue analysis by trishear models indicates that the Lenghu5 fold-and-thrust belt is controlled by an upward-steepening reverse fault above a pre-existing opposite-thrusting fault in deeper subsurface. The validity of the trishear model is confirmed by the high accordance between the model and the high-resolution fieldwork. The validated trishear forward model provides geometric constraints to the faults and horizons in the seismic section, e.g., fault cutoffs and fault tip position, faults' intersecting relationship and horizon/fault cross-cutting relationship. The subsurface prediction using trishear algorithm can significantly increase the accuracy of seismic interpretation, particularly in seismic sections with low signal/noise ratio.
Coulomb stress analysis of the 21 February 2008 Mw= 6.0 Wells, Nevada, earthquake
Sevilgen, Volkan
2011-01-01
Static Coulomb stress changes imparted by the February 21, 2008 Wells, Nevada earthquake are calculated, using an 8 x 6 km rectangular patch with a uniform slip as a source fault. Stress changes are resolved on nearby active faults using their rake, dip, and strike direction, assuming a fault friction of 0.4. The largest Coulomb stress increase (0.2 bars) imparted to surrounding major active faults from the Wells earthquake occurs on the Clover Hill fault, which may be the southern continuation of the ruptured fault. A 0.1 bar Coulomb stress increase is calculated on the western Snake Mountains fault. Coulomb stress decreases of 0.5 bars are calculated for the northern parts of the Independence and Ruby Mountains faults. The Coulomb stress change is calculated on relocated aftershocks assuming that they have the same strike, dip, and rake, as the source fault. Under this assumption, 75% of the aftershocks received a Coulomb stress increase.
Geometry and Kinematics of Fault-Propagation Folds with Variable Interlimb Angles
NASA Astrophysics Data System (ADS)
Dhont, D.; Jabbour, M.; Hervouet, Y.; Deroin, J.
2009-12-01
Fault-propagation folds are common features in foreland basins and fold-and-thrust belts. Several conceptual models have been proposed to account for their geometry and kinematics. It is generally accepted that the shape of fault-propagation folds depends directly from both the amount of displacement along the basal decollement level and the dip angle of the ramp. Among these, the variable interlimb angle model proposed by Mitra (1990) is based on a folding kinematics that is able to explain open and close natural folds. However, the application of this model is limited because the geometric evolution and thickness variation of the fold directly depend on imposed parameters such as the maximal value of the ramp height. Here, we use the ramp and the interlimb angles as input data to develop a forward fold modelling accounting for thickness variations in the forelimb. The relationship between the fold amplitude and fold wavelength are subsequently applied to build balanced geologic cross-sections from surface parameters only, and to propose a kinematic restoration of the folding through time. We considered three natural examples to validate the variable interlimb angle model. Observed thickness variations in the forelimb of the Turner Valley anticline in the Alberta foothills of Canada precisely correspond to the theoretical values proposed by our model. Deep reconstruction of the Alima anticline in the southern Tunisian Atlas implies that the decollement level is localized in the Triassic-Liassic series, as highlighted by seismic imaging. Our kinematic reconstruction of the Ucero anticline in the Spanish Castilian mountains is also in agreement with the anticline geometry derived from two cross-sections. The variable interlimb angle model implies that the fault-propagation fold can be symmetric, normal asymmetric (with a greater dip value in the forelimb than in the backlimb), or reversely asymmetric (with greater dip in the backlimb) depending on the shortening amount. This model allows also: (i) to easily explain folds with wide variety of geometries; (ii) to understand the deep architecture of anticlines; and (iii) to deduce the kinematic evolution of folding with time. Mitra, S., 1990, Fault-propagation folds: geometry, kinematic evolution, and hydrocarbon traps. AAPG Bulletin, v. 74, no. 6, p. 921-945.
NASA Astrophysics Data System (ADS)
Lay, Thorne; Ye, Lingling; Ammon, Charles J.; Kanamori, Hiroo
2017-02-01
The 17 December 2016 Solomon Islands earthquake (Mw 7.9) initiated 103 km deep in the subducting Solomon Sea slab near the junction of the Solomon Islands and New Britain trenches. Most aftershocks are located near the Solomon Islands plate boundary megathrust west of Bougainville, where previous large interplate thrust faulting earthquakes occurred in 1995 (Mw 7.7) and 1971 (Mw 8.0). Teleseismic body wave modeling and aftershock relocations indicate that the initial 30 s of the 2016 rupture occurred over depths of 90 to 120 km on an intraslab fault dipping 30° to the southwest, almost perpendicular to the dipping slab interface. The next 50 s of rupture took place at depths of 32 to 47 km in the deeper (Domain C) portion of the overlying megathrust fault dipping 35° to the northeast. High susceptibility to triggering in the region accounts for this compound rupture of two separate fault planes.
NASA Astrophysics Data System (ADS)
Septyasari, U.; Niasari, S. W.; Maghfira, P. D.
2018-04-01
Telomoyo geothermal prospect area is located in Central Java, Indonesia. One of the manifestations around Telomoyo is a warm spring, called Candi Umbul. The hydrothermal fluids from the manifestation could be from the subsurface flowing up through geological structures. The previous research about 2D magnetic modeling in Candi Umbul showed that there was a normal fault with strike/dip N60°E/45° respectively. This research aims to know the distance boundary and the kind of the geological structure in the study area. We also compared the geological structure direction based on the geologic map and the derivative maps. We used derivative analyses of the magnetic data, i.e. First Horizontal Derivative (FHD) which is the rate of change of the horizontal gradient in the horizontal direction. FHD indicates the boundaries of the geological structure. We also used Second Vertical Derivative (SVD) which is the rate of change of the vertical gradient in the vertical direction. SVD can reveal normal fault or thrust fault. The FHD and SVD maps show that the geological structure boundary has the same direction with the north west-south east geological structure. The geological structure boundary is in 486 m of the local distance. Our result confirms that there is a normal fault in the study area.
NASA Astrophysics Data System (ADS)
Xu, Guangyu; Xu, Caijun; Wen, Yangmao
2018-04-01
New satellites are now revealing InSAR-based surface deformation within a week after natural hazard events. Quick hazard responses will be more publically accessible and provide information to responding agencies. Here we used Sentinel-1 interferometric synthetic aperture radar (InSAR) data to investigate coseismic deformation associated with the 2017 Sangsefid earthquake, which occurred in the southeast margin of the Kopeh Dagh fault system. The ascending and descending interferograms indicate thrust-dominated slip, with the maximum line-of-sight displacement of 10.5 and 13.7 cm, respectively. The detailed slip-distribution of the 2017 Sangsefid Mw6.1 earthquake inferred from geodetic data is presented here for the first time. Although the InSAR interferograms themselves do not uniquely constrain what the primary slip surface is, we infer that the source fault dips to southwest by analyzing the 2.5 D displacement field decomposed from the InSAR observations. The determined uniform slip fault model shows that the dip angle of the seimogenic fault is approximately 40°, with a strike of 120° except for a narrower fault width than that predicted by the empirical scaling law. We suggest that geometric complexities near the Kopeh Dagh fault system obstruct the rupture propagation, resulting in high slip occurred within a small area and much higher stress drop than global estimates. The InSAR-determined moment is 1.71 × 1018 Nm with a shear modulus of 3.32 × 1010 N/m2, equivalent to Mw 6.12, which is consistent with seismological results. The finite fault model (the west-dipping fault plane) reveals that the peak slip of 0.90 m occurred at a depth of 6.3 km, with substantial slip at a depth of 4-10 km and a near-uniform slip of 0.1 m at a depth of 0-2.5 km. We suggest that the Sangsefid earthquake occurred on an unknown blind reverse fault dipping southwest, which can also be recognised through observing the long-term surface effects due to the existence of the blind fault.
Earthquake geology of Kashmir Basin and its implications for future large earthquakes
NASA Astrophysics Data System (ADS)
Shah, A. A.
2013-09-01
Two major traces of active thrust faults were identified in the Kashmir Basin (KB) using satellite images and by mapping active geomorphic features. The ~N130°E strike of the mapped thrust faults is consistent with the regional ~NE-SW convergence along the Indian-Eurasian collision zone. The ~NE dipping thrust faults have uplifted the young alluvial fan surfaces at the SW side of the KB. This created a major tectono-geomorphic boundary along the entire strike length of the KB that is characterised by (1) a low relief with sediment-filled sluggish streams to the SE and (2) an uplifted region, with actively flowing streams to the SW. The overall tectono-geomorphic expression suggests that recent activity along these faults has tilted the entire Kashmir valley towards NE. Further, the Mw 7.6 earthquake, which struck Northern Pakistan and Kashmir on 8 October 2005, also suggests a similar strike and NE dipping fault plane, which could indicate that the KB fault is continuous over a distance of ~210 km and connects on the west with the Balakot Bagh fault. However, the geomorphic and the structural evidences of such a structure are not very apparent on the north-west, which thus suggest that it is not a contiguous structure with the Balakot Bagh fault. Therefore, it is more likely that the KB fault is an independent thrust, a possible ramp on the Main Himalayan Thrust, which has uplifting the SW portion of the KB and drowning everything to the NE (e.g. Madden et al. 2011). Furthermore, it seems very likely that the KB fault could be a right stepping segment of the Balakot Bagh fault, similar to Riasi Thrust, as proposed by Thakur et al. (2010). The earthquake magnitude is measured by estimating the fault rupture parameters (e.g. Wells and Coppersmith in Bull Seismol Soc Am 84:974-1002, 1994). Therefore, the total strike length of the mapped KB fault is ~120 km and by assuming a dip of 29° (Avouac et al. in Earth Planet Sci Lett 249:514-528, 2006) and a down-dip limit of 20 km, a Mw of 7.6 is possible on this fault.
NASA Astrophysics Data System (ADS)
Howard, K. A.
2009-12-01
The 1968 collapse structure of Fernandina caldera (1.5 km3 collapsed) and also the smaller Darwin Bay caldera in Galápagos each closely resembles morphologically the structural zoning of features found in depressions collapsed into nuclear-explosion cavities (“sinks” of Houser, 1969) and in coherent sandbox-collapse models. Coherent collapses characterized by faulting, folding, and organized structure contrast with spalled pit craters (and lab experiments with collapsed powder) where disorganized piles of floor rubble result from tensile failure of the roof. Subsidence in coherent mode, whether in weak sand in the lab, stronger desert alluvium for nuclear-test sinks, or in hard rock for calderas, exhibits consistent morphologic zones. Characteristically in the sandbox and the nuclear-test analogs these include a first-formed central plug that drops along annular reverse faults. This plug and a surrounding inward-tilted or monoclinal ring (hanging wall of the reverse fault) contract as the structure expands outward by normal faulting, wherein peripheral rings of distending material widen the upper part of the structure along inward-dipping normal faults and compress inner zones and help keep them intact. In Fernandina, a region between the monocline and the outer zone of normal faulting is interpreted, by comparison to the analogs, to overlie the deflation margin of an underlying magma chamber. The same zoning pattern is recognized in structures ranging from sandbox subsidence features centimeters across, to Alae lave lake and nuclear-test sinks tens to hundreds of meters across, to Fenandina’s 2x4 km-wide collapse, to Martian calderas tens of kilometers across. Simple dimensional analysis using the height of cliffs as a proxie for material strength implies that the geometric analogs are good dynamic analogs, and validates that the pattern of both reverse and normal faulting that has been reported consistently from sandbox modeling applies widely to calderas.
NASA Astrophysics Data System (ADS)
McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.
2011-12-01
The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2.0 km/sec in the basin fill to 4.5-5.5 km/sec in the footwall) across the basin-bounding normal fault system. Very fast (approaching 6.0 km/sec) basement underlies the basin fill. The residual gravity anomaly indicates that Clayton Valley is divided into a shallower northern basin, imaged by the seismic lines, and a deeper, more asymmetric southern basin. Faults within Clayton Valley are curvilinear in nature, similar to faults observed in other step-over systems (e.g., the Mina Deflection). Gravity profiles support the seismic reflection interpretation and indicate a high angle fault (>60 degrees) bounding the northern sub-basin on its southeast margin, with a shallower fault bounding it to the northwest. A basement high trends west-northwest and separates the northern and southern basins, and is likely bounded on its southern edge by a predominantly strike-slip fault crossing the valley. Much of the strain accommodated within the southern sub-basin appears to be transferred into southern Big Smoky Valley, northwest of Clayton Valley, via these dextral strike-slip faults that obliquely cross Clayton Valley.
NASA Astrophysics Data System (ADS)
Sangha, Simran; Peltzer, Gilles; Zhang, Ailin; Meng, Lingsen; Liang, Cunren; Lundgren, Paul; Fielding, Eric
2017-03-01
Combining space-based geodetic and array seismology observations can provide detailed information about earthquake ruptures in remote regions. Here we use Landsat-8 imagery and ALOS-2 and Sentinel-1 radar interferometry data combined with data from the European seismology network to describe the source of the December 7, 2015, Mw7.2 Murghab (Tajikistan) earthquake. The earthquake reactivated a ∼79 km-long section of the Sarez-Karakul Fault, a NE oriented sinistral, trans-tensional fault in northern Pamir. Pixel offset data delineate the geometry of the surface break and line of sight ground shifts from two descending and three ascending interferograms constrain the fault dip and slip solution. Two right-stepping, NE-striking segments connected by a more easterly oriented segment, sub-vertical or steeply dipping to the west were involved. The solution shows two main patches of slip with up to 3.5 m of left lateral slip on the southern and central fault segments. The northern segment has a left-lateral and normal oblique slip of up to a meter. Back-projection of high-frequency seismic waves recorded by the European network, processed using the Multitaper-MUSIC approach, focuses sharply along the surface break. The time progression of the high-frequency radiators shows that, after a 10 second initiation phase at slow speed, the rupture progresses in 2 phases at super-shear velocity (∼4.3-5 km/s) separated by a 3 second interval of slower propagation corresponding to the passage through the restraining bend. The intensity of the high-frequency radiation reaches maxima during the initial and middle phases of slow propagation and is reduced by ∼50% during the super-shear phases of the propagation. These findings are consistent with studies of other strike-slip earthquakes in continental domain, showing the importance of fault geometric complexities in controlling the speed of fault propagation and related spatiotemporal pattern of the high-frequency radiation.
NASA Astrophysics Data System (ADS)
McBeck, Jessica A.; Cooke, Michele L.; Herbert, Justin W.; Maillot, Bertrand; Souloumiac, Pauline
2017-09-01
We employ work optimization to predict the geometry of frontal thrusts at two stages of an evolving physical accretion experiment. Faults that produce the largest gains in efficiency, or change in external work per new fault area, ΔWext/ΔA, are considered most likely to develop. The predicted thrust geometry matches within 1 mm of the observed position and within a few degrees of the observed fault dip, for both the first forethrust and backthrust when the observed forethrust is active. The positions of the second backthrust and forethrust that produce >90% of the maximum ΔWext/ΔA also overlap the observed thrusts. The work optimal fault dips are within a few degrees of the fault dips that maximize the average Coulomb stress. Slip gradients along the detachment produce local elevated shear stresses and high strain energy density regions that promote thrust initiation near the detachment. The mechanical efficiency (Wext) of the system decreases at each of the two simulated stages of faulting and resembles the evolution of experimental force. The higher ΔWext/ΔA due to the development of the first pair relative to the second pair indicates that the development of new thrusts may lead to diminishing efficiency gains as the wedge evolves. The numerical estimates of work consumed by fault propagation overlap the range calculated from experimental force data and crustal faults. The integration of numerical and physical experiments provides a powerful approach that demonstrates the utility of work optimization to predict the development of faults.
NASA Astrophysics Data System (ADS)
Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.
2017-12-01
Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.
Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan S.; Cowan, Hugh A.
2003-01-01
High-resolution seismic reflection profiles from Limo??n Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatu??n Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities. ?? 2003 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Improta, L.; Operto, S.; Piromallo, C.; Valoroso, L.
2008-12-01
The Agri Valley is a Quaternary extensional basin located in the Southern Apennines range. This basin was struck by a M7 earthquake in 1857. In spite of extensive morphotectonic surveys and hydrocarbon exploration, major unsolved questions remain about the upper crustal structure, the recent tectonic evolution and seismotectonics of the area. Most authors consider a SW-dipping normal-fault system bordering the basin to the East as the major seismogenic source. Alternatively, some authors ascribe the high seismogenic potential of the region to NE-dipping normal faults identified by morphotectonic surveys along the ridge bounding the basin to the West. These uncertainties mainly derive from the poor performance of commercial reflection profiling that suffers from an extreme structural complexity and unfavorable near-surface conditions. To overcome these drawbacks, ENI and Shell Italia carried out a non-conventional wide-aperture survey with densely spaced sources (60 m) and receivers (90 m). The 18-km-long wide-aperture profile crosses the basin, yielding a unique opportunity to get new insights into the crustal structure by using advanced imaging techniques. Here, we apply a two-step imaging procedure. We start determining multi- scale Vp images down to 2.5 km depth by using a non-linear traveltime tomographic technique able to cope with strongly heterogeneous media. Assessment of an accurate reference Vp model is indeed crucial for the subsequent application of a frequency-domain full-waveform inversion aimed at improving spatial resolution of the velocity images. Frequency components of the data are then iteratively inverted from low to high frequency values in order to progressively incorporate smaller wavelength components into the model. Inversion results accurately image the shallow crust, yielding valuable constraints for a better understanding of the recent basin evolution and of the surrounding normal-fault systems.
NASA Astrophysics Data System (ADS)
Ichinose, Gene Aaron
The source parameters for eastern California and western Nevada earthquakes are estimated from regionally recorded seismograms using a moment tensor inversion. We use the point source approximation and fit the seismograms, at long periods. We generated a moment tensor catalog for Mw > 4.0 since 1997 and Mw > 5.0 since 1990. The catalog includes centroid depths, seismic moments, and focal mechanisms. The regions with the most moderate sized earthquakes in the last decade were in aftershock zones located in Eureka Valley, Double Spring Flat, Coso, Ridgecrest, Fish Lake Valley, and Scotty's Junction. The remaining moderate size earthquakes were distributed across the region. The 1993 (Mw 6.0) Eureka Valley earthquake occurred in the Eastern California Shear Zone. Careful aftershock relocations were used to resolve structure from aftershock clusters. The mainshock appears to rupture along the western side of the Last Change Range along a 30° to 60° west dipping fault plane, consistent with previous geodetic modeling. We estimate the source parameters for aftershocks at source-receiver distances less than 20 km using waveform modeling. The relocated aftershocks and waveform modeling results do not indicate any significant evidence of low angle faulting (dips > 30°. The results did reveal deformation along vertical faults within the hanging-wall block, consistent with observed surface rupture along the Saline Range above the dipping fault plane. The 1994 (Mw 5.8) Double Spring Flat earthquake occurred along the eastern Sierra Nevada between overlapping normal faults. Aftershock migration and cross fault triggering occurred in the following two years, producing seventeen Mw > 4 aftershocks The source parameters for the largest aftershocks were estimated from regionally recorded seismograms using moment tensor inversion. We estimate the source parameters for two moderate sized earthquakes which occurred near Reno, Nevada, the 1995 (Mw 4.4) Border Town, and the 1998 (Mw 4.7) Incline Village Earthquakes. We test to see how such stress interactions affected a cluster of six large earthquakes (Mw 6.6 to 7.5) between 1915 to 1954 within the Central Nevada Seismic Belt. We compute the static stress changes for these earthquake using dislocation models based on the location and amount of surface rupture. (Abstract shortened by UMI.)
Clement, C.R.; Pratt, T.L.; Holmes, M.L.; Sherrod, B.L.
2010-01-01
Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ???350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ???2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ???3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.
Odum, Jackson K.; Stephenson, William J.; Pratt, Thomas L.; Blakely, Richard J.
2016-01-01
Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ∼350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ∼2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ∼3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.
Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology
NASA Astrophysics Data System (ADS)
Brown, L. D.
2013-12-01
One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and upper mantle. The SNORCLE mantle reflectors, which can be traced deep within the early Precambrian (?) mantle by both surface (controlled source) reflection profiles and passive (receiver function) images most clearly illustrates the rheological implications of such feature. The SNORCLE events appear to root upwards into the lower crust and extend to depths approaching 200 km into the mantle. This would seem to require the preservation of undeformed mantle lithosphere for almost 2.5 billion years in this area. This preservation is clearly inconsistent with the interpretation of nearby shallower mantle interfaces as marking the modern lithosphere-asthenosphere boundary. In summary, dipping mantle reflections imply preservation of substantial thicknesses of mantle lithosphere for very long periods of time, and localization of mantle deformation during the formation of these structures along relatively narrow, discrete interfaces rather than across broad zones of diffuse deformation. .
NASA Astrophysics Data System (ADS)
Strecker, M. R.; Bookhagen, B.; Alonso, R. N.; Pingel, H.; Freymark, J.
2015-12-01
With average elevations of about 3.7 km the Altiplano-Puna Plateau of the southern central Andes constitutes the world's second largest orogenic plateau. The plateau generally consists of internally drained, partly coalesced sedimentary basins bordered by reverse-fault bounded ranges, >5 km high. In the Puna, the Argentine sector of the plateau, active tectonism has been interpreted to be characterized by a low level of strike-slip and normal faulting associated with mafic volcanism. In contrast, the eastern plateau margins and the adjacent foreland record a higher level of seismicity and ongoing contraction. Despite ubiquitous Plio-Pleistocene normal faulting along the eastern plateau margins, our new observations record contraction in the plateau interior. Fanning of E-dipping Miocene sedimentary strata involved in the formation of an anticline in the Pocitos Basin of the central Puna interior indicates growth, which must have begun after 7 Ma; 1.5-m.y.-old lacustrine strata as well as tilted Pleistocene lacustrine shorelines associated with this structure indicate sustained uplift into the Quaternary. Corresponding observations along the eastern border of the Pocitos Basin show that <3.5-m.y.-old strata are involved in contractile deformation and basin compartmentalization. Shortening in the central Puna is compatible with Plio-Pleistocene shortening in the low-elevation Salar de Atacama farther west, and may indicate that low-elevation sectors of the plateau have not yet reached a critical elevation that is conducive to normal faulting as observed elsewhere. The onset of extensional deformation in the Puna is thus highly disparate in space and time. Coeval regional thrusting, strike-slip, and normal faulting do not support a structural and topographic setting that promotes wholesale extension and orogenic collapse of the plateau realm.
NASA Astrophysics Data System (ADS)
Haines, Samuel; Marone, Chris; Saffer, Demian
2014-12-01
The mechanics of slip on low-angle normal faults (LANFs) remain an enduring problem in structural geology and fault mechanics. In most cases, new faults should form rather than having slip occur on LANFs, assuming values of fault friction consistent with Byerlee's Law. We present results of laboratory measurements on the frictional properties of natural clay-rich gouges from low-angle normal faults (LANF) in the American Cordillera, from the Whipple Mts. Detachment, the Panamint range-front detachment, and the Waterman Hills detachment. These clay-rich gouges are dominated by neoformed clay minerals and are an integral part of fault zones in many LANFs, yet their frictional properties under in situ conditions remain relatively unknown. We conducted measurements under saturated and controlled pore pressure conditions at effective normal stresses ranging from 20 to 60 MPa (corresponding to depths of 0.9-2.9 km), on both powdered and intact wafers of fault rock. For the Whipple Mountains detachment, friction coefficient (μ) varies depending on clast content, with values ranging from 0.40 to 0.58 for clast-rich material, and 0.29-0.30 for clay-rich gouge. Samples from the Panamint range-front detachment were clay-rich, and exhibit friction values of 0.28 to 0.38, significantly lower than reported from previous studies on fault gouges tested under room humidity (nominally dry) conditions, including samples from the same exposure. Samples from the Waterman Hills detachment are slightly stronger, with μ ranging from 0.38 to 0.43. The neoformed gouge materials from all three localities exhibits velocity-strengthening frictional behavior under almost all of the experimental conditions we explored, with values of the friction rate parameter (a - b) ranging from -0.001 to +0.025. Clast-rich samples exhibited frictional healing (strength increases with hold time), whereas clay-rich samples do not. Our results indicate that where clay-rich neoformed gouges are present along LANFs, they provide a mechanically viable explanation for slip on faults with dips <20°, requiring only moderate (Pf <σ3) overpressures and/or correcting for ∼5° of footwall tilting. Furthermore, the low rates of frictional strength recovery and velocity-strengthening frictional behavior we observe provide an explanation for the lack of observed seismicity on these structures. We suggest that LANFs in the upper crust (depth <8 km) slip via a combination of a) reaction-weakening of initially high-angle fault zones by the formation of neoformed clay-rich gouges, and b) regional tectonic accommodation of rotating fault blocks.
NASA Astrophysics Data System (ADS)
Ferry, M.; Tsutsumi, H.; Meghraoui, M.; Toda, S.
2012-12-01
The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion; probably in the late Pleistocene-early Holocene (radiocarbon samples are being processed). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.
NASA Astrophysics Data System (ADS)
Indah, F. P.; Syafriani, S.; Andiyansyah, Z. S.
2018-04-01
Sumatra is in an active subduction zone between the indo-australian plate and the eurasian plate and is located at a fault along the sumatra fault so that sumatra is vulnerable to earthquakes. One of the ways to find out the cause of earthquake can be done by identifying the type of earthquake-causing faults based on earthquake of focal mechanism. The data used to identify the type of fault cause of earthquake is the earth tensor moment data which is sourced from global cmt period 1976-2016. The data used in this research using magnitude m ≥ 6 sr. This research uses gmt software (generic mapping tolls) to describe the form of fault. From the research result, it is found that the characteristics of fault field that formed in every region in sumatera island based on data processing and data of earthquake history of 1976-2016 period that the type of fault in sumatera fault is strike slip, fault type in mentawai fault is reverse fault (rising faults) and dip-slip, while the fault type in the subduction zone is dip-slip.
Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.
2005-01-01
In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.
The basin and range viewed from Borah Peak, Idaho.
Stein, R.S.; Bucknam, R.C.
1985-01-01
Today, more than a hundred years later, Borah Peak has proved to be among those mountains still rising. During the 28 October 1983 M=7 Borah Peak, Idaho, earthquake, the Lost River Range that Borah Peak caps was lifted 20-30 cm relative to distant points, and was tilted downward away from the range-bounding Lost River fault. The downthrown side of the fault, which subsided as much as 120 cm, was also tilted down toward the fault. The similarity between the earthquake deformation and the cumulative deformation preserved by the dip of strata is striking; it tends to confirm Gilbert's notion that Basin-and-Range topography is built by repeated slip events on normal faults that bound the range. The U.S Geological Survey had just published a preliminary volume of 40 research papers on the Borah Peak earthquake, focusing on the surface faulting, seismology, geodesy, hydrology, and geology of the earthquake and tis setting (Stein and Bucknam 1985). Also included is a field guide to the spectacular earthquake landforms, such as sruface rupture, exploratory trench excavations, sand blows, and landslides.
Slip and Dilation Tendency Analysis of the Patua Geothermal Area
Faulds, James E.
2013-12-31
Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...
NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt
NASA Astrophysics Data System (ADS)
García-Palomo, Armando; Macías, José Luis; Jiménez, Adrián; Tolson, Gustavo; Mena, Manuel; Sánchez-Núñez, Juan Manuel; Arce, José Luis; Layer, Paul W.; Santoyo, Miguel Ángel; Lermo-Samaniego, Javier
2018-01-01
The Apan-Acoculco area is located in the eastern portion of the Mexico basin and the Trans-Mexican Volcanic Belt. The area is transected by right-stepping variably dipping NE-SW normal faults. The Apan-Tlaloc Fault System is a major discontinuity that divides the region into two contrasting areas with different structural and volcanic styles. a) The western area is characterized by a horst-graben geometry with widespread Quaternary monogenetic volcanism and scattered outcrops of Miocene and Pliocene rocks. b) The eastern area is dominated by tilted horsts with a domino-like geometry with widespread Miocene and Pliocene rocks, scattered Quaternary monogenetic volcanoes and the Acoculco Caldera. Gravity data suggest that this structural geometry continues into the Mesozoic limestones. Normal faulting was active since the Pliocene with three stages of extension. One of them, an intense dilatational event began during late Pliocene and continues nowadays, contemporaneously with the emplacement of the Apan-Tezontepec Volcanic Field and the Acoculco caldera. Statistical analysis of cone elongation, cone instability, and the kinematic analysis of faults attest for a NW50°SE ± 7° extensional regime in the Apan-Acoculco area. The activity in some portions of the Apan-Tlaloc Fault System continues today as indicated by earthquake swarms recorded in 1992 and 1996, that disrupted late Holocene paleosols, and Holocene volcanism.
The Qartaba Structure: An Active Backthrust In Central Mt-Lebanon.
NASA Astrophysics Data System (ADS)
Elias, Ata Richard
2016-04-01
The Qartaba structure in central Mt-Lebanon is a 15x5km box fold running parallel to the restraining bend of the sinsitral Yammouneh Fault, the main fault of the central segment of the Dead Sea Transform. The Qartaba structure has long been described as a "horst" and associated with Mesozoic normal faulting. However, the Qartaba anticline is suitably oriented with the direction of maximum compression along the restraining bend. Jurassic carbonate rocks form the core of this anticline culminating at ~1953m asl to the east, of the highest structural elevation of the Mt-Lebanon range indicating important tectonic uplift rate. The fold is asymmetric. The western limb is steep and bordered by the Lebanese Flexure, a prominent continuous monocline of Upper Jurassic to Mid Cretaceous rocks, running along the western flank of Mt-Lebanon. The eastern limb of the anticline has a very steep dip, and forms a 200m high cliff well marked in the topography. Its Jurassic layers are almost vertical and end up overhanging Lower Cretaceous beds. Our study suggest that the Qartaba structure is a growing anticline, built by active thrusting over a west dipping thrust fault that cuts the surface at the base of the eastern limb of the anticline. The fault plane can be seen dipping 30-35 degrees to the west. At depth, this thrust is likely to connect with the blind thrust ramp of the Mt-Lebanon Flexure. The Qartaba backthrust with a dip to the west, is opposite to the general vergence of similar structures in the area. On some of the segments of the steep cliff forming the faulted eastern limb, a fresh scarp with smooth and polished surfaces bearing vertical slickensides can be followed over ~700m along the base of the cliff. It corresponds with the location of the thrust fault tip. Talus accumulation over the steep eastern limb covers most of the cliff base, and may be masking further extent of this scarp. We interpret this scarp as the freeface of a co-seismic rupture on the underlying Qartaba backthrust. Moreover a first paleoseismic trench was opened in the loose deposits that cover the base of the eastern limb, over a topographic slope break aligned with the direction of the backthrust. The preliminary results clearly show tectonic deformation structures in C14 dated Holocene sediments, compatible with the general compressive style of the backthrust. This new interpretation of the Qartaba structure has important, implications on the geological interpretation of the area. The Qartaba backthrust is clearly an active structure that is capable of generating Mw~6.4 earthquakes in central Lebanon, significantly adding to the seismic hazard of the area. Moreover, the different interpretations of the geology of this area for petroleum prospects studies should be reviewed in the light of these new results.
The South Sandwich "Forgotten" Subduction Zone and Tsunami Hazard in the South Atlantic
NASA Astrophysics Data System (ADS)
Okal, E. A.; Hartnady, C. J. H.; Synolakis, C. E.
2009-04-01
While no large interplate thrust earthquakes are know at the "forgotten" South Sandwich subduction zone, historical catalogues include a number of events with reported magnitudes 7 or more. A detailed seismological study of the largest event (27 June 1929; M (G&R) = 8.3) is presented. The earthquake relocates 80 km North of the Northwestern corner of the arc and its mechanism, inverted using the PDFM method, features normal faulting on a steeply dipping fault plane (phi, delta, lambda = 71, 70, 272 deg. respectively). The seismic moment of 1.7*10**28 dyn*cm supports Gutenberg and Richter's estimate, and is 28 times the largest shallow CMT in the region. This event is interpreted as representing a lateral tear in the South Atlantic plate, comparable to similar earthquakes in Samoa and Loyalty, deemed "STEP faults" by Gover and Wortel [2005]. Hydrodynamic simulations were performed using the MOST method [Titov and Synolakis, 1997]. Computed deep-water tsunami amplitudes of 30cm and 20cm were found off the coast of Brazil and along the Gulf of Guinea (Ivory Coast, Ghana) respectively. The 1929 moment was assigned to the geometries of other know earthquakes in the region, namely outer-rise normal faulting events at the center of the arc and its southern extremity, and an interplate thrust fault at the Southern corner, where the youngest lithosphere is subducted. Tsunami hydrodynamic simulation of these scenarios revealed strong focusing of tsunami wave energy by the SAR, the SWIOR and the Agulhas Rise, in Ghana, Southern Mozambique and certain parts of the coast of South Africa. This study documents the potential tsunami hazard to South Atlantic shorelines from earthquakes in this region, principally normal faulting events.
South Sandwich: The Forgotten Subduction Zone and Tsunami Hazard in the South Atlantic
NASA Astrophysics Data System (ADS)
Okal, E. A.; Hartnady, C. J.
2008-12-01
While no large interplate thrust earthquakes are known at the South Sandwich subduction zone, historical catalogues include a number of earthquakes with reported magnitudes of 7 or more. We present a detailed seismological study of the largest one (27 June 1929; M (G&R) = 8.3). The earthquake relocates 80 km North of the Northwestern corner of the arc. Its mechanism, inverted using the PDFM method, features normal faulting on a steeply dipping fault plane (phi, delta, lambda = 71, 70, 272 deg.). The seismic moment, 1.7 10**28 dyn*cm, supports Gutenberg and Richter's estimate, and is 28 times the largest shallow CMT in the region. The 1929 event is interpreted as representing a lateral tear in the South Atlantic plate, comparable to similar earthquakes in Samoa and Loyalty, deemed "STEP faults" by Gover and Wortel [2005]. Hydrodynamic simulations using the MOST method [Titov and Synolakis, 1997] suggest deep-water tsunami amplitudes reaching 30 cm off the coast of Brazil, where it should have had observable run-up, and 20 cm along the Gulf of Guinea (Ivory Coast, Ghana). We also simulate a number of potential sources obtained by assigning the 1929 moment to the geometries of other known earthquakes in the region, namely outer-rise normal faulting events at the center of the arc and its southern extremity, and an interplate thrust fault at the Southern corner, where the youngest lithosphere is subducted. A common feature of these models is the strong focusing of tsunami waves by the SAR, the SWIOR, and the Agulhas Rise, resulting in amplitudes always enhanced in Ghana, Southern Mozambique and certain parts of the coast of South Africa. This study documents the potential tsunami hazard to South Atlantic shorelines from earthquakes in this region, principally normal faulting events.
NASA Astrophysics Data System (ADS)
Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela
2015-12-01
The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza fault system in the investigated section. We further hypothesize that the onset of the Piano di Pezza fault activity may date back to the Middle Pleistocene (˜0.5 Ma), so this is a quite young active normal fault if compared to other mature normal fault systems active since 2-3 Ma in this portion of the central Apennines.
Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)
NASA Astrophysics Data System (ADS)
Villani, F.; Pierdominici, S.; Cinti, F. R.
2009-12-01
The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.
NASA Astrophysics Data System (ADS)
Grazia Ciaccio, Maria; Improta, Luigi; Patacca, Etta; Scandone, Paolo; Villani, Fabio
2010-05-01
The 2009 L'Aquila seismic sequence activated a complex, about 40 km long, NW-trending and SW-dipping normal fault system, consisting of three main faults arranged in right-lateral en-echelon geometry. While the northern sector of the epicentral area was extensively investigated by oil companies, only a few scattered, poor-quality commercial seismic profiles are available in the central and southern sector. In this study we interpret subsurface commercial data from the northern sector, which is the area where is located the source of the strong Mw5.4 aftershock occurred on the 9th April 2009. Our primary goals are: (1) to define a reliable framework of the upper crust structure, (2) to investigate how the intense aftershock activity, the bulk of which is clustered in the 5-10 km depth range, relates to the Quaternary extensional faults present in the area. The investigated area lies between the western termination of the W-E trending Gran Sasso thrust system to the south, the SW-NE trending Mt. Sibillini thrust front (Ancona-Anzio Line Auctt.) to the north and west, and by the NNW-SSE trending, SW-dipping Mt. Gorzano normal fault to the east. In this area only middle-upper Miocene deposits are exposed (Laga Flysch and underlying Cerrogna Marl), but commercial wells have revealed the presence of a Triassic-Miocene sedimentary succession identical to the well known Umbria-Marche stratigraphic sequence. We have analyzed several confidential seismic reflection profiles, mostly provided by ENI oil company. Seismic lines are tied to two public wells, 5766 m and 2541 m deep. Quality of the reflection imaging is highly variable. A few good quality stack sections contain interpretable signal down to 4.5-5.5 s TWT, corresponding to depths exceeding 10-12 km and thus allowing crustal imaging at seismogenic depths. Key-reflectors for the interpretation correspond to: (1) the top of the Miocene Cerrogna marls, (2) the top of the Upper Albian-Oligocene Scaglia Group, (3) the Aptian-Albian Fucoid Marl horizon, (4) the top of the upper Jurassic "Calcari ad Aptici" Formation, (5) the top of the upper Triassic dolomites plus evaporites of the Burano Formation. Strong but discontinuous deep reflectors can be reasonably attributed to the Paleozoic-Trassic clastic sequence underlying the evaporites. Neogene compression is responsible for a system of NNW-SSE trending fault-propagation folds which have often grown on top of popup-like structures. Extensional features include shallow-seated low-angle faults, likely related to gravitational readjustments on top of compressional features, and younger NNW-SSE trending high-angle faults. The major high-angle fault in the investigated area is represented by the Mt. Gorzano Fault, a regional structure the surface trace of which is at least 20 km long. The Mt. Gorzano Fault is a listric fault that dips around 60° in the first 2 s TWT and flattens at greater depths until it becomes sub-horizontal at about 5 s TWT, i.e. at a depth averaging 12 kilometers. Depth converted sections, calibrated by well data, indicate that the bulk of the aftershock activity is confined between the Triassic dolomites plus evaporites and the underlying Paleozoic-Triassic terrigenous deposits, without affecting the overlying carbonates. Events alignment revealed by accurate Double-Difference relative locations suggests that the Mw5.4 aftershock activated a 12 km-long segment of the Mt. Gorzano Fault at depths ranging from 5 to 10-12 kilometers. Aftershocks cluster in the hanging-wall of the deep portion of the fault recognized in the stack sections, whose geometry is consistent with the fault plane highlighted by earthquakes alignment.
Interpretation of the Seattle uplift, Washington, as a passive-roof duplex
Brocher, T.M.; Blakely, R.J.; Wells, R.E.
2004-01-01
We interpret seismic lines and a wide variety of other geological and geophysical data to suggest that the Seattle uplift is a passive-roof duplex. A passive-roof duplex is bounded top and bottom by thrust faults with opposite senses of vergence that form a triangle zone at the leading edge of the advancing thrust sheet. In passive-roof duplexes the roof thrust slips only when the floor thrust ruptures. The Seattle fault is a south-dipping reverse fault forming the leading edge of the Seattle uplift, a 40-km-wide fold-and-thrust belt. The recently discovered, north-dipping Tacoma reverse fault is interpreted as a back thrust on the trailing edge of the belt, making the belt doubly vergent. Floor thrusts in the Seattle and Tacoma fault zones, imaged as discontinuous reflections, are interpreted as blind faults that flatten updip into bedding plane thrusts. Shallow monoclines in both the Seattle and Tacoma basins are interpreted to overlie the leading edges of thrust-bounded wedge tips advancing into the basins. Across the Seattle uplift, seismic lines image several shallow, short-wavelength folds exhibiting Quaternary or late Quaternary growth. From reflector truncation, several north-dipping thrust faults (splay thrusts) are inferred to core these shallow folds and to splay upward from a shallow roof thrust. Some of these shallow splay thrusts ruptured to the surface in the late Holocene. Ages from offset soils in trenches across the fault scarps and from abruptly raised shorelines indicate that the splay, roof, and floor thrusts of the Seattle and Tacoma faults ruptured about 1100 years ago.
Late Quaternary alluviation and offset along the eastern Big Pine fault, southern California
DeLong, S.B.; Minor, S.A.; Arnold, L.J.
2007-01-01
Determining late Quaternary offset rates on specific faults within active mountain belts is not only a key component of seismic hazard analysis, but sheds light on regional tectonic development over geologic timescales. Here we report an estimate of dip-slip rate on the eastern Big Pine oblique-reverse fault in the upper Cuyama Valley within the western Transverse Ranges of southern California, and its relation to local landscape development. Optically stimulated luminescence (OSL) dating of sandy beds within coarse-grained alluvial deposits indicates that deposition of alluvium shed from the Pine Mountain massif occurred near the southern margin of the Cuyama structural basin at the elevation of the Cuyama River between 25 and 14??ka. This alluvial deposit has been offset ??? 10??m vertically by the eastern Big Pine fault, providing a latest Quaternary dip-slip rate estimate of ??? 0.9??m/ky based on a 50?? fault dip. Incision of the adjacent Cuyama River has exposed a section of older Cuyama River sediments beneath the Pine Mountain alluvium that accumulated between 45 and 30??ka on the down-thrown footwall block of the eastern Big Pine fault. Corroborative evidence for Holocene reverse-slip on the eastern Big Pine fault is ??? 1??m of incised bedrock that is characteristically exposed beneath 2-3.5??ka fill terraces in tributaries south of the fault. The eastern Big Pine fault in the Cuyama Valley area has no confirmed record of historic rupture; however, based on our results, we suggest the likelihood of multiple reverse-slip rupture events since 14??ka. ?? 2007 Elsevier B.V. All rights reserved.
Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea
NASA Astrophysics Data System (ADS)
Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.
2018-04-01
The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.
NASA Astrophysics Data System (ADS)
de Vita, S.; Marotta, E.; Orsi, G.
The studies carried out on the resurgent calderas of Campi Flegrei, Pantelleria and Is- chia, evidenced that the geometry of the resurgent blocks and the arial distribution of volcanic vents active after the caldera collapse, are not compatible with the commonly accepted resurgent dome model. For these areas a simple shearing block resurgence mechanism, that take in account all the geological and volcanological constraints, has been proposed. In order to define the structural setting of a resurgent block for which this mechanism has been proposed, a detailed structural study has been carried out on the island of Ischia, where the Mt. Epomeo was uplifted of about 900 m in the past 30 ka. The attitude of 1400 planar surfaces has been measured in 50 different sites around the resurgent block. These features have been distinguished in: a) faults; b) joints; c) fracture cleavages. It has been observed that the resurgent area is composed of differentially displaced blocks whose uplifting is maximum for the Mt. Epomeo and decreases southeastward. The resurgent area has a poligonal shape resulting from the reactivation of regional faults and by the activation of faults directly related to volcan- otectonism. Northeastward the limit of the resurgent area is not defined, as along the coastline are exposed beach deposits displaced at variable elevation by E-W and NW- SE trending faults. The western sector is bordered by inward dipping, high angle re- verse faults, whose directions vary from N40E to NS and N50W from the northwestern to the southwestern parts of the block, testifying a compressional stress regime active in this area. These features are cut by late outward dipping normal faults due to grav- itational readjustment of the slopes. The northeastern and the southwestern sides are bordered by vertical faults with right transtensive and left transpressive movements, respectively. The area located to the east of the most uplifted block is characterized by a tensile stress regime and has been deformed by N-S, N40-70E and N15W trending normal faults, which demonstrates that the maximum elongation direction is N50W. The results of this study, together with the volcanological data available for the past 3 ka of activity, suggest that the eastern part of the resurgent block is the area with the highest probability of vent opening in case of renewal of volcanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, J.H.; Nelson, K.D.; Arnow, J.A.
1985-01-01
New COCORP profiling on the Georgia coastal plain indicates that the Triassic/Early Jurassic South Georgia basin is a composite feature, which includes several large half-grabens separated by intervening regions where the Triassic/Early Jurassic section is much thinner. Two half-grabens imaged on the profiles have apparent widths of 125 and 40 km, and at their deepest points contain about 5 km of basin fill. Both basins are bounded on their south flanks by major normal faults that dip moderately steeply toward the north, and are disrupted internally by subsidiary normal faults within the basin fill sequences. The orientation of the mainmore » basin-bounding faults suggests that they might have reactivated Paleozoic south-vergent structures formed on the south side of the Alleghenian suture. Evolution of the South Georgia basin appears to follow a model of initial, rapid rifting followed by flexural subsidence. The major episode of normal faulting, and hence extension, within the South Georgia basin occurred prior to extrusion of an areally extensive sequence of Early Jurassic basalt flows. This sequence is traceable across most of the width of the South Georgia basin in western Georgia, and may extend as far east as offshore South Carolina. Jurassic strata above the basalt horizon are notably less faulted and accumulated within a broadly subsiding basin that thins both to the north and south. The occurrence of the basalt relatively late in the rift sequence supports the hypothesis that the southeastern US may have been a major area of incipient spreading after Pangea had begun to separate.« less
NASA Astrophysics Data System (ADS)
Abers, Geoffrey A.; McCaffrey, Robert
1994-04-01
The Huon-Finisterre island arc terrane is actively colliding with the north edge of the Australian continent. The collision provides a rare opportunity to study continental accretion while it occurs. We examine the geometry and kinematics of the collision by comparing earthquake source parameters to surface fault geometries and plate motions, and we constrain the forces active in the collision by comparing topographic loads to gravity anomalies. Waveform inversion is used to constrain focal mechanisms for 21 shallow earthquakes that occurred between 1966 and 1992 (seismic moment 1017 to 3 × 1020 N m). Twelve earthquakes show thrust faulting at 22-37 km depth. The largest thrust events are on the north side of the Huon Peninsula and are consistent with slip on the Ramu-Markham thrust fault zone, the northeast dipping thrust fault system that bounds the Huon-Finisterre terrane. Thus much of the terrane's crust but little of its mantle is presently being added to the Australian continent. The large thrust earthquakes also reveal a plausible mechanism for the uplift of Pleistocene coral terraces on the north side of the Huon Peninsula. Bouguer gravity anomalies are too negative to allow simple regional compensation of topography and require large additional downward forces to depress the lower plate beneath the Huon Peninsula. With such forces, plate configurations are found that are consistent with observed gravity and basin geometry. Other earthquakes give evidence of deformation above and below the Ramu-Markham thrust system. Four thrust events, 22-27 km depth directly below the Ramu-Markham fault outcrop, are too deep to be part of a planar Ramu-Markham thrust system and may connect to the north dipping Highlands thrust system farther south. Two large strike-slip faulting earthquakes and their aftershocks, in 1970 and 1987, show faulting within the upper plate of the thrust system. The inferred fault planes show slip vectors parallel to those on nearby thrust faults, and may represent small offsets in the overriding plate. These faults, along with small normal-faulting earthquakes beneath the Huon-Finisterre ranges and a 25° along-strike rotation of slip vectors, demonstrate the presence of along-strike extension of the accreting terrane and along-strike compression of the lower plate.
NASA Astrophysics Data System (ADS)
González-Escobar, Mario; Suárez-Vidal, Francisco; Hernández-Pérez, José Antonio; Martín-Barajas, Arturo
2010-12-01
This study examines the structural characteristics of the northern Gulf of California by processing and interpreting ca. 415 km of two-dimensional multi-channel seismic reflection lines (data property of Petróleos Mexicanos PEMEX) collected in the vicinity of the border between the Wagner and Consag basins. The two basins appear to be a link between the Delfín Superior Basin to the south, and the Cerro Prieto Basin to the north in the Mexicali-Imperial Valley along the Pacific-North America plate boundary. The seismic data are consistent with existing knowledge of four main structures (master faults) in the region, i.e., the Percebo, Santa María, Consag Sur, and Wagner Sur faults. The Wagner and Consag basins are delimited to the east by the Wagner Sur Fault, and to the west by the Consag Sur Fault. The Percebo Fault borders the western margin of the modern Wagner Basin depocenter, and is oriented N10°W, dipping (on average) ˜40° to the northeast. The trace of the Santa María Fault located in the Wagner Basin strikes N19°W, dipping ˜40° to the west. The Consag Sur Fault is oriented N14°W, and dips ˜42° to the east over a distance of 21 km. To the east of the study area, the Wagner Sur Fault almost parallels the Consag Sur Fault over a distance of ˜86 km, and is oriented N10°W with an average dip of 59° to the east. Moreover, the data provide new evidence that the Wagner Fault is discontinuous between the two basins, and that its structure is more complex than previously reported. A structural high separates the northern Consag Basin from the southern Wagner Basin, comprising several secondary faults oriented NE oblique to the main faults of N-S direction. These could represent a zone of accommodation, or transfer zone, where extension could be transferred from the Wagner to the Consag Basin, or vice versa. This area shows no acoustic basement and/or intrusive body, which is consistent with existing gravimetric and magnetic data for the region.
NASA Astrophysics Data System (ADS)
Kasza, Damian; Kowalski, Aleksander; Wojewoda, Jurand; Kaczorowski, Marek
2018-01-01
Abstract. Indicators of recent geodynamic activity in the Książ Castle area are registered by the measuring instruments of the SRC PAS (Space Research Centre of Polish Academy of Sciences) Geodynamic Laboratory at Książ. Over 40 years of continuous observations from quartz horizontal pendulums (since 1974) and over 10 years of observations from water-tube tiltmeters (since 2002) have documented irregularly repeatable strong signals related to the relative displacement of blocks in the rock substrate, on which Książ Castle is located. These signals have dip (rotational) and vertical strike-slip components. Also, the presence of a horizontal strike-slip component is evidenced by geometric anomalies (deformations) of the shape of the Pelcznica river valley, which directly correspond to the orientation of the main faults in the area. Recent geodynamic activity is documented by destruction of (the construction elements in the castle complex. Instrumental indicators of movement, geodetic measurements and structural analysis of the rock massif have allowed for constructing a model showing the main unconformity surfaces in the analysed rock massif. Sinistral, NE-SW and ENE-WSW-oriented strike-slip faults prevail in the laboratory corridors, along with perpendicular WNW-ESE and NW-SSE-oriented clextral and normal faults. Most dislocations are accompanied by zones of intense cataclasys, secondary silification, and Fe and Mn mineralization. Generally, the faults were formed due to reactivation of joint fractures cutting the steeply N-and S-dipping (at 75-90°) deposits of the Książ Conglomerate Formation.
NASA Astrophysics Data System (ADS)
Huang, M. H.; Dickinson, H.; Fielding, E. J.; Sun, J.; Freed, A. M.; Burgmann, R.
2015-12-01
The 4th of April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake in Baja California and Sonora, Mexico has primarily right-lateral strike-slip motion and a minor normal slip component. The surface rupture extends about 120 km west of the boundary between the Pacific and the North American plates. The EMC event initiated near the center and ruptured bilaterally into an east-dipping strike-slip fault zone to the north and a west-dipping strike-slip zone to the south. Here we use geodetic measurements including GPS, InSAR (SAR interferometry), and sub-pixel offset measurements to characterize the fault slip during the EMC event. We use dislocation inversion methods to determine fault geometry as well as sub-fault slip distribution based on geodetic measurements. We find that assuming layered earth elastic structure increased the inferred deep slip (10-15 km depth) by up to 1.6 m (60%) compared to assuming a homogeneous elastic structure. Inferred slip was also strongly (up to 2 m) influenced by the choice of observational constraints used in the inversion. The choice of constraints also influenced the inverted seismic moment from Mw 7.20 to 7.26, and the difference is equivalent to a Mw 6.5 event. Our results show that the outcomes of coseismic inversions can vary greatly depending on the methodology, something that needs to be considered both for characterizing an earthquake and when using such results in subsequent studies of postseismic deformation.
Structure and mechanics of the Hayward-Rodgers Creek Fault step-over, San Francisco Bay, California
Parsons, T.; Sliter, R.; Geist, E.L.; Jachens, R.C.; Jaffe, B.E.; Foxgrover, A.; Hart, P.E.; McCarthy, J.
2003-01-01
A dilatational step-over between the right-lateral Hayward and Rodgers Creek faults lies beneath San Pablo Bay in the San Francisco Bay area. A key seismic hazard issue is whether an earthquake on one of the faults could rupture through the step-over, enhancing its maximum possible magnitude. If ruptures are terminated at the step-over, then another important issue is how strain transfers through the step. We developed a combined seismic reflection and refraction cross section across south San Pablo Bay and found that the Hayward and Rodgers Creek faults converge to within 4 km of one another near the surface, about 2 km closer than previously thought. Interpretation of potential field data from San Pablo Bay indicated a low likelihood of strike-slip transfer faults connecting the Hayward and Rodgers Creek faults. Numerical simulations suggest that it is possible for a rupture to jump across a 4-km fault gap, although special stressing conditions are probably required (e.g., Harris and Day, 1993, 1999). Slip on the Hayward and Rodgers Creek faults is building an extensional pull-apart basin that could contain hazardous normal faults. We investigated strain in the pull-apart using a finite-element model and calculated a ???0.02-MPa/yr differential stressing rate in the step-over on a least-principal-stress orientation nearly parallel to the strike-slip faults where they overlap. A 1- to 10-MPa stress-drop extensional earthquake is expected on normal faults oriented perpendicular to the strike-slip faults every 50-500 years. The last such earthquake might have been the 1898 M 6.0-6.5 shock in San Pablo Bay that apparently produced a small tsunami. Historical hydrographic surveys gathered before and after 1898 indicate abnormal subsidence of the bay floor within the step-over, possibly related to the earthquake. We used a hydrodynamic model to show that a dip-slip mechanism in north San Pablo Bay is the most likely 1898 rupture scenario to have caused the tsunami. While we find no strike-slip transfer fault between the Hayward and Rodgers Creek faults, a normal-fault link could enable through-going segmented rupture of both strike-slip faults and may pose an independent hazard of M ???6 earthquakes like the 1898 event.
NASA Astrophysics Data System (ADS)
Chen, C.; Lee, J.; Chan, Y.; Lu, C.
2010-12-01
The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.
NASA Astrophysics Data System (ADS)
Bellier, Olivier; Zoback, Mary Lou
1995-06-01
The NW to north-trending Walker Lane zone (WLZ) is located along the western boundary of the northern Basin and Range province with the Sierra Nevada. This zone is distinguished from the surrounding Basin and Range province on the basis of irregular topography and evidence for both normal and strike-slip Holocene faulting. Inversion of slip vectors from active faults, historic fault offsets, and earthquake focal mechanisms indicate two distinct Quaternary stress regimes within the WLZ, both of which are characterized by a consistent WNW σ3 axis; these are a normal faulting regime with a mean σ3 axis of N85°±9°W and a mean stress ratio (R value) (R=(σ2-σ1)/(σ3-σ1)) of 0.63-0.74 and a younger strike-slip faulting regime with a similar mean σ3 axis (N65° - 70°W) and R values ranging between ˜ 0.1 and 0.2. This younger regime is compatible with historic fault offsets and earthquake focal mechanisms. Both the extensional and strike-slip stress regimes reactivated inherited Mesozoic and Cenozoic structures and also produced new faults. The present-day strike-slip stress regime has produced strike-slip, normal oblique-slip, and normal dip-slip historic faulting. Previous workers have explained the complex interaction of active strike-slip, oblique, and normal faulting in the WLZ as a simple consequence of a single stress state with a consistent WNW σ3 axis and transitional between strike-slip and normal faulting (maximum horizontal stress approximately equal to vertical stress, or R ≈ 0 in both regimes) with minor local fluctuations. The slip data reported here support previous results from Owens Valley that suggest deformation within temporally distinct normal and strike-slip faulting stress regimes with a roughly constant WNW trending σ3 axis (Zoback, 1989). A recent change from a normal faulting to a strike-slip faulting stress regime is indicated by the crosscutting striae on faults in basalts <300,000 years old and is consistent with the dominantly strike-slip earthquake focal mechanisms and the youngest striae observed on faults in Plio-Quaternary deposits. Geologic control on the timing of the change is poor; it is impossible to determine if there has been a single recent absolute change or if there is, rather, an alternating or cyclical variation in stress magnitudes. Our slip data, in particular, the cross-cutting normal and strike-slip striae on the same fault plane, are inconsistent with postulated simple strain partitioning of deformation within a single regional stress field suggested for the WLZ by Wesnousky and Jones [1994]. The location of the WLZ between the deep-seated regional extension of the Basin and Range and the right-lateral strike-slip regional tectonics of the San Andreas fault zone is probably responsible for the complex interaction of tectonic regimes in this transition zone. In early to mid-Tertiary time the WLZ appears to have had a similarly complex deformational history, in this case as a back arc or intra-arc region, accommodating at least part of the right-lateral component of oblique convergence as well as a component of extension.
High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California
NASA Astrophysics Data System (ADS)
Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.
2009-12-01
High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.
The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations
NASA Astrophysics Data System (ADS)
Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.-A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; Karakonstantis, A.; Kazantzidou-Firtinidou, D.; Fountoulakis, I.; Millas, C.; Spingos, I.; Aspiotis, T.; Moumoulidou, A.; Skourtsos, E.; Antoniou, V.; Andreadakis, E.; Mavroulis, S.; Kleanthi, M.
2018-04-01
A major earthquake (Mwö=ö6.3) occurred on the 12th of June 2017 (12:28 GMT) offshore, south of the SE coast of Lesvos Island, at a depth of 13ökm, in an area characterized by normal faulting with an important strike-slip component in certain cases. Over 900 events of the sequence between 12 and 30 June 2017 were manually analyzed and located, employing an optimized local velocity model. Double-difference relocation revealed seven spatially separated groups of events, forming two linear branches, roughly aligned N130°E, compatible with the strike of known mapped faults along the southern coast of Lesvos Island. Spatiotemporal analysis indicated gradual migration of seismicity towards NW and SE from the margins of the main rupture, while a strong secondary sequence at a separate fault patch SE of the mainshock, oriented NW-SE, was triggered by the largest aftershock (Mwö=ö5.2) that occurred on 17 June. The focal mechanisms of the mainshock (φö=ö122°, δö=ö40° and λö=ö-83°) and of the major aftershocks were determined using regional moment tensor inversion. In most cases normal faulting was revealed with the fault plane oriented in a NW-SE direction, dipping SW, with the exception of the largest aftershock that was characterized by strike-slip faulting. Stress inversion revealed a complex stress field south of Lesvos, related both to normal, in an approximate E-W direction, and strike-slip faulting. All aftershocks outside the main rupture, where gradual seismicity migration was observed, are located within the positive lobes of static stress transfer determined by applying the Coulomb criterion for the mainshock. Stress loading on optimal faults under a strike-slip regime explains the occurrence of the largest aftershock and the seismicity that was triggered at the eastern patch of the rupture zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beanland, S.; Clark, M.M.
1993-04-01
The right-lateral Owens Valley fault zone (OVFZ) in eastern California extends north about 100 km from near the northwest shore of Owens Lake to beyond Big Pine. It passes through Lone Pine near the eastern base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain and through Big Pine. Data from one site suggest an average net slip rate for the OVFZ of 1.5 [+-] 1 mm/yr for the past 300 ky. Several other sites yield an average Holocenemore » net slip rate of 2 [+-] 1 mm/yr. The OVFZ apparently has experienced three major Holocene earthquakes. The minimum average recurrence interval is 5,000 years at the subsidiary Lone Pine fault, whereas it is 3,300 to 5,000 years elsewhere along the OVFZ. The prehistoric earthquakes are not dated, so an average recurrence interval need not apply. However, roughly equal (characteristic) displacement apparently happened during each Holocene earthquake. The Owens Valley fault zone accommodates some of the relative motion (dextral shear) between the North American and Pacific plates along a discrete structure. This shear occurs in the Walker Lane belt of normal and strike-slip faults within the mainly extensional Basin and Range Province. In Owens Valley displacement is partitioned between the OVFZ and the nearby, subparallel, and purely normal range-front faults of the Sierra Nevada. Compared to the OVFZ, these range-front normal faults are very discontinuous and have smaller Holocene slip rates of 0.1 to 0.8 mm/yr, dip slip. Contemporary activity on adjacent faults of such contrasting styles suggests large temporal fluctuations in the relative magnitudes of the maximum and intermediate principal stresses while the extension direction remains consistently east-west.« less
Geological indications for active deformation along Fethiye and G
NASA Astrophysics Data System (ADS)
Pavlides, S.; Chatzipetros, Anastasia Michailidou (1), Alexandros; Yağmurlu, Nevzat Özgür, Züheyr Kamaci, Murat Şentürk, Fuzuli
2009-04-01
Geological indications for active deformation along Fethiye and Gökova faults, SW Turkey Alexandros Chatzipetros, Spyros Pavlides, Anastasia Michailidou (1) Fuzuli Yağmurlu, Nevzat Özgür, Züheyr Kamaci, Murat Şentürk (2) 1Department of Geology, Aristotle University, 54124, Thessaloniki, Greece 2Department of Geological Engineering, Süleyman Demirel University, Isparta, Turkey Fethiye and Gökova faults (FF and GF respectively) are two long fault zones in SW Turkey, associated with minor to moderate historical seismic activity; their geological and geomorphological characteristics however are indicative of active deformation. FF is part of the Fethiye - Burdur Fault Zone (FBFZ), the inferred mainland continuation of the eastern part of the Hellenic Arc. FF, as well as FBFZ, is an oblique-slip (normal with significant dextral component) fault of NE-SW strike, dipping to the NW, that forms the SE border of Fethiye basin and controls its extension to the NE, while it also controls the development of the drainage network. Its geomorphological signature is characterized by steep bedrock fault scarps that are accompanied by thick sequences of alluvial fans and colluviums. Although it does not appear to disrupt the most recent generation of alluvial fans, geophysical prospecting showed that the deformation reaches all the way up to almost the superficial layers. Palaeoseismological trenching in selected sites along the fault yielded indications of at least two large, ground rupturing, seismic events in Holocene, as indicated by the inferred age of the trenched material. Indications include surface ruptures, faulted colluvial wedges and palaeosoils and microstratigraphical correlations. GF forms is divided into two main segments, the partly submarine Gökova-Kos segment trending E-W to NE-SW and the mainland NE-SW trending main Gökova segment, both dipping to the SE to S. They are predominantly normal with dextral component. The first segment defines the northern shore of Gökova gulf, which is the longest fault-controlled shoreline in Turkey. Bathymetric data indicate that its continuation is submarine and continues up to the southern shores of Kos island (Greece), posing a relatively unknown up to now probable seismic source for this part of the Aegean Sea in the Greek territory. The second segment forms a very impressive and dominant scarp that almost totally controls the geomorphology (drainage, alluvial fans and colluviums). Although this fault is not associated with significant historical seismicity, there are some archaeological indications of recent activity. Microstratigraphical analysis of paleoseismological trenches showed that indeed there are no recent earthquakes in the area, at least not any that caused significant ground deformations. Quantitative results regarding the dating of specific seismic events will be extrapolated after the results of 14C dating of selected samples from palaeoseismological trenches,currently under way, become available.
NASA Astrophysics Data System (ADS)
Tucker, G. E.; McCoy, S. W.; Whittaker, A. C.; Roberts, G.; Lancaster, S. T.; Phillips, R. J.
2011-12-01
The existence of well-preserved Holocene bedrock fault scarps along active normal faults in the Mediterranean region and elsewhere suggests a dramatic reduction in rates of rock weathering and erosion that correlates with the transition from glacial to interglacial climate. We test and quantify this interpretation using a case study in the Italian Central Apennines. Holocene rates are derived from measurements of weathering-pit depth along the Magnola scarp, where previous cosmogenic 36Cl analyses constrain exposure history. To estimate the average hillslope erosion rate over ˜105 years, we introduce a simple geometric model of normal-fault footwall slope evolution. The model predicts that the gradient of a weathering-limited footwall hillslope is set by fault dip angle and by the ratio of slip rate to erosion rate; if either slip or erosion rate is known, the other can be derived. Applying this model to the Magnola fault yields an estimated average weathering rate on the order of 0.2-0.4 mm/yr, more than 10x higher than either the Holocene scarp weathering rate or modern regional limestone weathering rates. A numerical model of footwall growth and erosion, in which erosion rate tracks the oxygen-isotope curve, reproduces the main features of hillslope and scarp morphology and suggests that the hillslope erosion rate has varied by about a factor of 30 over the past one to two glacial cycles. We conclude that preservation of carbonate fault scarps reflects strong climatic control on rock breakdown by frost cracking.
Lin, Jian; Stein, Ross S.
2006-01-01
This report reviews the seismicity and surface ruptures associated with the 1982-1985 earthquake sequence in the Coalinga region in California, and the role of Coulomb stress in triggering the mainshock sequence and aftershocks. The 1982-1985 New Idria, Coalinga, and Kettleman Hills earthquakes struck on a series of west-dipping, en echelon blind thrust faults. Each earthquake was accompanied by uplift of a Quaternary anticline atop the fault, and each was accompanied by a vigorous aftershock sequence. Aftershocks were widely dispersed, and are seen above and below the thrust fault, as well as along the up-dip and down-dip projection of the main thrust fault. For the Coalinga and Kettleman Hills earthquakes, high-angle reverse faults in the core of the anticlines are evident in seismic reflection profiles, and many of these faults are associated with small aftershocks. The shallowest aftershocks extended to within 3-4 km of the ground surface. There is no compelling evidence for aftershocks associated with flexural slip faulting. No secondary surface rupture was found on any of the anticlines. In contrast, the 1983 Nu?ez rupture struck on a high-angle reverse fault 10 km west of the Coalinga epicenter, and over a 40-80-day period, up to 1 m of oblique surface slip occurred. The slip on this Holocene fault likely extended from the ground surface to a depth of 8-10 km. We argue that both the Nu?ez and Kettleman earthquakes were triggered by stresses imparted by the Coalinga mainshock, which was the largest of the four events in the sequence.
Thompson, George A.; Parsons, Thomas E.
2016-01-01
Vertical deformation of extensional provinces varies significantly and in seemingly contradictory ways. Sparse but robust geodetic, seismic, and geologic observations in the Basin and Range province of the western United States indicate that immediately after an earthquake, vertical change primarily occurs as subsidence of the normal fault hanging wall. A few decades later, a ±100 km wide zone is symmetrically uplifted. The preserved topography of long-term rifting shows bent and tilted footwall flanks rising high above deep basins. We develop finite element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. We replicate observations with a model that has a weak upper mantle overlain by a stronger lower crust and a breakable elastic upper crust. A 60° dipping normal fault cuts through the upper crust and extends through the lower crust to simulate an underlying shear zone. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift under the footwall; the breakable upper crust is a necessary model feature to replicate footwall bending over the observed width ( < 10 km), which is predicted to take place within 1-2 decades after each large earthquake. Thus the best-preserved topographic signature of rifting is expected to occur early in the postseismic period. The relatively stronger lower crust in our models is necessary to replicate broader postseismic uplift that is observed geodetically in subsequent decades.
Multistory duplexes with forward dipping roofs, north central Brooks Range, Alaska
Wallace, W.K.; Moore, Thomas E.; Plafker, G.
1997-01-01
The Endicott Mountains allochthon has been thrust far northward over the North Slope parautochthon in the northern Brooks Range. Progressively younger units are exposed northward within the allochthon. To the south, the incompetent Hunt Fork Shale has thickened internally by asymmetric folds and thrust faults. Northward, the competent Kanayut Conglomerate forms a duplex between a floor thrust in Hunt Fork and a roof thrust in the Kayak Shale. To the north, the competent Lisburne Group forms a duplex between a floor thrust in Kayak and a roof thrust in the Siksikpuk Formation. Both duplexes formed from north vergent detachment folds whose steep limbs were later truncated by south dipping thrust faults that only locally breach immediately overlying roof thrusts. Within the parautochthon, the Kayak, Lisburne, and Siksikpuk-equivalent Echooka Formation form a duplex identical to that in the allochthon. This duplex is succeeded abruptly northward by detachment folds in Lisburne. These folds are parasitic to an anticlinorium interpreted to reflect a fault-bend folded horse in North Slope "basement," with a roof thrust in Kayak and a floor thrust at depth. These structures constitute two northward tapered, internally deformed wedges that are juxtaposed at the base of the allochthon. Within each wedge, competent units have been shortened independently between detachments, located mainly in incompetent units. The basal detachment of each wedge cuts upsection forward (northward) to define a wedge geometry within which units dip regionally forward. These dips reflect forward decrease in internal structural thickening by forward vergent folds and hindward dipping thrust faults. Copyright 1997 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Irikura, K.; Kagawa, T.; Miyakoshi, K.; Kurahashi, S.
2007-12-01
The Niigataken Chuetsu-Oki earthquake occurred on July 16, 2007, northwest-off Kashiwazaki in Niigata Prefecture, Japan, causing severe damages of ten people dead, about 1300 injured, about 1000 collapsed houses and major lifelines suspended. In particular, strong ground motions from the earthquake struck the Kashiwazaki-Kariwa nuclear power plant (hereafter KKNPP), triggering a fire at an electric transformer and other problems such as leakage of water containing radioactive materials into air and the sea, although the radioactivity levels of the releases are as low as those of the radiation which normal citizens would receive from the natural environment in a year. The source mechanism of this earthquake is a reverse fault, but whether it is the NE-SW strike and NW dip or the SW-NE strike and SE dip are still controversial from the aftershock distribution and geological surveys near the source. Results of the rupture processes inverted by using the GPS and SAR data, tsunami data and teleseismic data so far did not succeed in determining which fault planes moved. Strong ground motions were recorded at about 390 stations by the K-NET of NIED including the stations very close to the source area. There was the KKNPP which is probably one of buildings and facilities closest to the source area. They have their own strong motion network with 22 three-components' accelerographs locating at ground-surface, underground, buildings and basements of reactors. The PGA attenuation-distance relationships made setting the fault plane estimated from the GPS data generally follow the empirical relations in Japan, for example, Fukushima and Tanaka (1990) and Si and Midorikawa (1999), even if either fault plane, SE dip or NW dip, is assumed. However, the strong ground motions in the site of the KKNPP had very large accelerations and velocities more than those expected from the empirical relations. The surface motions there had the PGA of more than 1200 gals and even underground motions at the basements of the reactors locating five stories below the ground had the PGA of 680 gals. We simulated ground motions using the characterized source model (Kamae and Irikura, 1998) with three asperities and the empirical Green's function method (Irikura, 1986). Then, we found that the source model should be a reverse fault with the NE-SW strike and NW dip to explain the strong motion records obtained near the source area. In particular, strong ground motions in the site of the KKNPP had three significant pulses which are generated as directivity pulses in forward direction of rupture propagation. This is the reason why the strong ground motions in the site of the KKNPP had very large accelerations and velocities. The source model is also verified comparing the observed records at the KKNPP with the numerical simulations by the discrete wavenumber method (Bouchon, 1981).
Effect of a Material Contrast on a Dynamic Rupture: 3-D
NASA Astrophysics Data System (ADS)
Harris, R. A.; Day, S. M.
2003-12-01
We use numerical simulations of spontaneously propagating ruptures to examine the effect of a material contrast on earthquake dynamics. We specifically study the case of a lateral contrast whereby the fault is the boundary between two different rock-types. This scenario was previously studied in two-dimensions by Harris and Day [BSSA, 1997], and Andrews and Ben-Zion [JGR, 1997], in addition to subsequent 2-D studies, but it has not been known if the two-dimensional results are applicable to the real three-dimensional world. The addition of the third dimension implies a transition from pure mode II (i.e., plane-strain) to mixed-mode crack dynamics, which is more complicated since in mode II the shear and normal stresses are coupled whereas in mode III (i.e., anti-plane strain) they are not coupled. We use a slip-weakening fracture criterion and examine the effect on an earthquake rupture of material contrasts of up to 50 percent across the fault zone. We find a surprisingly good agreement between our earlier 2-D results, and our 3-D results for along-strike propagation. We find that the analytical solution presented in Harris and Day [BSSA, 1997] does an excellent job at predicting the bilateral, along-strike rupture velocities for the three-dimensional situation. In contrast, the along-dip propagation behaves much as expected for a purely mode-III rupture, with the rupture velocities up-dip and down-dip showing the expected symmetries.
Seismic influence in the Quaternary uplift of the Central Chile coastal margin, preliminary results.
NASA Astrophysics Data System (ADS)
Valdivia, D.; del Valle, F.; Marquardt, C.; Elgueta, S.
2017-12-01
In order to quantify the influence of NW striking potentially seismogenic normal faults over the longitudinal variation of the Central Chile Coastal margin uplift, we measured Quaternary marine terraces, which represent the tectonic uplift of the coastal margin. Movement in margin oblique normal faults occurs by co-seismic extension of major subduction earthquakes and has occurred in the Pichilemu fault, generating a 7.0 Mw earthquake after the 2010 8.8 Mw Maule earthquake.The coastal area between 32° and 34° S was selected due to the presence of a well-preserved sequence of 2 to 5 Quaternary marine terraces. In particular, the margin oblique normal NW-trending, SW-dipping Laguna Verde fault, south of Valparaiso (33° S) puts in contact contrasting morphologies: to the south, a flat coast with wide marine terraces is carved in both, Jurassic plutonic rocks and Neogene semi-consolidated marine sediments; to the north, a steeper scarp with narrower marine terraces, over 120 m above the corresponding ones in the southern coast, is carved in Jurassic plutonic rocks.We have collected over 6 months microseimic data, providing information on seismic activity and underground geometry of the Laguna Verde fault. We collected ca. 100 systematic measurements of fringes at the base of paleo coastal scarps through field mapping and a 5 m digital elevation model. These fringes mark the maximum sea level during the terrace's carving.The heights of these fringes range between 0 and 250 masl. We estimate a 0.7 mm/yr slip rate for the Laguna Verde fault based on the height difference between corresponding terraces north- and southward, with an average uplift rate of 0.3 mm/yr for the whole area.NW striking normal faults, besides representing a potential seismic threat to the near population on one of the most densely populated areas of Chile, heavily controls the spatial variation of the coastal margin uplift. In Laguna Verde, the uplift rate differs more than three times northward of the fault.
NASA Astrophysics Data System (ADS)
Wagner, F. T.; Johnson, R. A.
2003-12-01
Industry seismic reflection data collected in SE Arizona in the 1970's imaged the structure of the Tucson basin, the low-angle Catalina detachment fault, and the Santa Rita fault. Recent reprocessing of these data, including detailed near-surface statics compensation and modern event-migration techniques, have served to better focus the subsurface images. The Tucson basin occupies an area of approximately 2600 km2 and is bounded to the northeast by the Catalina-Rincon metamorphic core complex and to the south by the Santa Rita Mountains. The basin is characterized by an apparent half-graben structure down dropped along the eastern side and filled with up to 3700 m of Oligocene to recent volcanic and sedimentary rocks. In the northern portion of the basin, the gently-dipping ( ˜30 degrees) Catalina detachment fault is imaged from the western flank of the core complex dipping to the southwest beneath the Tucson basin. The detachment surface is evident to several seconds two-way-time in the seismic data and is characterized by broad corrugations parallel to extension with wavelengths of tens of kilometers. In the southern portion of the basin, the Santa Rita fault is imaged at the northwest side of the Santa Rita Mountains and dips ˜20 degrees to the northwest beneath the Tucson basin. Large, rotated hanging-wall blocks are also imaged above both the Catalina detachment and Santa Rita faults. While the Catalina detachment fault is no longer active, geomorphic analysis of fault scarps along the western flank of the Santa Rita Mountains supports recent (60-100 ka) movement on the Santa Rita fault. Preliminary results indicate that the Santa Rita fault terminates against the Catalina detachment fault beneath the central basin, suggesting that the recent movement observed on this fault may be, in part, a reactivation of the older fault surface.
Surface deformation in volcanic rift zones
Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.
1983-01-01
The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.
Kinematics of a large-scale intraplate extending lithosphere: The Basin-Range
NASA Technical Reports Server (NTRS)
Smith, R. B.; Eddington, P. K.
1985-01-01
Upper lithospheric structure of the Cordilleran Basin Range (B-R) is characterised by an E-W symmetry of velocity layering. The crust is 25 km thick on its eastern active margin, thickening to 30 km within the central portion and thinning to approx. 25 km on the west. Pn velocities of 7.8 to 7.9 km/s characterize the upper mantle low velocity cushion, 7.4 km/s to 7.5 km/s, occurs at a depth of approx. 25 km in the eastern B-R and underlies the area of active extension. An upper-crustal low-velocity zone in the eastern B-R shows a marked P-wave velocity inversion of 7% at depths of 7 to 10 km also in the area of greatest extension. The seismic velocity models for this region of intraplate extension suggest major differences from that of a normal, thermally underformed continental lithosphere. Interpretations of seismic reflection data demonstrate the presence of extensive low-angle reflections in the upper-crust of the eastern B-R at depths from near-surface to 7 to 10 km. These reflections have been interpreted to represent low-angle normal fault detachments or reactivated thrusts. Seismic profiles across steeply-dipping normal faults in unconsolidated sediments show reflections from both planar to downward flatening (listric) faults that in most cases do not penetrate the low-angle detachments. These faults are interpreted as late Cenozoic and cataclastic mylonitic zones of shear displacement.
NASA Astrophysics Data System (ADS)
Levy, S. R.; Bohnenstiehl, D. R.; Weis, J.
2016-12-01
The Axial Seamount eruption during April and May of 2015 presents a unique opportunity to study volcanic processes along an oceanic spreading center. The recently installed Ocean Observatory Initiative Cabled Array provides continuous access to seismic and seafloor deformation data spanning the eruption. Composite focal mechanisms are created using at least east four nearby events with well-correlated waveforms. These event clusters are located along both the east and west sides of the caldera. The P- and S- wave first motions and S/P amplitude ratios are used to produce the focal solutions with the HASH program. During the period before the eruption, as the caldera floor is steadily inflating, focal mechanisms are consistent with normal slip along outward dipping ring faults. During the eruption period, the center of the caldera floor deflates by 2.5 m as a dike is emplaced along the volcano's northern rift zone. Focal mechanism solutions during this time suggest these ring faults are re-activated with a reverse sense of motion to accommodate this deflation. Re-inflation of the volcano began in late May of 2015 and continues. Seismicity rates following the eruption are low, and focal mechanisms during this time period show more complicated results, with both normal and reverse slip movement present. As the inflation cycle matures it is hypothesized that a more consistent pattern of normal slip will again be observed along these faults.
Surface Rupture Characteristics and Rupture Mechanics of the Yushu Earthquake (Ms7.1), 14/04/2010
NASA Astrophysics Data System (ADS)
Pan, J.; Li, H.; Xu, Z.; Li, N.; Wu, F.; Guo, R.; Zhang, W.
2010-12-01
On April 14th 2010, a disastrous earthquake (Ms 7.1) struck Yushu County, Qinghai Province, China, killing thousands of people. This earthquake occurred as a result of sinistral strike-slip faulting on the western segment of the Xianshuihe Fault zone in eastern Tibetan Plateau. Our group conducted scientific investigation in the field on co-seismic surface rupture and active tectonics in the epicenter area immediately after the earthquake. Here, we introduce our preliminary results on the surface ruptures and rupture mechanics of the Yushu Earthquake. The surface rupture zone of Yushu earthquake, which is about 49 km-long, consists of 3 discontinuous left stepping rupture segments, which are 19 km, 22 km, and about 8 km, respectively, from west to east. Each segment consists of a series of right stepping en-echelon branch ruptures. The branch ruptures consist of interphase push-up and tension fissures or simply en-echelon tension fissures. The co-seismic displacements had been surveyed with a total station in detail on landmarks such as rivers, gullies, roads, farmlands, wire poles, and fences. The maximum offset measured is 2.3m, located near the Guoyangyansongduo Village. There are 3 offset peaks along the rupture zone corresponding to the 3 segments of the surface rupture zone. The maximum offsets in the west, central, and east segment rupture zones are 1.4m, 2.3m, and 1.6m respectively. The surface rupture zone of Yushu earthquake strikes in a 310°NW direction. The fault plane dips to the northeast and the dip angle is about 81°. The rupture zone is developed in transtension setting. Tension normal fault developed during the sinistral strike-slip process of the fault. The valley west of Yushu City and the Longbao Lake are both pull-apart basins formed during the transtension activity of the fault.
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Corazzato, C.; Tibaldi, A.
2012-06-01
We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the CF might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system.
NASA Astrophysics Data System (ADS)
Prejean, Stephanie; Ellsworth, William; Zoback, Mark; Waldhauser, Felix
2002-12-01
We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (˜20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.
Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix
2002-01-01
We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.
Criteria for Seismic Splay Fault Activation During Subduction Earthquakes
NASA Astrophysics Data System (ADS)
Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.
2008-12-01
As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.
NASA Astrophysics Data System (ADS)
Janecke, S. U.; Markowski, D.
2015-12-01
The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella Valley to join the blind Palm Spring dextral fault- a source of microearthquakes and differential subsidence. The ESS may also continue north parallel to the margin of the Salton Trough or have both a NW and NE branch. The risk of a future large earthquake directly beneath the greater Palm Springs metropolitan area may be larger if the first or last options are correct.
Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA
NASA Astrophysics Data System (ADS)
Faulds, J. E.; Hinz, N.; Kreemer, C. W.
2012-12-01
We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability. Other settings include accommodation zones (i.e., belts of intermeshing, oppositely dipping normal faults; 8%), major range-front faults (5-6%), and pull-aparts in strike-slip faults (4%). In addition, Quaternary faults lie within or near most systems. The relative scarcity of geothermal systems along displacement-maxima of major normal faults may be due to reduced permeability in thick zones of clay gouge and periodic release of stress in major earthquakes. Step-overs, terminations, intersections, and accommodation zones correspond to long-term, critically stressed areas, where fluid pathways are more likely to remain open in networks of closely-spaced, breccia-dominated fractures. These findings may help guide future exploration efforts, especially for blind geothermal systems, which probably comprise the bulk of the geothermal resources in the Great Basin.
Force, E.R.; Barr, S.M.
2006-01-01
Anomalously thick and coarse clastic sedimentary successions, including over 5000 m of conglomerate, are exposed on Isle Madame off the southern coast of Cape Breton Island. Two steeply to moderately dipping stratigraphic packages are recognized: one involving Horton and lower Windsor groups (Tournasian-Visean); the other involving upper Windsor and Mabou (Visean-Namurian) groups. Also anomalous on Isle Madame are three long narrow belts of "basement" rocks, together with voluminous chloritic microbreccia and minor semi-ductile mylonite, which are separated from the conglomerate-dominated successions by faults. The angular relations between the cataclastic rocks and the conglomerate units, combined with the presence of cataclasite clasts in the conglomerate units and evidence of dip-slip faults within the basin, suggest an extensional setting, where listric normal faults outline detachment allochthons. Allochthon geometry requires two stages of extension, the older stage completed in early Windsor Group time and including most of the island, and the more local younger stage completed in Mabou Group time. Domino-style upper-plate faulting in the younger stage locally repeated the older detachment relation of basement and conglomerate to form the observed narrow belts. Re-rotation of older successions in the younger stage also locally overturned the Horton Group. These features developed within a broad zone of Carboniferous dextral transcurrent faulting between already-docked Avalon and Meguma terranes. Sites of transpression and transtension alternated along the Cobequid-Chedabucto fault zone that separated these terranes. The earlier extensional features in Isle Madame likely represent the northern headwall and associated clastic debris of a pull-apart or other type of transtensional basin developed along part of this fault zone that had become listric; they were repeated and exposed by being up-ended in the second stage of extension, also on listric faults. The two-stage history on Isle Madame exposes the deeper parts of one of the Horton-age extensional basins of the Maritimes, others of which have been described as half-grabens based on their shallower exposures.
A seismic coherency method using spectral amplitudes
NASA Astrophysics Data System (ADS)
Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong
2015-09-01
Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.
NASA Astrophysics Data System (ADS)
MacDonald, Ken. C.; Castillo, David A.; Miller, Stephen P.; Fox, Paul J.; Kastens, Kim A.; Bonatti, Enrico
1986-03-01
The Vema transform fault, which slips at a rate of 24 mm/yr, displaces the Mid-Atlantic Ridge (MAR) 320 km in a left-lateral sense. High-resolution deep-tow studies of the Vema ridge-transform intersection (RTI) and the eastern 130 km of the active transform fault reveal a complex pattern of dip-slip and strike-slip faults which evolve in time and space. At the intersection, both the neovolcanic zone and the west wall of the MAR rift valley curve counterclockwise toward the transform fault along trends approximately 30° oblique to the regional north-south trend of the spreading axis. The curving of extensional structures in the rift valley, such as normal faults and the axial zone of dike injection, appears to be related to transmission of transform related shear stresses into the spreading center domain. Intermittent locking of the American and African lithospheric plates across the RTI causes shear stresses to penetrate up to 4 km into the MAR axial neovolcanic zone where the lithosphere is relatively thin and up to 12 km into the block-faulted west wall of the rift valley where the lithosphere is thicker. The degree of shear coupling across the RTI may vary with time due to changes in the thickness of the lithosphere along the axis (0-10 km), the strength of a "mantle weld" at depth, and the presence or absence of an axial magma chamber, so that extensional structures at the RTI may be either spreading center parallel when coupling is weak or oblique when coupling is strong. Oblique extension across the RTI in addition to other factors may account for some of the down dropping of lithosphere within the deep nodal basin. The easternmost 20 km of the active transform fault zone near the RTI displays a braided network of three to nine tectonically active grabens and V-shaped furrows in a zone 2-4 km wide, interpreted to consist of interwoven Riedel shears, P shears, and oblique normal faults. Clay cake deformation experiments and deep-tow observations suggest that P shears and R shears, which are 10°-20° oblique to the transform slip direction, develop during the initial stages of transform faulting near the RTI as the newly accreted lithosphere accelerates to full plate velocity. Some of the R shears propagate along strike and intercept the oblique normal faults resulting in sharply curving scarps at the RTI. Subsequent to this merging of the two fault types, some of the R shears develop a significant component of dip slip, while other R shears merge with P shears creating a complex anastomosing fault pattern up to 4 km wide. A continuous strand within this braided pattern of faults is interpreted to be the principal transform displacement zone near the RTI. Twenty kilometers west of the RTI the active transform fault zone narrows to a furrow generally less than 100 m wide with only a few short discontinuous splays. This narrow groove cuts through thinly sedimented basalt 20-40 km west of the RTI and continues as a narrow furrow (less than 100 m wide) through up to 1.5 km of layered turbidite fill most of the way to the western RTI. Such a narrow zone of deformation typifies the mature stages of transform faulting where the lithosphere on both sides of the transform fault is relatively old, thick, and rigid and has completed its acceleration to full plate velocity. The transform fault zone is closely associated with a partially buried median ridge and widens to 1-2 km where it transects exposed portions of the ridge. The transform parallel median and transverse ridges create the highest topography associated with the transform fault and may be serpentinized ultramafic intrusions capped by displaced crustal blocks of gabbro, metagabbro, and basalt.
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2001-12-01
We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.
The 2008 Mw 6.0 Wells, Nevada Earthquake Sequence
NASA Astrophysics Data System (ADS)
Smith, K.; Depolo, D.; Torrisi, J.; Edwards, N.; Biasi, G.; Slater, D.
2008-12-01
The Mw 6.0 February 21, 2008 (06:16 AM PDT) Wells, Nevada normal faulting earthquake occurred in Town Creek Flat about 8 km northeast of the small community of Wells. A preliminary set of about 1000 aftershock relocations clearly defines a 55-60 degree southeast dipping fault plane. The structure projects to the surface along the southern end of the Snake Range, although no surface offsets have been identified. The earthquake occurred east of the Ruby Mountains and Snake Range west dipping range front faults, possibly on a northern extension of an east dipping normal fault system on the eastern side of the East Humbolt Range. The depth of the mainshock is estimated to be 10.5 km with the aftershock sequence extending to about 15 km. Typical of moderate sized Basin and Range earthquakes, the early aftershock period included several earthquakes of M > 4 and these were felt strongly by the residents of Wells. From the preliminary relocations, the source radius of the mainshock is estimated to be about 4 km, resulting in an estimated displacement of 55 to 83 cm and static stress drop of 72 to 86 bars, depending on the seismic moment estimate used. Aftershock relocations suggest a radial rupture mechanism. Fortunately, the EarthScope USArray network was operating in Nevada at the time of the event and provided unique controls on the mainshock and early aftershock locations. The earthquake occurred in an area of relatively low seismic hazard and the only permanent seismograph in the region was the U.S. National Network broadband station east of the Ruby Mountains south of Wells. The University of Utah and University of Nevada deployed locally recorded strong motion instruments in the Wells area. Also, an 8 station IP telemetered strong motion network, jointly deployed by the U.S. Geological Survey and University of Nevada Reno, provided real-time data for quick high-quality aftershock relocations and ground motion estimates. In addition, the University of Utah established several telemetered analog stations for improved aftershock locations. IP data communications was routed through the Nevada Department of Information Technology microwave communications site north of Wells. The aftershock deployment was not possible without the considerable support of a number of public and private agencies in the Wells area and the Wells community itself. Many unreinforced masonry structures in old-town Wells, dating to the early 1900's, experienced significant damage. There was also damage to homes and businesses within the community, including the local High School, but fortunately there were no serious injuries associated with the earthquake.
Viscous roots of active seismogenic faults revealed by geologic slip rate variations
NASA Astrophysics Data System (ADS)
Cowie, P. A.; Scholz, C. H.; Roberts, G.; Faure Walker, J.; Steer, P.
2013-12-01
Viscous flow at depth contributes to elastic strain accumulation along seismogenic faults during both post-seismic and inter-seismic phases of the earthquake cycle. Evaluating the importance of this contribution is hampered by uncertainties regarding (i) the extent to which viscous deformation occurs in shear zones or by distributed flow within the crust and/or upper mantle, and (ii) the value of the exponent, n, in the flow law that relates strain rate to applied stress. Geodetic data, rock deformation experiments, and field observations of exhumed (inactive) faults provide strong evidence for non-linear viscous flow but may not fully capture the long term, in situ behaviour of active fault zones. Here we demonstrate that strain rates derived from Holocene offsets on seismogenic normal faults in the actively uplifting and extending central and southern Italian Apennines may be used to address this issue. The measured strain rates, averaged over a time scale of 104 years, exhibit a well-defined power-law dependence on topographic elevation with a power-law exponent ≈ 3.0 (2.7 - 3.4 at 95% CI; 2.3 - 4.0 at 99% CI). Contemporary seismicity indicates that the upper crust in this area is at the threshold for frictional failure within an extensional stress field and therefore differential stress is directly proportional to elevation. Our data thus imply a relationship between strain rate and stress that is consistent with non-linear viscous flow, with n ≈ 3, but because the measurements are derived from slip along major crustal faults they do not represent deformation of a continuum. We know that, down-dip of the seismogenic part of active faults, cataclasis, hydrous alteration, and shear heating all contribute to grain size reduction and material weakening. These processes initiate localisation at the frictional-viscous transition and the development of mylonitic shear zones within the viscous regime. Furthermore, in quartzo-feldspathic crust, mylonites form a fabric of mineral segregated layers parallel to shear with their strength controlled by the weakest phase: quartz. Using a published flow law for wet quartz calibrated for mylonitic rocks to fit the strain rates across individual fault zones (~5 km wide), we estimate a lower bound on the temperature of the deforming material using our data. This temperature is reached at or just below the base of the seismogenic zone, as constrained by regional surface heat flow data and the depth distribution of crustal seismicity. We conclude that it is the rate of viscous flow in quartz-rich mylonitic shear zones, not distributed flow within the lower crust and/or upper mantle, which modulates the Holocene slip rates on the up-dip seismogenic part of the faults in this area. Our observations support the idea that the irregular, stick-slip movement of brittle faults, and hence earthquake recurrence, are ultimately modulated by down-dip viscous flow over multiple earthquake cycles.
Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; ...
2015-03-01
We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric
We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less
NASA Astrophysics Data System (ADS)
Yang, Lin; Zhao, Rui; Wang, Qingfei; Liu, Xuefei; Carranza, Emmanuel John M.
2018-06-01
The structures and fluid-rock reaction in the Xinli gold deposit, Jiaodong Peninsula, were investigated to further understand their combined controls on the development of permeability associated with ore-forming fluid migration. Orebodies in this deposit are hosted by the moderately SE-to S-dipping Sanshandao-Cangshang fault (SCF). Variations in both dip direction and dip angle along the SCF plane produced fault bends, which controlled the fluid accumulation and ore-shoot formation. Gold mineralizations occurred in early gold-quartz-pyrite and late gold-quartz-polymetallic sulphide stages following pervasive sericitization and silicification alterations. Theoretical calculation indicates that sericitization caused 8-57% volume decrease resulting in the development/enlargement of voids, further increase of grain-scale permeability, and resultant precipitation of the early gold-quartz-pyrite pods, which destroyed permeability. The rock softening produced by alterations promoted activities of SCF secondary faults and formation of new fractures, which rebuilt the permeability and controlled the late gold-quartz-polymetallic sulfide veins. Quantitative studies on permeability distributions show that the southwestern and northeastern bend areas with similar alteration and mineralization have persistent and anti-persistent permeability networks, respectively. These were likely caused by different processes of rebuilding permeability due to different stress states resulting from changes in fault geometry.
NASA Astrophysics Data System (ADS)
Cilona, A.; Aydin, A.; Hazelton, G.
2013-12-01
Characterization of the structural architecture of a 5 km-long, N40°E-striking fault zone provides new insights for the interpretation of hydraulic heads measured across and along the fault. Of interest is the contaminant transport across a portion of the Upper Cretaceous Chatsworth Formation, a 1400 m-thick turbidite sequence of sandstones and shales exposed in the Simi Hills, south California. Local bedding consistently dips about 20° to 30° to NW. Participating hydrogeologists monitor the local groundwater system by means of numerous boreholes used to define the 3D distribution of the groundwater table around the fault. Sixty hydraulic head measurements consistently show differences of 10s of meters, except for a small area. In this presentation, we propose a link between this distribution and the fault zone architecture. Despite an apparent linear morphological trend, the fault is made up of at least three distinct segments named here as northern, central and southern segments. Key aspects of the fault zone architecture have been delineated at two sites. The first is an outcrop of the central segment and the second is a borehole intersecting the northern segment at depth. The first site shows the fault zone juxtaposing sandstones against shales. Here the fault zone consists of a 13 meter-wide fault rock including a highly deformed sliver of sandstone on the northwestern side. In the sandstone, shear offset was resolved along N42°E striking and SE dipping fracture surfaces localized within a 40 cm thick strand. Here the central core of the fault zone is 8 m-wide and contains mostly shale characterized by highly diffuse deformation. It shows a complex texture overprinted by N30°E-striking carbonate veins. At the southeastern edge of the fault zone exposure, a shale unit dipping 50° NW towards the fault zone provides the key information that the shale unit was incorporated into the fault zone in a manner consistent with shale smearing. At the second site, a borehole more than 194 meter-long intersects the fault zone at its bottom. Based on an optical televiewer image supplemented by limited recovered rock cores, a juxtaposition plane (dipping 75° SE) between a fractured sandstone and a highly-deformed shale fault rock has been interpreted as the southeastern boundary of the fault zone. The shale fault rock estimated to be thicker than 4 meters is highly folded and brecciated with locally complex cataclastic texture. The observations and interpretations of the fault architecture presented above suggest that the drop of hydraulic head detected across the fault segments is due primarily to the low-permeability shaly fault rock incorporated into the fault zone by a shale smearing mechanism. Interestingly, at around the step between the northern and the central fault segments, where the fault offset is expected to diminish (no hard link and no significant shaly fault rock), the groundwater levels measured on either sides of the fault zone are more-or-less equal.
Slip Distribution of the 2008 Iwate-Miyagi Nairiku, Japan, Earthquake Inverted from PALSAR Data
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Fukushima, Y.; Arimoto, M.
2008-12-01
On 14 June 2008, the Iwate-Miyagi Nairiku earthquake struck northeast Japan, where active seismicity has been observed under east-west compressional stress fields. According to the Japan Meteorological Agency, the magnitude and the hypocenter depth of the earthquake are 7.2 and 8 km, respectively. The earthquake is considered to have occurred on a west dipping reverse fault with a roughly north-south strike. The earthquake caused significant surface displacements, which were detected by PALSAR, a Synthetic Aperture Radar (SAR) onboard the Advanced Land Observing Satellite (ALOS) employed by the Japan Aerospace Exploration Agency (JAXA). Several pairs of PALSAR images are available to measure the coseismic displacements. InSAR data show up to 1 m of line-of-sight displacements both for ascending and descending paths. The pixel matching method was also used to obtain range and azimuth offset data around the epicentral region, where displacements were too large for the interferometric technique (see Fukushima (this meeting) in detail). We inverted the obtained SAR interferometric and pixel matching data to estimate slip distribution on the fault. Since the geometry of the fault are not well known, the inverse problem is non-linear. If the fault surface is assumed to be a flat plane, however, the non-linearity is weak. Following the method of Fukahata & Wright (2008), we resolved the weak non-linearity based on ABIC (Akaike"fs Bayesian Information Criterion). That is to say, the fault parameters (e.g. strike, dip and location) as well as the weight of smoothing parameter were objectively determined by minimizing ABIC. We first estimated slip distribution by assuming a pure dip slip for simplicity, since it has been reported that the dip slip component is dominant. Then, the optimal fault geometry was dip 26 and strike 203 degrees with the location passing through (140.90E, 38.97N). The maximum slip was more than 8 m and most slips concentrated at shallow depths (< 4 km). Without fixing the rake, a large slip area with the maximum slip of about 8 m concentrated in the shallow region was obtained again.
NASA Astrophysics Data System (ADS)
Koehl, Jean-Baptiste P.; Bergh, Steffen G.; Henningsen, Tormod; Faleide, Jan Inge
2018-03-01
The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle-Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms-Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE-SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya-Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top-NW normal displacement in Middle to Late Devonian-Carboniferous times. The Troms-Finnmark Fault Complex displays a zigzag-shaped pattern of NNE-SSW- and ENE-WSW-trending extensional faults before it terminates to the north as a WNW-ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW-ESE-trending, margin-oblique segment of the Troms-Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden-Komagelva Fault Zone, which is made of WNW-ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden-Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW-ESE-trending segment of the Troms-Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy-Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE-WSW- to NE-SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian-early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya-Ingøya shear zone truncated and decapitated the Trollfjorden-Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden-Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.
NASA Astrophysics Data System (ADS)
Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath
2016-06-01
The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.
Foreland structure - Beartooth Mountains, Montana and Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D.M.
1996-06-01
Analysis of public drilling records from the AMOCO Beartooth Number 1 and 1 A sidetrack boreholes (SW1/4, SE1/4, Section 19, T.8 S., R.20 E., Carbon County, Montana) continues. Several additional inferences are made about this large foreland structure, and subsequent interpretation of the structural model of the northeast corner of the Beartooth Mountain Block and structural relationship with the Big Horn Basin. The structure is described as a large recumbent to sub-horizontal, synclinal fold with the overturned upper limb out diagonally by the Beartooth Thrust or Thrust Zone and a complex thrust fault zone below the Beartooth Thrust. The singlemore » recorded dip angle and direction of the Beartooth Thrust at depth was 19 degrees to the northwest(?). The dipmeter dip angle on the Beartooth Thrust, 19 degrees, validates foreland structural theory of decreasing dip angles at a vertical depth of 8,232 feet (2,509 m), in the Precambrian crystalline basement. The northwest dip direction may be attributable to secondary structural folding. The record of northwest, southeast, and southwest dip of bedding surfaces and faults in sections of the overturned upper limb, in both boreholes, suggests possible, less intense secondary folding, after thrust fault deformation. Given the overall geometry of this large foreland structure, there is little doubt that the average direction of maximum principal stress (sigma 1) was oriented in a northeast - southwest direction.« less
NASA Astrophysics Data System (ADS)
Villamor, P.; Berryman, K.; Langridge, R.; van Dissen, R.; Persaud, M.; Canora, C.; Nicol, A.; Alloway, B.; Litchfield, N.; Cochran, U.; Stirling, M.; Mouslopoulou, V.; Wilson, K.
2006-12-01
Over the last ~15 years we have excavated 73 trenches across active normal faults in the Taupo and Hauraki Rifts, North Island, New Zealand. The stratigraphy in these trenches is quite similar because of the predominance of volcanic and volcanic-derived deposits, sourced from the active Taupo Volcanic Zone. These deposits, whether alluvial (reworked, mainly volcanics) or volcanic (tephra), are all characterized by relative loose, to moderately loose, medium-size gravel and sands, and cohesive (sticky) clays. The homogeneity of the materials and of the sedimentation rates across these paleoseismic trenches has allowed us to assess the influence of different materials on the faulting style. The predominant types of material, their relative thickness, and their stratigraphic order (e.g. whether cohesive materials are overlying or underlying loose materials) in the trench strongly determine the deformation style when subjected to normal faulting. However, the final geometric relation between the sedimentary layers and the faults also depends on the sediment depositional environment (e.g., alluvial vs air fall deposition), the fault dip, and cumulative displacement (i.e., the size of the scarp). For example, the cumulative displacement of the fault conditions the amount of erosion/deposition at/derived from the scarp itself. When we combine observations from the tectonic deformation style and from geometries derived from erosional/depositional processes, we can define at least five "geometric styles" present in paleoseismic trenches in our study area: 1) folding, where the fault does not reach the upper layers, and relative displacement of the fault walls is achieved by folding (dragging of the layer); 2) folding-large cracks, where relative movement of the fault walls is achieved by folding and opening of large fissures; 3) faulting, the most common style where a layer is displaced along the fault plane; 4) faulting- erosion, similar to the previous style but with larger cumulative displacements which cause large amounts of erosion and/or deposition at the fault scarp; and 5) faulting-toppling, when due to gravitational forces the materials on the up-thrown side of the fault topple towards the downthrown side causing rotation of the fault plane itself, which induces a geometry of "false reverse fault". These observations can be used to analyze the criteria to identify individual earthquakes within each "geometric style". We present examples from New Zealand to describe the "geometric styles", their faulting criteria and the uncertainties associated with these criteria.
Extensional crustal tectonics and crust-mantle coupling, a view from the geological record
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Menant, Armel; Clerc, Camille; Sternai, Pietro; Ringenbach, Jean-Claude; Bellahsen, Nicolas; Leroy, Sylvie; Faccenna, Claudio; Gorini, Christian
2017-04-01
In passive margins or back-arc regions, extensional deformation is often asymmetric, i.e. normal faults or extensional ductile shear zones dip in the same direction over large distances. We examine a number of geological examples in convergent or divergent contexts suggesting that this asymmetry results from a coupling between asthenospheric flow and crustal deformation. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea, the Alboran domain or the Gulf of Lion passive margin. Similar types of observation can be made on some of the Atlantic volcanic passive margins and the Afar region, which were all formed above a mantle plume. We discuss these contexts and search for the main controlling parameters for this asymmetric distributed deformation that imply a simple shear component at the scale of the lithosphere. The different geodynamic settings and tectonic histories of these different examples provide natural case-studies of the different controlling parameters, including a pre-existing heterogeneity of the crust and lithosphere (tectonic heritage) and the possible contribution of the underlying asthenospheric flow through basal drag or basal push. We show that mantle flow can induce deformation in the overlying crust in case of high heat flow and thin lithosphere. In back-arc regions, the cause of asymmetry resides in the relative motion between the asthenosphere below the overriding plate and the crust. When convergence and slab retreat work concurrently the asthenosphere flows faster than the crust toward the trench and the sense of shear is toward the upper plate. When slab retreat is the only cause of subduction, the sense of shear is opposite. In both cases, mantle flow is mostly the consequence of slab retreat and convergence. Mantle flow can however result also from larger-scale convection, controlling rifting dynamics prior to the formation of oceanic crust. In volcanic passive margins, in most cases normal faults dip toward the continent. This asymmetry may either result from the mantle flowing underneath regions evolving above a migrating plume, such as the Afar, when an asymmetry is observed at the scale of the rift, or from necking of the lithosphere when the conjugate margins show an opposite asymmetry. We summarize the various observed situations with normal faults dipping toward the continent ("hot" margins) or toward the ocean ("cold" margins) and discuss whether mantle flow is responsible for the observed asymmetry of deformation or not. Slipping along pre-existing heterogeneities seems a second-order phenomenon at lithospheric or crustal scale, except at the initiation of rifting.
The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults
NASA Astrophysics Data System (ADS)
Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; Bernard, P.; Sokos, E.; Makropoulos, K.
2015-09-01
The Corinth Rift in Central Greece has been studied extensively during the past decades, as it is one of the most seismically active regions in Europe. It is characterized by normal faulting and extension rates between 6 and 15 mm yr-1 in an approximately N10E° direction. On 2013 May 21, an earthquake swarm was initiated with a series of small events 4 km southeast of Aigion city. In the next days, the seismic activity became more intense, with outbursts of several stronger events of magnitude between 3.3 and 3.7. The seismicity migrated towards the east during June, followed by a sudden activation of the western part of the swarm on July 15th. More than 1500 events have been detected and manually analysed during the period between 2013 May 21 and August 31, using over 15 local stations in epicentral distances up to 30 km and a local velocity model determined by an error minimization method. Waveform similarity-based analysis was performed, revealing several distinct multiplets within the earthquake swarm. High-resolution relocation was applied using the double-difference algorithm HypoDD, incorporating both catalogue and cross-correlation differential traveltime data, which managed to separate the initial seismic cloud into several smaller, densely concentrated spatial clusters of strongly correlated events. Focal mechanism solutions for over 170 events were determined using P-wave first motion polarities, while regional waveform modelling was applied for the calculation of moment tensors for the 18 largest events of the sequence. Selected events belonging to common spatial groups were considered for the calculation of composite mechanisms to characterize different parts of the swarm. The solutions are mainly in agreement with the regional NNE-SSW extension, representing typical normal faulting on 30-50° north-dipping planes, while a few exhibit slip in an NNE-SSW direction, on a roughly subhorizontal plane. Moment magnitudes were calculated by spectral analysis of S waves, yielding b-values between 1.1 and 1.2 in their frequency-magnitude distribution. The seismic moment release history indicates swarm-like activity during the first phase, which could have acted as a preparatory stage for the second phase (after 12 July) that presented a more typical main-shock-aftershock behaviour. The spatiotemporal analysis reveals that the swarm has occurred in a volume that is likely related with the extension at depth of the NNE-dipping Pirgaki normal fault, outcropping ˜8 km to the south. The slow velocity of eastward migration of the epicentres during June implies triggering by fluids. The situation appears different in the second phase of the sequence, which was probably triggered by a build-up of stress during the first one. The relatively deep hypocentres of the 2013 swarm, compared to the shallower seismic layer within the rift, and their coincidence with the steeply dipping Pirgaki fault, favour an immature rift detachment model. Previous results from instrumental data indicate that approximately the same region had been activated during July-August 1991. The availability of the dense permanent seismological network data thus allowed for a detailed analysis of this crisis, a better understanding of its mechanical context and of the earlier events.
Earthquake relocation near the Leech River Fault, southern Vancouver Island
NASA Astrophysics Data System (ADS)
Li, G.; Liu, Y.; Regalla, C.
2015-12-01
The Leech River Fault (LRF), a northeast dipping thrust, extends across the southern tip of Vancouver Island in Southwest British Columbia, where local tectonic regime is dominated by the subduction of the Juan de Fuca plate beneath the North American plate at the present rate of 40-50 mm/year. British Columbia geologic map (Geoscience Map 2009-1A) shows that this area also consists of many crosscutting minor faults in addition to the San Juan Fault north of the LRF. To investigate the seismic evidence of the subsurface structures of these minor faults and of possible hidden active structures in this area, precise earthquake locations are required. In this study, we relocate 941 earthquakes reported by Canadian National Seismograph Network (CNSN) catalog from 2000 to 2015 within a 100km x 55km study area surrounding the LRF. We use HypoDD [Waldhauser, F., 2001] double-difference relocation method by combining P/S phase arrivals provided by the CNSN at 169 stations and waveform data with correlation coefficient values greater than 0.7 at 50 common stations and event separation less than 10km. A total of 900 out of the 931 events satisfy the above relocation criteria. Velocity model used is a 1-D model extracted from the Ramachandran et al. (2005) model. Average relative location errors estimated by the bootstrap method are 546.5m (horizontal) and 1128.6m (in depth). Absolute errors reported by SVD method for individual clusters are ~100m in both dimensions. We select 5 clusters visually according to their epicenters (see figure). Cluster 1 is parallel to the LRF and a thrust FID #60. Clusters 2 and 3 are bounded by two faults: FID #75, a northeast dipping thrust marking the southwestern boundary of the Wrangellia terrane, and FID #2 marking the northern boundary. Clusters 4 and 5, to the northeast and northwest of Victoria respectively, however, do not represent the surface traces of any mapped faults. The depth profile of Cluster 5 depicts a hidden northeast dipping structure, while other clusters illustrate near-vertical structures. Seismicity of Clusters 1 and 3 suggests vertically dipping patterns for FID #60 and FID #2, while Cluster 4 may reveal a hidden vertically dipping structure. It is noteworthy that most events in this area are deeper than 20km, but the explanation for such deep earthquakes is still unclear.
Seismic interpretation of the deep structure of the Wabash Valley Fault System
Bear, G.W.; Rupp, J.A.; Rudman, A.J.
1997-01-01
Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.
NASA Astrophysics Data System (ADS)
Gavillot, Y. G.; Meigs, A.; Rittenour, T. M.; Malik, M. O. A.
2016-12-01
In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline, and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the Suruin-Mastargh anticline hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and four yield multiple optically stimulated luminescence (OSL) and depth profiles terrigenous cosmogenic nuclides (TCN) ages between 53 ka and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Murree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggests rock uplift rates across the Suruin-Mastargh anticline range between 1.8-2.5 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rates across the Suruin-Mastargh anticline range between 3.8-5.4 mm/yr since 53 ka. Geodetic data indicate that an 11-12 mm/yr arc-normal shortening rate characterizes the interseismic strain accumulation across the plate boundary due to India-Tibet convergence. These data combined with rates of other active internal faults in the Kashmir Himalaya indicate that the Riasi fault accounts for the remainder 60% of the convergence not taken up by the Suruin-Mastargh anticline. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled by pre-existing basin architecture in Kashmir. Blind thrusting reflects some combination of layer-parallel shortening, high stratigraphic overburden, relative youth of the HFT, and/or sustained low shortening rate on 10^5 yrs to longer timescales.
Factors affecting the recognition of faults exposed in exploratory trenches
Bonilla, Manuel G.; Lienkaemper, James J.
1991-01-01
Trenching-a widely used method for evaluating fault activity-has limitations that can mislead investigators. Some segments of fault strands in trench walls may not be visible, and this nonvisibility can lead to incorrect interpretations of time of most recent displacement and recurrence intervals on a fault. We examined the logs of 163 trench exposures and tabulated data on more than 1,200 fault strands to investigate three categories of nonvisibility: (1) strands with obscure (invisible or poorly visible) segments, (2) strands that die out upward, and (3) strands that die out downward. About 14 percent of all the strands have obscure segments. Of the 143 strands on which it is possible to recognize dieout up (limited to strands for which position of ground surface at time of faulting is known), 45 percent do die out upward, and the fraction exceeds 70 percent for strike-slip and reverse faults. Thus a fault strand overlain by an apparently undisturbed deposit is not necessarily older than the deposit. More than 30 percent of all the strands die out downward, providing more evidence that fault strands can end for reasons other than being covered by deposits younger than the fault. Analysis of trench-log data revealed various relations between geologic factors and nonvisibility of fault strands. For example, fault type affects the incidence of nonvisibility, which is generally most common on strike-slip faults, less common on reverse faults, and least common on normal fau Its. The type of material penetrated by the fault also influences nonvisibility, which tends to be more common in soil horizons and sand, and less common in gravel. Dieout down is weakly influenced by fault displacement, decreasing in frequency with increase in displacement; the frequencies of obscure segments and dieout up do not vary consistently with fault displacement. Frequency of obscure segments generally decreases with increase in length of obscure segments, and frequency of dieout up generally decreases with depth of dieout up. Length of obscure segments and depth of dieout up are typically less than the effective thickness of associated beds. On the basis of few data, obscure segments seem to be more common on faults with younger, rather than older, ages of latest displacement. Our study revealed additional relations not directly related to nonvisibility. For example, the median widths of faults crossed by the trenches vary by fault type, strike-slip faults being narrower than dip-slip faults. In the shallow and mostly unconsolidated materials cut by the trenches, fault widths show only an erratic and, at best, weak relationship to fault displacements. Hanging walls are deformed more frequently than footwalls in dip-slip faults, but both walls are deformed at more than 30 percent of the exposures. We tabulated several phenomena that may indicate faulting or provide evidence of prehistorical earthquakes. Rotation of pebbles was identified in 41 percent of the exposures having gravel in the fault zone; type of fault has no strong influence on the incidence of pebble rotation. Fissures were recorded at 52 percent of the exposures and were more common in strike-slip and normal faults than in reverse fau Its. Gouge was reported at 1 5 percent of the exposures; fault type has no significant influence on its frequency. Slickensides were noted at 10 percent of the exposures, and fault type has an unknown influence on their incidence. Slickensides in unconsolidated materials were restricted to clay, silt, and gouge. Other mechanical or hydrologic effects related to faulting or earthquakesrubble, breccia, mixing, crushing, polishing, water barriers, c;ind probable liquefaction effects-were reported at fewer than 1 0 percent of the exposures.
Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.
2003-12-01
The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.
NASA Astrophysics Data System (ADS)
Lee, J.; Stockli, D.; Gosse, J.
2007-12-01
Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain fault zone (0.3-0.8 mm/yr) and the eastern sinistral Coaldale fault (0.4 mm/yr) suggest that transfer of dextral slip from the narrow White Mountains fault zone is explained best by a simple shear couple whereby slip is partitioned into three different components: horizontal extension along the Queen Valley fault, dominantly dextral slip along the Coyote Springs fault, and dominantly sinistral slip along the Coaldale fault. A velocity vector diagram illustrating fault slip partitioning predicts contraction rates of <0.1 to 0.5 mm/yr across the Coyote Springs and western Coaldale faults. The predicted long-term contraction across the Mina deflection is consistent with present-day GPS data.
NASA Astrophysics Data System (ADS)
Shackleton, J. R.; Cooke, M. L.
2005-12-01
The Sant Corneli Anticline is a well-exposed example of a fault-cored fold whose hydrologic evolution and structural development are directly linked. The E-W striking anticline is ~ 5 km wide with abrupt westerly plunge, and formed in response to thrusting associated with the upper Cretaceous to Miocene collision of Iberia with Europe. The fold's core of fractured carbonates contains a variety of west dipping normal faults with meter to decameter scale displacement and abundant calcite fill. This carbonate unit is capped by a marl unit with low angle, calcite filled normal faults. The marl unit is overlain by clastic syn-tectonic strata whose sedimentary architecture records limb rotation during the evolution of the fold. The syn-tectonic strata contain a variety of joint sets that record the stresses before, during, and possibly after fold growth. Faulting in the marl and calcite-filled joints in the syn-tectonic strata suggest that normal faults within the carbonate core of the fold eventually breached the overlying marl unit. This breach may have connected the joints of the syn-tectonic strata to the underlying carbonate reservoir and eliminated previous compartmentalization of fluids. Furthermore, breaching of the marl units probably enhanced joint formation in the overlying syn-tectonic strata. Future geochemical studies of calcite compositions in the three units will address this hypothesis. Preliminary mapping of joint sets in the syn-tectonic strata reveal a multistage history of jointing. Early bed-perpendicular joints healed by calcite strike NE-SW, parallel to normal faults in the underlying carbonates, and may be related to an early regional extensional event. Younger healed bed-perpendicular joints cross cut the NE-SW striking set, and are closer to N-S in strike: these joints are interpreted to represent the initial stages of folding. Decameter scale, bed perpendicular, unfilled fractures that are sub-parallel to strike probably represent small joints and faults that formed in response to outer arc extension during folding. Many filled, late stage joints strike sub-parallel to, and increase in frequency near, normal faults and transverse structures observed in the carbonate fold core. This suggests that faulting in the underlying carbonates and marls significantly affected the joint patterns in the syn-tectonic strata. Preliminary three-dimensional finite element restorations using Dynel have allowed us to test our hypotheses and constrain the timing of jointing and marl breach.
NASA Astrophysics Data System (ADS)
Barchi, M. R.; Collettini, C.; Lena, G.
2012-04-01
Thrust and normal faults affecting mechanically heterogeneous multilayers often show staircase trajectories, where flat segments follow less competent units. Within flat segments the initiation/reactivation angle, θ, which is the angle that the fault makes with the σ1 direction, is different from that predicted by the Andersonian theory. This suggests that fault trajectory is mainly controlled by rock anisotropy instead of frictional properties of the material. Our study areas are located in the Umbria-Marche fold-thrust belt, within the Northern Apennines of Italy. The area is characterized by a lithologically complex multilayer, about 2000 m thick, consisting of alternated competent (mainly calcareous) and less competent (marls or evaporites) units. At the outcrop scale, some units show a significant mechanical layering, consisting of alternated limestones and shales. Due to the complex tectonic evolution of the Apennines, well developed sets of conjugate normal, thrust and strike-slip faults are exposed in the region. The study outcrop, Candigliano Gourge, is characterized by steep (dip > 60°) NE dipping beds, affected by conjugate sets of strike-slip faults, exposed in the eastern limb of a NE verging anticline. The faults develop within the Marne a Fucoidi Fm., a Cretaceous sedimentary unit, about 70 m thick, made of competent calcareous beds (about 20 cm thick), separated by marly beds (1-20 cm thick). The conjugate strike-slip faults are formed after the major folding phase: in fact the strike-slip faults cut both minor folds and striated bedding surfaces, related to syn-folding flexural slip. Faults show marked staircase trajectories, with straight segments almost parallel to the marly horizons and ramps cutting through the calcareous layers. Slip along these faults induces local block rotation of the competent strata, dilational jogs (pull-aparts), extensional duplexes and boudinage of the competent layers, while marly levels are strongly laminated. In order to reconstruct the σ1 direction, calcite veins syntectonic to strike-slip faulting, have been used to constrain the σ1-σ2 plane: fixing the σ2 direction at the conjugate fault intersection, the σ1 is oriented N15°, forming an angle of about 70° with the bedding direction. Once constrained the σ1 direction, we have calculated the θ angle that is comprised between 40° and 55°, resulting therefore larger than expected from Andersonian theory, i.e. 22°-32° for friction coefficient in the range of 0.5-1.0. Initiation/reactivation angles, θ, as a function of the different lithologies, are less than 35° for calcareous beds, 50°-70° for the marly and clayey layers, and around 60° for the black shales. Our studies, focused on strike-slip small displacement faults, show that: 1) irrespective of the σ1 orientation, ramp and flat form along competent and less competent material respectively and 2) the overall fault orientation/initiation is at high-angle to the σ1 direction. Our results suggest that rock anisotropy and layering are one of the possible causes for faulting at high angle to the σ1 direction, i.e. fault weakness. Further studies are required to up-scale the results of our outcrop-based study to crustal scale structures.
ETS and tidal stressing: Fault weakening after main slip pulse
NASA Astrophysics Data System (ADS)
Houston, H.
2013-12-01
Time-varying stresses from solid Earth tides and ocean loading influence slow slip (Hawthorne and Rubin, 2010) and, consequently, the frequency of occurrence and intensity of tremor during ETS episodes (Rubinstein et al., 2008). This relationship can illuminate changes in the mechanical response of the rupture surfaces(s) during slip in ETS. I compare the influence of tidal loading when and after the propagating ETS slip front (estimated by tremor density in time) ruptures the fault at a given spot. Using estimates of slip fronts that I derived from tremor locations, I divide ETS tremor into two groups: that occurring within a day of the start of the inferred slip front and that occurring over several days thereafter. The tremor catalog used contains 50K waveform cross-correlation locations of tremor in 7 large ETS in northern Cascadia between 2005 and 2012. I calculate normal, shear and volumetric stresses due to the Earth and ocean tides at numerous locations on the inferred rupture plane of the ETS following the method of Hawthorne and Rubin (2010). The Coulomb stress increment at each tremor time and location is compared with tremor occurrence for the two groups of tremor. Unreasonable results appear if the effective frictional coefficient mu > 0.2, and results are most 'reasonable' when mu is very near or equal to zero. Following passage of the main slip pulse, tremor generation is notably more sensitive to tidal stressing. One kPa of encouraging tidal Coulomb stress boosts the occurrence of tremor after the main slip pulse by about 50% above the average value, while the same amount of discouraging stress decreases the occurrence of such tremor by a similar factor. The greater the encouraging or discouraging stress, the greater the effect. In contrast, tremor in the main slip pulse is much less affected by positive or negative tidal stresses. I interpret the greater sensitivity to tidal stressing of the tremor after the main slip pulse as a measure of the weakening of the fault plane following its initial rupture. Considering up- and down-dip sensitivities to tidal stress, tremor generation on the up-dip region is affected roughly 50% more by both positive and negative tidal stresses than tremor down-dip. Furthermore, for the down-dip tremor, there is less contrast in sensitivity to stress between the tremor at the main slip front and the later tremor, i.e., the fault downdip is both less sensitive to tidal stress and weakens less due to the rupture. These results are consistent with the timing and geometry of Rapid Tremor Reversals, which also indicate weakening of the fault after the main slip front has passed through a region (Houston et al., 2011). RTRs occur on updip parts of the fault, after the main slip front, and at times of encouraging tidal stress (Thomas et al., 2013).
A Thick, Deformed Sedimentary Wedge in an Erosional Subduction Zone, Southern Costa Rica
NASA Astrophysics Data System (ADS)
Silver, E. A.; Kluesner, J. W.; Edwards, J. H.; Vannucchi, P.
2014-12-01
A paradigm of erosional subduction zones is that the lower part of the wedge is composed of strong, crystalline basement (Clift and Vannucchi, Rev. Geophys., 42, RG2001, 2004). The CRISP 3D seismic reflection study of the southern part of the Costa Rica subduction zone shows quite the opposite. Here the slope is underlain by a series of fault-cored anticlines, with faults dipping both landward and seaward that root into the plate boundary. Deformation intensity increases with depth, and young, near-surface deformation follows that of the deeper structures but with basin inversions indicating a dynamic evolution (Edwards et al., this meeting). Fold wavelength increases landward, consistent with the folding of a landward-thickening wedge. Offscraping in accretion is minimal because incoming sediments on the lower plate are very thin. Within the wedge, thrust faulting dominates at depth in the wedge, whereas normal faulting dominates close to the surface, possibly reflecting uplift of the deforming anticlines. Normal faults form a mesh of NNW and ENE-trending structures, whereas thrust faults are oriented approximately parallel to the dominant fold orientation, which in turn follows the direction of roughness on the subducting plate. Rapid subduction erosion just prior to 2 Ma is inferred from IODP Expedition 334 (Vannucchi et al., 2013, Geology, 49:995-998). Crystalline basement may have been largely removed from the slope region during this rapid erosional event, and the modern wedge may consist of rapidly redeposited material (Expedition 344 Scientists, 2013) that has been undergoing deformation since its inception, producing a structure quite different from that expected of an eroding subduction zone.
Ponce, David A.; Watt, Janet T.; Bouligand, C.
2011-01-01
We utilize gravity and magnetic methods to investigate the regional geophysical setting of the Wells earthquake. In particular, we delineate major crustal structures that may have played a role in the location of the earthquake and discuss the geometry of a nearby sedimentary basin that may have contributed to observed ground shaking. The February 21, 2008 Mw 6.0 Wells earthquake, centered about 10 km northeast of Wells, Nevada, caused considerable damage to local buildings, especially in the historic old town area. The earthquake occurred on a previously unmapped normal fault and preliminary relocated events indicate a fault plane dipping about 55 degrees to the southeast. The epicenter lies near the intersection of major Basin and Range normal faults along the Ruby Mountains and Snake Mountains, and strike-slip faults in the southern Snake Mountains. Regionally, the Wells earthquake epicenter is aligned with a crustal-scale boundary along the edge of a basement gravity high that correlates to the Ruby Mountains fault zone. The Wells earthquake also occurred near a geophysically defined strike-slip fault that offsets buried plutonic rocks by about 30 km. In addition, a new depth-to-basement map, derived from the inversion of gravity data, indicates that the Wells earthquake and most of its associated aftershock sequence lie below a small oval- to rhomboid-shaped basin, that reaches a depth of about 2 km. Although the basin is of limited areal extent, it could have contributed to increased ground shaking in the vicinity of the city of Wells, Nevada, due to basin amplification of seismic waves.
NASA Astrophysics Data System (ADS)
Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.
2012-04-01
The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.2 code. We studied the stress changes caused by slip along the various Quaternary COT fault segments, showing that the last motions occurred along the Chorrillos fault might promote in the future further displacement along nearby fault segments located to the northwest. Furthermore, slip along the NW-striking fault segments imparts normal stress changes on the nearby Tuzgle volcano feeding system. Cumulative effects of fault reactivation disadvantage future Tuzgle eruptions.
Shallow seismicity of arc-continent collision near Lae, Papua New Guinea
NASA Astrophysics Data System (ADS)
Kulig, Christopher; McCaffrey, Robert; Abers, Geoffrey A.; Letz, Horst
1993-11-01
In northeastern New Guinea, the narrow Ramu-Markham Valley (RMV) separates island arc rocks to the north from those of continental origin to the south and appears to be the western, onland extension of the New Britain trench. To explore the tectonic processes at the leading edge of the island arc during collision, we operated a portable seismic network for six weeks near the city of Lae at the eastern end of the RMV. We observed a narrow, near-vertical belt of seismicity between 10 and 30 km depth, that we call the Lae Seismic Zone (LSZ), starting at the RMV in the southwest and trending northeasterly cutting across surface geologic structure. The truncation of the LSZ along a steep plane by the Ramu-Markham Fault Zone (RMFZ) and earthquake first motions suggest that the earthquakes occur in the hanging wall of a steep, N-dipping fault that crops out at the RMFZ. We also consider that the LSZ is within the lower plate of a gently dipping thrust. Below 20 km depth the microearthquake zone is truncated by a gently, NE-dipping plane coinciding in depth and dip with nodal planes of recent large ( mb = 5.6 and 6.0) thrust earthquakes. We suggest that the Huon Peninsula is being emplaced onto the Australian plate along a gently (~ 25°) dipping thrust fault that is 20 km deep beneath Lae. The RMFZ may be a steeply dipping thrust fault that connects with this gently, N-dipping thrust but accommodates little convergence at present. The LSZ trends nearly perpendicular to an anticlinal range which appears to be sheared in a left-lateral sense. P-wave first motions for earthquakes in the LSZ with steep (70° to 90° dip) nodal planes that strike parallel to the LSZ suggest a component of south-side-up displacement also. Hence, the crustal block south of the LSZ may be rising relative to the Huon Peninsula and the rapid Quaternary uplift rates estimated for the Lae coastal region may be higher than the uplift rate of the Huon Peninsula as a whole. We suggest that the LSZ reveals a tear of small offset in the Huon terrane but may be similar to a structure that produced a magnitude 7 earthquake near Madang in 1970.
Analysis of the 2003-2004 microseismic sequence in the western part of the Corinth Rift
NASA Astrophysics Data System (ADS)
Godano, Maxime; Bernard, Pascal; Dublanchet, Pierre; Canitano, Alexandre; Marsan, David
2013-04-01
The Corinth rift is one of the most seismically active zones in Europe. The seismic activity follows a swarm organization with alternation of intensive crisis and more quiescent periods. The seismicity mainly occurs under the Gulf of Corinth in a 3-4 km north-dipping layer between 5 and 12 km. Several hypotheses have been proposed to explain this seismic layer. Nevertheless, the relationships between seismicity, deep structures and faults mapped at the surface remain unclear. Moreover, fluids seem to play a key role in the occurrence of the seismic activity (Bourouis and Cornet 2009, Pacchiani and Lyon-Caen 2009). Recently, a detailed analysis of the microseismicity (multiplets identification, precise relocation, focal mechanisms determination) between 2000 and 2007 in the western part of the Corinth rift have highlighted north-dipping (and some south-dipping) planar active microstructures in the seismic layer with normal fault mechanisms (Lambotte et al., in preparation; Godano et al., in preparation). A multiplet (group of earthquakes with similar waveform) can be interpreted as repeated ruptures on the same asperity due to transient forcing as silent creep on fault segment or fluid circulation. The detailed analysis of the multiplets in the Corinth rift is an opportunity to better understand coupling between seismic and aseismic processes. In the present study we focus on the seismic crisis that occurred from October 2003 to July 2004 in the western part of the Corinth Gulf. This crisis consists in 2431 relocated events with magnitude ranging from 0.5 to 3.1 (b-value = 1.4). The joint analysis of (1) the position of the multiplets with respect to the faults mapped at the surface, (2) the geometry of the main multiplets and (3) the fault plane solutions shows that the seismic crisis is probably related to the activation in depth of the Fassouleika and Aigion faults. The spatio-temporal analysis of the microseismicity highlights an overall migration from south-east to north-west characterized by the successive activation of the multiplets. We next perform a spectral analysis to determine source parameters for each multiplet in order to estimate size of the asperities and cumulative coseismic slip. From the preceding observations and results we finally try to reproduce the 2003-2004 microseismic sequence using rate-and-state 3D asperity model (Dublanchet et al., submitted). The deformation measured during the crisis by the strainmeter installed in the Trizonia island is used in the modeling to constrain the maximum slip amplitude.
NASA Astrophysics Data System (ADS)
Fitzgerald, Paul G.
1992-06-01
A fission track study of the Transantarctic Mountains (TAM) in the Granite Harbour and Wilson Piedmont Glacier areas of southern Victoria Land reveals information on the timing of uplift, the amount of uplift and erosion, and the structure of the mountains, especially the onshore Transantarctic Mountain Front (TAM Front), which represents the boundary between East and West Antarctica. Apatite ages are < 175 Ma and represent a thermal regime established after heating accompanying Jurassic magmatism. An apatite age profile from Mount England records a break in slope indicating uplift began at ˜55 Ma. Horizontal sampling traverses, plus fieldwork, delineate the structure of the TAM Front as a zone of north-south striking, steeply dipping normal faults, with displacements, dominantly down to the east, of 40-1000 m. The overall structure of the mountains in the area studied can be envisaged as a large tilt block or flexure. Its westerly limb dips gently under the ice cap, compared to its faulted eastern edge, the TAM Front. The bounding structure to the south is the Ferrar fault and to the north is a graben through which the Mackay Glacier drains the polar plateau. The edge of the flexure, or axis of maximum uplift, lies at Mount Termination, ˜30 km west of the McMurdo Sound coast. There has been ˜6 km of uplift since the early Cenozoic and 4.5-5 km of erosion along this axis. The amount of uplift decreases to the west at the same rate as the decrease in dip of the Kukri Peneplain, but the amount of erosion decreases more quickly as indicated by the increasing height of the mountains to the west. The axis of maximum uplift is traced north to Granite Harbour. The axis does not parallel the coast but has a more northerly trend. North-south striking longitudinal faults that delineate the structure of the TAM Front lie at an acute angle to the axis, indicating a dextral component to the dominantly east-west extension in the Ross Embayment. Architecture of the TAM typifies the features of an upper plate passive mountain range, whereas the Ross Embayment has the characteristics of a lower plate. The TAM Front represents an upper plate breakaway zone. Transfer faults may exist up major outlet glaciers that cut the TAM. The inflection point in the coastline at the southern end of McMurdo Sound may be due to the presence of a major transfer fault up or near the Skelton Glacier.
NASA Astrophysics Data System (ADS)
Uchida, Naoki; Kirby, Stephen H.; Umino, Norihito; Hino, Ryota; Kazakami, Tomoe
2016-09-01
The aftershock distribution of the 1933 Sanriku-oki outer trench earthquake is estimated by using modern relocation methods and a newly developed velocity structure to examine the spatial extent of the source-fault and the possibility of a triggered interplate seismicity. In this study, we first examined the regional data quality of the 1933 earthquake based on smoked-paper records and then relocated the earthquakes by using the 3-D velocity structure and double-difference method. The improvements of hypocentre locations using these methods were confirmed by the examination of recent earthquakes that are accurately located based on ocean bottom seismometer data. The results show that the 1933 aftershocks occurred under both the outer- and inner-trench-slope regions. In the outer-trench-slope region, aftershocks are distributed in a ˜280-km-long area and their depths are shallower than 50 km. Although we could not constrain the fault geometry from the hypocentre distribution, the depth distribution suggests the whole lithosphere is probably not under deviatoric tension at the time of the 1933 earthquake. The occurrence of aftershocks under the inner trench slope was also confirmed by an investigation of waveform frequency difference between outer and inner trench earthquakes as recorded at Mizusawa. The earthquakes under the inner trench slope were shallow (depth ≦30 km) and the waveforms show a low-frequency character similar to the waveforms of recent, precisely located earthquakes in the same area. They are also located where recent activity of interplate thrust earthquakes is high. These suggest that the 1933 outer-trench-slope main shock triggered interplate earthquakes, which is an unusual case in the order of occurrence in contrast with the more common pairing of a large initial interplate shock with subsequent outer-slope earthquakes. The off-trench earthquakes are distributed about 80 km width in the trench perpendicular direction. This wide width cannot be explained from a single high-angle fault confined at a shallow depth (depth ≦50 km). The upward motion of the 1933 tsunami waveform records observed at Sanriku coast also cannot be explained from a single high-angle west-dipping normal fault. If we consider additional fault, involvement of high-angle, east-dipping normal faults can better explain the tsunami first motion and triggering of the aftershock in a wide area under the outer trench slope. Therefore multiple off-trench normal faults may have activated during the 1933 earthquake. We also relocated recent (2001-2012) seismicity by the same method. The results show that the present seismicity in the outer-trench-slope region can be divided into several groups along the trench. Comparison of the 1933 rupture dimensions based on our aftershock relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited to the region where fault scarps are largely trench parallel and cross cut the seafloor spreading fabric. These findings imply that bending geometry and structural segmentation of the incoming plate largely controls the spatial extent of the 1933 seismogenic faulting. In this shallow rupture model for this largest outer trench earthquake, triggered seismicity in the forearc and structural control of faulting represent an important deformation styles for off-trench and shallow megathrust zones.
Gillard, D.; Wyss, M.; Okubo, P.
1996-01-01
Earthquake focal mechanisms of events occurring between 1972 and 1992 in the south flank of Kilauea volcano, Hawaii, are used to infer the state of stress and strain as a function of time and space. We have determined 870 fault plane solutions from P wave first motion polarities for events with magnitudes ML ??? 2.5 and depth ranging between 6 and 12 km. Faulting is characterized by a mixture of decollement, reverse, and normal faults. Most large earthquakes with magnitude M 7 rupture the decollement plane, since it is the only surface large enough to generate magnitude 7 or larger earthquakes. The percentage of reverse faulting events is high compared to the decollement and normal faulting mechanisms for the period 1972-1983. The percentage of decollement type focal mechanisms becomes dominant after 1983. This pattern of faulting activity suggests that pressure was building up within Kilauea's rift zone prior to the 1983 Puu'Oo eruption. Overall, a single stress orientation with the maximum compressive stress oriented SE perpendicular to the rift and dipping at 45?? is compatible with the coeval existence of decollement, reverse, and normal faults. However, in a crustal volume east of longitude 155??10'W, we find a change of the orientation of ??1 from nearly horizontal to plunging 45?? SE occurring in 1979. This stress rotation suggests magma movements within the aseismic part of Kilauea's east rift zone. The strain and stress orientations are coaxial in the south flank except within the volume where the stress rotation is observed. We observe a change in the relationship between stress and strain directions caused either by the shifting of seismic activity from reverse faults to decollements, while stress stays constant, or by a rotation of stress, while strain remains constant. Assuming that the model of a noncohesive Coulomb wedge is appropriate for Kilauea's south flank, we find that high pore pressures are prevalent along the decollement and within the wedge for a coefficient of friction equal to 0.85.
NASA Astrophysics Data System (ADS)
Yamaguchi, M.; Hashimoto, Y.; Yamaguchi, A.; Kimura, G.
2011-12-01
Seismic surveys along accretionary prisms have revealed that the out-of sequence thrusts (OSTs) are commonly developed within accretionary wedges branching from seismogenic subduction plate boundaries. The OSTs are also recognized in on-land accretionary complexes as large thrust faults cutting paleo-thermal structures. The OSTs are thought to play a role in tsunami genesis at a coseismic event. Stress history on OSTs is significant to understand the OSTs' role in seismic cycles. We estimated, thus palaeostresses from micro-faults along an OST in an on-land accretionary complexes. We focused on the Nobeoka fault which is an OST in an on-land accretionary complex, the Shimato Belt, Kyusyu, SW Japan. A gap in paleothermal temperature (up to 70 degree C) is observed at the fault. The Nobeoka thrust strikes almost EW at coastline. The Cretaceous Makimine formation and Paleogene Kitagawa formation are located at the hanging wall of the fault, comprising mainly of pelitic schist. The footwall of the fault is the Paleogene Hyuga formation composed mainly of shale. A lot of micro-faults are well developed just below the thrust for a few hundred meters to the south. Those micro faults are considered to be related to the Nobeoka thurst because slip direction and sense of the micro-faults are consistent with that of the Nobeoka thrust. The micro-faults are commonly accompanied by mineral veins of quartz and ankerite. Yamaguchi et al. (2010) suggested that the differences of mineral veins are possibly related to the seismic cycle. In this study, we conducted stress inversion analysis for the micro-faults to examine the change in stress between them, which might be related to the seismic cycle. We divided the micro-fault into two as a micro-fault with quartz veins and that with ankerite veins. Slip direction from slicken fibers and slip sense by slicken steps were obtained. HIM (hough inversion method) by Yamaji et al. (2006) was used to estimate the stress. Two stress states and three stress states are identified in the results for ankerite veins and quartz veins, respectively. For ankerite veins, SE oriented and relatively higher dipping sigma3 with axial extension and SE oriented and relatively lower dipping sigma1 with axial compression are recognized. For quartz veins, SE oriented and relatively higher dipping sigma3 with axial extension, NE oriented and almost horizontal sigma1 with triaxial stress ratio, and NW oriented and lower dipping sigma1 with axial compression are observed. While NW-SE axial stress states are observed both from ankelite and quatz veins, NE oriented triaxial stress is identified only from quartz veins. The change in stress states from NW-SE axial stress to NE triaxial stress might be explained by the dynamic Coulomb wedge model suggested by Wang and Hu (2006). The model predicts that the stress within accretionary wedge can be change with seismic cycle, horizontal sigma1 with axial compression at the co-seismic slip and relatively higher dipping sigma1 with triaxial stress in inter-seimsic period.
NASA Astrophysics Data System (ADS)
Brandsdottir, B.; Karson, J. A.; Magnúsdóttir, S.; Detrick, B.; Driscoll, N. W.
2017-12-01
The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ) is a complex transform linking the northern rift zone (NVZ) on land with the offshore Kolbeinsey Ridge. The TFZ lacks a clear topographic expression typical of oceanic fracture zones. The transform zone is roughly 150 km long (E-W) by 50-75 km wide (N-S) with three N-S trending pull-apart basins bounded by a complex array of normal and oblique-slip faults. The offshore extension of the NVZ, the Grímsey Oblique Rift, is composed of several active volcanic systems with N-S trending fissure swarms, including the Skjálfandadjúp Basin (SB). The magma-starved southern extension of the KR, the 80 km NS and 15-20 EW Eyjafjarðaráll Rift (ER), is made up of dominantly normal faults merging southwards with a system of right-lateral strike-slip faults with vertical displacement up to 15 m in the Húsavík Flatey Fault Zone (HFFZ). The northern ER is a 500-700 m deep asymmetric rift, framed by normal faults with 20-25 m vertical displacement, To the south, transform movement associated with the HFFZ has created a NW- striking pull-apart basin with frequent earthquake swarms. Details of the tectonic framework of the ER are documented in a compilation of data from aerial photos, satellite images, field mapping, multibeam bathymetry, high-resolution seismic reflection surveys (Chirp) and seismicity. The TFZ rift basins contain post-glacial sediments of variable thickness. Strata in the western ER and SB basins dip steeply E along the normal faults, towards the deepest part of the rift. The eastern side of the ER and SB basins differ considerably from the western side, with near-vertical faults. Correlation of Chirp reflection data and tephrachronology from a sediment core reveal major rifting episodes between 10-12.1 kyrs BP activating both the Eyjafjarðaráll and Skjálfandadjúp rift basins, followed by smaller-scale fault movements throughout Holocene. These vertical fault movements reflect elevated tectonic activity during early postglacial time coinciding with isostatic rebound and enhanced volcanism within Iceland.
KINKFOLD—an AutoLISP program for construction of geological cross-sections using borehole image data
NASA Astrophysics Data System (ADS)
Özkaya, Sait Ismail
2002-04-01
KINKFOLD is an AutoLISP program designed to construct geological cross-sections from borehole image or dip meter logs. The program uses the kink-fold method for cross-section construction. Beds are folded around hinge lines as angle bisectors so that bedding thickness remains unchanged. KINKFOLD may be used to model a wide variety of parallel fold structures, including overturned and faulted folds, and folds truncated by unconformities. The program accepts data from vertical or inclined boreholes. The KINKFOLD program cannot be used to model fault drag, growth folds, inversion structures or disharmonic folds where the bed thickness changes either because of deformation or deposition. Faulted structures and similar folds can be modelled by KINKFOLD by omitting dip measurements within fault drag zones and near axial planes of similar folds.
The 1959 MW 7.3 Hebgen Lake earthquake revisited: morphology and mechanics from lidar
NASA Astrophysics Data System (ADS)
Johnson, K. L.; Nissen, E.; Lajoie, L. J.
2016-12-01
This study demonstrates how we can glean new information by revisiting an early instrumental earthquake with high-resolution topography and modern thinking about the mechanics of surface rupturing. The 1959 MW 7.3 Hebgen Lake earthquake is among the largest and most deadly historic earthquakes within the conterminous United States outside of California, and one of the largest normal faulting earthquakes on record globally. The earthquake ruptured the subparallel Hebgen and Red Canyon faults within the slowly extending ( 3 mm/yr) Centennial Mountain Belt, and is one of the first to be field mapped in detail, modeled from global seismograms, and surveyed geodetically. Here, we augment these early studies with an investigation of the surface rupture in its current state. We use a 50 cm-resolution airborne lidar digital terrain model collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 to document the fault scarp morphology, constrain its evolution, and speculate on the mechanical rupture properties. Using a dense set of scarp profiles, we add >400 displacement measurements to the 143 published data points from early field work, allowing more rigorous quantification of along-strike slip variability and strain gradients. Evidence of off-fault deformation is sparse along most of the scarp, though damage zone width increases where the earthquake ruptured closely spaced sedimentary contacts rather than unconsolidated Quaternary deposits. In a few places, we can identify composite scarps from which we estimate the number of earthquakes that have offset Holocene surfaces. We assess the scarp's degraded state, including some sites that were surveyed in 1980 and 2009 and others that have not been revisited since the initial investigation. Where the rupture crosses unconsolidated surfaces, we compute local sediment diffusion coefficients and analyze their variability along strike. Lastly, we model subsurface fault geometry by fitting dipping planes to its surface trace, testing our best-fit fault dips against those recovered in seismic analyses; this reaffirms that both main rupture strands correspond to primary faulting rather than induced landsliding.
Tertiary structural evolution of the Gangdese thrust system southeastern Tibet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, An; Harrison, M.; Ryerson, F.J.
1994-09-10
Structural and thermochronological investigations of southern Tibet (Xizang) suggest that intracontinental thrusting has been the dominant cause for formation of thickened crust in the southernmost Tibetan plateau since late Oligocene. Two thrust systems are documented in this study: the north dipping Gangdese system (GTS) and the younger south dipping Renbu-Zedong system (RZT). West of Lhasa, the Gangdese thrust juxtaposes the Late Cretaceous forearc basin deposits of the Lhasa Block (the Xigaze Group) over the Tethyan sedimentary rocks of the Indian plate, whereas east of Lhasa, the fault juxtaposes the Late Cretaceous-Eocene, Andean-type arc (the Gangdese batholith) over Tethyan sedimentary rocks.more » Near Zedong, 150 km southeast of Lhasa, the Gangdese thrust is marked by a >200-m-thick mylonitic shear zone that consists of deformed granite and metasedimentary rocks. A major south dipping backthrust in the hanging wall of the Gangdese thrust puts the Xigaze Group over Tertiary conglomerates and the Gangdese plutonics north of Xigaze and west of Lhasa. A lower age bound for the Gangdese thrust of 18.3{+-}0.5 Ma is given by crosscutting relationships. The timing of slip on the Gangdese thrust is estimate to be 27-23 Ma from {sup 40}Ar/{sup 39}Ar thermochronology, and a displacement of at least 46{+-}9 km is indicated near Zedong. The age of the Gangdese thrust (GT) is consistent with an upper age limit of {approximately}24 Ma for the initiation of movement on the Main Central thrust. In places, the younger Renbu-Zedong fault is thrust over the trace of the GT, obscuring its exposure. The RZT appears to have been active at circa 18 Ma but had ceased movement by 8{+-}1 Ma. The suture between India and Asia has been complexely modified by development of the GTS, RZT, and, locally, strike-slip and normal fault systems. 64 refs., 14 figs., 2 tabs.« less
Geophysical characterization of Range-Front Faults, Snake Valley, Nevada
Asch, Theodore H.; Sweetkind, Donald S.
2010-01-01
In September 2009, the U.S. Geological Survey, in cooperation with the National Park Service, collected audiomagnetotelluric (AMT) data along two profiles on the eastern flank of the Snake Range near Great Basin National Park to refine understanding of the subsurface geology. Line 1 was collected along Baker Creek, was approximately 6.7-km long, and recorded subsurface geologic conditions to approximately 800-m deep. Line 2, collected farther to the southeast in the vicinity of Kious Spring, was 2.8-km long, and imaged to depths of approximately 600 m. The two AMT lines are similar in their electrical response and are interpreted to show generally similar subsurface geologic conditions. The geophysical response seen on both lines may be described by three general domains of electrical response: (1) a shallow (mostly less than 100-200-m deep) domain of highly variable resistivity, (2) a deep domain characterized by generally high resistivity that gradually declines eastward to lower resistivity with a steeply dipping grain or fabric, and (3) an eastern domain in which the resistivity character changes abruptly at all depths from that in the western domain. The shallow, highly variable domain is interpreted to be the result of a heterogeneous assemblage of Miocene conglomerate and incorporated megabreccia blocks overlying a shallowly eastward-dipping southern Snake Range detachment fault. The deep domain of generally higher resistivity is interpreted as Paleozoic sedimentary rocks (Pole Canyon limestone and Prospect Mountain Quartzite) and Mesozoic and Cenozoic plutonic rocks occurring beneath the detachment surface. The range of resistivity values within this deep domain may result from fracturing adjacent to the detachment, the presence of Paleozoic rock units of variable resistivities that do not crop out in the vicinity of the lines, or both. The eastern geophysical domain is interpreted to be a section of Miocene strata at depth, overlain by Quaternary alluvial fill. These deposits lie east of a steeply east-dipping normal fault that cuts all units and has about 100 m of east-side-down offset.
Luckow, H.G.; Pavlis, T.L.; Serpa, L.F.; Guest, B.; Wagner, D.L.; Snee, L.; Hensley, T.M.; Korjenkov, A.
2005-01-01
New 1:24,000 scale mapping, geochemical analyses of volcanic rocks, and Ar/Ar and tephrochronology analyses of the Wingate Wash, northern Owlshead Mountain and Southern Panamint Mountain region document a complex structural history constrained by syntectonic volcanism and sedimentation. In this study, the region is divided into five structural domains with distinct, but related, histories: (1) The southern Panamint domain is a structurally intact, gently south-tilted block dominated by a middle Miocene volcanic center recognized as localized hypabyssal intrusives surrounded by proximal facies pyroclastic rocks. This Miocene volcanic sequence is an unusual alkaline volcanic assemblage ranging from trachybasalt to rhyolite, but dominated by trachyandesite. The volcanic rocks are overlain in the southwestern Panamint Mountains by a younger (Late Miocene?) fanglomerate sequence. (2) An upper Wingate Wash domain is characterized by large areas of Quaternary cover and complex overprinting of older structure by Quaternary deformation. Quaternary structures record ???N-S shortening concurrent with ???E-W extension accommodated by systems of strike-slip and thrust faults. (3) A central Wingate Wash domain contains a complex structural history that is closely tied to the stratigraphic evolution. In this domain, a middle Miocene volcanic package contains two distinct assemblages; a lower sequence dominated by alkaline pyroclastic rocks similar to the southern Panamint sequence and an upper basaltic sequence of alkaline basalt and basanites. This volcanic sequence is in turn overlain by a coarse clastic sedimentary sequence that records the unroofing of adjacent ranges and development of ???N-S trending, west-tilted fault blocks. We refer to this sedimentary sequence as the Lost Lake assemblage. (4) The lower Wingate Wash/northern Owlshead domain is characterized by a gently north-dipping stratigraphic sequence with an irregular unconformity at the base developed on granitic basement. The unconformity is locally overlain by channelized deposits of older Tertiary(?) red conglomerate, some of which predate the onset of extensive volcanism, but in most of the area is overlain by a moderately thick package of Middle Miocene trachybasalt, trachyandesitic, ash flows, lithic tuff, basaltic cinder, basanites, and dacitic pyroclastic, debris, and lahar flows with localized exposures of sedimentary rocks. The upper part of the Miocene stratigraphic sequence in this domain is comprised of coarse grained-clastic sediments that are apparently middle Miocene based on Ar/Ar dating of interbedded volcanic rocks. This sedimentary sequence, however, is lithologically indistinguishable from the structurally adjacent Late Miocene Lost Lake assemblage and a stratigraphically overlying Plio-Pleistocene alluvial fan; a relationship that handicaps tracing structures through this domain. This domain is also structurally complex and deformed by a series of northwest-southeast-striking, east-dipping, high-angle oblique, sinistral, normal faults that are cut by left-lateral strike-slip faults. The contact between the southern Panamint domain and the adjacent domains is a complex fault system that we interpret as a zone of Late Miocene distributed sinistral slip that is variably overprinted in different portions of the mapped area. The net sinistral slip across the Wingate Wash fault system is estimated at 7-9 km, based on offset of Proterozoic Crystal Springs Formation beneath the middle Miocene unconformity to as much as 15 km based on offset volcanic facies in Middle Miocene rocks. To the south of Wingate Wash, the northern Owlshead Mountains are also cut by a sinistral, northwest-dipping, oblique normal fault, (referred to as the Filtonny Fault) with significant slip that separates the Lower Wingate Wash and central Owlshead domains. The Filtonny Fault may represent a young conjugate fault to the dextral Southern Death Valley fault system and may be the northwest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzetti, E.A.; Brennan, P.A.; Hook, S.C.
The authors present graphical solutions to the extensional fault-related folding equations of Xiao and Suppe (1992), simplifying the prediction of normal fault location or rollover geometry from subsurface data. These equations also predict the extent of bed thinning and elongation in hanging wall strata. They have derived new equations that relate change in fault slip across a fault bend to fault geometry. Applying these equations in seismic interpretation makes it easier to (1) construct balanced cross-sections, (2) account for the slip observed, and (3) determine the growth history of extensional fault-related folds. They have applied these concepts to several southeastmore » Asian rift basins in Malaysia, Myanmar, Indonesia, and Thailand. These basins were formed by early Tertiary crustal extension, producing rollover structures in which sediment supply generally did not keep up with subsidence. These under-filled, internally drained depressions periodically contained lakes, providing the environment for deposition of organic-rich strata that ultimately became hydrocarbon source rock. Typically, the main basin bounding faults dip 35-55[degrees] near their upper terminations and flatten to become subhorizontal. Synthetic and antithetic secondary faults are usually present. Late compaction faulting often propagates upward from major extensional faults and may reactivate the upper portions of these faults. In many basins, late compression produced inversion structures. By applying the concepts of extensional fault-related folding to these basins, they can (1) explain observed geometries, (2) predict poorly imaged geometries, (3) predict the location of source and reservoir facies, and (4) determine the timing of faulting relative to deposition of source and reservoir rocks.« less
Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR
NASA Astrophysics Data System (ADS)
Barnhart, William D.
2017-01-01
The Chaman fault is the major strike-slip structural boundary between the India and Eurasia plates. Despite sinistral slip rates similar to the North America-Pacific plate boundary, no major (>M7) earthquakes have been documented along the Chaman fault, indicating that the fault either creeps aseismically or is at a late stage in its seismic cycle. Recent work with remotely sensed interferometric synthetic aperture radar (InSAR) time series documented a heterogeneous distribution of fault creep and interseismic coupling along the entire length of the Chaman fault, including an 125 km long creeping segment and an 95 km long locked segment within the region documented in this study. Here I present additional InSAR time series results from the Envisat and ALOS radar missions spanning the southern and central Chaman fault in an effort to constrain the locking depth, dip, and slip direction of the Chaman fault. I find that the fault deviates little from a vertical geometry and accommodates little to no fault-normal displacements. Peak-documented creep rates on the fault are 9-12 mm/yr, accounting for 25-33% of the total motion between India and Eurasia, and locking depths in creeping segments are commonly shallower than 500 m. The magnitude of the 1892 Chaman earthquake is well predicted by the total area of the 95 km long coupled segment. To a first order, the heterogeneous distribution of aseismic creep combined with consistently shallow locking depths suggests that the southern and central Chaman fault may only produce small to moderate earthquakes (
NASA Astrophysics Data System (ADS)
Wadas, Sonja H.; Tanner, David C.; Polom, Ulrich; Krawczyk, Charlotte M.
2017-12-01
In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW-SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( < 100 m in size), around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.
NASA Astrophysics Data System (ADS)
Nakajima, J.; Hasegawa, A.; Kita, S.
2011-12-01
A M9.0 megathrust earthquake, the 2011 off the Pacific Coast of Tohoku Earthquake, occurred on 11 March 2011 on the plate boundary east off northeastern (NE) Japan. After this great earthquake, seismicity has been activated in the Pacific plate as well as along its upper surface, and a large earthquake (M7.1) occurred on April 7 in the Pacific slab at a depth of 66 km, located near the down-dip limit of the large interplate slip of the M9 event. Here we perform travel-time tomography to reveal heterogeneous seismic velocity structures around the focal area of the 2011 M7.1 intraslab event, and discuss the occurrence of the 2011 M7.1 event in terms of dehydration embrittlement hypothesis. We applied the double-difference tomography method (Zhang and Thurber, 2003) to large number of arrival-time data obtained at a nation-wide seismograph network in Japan. Arrival-time data were produced from 8911 earthquakes and 188 stations, and comprised 247,504 P waves and 196,057 S waves, with differential data of 1,608,230 for P waves and 1,114,068 for S waves. Grid intervals were set at 10-20 km in the along-arc direction, 5-10 km perpendicular to the arc, and 5-10 km in the vertical direction The final results were obtained after eight iterations, which reduced the travel-time residual from 0.17 s to 0.11 s for P waves, and from 0.33 s to 0.19 s for S waves. The results show a low-velocity zone around the focal area of the M7.1 event, and that the aftershock activity is limited to the upper 15 km of the oceanic mantle. The lateral extent of the low-velocity zone is comparable to the distribution of aftershocks, suggesting a concentration of fluids in the aftershock area. The angle between the aftershock alignment and the dip of the slab surface is estimated to be ~60°, which is consistent with the dip of an oceanward-dipping normal fault observed at the outer-trench slope. These observations suggest that the M7.1 intraslab event occurred as a result of reactivation of a buried hydrated fault that formed prior to subduction. The upper ~15 km of the oceanic mantle may be locally hydrated by bending-related tensional faulting at the outer-trench slope.
Geologic map of the Yucca Mountain region, Nye County, Nevada
Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.
2002-01-01
Yucca Mountain, Nye County, Nev., has been identified as a potential site for underground storage of high-level radioactive waste. This geologic map compilation, including all of Yucca Mountain and Crater Flat, most of the Calico Hills, western Jackass Flats, Little Skull Mountain, the Striped Hills, the Skeleton Hills, and the northeastern Amargosa Desert, portrays the geologic framework for a saturated-zone hydrologic flow model of the Yucca Mountain site. Key geologic features shown on the geologic map and accompanying cross sections include: (1) exposures of Proterozoic through Devonian strata inferred to have been deformed by regional thrust faulting and folding, in the Skeleton Hills, Striped Hills, and Amargosa Desert near Big Dune; (2) folded and thrust-faulted Devonian and Mississippian strata, unconformably overlain by Miocene tuffs and lavas and cut by complex Neogene fault patterns, in the Calico Hills; (3) the Claim Canyon caldera, a segment of which is exposed north of Yucca Mountain and Crater Flat; (4) thick densely welded to nonwelded ash-flow sheets of the Miocene southwest Nevada volcanic field exposed in normal-fault-bounded blocks at Yucca Mountain; (5) upper Tertiary and Quaternary basaltic cinder cones and lava flows in Crater Flat and at southernmost Yucca Mountain; and (6) broad basins covered by Quaternary and upper Tertiary surficial deposits in Jackass Flats, Crater Flat, and the northeastern Amargosa Desert, beneath which Neogene normal and strike-slip faults are inferred to be present on the basis of geophysical data and geologic map patterns. A regional thrust belt of late Paleozoic or Mesozoic age affected all pre-Tertiary rocks in the region; main thrust faults, not exposed in the map area, are interpreted to underlie the map area in an arcuate pattern, striking north, northeast, and east. The predominant vergence of thrust faults exposed elsewhere in the region, including the Belted Range and Specter Range thrusts, was to the east, southeast, and south. The vertical to overturned strata of the Striped Hills are hypothesized to result from successive stacking of three south-vergent thrust ramps, the lowest of which is the Specter Range thrust. The CP thrust is interpreted as a north-vergent backthrust that may have been roughly contemporaneous with the Belted Range and Specter Range thrusts. The southwest Nevada volcanic field consists predominantly of a series of silicic tuffs and lava flows ranging in age from 15 to 8 Ma. The map area is in the southwestern quadrant of the southwest Nevada volcanic field, just south of the Timber Mountain caldera complex. The Claim Canyon caldera, exposed in the northern part of the map area, contains thick deposits of the 12.7-Ma Tiva Canyon Tuff, along with widespread megabreccia deposits of similar age, and subordinate thick exposures of other 12.8- to 12.7-Ma Paintbrush Group rocks. An irregular, blocky fault array, which affects parts of the caldera and much of the nearby area, includes several large-displacement, steeply dipping faults that strike radially to the caldera and bound south-dipping blocks of volcanic rock. South and southeast of the Claim Canyon caldera, in the area that includes Yucca Mountain, the Neogene fault pattern is dominated by closely spaced, north-northwest- to north-northeast-striking normal faults that lie within a north-trending graben. This 20- to 25-km-wide graben includes Crater Flat, Yucca Mountain, and Fortymile Wash, and is bounded on the east by the 'gravity fault' and on the west by the Bare Mountain fault. Both of these faults separate Proterozoic and Paleozoic sedimentary rocks in their footwalls from Miocene volcanic rocks in their hanging walls. Stratigraphic and structural relations at Yucca Mountain demonstrate that block-bounding faults were active before and during eruption of the 12.8- to 12.7-Ma Paintbrush Group, and significant motion on these faults continued unt
NASA Astrophysics Data System (ADS)
Dalstra, Hilke J.
2014-10-01
The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall fault zone, a moderately to steeply southerly dipping normal fault system which at Arochar is intruded by dolerite dykes. At both locations, the ore controlling faults are offset by later NW trending dextral and normal faults. Fault relay zones or fault splay zones were likely zones of increased permeability and fluid flow during fault development or reactivation and may also have been important in initiating mineralisation in larger deposits such as Mt Tom Price and Mt Whaleback. However structural controls on the largest iron ore deposits are often obscured due to the intensity and scale of ore development, whereas they are better preserved in the smaller deposits. Recognition that carbonate bearing protores at Mt Wall survived for nearly two billion years until intense recent weathering converted them to martite-goethite or magnetite-goethite ores may imply that more of the giant hematite-goethite deposits of the Hamersley province had hydrothermal precursors and were not formed by supergene processes alone.
A Controllable Earthquake Rupture Experiment on the Homestake Fault
NASA Astrophysics Data System (ADS)
Germanovich, L. N.; Murdoch, L. C.; Garagash, D.; Reches, Z.; Martel, S. J.; Gwaba, D.; Elsworth, D.; Lowell, R. P.; Onstott, T. C.
2010-12-01
Fault-slip is typically simulated in the laboratory at the cm-to-dm scale. Laboratory results are then up-scaled by orders of magnitude to understand faulting and earthquakes processes. We suggest an experimental approach to reactivate faults in-situ at scales ~10-100 m using thermal techniques and fluid injection to modify in situ stresses and the fault strength to the point where the rock fails. Mines where the modified in-situ stresses are sufficient to drive faulting, present an opportunity to conduct such experiments. During our recent field work in the former Homestake gold mine in the northern Black Hills, South Dakota, we found a large fault present on multiple mine levels. The fault is subparallel to the local foliation in the Poorman formation, a Proterozoic metamorphic rock deformed into regional-scale folds with axes plunging ~40° to the SSE. The fault extends at least 1.5 km along strike and dip, with a center ~1.5 km deep. It strikes ~320-340° N, dips ~45-70° NE, and is recognized by a ~0.3-0.5 m thick distinct gouge that contains crushed host rock and black material that appears to be graphite. Although we could not find clear evidence for fault displacement, secondary features suggest that it is a normal fault. The size and distinct structure of this fault make it a promising target for in-situ experimentation of fault strength, hydrological properties, and slip nucleation processes. Most earthquakes are thought to be the result of unstable slip on existing faults, Activation of the Homestake fault in response to the controlled fluid injection and thermally changing background stresses is likely to be localized on a crack-like patch. Slow patch propagation, moderated by the injection rate and the rate of change of the background stresses, may become unstable, leading to the nucleation of a small earthquake (dynamic) rupture. This controlled instability is intimately related to the dependence of the fault strength on the slip process and has been analyzed for the Homestake fault conditions. Scale analyses indicate that this transition occurs for the nucleation patch size ~1 m. This represents a fundamental limitation for laboratory experiments, where the induced dynamic patch could be tractable, and necessitates larger scale field tests ~10-100 m. The ongoing dewatering is expected to affect displacements in the fault vicinity. This poroelastic effect can be used to better characterize the fault. Nucleation, propagation, and arrest of dynamic fault slip is governed by fluid overpressure source, diffusion, and the magnitude of the background loading in relation to the peak and residual strength in the fault zone at the ambient pore pressure level. More information on in-situ stresses than currently available is required to evaluate the fault state. Yet, initial modeling suggests that a suitable place for such an experiment is where the Homestake fault intersects the 4850-ft mine level or at greater depths.
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Di Toro, Giulio
2015-04-01
Fault zones cutting carbonate sequences represent significant seismogenic sources worldwide (e.g. L'Aquila 2009, MW 6.1). Though seismological and geophysical techniques (double differences method, trapped waves, etc.) allow us to investigate down to the decametric scale the structure of active fault zones, further geological field surveys and microstructural studies of exhumed seismogenic fault zones are required to support interpretation of geophysical data, quantify the geometry of fault zones and identify the fault processes active during the seismic cycle. Here we describe the architecture (i.e. fault geometry and fault rock distribution) of the well-exposed footwall-block of the Campo Imperatore Fault Zone (CIFZ) by means of remote sensed analyses, field surveys, mineralogical (XRD, micro-Raman spectroscopy) and microstructural (FE-SEM, optical microscope cathodoluminescence) investigations. The CIFZ dips 58° towards N210 and its strike mimics that of the arcuate Gran Sasso Thrust Belt (Central Apennines). The CIFZ was exhumed from 2-3 km depth and accommodated a normal throw of ~2 km starting from the Early-Pleistocene. In the studied area, the CIFZ puts in contact the Holocene deposits at the hangingwall with dolomitized Jurassic carbonate platform successions (Calcare Massiccio) at the footwall. From remote sensed analyses, structural lineaments both inside and outside the CIFZ have a typical NW-SE Apenninic strike, which is parallel to the local trend of the Gran Sasso Thrust. Based on the density of the fracture/fault network and the type of fault zone rocks, we distinguished four main structural domains within the ~300 m thick CIFZ footwall-block, which include (i) a well-cemented (white in color) cataclastic zone (up to ~40 m thick) at the contact with the Holocene deposits, (ii) a well-cemented (brown to grey in color) breccia zone (up to ~15 m thick), (iii) an high strain damage zone (fracture spacing < 2-3 cm), and (iv) a low strain damage zone (fracture spacing > 10 cm). Other than by the main boundary normal fault, slip was accommodated in the cataclastic zone by minor sub-parallel synthetic and antithetic normal faults and by few tear strike-slip fault; the rest of the footwall shows progressively less pervasive damage down to the background intensity of deformation. High strain domains include (1) pervasively fragmented dolostones with radial fractures (evidence of in-situ shattering), (2) shiny (mirror-like) fault surfaces truncating dolostone clasts, (3) mm-thick ultra-cataclastic layers with lobate and cuspate boundaries, (4) mixed calcite-dolomite "foliated cataclasites". The above microstructures can be associated with seismic faulting. Fluids infiltration during deformation is attested by the occurrence of multiple generations of carbonate-filled veins, often exploited as minor faults with a mylonite-like fabric (e.g. presence of micrometer in size euhedral calcite grains). The attitude of the studied segment of the CIFZ, the thickness of the footwall block and the kinematics of the minor faults compares well with the hypocentral and focal mechanisms distribution typical of the earthquake sequences in the Apennines. In particular, the CIFZ can be considered as an exhumed analogue of the normal fault system that caused the L'Aquila 2009 seismic sequence.
NASA Astrophysics Data System (ADS)
Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.
2012-12-01
The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone in basement rocks between about 2 and 7 km depth beneath and southwest of the MCF, suggesting a vertical or slightly southwest-dipping MCF. The apparent northeast dip of the BF and the apparent vertical or southwest dip of the MCF suggests that the two main strands of the SAF (MCF and BF) merge at about 10 km depth. A plot of double-difference earthquake hypocenters (Hauksson, 2000) along the seismic profile shows events that occurred between 1980-2000 (excluding those in 1992, prior to and after the Joshua Tree and Landers earthquakes) are largely confined to the vicinity of the basement low-velocity zone between the MCF and BF. However, a separate alignment of hypocenters occurs southwest of the BF and projects toward the surface beneath Mt. San Jacinto. Collectively, the velocity images and the seismicity data suggest the BF strand of the SAF dips to the northeast at about 50 degrees in the upper 10 km, and the MCF strand is either vertical or dips southwestward about 80 degrees, with both strands merging at about 10 km depth and forming a near-vertical zone of faults to at least 15 km depth. The SSIP Line 6 data are consistent with structures interpreted by Catchings et al. (2009).
NASA Astrophysics Data System (ADS)
Zuza, A. V.; Levy, D. A.; Wang, Z.; Xiong, X.; Chen, X.
2017-12-01
The active Cenozoic Qilian Shan-Nan Shan thrust belt defines the northern margin of the Tibetan Plateau. The kinematic development of this thrust belt has implications models of plateau growth and Himalayan-Tibetan orogen strain accommodation. We present new field observations and analytical data from a traverse across the 350-km-wide doubly vergent Qilian Shan, which is bound by the south-dipping North Qilian thrust system in the north and the north-dipping range-bounding Qinghai Nanshan-Dulan Shan thrust system in the south. These faults, and several other major thrusts within the thrust-belt interior, disrupt relatively thick Oligocene-Miocene basin deposits. Of note, many of the thrust faults across the width of the Qilian Shan have Quaternary fault scarps, indicating that active deformation is distributed and not only concentrated along the northern frontal faults. By integrating our detailed structural traverse with new geophysical observations and thermochronology data across the northern plateau margin, we construct a kinematic model for the development of the Tibetan Plateau's northern margin. Deformation initiated in the Eocene-Oligocene along the north-dipping Qinghai Nanshan-Dulan Shan and south-dipping Tuolai Nan Shan thrusts, the latter of which then defined the northern boundary of the Tibetan Plateau. This early deformation was focused along preexisting early Paleozoic structures. A 200-km-wide basin formed between these ranges, and from the Miocene to present, new thrust- and strike-slip-fault-bounded ranges developed, including the north-directed North Qilian and the south-directed Tuolai Nan thrusts. Thus, our observations do not support northward propagating thrust-belt expansion. Instead, we envision that the initial thrust-belt development generated a wide Oligocene-Miocene north-plateau basin that was subsequently disintegrated by later Miocene to present thrusting and strike-slip faulting. Ultimately, the Qilian Shan-Nan Shan thrust belt differs from a typical orogenic thrust wedge, and active deformation is distributed across the range.
NASA Astrophysics Data System (ADS)
Gonzalez, M.; Aguilar, C.; Martin, A.
2007-05-01
The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0.5 seconds (TWTT). Seismic imaging indicates that the Wagner and Consag faults transfer most of their slip to the Cerro Prieto fault. Moreover, the 130° intersection between the Wagner and Cerro Prieto faults suggests that the Wagner fault has a significant strike-slip component. Our results indicate that most of the strain in this plate boundary is transferred along two main sub-parallel oblique faults in a narrow zone 35 km-wide.
Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho
Koper, Keith D.; Pankow, Kristine L.; Pechmann, James C.; ...
2018-05-29
An energetic earthquake sequence occurred during September to October 2017 near Sulphur Peak, Idaho. The normal–faulting M w 5.3 mainshock of 2 September 2017 was widely felt in Idaho, Utah, and Wyoming. Over 1,000 aftershocks were located within the first 2 months, 29 of which had magnitudes ≥4.0 M L. High–accuracy locations derived with data from a temporary seismic array show that the sequence occurred in the upper (<10 km) crust of the Aspen Range, east of the northern section of the range–bounding, west–dipping East Bear Lake Fault. Moment tensors for 77 of the largest events show normal and strike–slipmore » faulting with a summed aftershock moment that is 1.8–2.4 times larger than the mainshock moment. Here, we propose that the unusually high productivity of the 2017 Sulphur Peak sequence can be explained by aseismic afterslip, which triggered a secondary swarm south of the coseismic rupture zone beginning ~1 day after the mainshock.« less
Howard, K.A.
2010-01-01
The 1968 trapdoor collapse (1.5 km3) of Fernandina caldera in the Galapágos Islands developed the same kinds of structures as found in small sandbox-collapse models and in concentrically zoned sinks formed in desert alluvium by fault subsidence into underground nuclear-explosion cavities. Fernandina’s collapse developed through shear failure in which the roof above the evacuating chamber was lowered mostly intact. This coherent subsidence contrasts to chaotic piecemeal collapse at small, rocky pit craters, underscoring the role of rock strength relative to subsidence size. The zoning at Fernandina implies that the deflated magma chamber underlay a central basin and a bordering inward-dipping monocline, which separates a blind inner reverse fault from an outer zone of normal faulting. Similar concentric zoning patterns can be recognized in coherent subsidence structures ranging over 16 orders of magnitude in size, from sandbox experiments to the giant Olympus Mons caldera on Mars.
Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koper, Keith D.; Pankow, Kristine L.; Pechmann, James C.
An energetic earthquake sequence occurred during September to October 2017 near Sulphur Peak, Idaho. The normal–faulting M w 5.3 mainshock of 2 September 2017 was widely felt in Idaho, Utah, and Wyoming. Over 1,000 aftershocks were located within the first 2 months, 29 of which had magnitudes ≥4.0 M L. High–accuracy locations derived with data from a temporary seismic array show that the sequence occurred in the upper (<10 km) crust of the Aspen Range, east of the northern section of the range–bounding, west–dipping East Bear Lake Fault. Moment tensors for 77 of the largest events show normal and strike–slipmore » faulting with a summed aftershock moment that is 1.8–2.4 times larger than the mainshock moment. Here, we propose that the unusually high productivity of the 2017 Sulphur Peak sequence can be explained by aseismic afterslip, which triggered a secondary swarm south of the coseismic rupture zone beginning ~1 day after the mainshock.« less
NASA Astrophysics Data System (ADS)
Papadopoulos, Gerassimos A.; Karastathis, Vassilis; Kontoes, Charalambos; Charalampakis, Marinos; Fokaefs, Anna; Papoutsis, Ioannis
2010-09-01
The 2008 mainshock ( Mw = 6.4) was the first modern, strong strike-slip earthquake in the Greek mainland. The fault strikes NE-SW, dips ˜ 85°NW while the motion was right-lateral with small reverse component. Historical seismicity showed no evidence that the fault ruptured in the last 300 years. For rectangular planar fault we estimated fault dimensions from aftershock locations. Dimensions are consistent with that a buried fault was activated, lateral expansion occurred only along length and the rupture stopped at depth ˜ 20 km implying that more rupture along length was favoured. We concluded that no major asperities remained unbroken and that the aftershock activity was dominated rather by creeping mechanism than by the presence of locked patches. For Mo = 4.56 × 10 25 dyn cm we calculated average slip of 76 cm and stress drop Δσ ˜ 13 bars. This Δσ is high for Greek strike-slip earthquakes, due rather to increased rigidity because of the relatively long recurrence ( Τ > 300 years) of strong earthquakes in the fault, than to high slip. Values of Δσ and Τ indicated that the fault is neither a typical strong nor a typical weak fault. Dislocation modeling of a buried fault showed uplift of ˜ 8.0 cm in Kato Achaia ( Δ ˜ 20 km) at the hanging wall of the reverse fault component. DInSAR analysis detected co-seismic motion only in Kato Achaia where interferogram fringes pattern showed vertical displacement from 3.0 to 6.0 cm. From field-surveys we estimated maximum intensity of VIII in Kato Achaia. The most important liquefaction spots were also observed there. These observations are attributable neither to surface fault-breaks nor to site effects but possibly to high ground acceleration due to the co-seismic uplift. The causal association between displacement and earthquake damage in the hanging wall described for dip-slip faults in Taiwan, Greece and elsewhere, becomes possible also for strike-slip faults with dip-slip component, as the 2008 earthquake.
A comparison study of 2006 Java earthquake and other Tsunami earthquakes
NASA Astrophysics Data System (ADS)
Ji, C.; Shao, G.
2006-12-01
We revise the slip processes of July 17 2006 Java earthquakes by combined inverting teleseismic body wave, long period surface waves, as well as the broadband records at Christmas island (XMIS), which is 220 km away from the hypocenter and so far the closest observation for a Tsunami earthquake. Comparing with the previous studies, our approach considers the amplitude variations of surface waves with source depths as well as the contribution of ScS phase, which usually has amplitudes compatible with that of direct S phase for such low angle thrust earthquakes. The fault dip angles are also refined using the Love waves observed along fault strike direction. Our results indicate that the 2006 event initiated at a depth around 12 km and unilaterally rupture southeast for 150 sec with a speed of 1.0 km/sec. The revised fault dip is only about 6 degrees, smaller than the Harvard CMT (10.5 degrees) but consistent with that of 1994 Java earthquake. The smaller fault dip results in a larger moment magnitude (Mw=7.9) for a PREM earth, though it is dependent on the velocity structure used. After verified with 3D SEM forward simulation, we compare the inverted result with the revised slip models of 1994 Java and 1992 Nicaragua earthquakes derived using the same wavelet based finite fault inversion methodology.
NASA Astrophysics Data System (ADS)
Dewing, Keith; Pratt, Brian R.; Hadlari, Thomas; Brent, Tom; BÉDard, Jean; Rainbird, Robert H.
2013-02-01
Regional geological mapping of the glaciated surface of northwestern Victoria Island in the western Canadian Arctic revealed an anomalous structure in otherwise flat-lying Neoproterozoic and lower Paleozoic carbonate rocks, located south of Richard Collinson Inlet. The feature is roughly circular in plan view, approximately 25 km in diameter, and characterized by quaquaversal dips of approximately 45°, decreasing laterally. The core of the feature also exhibits local vertical dips, low-angle reverse faults, and drag folds. Although brecciation was not observed, shatter cones are pervasive in all lithologies in the central area, including 723 Ma old dikes that penetrate Neoproterozoic limestones. Their abundance decreases distally, and none was observed in surrounding, horizontally bedded strata. This circular structure is interpreted as a deeply eroded meteorite impact crater of the complex type, and the dipping strata as the remnants of the central uplift. The variation in orientation and shape of shatter cones point to variably oriented stresses with the passage of the shock wave, possibly related to the presence of pore water in the target strata as well as rock type and lithological heterogeneities, especially bed thickness. Timing of impact is poorly constrained. The youngest rocks affected are Late Ordovician (approximately 450 Ma) and the impact structure is mantled by undisturbed postglacial sediments. Regional, hydrothermal dolomitization of the Ordovician limestones, possibly in the Late Devonian (approximately 360 Ma), took place before the impact, and widespread WSW-ENE-trending normal faults of probable Early Cretaceous age (approximately 130 Ma) apparently cross-cut the impact structure.
Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data
NASA Astrophysics Data System (ADS)
Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.
2016-12-01
Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns appear to correlate with variations in the distribution of aftershocks from the 2009 and 2014 Karonga earthquakes and in background seismicity beneath the lake, providing new constraints on length-displacement scaling for predictive models and earthquake hazards.
NASA Astrophysics Data System (ADS)
Ghribi, R.; Zaatra, D.; Bouaziz, S.
2018-01-01
The Monastir and Grombalia fault systems consist of three strands that the northern segment corresponds to Hammamet and Grombalia faults. The southern strand represents Monastir Fault also referred to as the Skanes-Khnis Fault. These NW-trends are observed continuously in the major outcropping features of north-eastern Tunisia including both the Cap Bon peninsula and the Sahel domain. Along the Hammamet Fault, the north-eastern strand of Grombalia fault system, left lateral drainage offset of amount 220 m is found in Fawara valley. To the South, the left lateral movement is occurred along the Monastir Fault based on 180 m of Tyrrhenian terrace displacement. Field observations supported by satellite images suggest that the Monastir and Grombalia fault systems appear to slip mostly laterally with components of normal dip slip. Assuming the development of the stream networks during the Riss-Würm interglacial (115000-125000 years) and the age of the Tyrrhenian terrace (121 ± 10 ka), the strike slip rates of the Hammamet and Monastir faults are calculated in the range of 1.5-1.8 mm/yr. There vertical slip rates are estimated to be 0.06 and 0.26 mm/yr, respectively. These data are consistent with the displacement rate in the Pelagian shelf (1-2 mm/yr) but they are below the convergence rate of African-Eurasian plates (8 mm/yr). Our seismotectonics study reveals that a maximum earthquake of Mw = 6.5 could occur every 470 years in the Hammamet fault zone and Mw = 6-every 263 years in the Monastir fault zone.
NASA Astrophysics Data System (ADS)
Roberts, Gerald P.; Ganas, Athanassios
2000-10-01
Fault-slip directions recorded by outcropping striated and corrugated fault planes in central and southern Greece have been measured for comparison with extension directions derived from focal mechanism and Global Positioning System (GPS) data for the last ˜100 years to test how far back in time velocity fields and deformation dynamics derived from the latter data sets can be extrapolated. The fault-slip data have been collected from the basin-bounding faults to Plio-Pleistocene to recent extensional basins and include data from arrays of footwall faults formed during the early stages of fault growth. We show that the orientation of the inferred stress field varies along faults and earthquake ruptures, so we use only slip-directions from the centers of faults, where dip-slip motion occurs, to constrain regionally significant extension directions. The fault-slip directions for the Peloponnese and Gulfs of Evia and Corinth are statistically different at the 99% confidence level but statistically the same as those implied by earthquake focal mechanisms for each region at the 99% confidence level; they are also qualitatively similar to the principal strain axes derived from GPS studies. Extension directions derived from fault-slip data are 043-047° for the southern Peloponnese, 353° for the Gulf of Corinth, and 015-014° for the Gulf of Evia. Extension on active normal faults in the two latter areas appears to grade into strike-slip along the North Anatolian Fault through a gradual change in fault-slip directions and fault strikes. To reconcile the above with 5° Myr-1 clockwise rotations suggested for the area, we suggest that the faults considered formed during a single phase of extension. The deformation and formation of the normal fault systems examined must have been sufficiently rapid and recent for rotations about vertical axes to have been unable to disperse the fault-slip directions from the extension directions implied by focal mechanisms and GPS data. Thus, in central and southern Greece the velocity fields derived from focal mechanism and GPS data may help explain the dynamics of the deformation over longer time periods than the ˜100 years over which they were measured; this may include the entire deformation history of the fault systems considered, a time period that may exceed 1-2 Myr.
NASA Astrophysics Data System (ADS)
Brandl, C.; Reece, R.; Bayer, J.; Bales, M. K.
2016-12-01
Bonaire is located on the Bonaire microplate between the Caribbean and South American plates, and is part of the Netherlands Leeward Antilles as well as the ABC Islands along with Aruba and Curacao. As the major tectonic plates move they stress the microplate, which causes deformation as faulting. This study utilizes legacy seismic reflection data combined with a recent nearshore survey to study tectonic deformation in the basins surrounding Bonaire. Our legacy data covers a large portion of the ABC Islands; one dataset is a 1981 multichannel seismic (MCS) WesternGeco survey and the other is a 1971 USGS survey that we converted from print to SEGY. The modern dataset (2013) is a high-resolution MCS survey acquired off the western coast of Bonaire. We will use the legacy datasets to validate previous interpretations in the nearshore environment and extend these interpretations to the deepwater basins. Faults influenced by regional tectonics are more evident in deepwater basins because of their lateral continuity, and offset of thick sedimentary strata. A recent study of nearshore Bonaire utilizing the high-resolution seismic dataset interpreted several NE-SW dipping normal faults, which may correspond to regional extension. However, the influence is not clear, perhaps due to a lack of data or the nearshore nature of the dataset. Analysis of the legacy datasets show several areas in the surrounding basins with faults dipping NE-SW. Further analysis may reinforce observations made in the nearshore environment. Studying the tectonics of Bonaire can provide insight about the evolution of the region and help better define the effect of regional tectonic forces on the microplate. This study also shows the benefit of legacy seismic datasets that are publically available but stored as print or film in conjunction with modern data. They can provide value to a modern study by expanding the scope of available data as well as increasing the number of questions a study can address.
Timing, distribution, amount, and style of Cenozoic extension in the northern Great Basin
Henry, Christopher D.; McGrew, Allen J.; Colgan, Joseph P.; Snoke, Arthur W.; Brueseke, Matthew E.
2011-01-01
This field trip examines contrasting lines of evidence bearing on the timing and structural style of Cenozoic (and perhaps late Mesozoic) extensional deformation in northeastern Nevada. Studies of metamorphic core complexes in this region report extension beginning in the early Cenozoic or even Late Cretaceous, peaking in the Eocene and Oligocene, and being largely over before the onset of “modern” Basin and Range extension in the middle Miocene. In contrast, studies based on low-temperature thermochronology and geologic mapping of Eocene and Miocene volcanic and sedimentary deposits report only minor, localized extension in the Eocene, no extension at all in the Oligocene and early Miocene, and major, regional extension in the middle Miocene. A wealth of thermochronologic and thermobarometric data indicate that the Ruby Mountains–East Humboldt Range metamorphic core complex (RMEH) underwent ~170 °C of cooling and 4 kbar of decompression between ca. 85 and ca. 50 Ma, and another 450 °C cooling and 4–5 kbar decompression between ca. 50 and ca. 21 Ma. These data require ~30 km of exhumation in at least two episodes, accommodated at least in part by Eocene to early Miocene displacement on the major west-dipping mylonitic zone and detachment fault bounding the RMEH on the west (the mylonitic zone may also have been active during an earlier phase of crustal extension). Meanwhile, Eocene paleovalleys containing 45–40 Ma ash-flow tuffs drained eastward from northern Nevada to the Uinta Basin in Utah, and continuity of these paleovalleys and infilling tuffs across the region indicate little, if any deformation by faults during their deposition. Pre–45 Ma deformation is less constrained, but the absence of Cenozoic sedimentary deposits and mappable normal faults older than 45 Ma is also consistent with only minor (if any) brittle deformation. The presence of ≤1 km of late Eocene sedimentary—especially lacustrine—deposits and a low-angle angular unconformity between ca. 40 and 38 Ma rocks attest to an episode of normal faulting at ca. 40 Ma. Arguably the greatest conundrum is how much extension occurred between ca. 35 and 17 Ma. Major exhumation of the RMEH is interpreted to have taken place in the late Oligocene and early Miocene, but rocks of any kind deposited during this interval are scarce in northeastern Nevada and absent in the vicinity of the RMEH itself. In most places, no angular unconformity is present between late Eocene and middle Miocene rocks, indicating little or no tilting between the late Eocene and middle Miocene. Opinions among authors of this report differ, however, as to whether this indicates no extension during the same time interval. The one locality where Oligocene deposits have been documented is Copper Basin, where Oligocene (32.5–29.5 Ma) conglomerates are ~500 m thick. The contact between Oligocene and Eocene rocks in Copper Basin is conformable, and the rocks are uniformly tilted ~25° NW, opposite to a normal fault system dipping ~35° SE. Middle Miocene rhyolite (ca. 16 Ma) rests nonconformably on the metamorphosed lower plate of this fault system and appears to rest on the tilted upper-plate rocks with angular unconformity, but the contact is not physically exposed. Different authors of this report interpret geologic relations in Copper Basin to indicate either (1) significant episodes of extension in the Eocene, Oligocene, and middle Miocene or (2) minor extension in the Eocene, uncertainty about the Oligocene, and major extension in the middle Miocene. An episode of major middle Miocene extension beginning at ca. 16–17 Ma is indicated by thick (up to 5 km) accumulations of sedimentary deposits in half-graben basins over most of northern Nevada, tilting and fanning of dips in the synextensional sedimentary deposits, and apatite fission-track and (U-Th)/He data from the southern Ruby Mountains and other ranges that indicate rapid middle Miocene cooling through near-surface temperatures (~120–40 °C). Opinions among authors of this report differ as to whether this period of extension was merely the last step in a long history of extensional faulting dating back at least to the Eocene, or whether it accounts for most of the Cenozoic deformation in northeastern Nevada. Since 10–12 Ma, extension appears to have slowed greatly and been accommodated by high-angle, relatively wide-spaced normal faults that give topographic form to the modern ranges. Despite the low present-day rate of extension, normal faults are active and have generated damaging earthquakes as recently as 2008.
Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models
NASA Astrophysics Data System (ADS)
Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio
2017-04-01
The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared precut models with isotropic models to evaluate the trends of variability. Our results indicate that the discontinuities are reactivated especially when the tip of the newly-formed fault is either below or connected to them. During the stage of maximum activity along the precut, the faults slow down or even stop their propagation. The fault propagation systematically resumes when the angle between the fault and the precut is about 90° (critical angle); only during this stage the fault crosses the precut. The reactivation of the discontinuities induces an increase of the apical angle of the fault-related fold and produces wider limbs compared to the isotropic reference experiments.
NASA Astrophysics Data System (ADS)
Contreras, J.; Ramirez Zerpa, N. A.; Negrete-Aranda, R.
2014-12-01
The northern Gulf of California Rift System consist sofa series faults that accommodate both normal and strike-slip motion. The faults formed a series of half-greens filled with more than 7 km of siliciclastic successions. Here, we present tectonostratigraphic and heat flow models for the Tiburón basin, in the southern part of the system, and the Wagner basin in the north. The models are constrained by two-dimensional seismic lines and by two deep boreholes drilled by PEMEX-PEP. Analysis of the seismic lines and models' results show that: (i) subsidence of the basins is controlled by high-angle normal faults and by flow of the lower crust, (ii) basins share a common history, and (iii) there are significant differences in the way brittle strain was partitioned in the basins, a feature frequently observed in rift basins. On one hand, the bounding faults of the Tiburón basin have a nested geometry and became active following a west-to-east sequence of activation. The Tiburon half-graben was formed by two pulses of fault activity. One took place during the protogulf extensional phase in the Miocene and the other during the opening of Gulf of California in the Pleistocene. On the other hand, the Wagner basin is the result of two fault generations. During the late-to middle Miocene, the west-dipping Cerro Prieto and San Felipe faults formed a domino array. Then, during the Pleistocene the Consag and Wagner faults dissected the hanging-wall of the Cerro Prieto fault forming the modern Wagner basin. Thermal modeling of the deep borehole temperatures suggests that the heat flow in these basins in the order of 110 mW/m2 which is in agreement with superficial heat flow measurements in the northern Gulf of California Rift System.
Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick
2016-01-01
Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.
NASA Astrophysics Data System (ADS)
Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.
2014-12-01
Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.
Marple, R.; Miller, R.
2006-01-01
Seismic-reflection data were integrated with other geophysical, geologic, and seismicity data to better determine the location and nature of buried faults in the Charleston, South Carolina, region. Our results indicate that the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville are related to local stresses caused by a 12?? bend in the East Coast fault system (ECFS) and two triple-fault junctions. One triple junction is formed by the intersection of the northwest-trending Ashley River fault with the two segments of the ECFS north and south of the bend. The other triple junction is formed by the intersection of the northeast-trending Summerville fault and a newly discovered northwest-trending Berkeley fault with the ECFS about 10 km north of the bend. The Summerville fault is a northwest-dipping border fault of the Triassic-age Jedburg basin that is undergoing reverse-style reactivation. This reverse-style reactivation is unusual because the Summerville fault parallels the regional stress field axis, suggesting that the reactivation is from stresses applied by dextral motion on the ECFS. The southwest-dip and reverse-type motion of the Berkeley fault are interpreted from seismicity data and a seismic-reflection profile in the western part of the study area. Our results also indicate that the East Coast fault system is a Paleozoic basement fault and that its reactivation since early Mesozoic time has fractured through the overlying allochthonous terranes.
NASA Astrophysics Data System (ADS)
McLindon, C.
2017-12-01
The Barataria fault is a major component of the Terrebonne Trough, a structural system of faults and salt domes underlying coastal Louisiana. High-quality 3-D seismic reflection data, industry well logs, micro-paleontological data and published literature on regional depositional patterns are integrated to provide an evolutionary history of the Barataria fault. The fault is a segment within a series of south-dipping normal faults that define the northern boundary of the Terrebonne Trough. The fault segment tips at depth interact with the Lake Washington and Bay de Chene salt domes, which appear to have limited its along-strike length. This study shows that the Barataria fault has exhibited continuous but episodic slip since at least the middle Miocene and through the present. Periods of maximum rates of fault slip are related to periods of maximum rates of sediment accumulation associated with Miocene deltaic deposition. The expansion of interval thickness between biostratigraphic markers in the hanging wall section of the fault relative to the footwall section (expansion index) indicate that rates of subsidence on the footwall during active fault slip were substantially greater than on the footwall. Pliocene-Pleistocene stratigraphic intervals exhibiting lower expansion indexes indicate that the fault remained active, but with a pattern of slower slip rate in which stratigraphic thickening was more limited to the area immediately adjacent to the fault. The Barataria fault defines the modern-day width of Barataria Bay, and also has a surface expression in the coastal marsh indicating that recent episodic slip has been associated with patterns of Holocene deltaic deposition.
Eberhart-Phillips, D.; Michael, A.J.
1998-01-01
Three-dimensional Vp and Vp/Vs velocity models for the Loma Prieta region were developed from the inversion of local travel time data (21,925 P arrivals and 1,116 S arrivals) from earthquakes, refraction shots, and blasts recorded on 1700 stations from the Northern California Seismic Network and numerous portable seismograph deployments. The velocity and density models and microearthquake hypocenters reveal a complex structure that includes a San Andreas fault extending to the base of the seismogenic layer. A body with high Vp extends the length of the rupture and fills the 5 km wide volume between the Loma Prieta mainshock rupture and the San Andreas and Sargent faults. We suggest that this body controls both the pattern of background seismicity on the San Andreas and Sargent faults and the extent of rupture during the mainshock, thus explaining how the background seismicity outlined the along-strike and depth extent of the mainshock rupture on a different fault plane 5 km away. New aftershock focal mechanisms, based on three-dimensional ray tracing through the velocity model, support a heterogeneous postseismic stress field and can not resolve a uniform fault normal compression. The subvertical (or steeply dipping) San Andreas fault and the fault surfaces that ruptured in the 1989 Loma Prieta earthquake are both parts of the San Andreas fault zone and this section of the fault zone does not have a single type of characteristic event.
NASA Astrophysics Data System (ADS)
Vasuki, Yathunanthan; Holden, Eun-Jung; Kovesi, Peter; Micklethwaite, Steven
2014-08-01
Recent advances in data acquisition technologies, such as Unmanned Aerial Vehicles (UAVs), have led to a growing interest in capturing high-resolution rock surface images. However, due to the large volumes of data that can be captured in a short flight, efficient analysis of this data brings new challenges, especially the time it takes to digitise maps and extract orientation data. We outline a semi-automated method that allows efficient mapping of geological faults using photogrammetric data of rock surfaces, which was generated from aerial photographs collected by a UAV. Our method harnesses advanced automated image analysis techniques and human data interaction to rapidly map structures and then calculate their dip and dip directions. Geological structures (faults, joints and fractures) are first detected from the primary photographic dataset and the equivalent three dimensional (3D) structures are then identified within a 3D surface model generated by structure from motion (SfM). From this information the location, dip and dip direction of the geological structures are calculated. A structure map generated by our semi-automated method obtained a recall rate of 79.8% when compared against a fault map produced using expert manual digitising and interpretation methods. The semi-automated structure map was produced in 10 min whereas the manual method took approximately 7 h. In addition, the dip and dip direction calculation, using our automated method, shows a mean±standard error of 1.9°±2.2° and 4.4°±2.6° respectively with field measurements. This shows the potential of using our semi-automated method for accurate and efficient mapping of geological structures, particularly from remote, inaccessible or hazardous sites.
NASA Astrophysics Data System (ADS)
Fielding, E. J.; Sun, J.; Gonzalez-Ortega, A.; González-Escobar, M.; Freed, A. M.; Burgmann, R.; Samsonov, S. V.; Gonzalez-Garcia, J.; Fletcher, J. M.; Hinojosa, A.
2013-12-01
The Pacific-North America plate boundary character changes southward from the strike-slip and transpressional configuration along most of California to oblique rifting in the Gulf of California, with a transitional zone of transtension beneath the Salton Trough in southernmost California and northern Mexico. The Salton Trough is characterized by extremely high heat flow and thin lithosphere with a thick fill of sedimentary material delivered by the Colorado River during the past 5-6 million years. Because of the rapid sedimentation, most of the faults in Salton Trough are buried and reveal themselves when they slip either seismically or aseismically. They can also be located by refraction and reflection of seismic waves. The 4 April 2010 El Mayor-Cucapah earthquake (Mw 7.2) in Baja California and Sonora, Mexico is probably the largest earthquake in the Salton Trough for at least 120 years, and had primarily right-lateral strike-slip motion. The earthquake ruptured a complex set of faults that lie to the west of the main plate boundary fault, the Cerro Prieto Fault, and shows that the strike-slip fault system in the southern Salton Trough has multiple sub-parallel active faults, similar to southern California. The Cerro Prieto Fault is still likely absorbing the majority of strain in the plate boundary. We study the coseismic and postseismic deformation of the 2010 earthquake with interferometric analysis of synthetic aperture radar (SAR) images (InSAR) and pixel tracking by subpixel correlation of SAR and optical images. We combine sampled InSAR and subpixel correlation results with GPS (Global Positioning System) offsets at PBO (Plate Boundary Observatory) stations to estimate the likely subsurface geometry of the major faults that slipped during the earthquake and to derive a static coseismic slip model. We constrained the surface locations of the fault segments to mapped locations in the Sierra Cucapah to the northwest of the epicenter. SAR along-track offsets, especially on ALOS images, show that there is a large amount of right-lateral slip (1-3 m) on a previously unmapped system of faults extending about 60 km to the southeast of the epicenter beneath the Colorado River Delta named the Indiviso Fault system. The finite fault slip modeling shows a bilateral rupture with coseismic fault slip shallower than 10 km on the faults to the NW (dipping NE) and SE (dipping SW) of the epicenter. The southeastern end of the coseismic ruptures has complex fault geometry, including both east- and west-dipping faults revealed by recently reprocessed seismic reflection profiles. This new coseismic fault geometry will be the basis for a new finite element model of the crust and mantle for modeling of the coseismic slip with realistic 3D elastic structure and the viscoelastic postseismic relaxation. Postseismic InSAR, including new Uninhabited Aerial Vehicle SAR (UAVSAR) data, and GPS show rapid shallow afterslip on faults at the north and south ends of the main coseismic rupture and down-dip from the area of largest coseismic slip. Longer wavelength postseismic relaxation will be best measured by GPS.
How do horizontal, frictional discontinuities affect reverse fault-propagation folding?
NASA Astrophysics Data System (ADS)
Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio
2017-09-01
The development of new reverse faults and related folds is strongly controlled by the mechanical characteristics of the host rocks. In this study we analyze the impact of a specific kind of anisotropy, i.e. thin mechanical and frictional discontinuities, in affecting the development of reverse faults and of the associated folds using physical scaled models. We perform analog modeling introducing one or two initially horizontal, thin discontinuities above an initially blind fault dipping at 30° in one case, and 45° in another, and then compare the results with those obtained from a fully isotropic model. The experimental results show that the occurrence of thin discontinuities affects both the development and the propagation of new faults and the shape of the associated folds. New faults 1) accelerate or decelerate their propagation depending on the location of the tips with respect to the discontinuities, 2) cross the discontinuities at a characteristic angle (∼90°), and 3) produce folds with different shapes, resulting not only from the dip of the new faults but also from their non-linear propagation history. Our results may have direct impact on future kinematic models, especially those aimed to reconstruct the tectonic history of faults that developed in layered rocks or in regions affected by pre-existing faults.
Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano
2017-12-12
Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.
Geometry and earthquake potential of the shoreline fault, central California
Hardebeck, Jeanne L.
2013-01-01
The Shoreline fault is a vertical strike‐slip fault running along the coastline near San Luis Obispo, California. Much is unknown about the Shoreline fault, including its slip rate and the details of its geometry. Here, I study the geometry of the Shoreline fault at seismogenic depth, as well as the adjacent section of the offshore Hosgri fault, using seismicity relocations and earthquake focal mechanisms. The Optimal Anisotropic Dynamic Clustering (OADC) algorithm (Ouillon et al., 2008) is used to objectively identify the simplest planar fault geometry that fits all of the earthquakes to within their location uncertainty. The OADC results show that the Shoreline fault is a single continuous structure that connects to the Hosgri fault. Discontinuities smaller than about 1 km may be undetected, but would be too small to be barriers to earthquake rupture. The Hosgri fault dips steeply to the east, while the Shoreline fault is essentially vertical, so the Hosgri fault dips towards and under the Shoreline fault as the two faults approach their intersection. The focal mechanisms generally agree with pure right‐lateral strike‐slip on the OADC planes, but suggest a non‐planar Hosgri fault or another structure underlying the northern Shoreline fault. The Shoreline fault most likely transfers strike‐slip motion between the Hosgri fault and other faults of the Pacific–North America plate boundary system to the east. A hypothetical earthquake rupturing the entire known length of the Shoreline fault would have a moment magnitude of 6.4–6.8. A hypothetical earthquake rupturing the Shoreline fault and the section of the Hosgri fault north of the Hosgri–Shoreline junction would have a moment magnitude of 7.2–7.5.
NASA Astrophysics Data System (ADS)
Huang, Mong-Han; Fielding, Eric J.; Dickinson, Haylee; Sun, Jianbao; Gonzalez-Ortega, J. Alejandro; Freed, Andrew M.; Bürgmann, Roland
2017-01-01
The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake in Baja, California, and Sonora, Mexico, had primarily right-lateral strike-slip motion and a minor normal-slip component. The surface rupture extended about 120 km in a NW-SE direction, west of the Cerro Prieto fault. Here we use geodetic measurements including near- to far-field GPS, interferometric synthetic aperture radar (InSAR), and subpixel offset measurements of radar and optical images to characterize the fault slip during the EMC event. We use dislocation inversion methods and determine an optimal nine-segment fault geometry, as well as a subfault slip distribution from the geodetic measurements. With systematic perturbation of the fault dip angles, randomly removing one geodetic data constraint, or different data combinations, we are able to explore the robustness of the inferred slip distribution along fault strike and depth. The model fitting residuals imply contributions of early postseismic deformation to the InSAR measurements as well as lateral heterogeneity in the crustal elastic structure between the Peninsular Ranges and the Salton Trough. We also find that with incorporation of near-field geodetic data and finer fault patch size, the shallow slip deficit is reduced in the EMC event by reductions in the level of smoothing. These results show that the outcomes of coseismic inversions can vary greatly depending on model parameterization and methodology.
Marshak, S.; Nelson, W.J.; McBride, J.H.
2003-01-01
The continental interior platform of the United States is that part of the North American craton where a thin veneer of Phanerozoic strata covers Precambrian crystalline basement. N- to NE-trending and W- to NW-trending fault zones, formed initially by Proterozoic/Cambrian rifting, break the crust of the platform into rectilinear blocks. These zones were reactivated during the Phanerozoic, most notably in the late Palaeozoic Ancestral Rockies event and the Mesozoic-Cenozoic Laramide orogeny - some remain active today. Dip-slip reactivation can be readily recognized in cross section by offset stratigraphic horizons and monoclinal fault-propagation folds. Strike-slip displacement is hard to document because of poor exposure. Through offset palaeochannels, horizontal slip lineations, and strain at fault bends locally demonstrate strike-slip offset, most reports of strike-slip movements for interior-platform faults are based on occurrence of map-view belts of en echelon faults and anticlines. Each belt overlies a basement-penetrating master fault, which typically splays upwards into a flower structure. In general, both strike-slip and dip-slip components of displacement occur in the same fault zone, so some belts of en echelon structures occur on the flanks of monoclinal folds. Thus, strike-slip displacement represents the lateral components of oblique fault reactivation: dip-slip and strike-slip components are the same order of magnitude (tens of metres to tens of kilometres). Effectively, faults with strike-slip components of displacement act as transfers accommodating jostling of rectilinear crustal blocks. In this context, the sense of slip on an individual strike-slip fault depends on block geometry, not necessarily on the trajectory of regional ??1. Strike-slip faulting in the North American interior differs markedly from that of southern and central Eurasia, possibly because of a contrast in lithosphere strength. Weak Eurasia strained significantly during the Alpine-Himalayan collision, forcing crustal blocks to undergo significant lateral escape. The strong North American craton strained relatively little during collisional-convergent orogeny, so crustal blocks underwent relatively small displacements.
Slip Inversion Along Inner Fore-Arc Faults, Eastern Tohoku, Japan
NASA Astrophysics Data System (ADS)
Regalla, Christine; Fisher, Donald M.; Kirby, Eric; Oakley, David; Taylor, Stephanie
2017-11-01
The kinematics of deformation in the overriding plate of convergent margins may vary across timescales ranging from a single seismic cycle to many millions of years. In Northeast Japan, a network of active faults has accommodated contraction across the arc since the Pliocene, but several faults located along the inner fore arc experienced extensional aftershocks following the 2011 Tohoku-oki earthquake, opposite that predicted from the geologic record. This observation suggests that fore-arc faults may be favorable for stress triggering and slip inversion, but the geometry and deformation history of these fault systems are poorly constrained. Here we document the Neogene kinematics and subsurface geometry of three prominent fore-arc faults in Tohoku, Japan. Geologic mapping and dating of growth strata provide evidence for a 5.6-2.2 Ma initiation of Plio-Quaternary contraction along the Oritsume, Noheji, and Futaba Faults and an earlier phase of Miocene extension from 25 to 15 Ma along the Oritsume and Futaba Faults associated with the opening of the Sea of Japan. Kinematic modeling indicates that these faults have listric geometries, with ramps that dip 40-65°W and sole into subhorizontal detachments at 6-10 km depth. These fault systems can experience both normal and thrust sense slip if they are mechanically weak relative to the surrounding crust. We suggest that the inversion history of Northeast Japan primed the fore arc with a network of weak faults mechanically and geometrically favorable for slip inversion over geologic timescales and in response to secular variations in stress state associated with the megathrust seismic cycle.
Transfer zones in listric normal fault systems
NASA Astrophysics Data System (ADS)
Bose, Shamik
Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in divergent and convergent transfer zones. Flat base plate setups have been used to build different configurations that would lead to approaching, normal offset and overlapping faults geometries. The results have been analyzed with respect to fault orientation, density, connectivity and 3D geometry from photographs taken from the three free surfaces and laser scans of the top surface of the clay cake respectively. The second chapter looks into the 3D structural analysis of the South Timbalier Block 54, offshore Louisiana in the Gulf of Mexico with the help of a 3D seismic dataset and associated well tops and velocity data donated by ExxonMobil Corporation. This study involves seismic interpretation techniques, velocity modeling, cross section restoration of a series of seismic lines and 3D subsurface modeling using depth converted seismic horizons, well tops and balanced cross sections. The third chapter deals with the clay experiments of listric normal fault systems and tries to understand the controls on geometries of fault systems with and without a ductile substrate. Sloping flat base plate setups have been used and silicone fluid underlain below the clay cake has been considered as an analog for salt. The experimental configurations have been varied with respect to three factors viz. the direction of slope with respect to extension, the termination of silicone polymer with respect to the basal discontinuities and overlap of the base plates. The analyses for the experiments have again been performed from photographs and 3D laser scans of the clay surface.
Fault-scale controls on rift geometry: the Bilila-Mtakataka Fault, Malawi
NASA Astrophysics Data System (ADS)
Hodge, M.; Fagereng, A.; Biggs, J.; Mdala, H. S.
2017-12-01
Border faults that develop during initial stages of rifting determine the geometry of rifts and passive margins. At outcrop and regional scales, it has been suggested that border fault orientation may be controlled by reactivation of pre-existing weaknesses. Here, we perform a multi-scale investigation on the influence of anisotropic fabrics along a major developing border fault in the southern East African Rift, Malawi. The 130 km long Bilila-Mtakataka fault has been proposed to have slipped in a single MW 8 earthquake with 10 m of normal displacement. The fault is marked by an 11±7 m high scarp with an average trend that is oblique to the current plate motion. Variations in scarp height are greatest at lithological boundaries and where the scarp switches between following and cross-cutting high-grade metamorphic foliation. Based on the scarp's geometry and morphology, we define 6 geometrically distinct segments. We suggest that the segments link to at least one deeper structure that strikes parallel to the average scarp trend, an orientation consistent with the kinematics of an early phase of rift initiation. The slip required on a deep fault(s) to match the height of the current scarp suggests multiple earthquakes along the fault. We test this hypothesis by studying the scarp morphology using high-resolution satellite data. Our results suggest that during the earthquake(s) that formed the current scarp, the propagation of the fault toward the surface locally followed moderately-dipping foliation well oriented for reactivation. In conclusion, although well oriented pre-existing weaknesses locally influence shallow fault geometry, large-scale border fault geometry appears primarily controlled by the stress field at the time of fault initiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B; Faulds, James E
The Pyramid Lake area is favorable for geothermal development due to the tectonic setting of the region. The Walker Lane belt, a dextral shear zone that accommodates ~20% relative motion between the Pacific and North American plates, terminates northwestward in northeast California. NW-directed dextral shear is transferred to WNW extension accommodated by N-to -NNE striking normal faults of the Basin and Range. As a consequence, enhanced dilation occurs on favorably oriented faults generating high geothermal potential in the northwestern Great Basin. The NW-striking right-lateral Pyramid Lake fault, a major structure of the northern Walker Lane, terminates at the southern endmore » of Pyramid Lake and transfers strain to the NNE-striking down to the west Lake Range fault, resulting in high geothermal potential. Known geothermal systems in the area have not been developed due to cultural considerations of the Pyramid Lake Paiute Tribe. Therefore, exploration has been focused on discovering blind geothermal systems elsewhere on the reservation by identifying structurally favorable settings and indicators of past geothermal activity. One promising area is the northeast end of Pyramid Lake, where a broad left step between the west-dipping range-bounding faults of the Lake and Fox Ranges has led to the formation of a broad, faulted relay ramp. Furthermore, tufa mounds, mineralized veins, and altered Miocene rocks occur proximal to a thermal anomaly discovered by a 2-m shallow temperature survey at the north end of the step-over in Emerson Pass. Detailed geologic mapping has revealed a system of mainly NNE-striking down to the west normal faults. However, there are three notable exceptions to this generality, including 1) a prominent NW-striking apparent right-lateral fault, 2) a NW-striking down to the south fault which juxtaposes the base of the mid-Miocene Pyramid sequence against younger late Tertiary sedimentary rocks, and 3) a NNE-striking down to the east normal fault, which accommodates motion such that the Mesozoic Nightingale sequence is juxtaposed with late Tertiary sedimentary rocks. The NW dextral fault, the NNE-down to east fault, and several NNE-down to the west faults intersect roughly at the thermal anomaly in Emerson Pass. This suggests that fault intersections locally control upwelling of geothermal fluids within the step-over. Based on this assumption, it is proposed that the area near Buckbrush Springs be investigated further for geothermal potential. At this location, a NNE-down to the west normal fault, with >1 km of offset, intersects a NW-striking down to the south fault at a small left step in the NNE fault. Further studies will include collection of available kinematic indicators near the shallow thermal anomaly in Emerson Pass, geothermometry on Buckbrush Spring, and possibly drilling of temperature gradient wells in Emerson Pass and at Buckbrush Spring.« less
Mid-crustal detachment and ramp faulting in the Markham Valley, Papua New Guinea
NASA Astrophysics Data System (ADS)
Stevens, C.; McCaffrey, R.; Silver, E. A.; Sombo, Z.; English, P.; van der Kevie, J.
1998-09-01
Earthquakes and geodetic evidence reveal the presence of a low-angle, mid-crustal detachment fault beneath the Finisterre Range that connects to a steep ramp surfacing near the Ramu-Markham Valley of Papua New Guinea. Waveforms of three large (Mw 6.3 to 6.9) thrust earthquakes that occurred in October 1993 beneath the Finisterre Range 10 to 30 km north of the valley reveal 15° north-dipping thrusts at about 20 km depth. Global Positioning System measurements show up to 20 cm of coseismic slip occurred across the valley, requiring that the active fault extend to within a few hundred meters of the Earth's surface beneath the Markham Valley. Together, these data imply that a gently north-dipping thrust fault in the middle or lower crust beneath the Finisterre Range steepens and shallows southward, forming a ramp fault beneath the north side of the Markham Valley. Waveforms indicate that both the ramp and detachment fault were active during at least one of the earthquakes. While the seismic potential of mid-crustal detachments elsewhere is debated, in Papua New Guinea the detachment fault shows the capability of producing large earthquakes.
Crustal structure of the alaska range orogen and denali fault along the richardson highway
Fisher, M.A.; Pellerin, L.; Nokleberg, W.J.; Ratchkovski, N.A.; Glen, J.M.G.
2007-01-01
A suite of geophysical data obtained along the Richardson Highway crosses the eastern Alaska Range and Denali fault and reveals the crustal structure of the orogen. Strong seismic reflections from within the orogen north of the Denali fault dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal what is probably a shear zone that transects most of the crust and is part of a crustal-scale duplex structure that probably formed during the Late Cretaceous. These structures, however, appear to be relict because over the past 20 years, they have produced little or no seismicity despite the nearby Mw = 7.9 Denali fault earthquake that struck in 2002. The Denali fault is nonreflective, but we interpret modeled magnetotelluric (MT), gravity, and magnetic data to propose that the fault dips steeply to vertically. Modeling of MT data shows that aftershocks of the 2002 Denali fault earthquake occurred above a rock body that has low electrical resistivity (>10 ohm-m), which might signify the presence of fluids in the middle and lower crust. Copyright ?? 2007 The Geological Society of America.
NASA Technical Reports Server (NTRS)
Suarez, G.; Gagnepain, J. J.; Cisternas, A.; Hatzfeld, D.; Molnar, P.; Ocola, L.; Roecker, S. W.; Viode, J. P.
1983-01-01
The vast majority of the microearthquakes recorded occurred to the east: on the Huaytapallana fault in the Eastern Cordillera or in the western margin of the sub-Andes. The sub-Andes appear to be the physiographic province subjected to the most intense seismic deformation. Focal depths for the crustal events here are as deep as 50 km, and the fault plane solutions, show thrust faulting on steep planes oriented roughly north-south. The Huaytapallana fault in the Cordillera Oriental also shows relatively high seismicity along a northeast-southwest trend that agrees with the fault scarp and the east dipping nodal plane of two large earthquakes that occurred on this fault in 1969. The recorded microearthquakes of intermediate depth show a flat seismic zone about 25 km thick at a depth of about 100 km. This agrees with the suggestion that beneath Peru the slab first dips at an angle of 30 deg to a depth of 100 km and then flattens following a quasi-horizontal trajectory. Fault plane solutions of intermediate depth microearthquakes have horizontal T axes oriented east-west.
NASA Astrophysics Data System (ADS)
Yassaghi, A.; Naeimi, A.
2011-08-01
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.
Centrifuge models simulating magma emplacement during oblique rifting
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene
2001-07-01
A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).
Geometric effects resulting from the asymmetry of dipping fault: Hanging wall/ footwall effects
NASA Astrophysics Data System (ADS)
Wang, Dong; Xie, Li-Li; Hu, Jin-Jun
2008-05-01
Root-mean-square distance D rms with characteristic of weighted-average is introduced in this article firstly. D rms can be used to capture the general proximity of a site to a dipping fault plane comparing with the rupture distance D rup and the seismogenic distance D seis. Then, using D rup, D seis and D rms, the hanging wall/footwall effects on the peak ground acceleration (PGA) during the 1999 Chi-Chi earthquake are evaluated by regression analysis. The logarithm residual shows that the PGA on hanging wall is much greater than that on footwall at the same D rup or D seis when the D rup or D seis is used as site-to-source distance measure. In contrast, there is no significant difference between the PGA on hanging wall and that on footwall at the same D rms when D rms is used. This result confirms that the hanging wall/footwall effect is mainly a geometric effect caused by the asymmetry of dipping fault. Therefore, the hanging wall/footwall effect on the near-fault ground motions can be ignored in the future attenuation analysis if the root-mean-square distance D rms is used as the site-to-source distance measure.
Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey
NASA Astrophysics Data System (ADS)
Çemen, I.; Catlos, E. J.; Gogus, O.; Diniz, E.; Hancer, M.
2008-07-01
The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alaşehir and the south-dipping Büyük Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alaşehir, Büyük Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high-angle faults in the Alaşehir, Büyük Menderes and Simav grabens and the high-angle faults controlling the Küçük Menderes graben.
NASA Astrophysics Data System (ADS)
Cemen, I.; Catlos, E. J.; Diniz, E.; Gogus, O.; Ozerdem, C.; Baker, C.; Kohn, M. J.; Goncuoglu, C.; Hancer, M.
2006-12-01
The Western Anatolia Extended Terrane in Turkey is one of the best-developed examples of post-collisional extended terranes and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene as the Neotethys Ocean closed and the Izmir-Ankara-Erzincan suture zone was formed. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive, uninterrupted stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal- slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Buyuk Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Buyuk Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high- angle faults in the Alasehir, Buyuk Menderes and Simav grabens and the high-angle faults controlling the Kucuk Menderes graben.
Catchings, Rufus D.; Goldman, Mark R.; Trench, David; Buga, Michael; Chan, Joanne H.; Criley, Coyn J.; Strayer, Luther M.
2017-04-18
The Piedmont Thrust Fault, herein referred to as the Piedmont Reverse Fault (PRF), is a splay of the Hayward Fault that trends through a highly populated area of the City of Oakland, California (fig. 1A). Although the PRF is unlikely to generate a large-magnitude earthquake, slip on the PRF or high-amplitude seismic energy traveling along the PRF may cause considerable damage during a large earthquake on the Hayward Fault. Thus, it is important to determine the exact location, geometry (particularly dip), and lateral extent of the PRF within the densely populated Oakland area. In the near surface, the PRF juxtaposes Late Cretaceous sandstone (of the Franciscan Complex Novato Quarry terrane of Blake and others, 1984) and an older Pleistocene alluvial fan unit along much of its mapped length (fig. 1B; Graymer and others, 1995). The strata of the Novato Quarry unit vary greatly in strike (NW, NE, and E), dip direction (NE, SW, E, and NW), dip angle (15° to 85°), and lithology (shale and sandstone), and the unit has been intruded by quartz diorite in places. Thus, it is difficult to infer the structure of the fault, particularly at depth, with conventional seismic reflection imaging methods. To better determine the location and shallow-depth geometry of the PRF, we used high-resolution seismic imaging methods described by Catchings and others (2014). These methods involve the use of coincident P-wave (compressional wave) and S-wave (shear wave) refraction tomography and reflection data, from which tomographic models of P- and S-wave velocity and P-wave reflection images are developed. In addition, the coincident P-wave velocity (VP) and S-wave velocity (VS) data are used to develop tomographic models of VP/VS ratios and Poisson’s ratio, which are sensitive to shallow-depth faulting and groundwater. In this study, we also compare measurements of Swave velocities determined from surface waves with those determined from refraction tomography. We use the combination of seismic methods to infer the fault location, dip, and the National Earthquake Hazards Reduction Program (NEHRP) site classification along the seismic profile. Our seismic study is a smaller part of a larger study of the PRF by Trench and others (2016).
NASA Astrophysics Data System (ADS)
Little, T. A.; Webber, S. M.; Norton, K. P.; Mizera, M.; Oesterle, J.; Ellis, S. M.
2016-12-01
The Mai'iu Fault is an active and corrugated low-angle normal fault (LANF) in Woodlark Rift, Eastern Papua New Guinea, which dips 21° NNE, accommodating rapid N-S extension. The Gwoira rider block is a large fault-bounded sedimentary slice comprising the Gwoira Conglomerate, located within a large synformal megamullion in the Mai'iu Fault surface. The Gwoira Conglomerate was originally deposited on the Mai'iu Fault hanging wall concurrent with extension, and has since been buried to a maximum depth of 1600-2100 m (evidenced by vitrinite reflectance data), back-tilted, and synformally folded. Both the Gwoira Conglomerate (former hanging wall) and mylonitic foliation (footwall) of the Mai'iu Fault have been shortened E-W, perpendicular to the extension direction. We show that E-W synformal folding of the Gwoira Conglomerate was concurrent with ongoing sedimentation and extension on the Mai'iu Fault. Structurally shallower Gwoira Conglomerate strata are folded less than deeper strata, indicating that folding was progressively accrued concurrent with N-S extension. We also show that abandonment of the inactive strand of the Mai'iu Fault in favor of the Gwoira Fault, which resulted in formation of the Gwoira rider block, occurred in response to progressive megamullion amplification and resultant misorientation of the inactive strand of the Mai'iu Fault. We attribute E-W folding to extension-perpendicular constriction. This is consistent with observations of outcrop-scale conjugate strike-slip faults that deform the footwall and hanging wall of the Mai'iu Fault, and accommodate E-W shortening. Constrictional folding remains active in the near-surface as evidenced by synformal tilting of inferred Late Quaternary fluvial terraces atop the Gwoira rider block. This sequence of progressive constrictional folding is dated using 26Al/10Be terrestrial cosmogenic nuclide burial dating of the Gwoira Conglomerate. Finally, because rider block formation records abandonment of the uppermost part of a LANF, Coulomb fault mechanical analysis (after Choi and Buck, 2012) can be applied to field observations to provide an upper limit on LANF frictional strength (µf). Modelling constrains the µf for the Mai'iu Fault to ≤0.25, which suggests that the Mai'iu Fault is frictionally very weak.
NASA Astrophysics Data System (ADS)
SaïD, Aymen; Baby, Patrice; Chardon, Dominique; Ouali, Jamel
2011-12-01
Structural analysis of the southern Tunisian Atlas was carried out using field observation, seismic interpretation, and cross section balancing. It shows a mix of thick-skinned and thin-skinned tectonics with lateral variations in regional structural geometry and amounts of shortening controlled by NW-SE oblique ramps and tear faults. It confirms the role of the Late Triassic-Early Jurassic rifting inheritance in the structuring of the active foreland fold and thrust belt of the southern Tunisian Atlas, in particular in the development of NW-SE oblique structures such as the Gafsa fault. The Late Triassic-Early Jurassic structural pattern is characterized by a family of first-order NW-SE trending normal faults dipping to the east and by second-order E-W trending normal faults limiting a complex system of grabens and horsts. These faults have been inverted during two contractional tectonic events. The first event occurred between the middle Turonian and the late Maastrichtian and can be correlated with the onset of the convergence between Africa and Eurasia. The second event corresponding to the principal shortening tectonic event in the southern Atlas started in the Serravalian-Tortonian and is still active. During the Neogene, the southern Atlas foreland fold and thrust belt propagated on the evaporitic décollement level infilling the Late Triassic-Early Jurassic rift. The major Eocene "Atlas event," described in hinterland domains and in eastern Tunisia, did not deform significantly the southern Tunisian Atlas, which corresponded in this period to a backbulge broad depozone.
Sanford, Ward E.; Pearson, S.C.P.; Kiyosugi, K.; Lehto, H.L.; Saballos, J.A.; Connor, C.B.
2012-01-01
We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (~250 m), relatively impermeable normal faults dipping at ~60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE-SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3-4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 x 10-5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.
Seismic images of a Grenvillian terrane boundary
Milkereit, B.; Forsyth, D. A.; Green, A.G.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.
1992-01-01
A series of gently dipping reflection zones extending to mid-crustal depths is recorded by seismic data from Lakes Ontario and Erie. These prominent reflection zones define a broad complex of southeast-dipping ductile thrust faults in the interior of the Grenville orogen. One major reflection zone provides the first image of a proposed Grenvillian suture—the listric boundary zone between allochthonous terranes of the Central Gneiss and Central Metasedimentary belts. Curvilinear bands of reflections that may represent "ramp folds" and "ramp anticlines" that originally formed in a deep crustal-scale duplex abut several faults. Vertical stacking of some curvilinear features suggests coeval or later out-of-sequence faulting of imbricated and folded thrust sheets. Grenvillian structure reflections are overlain by a thin, wedge-shaped package of shallow-dipping reflections that probably originates from sediments deposited in a local half graben developed during a period of post-Grenville extension. This is the first seismic evidence for such extension in this region, which could have occurred during terminal collapse of the Grenville orogen, or could have marked the beginning of pre-Appalachian continental rifting.
Plafter, George
1967-01-01
Two reverse faults on southwestern Montague Island in Prince William Sound were reactivated during the earthquake of March 27, 1964. New fault scarps, fissures, cracks, and flexures appeared in bedrock and unconsolidated surficial deposits along or near the fault traces. Average strike of the faults is between N. 37° E. and N. 47° E.; they dip northwest at angles ranging from 50° to 85°. The dominant motion was dip slip; the blocks northwest of the reactivated faults were relatively upthrown, and both blocks were upthrown relative to sea level. No other earthquake faults have been found on land. The Patton Bay fault on land is a complex system of en echelon strands marked by a series of spectacular landslides along the scarp and (or) by a zone of fissures and flexures on the upthrown block that locally is as much as 3,000 feet wide. The fault can be traced on land for 22 miles, and it has been mapped on the sea floor to the southwest of Montague Island an additional 17 miles. The maximum measured vertical component of slip is 20 to 23 feet and the maximum indicated dip slip is about 26 feet. A left-lateral strike-slip component of less than 2 feet occurs near the southern end of the fault on land where its strike changes from northeast to north. Indirect evidence from the seismic sea waves and aftershocks associated with the earthquake, and from the distribution of submarine scarps, suggests that the faulting on and near Montague Island occurred at the northeastern end of a reactivated submarine fault system that may extend discontinuously for more than 300 miles from Montague Island to the area offshore of the southeast coast of Kodiak Island. The Hanning Bay fault is a minor rupture only 4 miles long that is marked by an exceptionally well defined almost continuous scarp. The maximum measured vertical component of slip is 16⅓ feet near the midpoint, and the indicated dip slip is about 20 feet. There is a maximum left-lateral strike-slip component of one-half foot near the southern end of the scarp. Warping and extension cracking occurred in bedrock near the midpoint on the upthrown block within about 1,000 feet of the fault scarp. The reverse faults on Montague Island and their postulated submarine extensions lie within a tectonically important narrow zone of crustal attenuation and maximum uplift associated with the earthquake. However, there are no significant lithologic differences in the rock sequences across these faults to suggest that they form major tectonic boundaries. Their spatial distribution relative to the regional uplift associated with the earthquake, the earthquake focal region, and the epicenter of the main shock suggest that they are probably subsidiary features rather than the causative faults along which the earthquake originated. Approximately 70 percent of the new breakage along the Patton Bay and the Hanning Bay faults on Montague Island was along obvious preexisting active fault traces. The estimated ages of undisturbed trees on and near the fault trace indicate that no major disc placement had occurred on these faults for at least 150 to 300 years before the 1964 earthquake.
Active shortening of the Cascadia forearc and implications for seismic hazards of the Puget Lowland
Johnson, S.Y.; Blakely, R.J.; Stephenson, W.J.; Dadisman, S.V.; Fisher, M.A.
2004-01-01
Margin-parallel shortening of the Cascadia forearc is a consequence of oblique subduction of the Juan de Fuca plate beneath North America. Strike-slip, thrust, and oblique crustal faults beneath the densely populated Puget Lowland accommodate much of this north-south compression, resulting in large crustal earthquakes. To better understand this forearc deformation and improve earthquake hazard, assessment, we here use seismic reflection surveys, coastal exposures of Pleistocene strata, potential-field data, and airborne laser swath mapping to document and interpret a significant structural boundary near the City of Tacoma. This boundary is a complex structural zone characterized by two distinct segments. The northwest trending, eastern segment, extending from Tacoma to Carr Inlet, is formed by the broad (??? 11.5 km), southwest dipping (??? 11??-2??) Rosedale monocline. This monocline raises Crescent Formation basement about 2.5 km, resulting in a moderate gravity gradient. We interpret the Rosedale monocline as a fault-bend fold, forming above a deep thrust fault. Within the Rosedale monocline, inferred Quaternary strata thin northward and form a growth triangle that is 4.1 to 6.6 km wide at its base, suggesting ??? 2-3 mm/yr of slip on the underlying thrust. The western section of the >40-km-long, north dipping Tacoma fault, extending from Hood Canal to Carr Inlet, forms the western segment of the Tacoma basin margin. Structural relief on this portion of the basin margin may be several kilometers, resulting in steep gravity and aeromagnetic anomalies. Quaternary structural relief along the Tacoma fault is as much as 350-400 m, indicating a minimum slip rate of about 0.2 mm/yr. The inferred eastern section of the Tacoma fault (east of Carr Inlet) crosses the southern part of the Seattle uplift, has variable geometry along strike, and diminished structural relief. The Tacoma fault is regarded as a north dipping backthrust to the Seattle fault, so that slip on a master thrust fault at depth could result in movement on the Seattle fault, the Tacoma fault, or both.
NASA Astrophysics Data System (ADS)
van Gent, Heijn W.; Holland, Marc; Urai, Janos L.; Loosveld, Ramon
2010-09-01
We present analogue models of the formation of dilatant normal faults and fractures in carbonate fault zones, using cohesive hemihydrate powder (CaSO 4·½H 2O). The evolution of these dilatant fault zones involves a range of processes such as fragmentation, gravity-driven breccia transport and the formation of dilatant jogs. To allow scaling to natural prototypes, extensive material characterisation was done. This showed that tensile strength and cohesion depend on the state of compaction, whereas the friction angle remains approximately constant. In our models, tensile strength of the hemihydrate increases with depth from 9 to 50 Pa, while cohesion increases from 40 to 250 Pa. We studied homogeneous and layered material sequences, using sand as a relatively weak layer and hemihydrate/graphite mixtures as a slightly stronger layer. Deformation was analyzed by time-lapse photography and Particle Image Velocimetry (PIV) to calculate the evolution of the displacement field. With PIV the initial, predominantly elastic deformation and progressive localization of deformation are observed in detail. We observed near-vertical opening-mode fractures near the surface. With increasing depth, dilational shear faults were dominant, with releasing jogs forming at fault-dip variations. A transition to non-dilatant shear faults was observed near the bottom of the model. In models with mechanical stratigraphy, fault zones are more complex. The inferred stress states and strengths in different parts of the model agree with the observed transitions in the mode of deformation.
NASA Astrophysics Data System (ADS)
Niemi, N. A.; Stahl, T.; Andreini, J.; Wells, J.; Bunds, M. P.
2016-12-01
The western face of the House Range in Utah is one of the steepest normal fault-bounded blocks in the Basin and Range. In spite of this, clear evidence of recent faulting is limited to a single c. 10 km-long, 1-2 m high scarp at the surface. A drone-based photogrammetric DEM with <10 cm resolution reveals that the fault displaces transgressive Lake Bonneville (c. 20-18 ka) and Provo highstand shorelines (c. 17 cal. ka) by similar amounts, suggesting a single event displacement of c. 1.5 m. Elastic strain models that incorporate shoreline geometry are best-fit by a fault dip of 50-60° in the uppermost crust, whereas previous studies have noted that the fault becomes listric or is truncated by a low-angle fault at depth. Exposure-ages of surface clasts on undeformed alluvial fans suggest that regression from the Provo shoreline occurred rapidly and that the last surface-rupturing earthquake occurred during occupation of the Provo shoreline. This pattern is consistent with other areas in the Great Basin that observe enhanced seismic moment release and earthquake ruptures during late Pleistocene lake regression. We calculate a time-averaged slip rate of 0.1-0.2 mm/yr and minimum recurrence interval of 17 ka. This study highlights the utility of drone surveys and high-resolution geochronology in neotectonic studies and in defining paleoseismic fault parameters.
NASA Astrophysics Data System (ADS)
Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.
2015-12-01
During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.
The 2012 Strike-slip Earthquake Sequence in Black Sea and its Link to the Caucasus Collision Zone
NASA Astrophysics Data System (ADS)
Tseng, T. L.; Hsu, C. H.; Legendre, C. P.; Jian, P. R.; Huang, B. S.; Karakhanian, A.; Chen, C. W.
2016-12-01
The Black Sea formed as a back-arc basin in Late Cretaceous to Paleogene with lots of extensional features. However, the Black Sea is now tectonically stable and absent of notable earthquakes except for the coastal region. In this study we invert regional waveforms of a new seismic array to constrain the focal mechanisms and depths of the 2012/12/23 earthquake sequence occurred in northeastern Black Sea basin that can provide unique estimates on the stress field in the region. The results show that the focal mechanisms for the main shock and 5 larger aftershocks are all strike-slip faulting and resembling with each other. The main rupture fall along the vertical dipping, NW-SE trending sinistral fault indicated by the lineation of most aftershocks. The fault strike and aftershock distribution are both consistent with the Shatsky Ridge, which is continental in nature but large normal faults was created by previous subsidence. The occurrence of 2012 earthquakes can be re-activated, as strike-slip, on one of the pre-existing normal fault cutting at depth nearly 20-30 km in the extended crust. Some of the aftershocks, including a larger one occurred 5 days later, are distributed toward NE direction 20 km away from main fault zone. Those events might be triggered by the main shock along a conjugate fault, which is surprisingly at the extension of proposed transform fault perpendicular to the rift axis of eastern Black Sea Basin. The focal mechanisms also indicate that the maximum compression in northeast Black Sea is at E-W direction, completely different from the N-S compression in the Caucasus and East Turkey controlled by Arabia-Eurasia collision. The origin of E-W maximum compression is probably the same as the secondary stress inferred from earthquakes in Racha region of the Greater Caucasus.
NASA Astrophysics Data System (ADS)
Michels, A.; Johnson, L.; Niemi, T. M.
2017-12-01
Plio-Quaternary sediments of the Tirabuzón, Infierno, and Santa Rosalía formations record syntectonic deposition in the Santa Rosalía basin—an oblique-rift-margin basin along the Gulf of California in Baja California Sur, Mexico. These deposits unconformably overlie the upper Miocene, Cu-Zn-Co-Mn-rich Boleo Formation. The Mesa Soledad outcrops, exposed on the Minera Boleo mine property, show interfingering of marine and terrestrial deposits of the three formations along the inland margin of the basin in an area that has not previously been studied. Faults that cut the Pliocene section of the mesa are mostly steeply-dipping, NW- and NE-striking faults with normal displacement determined from stratigraphic offset and steep plunge in striations. Two stratigraphic sections were measured on either side of one of these high-angle, NW-striking fault that has a normal throw of 26 m. Our analyses of sediment grain size, fossil assemblages, and sedimentary petrography indicate a mismatch of the stratigraphic units across the fault and suggest a component of strike slip. North of the fault, poorly-sorted, well-rounded, fluvial gravels from the Pliocene-aged, Tirabuzón Formation unconformably underlie fossiliferous marine deposits from the late-Pliocene to Pleistocene? -aged Infierno Formation. South of the fault, marine deposits of the Tirabuzón Formation grade upward into imbricated, clast-supported beach gravel, and finally into non-marine conglomerates. The absence of the Infierno Formation on the southern side of the fault suggests the deposits were either eroded unevenly due to uplift or laterally displaced by strike-slip movement. Fossiliferous sandstones and conglomerates of the Santa Rosalía Formation unconformably cap the entire outcrop and show no displacement from faulting. The Santa Rosalía Formation is overlain by the 1.4 Ma La Reforma ignimbrite (Schmidt 2006), indicating that the style of deformation of the basin changed at approximately this time.
NASA Astrophysics Data System (ADS)
Briki, Haithem; Ahmadi, Riadh; Smida, Rabiaa; Rekhiss, Farhat
2018-04-01
Geological mapping, field cross sections, structural analyses and new subsurface data were used to characterize the geometry and tectonic setting of the Ghoualguia structure, which is an E-W-trending anticline located between the Kalaa Khasba and Rouhia troughs of the central Tunisian Atlas. The results show an important NE-SW extensional phase during the Mesozoic, as demonstrated by synsedimentary normal faults (NW-SE and E-W) and thickness variations. In the Aouled Mdoua area, the absence of Paleocene-Eocene rocks indicates that the eastern and western parts of the Ghoualguia structure were separated by high topography. In addition, the angular unconformity observed between the Upper Cretaceous unit (Abiod Fm.) and the upper Eocene series (Souar Fm.) provide evidence of a tilted-block structure delineated by North-South faults. A major compressional phase during the middle to late Miocene created various detachment levels that originated mainly in the Triassic and Cretaceous deposits. Faults were reactivated as thrust and strike-slip faults, creating fault-related fold structures. In the core of the Ghoualguia fold, an original S-dipping normal fault underwent reverse movement as a back thrust. Fault-slip data indicate that the area records a major NE-SW extensional phase that took place during the late Miocene and Pliocene. A balanced cross section provides insight into the existence of two main detachment levels rooted in the Triassic (depth ± 6 km) and the lower Cretaceous (depth ± 2.5 km). The balanced cross section highlights a shortening of about 2.5 km along cross section and 1.5 km in the central part of the Ghoualguia anticline. This work underlines the predominant role of the inherited Mesozoic structures during the evolution of the Atlassic range and their influence on the geometry of the central Tunisian atlas.
A formulation of directivity for earthquake sources using isochrone theory
Spudich, Paul; Chiou, Brian S.J.; Graves, Robert; Collins, Nancy; Somerville, Paul
2004-01-01
A functional form for directivity effects can be derived from isochrone theory, in which the measure of the directivity-induced amplification of an S body wave is c, the isochrone velocity. Ground displacement of the near-, intermediate-, and far-field terms of P and S waves is linear in isochrone velocity for a finite source in a whole space. We have developed an approximation c-tilde-prime of isochrone velocity that can easily be implemented as a predictor of directivity effects in empirical ground motion prediction relations. Typically, for a given fault surface, hypocenter, and site geometry, c-tilde-prime is a simple function of the hypocentral distance, the rupture distance, the crustal shear wave speed in the seismogenic zone, and the rupture velocity. c-tilde-prime typically ranges in the interval 0.44, for rupture away from the station, to about 4, for rupture toward the station. In this version of the theory directivity is independent of period. Additionally, we have created another functional form which is c-tilde-prime modified to include the approximate radiation pattern of a finite fault having a given rake. This functional form can be used to model the spatial variations of fault-parallel and fault-normal horizontal ground motions. The strengths of this formulation are 1) the proposed functional form is based on theory, 2) the predictor is unambiguously defined for all possible site locations and source rakes, and 3) it can easily be implemented for well-studied important previous earthquakes. We compare predictions of our functional form with synthetic ground motions calculated for finite strike-slip and dip-slip faults in the magnitude range 6.5 - 7.5. In general our functional form correlates best with computed fault-normal and fault-parallel motions in the synthetic motions calculated for events with M6.5. Correlation degrades but is still useful for larger events and for the geometric average horizontal motions. We have had limited success applying it to geometrically complicated faults.
NASA Astrophysics Data System (ADS)
Busby, Cathy J.; Bassett, Kari N.
2007-09-01
The three-dimensional arrangement of volcanic deposits in strike-slip basins is not only the product of volcanic processes, but also of tectonic processes. We use a strike-slip basin within the Jurassic arc of southern Arizona (Santa Rita Glance Conglomerate) to construct a facies model for a strike-slip basin dominated by volcanism. This model is applicable to releasing-bend strike-slip basins, bounded on one side by a curved and dipping strike-slip fault, and on the other by curved normal faults. Numerous, very deep unconformities are formed during localized uplift in the basin as it passes through smaller restraining bends along the strike-slip fault. In our facies model, the basin fill thins and volcanism decreases markedly away from the master strike-slip fault (“deep” end), where subsidence is greatest, toward the basin-bounding normal faults (“shallow” end). Talus cone-alluvial fan deposits are largely restricted to the master fault-proximal (deep) end of the basin. Volcanic centers are sited along the master fault and along splays of it within the master fault-proximal (deep) end of the basin. To a lesser degree, volcanic centers also form along the curved faults that form structural highs between sub-basins and those that bound the distal ends of the basin. Abundant volcanism along the master fault and its splays kept the deep (master fault-proximal) end of the basin overfilled, so that it could not provide accommodation for reworked tuffs and extrabasinally-sourced ignimbrites that dominate the shallow (underfilled) end of the basin. This pattern of basin fill contrasts markedly with that of nonvolcanic strike-slip basins on transform margins, where clastic sedimentation commonly cannot keep pace with subsidence in the master fault-proximal end. Volcanic and subvolcanic rocks in the strike-slip basin largely record polygenetic (explosive and effusive) small-volume eruptions from many vents in the complexly faulted basin, referred to here as multi-vent complexes. Multi-vent complexes like these reflect proximity to a continuously active fault zone, where numerous strands of the fault frequently plumb small batches of magma to the surface. Releasing-bend extension promotes small, multivent styles of volcanism in preference to caldera collapse, which is more likely to form at releasing step-overs along a strike-slip fault.
Outer Rise Faulting And Mantle Serpentinization
NASA Astrophysics Data System (ADS)
Ranero, C. R.; Phipps Morgan, J.; McIntosh, K.; Reichert, C.
Dehydration of serpentinized mantle of the downgoing slab has been proposed to cause both intermediate depth earthquakes (50-300 km) and arc volcanism at sub- duction zones. It has been suggested that most of this serpentinization occurs beneath the outer rise; where normal faulting earthquakes due to bending cut > 20 km deep into the lithosphere, allowing seawater to reach and react with underlying mantle. However, little is known about flexural faulting at convergent margins; about how many normal faults cut across the crust and how deeply they penetrate into the man- tle; about the true potential of faults as conduits for fluid flow and how much water can be added through this process. We present evidence that pervasive flexural faulting may cut deep into the mantle and that the amount of faulting vary dramatically along strike at subduction zones. Flexural faulting increases towards the trench axis indicat- ing that active extension occurs in a broad area. Multibeam bathymetry of the Pacific margin of Costa Rica and Nicaragua shows a remarkable variation in the amount of flexural faulting along the incoming ocean plate. Several parameters seem to control lateral variability. Off south Costa Rica thick crust of the Cocos Ridge flexes little, and little to no faulting develops near the trench. Off central Costa Rica, normal thick- ness crust with magnetic anomalies striking oblique to the trench displays small offset faults (~200 m) striking similar to the original seafloor fabric. Off northern Costa Rica, magnetic anomalies strike perpendicular to the trench axis, and a few ~100m-offset faults develop parallel to the trench. Further north, across the Nicaraguan margin, magnetic anomalies strike parallel to the trench and the most widespread faulting de- velops entering the trench. Multichannel seismic reflection images in this area show a pervasive set of trenchward dipping reflections that cross the ~6 km thick crust and extend into the mantle to depths of at least 20 km. Some reflections project updip to offsets in top basement and seafloor, indicating that they are fault plane reflections. Such a deeply penetrating tectonic fabric could have not developed during crustal cre- ation at the paleo-spreading center where the brittle layer is few km thick. Thus, they must be created during flexure of the plate entering the trench. This data imply that deep and widespread serpentinization of the incoming lithosphere can occur when the lithosphere is strongly faulted; that the extent of lithospheric faulting is closely re- lated to the crustal structure of the incoming plate; and that the amount of lithosphere faulting can change dramatically within a hundred km distance along a trench axis.
NASA Astrophysics Data System (ADS)
Kluesner, J. W.; Silver, E. A.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.
2013-12-01
We employ a seismic meta-attribute workflow to detect and analyze probable faults and fluid-pathways in 3D within the sedimentary section offshore Southern Costa Rica. During the CRISP seismic survey in 2011 we collected an 11 x 55 km grid of 3D seismic reflection data and high-resolvability EM122 multibeam data, with coverage extending from the incoming plate to the outer-shelf. We mapped numerous seafloor seep indicators, with distributions ranging from the lower-slope to ~15 km landward of the shelf break [Kluesner et al., 2013, G3, doi:10.1002/ggge.20058; Silver et al., this meeting]. We used the OpendTect software package to calculate meta-attribute volumes from the 3D seismic data in order to detect and visualize seismic discontinuities in 3D. This methodology consists of dip-steered filtering to pre-condition the data, followed by combining a set of advanced dip-steered seismic attributes into a single object probability attribute using a user-trained neural-network pattern-recognition algorithm. The parameters of the advanced seismic attributes are set for optimal detection of the desired geologic discontinuity (e.g. faults or fluid-pathways). The product is a measure of probability for the desired target that ranges between 0 and 1, with 1 representing the highest probability. Within the sedimentary section of the CRISP survey the results indicate focused fluid-migration pathways along dense networks of intersecting normal faults with approximately N-S and E-W trends. This pattern extends from the middle slope to the outer-shelf region. Dense clusters of fluid-migration pathways are located above basement highs and deeply rooted reverse faults [see Bangs et al., this meeting], including a dense zone of fluid-pathways imaged below IODP Site U1413. In addition, fault intersections frequently show an increased signal of fluid-migration and these zones may act as major conduits for fluid-flow through the sedimentary cover. Imaged fluid pathways root into high-backscatter pockmarks and mounds on the seafloor, which are located atop folds and clustered along intersecting fault planes. Combining the fault and fluid-pathway attribute volumes reveals qualitative first order information on fault seal integrity within the CRISP survey region, highlighting which faults and/or fault sections appear to be sealing or leaking within the sedimentary section. These results provide 3D insight into the fluid-flow behavior offshore southern Costa Rica and suggest that fluids escaping through the deeper crustal rocks are predominantly channeled along faults in the sedimentary cover, especially at fault intersections.
NASA Technical Reports Server (NTRS)
Roddy, D. J.
1979-01-01
The geologic and core drilling studies described in the present paper show that the Flynn Creek crater has such distinctive morphological features as a broad flat hummocky floor; large central peak; locally terraced crater walls; uplifted, as well as flat-lying rim segments; and a surrounding ejecta blanket. The major structural features include a shallow depth of total brecciation and excavation as compared with apparent crater diameter; a thin breccia lens underlain by a thin zone of disrupted strata; concentric ring fault zones in inner rim, beneath crater wall, and outer crater floor regions; a large central uplift underlain by a narrow dipping zone of deeply disrupted strata; faulted, folded, brecciated, and fractured rim strata; and uplifted rim strata, which dip away from the crater, and flat-lying rim strata, which terminate as inward dipping rocks.
NASA Astrophysics Data System (ADS)
Marliyani, G. I.; Arrowsmith, R.; Helmi, H.
2015-12-01
Instrumental and historical records of earthquakes, supplemented by paleoeseismic constraints can help reveal the earthquake potential of an area. The Pasuruan fault is a high angle normal fault with prominent youthful scarps cutting young deltaic sediments in the north coast of East Java, Indonesia and may pose significant hazard to the densely populated region. This fault has not been considered a significant structure, and mapped as a lineament with no sense of motion. Information regarding past earthquakes along this fault is not available. The fault is well defined both in the imagery and in the field as a ~13km long, 2-50m-high scarp. Open and filled fractures and natural exposures of the south-dipping fault plane indicate normal sense of motion. We excavated two fault-perpendicular trenches across a relay ramp identified during our surface mapping. Evidence for past earthquakes (documented in both trenches) includes upward fault termination with associated fissure fills, colluvial wedges and scarp-derived debris, folding, and angular unconformities. The ages of the events are constrained by 23 radiocarbon dates on detrital charcoal. We calibrated the dates using IntCal13 and used Oxcal to build the age model of the events. Our preliminary age model indicates that since 2006±134 B.C., there has been at least five ground rupturing earthquakes along the fault. The oldest event identified in the trench however, is not well-dated. Our modeled 95th percentile ranges of the next four earlier earthquakes (and their mean) are A.D. 1762-1850 (1806), A.D. 1646-1770 (1708), A.D. 1078-1648 (1363), and A.D. 726-1092 (909), yielding a rough recurrence rate of 302±63 yrs. These new data imply that Pasuruan fault is more active than previously thought. Additional well-dated earthquakes are necessary to build a solid earthquake recurrence model. Rupture along the whole section implies a minimum earthquake magnitude of 6.3, considering 13km as the minimum surface rupture length.
Broadband Rupture Process of the 2001 Kunlun Fault (Mw 7.8) Earthquake
NASA Astrophysics Data System (ADS)
Antolik, M.; Abercrombie, R.; Ekstrom, G.
2003-04-01
We model the source process of the 14 November, 2001 Kunlun fault earthquake using broadband body waves from the Global Digital Seismographic Network (P, SH) and both point-source and distributed slip techniques. The point-source mechanism technique is a non-linear iterative inversion that solves for focal mechanism, moment rate function, depth, and rupture directivity. The P waves reveal a complex rupture process for the first 30 s, with smooth unilateral rupture toward the east along the Kunlun fault accounting for the remainder of the 120 s long rupture. The obtained focal mechanism for the main portion of the rupture is (strike=96o, dip=83o, rake=-8o) which is consistent with both the Harvard CMT solution and observations of the surface rupture. The seismic moment is 5.29×1020 Nm and the average rupture velocity is ˜3.5 km/s. However, the initial portion of the P waves cannot be fit at all with this mechanism. A strong pulse visible in the first 20 s can only be matched with an oblique-slip subevent (MW ˜ 6.8-7.0) involving a substantial normal faulting component, but the nodal planes of this mechanism are not well constrained. The first-motion polarities of the P waves clearly require a strike mechanism with a similar orientation as the Kunlun fault. Field observations of the surface rupture (Xu et al., SRL, 73, No. 6) reveal a small 26 km-long strike-slip rupture at the far western end (90.5o E) with a 45-km long gap and extensional step-over between this rupture and the main Kunlun fault rupture. We hypothesize that the initial fault break occurred on this segment, with release of the normal faulting energy as a continuous rupture through the extensional step, enabling transfer of the slip to the main Kunlun fault. This process is similar to that which occurred during the 2002 Denali fault (MW 7.9) earthquake sequence except that 11 days elapsed between the October 23 (M_W 6.7) foreshock and the initial break of the Denali earthquake along a thrust fault.
NASA Astrophysics Data System (ADS)
Seaman, Tyler
The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California--Nevada border just north of Lake Tahoe. Focal mechanism and stress inversion results, based on the variance of the P-axis orientation, reveal a strike-slip dominated region directly north of Lake Tahoe that abruptly transitions northeastward to a transtentional regime along the Sierra front (i.e., in the hanging wall regime of the Sierran block). The majority of earthquakes used in the relocation and stress analysis occurs within a time period that includes unusual upper mantle/lower-crustal (˜30 km depth) dike injection events: 1) 2003 North Lake Tahoe and 2) 2011-2012 Sierra Valley, CA, that we interpret to be rift-related processes along the eastern Sierra Nevada microplate. Earthquake relocations for events shallower than about 18 km depth (the seismogenic depth determined in this study in the north Lake Tahoe area) cluster along high-angle fault structures, primarily in the footwall of the Sierra Nevada block. This new analysis isolates areas of distinctly strike-slip versus transtensional stress regimes, based on the variability of the P-axis plunge, that straddle the Sierra Nevada--Great Basin transition zone at the latitude of Lake Tahoe.
NASA Astrophysics Data System (ADS)
Howe, M.; Moulik, P.; Seeber, L.; Kim, W.; Steckler, M. S.
2012-12-01
The Himalayan and the Burma Arcs converge onto the Indian plate from opposite sides near their syntaxial juncture and have reduced it to a sliver. Both geology and seismicity point to recent internal deformation and high seismogenic potential within this sliver. Large historical earthquakes, including the Great Indian earthquake of 1897 (Mw ~8.1), along with the recent seismicity, suggest that the cratonic blocks in the region are bounded by active faults. The most prominent is the E-W trending Dauki Fault, a deeply-rooted, north-dipping thrust fault, situated between the Shillong massif to the north and the Sylhet Basin to the south. Along the Burma Arc, the subducted seismogenic slab of the Indian plate is continuous north to the syntaxis. Yet the Naga and Tripura segments of the accretionary fold belt, respectively north and south of the easterly extrapolation of the Dauki fault, are distinct. Accretion has advanced far westward into the foredeep of the Dauki structure along the front of the Tripura segment, while it has remained stunted facing the uplifted Shillong massif along the Naga segment. Moreover, the Dauki topographic front can be traced eastwards across the Burma Arc separating the two segments. Recent earthquakes support the hypothesis that the Dauki convergence structure continues below the Burma accretionary belt. Using teleseismic and regional data from the deployment of a local network, we explore the interaction of the Dauki thrust fault with the Burma Arc subduction zone. Preliminary observations include: While seismicity is concentrated in the slab at the eastward extrapolation of the Dauki fault, shallow seismicity is diffuse and does not illuminate the Dauki fault itself. P-axes in moment-tensor solutions of earthquakes within the Indian plate tend to be directed N-S and are locally parallel to the India-Burma boundary, particularly in the slab. T-axes tend to be oriented E-W with a strong tendency to follow the slab down dip. This pattern is remarkably consistent, despite the scattered seismicity, and suggests that the stress in the Indian plate, including the subducted oceanic portion of the plate, is still primarily controlled by the Himalayan collision to the north and down-dip pull by the Burma slab. Moment tensor solutions for some of the shallow earthquakes along the fold belt are consistent with geodetic results, showing partitioning of the oblique India-Burma convergence between belt-parallel dextral faults and belt-normal shortening by thrust faults. Relocations of the events using the double-difference algorithm may provide additional constraints on the geometry of the slab. In addition to the analysis of teleseismic data, a network of six seismic stations was also installed in Bangladesh in the region surrounding Sylhet, south of the Shillong Plateau during 2007-2008. Over 200 regional and local events are detected and located by the Sylhet array. About a dozen events are large enough allowing us to determine focal depths and mechanisms that will augment the catalog of the teleseismic events, providing additional insights into the tectonics in the region.
Langer, C.J.; Bollinger, G.A.
1988-01-01
An aftershock survey, using a network of eight portable and two permanent seismographs, was conducted for the western Argentina (Caucete) earthquake (MS 7.3) of November 23, 1977. Monitoring began December 6, almost 2 weeks after the main shock and continued for 11 days. The data set includes 185 aftershock hypocenters that range in the depth from near surface to more than 30 km. The spatial distribution of those events occupied a volume of about 100 km long ??50 km wide ??30 km thick. The volumnar nature of the aftershock distribution is interpreted to be a result of a bimodal distribution of foci that define east- and west-dipping planar zones. Efforts to select which of those zones was associated with the causal faulting include special attention to the determination of the mainshock focal depth and dislocation theory modeling of the coseismic surface deformation in the epicentral region. Our focal depth (25-35 km) and modeling studies lead us to prefer an east-dipping plane as causal. A previous interpretation by other investigators used a shallower focal depth (17 km) and similar modeling calculations in choosing a west-dipping plane. Our selection of the east-dipping plane is physically more appealing because it places fault initiation at the base of the crustal seismogenic layer (rather than in the middle of that layer) which requires fault propagation to be updip (rather than downdip). ?? 1988.
NASA Astrophysics Data System (ADS)
Salvini, Francesco; Storti, Fabrizio
2001-01-01
In fault-related folds that form by axial surface migration, rocks undergo deformation as they pass through axial surfaces. The distribution and intensity of deformation in these structures has been impacted by the history of axial surface migration. Upon fold initiation, unique dip panels develop, each with a characteristic deformation intensity, depending on their history. During fold growth, rocks that pass through axial surfaces are transported between dip panels and accumulate additional deformation. By tracking the pattern of axial surface migration in model folds, we predict the distribution of relative deformation intensity in simple-step, parallel fault-bend and fault-propagation anticlines. In both cases the deformation is partitioned into unique domains we call deformation panels. For a given rheology of the folded multilayer, deformation intensity will be homogeneously distributed in each deformation panel. Fold limbs are always deformed. The flat crests of fault-propagation anticlines are always undeformed. Two asymmetric deformation panels develop in fault-propagation folds above ramp angles exceeding 29°. For lower ramp angles, an additional, more intensely-deformed panel develops at the transition between the crest and the forelimb. Deformation in the flat crests of fault-bend anticlines occurs when fault displacement exceeds the length of the footwall ramp, but is never found immediately hinterland of the crest to forelimb transition. In environments dominated by brittle deformation, our models may serve as a first-order approximation of the distribution of fractures in fault-related folds.
Fluid-driven normal faulting earthquake sequences in the Taiwan orogen
NASA Astrophysics Data System (ADS)
Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui
2017-04-01
Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5.87 earthquake and the rise of the high pressure fluid.
Faulds, James E.
2013-12-31
Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di...
Rifting Process and Geomorphic Development of the Okinawa Tough, Southwest Japan
NASA Astrophysics Data System (ADS)
Sato, T.; Arai, K.; Inoue, T.; Matsumoto, D.
2012-12-01
The Ryukyu Island Arc extends from Kyushu to Taiwan, a distance of 1,200 km, along the Ryukyu Trench where the Philippine Sea Plate is subducting beneath the Eurasian Plate. The Okinawa Trough, a back arc basin has formed behind the Ryukyu Island Arc in late Pliocene to early Pleistocene. The research cruises of GH11 (from 14 July to 15 August, 2011) and GH12 (from 20 to 30 July, 2012) were carried out around the Okinawa Trough. More than 3,600 miles multi channel high-resolution seismic profiles were acquired during these cruises by the GI-gun (Generator 250 cu inch and Injector 105 cu. inch) systems with 16ch digital streamer cable. As a result, two unconformities and three depositional sequence divided by the unconformities are recognized in the trough. The lower and the midlle sequence are tilted and blocked by many normal faults, on the other hand the upper one is not tilted and shows the pattern of onlap fill. From this result, the upper sequence started to deposit after start of the rifting. Additionally, internal reflection of the upper sequence shows the cyclic activities of the rifting. The position of the rifting axis was revealed based on dip of the normal faults. As a result, rifting axis shows echelon arrangement and the displacement of the faults are varied with the segment of the arrangement. The location of the segment boundaries is correlated with geometrical boundary of the adjacent slope. Steep slope with incised valley is distributed in southwestern part where the displacement of the normal fault is large, on the other hand, gentle slope without incised valley is distributed in northeastern part where the displacement is small. This difference of the displacement strongly controls the geometry of the adjacent slope.
Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.
2008-01-01
Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.
NASA Astrophysics Data System (ADS)
Murotani, S.; Satake, K.
2017-12-01
Off Fukushima region, Mjma 7.4 (event A) and 6.9 (event B) events occurred on November 6, 1938, following the thrust fault type earthquakes of Mjma 7.5 and 7.3 on the previous day. These earthquakes were estimated as normal fault earthquakes by Abe (1977, Tectonophysics). An Mjma 7.0 earthquake occurred on July 12, 2014 near event B and an Mjma 7.4 earthquake occurred on November 22, 2016 near event A. These recent events are the only M 7 class earthquakes occurred off Fukushima since 1938. Except for the two 1938 events, normal fault earthquakes have not occurred until many aftershocks of the 2011 Tohoku earthquake. We compared the observed tsunami and seismic waveforms of the 1938, 2014, and 2016 earthquakes to examine the normal fault earthquakes occurred off Fukushima region. It is difficult to compare the tsunami waveforms of the 1938, 2014 and 2016 events because there were only a few observations at the same station. The teleseismic body wave inversion of the 2016 earthquake yielded with the focal mechanism of strike 42°, dip 35°, and rake -94°. Other source parameters were as follows: source area 70 km x 40 km, average slip 0.2 m, maximum slip 1.2 m, seismic moment 2.2 x 1019 Nm, and Mw 6.8. A large slip area is located near the hypocenter, and it is compatible with the tsunami source area estimated from tsunami travel times. The 2016 tsunami source area is smaller than that of the 1938 event, consistent with the difference in Mw: 7.7 for event A estimated by Abe (1977) and 6.8 for the 2016 event. Although the 2014 epicenter is very close to that of event B, the teleseismic waveforms of the 2014 event are similar to those of event A and the 2016 event. While Abe (1977) assumed that the mechanism of event B was the same as event A, the initial motions at some stations are opposite, indicating that the focal mechanisms of events A and B are different and more detailed examination is needed. The normal fault type earthquake seems to occur following the occurrence of M7 9 class thrust type earthquake at the plate boundary off Fukushima region.
NASA Astrophysics Data System (ADS)
Sulaiman, Aseem; Elawadi, Eslam; Mogren, Saad
2018-06-01
This study provides interpretation and modeling of gravity survey data to map the subsurface basement relief and controlling structures of a coastal area in the southwestern part of Saudi Arabia as an aid to groundwater potential assessment. The gravity survey data were filtered and analyzed using different edge detection and depth estimation techniques and concluded by 2-D modeling conducted along representative profiles to obtain the topography and depth variations of the basement surface in the area. The basement rocks are exposed in the eastern part of the area but dip westward beneath a sedimentary cover to depths of up to 2200 m in the west, while showing repeated topographic expressions related to a tilted fault-block structure that is dominant in the Red Sea rift zone. Two fault systems were recognized in the area. The first is a normal fault system trending in the NNW-SSE direction that is related to the Red Sea rift, and the second is a cross-cutting oblique fault system trending in the NE-SW direction. The interaction between these two fault systems resulted in the formation of a set of closed basins elongated in the NNW-SSE direction and terminated by the NE-SW fault system. The geomorphology and sedimentary sequences of these basins qualify them as potential regions of groundwater accumulation.