Sample records for dirac quantization condition

  1. Bohr-Sommerfeld quantization condition for Dirac states derived from an Ermakov-type invariant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thylwe, Karl-Erik; McCabe, Patrick

    2013-05-15

    It is shown that solutions of the second-order decoupled radial Dirac equations satisfy Ermakov-type invariants. These invariants lead to amplitude-phase-type representations of the radial spinor solutions, with exact relations between their amplitudes and phases. Implications leading to a Bohr-Sommerfeld quantization condition for bound states, and a few particular atomic/ionic and nuclear/hadronic bound-state situations are discussed.

  2. Topological charge quantization via path integration: An application of the Kustaanheimo-Stiefel transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inomata, A.; Junker, G.; Wilson, R.

    1993-08-01

    The unified treatment of the Dirac monopole, the Schwinger monopole, and the Aharonov-Bahn problem by Barut and Wilson is revisited via a path integral approach. The Kustaanheimo-Stiefel transformation of space and time is utilized to calculate the path integral for a charged particle in the singular vector potential. In the process of dimensional reduction, a topological charge quantization rule is derived, which contains Dirac's quantization condition as a special case. 32 refs.

  3. Magnetic monopole in noncommutative space-time and Wu-Yang singularity-free gauge transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laangvik, Miklos; Salminen, Tapio; Tureanu, Anca

    2011-04-15

    We investigate the validity of the Dirac quantization condition for magnetic monopoles in noncommutative space-time. We use an approach which is based on an extension of the method introduced by Wu and Yang. To study the effects of noncommutativity of space-time, we consider the gauge transformations of U{sub *}(1) gauge fields and use the corresponding deformed Maxwell's equations. Using a perturbation expansion in the noncommutativity parameter {theta}, we show that the Dirac quantization condition remains unmodified up to the first order in the expansion parameter. The result is obtained for a class of noncommutative source terms, which reduce to themore » Dirac delta function in the commutative limit.« less

  4. Monopoles for gravitation and for higher spin fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunster, Claudio; Portugues, Ruben; Cnockaert, Sandrine

    2006-05-15

    We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUTmore » solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses.« less

  5. On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems

    NASA Astrophysics Data System (ADS)

    Shvedov, O. Yu.

    2002-11-01

    The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.

  6. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx; Elizaga Navascués, Beatriz, E-mail: beatriz.elizaga@iem.cfmac.csic.es; Martín-Benito, Mercedes, E-mail: m.martin@hef.ru.nl

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under themore » symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.« less

  7. BRST quantization of cosmological perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armendariz-Picon, Cristian; Şengör, Gizem

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structuremore » of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.« less

  8. Quantization of Simple Parametrized Systems

    NASA Astrophysics Data System (ADS)

    Ruffini, Giulio

    1995-01-01

    I study the canonical formulation and quantization of some simple parametrized systems using Dirac's formalism and the Becchi-Rouet-Stora-Tyutin (BRST) extended phase space method. These systems include the parametrized particle and minisuperspace. Using Dirac's formalism I first analyze for each case the construction of the classical reduced phase space. There are two separate features of these systems that may make this construction difficult: (a) Because of the boundary conditions used, the actions are not gauge invariant at the boundaries. (b) The constraints may have a disconnected solution space. The relativistic particle and minisuperspace have such complicated constraints, while the non-relativistic particle displays only the first feature. I first show that a change of gauge fixing is equivalent to a canonical transformation in the reduced phase space, thus resolving the problems associated with the first feature above. Then I consider the quantization of these systems using several approaches: Dirac's method, Dirac-Fock quantization, and the BRST formalism. In the cases of the relativistic particle and minisuperspace I consider first the quantization of one branch of the constraint at the time and then discuss the backgrounds in which it is possible to quantize simultaneously both branches. I motivate and define the inner product, and obtain, for example, the Klein-Gordon inner product for the relativistic case. Then I show how to construct phase space path integral representations for amplitudes in these approaches--the Batalin-Fradkin-Vilkovisky (BFV) and the Faddeev path integrals --from which one can then derive the path integrals in coordinate space--the Faddeev-Popov path integral and the geometric path integral. In particular I establish the connection between the Hilbert space representation and the range of the lapse in the path integrals. I also examine the class of paths that contribute in the path integrals and how they affect space-time covariance, concluding that it is consistent to take paths that move forward in time only when there is no electric field. The key elements in this analysis are the space-like paths and the behavior of the action under the non-trivial ( Z_2) element of the reparametrization group.

  9. Deformation quantization of fermi fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galaviz, I.; Garcia-Compean, H.; Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Mexico, D.F.

    2008-04-15

    Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal *-product and the Wigner functional are obtained by extending the formalism proposed recently in [I. Galaviz, H. Garcia-Compean, M. Przanowski, F.J. Turrubiates, Weyl-Wigner-Moyal Formalism for Fermi Classical Systems, arXiv:hep-th/0612245] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal *-product, the Wigner functional, the normal ordering operator, and finally,more » the Dirac propagator have been found with the use of these variables.« less

  10. Unique Fock quantization of a massive fermion field in a cosmological scenario

    NASA Astrophysics Data System (ADS)

    Cortez, Jerónimo; Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Velhinho, José M.

    2016-04-01

    It is well known that the Fock quantization of field theories in general spacetimes suffers from an infinite ambiguity, owing to the inequivalent possibilities in the selection of a representation of the canonical commutation or anticommutation relations, but also owing to the freedom in the choice of variables to describe the field among all those related by linear time-dependent transformations, including the dependence through functions of the background. In this work we remove this ambiguity (up to unitary equivalence) in the case of a massive Dirac free field propagating in a spacetime with homogeneous and isotropic spatial sections of spherical topology. Two physically reasonable conditions are imposed in order to arrive at this result: (a) The invariance of the vacuum under the spatial isometries of the background, and (b) the unitary implementability of the dynamical evolution that dictates the Dirac equation. We characterize the Fock quantizations with a nontrivial fermion dynamics that satisfy these two conditions. Then, we provide a complete proof of the unitary equivalence of the representations in this class under very mild requirements on the time variation of the background, once a criterion to discern between particles and antiparticles has been set.

  11. Pseudoclassical Foldy-Wouthuysen transformation and canonical quantization of (D-2n)-dimensional relativistic particle with spin in an external electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoryan, G.V.; Grigoryan, R.P.

    1995-09-01

    The canonical quantization of a (D=2n)-dimensional Dirac particle with spin in an arbitrary external electromagnetic field is performed in a gauge that makes it possible to describe simultaneously particles and antiparticles (both massive and massless) already at the classical level. A pseudoclassical Foldy-Wouthuysen transformation is used to find the canonical (Newton-Wigner) coordinates. The connection between this quantization scheme and Blount`s picture describing the behavior of a Dirac particle in an external electromagnetic field is discussed.

  12. Topological Anderson insulator phase in a Dirac-semimetal thin film

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Xu, Dong-Hui; Zhou, Bin

    2017-06-01

    The recently discovered topological Dirac semimetal represents a new exotic quantum state of matter. Topological Dirac semimetals can be viewed as three-dimensional analogues of graphene, in which the Dirac nodes are protected by crystalline symmetry. It has been found that the quantum confinement effect can gap out Dirac nodes and convert Dirac semimetal to a band insulator. The band insulator is either a normal insulator or quantum spin Hall insulator, depending on the thin-film thickness. We present the study of disorder effects in a thin film of Dirac semimetals. It is found that moderate Anderson disorder strength can drive a topological phase transition from a normal band insulator to a topological Anderson insulator in a Dirac-semimetal thin film. The numerical calculation based on the model parameters of Dirac semimetal Na3Bi shows that in the topological Anderson insulator phase, a quantized conductance plateau occurs in the bulk gap of the band insulator, and the distributions of local currents further confirm that the quantized conductance plateau arises from the helical edge states induced by disorder. Finally, an effective medium theory based on the Born approximation fits the numerical data.

  13. Generalized centripetal force law and quantization of motion constrained on 2D surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Zhang, J.; Lian, D. K.; Hu, L. D.; Li, Z.

    2017-03-01

    For a particle of mass μ moves on a 2D surface f(x) = 0 embedded in 3D Euclidean space of coordinates x, there is an open and controversial problem whether the Dirac's canonical quantization scheme for the constrained motion allows for the geometric potential that has been experimentally confirmed. We note that the Dirac's scheme hypothesizes that the symmetries indicated by classical brackets among positions x and momenta p and Hamiltonian Hc remain in quantum mechanics, i.e., the following Dirac brackets [ x ,Hc ] D and [ p ,Hc ] D holds true after quantization, in addition to the fundamental ones [ x , x ] D, [ x , p ] D and [ p , p ] D. This set of hypotheses implies that the Hamiltonian operator is simultaneously determined during the quantization. The quantum mechanical relations corresponding to the classical mechanical ones p / μ =[ x ,Hc ] D directly give the geometric momenta. The time t derivative of the momenta p ˙ =[ p ,Hc ] D in classical mechanics is in fact the generalized centripetal force law for particle on the 2D surface, which in quantum mechanics permits both the geometric momenta and the geometric potential.

  14. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.

  15. Landau quantization of Dirac fermions in graphene and its multilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin

    2017-08-01

    When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.

  16. Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field

    PubMed Central

    Guo, Donghui; Kondo, Takahiro; Machida, Takahiro; Iwatake, Keigo; Okada, Susumu; Nakamura, Junji

    2012-01-01

    The charge carriers in graphene are massless Dirac fermions and exhibit a relativistic Landau-level quantization in a magnetic field. Recently, it has been reported that, without any external magnetic field, quantized energy levels have been also observed from strained graphene nanobubbles on a platinum surface, which were attributed to the Landau levels of massless Dirac fermions in graphene formed by a strain-induced pseudomagnetic field. Here we show the generation of the Landau levels of massless Dirac fermions on a partially potassium-intercalated graphite surface without applying external magnetic field. Landau levels of massless Dirac fermions indicate the graphene character in partially potassium-intercalated graphite. The generation of the Landau levels is ascribed to a vector potential induced by the perturbation of nearest-neighbour hopping, which may originate from a strain or a gradient of on-site potentials at the perimeters of potassium-free domains. PMID:22990864

  17. Canonical field anticommutators in the extended gauged Rarita-Schwinger theory

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.; Henneaux, Marc; Pais, Pablo

    2017-10-01

    We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory, incorporating a dimension 1/2 auxiliary spin-1/2 field Λ , in which there is an exact off-shell gauge invariance. In Λ =0 gauge, which reduces to the original unextended theory, our results agree with those found by Johnson and Sudarshan, and later verified by Velo and Zwanziger, which give a canonical Rarita-Schwinger field Dirac bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the Rarita-Schwinger fields is nonsingular, but does not correspond to a positive semidefinite anticommutator, and the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory. These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by path integral methods, or by appropriate couplings to conventional dimension 3/2 spin-1/2 fields.

  18. Paul Weiss and the genesis of canonical quantization

    NASA Astrophysics Data System (ADS)

    Rickles, Dean; Blum, Alexander

    2015-12-01

    This paper describes the life and work of a figure who, we argue, was of primary importance during the early years of field quantisation and (albeit more indirectly) quantum gravity. A student of Dirac and Born, he was interned in Canada during the second world war as an enemy alien and after his release never seemed to regain a good foothold in physics, identifying thereafter as a mathematician. He developed a general method of quantizing (linear and non-linear) field theories based on the parameters labelling an arbitrary hypersurface. This method (the `parameter formalism' often attributed to Dirac), though later discarded, was employed (and viewed at the time as an extremely important tool) by the leading figures associated with canonical quantum gravity: Dirac, Pirani and Schild, Bergmann, DeWitt, and others. We argue that he deserves wider recognition for this and other innovations.

  19. Space of states in operator BFV-formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batalin, I.A.; Tyutin, I.V.

    1993-05-15

    The dynamically adequate Fock realization of the extended space of asymptotic states is given within the framework of the operator BFV-formalism and of the Dirac quantization scheme as well. Physical subspace is picked out and established to be naturally isomorphic to the Dirac space of states. The formal mechanism (unitary [var epsilon]-limit), by means of which the operator BFV-dynamics reduces to the Dirac one, is studied. 10 refs.

  20. Observation of Landau quantization and standing waves in HfSiS

    NASA Astrophysics Data System (ADS)

    Jiao, L.; Xu, Q. N.; Qi, Y. P.; Wu, S.-C.; Sun, Y.; Felser, C.; Wirth, S.

    2018-05-01

    Recently, HfSiS was found to be a new type of Dirac semimetal with a line of Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are also pronounced in this compound. Here we report a systematic study of HfSiS by scanning tunneling microscopy/spectroscopy at low temperature and high magnetic field. The Rashba-split surface states are characterized by measuring Landau quantization and standing waves, which reveal a quasilinear dispersive band structure. First-principles calculations based on density-functional theory are conducted and compared with the experimental results. Based on these investigations, the properties of the Rashba-split surface states and their interplay with defects and collective modes are discussed.

  1. La genèse du concept de champ quantique

    NASA Astrophysics Data System (ADS)

    Darrigol, O.

    This is a historical study of the roots of a concept which has proved to be essential in modern particle physics : the concept of quantum field. The first steps were accomplished by two young theoreticians : Pascual Jordan quantized the free electromagnetic field in 1925 by means of the formal rules of the just discovered matrix mechanics, and Paul Dirac quantized the whole system charges + field in 1927. Using Dirac's equation for electrons (1928) and Jordan's idea of quantized matter waves (second quantization), Werner Heisenberg and Wolfgang Pauli provided in 1929-1930 an extension of Dirac's radiation theory and the proof of its relativistic invariance. Meanwhile Enrico Fermi discovered independently a more elegant and pedagogical formulation. To appreciate the degree of historical necessity of the quantization of fields, and the value of contemporaneous critics to this approach, it was necessary to investigate some of the history of the old radiation theory. We present the various arguments however provisional or naïve or wrong they could be in retrospect. So we hope to contribute to a more vivid picture of notions which, once deprived of their historical setting, might seem abstruse to the modern user. Nous présentons une étude historique des origines d'un concept devenu essentiel dans la physique moderne des particules : le concept de champ quantique. Deux jeunes théoriciens franchirent les premières étapes : Pascual Jordan quantifia le champ électromagnétique en 1925 grâce aux règles formelles de la mécanique des matrices naissante, et Paul Dirac quantifia le système complet charges + champ en 1927. Au moyen de l'équation de l'électron de Dirac (1928) et de l'idée de Jordan d'ondes de matière quantifiées (deuxième quantification), Werner Heisenberg et Wolfgang Pauli donnèrent en 1929-1930 une extension de la théorie du rayonnement de Dirac et la preuve de son invariance relativiste. Pendant ce temps Enrico Fermi découvrit indépendamment une formulation plus élégante et plus pédagogique. Pour apprécier le degré de nécessité historique de la quantification des champs et la valeur des critiques contemporaines à cette approche, nous avons dû analyser quelques points de l'histoire de l'ancienne théorie du rayonnement. Nous présentons les divers arguments quelque provisoires, naïfs ou faux qu'ils puissent sembler aujourd'hui. Ainsi nous espérons brosser un tableau plus vivant de notions menacées d'hermétisme si l'on oublie leurs fondements historiques.

  2. From black holes to white holes: a quantum gravitational, symmetric bounce

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier; Saini, Sahil; Singh, Parampreet

    2017-11-01

    Recently, a consistent non-perturbative quantization of the Schwarzschild interior resulting in a bounce from black hole to white hole geometry has been obtained by loop quantizing the Kantowski-Sachs vacuum spacetime. As in other spacetimes where the singularity is dominated by the Weyl part of the spacetime curvature, the structure of the singularity is highly anisotropic in the Kantowski-Sachs vacuum spacetime. As a result, the bounce turns out to be in general asymmetric, creating a large mass difference between the parent black hole and the child white hole. In this manuscript, we investigate under what circumstances a symmetric bounce scenario can be constructed in the above quantization. Using the setting of Dirac observables and geometric clocks, we obtain a symmetric bounce condition which can be satisfied by a slight modification in the construction of loops over which holonomies are considered in the quantization procedure. These modifications can be viewed as quantization ambiguities, and are demonstrated in three different flavors, all of which lead to a non-singular black to white hole transition with identical masses. Our results show that quantization ambiguities can mitigate or even qualitatively change some key features of the physics of singularity resolution. Further, these results are potentially helpful in motivating and constructing symmetric black to white hole transition scenarios.

  3. The coordinate coherent states approach revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yan-Gang, E-mail: miaoyg@nankai.edu.cn; Zhang, Shao-Jun, E-mail: sjzhang@mail.nankai.edu.cn

    2013-02-15

    We revisit the coordinate coherent states approach through two different quantization procedures in the quantum field theory on the noncommutative Minkowski plane. The first procedure, which is based on the normal commutation relation between an annihilation and creation operators, deduces that a point mass can be described by a Gaussian function instead of the usual Dirac delta function. However, we argue this specific quantization by adopting the canonical one (based on the canonical commutation relation between a field and its conjugate momentum) and show that a point mass should still be described by the Dirac delta function, which implies thatmore » the concept of point particles is still valid when we deal with the noncommutativity by following the coordinate coherent states approach. In order to investigate the dependence on quantization procedures, we apply the two quantization procedures to the Unruh effect and Hawking radiation and find that they give rise to significantly different results. Under the first quantization procedure, the Unruh temperature and Unruh spectrum are not deformed by noncommutativity, but the Hawking temperature is deformed by noncommutativity while the radiation specturm is untack. However, under the second quantization procedure, the Unruh temperature and Hawking temperature are untack but the both spectra are modified by an effective greybody (deformed) factor. - Highlights: Black-Right-Pointing-Pointer Suggest a canonical quantization in the coordinate coherent states approach. Black-Right-Pointing-Pointer Prove the validity of the concept of point particles. Black-Right-Pointing-Pointer Apply the canonical quantization to the Unruh effect and Hawking radiation. Black-Right-Pointing-Pointer Find no deformations in the Unruh temperature and Hawking temperature. Black-Right-Pointing-Pointer Provide the modified spectra of the Unruh effect and Hawking radiation.« less

  4. Can chaos be observed in quantum gravity?

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Höhn, Philipp A.; Koslowski, Tim A.; Nelson, Mike I.

    2017-06-01

    Full general relativity is almost certainly 'chaotic'. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.

  5. Quantum self-gravitating collapsing matter in a quantum geometry

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Gambini, Rodolfo; Olmedo, Javier; Pullin, Jorge

    2016-09-01

    The problem of how space-time responds to gravitating quantum matter in full quantum gravity has been one of the main questions that any program of quantization of gravity should address. Here we analyze this issue by considering the quantization of a collapsing null shell coupled to spherically symmetric loop quantum gravity. We show that the constraint algebra of canonical gravity is Abelian both classically and when quantized using loop quantum gravity techniques. The Hamiltonian constraint is well defined and suitable Dirac observables characterizing the problem were identified at the quantum level. We can write the metric as a parameterized Dirac observable at the quantum level and study the physics of the collapsing shell and black hole formation. We show how the singularity inside the black hole is eliminated by loop quantum gravity and how the shell can traverse it. The construction is compatible with a scenario in which the shell tunnels into a baby universe inside the black hole or one in which it could emerge through a white hole.

  6. Canonical quantization of constrained systems and coadjoint orbits of Diff(S sup 1 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, W.M.

    It is shown that Dirac's treatment of constrained Hamiltonian systems and Schwinger's action principle quantization lead to identical commutations relations. An explicit relation between the Lagrange multipliers in the action principle approach and the additional terms in the Dirac bracket is derived. The equivalence of the two methods is demonstrated in the case of the non-linear sigma model. Dirac's method is extended to superspace and this extension is applied to the chiral superfield. The Dirac brackets of the massive interacting chiral superfluid are derived and shown to give the correct commutation relations for the component fields. The Hamiltonian of themore » theory is given and the Hamiltonian equations of motion are computed. They agree with the component field results. An infinite sequence of differential operators which are covariant under the coadjoint action of Diff(S{sup 1}) and analogues to Hill's operator is constructed. They map conformal fields of negative integer and half-integer weight to their dual space. Some properties of these operators are derived and possible applications are discussed. The Korteweg-de Vries equation is formulated as a coadjoint orbit of Diff(S{sup 1}).« less

  7. Observation of the Quantum Hall Effect in Confined Films of the Three-Dimensional Dirac Semimetal Cd3 As2

    NASA Astrophysics Data System (ADS)

    Schumann, Timo; Galletti, Luca; Kealhofer, David A.; Kim, Honggyu; Goyal, Manik; Stemmer, Susanne

    2018-01-01

    The magnetotransport properties of epitaxial films of Cd3 As2 , a paradigm three-dimensional Dirac semimetal, are investigated. We show that an energy gap opens in the bulk electronic states of sufficiently thin films and, at low temperatures, carriers residing in surface states dominate the electrical transport. The carriers in these states are sufficiently mobile to give rise to a quantized Hall effect. The sharp quantization demonstrates surface transport that is virtually free of parasitic bulk conduction and paves the way for novel quantum transport studies in this class of topological materials. Our results also demonstrate that heterostructuring approaches can be used to study and engineer quantum states in topological semimetals.

  8. A Quantized Metric As an Alternative to Dark Matter

    NASA Astrophysics Data System (ADS)

    Maker, Joel

    2010-03-01

    The cosmological spherical symmetry background metric coefficient (g44≡) g00= 1-2GM/c^2r should be inserted into a Dirac equation σμ(gμμγ^μψ/xμ)-φψ = 0 (1,Maker) to make it generally covariant. The spin of this cosmological Dirac object is nearly unobservable due to inertial frame dragging and has rotational L(L+1) δɛ and oscillatory ɛ interactions with external objects at distance away r>>10^10 LY. The inside and outside frequencies φ match at the boundary allowing the outside metric eigenvalues to propagate inside. To include the correct 3 lepton masses in this Dirac equation we must use ansatz goo= e^i(2ɛ+δɛ) with ɛ=.06, δɛ=.00058. For local metric effects our ansatz is goo=e^iδɛ. Here the metric coefficient goo levels off to the quantized value e^iδɛ in the galaxy halo: goo=1-2GM/rc^2-> rel(e^iδɛ) =cos(δɛ)= 1-(δɛ)^2/2 ->(δɛ)^2/2=2GM/rc^2 for this circular motion v^2/r=GM/r^2=c^2(δɛ)^2/4r ->v^2 =c^2(δɛ)^2/4 =87km/sec)^2 100km/sec)^2. So the metric acts to quantize v. Note also there is rotational energy quantization for the δɛ rotational states that goes as: (L(L+1)) .5ex1 -.1em/ -.15em.25ex2 mv^2 ->√L(L+1) v. Thus differences in v are proportional to L, L being an integer. Therefore δv = kL so v = 1k, v = 2k, v = 3k, v = 4k. v=N (the above ˜100km/sec) with dark matter then not required to give these high halo velocities. Recent nearby galaxy Doppler halo velocity data strongly support this velocity quantization result.

  9. Reduced Order Podolsky Model

    NASA Astrophysics Data System (ADS)

    Thibes, Ronaldo

    2017-02-01

    We perform the canonical and path integral quantizations of a lower-order derivatives model describing Podolsky's generalized electrodynamics. The physical content of the model shows an auxiliary massive vector field coupled to the usual electromagnetic field. The equivalence with Podolsky's original model is studied at classical and quantum levels. Concerning the dynamical time evolution, we obtain a theory with two first-class and two second-class constraints in phase space. We calculate explicitly the corresponding Dirac brackets involving both vector fields. We use the Senjanovic procedure to implement the second-class constraints and the Batalin-Fradkin-Vilkovisky path integral quantization scheme to deal with the symmetries generated by the first-class constraints. The physical interpretation of the results turns out to be simpler due to the reduced derivatives order permeating the equations of motion, Dirac brackets and effective action.

  10. Probing Dirac fermion dynamics in topological insulator Bi2Se3 films with a scanning tunneling microscope.

    PubMed

    Song, Can-Li; Wang, Lili; He, Ke; Ji, Shuai-Hua; Chen, Xi; Ma, Xu-Cun; Xue, Qi-Kun

    2015-05-01

    Scanning tunneling microscopy and spectroscopy have been used to investigate the femtosecond dynamics of Dirac fermions in the topological insulator Bi2Se3 ultrathin films. At the two-dimensional limit, bulk electrons become quantized and the quantization can be controlled by the film thickness at a single quintuple layer level. By studying the spatial decay of standing waves (quasiparticle interference patterns) off steps, we measure directly the energy and film thickness dependence of the phase relaxation length lϕ and inelastic scattering lifetime τ of topological surface-state electrons. We find that τ exhibits a remarkable (E - EF)(-2) energy dependence and increases with film thickness. We show that the features revealed are typical for electron-electron scattering between surface and bulk states.

  11. Symplectic Quantization of a Vector-Tensor Gauge Theory with Topological Coupling

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Silva, M. B. D.

    We use the symplectic formalism to quantize a gauge theory where vectors and tensors fields are coupled in a topological way. This is an example of reducible theory and a procedure like of ghosts-of-ghosts of the BFV method is applied but in terms of Lagrange multipliers. Our final results are in agreement with the ones found in the literature by using the Dirac method.

  12. Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems

    NASA Technical Reports Server (NTRS)

    Reifler, Frank; Morris, Randall

    1994-01-01

    Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.

  13. Quantum motion on a torus as a submanifold problem in a generalized Dirac's theory of second-class constraints

    NASA Astrophysics Data System (ADS)

    Xun, D. M.; Liu, Q. H.; Zhu, X. M.

    2013-11-01

    A generalization of Dirac's canonical quantization scheme for a system with second-class constraints is proposed, in which the fundamental commutation relations are constituted by all commutators between positions, momenta and Hamiltonian, so they are simultaneously quantized in a self-consistent manner, rather than by those between merely positions and momenta which leads to ambiguous forms of the Hamiltonian and the momenta. The application of the generalized scheme to the quantum motion on a torus leads to a remarkable result: the quantum theory is inconsistent if built up in an intrinsic geometric manner, whereas it becomes consistent within an extrinsic examination of the torus as a submanifold in three dimensional flat space with the use of the Cartesian coordinate system. The geometric momentum and potential are then reasonably reproduced.

  14. Large, nonsaturating thermopower in a quantizing magnetic field

    PubMed Central

    Fu, Liang

    2018-01-01

    The thermoelectric effect is the generation of an electrical voltage from a temperature gradient in a solid material due to the diffusion of free charge carriers from hot to cold. Identifying materials with a large thermoelectric response is crucial for the development of novel electric generators and coolers. We theoretically consider the thermopower of Dirac/Weyl semimetals subjected to a quantizing magnetic field. We contrast their thermoelectric properties with those of traditional heavily doped semiconductors and show that, under a sufficiently large magnetic field, the thermopower of Dirac/Weyl semimetals grows linearly with the field without saturation and can reach extremely high values. Our results suggest an immediate pathway for achieving record-high thermopower and thermoelectric figure of merit, and they compare well with a recent experiment on Pb1–xSnxSe. PMID:29806031

  15. The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Reintjes, Moritz

    2017-05-01

    We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.

  16. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Praloy, E-mail: praloydasdurgapur@gmail.com; Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subirghosh20@gmail.com

    2016-11-15

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac’s Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torusmore » knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein–Brillouin–Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr–Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.« less

  17. Nonlinear Dirac cones

    NASA Astrophysics Data System (ADS)

    Bomantara, Raditya Weda; Zhao, Wenlei; Zhou, Longwen; Gong, Jiangbin

    2017-09-01

    Physics arising from two-dimensional (2D) Dirac cones has been a topic of great theoretical and experimental interest to studies of gapless topological phases and to simulations of relativistic systems. Such 2D Dirac cones are often characterized by a π Berry phase and are destroyed by a perturbative mass term. By considering mean-field nonlinearity in a minimal two-band Chern insulator model, we obtain a different type of Dirac cone that is robust to local perturbations without symmetry restrictions. Due to a different pseudospin texture, the Berry phase of the Dirac cone is no longer quantized in π , and can be continuously tuned as an order parameter. Furthermore, in an Aharonov-Bohm (AB) interference setup to detect such Dirac cones, the adiabatic AB phase is found to be π both theoretically and computationally, offering an observable topological invariant and a fascinating example where the Berry phase and AB phase are fundamentally different. We hence discover a nonlinearity-induced quantum phase transition from a known topological insulating phase to an unusual gapless topological phase.

  18. Null hypersurface quantization, electromagnetic duality and asympotic symmetries of Maxwell theory

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arpan; Hung, Ling-Yan; Jiang, Yikun

    2018-03-01

    In this paper we consider introducing careful regularization at the quantization of Maxwell theory in the asymptotic null infinity. This allows systematic discussions of the commutators in various boundary conditions, and application of Dirac brackets accordingly in a controlled manner. This method is most useful when we consider asymptotic charges that are not localized at the boundary u → ±∞ like large gauge transformations. We show that our method reproduces the operator algebra in known cases, and it can be applied to other space-time symmetry charges such as the BMS transformations. We also obtain the asymptotic form of the U(1) charge following from the electromagnetic duality in an explicitly EM symmetric Schwarz-Sen type action. Using our regularization method, we demonstrate that the charge generates the expected transformation of a helicity operator. Our method promises applications in more generic theories.

  19. Canonical methods in classical and quantum gravity: An invitation to canonical LQG

    NASA Astrophysics Data System (ADS)

    Reyes, Juan D.

    2018-04-01

    Loop Quantum Gravity (LQG) is a candidate quantum theory of gravity still under construction. LQG was originally conceived as a background independent canonical quantization of Einstein’s general relativity theory. This contribution provides some physical motivations and an overview of some mathematical tools employed in canonical Loop Quantum Gravity. First, Hamiltonian classical methods are reviewed from a geometric perspective. Canonical Dirac quantization of general gauge systems is sketched next. The Hamiltonian formultation of gravity in geometric ADM and connection-triad variables is then presented to finally lay down the canonical loop quantization program. The presentation is geared toward advanced undergradute or graduate students in physics and/or non-specialists curious about LQG.

  20. Nonlinear modes of the tensor Dirac equation and CPT violation

    NASA Technical Reports Server (NTRS)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  1. Quantum mechanics of a constrained particle on an ellipsoid: Bein formalism and Geometric momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panahi, H., E-mail: t-panahi@guilan.ac.ir; Jahangiri, L., E-mail: laleh.jahangiry@yahoo.com

    2016-09-15

    In this work we apply the Dirac method in order to obtain the classical relations for a particle on an ellipsoid. We also determine the quantum mechanical form of these relations by using Dirac quantization. Then by considering the canonical commutation relations between the position and momentum operators in terms of curved coordinates, we try to propose the suitable representations for momentum operator that satisfy the obtained commutators between position and momentum in Euclidean space. We see that our representations for momentum operators are the same as geometric one.

  2. Majorana fermions from Landau quantization in a superconductor and topological-insulator hybrid structure.

    PubMed

    Tiwari, Rakesh P; Zülicke, U; Bruder, C

    2013-05-03

    We show that the interplay of cyclotron motion and Andreev reflection experienced by massless-Dirac-like charge carriers in topological-insulator surface states generates a Majorana-particle excitation. On the basis of an envelope-function description of the Dirac-Andreev edge states, we discuss the kinematic properties of the Majorana mode and find them to be tunable by changing the superconductor's chemical potential and/or the magnitude of the perpendicular magnetic field. Our proposal opens up new possibilities for studying Majorana fermions in a controllable setup.

  3. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.

    2016-05-01

    In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries onmore » the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.« less

  4. Simplified path integral for supersymmetric quantum mechanics and type-A trace anomalies

    NASA Astrophysics Data System (ADS)

    Bastianelli, Fiorenzo; Corradini, Olindo; Iacconi, Laura

    2018-05-01

    Particles in a curved space are classically described by a nonlinear sigma model action that can be quantized through path integrals. The latter require a precise regularization to deal with the derivative interactions arising from the nonlinear kinetic term. Recently, for maximally symmetric spaces, simplified path integrals have been developed: they allow to trade the nonlinear kinetic term with a purely quadratic kinetic term (linear sigma model). This happens at the expense of introducing a suitable effective scalar potential, which contains the information on the curvature of the space. The simplified path integral provides a sensible gain in the efficiency of perturbative calculations. Here we extend the construction to models with N = 1 supersymmetry on the worldline, which are applicable to the first quantized description of a Dirac fermion. As an application we use the simplified worldline path integral to compute the type-A trace anomaly of a Dirac fermion in d dimensions up to d = 16.

  5. Topological transport in Dirac nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Rui, W. B.; Zhao, Y. X.; Schnyder, Andreas P.

    2018-04-01

    Topological nodal-line semimetals are characterized by one-dimensional Dirac nodal rings that are protected by the combined symmetry of inversion P and time-reversal T . The stability of these Dirac rings is guaranteed by a quantized ±π Berry phase and their low-energy physics is described by a one-parameter family of (2+1)-dimensional quantum field theories exhibiting the parity anomaly. Here we study the Berry-phase supported topological transport of P T -invariant nodal-line semimetals. We find that small inversion breaking allows for an electric-field-induced anomalous transverse current, whose universal component originates from the parity anomaly. Due to this Hall-like current, carriers at opposite sides of the Dirac nodal ring flow to opposite surfaces when an electric field is applied. To detect the topological currents, we propose a dumbbell device, which uses surface states to filter charges based on their momenta. Suggestions for experiments and device applications are discussed.

  6. Fierz bilinear formulation of the Maxwell–Dirac equations and symmetry reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglis, Shaun, E-mail: sminglis@utas.edu.au; Jarvis, Peter, E-mail: Peter.Jarvis@utas.edu.au

    We study the Maxwell–Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell–Dirac equations, without any reference to gauge dependent quantities. We showmore » how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell–Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form. - Highlights: • Maxwell–Dirac equations derived in manifestly gauge invariant tensor form. • Invariant scalar and four vector fields for four Poincaré subgroups derived, including two unusual cases. • Symmetry reduction imposed on Maxwell–Dirac equations under example subgroups. • Magnetic monopole arises for spherically symmetric case, consistent with charge quantization condition.« less

  7. Proximity-induced superconductivity in Landau-quantized graphene monolayers

    NASA Astrophysics Data System (ADS)

    Cohnitz, Laura; De Martino, Alessandro; Häusler, Wolfgang; Egger, Reinhold

    2017-10-01

    We consider massless Dirac fermions in a graphene monolayer in the ballistic limit, subject to both a perpendicular magnetic field B and a proximity-induced pairing gap Δ . When the chemical potential is at the Dirac point, our exact solution of the Bogoliubov-de Gennes equation yields Δ -independent relativistic Landau levels. Since eigenstates depend on Δ , many observables nevertheless are sensitive to pairing, e.g., the local density of states or the edge state spectrum. By solving the problem with an additional in-plane electric field, we also discuss how snake states are influenced by a pairing gap.

  8. Exact mapping of the 2+1 Dirac oscillator onto the Jaynes-Cummings model: Ion-trap experimental proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-10-15

    We study the dynamics of the 2+1 Dirac oscillator exactly and find spin oscillations due to a Zitterbewegung of purely relativistic origin. We find an exact mapping of this quantum-relativistic system onto a Jaynes-Cummings model, describing the interaction of a two-level atom with a quantized single-mode field. This equivalence allows us to map a series of quantum optical phenomena onto the relativistic oscillator and vice versa. We make a realistic experimental proposal, in reach with current technology, for studying the equivalence of both models using a single trapped ion.

  9. Topological Valley Currents in Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.

    2015-06-01

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

  10. Can one ADM quantize relativistic bosonicstrings and membranes?

    NASA Astrophysics Data System (ADS)

    Moncrief, Vincent

    2006-04-01

    The standard methods for quantizing relativistic strings diverge significantly from the Dirac-Wheeler-DeWitt program for quantization of generally covariant systems and one wonders whether the latter could be successfully implemented as an alternative to the former. As a first step in this direction, we consider the possibility of quantizing strings (and also relativistic membranes) via a partially gauge-fixed ADM (Arnowitt, Deser and Misner) formulation of the reduced field equations for these systems. By exploiting some (Euclidean signature) Hamilton-Jacobi techniques that Mike Ryan and I had developed previously for the quantization of Bianchi IX cosmological models, I show how to construct Diff( S 1)-invariant (or Diff(Σ)-invariant in the case of membranes) ground state wave functionals for the cases of co-dimension one strings and membranes embedded in Minkowski spacetime. I also show that the reduced Hamiltonian density operators for these systems weakly commute when applied to physical (i.e. Diff( S 1) or Diff(Σ)-invariant) states. While many open questions remain, these preliminary results seem to encourage further research along the same lines.

  11. Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Strohmaier, Alexander

    2015-08-01

    We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.

  12. BRST Quantization of the Proca Model Based on the BFT and the BFV Formalism

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Wan; Park, Mu-In; Park, Young-Jai; Yoon, Sean J.

    The BRST quantization of the Abelian Proca model is performed using the Batalin-Fradkin-Tyutin and the Batalin-Fradkin-Vilkovisky formalism. First, the BFT Hamiltonian method is applied in order to systematically convert a second class constraint system of the model into an effectively first class one by introducing new fields. In finding the involutive Hamiltonian we adopt a new approach which is simpler than the usual one. We also show that in our model the Dirac brackets of the phase space variables in the original second class constraint system are exactly the same as the Poisson brackets of the corresponding modified fields in the extended phase space due to the linear character of the constraints comparing the Dirac or Faddeev-Jackiw formalisms. Then, according to the BFV formalism we obtain that the desired resulting Lagrangian preserving BRST symmetry in the standard local gauge fixing procedure naturally includes the Stückelberg scalar related to the explicit gauge symmetry breaking effect due to the presence of the mass term. We also analyze the nonstandard nonlocal gauge fixing procedure.

  13. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra

    PubMed Central

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-01-01

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail. PMID:24225900

  14. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra.

    PubMed

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-11-14

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail.

  15. Second quantization in bit-string physics

    NASA Technical Reports Server (NTRS)

    Noyes, H. Pierre

    1993-01-01

    Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.

  16. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  17. Symplectic analysis of three-dimensional Abelian topological gravity

    NASA Astrophysics Data System (ADS)

    Cartas-Fuentevilla, R.; Escalante, Alberto; Herrera-Aguilar, Alfredo

    2017-02-01

    A detailed Faddeev-Jackiw quantization of an Abelian topological gravity is performed; we show that this formalism is equivalent and more economical than Dirac's method. In particular, we identify the complete set of constraints of the theory, from which the number of physical degrees of freedom is explicitly computed. We prove that the generalized Faddeev-Jackiw brackets and the Dirac ones coincide with each other. Moreover, we perform the Faddeev-Jackiw analysis of the theory at the chiral point, and the full set of constraints and the generalized Faddeev-Jackiw brackets are constructed. Finally we compare our results with those found in the literature and we discuss some remarks and prospects.

  18. Fractional-calculus diffusion equation

    PubMed Central

    2010-01-01

    Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677

  19. New exact solutions of the Dirac and Klein-Gordon equations of a charged particle propagating in a strong laser field in an underdense plasma

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2014-03-01

    Exact solutions are presented of the Dirac and Klein-Gordon equations of a charged particle propagating in a classical monochromatic electromagnetic plane wave in a medium of index of refraction nm<1. In the Dirac case the solutions are expressed in terms of new complex polynomials, and in the Klein-Gordon case the found solutions are expressed in terms of Ince polynomials. In each case they form a doubly infinite set, labeled by two integer quantum numbers. These integer numbers represent quantized momentum components of the charged particle along the polarization vector and along the propagation direction of the electromagnetic radiation. Since this radiation may represent a plasmon wave of arbitrary high amplitude, propagating in an underdense plasma, the solutions obtained may have relevance in describing possible quantum features of novel acceleration mechanisms.

  20. Shot noise and Fano factor in tunneling in three-band pseudospin-1 Dirac-Weyl systems

    NASA Astrophysics Data System (ADS)

    Zhu, Rui; Hui, Pak Ming

    2017-06-01

    Tunneling through a potential barrier of height V0 in a two-dimensional system with a band structure consisting of three bands with a flat band intersecting the touching apices of two Dirac cones is studied. Results of the transmission coefficient at various incident angles, conductivity, shot noise, and Fano factor in this pseudospin-1 Dirac-Weyl system are presented and contrasted with those in graphene which is typical of a pseudospin-1/2 system. The pseudospin-1 system is found to show a higher transmission and suppressed shot noise in general. Significant differences in the shot noise and Fano factor due to the super Klein tunneling effect that allows perfect transmission at all incident angles under certain conditions are illustrated. For Fermi energy EF =V0 / 2, super Klein tunneling leads to a noiseless conductivity that takes on the maximum value 2e2 DkF / (πh) for 0 ≤EF ≤V0. This gives rise to a minimum Fano factor, in sharp contrast with that of a local maximum in graphene. For EF =V0, the band structure of pseudospin-1 system no longer leads to a quantized value of the conductivity as in graphene. Both the conductivity and the shot noise show a minimum with the Fano factor approaching 1/4, which is different from the value of 1/3 in graphene.

  1. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    PubMed

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  2. Quantum gravitational collapse as a Dirac particle on the half line

    NASA Astrophysics Data System (ADS)

    Hassan, Syed Moeez; Husain, Viqar; Ziprick, Jonathan

    2018-05-01

    We show that the quantum dynamics of a thin spherical shell in general relativity is equivalent to the Coulomb-Dirac equation on the half line. The Hamiltonian has a one-parameter family of self-adjoint extensions with a discrete energy spectrum |E |m , where m is the rest mass of the shell and E is the Arnowitt-Deser-Misner mass. For sufficiently large m , the ground state energy level is negative. This suggests that classical positivity of energy does not survive quantization. The scattering states provide a realization of singularity avoidance. We speculate on the consequences of these results for black hole radiation.

  3. The canonical quantization of chaotic maps on the torus

    NASA Astrophysics Data System (ADS)

    Rubin, Ron Shai

    In this thesis, a quantization method for classical maps on the torus is presented. The quantum algebra of observables is defined as the quantization of measurable functions on the torus with generators exp (2/pi ix) and exp (2/pi ip). The Hilbert space we use remains the infinite-dimensional L2/ (/IR, dx). The dynamics is given by a unitary quantum propagator such that as /hbar /to 0, the classical dynamics is returned. We construct such a quantization for the Kronecker map, the cat map, the baker's map, the kick map, and the Harper map. For the cat map, we find the same for the propagator on the plane the same integral kernel conjectured in (HB) using semiclassical methods. We also define a quantum 'integral over phase space' as a trace over the quantum algebra. Using this definition, we proceed to define quantum ergodicity and mixing for maps on the torus. We prove that the quantum cat map and Kronecker map are both ergodic, but only the cat map is mixing, true to its classical origins. For Planck's constant satisfying the integrality condition h = 1/N, with N/in doubz+, we construct an explicit isomorphism between L2/ (/IR, dx) and the Hilbert space of sections of an N-dimensional vector bundle over a θ-torus T2 of boundary conditions. The basis functions are distributions in L2/ (/IR, dx), given by an infinite comb of Dirac δ-functions. In Bargmann space these distributions take on the form of Jacobi ϑ-functions. Transformations from position to momentum representation can be implemented via a finite N-dimensional discrete Fourier transform. With the θ-torus, we provide a connection between the finite-dimensional quantum maps given in the physics literature and the canonical quantization presented here and found in the language of pseudo-differential operators elsewhere in mathematics circles. Specifically, at a fixed point of the dynamics on the θ-torus, we return a finite-dimensional matrix propagator. We present this connection explicitly for several examples.

  4. Dynamic optimization and its relation to classical and quantum constrained systems

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo

    2017-08-01

    We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.

  5. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂.

    PubMed

    Jeon, Sangjun; Zhou, Brian B; Gyenis, Andras; Feldman, Benjamin E; Kimchi, Itamar; Potter, Andrew C; Gibson, Quinn D; Cava, Robert J; Vishwanath, Ashvin; Yazdani, Ali

    2014-09-01

    Condensed-matter systems provide a rich setting to realize Dirac and Majorana fermionic excitations as well as the possibility to manipulate them for potential applications. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials or in topological insulator multilayers and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II-V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.

  6. A BRST formulation for the conic constrained particle

    NASA Astrophysics Data System (ADS)

    Barbosa, Gabriel D.; Thibes, Ronaldo

    2018-04-01

    We describe the gauge invariant BRST formulation of a particle constrained to move in a general conic. The model considered constitutes an explicit example of an originally second-class system which can be quantized within the BRST framework. We initially impose the conic constraint by means of a Lagrange multiplier leading to a consistent second-class system which generalizes previous models studied in the literature. After calculating the constraint structure and the corresponding Dirac brackets, we introduce a suitable first-order Lagrangian, the resulting modified system is then shown to be gauge invariant. We proceed to the extended phase space introducing fermionic ghost variables, exhibiting the BRST symmetry transformations and writing the Green’s function generating functional for the BRST quantized model.

  7. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.

    PubMed

    Liu, Zheng-Xin; Normand, B

    2018-05-04

    Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  8. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Xin; Normand, B.

    2018-05-01

    Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  9. Sn nanothreads in GaAs: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  10. MBE growth of Topological Isolators based on strained semi-metallic HgCdTe layers

    NASA Astrophysics Data System (ADS)

    Grendysa, J.; Tomaka, G.; Sliz, P.; Becker, C. R.; Trzyna, M.; Wojnarowska-Nowak, R.; Bobko, E.; Sheregii, E. M.

    2017-12-01

    Particularities of Molecular Beam Epitaxial (MBE) technology for the growth of Topological Insulators (TI) based on the semi-metal Hg1-xCdx Te are presented. A series of strained layers grown on GaAs substrates with a composition close to the 3D Dirac point were studied. The composition of the layers was verified by means of the position of the E1 maximum in optical reflectivity in the visible region. The surface morphology was determined via atomic force and electron microscopy. Magneto-transport measurements show quantized Hall resistance curves and Shubnikov de Hass oscillations (up to 50 K). It has been demonstrated that a well-developed MBE technology enables one to grow strained Hg1-xCdx Te layers on GaAs/CdTe substrates with a well-defined composition near the 3D Dirac point and consequently allows one to produce a 3D topological Dirac semimetal - 3D analogy of graphene - for future applications.

  11. Revealing the Topology of Fermi-Surface Wave Functions from Magnetic Quantum Oscillations

    NASA Astrophysics Data System (ADS)

    Alexandradinata, A.; Wang, Chong; Duan, Wenhui; Glazman, Leonid

    2018-01-01

    The modern semiclassical theory of a Bloch electron in a magnetic field now encompasses the orbital magnetic moment and the geometric phase. These two notions are encoded in the Bohr-Sommerfeld quantization condition as a phase (λ ) that is subleading in powers of the field; λ is measurable in the phase offset of the de Haas-van Alphen oscillation, as well as of fixed-bias oscillations of the differential conductance in tunneling spectroscopy. In some solids and for certain field orientations, λ /π are robustly integer valued, owing to the symmetry of the extremal orbit; i.e., they are the topological invariants of magnetotransport. Our comprehensive symmetry analysis identifies solids in any (magnetic) space group for which λ is a topological invariant, as well as the symmetry-enforced degeneracy of Landau levels. The analysis is simplified by our formulation of ten (and only ten) symmetry classes for closed, Fermi-surface orbits. Case studies are discussed for graphene, transition metal dichalcogenides, 3D Weyl and Dirac metals, and crystalline and Z2 topological insulators. In particular, we point out that a π phase offset in the fundamental oscillation should not be viewed as a smoking gun for a 3D Dirac metal.

  12. Quantization of simple parametrized systems

    NASA Astrophysics Data System (ADS)

    Ruffini, G.

    2005-11-01

    I study the canonical formulation and quantization of some simple parametrized systems, including the non-relativistic parametrized particle and the relativistic parametrized particle. Using Dirac's formalism I construct for each case the classical reduced phase space and study the dependence on the gauge fixing used. Two separate features of these systems can make this construction difficult: the actions are not invariant at the boundaries, and the constraints may have disconnected solution spaces. The relativistic particle is affected by both, while the non-relativistic particle displays only by the first. Analyzing the role of canonical transformations in the reduced phase space, I show that a change of gauge fixing is equivalent to a canonical transformation. In the relativistic case, quantization of one branch of the constraint at the time is applied and I analyze the electromagenetic backgrounds in which it is possible to quantize simultaneously both branches and still obtain a covariant unitary quantum theory. To preserve unitarity and space-time covariance, second quantization is needed unless there is no electric field. I motivate a definition of the inner product in all these cases and derive the Klein-Gordon inner product for the relativistic case. I construct phase space path integral representations for amplitudes for the BFV and the Faddeev path integrals, from which the path integrals in coordinate space (Faddeev-Popov and geometric path integrals) are derived.

  13. Novel Principles and the Charge-Symmetric Design of Dirac's Quantum Mechanics: I. Enhanced Eriksen's Theorem and the Universal Charge-Index Formalism for Dirac's Equation in (Strong) External Static Fields

    NASA Astrophysics Data System (ADS)

    Kononets, Yu. V.

    2016-12-01

    The presented enhanced version of Eriksen's theorem defines an universal transform of the Foldy-Wouthuysen type and in any external static electromagnetic field (ESEMF) reveals a discrete symmetry of Dirac's equation (DE), responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism (CIF) obeying the charge-index conservation law (CICL). Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac's quantum mechanics (DQM), which resolves all the riddles of the standard DE theory (SDET). Besides the abstract CIF algebra, the paper discusses: (1) the novel accurate charge-symmetric definition of the electric-current density; (2) DE in the true-particle representation, where electrons and positrons coexist on equal footing; (3) flawless "natural" scheme of second quantization; and (4) new physical grounds for the Fermi-Dirac statistics. As a fundamental quantum law, the CICL originates from the kinetic-energy sign conservation and leads to a novel single-particle physics in strong-field situations. Prohibiting Klein's tunneling (KT) in Klein's zone via the CICL, the precise CIF algebra defines a new class of weakly singular DE solutions, strictly confined in the coordinate space and experiencing the total reflection from the potential barrier.

  14. Casimir force phase transitions in the graphene family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.

    The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences onmore » characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.« less

  15. Casimir force phase transitions in the graphene family

    DOE PAGES

    Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; ...

    2017-03-15

    The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences onmore » characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.« less

  16. Perspectives of Light-Front Quantized Field Theory: Some New Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Prem P.

    1999-08-13

    A review of some basic topics in the light-front (LF) quantization of relativistic field theory is made. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the microcausality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent than that found inmore » the conventional equal-time quantized theory. The removal of the constraints on the LF phase space by following the Dirac method, in fact, results in a substantially reduced number of independent dynamical variables. Consequently, the descriptions of the physical Hilbert space and the vacuum structure, for example, become more tractable. In the context of the Dyson-Wick perturbation theory the relevant propagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of the hyperbolic partial differential equation is found irrelevant in the quantized theory; it seems sufficient to quantize the theory on one of the characteristic hyperplanes.« less

  17. Quaternionic Kähler Detour Complexes and {mathcal{N} = 2} Supersymmetric Black Holes

    NASA Astrophysics Data System (ADS)

    Cherney, D.; Latini, E.; Waldron, A.

    2011-03-01

    We study a class of supersymmetric spinning particle models derived from the radial quantization of stationary, spherically symmetric black holes of four dimensional {{mathcal N} = 2} supergravities. By virtue of the c-map, these spinning particles move in quaternionic Kähler manifolds. Their spinning degrees of freedom describe mini-superspace-reduced supergravity fermions. We quantize these models using BRST detour complex technology. The construction of a nilpotent BRST charge is achieved by using local (worldline) supersymmetry ghosts to generate special holonomy transformations. (An interesting byproduct of the construction is a novel Dirac operator on the superghost extended Hilbert space.) The resulting quantized models are gauge invariant field theories with fields equaling sections of special quaternionic vector bundles. They underly and generalize the quaternionic version of Dolbeault cohomology discovered by Baston. In fact, Baston’s complex is related to the BPS sector of the models we write down. Our results rely on a calculus of operators on quaternionic Kähler manifolds that follows from BRST machinery, and although directly motivated by black hole physics, can be broadly applied to any model relying on quaternionic geometry.

  18. a Simpler Solution of the Non-Uniqueness Problem of the Covariant Dirac Theory

    NASA Astrophysics Data System (ADS)

    Arminjon, Mayeul

    2013-05-01

    Although the standard generally covariant Dirac equation is unique in a topologically simple spacetime, it has been shown that it leads to non-uniqueness problems for the Hamiltonian and energy operators, including the non-uniqueness of the energy spectrum. These problems should be solved by restricting the choice of the Dirac gamma field in a consistent way. Recently, we proposed to impose the value of the rotation rate of the tetrad field. This is not necessarily easy to implement and works only in a given reference frame. Here, we propose that the gamma field should change only by constant gauge transformations. To get that situation, we are naturally led to assume that the metric can be put in a space-isotropic diagonal form. When this is the case, it distinguishes a preferred reference frame. We show that by defining the gamma field from the "diagonal tetrad" in a chart in which the metric has that form, the uniqueness problems are solved at once for all reference frames. We discuss the physical relevance of the metric considered and our restriction to first-quantized theory.

  19. Magnetic Dirac Fermions and Chern Insulator Supported on Pristine Silicon Surface

    NASA Astrophysics Data System (ADS)

    Fu, Huixia; Liu, Zheng; Sun, Jia-Tao; Meng, Sheng

    Emergence of ferromagnetism in non-magnetic semiconductors is strongly desirable, especially in topological materials thanks to the possibility to achieve quantum anomalous Hall effect. Based on first principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-r3xr3 surface with a spontaneous weak reconstruction has a strong tendency of ferromagnetism and nontrivial topological properties, characterized by spin polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together gives rise to quantized anomalous Hall effect with a finite Chern number C = -1. This work suggests exciting opportunities in silicon-based spintronics and quantum computing free from alien dopants or proximity effects.

  20. Universal Faraday Rotation in HgTe Wells with Critical Thickness.

    PubMed

    Shuvaev, A; Dziom, V; Kvon, Z D; Mikhailov, N N; Pimenov, A

    2016-09-09

    The universal value of the Faraday rotation angle close to the fine structure constant (α≈1/137) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σ_{xy}=e^{2}/h, which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.

  1. Fractional corresponding operator in quantum mechanics and applications: A uniform fractional Schrödinger equation in form and fractional quantization methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Science and Technology on Electronic Information Control Laboratory, 610036, Chengdu, Sichuan; Wei, Chaozhen

    2014-11-15

    In this paper we use Dirac function to construct a fractional operator called fractional corresponding operator, which is the general form of momentum corresponding operator. Then we give a judging theorem for this operator and with this judging theorem we prove that R–L, G–L, Caputo, Riesz fractional derivative operator and fractional derivative operator based on generalized functions, which are the most popular ones, coincide with the fractional corresponding operator. As a typical application, we use the fractional corresponding operator to construct a new fractional quantization scheme and then derive a uniform fractional Schrödinger equation in form. Additionally, we find thatmore » the five forms of fractional Schrödinger equation belong to the particular cases. As another main result of this paper, we use fractional corresponding operator to generalize fractional quantization scheme by using Lévy path integral and use it to derive the corresponding general form of fractional Schrödinger equation, which consequently proves that these two quantization schemes are equivalent. Meanwhile, relations between the theory in fractional quantum mechanics and that in classic quantum mechanics are also discussed. As a physical example, we consider a particle in an infinite potential well. We give its wave functions and energy spectrums in two ways and find that both results are the same.« less

  2. Opening the Pandora's box of quantum spinor fields

    NASA Astrophysics Data System (ADS)

    Bonora, L.; Silva, J. M. Hoff da; Rocha, R. da

    2018-02-01

    Lounesto's classification of spinors is a comprehensive and exhaustive algorithm that, based on the bilinears covariants, discloses the possibility of a large variety of spinors, comprising regular and singular spinors and their unexpected applications in physics and including the cases of Dirac, Weyl, and Majorana as very particular spinor fields. In this paper we pose the problem of an analogous classification in the framework of second quantization. We first discuss in general the nature of the problem. Then we start the analysis of two basic bilinear covariants, the scalar and pseudoscalar, in the second quantized setup, with expressions applicable to the quantum field theory extended to all types of spinors. One can see that an ampler set of possibilities opens up with respect to the classical case. A quantum reconstruction algorithm is also proposed. The Feynman propagator is extended for spinors in all classes.

  3. Chern-Simons theory with Wilson lines and boundary in the BV-BFV formalism

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton; Barmaz, Yves; Mnev, Pavel

    2013-05-01

    We consider the Chern-Simons theory with Wilson lines in 3D and in 1D in the BV-BFV formalism of Cattaneo-Mnev-Reshetikhin. In particular, we allow for Wilson lines to end on the boundary of the space-time manifold. In the toy model of 1D Chern-Simons theory, the quantized BFV boundary action coincides with the Kostant cubic Dirac operator which plays an important role in representation theory. In the case of 3D Chern-Simons theory, the boundary action turns out to be the odd (degree 1) version of the BF model with source terms for the B field at the points where the Wilson lines meet the boundary. The boundary space of states arising as the cohomology of the quantized BFV action coincides with the space of conformal blocks of the corresponding WZW model.

  4. Thermoelectric Transport Signatures of Dirac Composite Fermions in the Half-Filled Landau Level

    NASA Astrophysics Data System (ADS)

    Potter, Andrew C.; Serbyn, Maksym; Vishwanath, Ashvin

    2016-07-01

    The half-filled Landau level is expected to be approximately particle-hole symmetric, which requires an extension of the Halperin-Lee-Read (HLR) theory of the compressible state observed at this filling. Recent work indicates that, when particle-hole symmetry is preserved, the composite fermions experience a quantized π -Berry phase upon winding around the composite Fermi surface, analogous to Dirac fermions at the surface of a 3D topological insulator. In contrast, the effective low-energy theory of the composite fermion liquid originally proposed by HLR lacks particle-hole symmetry and has vanishing Berry phase. In this paper, we explain how thermoelectric transport measurements can be used to test the Dirac nature of the composite fermions by quantitatively extracting this Berry phase. First, we point out that longitudinal thermopower (Seebeck effect) is nonvanishing because of the unusual nature of particle-hole symmetry in this context and is not sensitive to the Berry phase. In contrast, we find that off-diagonal thermopower (Nernst effect) is directly related to the topological structure of the composite Fermi surface, vanishing for zero Berry phase and taking its maximal value for π Berry phase. In contrast, in purely electrical transport signatures, the Berry phase contributions appear as small corrections to a large background signal, making the Nernst effect a promising diagnostic of the Dirac nature of composite fermions.

  5. Universal Faraday Rotation in HgTe Wells with Critical Thickness

    NASA Astrophysics Data System (ADS)

    Shuvaev, A.; Dziom, V.; Kvon, Z. D.; Mikhailov, N. N.; Pimenov, A.

    2016-09-01

    The universal value of the Faraday rotation angle close to the fine structure constant (α ≈1 /137 ) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σx y=e2/h , which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.

  6. Topological magnetic phase in LaMnO3 (111) bilayer

    NASA Astrophysics Data System (ADS)

    Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai

    Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as Hubbard type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semi-metal (graphene-like) which is also a half-metal (different from graphene nor previous studied LaNiO3 (111) bilayer). The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (~ 1 . 7 meV) than the undistorted one (~11 meV).

  7. EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2015-07-01

    Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space-time) states, the original version of EPR paradox can be discussed and the correct answer can be verified based on the strong rooted complex quantum Hamilton-Jacobi theory [2-27] and as another example we can use the negative energy states, to remove the Klein's paradox without the need of any further explanations or justifications like backwardly moving electrons. Finally, comparing the two approaches, we can point out to the existence of a connection between quantum Hamiltonian dynamics, standard quantum field theory, and Krein space quantization [28-43].

  8. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    PubMed

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  9. Quantization of Differences Between Atomic and Nuclear Rest Masses and Self-organization of Atoms and Nuclei

    NASA Astrophysics Data System (ADS)

    Gareev, F. A.; Zhidkova, I. E.

    2007-03-01

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.

  10. Topological magnetic phase in LaMnO3 (111) bilayer

    NASA Astrophysics Data System (ADS)

    Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai

    2015-11-01

    Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as the Hubbard-type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semimetal (graphenelike) which is also a half metal [different from graphene or the previously studied LaNiO3 (111) bilayer]. The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (˜1.7 meV) than the undistorted one (˜11 meV). Therefore, to suppress the lattice distortion can be helpful to enhance the robustness of the topological phase in perovskite (111) bilayers.

  11. Quantum Hall effect in dual gated BiSbTeSe2 topological insulator

    NASA Astrophysics Data System (ADS)

    Chong, Su Kong; Han, Kyu Bum; Nagaoka, Akira; Harmer, Jared; Tsuchikawa, Ryuichi; Sparks, Taylor D.; Deshpande, Vikram V.

    The discovery of topological insulators (TIs) has expanded the family of Dirac materials and enables the probing of exotic matter such as Majorana fermions and magnetic monopoles. Different from conventional 2D electron gas, 3D TIs exhibit a gapped insulating bulk and gapless topological surface states as a result of the strong spin-orbit coupling. BiSbTeSe2 is also known to be a 3D TI with a large intrinsic bulk gap of about 0.3 eV and a single Dirac cone surface state. The highly bulk insulating BiSbTeSe2 permits surface dominated conduction, which is an ideal system for the study of quantum Hall effect (QHE). Due to the spin-momentum locking, the Dirac fermions at the topological surface states have a degeneracy of one. In the QH regime, the Hall conductance is quantized to (n + 1 / 2) e2 / h , where n is an integer and the factor of half is related to Berry curvature. In this work, we study the QHE 3D TI using a dual gated BiSbTeSe2 device. By tuning the chemical potentials on top and bottom surfaces, integer QHE with Landau filling factors, ν = 0, +/-1, and +/-2 are observed.

  12. Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx; Manuel-Cabrera, J., E-mail: jmanuel@ifuap.buap.mx

    2015-10-15

    A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed.more » • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.« less

  13. Solving general gauge theories on inner product spaces

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1995-02-01

    By means of a generalized quartet mechanism we show in a model independent way that a BRST quantization on an inner product space leads to physical states of the form ph> = exp [ Q, ψ]ph> 0 where Q is the nilpotent BRST operator, ψ a hermitian fermionic gauge-fixing operator, and ph> o BRST invariant states determined by a hermitian set of BRST doublets in involution. ph> 0 does not belong to an inner product space although ph> does. Since the BRST quartets are split into two sets of hermitian BRST doublets there are two choices for ph> 0 and the corresponding ψ. When applied to general, both irreducible and reducible, gauge theories of arbitrary rank within the BFV formulation we find that ph> 0 are trivial BRST invariant states which only depend on the matter variables for one set of solutions, and for the other set ph> 0 are solutions of a Dirac quantization. This generalizes previous Lie group solutions obtained by means of a bigrading.

  14. A quantum analogy to the classical gravitomagnetic clock effect

    NASA Astrophysics Data System (ADS)

    Faruque, S. B.

    2018-06-01

    We present an approximation to the solution of Dirac equation in Schwarzschild field found through the use of Foldy-Wouthuysen Hamiltonian. We solve the equation for the positive energy states and found the frequencies by which the states oscillate. Difference of the periods of oscillation of the two states with two different total angular momentum quantum number j has an analogical form of the classical clock effect found in general relativity. But unlike the term that appears as clock effect in classical physics, here the term is quantized. Thus, we find a quantum analogue of the classical gravitomagnetic clock effect.

  15. Strain-Induced Pseudomagnetic Fields in Twisted Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Bo; Seifert, Gotthard; Chang, Kai

    2014-03-01

    We present, for the first time, an atomic-level and quantitative study of a strain-induced pseudomagnetic field in graphene nanoribbons with widths of hundreds of nanometers. We show that twisting strongly affects the band structures of graphene nanoribbons with arbitrary chirality and generates well-defined pseudo-Landau levels, which mimics the quantization of massive Dirac fermions in a magnetic field up to 160 T. Electrons are localized either at ribbon edges forming the edge current or at the ribbon center forming the snake orbit current, both being valley polarized. Our result paves the way for the design of new graphene-based nanoelectronics.

  16. New scheme for color confinement and violation of the non-Abelian Bianchi identities

    NASA Astrophysics Data System (ADS)

    Suzuki, Tsuneo; Ishiguro, Katsuya; Bornyakov, Vitaly

    2018-02-01

    A new scheme for color confinement in QCD due to violation of the non-Abelian Bianchi identities is proposed. The violation of the non-Abelian Bianchi identities (VNABI) Jμ is equal to Abelian-like monopole currents kμ defined by the violation of the Abelian-like Bianchi identities. Although VNABI is an adjoint operator satisfying the covariant conservation law DμJμ=0 , it satisfies, at the same time, the Abelian-like conservation law ∂μJμ=0 . The Abelian-like conservation law ∂μJμ=0 is also gauge-covariant. There are N2-1 conserved magnetic charges in the case of color S U (N ). The charge of each component of VNABI is quantized à la Dirac. The color-invariant eigenvalues λμ of VNABI also satisfy the Abelian conservation law ∂μλμ=0 and the magnetic charges of the eigenvalues are also quantized à la Dirac. If the color invariant eigenvalues condense in the QCD vacuum, each color component of the non-Abelian electric field Ea is squeezed by the corresponding color component of the solenoidal current Jμa. Then only the color singlets alone can survive as a physical state and non-Abelian color confinement is realized. This confinement picture is completely new in comparison with the previously studied monopole confinement scenario based on an Abelian projection after some partial gauge-fixing, where Abelian neutral states can survive as physical. To check if the scenario is realized in nature, numerical studies are done in the framework of lattice field theory by adopting pure S U (2 ) gauge theory for simplicity. Considering Jμ(x )=kμ(x ) in the continuum formulation, we adopt an Abelian-like definition of a monopole following DeGrand-Toussaint as a lattice version of VNABI, since the Dirac quantization condition of the magnetic charge is satisfied on lattice partially. To reduce severe lattice artifacts, we introduce various techniques of smoothing the thermalized vacuum. Smooth gauge fixings such as the maximal center gauge (MCG), block-spin transformations of Abelian-like monopoles and extraction of physically important infrared long monopole loops are adopted. We also employ the tree-level tadpole improved gauge action of S U (2 ) gluodynamics. With these various improvements, we measure the density of lattice VNABI: ρ (a (β ),n )=∑ μ ,sn √{∑ a (kμa(sn))2 }/(4 √{3 }Vnb3) , where kμa(sn) is an n blocked monopole in the color direction a , n is the number of blocking steps, Vn=V /n4 (b =n a (β )) is the lattice volume (spacing) of the blocked lattice. Beautiful and convincing scaling behaviors are seen when we plot the density ρ (a (β ),n ) versus b =n a (β ). A single universal curve ρ (b ) is found from n =1 to n =12 , which suggests that ρ (a (β ),n ) is a function of b =n a (β ) alone. The universal curve seems independent of a gauge fixing procedure used to smooth the lattice vacuum since the scaling is obtained in all gauges adopted. The scaling, if it exists also for n →∞ , shows that the lattice definition of VNABI has the continuum limit and the new confinement scenario is realized.

  17. Geometry of Spin and SPINc Structures in the M-Theory Partition Function

    NASA Astrophysics Data System (ADS)

    Sati, Hisham

    We study the effects of having multiple Spin structures on the partition function of the spacetime fields in M-theory. This leads to a potential anomaly which appears in the eta invariants upon variation of the Spin structure. The main sources of such spaces are manifolds with nontrivial fundamental group, which are also important in realistic models. We extend the discussion to the Spinc case and find the phase of the partition function, and revisit the quantization condition for the C-field in this case. In type IIA string theory in 10 dimensions, the (mod 2) index of the Dirac operator is the obstruction to having a well-defined partition function. We geometrically characterize manifolds with and without such an anomaly and extend to the case of nontrivial fundamental group. The lift to KO-theory gives the α-invariant, which in general depends on the Spin structure. This reveals many interesting connections to positive scalar curvature manifolds and constructions related to the Gromov-Lawson-Rosenberg conjecture. In the 12-dimensional theory bounding M-theory, we study similar geometric questions, including choices of metrics and obtaining elements of K-theory in 10 dimensions by pushforward in K-theory on the disk fiber. We interpret the latter in terms of the families index theorem for Dirac operators on the M-theory circle and disk. This involves superconnections, eta forms, and infinite-dimensional bundles, and gives elements in Deligne cohomology in lower dimensions. We illustrate our discussion with many examples throughout.

  18. Quantization and fractional quantization of currents in periodically driven stochastic systems. I. Average currents

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Klein, John R.; Sinitsyn, Nikolai A.

    2012-04-01

    This article studies Markovian stochastic motion of a particle on a graph with finite number of nodes and periodically time-dependent transition rates that satisfy the detailed balance condition at any time. We show that under general conditions, the currents in the system on average become quantized or fractionally quantized for adiabatic driving at sufficiently low temperature. We develop the quantitative theory of this quantization and interpret it in terms of topological invariants. By implementing the celebrated Kirchhoff theorem we derive a general and explicit formula for the average generated current that plays a role of an efficient tool for treating the current quantization effects.

  19. Light-cone quantization of two dimensional field theory in the path integral approach

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.

    1999-05-01

    A quantization condition due to the boundary conditions and the compatification of the light cone space-time coordinate x- is identified at the level of the classical equations for the right-handed fermionic field in two dimensions. A detailed analysis of the implications of the implementation of this quantization condition at the quantum level is presented. In the case of the Thirring model one has selection rules on the excitations as a function of the coupling and in the case of the Schwinger model a double integer structure of the vacuum is derived in the light-cone frame. Two different quantized chiral Schwinger models are found, one of them without a θ-vacuum structure. A generalization of the quantization condition to theories with several fermionic fields and to higher dimensions is presented.

  20. Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model

    NASA Astrophysics Data System (ADS)

    Kouletsis, I.; Kuchař, K. V.

    2002-06-01

    The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map T from the spacetime manifold (the two-sheet) Y to a one-dimensional time manifold T as one of its configuration variables. A canonical history action is posited on G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T of foliating Y. The history Poisson brackets of spacetime fields on G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G0 of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms Diff Y and temporal diffeomorphisms Diff T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model.

  1. Conduction quantization in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Li, T. S.

    2016-10-01

    We study the ballistic conduction of a monolayer MoS2 subject to a spatially modulated magnetic field by using the Landauer-Buttiker formalism. The band structure depends sensitively on the field strength, and its change has profound influence on the electron conduction. The conductance is found to demonstrate multi-step behavior due to the discrete number of conduction channels. The sharp peak and rectangular structures of the conductance are stretched out as temperature increases, due to the thermal broadening of the derivative of the Fermi-Dirac distribution function. Finally, quantum behavior in the conductance of MoS2 can be observed at temperatures below 10 K.

  2. Theories of Matter, Space and Time, Volume 2; Quantum theories

    NASA Astrophysics Data System (ADS)

    Evans, N.; King, S. F.

    2018-06-01

    This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.

  3. STM Studies of Spin-­Orbit Coupled Phases in Real-­ and Momentum-­Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhavan, Vidya

    The recently discovered class of spin-orbit coupled materials with interesting topological character are fascinating both from fundamental as well as application point of view. Two striking examples are 3D topological insulators (TIs) and topological crystalline insulators (TCIs). These materials host linearly dispersing (Dirac like) surface states with an odd number of Dirac nodes and are predicted to carry a quantized half-integer value of the axion field. The non-trivial topological properties of TIs and TCIs arise from strong spin-orbit coupling leading to an inverted band structure; which also leads to the chiral spin texture in momentum space. In this project wemore » used low temperature scanning tunneling microscopy (STM) and spectroscopy (STS) to study materials with topological phases in real- and momentum-space. We studied both single crystals and thin films of topological materials which are susceptible to being tuned by doping, strain or gating, allowing us to explore their physical properties in the most interesting regimes and set the stage for future technological applications. .« less

  4. Study of magnetism in Cr doped (Bi1-xSbx)2Te3

    NASA Astrophysics Data System (ADS)

    Richardella, Anthony; Kandala, Abhinav; Kempinger, Susan; Samarth, Nitin; Grutter, Alex; Borchers, Julie

    2015-03-01

    The quantum anomalous Hall (QAH) effect was first observed in Cr doped films of the topological insulator (TI) (Bi1-xSbx)2Te3. This ferromagnetic TI opens a gap at the Dirac point and, when the Fermi energy lies inside this gap, a quantized QAH conductance can be observed. The origin of ferromagnetism in this material is still not well understood with the mechanism typically attributed to either a high van-Vleck susceptibility or a carrier mediated RKKY like interaction. To elucidate this we have studied Cry(Bi1-xSbx)2-yTe3 thin films grown by MBE on SrTiO3 (STO) substrates using polarized neutron reflectivity (PNR) while in-situ backgating the film to change the position of the Fermi energy. The films are also characterized by XRD, AFM, TEM and low temperature transport measurements. PNR measurements provide a direct measure of the depth dependent magnetization of a sample. We use this to study how the magnetization changes as the Fermi energy is moved towards the Dirac point. Funded by DARPA and ARO-MURI.

  5. Two interacting current model of holographic Dirac fluid in graphene

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wysokinski, Karol I.

    2018-02-01

    The electrons in graphene for energies close to the Dirac point have been found to form strongly interacting fluid. Taking this fact into account we have extended previous work on the transport properties of graphene by taking into account possible interactions between the currents and adding the external magnetic field directed perpendicularly to the graphene sheet. The perpendicular magnetic field B severely modifies the transport parameters. In the present approach the quantization of the spectrum and formation of Landau levels is ignored. Gauge/gravity duality has been used in the probe limit. The dependence on the charge density of the Seebeck coefficient and thermoelectric parameters αi j nicely agree with recent experimental data for graphene. The holographic model allows for the interpretation of one of the fields representing the currents as resulting from the dark matter sector. For the studied geometry with electric field perpendicular to the thermal gradient the effect of the dark sector has been found to modify the transport parameters but mostly in a quantitative way only. This makes difficult the detection of this elusive component of the Universe by studying transport properties of graphene.

  6. Geometric constraints on the space of N = 2 SCFTs. Part I: physical constraints on relevant deformations

    NASA Astrophysics Data System (ADS)

    Argyres, Philip; Lotito, Matteo; Lü, Yongchao; Martone, Mario

    2018-02-01

    We initiate a systematic study of four dimensional N = 2 superconformal field theories (SCFTs) based on the analysis of their Coulomb branch geometries. Because these SCFTs are not uniquely characterized by their scale-invariant Coulomb branch geometries we also need information on their deformations. We construct all inequivalent such deformations preserving N = 2 supersymmetry and additional physical consistency conditions in the rank 1 case. These not only include all the ones previously predicted by S-duality, but also 16 additional deformations satisfying all the known N = 2 low energy consistency conditions. All but two of these additonal deformations have recently been identified with new rank 1 SCFTs; these identifications are briefly reviewed. Some novel ingredients which are important for this study include: a discussion of RG-flows in the presence of a moduli space of vacua; a classification of local N = 2 supersymmetry-preserving deformations of unitary N = 2 SCFTs; and an analysis of charge normalizations and the Dirac quantization condition on Coulomb branches. This paper is the first in a series of three. The second paper [1] gives the details of the explicit construction of the Coulomb branch geometries discussed here, while the third [2] discusses the computation of central charges of the associated SCFTs.

  7. BFV approach to geometric quantization

    NASA Astrophysics Data System (ADS)

    Fradkin, E. S.; Linetsky, V. Ya.

    1994-12-01

    A gauge-invariant approach to geometric quantization is developed. It yields a complete quantum description for dynamical systems with non-trivial geometry and topology of the phase space. The method is a global version of the gauge-invariant approach to quantization of second-class constraints developed by Batalin, Fradkin and Fradkina (BFF). Physical quantum states and quantum observables are respectively described by covariantly constant sections of the Fock bundle and the bundle of hermitian operators over the phase space with a flat connection defined by the nilpotent BVF-BRST operator. Perturbative calculation of the first non-trivial quantum correction to the Poisson brackets leads to the Chevalley cocycle known in deformation quantization. Consistency conditions lead to a topological quantization condition with metaplectic anomaly.

  8. The quantization of the chiral Schwinger model based on the BFT - BFV formalism

    NASA Astrophysics Data System (ADS)

    Kim, Won T.; Kim, Yong-Wan; Park, Mu-In; Park, Young-Jai; Yoon, Sean J.

    1997-03-01

    We apply the newly improved Batalin - Fradkin - Tyutin (BFT) Hamiltonian method to the chiral Schwinger model in the case of the regularization ambiguity a>1. We show that one can systematically construct the first class constraints by the BFT Hamiltonian method, and also show that the well-known Dirac brackets of the original phase space variables are exactly the Poisson brackets of the corresponding modified fields in the extended phase space. Furthermore, we show that the first class Hamiltonian is simply obtained by replacing the original fields in the canonical Hamiltonian by these modified fields. Performing the momentum integrations, we obtain the corresponding first class Lagrangian in the configuration space.

  9. Manipulating topological-insulator properties using quantum confinement

    NASA Astrophysics Data System (ADS)

    Kotulla, M.; Zülicke, U.

    2017-07-01

    Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron-hole asymmetry are disentangled and their respective physical consequences elucidated.

  10. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance

    NASA Astrophysics Data System (ADS)

    Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.

    2018-05-01

    The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.

  11. Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang

    2017-09-01

    The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.

  12. Instabilities caused by floating-point arithmetic quantization.

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1972-01-01

    It is shown that an otherwise stable digital control system can be made unstable by signal quantization when the controller operates on floating-point arithmetic. Sufficient conditions of instability are determined, and an example of loss of stability is treated when only one quantizer is operated.

  13. Quantizing and sampling considerations in digital phased-locked loops

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.

  14. Dirac perturbations on Schwarzschild-anti-de Sitter spacetimes: Generic boundary conditions and new quasinormal modes

    NASA Astrophysics Data System (ADS)

    Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang

    2017-11-01

    We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.

  15. Frustration of resonant preheating by exotic kinetic terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmati, Shohreh; Seahra, Sanjeev S., E-mail: srahmati@unb.ca, E-mail: sseahra@unb.ca

    2014-10-01

    We study the effects of exotic kinetic terms on parametric resonance during the preheating epoch of the early universe. Specifically, we consider modifications to the action of ordinary matter fields motivated by generalized uncertainty principles, polymer quantization, as well as Dirac-Born-Infeld and k-essence models. To leading order in an ''exotic physics'' scale, the equations of motion derived from each of these models have the same algebraic form involving a nonlinear self-interaction in the matter sector. Neglecting spatial dependence, we show that the nonlinearity effectively shuts down the parametric resonance after a finite time period. We find numeric evidence that themore » frustration of parametric resonance persists to spatially inhomogenous matter in (1+1)-dimensions.« less

  16. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    NASA Astrophysics Data System (ADS)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  17. The Noncommutative Doplicher-Fredenhagen-Roberts-Amorim Space

    NASA Astrophysics Data System (ADS)

    Abreu, Everton M. C.; Mendes, Albert C. R.; Oliveira, Wilson; Zangirolami, Adriano O.

    2010-10-01

    This work is an effort in order to compose a pedestrian review of the recently elaborated Doplicher, Fredenhagen, Roberts and Amorim (DFRA) noncommutative (NC) space which is a minimal extension of the DFR space. In this DRFA space, the object of noncommutativity (θμν) is a variable of the NC system and has a canonical conjugate momentum. Namely, for instance, in NC quantum mechanics we will show that θij (i,j=1,2,3) is an operator in Hilbert space and we will explore the consequences of this so-called ''operationalization''. The DFRA formalism is constructed in an extended space-time with independent degrees of freedom associated with the object of noncommutativity θμν. We will study the symmetry properties of an extended x+θ space-time, given by the group P', which has the Poincaré group P as a subgroup. The Noether formalism adapted to such extended x+θ (D=4+6) space-time is depicted. A consistent algebra involving the enlarged set of canonical operators is described, which permits one to construct theories that are dynamically invariant under the action of the rotation group. In this framework it is also possible to give dynamics to the NC operator sector, resulting in new features. A consistent classical mechanics formulation is analyzed in such a way that, under quantization, it furnishes a NC quantum theory with interesting results. The Dirac formalism for constrained Hamiltonian systems is considered and the object of noncommutativity θij plays a fundamental role as an independent quantity. Next, we explain the dynamical spacetime symmetries in NC relativistic theories by using the DFRA algebra. It is also explained about the generalized Dirac equation issue, that the fermionic field depends not only on the ordinary coordinates but on θμν as well. The dynamical symmetry content of such fermionic theory is discussed, and we show that its action is invariant under P'. In the last part of this work we analyze the complex scalar fields using this new framework. As said above, in a first quantized formalism, θμν and its canonical momentum πμν are seen as operators living in some Hilbert space. In a second quantized formalism perspective, we show an explicit form for the extended Poincaré generators and the same algebra is generated via generalized Heisenberg relations. We also consider a source term and construct the general solution for the complex scalar fields using the Green function technique.

  18. Wave Functions for Time-Dependent Dirac Equation under GUP

    NASA Astrophysics Data System (ADS)

    Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen

    2018-04-01

    In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009

  19. Thermal field theory and generalized light front quantization

    NASA Astrophysics Data System (ADS)

    Weldon, H. Arthur

    2003-04-01

    The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski coordinates. In the general coordinates the metric tensor gμν¯ is nondiagonal. The Kubo-Martin-Schwinger condition requires periodicity in thermal correlation functions when the temporal variable changes by an amount -i/(T(g00¯)). Light-front quantization fails since g00¯=0; however, various related quantizations are possible.

  20. Gauge fixing and BFV quantization

    NASA Astrophysics Data System (ADS)

    Rogers, Alice

    2000-01-01

    Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.

  1. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1993-01-01

    The discrete cosine transform (DCT) is widely used in image compression, and is part of the JPEG and MPEG compression standards. The degree of compression, and the amount of distortion in the decompressed image are determined by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. Our approach is to set the quantization level for each coefficient so that the quantization error is at the threshold of visibility. Here we combine results from our previous work to form our current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color.

  2. Topological magnetoelectric pump in three dimensions

    NASA Astrophysics Data System (ADS)

    Fukui, Takahiro; Fujiwara, Takanori

    2017-11-01

    We study the topological pump for a lattice fermion model mainly in three spatial dimensions. We first calculate the U(1) current density for the Dirac model defined in continuous space-time to review the known results as well as to introduce some technical details convenient for the calculations of the lattice model. We next investigate the U(1) current density for a lattice fermion model, a variant of the Wilson-Dirac model. The model we introduce is defined on a lattice in space but in continuous time, which is suited for the study of the topological pump. For such a model, we derive the conserved U(1) current density and calculate it directly for the (1 +1 )-dimensional system as well as (3 +1 )-dimensional system in the limit of the small lattice constant. We find that the current includes a nontrivial lattice effect characterized by the Chern number, and therefore the pumped particle number is quantized by the topological reason. Finally, we study the topological temporal pump in 3 +1 dimensions by numerical calculations. We discuss the relationship between the second Chern number and the first Chern number, the bulk-edge correspondence, and the generalized Streda formula which enables us to compute the second Chern number using the spectral asymmetry.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadella, M.; Negro, J.; Santander, M.

    In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra of the system plus a subalgebra of operators that give the spectrum of the system and connects the eigenfunctions of the Hamiltonian among themselves. In our case, the geometrical symmetry algebra is so(3,1) and the SGA is so(4,2). We start with a representation of so(4,2) by functions on a realization of the Lobachevski space given by a two-sheeted hyperboloid, where the Lie algebramore » commutators are the usual Poisson-Dirac brackets. Then, we introduce a quantized version of the representation in which functions are replaced by operators on a Hilbert space and Poisson-Dirac brackets by commutators. Eigenfunctions of the Hamiltonian are given and 'naive' ladder operators are identified. The previously defined 'naive' ladder operators shift the eigenvalues by a complex number so that an alternative approach is necessary. This is obtained by a non-self-adjoint function of a linear combination of the ladder operators, which gives the correct relation among the eigenfunctions of the Hamiltonian. We give an eigenfunction expansion of functions over the upper sheet of a two-sheeted hyperboloid in terms of the eigenfunctions of the Hamiltonian.« less

  4. Asymptotic states and the definition of the S-matrix in quantum gravity

    NASA Astrophysics Data System (ADS)

    Wiesendanger, C.

    2013-04-01

    Viewing gravitational energy-momentum p_G^\\mu as equal by observation, but different in essence from inertial energy-momentum p_I^\\mu naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner Minkowski space M4. The generalized asymptotic free scalar, Dirac and gauge fields in that theory are canonically quantized, the Fock spaces of stationary states are constructed and the gravitational limit—mapping the gravitational energy-momentum onto the inertial energy-momentum to account for their observed equality—is introduced. Next the S-matrix in quantum gravity is defined as the gravitational limit of the transition amplitudes of asymptotic in- to out-states in the gauge theory of volume-preserving diffeomorphisms. The so-defined S-matrix relates in- and out-states of observable particles carrying gravitational equal to inertial energy-momentum. Finally, generalized Lehmann-Symanzik-Zimmermann reduction formulae for scalar, Dirac and gauge fields are established which allow us to express S-matrix elements as the gravitational limit of truncated Fourier-transformed vacuum expectation values of time-ordered products of field operators of the interacting theory. Together with the generating functional of the latter established in Wiesendanger (2011 arXiv:1103.1012) any transition amplitude can in principle be computed consistently to any order in perturbative quantum gravity.

  5. Semiclassical theory of Landau levels and magnetic breakdown in topological metals

    NASA Astrophysics Data System (ADS)

    Alexandradinata, A.; Glazman, Leonid

    2018-04-01

    The Bohr-Sommerfeld quantization rule lies at the heart of the semiclassical theory of a Bloch electron in a magnetic field. This rule is predictive of Landau levels and de Haas-van Alphen oscillations for conventional metals, as well as for a host of topological metals which have emerged in the recent intercourse between band theory, crystalline symmetries, and topology. The essential ingredients in any quantization rule are connection formulas that match the semiclassical (WKB) wave function across regions of strong quantum fluctuations. Here, we propose (a) a multicomponent WKB wave function that describes transport within degenerate-band subspaces, and (b) the requisite connection formulas for saddle points and type-II Dirac points, where tunneling respectively occurs within the same band, and between distinct bands. (a) and (b) extend previous works by incorporating phase corrections that are subleading in powers of the field; these corrections include the geometric Berry phase, and account for the orbital magnetic moment and the Zeeman coupling. A comprehensive symmetry analysis is performed for such phase corrections occurring in closed orbits, which is applicable to solids in any (magnetic) space group. We have further formulated a graph-theoretic description of semiclassical orbits. This allows us to systematize the construction of quantization rules for a large class of closed orbits (with or without tunneling), as well as to formulate the notion of a topological invariant in semiclassical magnetotransport—as a quantity that is invariant under continuous deformations of the graph. Landau levels in the presence of tunneling are generically quasirandom, i.e., disordered on the scale of nearest-neighbor level spacings but having longer-ranged correlations; we develop a perturbative theory to determine Landau levels in such quasirandom spectra.

  6. Operator Ordering and Classical Soliton Path in Two-Dimensional N = 2 Supersymmetry with KÄHLER Potential

    NASA Astrophysics Data System (ADS)

    Motoyui, Nobuyuki; Yamada, Mitsuru

    We investigate a two-dimensional N = 2 supersymmetric model which consists of n chiral superfields with Kähler potential. When we define quantum observables, we are always plagued by operator ordering problem. Among various ways to fix the operator order, we rely upon the supersymmetry. We demonstrate that the correct operator order is given by requiring the super-Poincaré algebra by carrying out the canonical Dirac bracket quantization. This is shown to be also true when the supersymmetry algebra has a central extension by the presence of topological soliton. It is also shown that the path of soliton is a straight line in the complex plane of superpotential W and triangular mass inequality holds. One half of supersymmetry is broken by the presence of soliton.

  7. Topological Quantum Phase Transition and Local Topological Order in a Strongly Interacting Light-Matter System.

    PubMed

    Sarkar, Sujit

    2017-05-12

    An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).

  8. Decay Rates and Probability Estimatesfor Massive Dirac Particlesin the Kerr-Newman Black Hole Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    The Cauchy problem is considered for the massive Dirac equation in the non-extreme Kerr-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L∞ {loc} at least at the rate t-5/6. For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < 1. The proofs are based on a refined analysis of the Dirac propagator constructed in [4].

  9. Non-Existence of Black Hole Solutionsfor a Spherically Symmetric, Static Einstein-Dirac-Maxwell System

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    We consider for j=1/2, 3/2,... a spherically symmetric, static system of (2j+1) Dirac particles, each having total angular momentum j. The Dirac particles interact via a classical gravitational and electromagnetic field. The Einstein-Dirac-Maxwell equations for this system are derived. It is shown that, under weak regularity conditions on the form of the horizon, the only black hole solutions of the EDM equations are the Reissner-Nordstrom solutions. In other words, the spinors must vanish identically. Applied to the gravitational collapse of a "cloud" of spin-1/2-particles to a black hole, our result indicates that the Dirac particles must eventually disappear inside the event horizon.

  10. Time-Symmetric Quantization in Spacetimes with Event Horizons

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Rodd, Nicholas

    2013-08-01

    The standard quantization formalism in spacetimes with event horizons implies a non-unitary evolution of quantum states, as initial pure states may evolve into thermal states. This phenomenon is behind the famous black hole information loss paradox which provoked long-standing debates on the compatibility of quantum mechanics and gravity. In this paper we demonstrate that within an alternative time-symmetric quantization formalism thermal radiation is absent and states evolve unitarily in spacetimes with event horizons. We also discuss the theoretical consistency of the proposed formalism. We explicitly demonstrate that the theory preserves the microcausality condition and suggest a "reinterpretation postulate" to resolve other apparent pathologies associated with negative energy states. Accordingly as there is a consistent alternative, we argue that choosing to use time-asymmetric quantization is a necessary condition for the black hole information loss paradox.

  11. Dirac cones in isogonal hexagonal metallic structures

    NASA Astrophysics Data System (ADS)

    Wang, Kang

    2018-03-01

    A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.

  12. Simultaneous fault detection and control design for switched systems with two quantized signals.

    PubMed

    Li, Jian; Park, Ju H; Ye, Dan

    2017-01-01

    The problem of simultaneous fault detection and control design for switched systems with two quantized signals is presented in this paper. Dynamic quantizers are employed, respectively, before the output is passed to fault detector, and before the control input is transmitted to the switched system. Taking the quantized errors into account, the robust performance for this kind of system is given. Furthermore, sufficient conditions for the existence of fault detector/controller are presented in the framework of linear matrix inequalities, and fault detector/controller gains and the supremum of quantizer range are derived by a convex optimized method. Finally, two illustrative examples demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Quantized Iterative Learning Consensus Tracking of Digital Networks With Limited Information Communication.

    PubMed

    Xiong, Wenjun; Yu, Xinghuo; Chen, Yao; Gao, Jie

    2017-06-01

    This brief investigates the quantized iterative learning problem for digital networks with time-varying topologies. The information is first encoded as symbolic data and then transmitted. After the data are received, a decoder is used by the receiver to get an estimate of the sender's state. Iterative learning quantized communication is considered in the process of encoding and decoding. A sufficient condition is then presented to achieve the consensus tracking problem in a finite interval using the quantized iterative learning controllers. Finally, simulation results are given to illustrate the usefulness of the developed criterion.

  14. Quantization of geometric phase with integer and fractional topological characterization in a quantum Ising chain with long-range interaction.

    PubMed

    Sarkar, Sujit

    2018-04-12

    An attempt is made to study and understand the behavior of quantization of geometric phase of a quantum Ising chain with long range interaction. We show the existence of integer and fractional topological characterization for this model Hamiltonian with different quantization condition and also the different quantized value of geometric phase. The quantum critical lines behave differently from the perspective of topological characterization. The results of duality and its relation to the topological quantization is presented here. The symmetry study for this model Hamiltonian is also presented. Our results indicate that the Zak phase is not the proper physical parameter to describe the topological characterization of system with long range interaction. We also present quite a few exact solutions with physical explanation. Finally we present the relation between duality, symmetry and topological characterization. Our work provides a new perspective on topological quantization.

  15. Necessary conditions for the optimality of variable rate residual vector quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    Residual vector quantization (RVQ), or multistage VQ, as it is also called, has recently been shown to be a competitive technique for data compression. The competitive performance of RVQ reported in results from the joint optimization of variable rate encoding and RVQ direct-sum code books. In this paper, necessary conditions for the optimality of variable rate RVQ's are derived, and an iterative descent algorithm based on a Lagrangian formulation is introduced for designing RVQ's having minimum average distortion subject to an entropy constraint. Simulation results for these entropy-constrained RVQ's (EC-RVQ's) are presented for memory less Gaussian, Laplacian, and uniform sources. A Gauss-Markov source is also considered. The performance is superior to that of entropy-constrained scalar quantizers (EC-SQ's) and practical entropy-constrained vector quantizers (EC-VQ's), and is competitive with that of some of the best source coding techniques that have appeared in the literature.

  16. Intrinsic quantum anomalous hall effect in a two-dimensional anilato-based lattice.

    PubMed

    Ni, Xiaojuan; Jiang, Wei; Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-06-13

    Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

  17. Topological Sachdev-Ye-Kitaev model

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zhai, Hui

    2018-05-01

    In this Rapid Communication, we construct a large-N exactly solvable model to study the interplay between interaction and topology, by connecting the Sachdev-Ye-Kitaev (SYK) model with constant hopping. The hopping forms a band structure that can exhibit both topologically trivial and nontrivial phases. Starting from a topologically trivial insulator with zero Hall conductance, we show that the interaction can drive a phase transition to a topologically nontrivial insulator with quantized nonzero Hall conductance, and a single gapless Dirac fermion emerges when the interaction is fine tuned to the critical point. The finite temperature effect is also considered, and we show that the topological phase with a stronger interaction is less stable against temperature. Our model provides a concrete example to illustrate the interacting topological phases and phase transitions, and can shed light on similar problems in physical systems.

  18. Dirac and non-Dirac conditions in the two-potential theory of magnetic charge

    NASA Astrophysics Data System (ADS)

    Scott, John; Evans, Timothy J.; Singleton, Douglas; Dzhunushaliev, Vladimir; Folomeev, Vladimir

    2018-05-01

    We investigate the Cabbibo-Ferrari, two-potential approach to magnetic charge coupled to two different complex scalar fields, Φ _1 and Φ _2, each having different electric and magnetic charges. The scalar field, Φ _1, is assumed to have a spontaneous symmetry breaking self-interaction potential which gives a mass to the "magnetic" gauge potential and "magnetic" photon, while the other "electric" gauge potential and "electric" photon remain massless. The magnetic photon is hidden until one reaches energies of the order of the magnetic photon rest mass. The second scalar field, Φ _2, is required in order to make the theory non-trivial. With only one field one can always use a duality rotation to rotate away either the electric or magnetic charge, and thus decouple either the associated electric or magnetic photon. In analyzing this system of two scalar fields in the Cabbibo-Ferrari approach we perform several duality and gauge transformations, which require introducing non-Dirac conditions on the initial electric and magnetic charges. We also find that due to the symmetry breaking the usual Dirac condition is altered to include the mass of the magnetic photon. We discuss the implications of these various conditions on the charges.

  19. Dirac relaxation of the Israel junction conditions: Unified Randall-Sundrum brane theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Aharon; Gurwich, Ilya

    2006-08-15

    Following Dirac's brane variation prescription, the brane must not be deformed during the variation process, or else the linearity of the variation may be lost. Alternatively, the variation of the brane is done, in a special Dirac frame, by varying the bulk coordinate system itself. Imposing appropriate Dirac-style boundary conditions on the constrained 'sandwiched' gravitational action, we show how Israel junction conditions get relaxed, but remarkably, all solutions of the original Israel equations are still respected. The Israel junction conditions are traded, in the Z{sub 2}-symmetric case, for a generalized Regge-Teitelboim type equation (plus a local conservation law), and inmore » the generic Z{sub 2}-asymmetric case, for a pair of coupled Regge-Teitelboim equations. The Randall-Sundrum model and its derivatives, such as the Dvali-Gabadadze-Porrati and the Collins-Holdom models, get generalized accordingly. Furthermore, Randall-Sundrum and Regge-Teitelboim brane theories appear now to be two different faces of the one and the same unified brane theory. Within the framework of unified brane cosmology, we examine the dark matter/energy interpretation of the effective energy/momentum deviations from general relativity.« less

  20. Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes

    NASA Astrophysics Data System (ADS)

    Saini, Sahil; Singh, Parampreet

    2018-03-01

    We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.

  1. Conditional Entropy-Constrained Residual VQ with Application to Image Coding

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith, Mark J. T.

    1996-01-01

    This paper introduces an extension of entropy-constrained residual vector quantization (VQ) where intervector dependencies are exploited. The method, which we call conditional entropy-constrained residual VQ, employs a high-order entropy conditioning strategy that captures local information in the neighboring vectors. When applied to coding images, the proposed method is shown to achieve better rate-distortion performance than that of entropy-constrained residual vector quantization with less computational complexity and lower memory requirements. Moreover, it can be designed to support progressive transmission in a natural way. It is also shown to outperform some of the best predictive and finite-state VQ techniques reported in the literature. This is due partly to the joint optimization between the residual vector quantizer and a high-order conditional entropy coder as well as the efficiency of the multistage residual VQ structure and the dynamic nature of the prediction.

  2. Darboux partners of pseudoscalar Dirac potentials associated with exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408; Roy, Barnana, E-mail: barnana@isical.ac.in

    2014-10-15

    We introduce a method for constructing Darboux (or supersymmetric) pairs of pseudoscalar and scalar Dirac potentials that are associated with exceptional orthogonal polynomials. Properties of the transformed potentials and regularity conditions are discussed. As an application, we consider a pseudoscalar Dirac potential related to the Schrödinger model for the rationally extended radial oscillator. The pseudoscalar partner potentials are constructed under the first- and second-order Darboux transformations.

  3. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  4. Relational symplectic groupoid quantization for constant poisson structures

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Moshayedi, Nima; Wernli, Konstantin

    2017-09-01

    As a detailed application of the BV-BFV formalism for the quantization of field theories on manifolds with boundary, this note describes a quantization of the relational symplectic groupoid for a constant Poisson structure. The presence of mixed boundary conditions and the globalization of results are also addressed. In particular, the paper includes an extension to space-times with boundary of some formal geometry considerations in the BV-BFV formalism, and specifically introduces into the BV-BFV framework a "differential" version of the classical and quantum master equations. The quantization constructed in this paper induces Kontsevich's deformation quantization on the underlying Poisson manifold, i.e., the Moyal product, which is known in full details. This allows focussing on the BV-BFV technology and testing it. For the inexperienced reader, this is also a practical and reasonably simple way to learn it.

  5. The General Necessary Condition for the Validity of Dirac's Transition Perturbation Theory

    NASA Technical Reports Server (NTRS)

    Quang, Nguyen Vinh

    1996-01-01

    For the first time, from the natural requirements for the successive approximation the general necessary condition of validity of the Dirac's method is explicitly established. It is proved that the conception of 'the transition probability per unit time' is not valid. The 'super-platinium rules' for calculating the transition probability are derived for the arbitrarily strong time-independent perturbation case.

  6. Selecting Representative Points in Normal Populations.

    DTIC Science & Technology

    1983-01-14

    where values can be compared. A rather early paper on quantization is by Steinhaus [1956]. In that paper, he demonstrates the two necessary (but not...already noted that Steinhaus lists these two l<i<l conditions. These two necessary conditions for an optimal quantization suggest an iterative...Stanford, California. Steinhaus , H. (1956). Sur la division des corps materiels en parties. Bulletin De L’Academie Polonaise Des Sciences, Cl. III- Vol

  7. Quantization of Poisson Manifolds from the Integrability of the Modular Function

    NASA Astrophysics Data System (ADS)

    Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.

    2014-10-01

    We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.

  8. Robust fault tolerant control based on sliding mode method for uncertain linear systems with quantization.

    PubMed

    Hao, Li-Ying; Yang, Guang-Hong

    2013-09-01

    This paper is concerned with the problem of robust fault-tolerant compensation control problem for uncertain linear systems subject to both state and input signal quantization. By incorporating novel matrix full-rank factorization technique with sliding surface design successfully, the total failure of certain actuators can be coped with, under a special actuator redundancy assumption. In order to compensate for quantization errors, an adjustment range of quantization sensitivity for a dynamic uniform quantizer is given through the flexible choices of design parameters. Comparing with the existing results, the derived inequality condition leads to the fault tolerance ability stronger and much wider scope of applicability. With a static adjustment policy of quantization sensitivity, an adaptive sliding mode controller is then designed to maintain the sliding mode, where the gain of the nonlinear unit vector term is updated automatically to compensate for the effects of actuator faults, quantization errors, exogenous disturbances and parameter uncertainties without the need for a fault detection and isolation (FDI) mechanism. Finally, the effectiveness of the proposed design method is illustrated via a model of a rocket fairing structural-acoustic. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Quantized kernel least mean square algorithm.

    PubMed

    Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C

    2012-01-01

    In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.

  10. Rate and power efficient image compressed sensing and transmission

    NASA Astrophysics Data System (ADS)

    Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan

    2016-01-01

    This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.

  11. Principles of Discrete Time Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2014-04-01

    1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.

  12. Quantum tachyons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, R.

    2005-02-01

    The interaction of superluminal radiation with matter in atomic bound-bound and bound-free transitions is investigated. We study transitions in the relativistic hydrogen atom effected by superluminal quanta. The superluminal radiation field is coupled by minimal substitution to the Dirac equation in a Coulomb potential. We quantize the interaction to obtain the transition matrix for induced and spontaneous superluminal radiation in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, the cross-sections for ground state ionization by transversal and longitudinal tachyons are derived. We examine the relativistic regime, high electronic ejection energies, as well as the first order correction to the non-relativistic cross-sections. In the ultra-relativistic limit, both the longitudinal and transversal cross-sections are peaked at small but noticeably different scattering angles. In the non-relativistic limit, the longitudinal cross-section has two maxima, and its minimum is located at the transversal maximum. Ionization cross-sections can thus be used to discriminate longitudinal radiation from transversal tachyons and photons.

  13. The Theory of Quantized Fields. II

    DOE R&D Accomplishments Database

    Schwinger, J.

    1951-01-01

    The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.

  14. Master equation and two heat reservoirs.

    PubMed

    Trimper, Steffen

    2006-11-01

    A simple spin-flip process is analyzed under the presence of two heat reservoirs. While one flip process is triggered by a bath at temperature T, the inverse process is activated by a bath at a different temperature T'. The situation can be described by using a master equation approach in a second quantized Hamiltonian formulation. The stationary solution leads to a generalized Fermi-Dirac distribution with an effective temperature Te. Likewise the relaxation time is given in terms of Te. Introducing a spin representation we perform a Landau expansion for the averaged spin as order parameter and consequently, a free energy functional can be derived. Owing to the two reservoirs the model is invariant with respect to a simultaneous change sigma<-->-sigma and T<-->T'. This symmetry generates a third order term in the free energy which gives rise a dynamically induced first order transition.

  15. Shot noise generated by graphene p–n junctions in the quantum Hall effect regime

    PubMed Central

    Kumada, N.; Parmentier, F. D.; Hibino, H.; Glattli, D. C.; Roulleau, P.

    2015-01-01

    Graphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing. PMID:26337067

  16. Landau levels from neutral Bogoliubov particles in two-dimensional nodal superconductors under strain and doping gradients

    NASA Astrophysics Data System (ADS)

    Nica, Emilian M.; Franz, Marcel

    2018-02-01

    Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case of a d -wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect. These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.

  17. Connection dynamics of a gauge theory of gravity coupled with matter

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-10-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.

  18. Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.

  19. Gravitational surface Hamiltonian and entropy quantization

    NASA Astrophysics Data System (ADS)

    Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-02-01

    The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  20. Covariant spinor representation of iosp(d,2/2) and quantization of the spinning relativistic particle

    NASA Astrophysics Data System (ADS)

    Jarvis, P. D.; Corney, S. P.; Tsohantjis, I.

    1999-12-01

    A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra.

  1. Luminance-model-based DCT quantization for color image compression

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Peterson, Heidi A.

    1992-01-01

    A model is developed to approximate visibility thresholds for discrete cosine transform (DCT) coefficient quantization error based on the peak-to-peak luminance of the error image. Experimentally measured visibility thresholds for R, G, and B DCT basis functions can be predicted by a simple luminance-based detection model. This model allows DCT coefficient quantization matrices to be designed for display conditions other than those of the experimental measurements: other display luminances, other veiling luminances, and other spatial frequencies (different pixel spacings, viewing distances, and aspect ratios).

  2. Spontaneous PT symmetry breaking in Dirac-Kronig-Penney crystals

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano; Cannata, Francesco; Ventura, Alberto

    2011-12-01

    We introduce a non-Hermitian PT invariant extension of the Dirac-Kronig-Penney model, describing the motion of a Dirac quasiparticle in a locally periodic sequence of imaginary δ-Dirac barriers and wells, and propose its optical realization using superstructure fiber Bragg gratings with alternating regions of optical gain and absorption. For the infinite crystal, we determine the band structure and show that the PT phase is always broken. For a finite crystal, we derive analytical expressions for reflection and transmission probabilities, and show that the PT phase is unbroken below a finite threshold of the δ-barrier area. In the proposed optical realization, the onset of PT symmetry breaking in the finite crystal corresponds to the lasing condition for the grating superstructures.

  3. Spectral distances on the doubled Moyal plane using Dirac eigenspinors

    NASA Astrophysics Data System (ADS)

    Kumar, Kaushlendra; Chakraborty, Biswajit

    2018-04-01

    We present here a novel method for computing spectral distances in the doubled Moyal plane in a noncommutative geometrical framework using Dirac eigenspinors, while solving the Lipschitz ball condition explicitly through matrices. The standard results of longitudinal, transverse, and hypotenuse distances between different pairs of pure states have been computed and the Pythagorean equality between them has been reproduced. The issue of the nonunital nature of the Moyal plane algebra is taken care of through a sequence of projection operators constructed from Dirac eigenspinors, which plays a crucial role throughout this paper. At the end, a toy model for a "Higgs field" has been constructed by fluctuating the Dirac operator and the variation on the transverse distance has been demonstrated, through an explicit computation.

  4. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    NASA Astrophysics Data System (ADS)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  5. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    PubMed

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  6. Heun Polynomials and Exact Solutions for the Massless Dirac Particle in the C-Metric

    NASA Astrophysics Data System (ADS)

    Kar, Priyasri; Singh, Ritesh K.; Dasgupta, Ananda; Panigrahi, Prasanta K.

    2018-03-01

    The equation of motion of a massless Dirac particle in the C-metric leads to the general Heun equation (GHE) for the radial and the polar variables. The GHE, under certain parametric conditions, is cast in terms of a new set of su(1, 1) generators involving differential operators of degrees ±1/2 and 0. Additional Heun polynomials are obtained using this new algebraic structure and are used to construct some exact solutions for the radial and the polar parts of the Dirac equation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guedes, Carlos; Oriti, Daniele; Raasakka, Matti

    The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less

  8. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator

    PubMed Central

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. Phuan

    2016-01-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T1 ~ 70 mK and T2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  9. Progress on the three-particle quantization condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul; Hansen, Mawell T.; Sharpe, Stephen R.

    2016-10-01

    We report progress on extending the relativistic model-independent quantization condition for three particles, derived previously by two of us, to a broader class of theories, as well as progress on checking the formalism. In particular, we discuss the extension to include the possibility of 2->3 and 3->2 transitions and the calculation of the finite-volume energy shift of an Efimov-like three-particle bound state. The latter agrees with the results obtained previously using non-relativistic quantum mechanics.

  10. Global synchronization of complex dynamical networks through digital communication with limited data rate.

    PubMed

    Wang, Yan-Wu; Bian, Tao; Xiao, Jiang-Wen; Wen, Changyun

    2015-10-01

    This paper studies the global synchronization of complex dynamical network (CDN) under digital communication with limited bandwidth. To realize the digital communication, the so-called uniform-quantizer-sets are introduced to quantize the states of nodes, which are then encoded and decoded by newly designed encoders and decoders. To meet the requirement of the bandwidth constraint, a scaling function is utilized to guarantee the quantizers having bounded inputs and thus achieving bounded real-time quantization levels. Moreover, a new type of vector norm is introduced to simplify the expression of the bandwidth limit. Through mathematical induction, a sufficient condition is derived to ensure global synchronization of the CDNs. The lower bound on the sum of the real-time quantization levels is analyzed for different cases. Optimization method is employed to relax the requirements on the network topology and to determine the minimum of such lower bound for each case, respectively. Simulation examples are also presented to illustrate the established results.

  11. Covariant scalar representation of ? and quantization of the scalar relativistic particle

    NASA Astrophysics Data System (ADS)

    Jarvis, P. D.; Tsohantjis, I.

    1996-03-01

    A covariant scalar representation of iosp(d,2/2) is constructed and analysed in comparison with existing BFV-BRST methods for the quantization of the scalar relativistic particle. It is found that, with appropriately defined wavefunctions, this iosp(d,2/2) produced representation can be identified with the state space arising from the canonical BFV-BRST quantization of the modular-invariant, unoriented scalar particle (or antiparticle) with admissible gauge-fixing conditions. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra.

  12. Finite-time H∞ control for a class of discrete-time switched time-delay systems with quantized feedback

    NASA Astrophysics Data System (ADS)

    Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An

    2012-12-01

    This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.

  13. Majorana zero modes in Dirac semimetal Josephson junctions

    NASA Astrophysics Data System (ADS)

    Li, Chuan; de Boer, Jorrit; de Ronde, Bob; Huang, Yingkai; Golden, Mark; Brinkman, Alexander

    We have realized proximity-induced superconductivity in a Dirac semimetal and revealed the topological nature of the superconductivity by the observation of Majorana zero modes. As a Dirac semimetal, Bi0.97Sb0.03 is used, where a three-dimensional Dirac cone exists in the bulk due to an accidental touching between conduction and valence bands. Electronic transport measurements on Hall-bars fabricated out of Bi0.97Sb0.03 flakes consistently show negative magnetoresistance for magnetic fields parallel to the current, which is associated with the chiral anomaly. In perpendicular magnetic fields, we see Shubnikov-de Haas oscillations that indicate very low carrier densities. The low Fermi energy and protection against backscattering in our Dirac semimetal Josephson junctions provide favorable conditions for a large contribution of Majorana zero modes to the supercurrent. In radiofrequency irradiation experiments, we indeed observe these Majorana zero modes in Nb-Bi0.97Sb0.03-Nb Josephson junctions as a 4 π periodic contribution to the current-phase relation.

  14. Analytical study of mode degeneracy in non-Hermitian photonic crystals with TM-like polarization

    NASA Astrophysics Data System (ADS)

    Yin, Xuefan; Liang, Yong; Ni, Liangfu; Wang, Zhixin; Peng, Chao; Li, Zhengbin

    2017-08-01

    We present a study of the mode degeneracy in non-Hermitian photonic crystals (PC) with TM-like polarization and C4 v symmetry from the perspective of the coupled-wave theory (CWT). The CWT framework is extended to include TE-TM coupling terms which are critical for modeling the accidental triple degeneracy within non-Hermitian PC systems. We derive the analytical form of the wave function and the condition of Dirac-like-cone dispersion when radiation loss is relatively small. We find that, similar to a real Dirac cone, the Dirac-like cone in non-Hermitian PCs possesses good linearity and isotropy, even with a ring of exceptional points (EPs) inevitably existing in the vicinity of the second-order Γ point. However, the Berry phase remains zero at the Γ point, indicating the cone does not obey the Dirac equation and is only a Dirac-like cone. The topological modal interchange phenomenon and nonzero Berry phase of the EPs are also discussed.

  15. Relativistic Gurzhi effect in channels of Dirac materials

    NASA Astrophysics Data System (ADS)

    Kashuba, Oleksiy; Trauzettel, Björn; Molenkamp, Laurens W.

    2018-05-01

    Charge transport in channel-shaped 2D Dirac systems is studied employing the Boltzmann equation. The dependence of the resistivity on temperature and chemical potential is investigated. An accurate understanding of the influence of electron-electron interaction and material disorder allows us to identify a parameter regime, where the system reveals hydrodynamic transport behavior. We point out the conditions for three Dirac fermion specific features: heat flow hydrodynamics, pseudodiffusive transport, and the electron-hole scattering dominated regime. It is demonstrated that for clean samples the relativistic Gurzhi effect, a definite indicator of hydrodynamic transport, can be observed.

  16. Adaptive robust fault tolerant control design for a class of nonlinear uncertain MIMO systems with quantization.

    PubMed

    Ao, Wei; Song, Yongdong; Wen, Changyun

    2017-05-01

    In this paper, we investigate the adaptive control problem for a class of nonlinear uncertain MIMO systems with actuator faults and quantization effects. Under some mild conditions, an adaptive robust fault-tolerant control is developed to compensate the affects of uncertainties, actuator failures and errors caused by quantization, and a range of the parameters for these quantizers is established. Furthermore, a Lyapunov-like approach is adopted to demonstrate that the ultimately uniformly bounded output tracking error is guaranteed by the controller, and the signals of the closed-loop system are ensured to be bounded, even in the presence of at most m-q actuators stuck or outage. Finally, numerical simulations are provided to verify and illustrate the effectiveness of the proposed adaptive schemes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Quantum state of the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robles-Perez, Salvador; Gonzalez-Diaz, Pedro F.

    2010-04-15

    A third quantization formalism is applied to a simplified multiverse scenario. A well-defined quantum state of the multiverse is obtained which agrees with standard boundary condition proposals. These states are found to be squeezed, and related to accelerating universes: they share similar properties to those obtained previously by Grishchuk and Siderov. We also comment on related works that have criticized the third quantization approach.

  18. Path-integral representation for the relativistic particle propagators and BFV quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, E.S.; Gitman, D.M.

    1991-11-15

    The path-integral representations for the propagators of scalar and spinor fields in an external electromagnetic field are derived. The Hamiltonian form of such expressions can be interpreted in the sense of Batalin-Fradkin-Vilkovisky quantization of one-particle theory. The Lagrangian representation as derived allows one to extract in a natural way the expressions for the corresponding gauge-invariant (reparametrization- and supergauge-invariant) actions for pointlike scalar and spinning particles. At the same time, the measure and ranges of integrations, admissible gauge conditions, and boundary conditions can be exactly established.

  19. Event-triggered H∞ state estimation for semi-Markov jumping discrete-time neural networks with quantization.

    PubMed

    Rakkiyappan, R; Maheswari, K; Velmurugan, G; Park, Ju H

    2018-05-17

    This paper investigates H ∞ state estimation problem for a class of semi-Markovian jumping discrete-time neural networks model with event-triggered scheme and quantization. First, a new event-triggered communication scheme is introduced to determine whether or not the current sampled sensor data should be broad-casted and transmitted to the quantizer, which can save the limited communication resource. Second, a novel communication framework is employed by the logarithmic quantizer that quantifies and reduces the data transmission rate in the network, which apparently improves the communication efficiency of networks. Third, a stabilization criterion is derived based on the sufficient condition which guarantees a prescribed H ∞ performance level in the estimation error system in terms of the linear matrix inequalities. Finally, numerical simulations are given to illustrate the correctness of the proposed scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Index theorem for non-supersymmetric fermions coupled to a non-Abelian string and electric charge quantization

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2018-03-01

    Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.

  1. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Song, Qichen; Zhao, Weiwei

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less

  2. Dirac-electron-mediated magnetic proximity effect in topological insulator/magnetic insulator heterostructures

    DOE PAGES

    Li, Mingda; Song, Qichen; Zhao, Weiwei; ...

    2017-11-01

    The possible realization of dissipationless chiral edge current in a topological insulator/magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. We report a polarized neutron reflectometry observation of Dirac-electron-mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi 0.2Sb 0.8) 2Te 3/magnetic insulator EuS heterostructure. We are able to maximize the proximity-induced magnetism by applying an electrical back gate to tune the Fermi level of topological insulator to be close to the Dirac point. A phenomenological model based on diamagnetic screeningmore » is developed to explain the suppressed proximity-induced magnetism at high carrier density. Our work paves the way to utilize the magnetic proximity effect at the topological insulator/magnetic insulator heterointerface for low-power spintronic applications.« less

  3. Dirac dispersion generates unusually large Nernst effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Watzman, Sarah J.; McCormick, Timothy M.; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Prakash, Arati; Felser, Claudia; Trivedi, Nandini; Heremans, Joseph P.

    2018-04-01

    Weyl semimetals contain linearly dispersing electronic states, offering interesting features in transport yet to be thoroughly explored thermally. Here we show how the Nernst effect, combining entropy with charge transport, gives a unique signature for the presence of Dirac bands and offers a diagnostic to determine if trivial pockets play a role in this transport. The Nernst thermopower of NbP exceeds its conventional thermopower by a 100-fold, and the temperature dependence of the Nernst effect has a pronounced maximum. The charge-neutrality condition dictates that the Fermi level shifts with increasing temperature toward the energy that has the minimum density of states (DOS). In NbP, the agreement of the Nernst and Seebeck data with a model that assumes this minimum DOS resides at the Dirac points is taken as strong experimental evidence that the trivial (non-Dirac) bands play no role in high-temperature transport.

  4. Chromium-induced ferromagnetism with perpendicular anisotropy in topological crystalline insulator SnTe (111) thin films

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Hongrui; Jiang, Jue; Zhao, Yi-Fan; Yu, Jia; Liu, Wei; Li, Da; Chan, Moses H. W.; Sun, Jirong; Zhang, Zhidong; Chang, Cui-Zu

    2018-03-01

    Topological crystalline insulator is a recently discovered topological phase of matter. It possesses multiple Dirac surface states, which are protected by the crystal symmetry. This is in contrast to the time-reversal symmetry that is operative in the well-known topological insulators. In the presence of a Zeeman field and/or strain, the multiple Dirac surface states are gapped. The high-Chern-number quantum anomalous Hall (QAH) state is predicted to emerge if the chemical potential resides in all the Zeeman gaps. Here, we use molecular-beam epitaxy to grow 12 double-layer (DL) pure and Cr-doped SnTe (111) thin film on heat-treated SrTi O3 (111) substrate using a quintuple layer of insulating (Bi0.2Sb0.8 ) 2T e3 topological insulator as a buffer film. The Hall traces of Cr-doped SnTe film at low temperatures display square hysteresis loops indicating long-range ferromagnetic order with perpendicular anisotropy. The Curie temperature of the 12 DL S n0.9C r0.1Te film is ˜110 K. Due to the chemical potential crossing the bulk valence bands, the anomalous Hall resistance of 12 DL S n0.9C r0.1Te film is substantially lower than the predicted quantized value (˜1 /4 h /e2 ). It is possible that with systematic tuning the chemical potential via chemical doping and electrical gating, the high-Chern-number QAH state can be realized in the Cr-doped SnTe (111) thin film.

  5. Open string with a background B field as the first order mechanics, noncommutativity, and soldering formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deriglazov, A. A.; Neves, C.; Oliveira, W.

    2007-09-15

    To study noncommutativity properties of the open string with constant B field, we construct a mechanical action that reproduces classical dynamics of the string sector under consideration. It allows one to apply the Dirac quantization procedure for constrained systems in a direct and unambiguous way. The mechanical action turns out to be the first order system without taking the strong field limit B{yields}{infinity}. In particular, it is true for the zero mode of the string coordinate, which means that the noncommutativity is an intrinsic property of this mechanical system. We describe the arbitrariness in the relation existing between the mechanicalmore » and the string variables and show that noncommutativity of the string variables on the boundary can be removed. This is in correspondence with the result of Seiberg and Witten on the relation among noncommutative and ordinary Yang-Mills theories. The recently developed soldering formalism helps us to establish a connection between the original open string action and the Polyakov action.« less

  6. On the quantization of the massless Bateman system

    NASA Astrophysics Data System (ADS)

    Takahashi, K.

    2018-03-01

    The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.

  7. The uniform quantized electron gas revisited

    NASA Astrophysics Data System (ADS)

    Lomba, Enrique; Høye, Johan S.

    2017-11-01

    In this article we continue and extend our recent work on the correlation energy of the quantized electron gas of uniform density at temperature T=0 . As before, we utilize the methods, properties, and results obtained by means of classical statistical mechanics. These were extended to quantized systems via the Feynman path integral formalism. The latter translates the quantum problem into a classical polymer problem in four dimensions. Again, the well known RPA (random phase approximation) is recovered as a basic result which we then modify and improve upon. Here we analyze the condition of thermodynamic self-consistency. Our numerical calculations exhibit a remarkable agreement with well known results of a standard parameterization of Monte Carlo correlation energies.

  8. Texture one zero Dirac neutrino mass matrix with vanishing determinant or trace condition

    NASA Astrophysics Data System (ADS)

    Singh, Madan

    2018-06-01

    In the light of non-zero and relatively large value of rector mixing angle (θ13), we have performed a detailed analysis of texture one zero neutrino mass matrix Mν in the scenario of vanishing determinant/trace conditions, assuming the Dirac nature of neutrinos. In both the scenarios, normal mass ordering is ruled out for all the six possibilities of Mν, however for inverted mass ordering, only two are found to be viable with the current neutrino oscillation data at 3σ confidence level. Numerical and some approximate analytical results are presented.

  9. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  10. The Casalbuoni-Brink-Schwarz superparticle with covariant, reducible constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayi, O.F.

    1992-04-30

    This paper discusses the fermionic constraints of the massless Casalbuoni-Brink-Schwarz superparticle in d = 10 which are separated covariantly as first- and second-class constraints which are infinitely reducible. Although the reducibility conditions of the second-class constraints include the first-class ones a consistent quantization is possible. The ghost structure of the system for quantizing it in terms of the BFV-BRST methods is given and unitarity is shown.

  11. Theory of free electron vortices

    PubMed Central

    Schattschneider, P.; Verbeeck, J.

    2011-01-01

    The recent creation of electron vortex beams and their first practical application motivates a better understanding of their properties. Here, we develop the theory of free electron vortices with quantized angular momentum, based on solutions of the Schrödinger equation for cylindrical boundary conditions. The principle of transformation of a plane wave into vortices with quantized angular momentum, their paraxial propagation through round magnetic lenses, and the effect of partial coherence are discussed. PMID:21930017

  12. Holographic anyonic superfluidity

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2013-10-01

    Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.

  13. Quantum no-singularity theorem from geometric flows

    NASA Astrophysics Data System (ADS)

    Alsaleh, Salwa; Alasfar, Lina; Faizal, Mir; Ali, Ahmed Farag

    2018-04-01

    In this paper, we analyze the classical geometric flow as a dynamical system. We obtain an action for this system, such that its equation of motion is the Raychaudhuri equation. This action will be used to quantize this system. As the Raychaudhuri equation is the basis for deriving the singularity theorems, we will be able to understand the effects and such a quantization will have on the classical singularity theorems. Thus, quantizing the geometric flow, we can demonstrate that a quantum space-time is complete (nonsingular). This is because the existence of a conjugate point is a necessary condition for the occurrence of singularities, and we will be able to demonstrate that such conjugate points cannot occur due to such quantum effects.

  14. Quantum transport through 3D Dirac materials

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Jafari, S. A.

    2015-08-01

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  15. Double Barriers and Magnetic Field in Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Redouani, Ilham; Jellal, Ahmed; Bahlouli, Hocine

    2015-12-01

    We study the transmission probability in an AB-stacked bilayer graphene of Dirac fermions scattered by a double-barrier structure in the presence of a magnetic field. We take into account the full four bands structure of the energy spectrum and use the suitable boundary conditions to determine the transmission probability. Our numerical results show that for energies higher than the interlayer coupling, four ways for transmission are possible while for energies less than the height of the barrier, Dirac fermions exhibit transmission resonances and only one transmission channel is available. We show that, for AB-stacked bilayer graphene, there is no Klein tunneling at normal incidence. We find that the transmission displays sharp peaks inside the transmission gap around the Dirac point within the barrier regions while they are absent around the Dirac point in the well region. The effect of the magnetic field, interlayer electrostatic potential, and various barrier geometry parameters on the transmission probabilities is also discussed.

  16. Resonant electron tunneling spectroscopy of antibonding states in a Dirac semimetal

    NASA Astrophysics Data System (ADS)

    Marques, Y.; Yudin, D.; Shelykh, I. A.; Seridonio, A. C.

    2018-06-01

    Recently, it was shown both theoretically and experimentally that certain three-dimensional (3D) materials have Dirac points in the Brillouin zone, thus being 3D analogs of graphene. Moreover, it was suggested that under specific conditions a pair of localized impurities placed inside a three-dimensional Dirac semimetal may lead to the formation of an unusual antibonding state. In the meantime, the effect of vibrational degrees of freedom which are present in any realistic system has avoided attention. In this work, we address the influence of phonons on characteristic features of (anti)bonding state, and discuss how these results can be tested experimentally via local probing, namely, inelastic electron tunneling spectroscopy curve obtained in STM measurements.

  17. Rare-Region-Induced Avoided Quantum Criticality in Disordered Three-Dimensional Dirac and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Huse, David A.; Das Sarma, S.

    2016-04-01

    We numerically study the effect of short-ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed (and extensively theoretically studied) quantum critical point separating semimetal and diffusive-metal phases. We determine the properties of the eigenstates of the disordered Dirac Hamiltonian (H ) and exactly calculate the density of states (DOS) near zero energy, using a combination of Lanczos on H2 and the kernel polynomial method on H . We establish the existence of two distinct types of low-energy eigenstates contributing to the disordered density of states in the weak-disorder semimetal regime. These are (i) typical eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states and (ii) nonperturbative rare eigenstates that are weakly dispersive and quasilocalized in the real-space regions with the largest (and rarest) local random potential. Using twisted boundary conditions, we are able to systematically find and study these two (essentially independent) types of eigenstates. We find that the Dirac states contribute low-energy peaks in the finite-size DOS that arise from the clean eigenstates which shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasilocalized eigenstates contribute a nonzero background DOS which is only weakly energy dependent near zero energy and is exponentially small at weak disorder. We also find that the expected semimetal to diffusive-metal quantum critical point is converted to an avoided quantum criticality that is "rounded out" by nonperturbative effects, with no signs of any singular behavior in the DOS at the energy of the clean Dirac point. However, the crossover effects of the avoided (or hidden) criticality manifest themselves in a so-called quantum critical fan region away from the Dirac energy. We discuss the implications of our results for disordered Dirac and Weyl semimetals, and reconcile the large body of existing numerical work showing quantum criticality with the existence of these nonperturbative effects.

  18. Coulomb Problem for Z > Zcr in Doped Graphene

    NASA Astrophysics Data System (ADS)

    Kuleshov, V. M.; Mur, V. D.; Fedotov, A. M.; Lozovik, Yu. E.

    2017-12-01

    The dynamics of charge carriers in doped graphene, i.e., graphene with a gap in the energy spectrum depending on the substrate, in the presence of a Coulomb impurity with charge Z is considered within the effective two-dimensional Dirac equation. The wave functions of carriers with conserved angular momentum J = M + 1/2 are determined for a Coulomb potential modified at small distances. This case, just as any two-dimensional physical system, admits both integer and half-integer quantization of the orbital angular momentum in plane, M = 0, ±1, ±2, …. For J = 0, ±1/2, ±1, critical values of the effective charge Z cr( J, n) are calculated for which a level with angular momentum J and radial quantum numbers n = 0 and n = 1 reaches the upper boundary of the valence band. For Z < Z cr ( J, n = 0), the energy of a level is presented as a function of charge Z for the lowest values of orbital angular momentum M, the level with J = 0 being the first to descend to the band edge. For Z > Z cr ( J, n = 0), scattering phases are calculated as a function of hole energy for several values of supercriticality, as well as the positions ɛ0 and widths γ of quasistationary states as a function of supercriticality. The values of ɛ0* and width γ* are pointed out for which quasidiscrete levels may show up as Breit-Wigner resonances in the scattering of holes by a supercritical impurity. Since the phases are real, the partial scattering matrix is unitary, so that the radial Dirac equation is consistent even for Z > Z cr. In this single-particle approximation, there is no spontaneous creation of electron-hole pairs, and the impurity charge cannot be screened by this mechanism.

  19. Treatment of constraints in the stochastic quantization method and covariantized Langevin equation

    NASA Astrophysics Data System (ADS)

    Ikegami, Kenji; Kimura, Tadahiko; Mochizuki, Riuji

    1993-04-01

    We study the treatment of the constraints in the stochastic quantization method. We improve the treatment of the stochastic consistency condition proposed by Namiki et al. by suitably taking into account the Ito calculus. Then we obtain an improved Langevi equation and the Fokker-Planck equation which naturally leads to the correct path integral quantization of the constrained system as the stochastic equilibrium state. This treatment is applied to an O( N) non-linear α model and it is shown that singular terms appearing in the improved Langevin equation cancel out the σ n(O) divergences in one loop order. We also ascertain that the above Langevin equation, rewritten in terms of idependent variables, is actually equivalent to the one in the general-coordinate transformation covariant and vielbein-rotation invariant formalish.

  20. Generalized noise terms for the quantized fluctuational electrodynamics

    NASA Astrophysics Data System (ADS)

    Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka; Oksanen, Jani

    2017-03-01

    The quantization of optical fields in vacuum has been known for decades, but extending the field quantization to lossy and dispersive media in nonequilibrium conditions has proven to be complicated due to the position-dependent electric and magnetic responses of the media. In fact, consistent position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer and the formation of thermal balance in general dielectric and magnetic nanodevices. We use QFED to investigate the magnetic properties of microcavity systems to demonstrate an example geometry in which it is possible to probe fields arising from the electric and magnetic source terms. We show that, as a consequence of the magnetic Purcell effect, the tuning of the position of an emitter layer placed inside a vacuum cavity can make the emissivity of a magnetic emitter to exceed the emissivity of a corresponding electric emitter.

  1. Robust state preparation in quantum simulations of Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.

    2017-02-01

    A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.

  2. Solutions of the Dirac Equation with the Shifted DENG-FAN Potential Including Yukawa-Like Tensor Interaction

    NASA Astrophysics Data System (ADS)

    Yahya, W. A.; Falaye, B. J.; Oluwadare, O. J.; Oyewumi, K. J.

    2013-08-01

    By using the Nikiforov-Uvarov method, we give the approximate analytical solutions of the Dirac equation with the shifted Deng-Fan potential including the Yukawa-like tensor interaction under the spin and pseudospin symmetry conditions. After using an improved approximation scheme, we solved the resulting schr\\"{o}dinger-like equation analytically. Numerical results of the energy eigenvalues are also obtained, as expected, the tensor interaction removes degeneracies between spin and pseudospin doublets.

  3. Generic Friedberg-Lee symmetry of Dirac neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Shu; Xing Zhizhong; Li Xin

    2008-12-01

    We write out the generic Dirac neutrino mass operator which possesses the Friedberg-Lee symmetry and find that its corresponding neutrino mass matrix is asymmetric. Following a simple way to break the Friedberg-Lee symmetry, we calculate the neutrino mass eigenvalues and show that the resultant neutrino mixing pattern is nearly tri-bimaximal. Imposing the Hermitian condition on the neutrino mass matrix, we also show that the simplified ansatz is consistent with current experimental data and favors the normal neutrino mass hierarchy.

  4. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  5. 2+1 black hole with SU(2) hair (and the theory where it grows)

    NASA Astrophysics Data System (ADS)

    Zanelli, Jorge

    2015-04-01

    A black hole solution in three spacetime dimensions, endowed with an SU(2) charge is presented. The construction is based on two main features of three dimensions: i) AdS3 spacetime is locally Lorentz-flat, that is, it can be covered with a congruence of local inertial observers, just like flat Minkowski space; ii) The SO(2,1) and SU(2) groups are isomorphic, so that a flat connection of the first can be mapped to a flat connection of the second. The global nontrivial nature of the solution is a consequence of the topology produced by the identification in the covering space that gives rise to the 2+1 black hole. It can be seen that this solution belongs to the vacuum (matter-free) sector of a supersymmetric theory based on the Chern-Simons action for the su(1, 2|2) superalgebra. The action for this system matches that of graphene in the long wavelength limit near the Dirac point. The SU(2) gauge symmetry is interpreted as the freedom to choose locally the definition of spin quantization axis for the electrons.

  6. Topological gaps without masses in driven graphene-like systems

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio

    2014-03-01

    We illustrate the possibility of realizing band gaps in graphene-like systems that fall outside the existing classification of gapped Dirac Hamiltonians in terms of masses. As our primary example we consider a band gap arising due to time-dependent distortions of the honeycomb lattice. By means of an exact, invertible, and transport-preserving mapping to a time-independent Hamiltonian, we show that the system exhibits Chern-insulating phases with quantized Hall conductivities +/-e2 / h . The chirality of the corresponding gapless edge modes is controllable by both the frequency of the driving and the manner in which sublattice symmetry is broken by the dynamical lattice modulations. We demonstrate that, while these phases are in the same topological sector as the Haldane model, they are nevertheless separated from the latter by a gap-closing transition unless an extra parameter is added to the Hamiltonian. Finally, we discuss a promising possible realization of this physics in photonic lattices. This work is supported in part by DOE Grant DEF-06ER46316 (T.I. and C.C.).

  7. Commuting symmetry operators of the Dirac equation, Killing-Yano and Schouten-Nijenhuis brackets

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco; Krtouš, Pavel; Kubizňák, David

    2011-07-01

    In this paper we derive the most general first-order symmetry operator commuting with the Dirac operator in all dimensions and signatures. Such an operator splits into Clifford even and Clifford odd parts which are given in terms of odd Killing-Yano and even closed conformal Killing-Yano inhomogeneous forms, respectively. We study commutators of these symmetry operators and give necessary and sufficient conditions under which they remain of the first-order. In this specific setting we can introduce a Killing-Yano bracket, a bilinear operation acting on odd Killing-Yano and even closed conformal Killing-Yano forms, and demonstrate that it is closely related to the Schouten-Nijenhuis bracket. An important nontrivial example of vanishing Killing-Yano brackets is given by Dirac symmetry operators generated from the principal conformal Killing-Yano tensor [hep-th/0612029]. We show that among these operators one can find a complete subset of mutually commuting operators. These operators underlie separability of the Dirac equation in Kerr-NUT-(A)dS spacetimes in all dimensions [arXiv:0711.0078].

  8. Polymer quantization of the Einstein-Rosen wormhole throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2010-01-15

    We present a polymer quantization of spherically symmetric Einstein gravity in which the polymerized variable is the area of the Einstein-Rosen wormhole throat. In the classical polymer theory, the singularity is replaced by a bounce at a radius that depends on the polymerization scale. In the polymer quantum theory, we show numerically that the area spectrum is evenly spaced and in agreement with a Bohr-Sommerfeld semiclassical estimate, and this spectrum is not qualitatively sensitive to issues of factor ordering or boundary conditions except in the lowest few eigenvalues. In the limit of small polymerization scale we recover, within the numericalmore » accuracy, the area spectrum obtained from a Schroedinger quantization of the wormhole throat dynamics. The prospects of recovering from the polymer throat theory a full quantum-corrected spacetime are discussed.« less

  9. Quantized conductance operation near a single-atom point contact in a polymer-based atomic switch

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Muruganathan, Manoharan; Tsuruoka, Tohru; Mizuta, Hiroshi; Aono, Masakazu

    2017-06-01

    Highly-controlled conductance quantization is achieved near a single-atom point contact in a redox-based atomic switch device, in which a poly(ethylene oxide) (PEO) film is sandwiched between Ag and Pt electrodes. Current-voltage measurements revealed reproducible quantized conductance of ˜1G 0 for more than 102 continuous voltage sweep cycles under a specific condition, indicating the formation of a well-defined single-atom point contact of Ag in the PEO matrix. The device exhibited a conductance state distribution centered at 1G 0, with distinct half-integer multiples of G 0 and small fractional variations. First-principles density functional theory simulations showed that the experimental observations could be explained by the existence of a tunneling gap and the structural rearrangement of an atomic point contact.

  10. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm

    NASA Astrophysics Data System (ADS)

    Song, Ke; Li, Feiqiang; Hu, Xiao; He, Lin; Niu, Wenxu; Lu, Sihao; Zhang, Tong

    2018-06-01

    The development of fuel cell electric vehicles can to a certain extent alleviate worldwide energy and environmental issues. While a single energy management strategy cannot meet the complex road conditions of an actual vehicle, this article proposes a multi-mode energy management strategy for electric vehicles with a fuel cell range extender based on driving condition recognition technology, which contains a patterns recognizer and a multi-mode energy management controller. This paper introduces a learning vector quantization (LVQ) neural network to design the driving patterns recognizer according to a vehicle's driving information. This multi-mode strategy can automatically switch to the genetic algorithm optimized thermostat strategy under specific driving conditions in the light of the differences in condition recognition results. Simulation experiments were carried out based on the model's validity verification using a dynamometer test bench. Simulation results show that the proposed strategy can obtain better economic performance than the single-mode thermostat strategy under dynamic driving conditions.

  11. Digital Model of Fourier and Fresnel Quantized Holograms

    NASA Astrophysics Data System (ADS)

    Boriskevich, Anatoly A.; Erokhovets, Valery K.; Tkachenko, Vadim V.

    Some models schemes of Fourier and Fresnel quantized protective holograms with visual effects are suggested. The condition to arrive at optimum relationship between the quality of reconstructed images, and the coefficient of data reduction about a hologram, and quantity of iterations in the reconstructing hologram process has been estimated through computer model. Higher protection level is achieved by means of greater number both bi-dimensional secret keys (more than 2128) in form of pseudorandom amplitude and phase encoding matrixes, and one-dimensional encoding key parameters for every image of single-layer or superimposed holograms.

  12. Photonic band structures in one-dimensional photonic crystals containing Dirac materials

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wang, Li-Gang

    2015-09-01

    We have investigated the band structures of one-dimensional photonic crystals (1DPCs) composed of Dirac materials and ordinary dielectric media. It is found that there exist an omnidirectional passing band and a kind of special band, which result from the interaction of the evanescent and propagating waves. Due to the interface effect and strong dispersion, the electromagnetic fields inside the special bands are strongly enhanced. It is also shown that the properties of these bands are invariant upon the lattice constant but sensitive to the resonant conditions.

  13. Memory-efficient decoding of LDPC codes

    NASA Technical Reports Server (NTRS)

    Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon

    2005-01-01

    We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.

  14. Analysis of DIRAC's behavior using model checking with process algebra

    NASA Astrophysics Data System (ADS)

    Remenska, Daniela; Templon, Jeff; Willemse, Tim; Bal, Henri; Verstoep, Kees; Fokkink, Wan; Charpentier, Philippe; Graciani Diaz, Ricardo; Lanciotti, Elisa; Roiser, Stefan; Ciba, Krzysztof

    2012-12-01

    DIRAC is the grid solution developed to support LHCb production activities as well as user data analysis. It consists of distributed services and agents delivering the workload to the grid resources. Services maintain database back-ends to store dynamic state information of entities such as jobs, queues, staging requests, etc. Agents use polling to check and possibly react to changes in the system state. Each agent's logic is relatively simple; the main complexity lies in their cooperation. Agents run concurrently, and collaborate using the databases as shared memory. The databases can be accessed directly by the agents if running locally or through a DIRAC service interface if necessary. This shared-memory model causes entities to occasionally get into inconsistent states. Tracing and fixing such problems becomes formidable due to the inherent parallelism present. We propose more rigorous methods to cope with this. Model checking is one such technique for analysis of an abstract model of a system. Unlike conventional testing, it allows full control over the parallel processes execution, and supports exhaustive state-space exploration. We used the mCRL2 language and toolset to model the behavior of two related DIRAC subsystems: the workload and storage management system. Based on process algebra, mCRL2 allows defining custom data types as well as functions over these. This makes it suitable for modeling the data manipulations made by DIRAC's agents. By visualizing the state space and replaying scenarios with the toolkit's simulator, we have detected race-conditions and deadlocks in these systems, which, in several cases, were confirmed to occur in the reality. Several properties of interest were formulated and verified with the tool. Our future direction is automating the translation from DIRAC to a formal model.

  15. Study of communications data compression methods

    NASA Technical Reports Server (NTRS)

    Jones, H. W.

    1978-01-01

    A simple monochrome conditional replenishment system was extended to higher compression and to higher motion levels, by incorporating spatially adaptive quantizers and field repeating. Conditional replenishment combines intraframe and interframe compression, and both areas are investigated. The gain of conditional replenishment depends on the fraction of the image changing, since only changed parts of the image need to be transmitted. If the transmission rate is set so that only one fourth of the image can be transmitted in each field, greater change fractions will overload the system. A computer simulation was prepared which incorporated (1) field repeat of changes, (2) a variable change threshold, (3) frame repeat for high change, and (4) two mode, variable rate Hadamard intraframe quantizers. The field repeat gives 2:1 compression in moving areas without noticeable degradation. Variable change threshold allows some flexibility in dealing with varying change rates, but the threshold variation must be limited for acceptable performance.

  16. Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles

    DOE PAGES

    Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.

    2017-04-18

    Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less

  17. Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceño, Raúl A.; Hansen, Maxwell T.; Sharpe, Stephen R.

    Working in relativistic quantum field theory, we derive the quantization condition satisfied by coupled two- and three-particle systems of identical scalar particles confined to a cubic spatial volume with periodicitymore » $L$. This gives the relation between the finite-volume spectrum and the infinite-volume $$\\textbf 2 \\to \\textbf 2$$, $$\\textbf 2 \\to \\textbf 3$$ and $$\\textbf 3 \\to \\textbf 3$$ scattering amplitudes for such theories. The result holds for relativistic systems composed of scalar particles with nonzero mass $m$, whose center of mass energy lies below the four-particle threshold, and for which the two-particle K-matrix has no singularities below the three-particle threshold. Finally, the quantization condition is exact up to corrections of the order $$\\mathcal{O}(e^{-mL})$$ and holds for any choice of total momenta satisfying the boundary conditions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energymore » electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.« less

  19. Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2010-01-01

    We consider a spatially homogeneous and isotropic system of Dirac particles coupled to classical gravity. The dust and radiation dominated closed Friedmann-Robertson-Walker space-times are recovered as limiting cases. We find a mechanism where quantum oscillations of the Dirac wave functions can prevent the formation of the big bang or big crunch singularity. Thus before the big crunch, the collapse of the universe is stopped by quantum effects and reversed to an expansion, so that the universe opens up entering a new era of classical behavior. Numerical examples of such space-times are given, and the dependence on various parameters is discussed. Generically, one has a collapse after a finite number of cycles. By fine-tuning the parameters we construct an example of a space-time which satisfies the dominant energy condition and is time-periodic, thus running through an infinite number of contraction and expansion cycles.

  20. Gauge transformations for twisted spectral triples

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Martinetti, Pierre

    2018-05-01

    It is extended to twisted spectral triples the fluctuations of the metric as bounded perturbations of the Dirac operator that arises when a spectral triple is exported between Morita equivalent algebras, as well as gauge transformations which are obtained by the action of the unitary endomorphisms of the module implementing the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators, previously introduced to generate an extra scalar field in the spectral description of the standard model of elementary particles, in fact follow from Morita equivalence between twisted spectral triples. The law of transformation of the gauge potentials turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For a self-Morita equivalence, conditions are obtained in order to maintain self-adjointness that are solved explicitly for the minimal twist of a Riemannian manifold.

  1. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact.more » From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.« less

  2. Genetic Algorithms Evolve Optimized Transforms for Signal Processing Applications

    DTIC Science & Technology

    2005-04-01

    coefficient sets describing inverse transforms and matched forward/ inverse transform pairs that consistently outperform wavelets for image compression and reconstruction applications under conditions subject to quantization error.

  3. Three-body spectrum in a finite volume: The role of cubic symmetry

    DOE PAGES

    Doring, M.; Hammer, H. -W.; Mai, M.; ...

    2018-06-15

    The three-particle quantization condition is partially diagonalized in the center-of-mass frame by using cubic symmetry on the lattice. To this end, instead of spherical harmonics, the kernel of the Bethe-Salpeter equation for particle-dimer scattering is expanded in the basis functions of different irreducible representations of the octahedral group. Such a projection is of particular importance for the three-body problem in the finite volume due to the occurrence of three-body singularities above breakup. Additionally, we study the numerical solution and properties of such a projected quantization condition in a simple model. It is shown that, for large volumes, these solutions allowmore » for an instructive interpretation of the energy eigenvalues in terms of bound and scattering states.« less

  4. Three-body spectrum in a finite volume: The role of cubic symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doring, M.; Hammer, H. -W.; Mai, M.

    The three-particle quantization condition is partially diagonalized in the center-of-mass frame by using cubic symmetry on the lattice. To this end, instead of spherical harmonics, the kernel of the Bethe-Salpeter equation for particle-dimer scattering is expanded in the basis functions of different irreducible representations of the octahedral group. Such a projection is of particular importance for the three-body problem in the finite volume due to the occurrence of three-body singularities above breakup. Additionally, we study the numerical solution and properties of such a projected quantization condition in a simple model. It is shown that, for large volumes, these solutions allowmore » for an instructive interpretation of the energy eigenvalues in terms of bound and scattering states.« less

  5. On the junction conditions in f(R) -gravity with torsion

    NASA Astrophysics Data System (ADS)

    Vignolo, Stefano; Cianci, Roberto; Carloni, Sante

    2018-05-01

    Junction conditions are discussed within the framework of f(R) -gravity with torsion. After deriving general junction conditions, the cases of coupling to a Dirac field and a spin fluid are explicitly dealt with. The main differences with respect to Einstein–Cartan–Sciama–Kibble theory ≤ft( f(R)=R\\right) are outlined.

  6. Direct measurement of Dirac point energy at the graphene/oxide interface.

    PubMed

    Xu, Kun; Zeng, Caifu; Zhang, Qin; Yan, Rusen; Ye, Peide; Wang, Kang; Seabaugh, Alan C; Xing, Huili Grace; Suehle, John S; Richter, Curt A; Gundlach, David J; Nguyen, N V

    2013-01-09

    We report the direct measurement of the Dirac point, the Fermi level, and the work function of graphene by performing internal photoemission measurements on a graphene/SiO(2)/Si structure with a unique optical-cavity enhanced test structure. A complete electronic band alignment at the graphene/SiO(2)/Si interfaces is accurately established. The observation of enhanced photoemission from a one-atom thick graphene layer was possible by taking advantage of the constructive optical interference in the SiO(2) cavity. The photoemission yield was found to follow the well-known linear density-of-states dispersion in the vicinity of the Dirac point. At the flat band condition, the Fermi level was extracted and found to reside 3.3 eV ± 0.05 eV below the bottom of the SiO(2) conduction band. When combined with the shift of the Fermi level from the Dirac point, we are able to ascertain the position of the Dirac point at 3.6 eV ± 0.05 eV with respect to the bottom of the SiO(2) conduction band edge, yielding a work function of 4.5 eV ± 0.05 eV which is in an excellent agreement with theory. The accurate determination of the work function of graphene is of significant importance to the engineering of graphene-based devices, and the measurement technique we have advanced in this Letter will have significant impact on numerous applications for emerging graphene-like 2-dimensional material systems.

  7. Atiyah-Patodi-Singer index from the domain-wall fermion Dirac operator

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi

    2017-12-01

    The Atiyah-Patodi-Singer (APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a nonlocal boundary condition known as the "APS boundary condition" by hand, which is unlikely to be realized in the materials. In this work, we attempt to reformulate the APS index in a "physicist-friendly" way for a simple setup with U (1 ) or S U (N ) gauge group on a flat four-dimensional Euclidean space. We find that the same index as APS is obtained from the domain-wall fermion Dirac operator with a local boundary condition, which is naturally given by the kink structure in the mass term. As the boundary condition does not depend on the gauge fields, our new definition of the index is easy to compute with the standard Fujikawa method.

  8. Classical analogous of quantum cosmological perfect fluid models

    NASA Astrophysics Data System (ADS)

    Batista, A. B.; Fabris, J. C.; Gonçalves, S. V. B.; Tossa, J.

    2001-05-01

    Quantization in the minisuperspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state pQ= ρQ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.

  9. On the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions

    NASA Astrophysics Data System (ADS)

    Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.

    2009-08-01

    We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443-461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43-103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products.

  10. DIRAC distributed secure framework

    NASA Astrophysics Data System (ADS)

    Casajus, A.; Graciani, R.; LHCb DIRAC Team

    2010-04-01

    DIRAC, the LHCb community Grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by users to a MyProxy service, and DIRAC retrieves new short delegated proxies when necessary. This contribution discusses the details of the implementation of this security infrastructure in DIRAC.

  11. BOOK REVIEW: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Husain, Viqar

    2012-03-01

    Research on quantum gravity from a non-perturbative 'quantization of geometry' perspective has been the focus of much research in the past two decades, due to the Ashtekar-Barbero Hamiltonian formulation of general relativity. This approach provides an SU(2) gauge field as the canonical configuration variable; the analogy with Yang-Mills theory at the kinematical level opened up some research space to reformulate the old Wheeler-DeWitt program into what is now known as loop quantum gravity (LQG). The author is known for his work in the LQG approach to cosmology, which was the first application of this formalism that provided the possibility of exploring physical questions. Therefore the flavour of the book is naturally informed by this history. The book is based on a set of graduate-level lectures designed to impart a working knowledge of the canonical approach to gravitation. It is more of a textbook than a treatise, unlike three other recent books in this area by Kiefer [1], Rovelli [2] and Thiemann [3]. The style and choice of topics of these authors are quite different; Kiefer's book provides a broad overview of the path integral and canonical quantization methods from a historical perspective, whereas Rovelli's book focuses on philosophical and formalistic aspects of the problems of time and observables, and gives a development of spin-foam ideas. Thiemann's is much more a mathematical physics book, focusing entirely on the theory of representing constraint operators on a Hilbert space and charting a mathematical trajectory toward a physical Hilbert space for quantum gravity. The significant difference from these books is that Bojowald covers mainly classical topics until the very last chapter, which contains the only discussion of quantization. In its coverage of classical gravity, the book has some content overlap with Poisson's book [4], and with Ryan and Shepley's older work on relativistic cosmology [5]; for instance the contents of chapter five of the book are also covered in detail, and with more worked examples, in the former book, and the entire focus of the latter is Bianchi models. After a brief introduction outlining the aim of the book, the second chapter provides the canonical theory of homogeneous isotropic cosmology with scalar matter; this covers the basics and linear perturbation theory, and is meant as a first taste of what is to come. The next chapter is a thorough introduction of the canonical formulation of general relativity in both the ADM and Ashtekar-Barbero variables. This chapter contains details useful for graduate students which are either scattered or missing in the literature. Applications of the canonical formalism are in the following chapter. These cover standard material and techniques for obtaining mini(midi)-superspace models, including the Bianchi and Gowdy cosmologies, and spherically symmetric reductions. There is also a brief discussion of the two-dimensional dilaton gravity. The spherically symmetric reduction is presented in detail also in the connection-triad variables. The chapter on global and asymptotic properties gives introductions to geodesic and null congruences, trapped surfaces, a survey of singularity theorems, horizons and asymptotic properties. The chapter ends with a discussion of junction conditions and the Vaidya solution. As already mentioned, this material is covered in detail in Poisson's book. The final chapter on quantization describes and contrasts the Dirac and reduced phase space methods. It also gives an introduction to background independent quantization using the holonomy-flux operators, which forms the basis of the LQG program. The application of this method to cosmology and its affect on the Friedmann equation is covered next, followed by a brief introduction to the effective constraint method, which is another area developed by the author. I think this book is a useful addition to the literature for graduate students, and potentially also for researchers in other areas who wish to learn about the canonical approach to gravity. However, given the brief chapter on quantization, the book would go well with a review paper, or parts of the other three quantum gravity books cited above. References [1] Kiefer C 2006 Quantum Gravity 2nd ed. (Oxford University Press) [2] Rovelli C 2007 Quantum Gravity (Cambridge University Press) [3] Thiemann T 2008 Modern Canonical Quantum Gravity (Cambridge University Press) [4] Posson E 2004 A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press) [5] Ryan M P and Shepley L C 1975 Homogeneous Relativistic Cosmology (Princeton University Press)

  12. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    NASA Astrophysics Data System (ADS)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate difficulties that arise in the analysis of the Purcell effect because of the divergence of the integral describing the effective volume of the mode in open systems.

  13. Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones

    DOE PAGES

    Zhang, Peng; Fietz, Chris; Tassin, Philippe; ...

    2015-04-14

    A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band. We also investigate the formation of monomodal and multimodal cavity resonances inside the photonic crystals, and the physical origins of their different line-shape features.

  14. Graphene based d-character Dirac Systems

    NASA Astrophysics Data System (ADS)

    Li, Yuanchang; Zhang, S. B.; Duan, Wenhui

    From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.

  15. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  16. Physical subspace in a model of the quantized electromagnetic field coupled to an external field with an indefinite metric

    NASA Astrophysics Data System (ADS)

    Suzuki, Akito

    2008-04-01

    We study a model of the quantized electromagnetic field interacting with an external static source ρ in the Feynman (Lorentz) gauge and construct the quantized radiation field Aμ (μ=0,1,2,3) as an operator-valued distribution acting on the Fock space F with an indefinite metric. By using the Gupta subsidiary condition ∂μAμ(x)(+)Ψ=0, one can select the physical subspace Vphys. According to the Gupta-Bleuler formalism, Vphys is a non-negative subspace so that elements of Vphys, called physical states, can be probabilistically interpretable. Indeed, assuming that the external source ρ is infrared regular, i.e., ρ̂/∣k∣3/2ɛL2(R3), we can characterize the physical subspace Vphys and show that Vphys is non-negative. In addition, we find that the Hamiltonian of the model is reduced to the Hamiltonian of the transverse photons with the Coulomb interaction. We, however, prove that the physical subspace is trivial, i.e., Vphys={0}, if and only if the external source ρ is infrared singular, i.e., ρ̂/∣k∣3/2∉L2(R3). We also discuss a representation different from the above representation such that the physical subspace is not trivial under the infrared singular condition.

  17. Quantization selection in the high-throughput H.264/AVC encoder based on the RD

    NASA Astrophysics Data System (ADS)

    Pastuszak, Grzegorz

    2013-10-01

    In the hardware video encoder, the quantization is responsible for quality losses. On the other hand, it allows the reduction of bit rates to the target one. If the mode selection is based on the rate-distortion criterion, the quantization can also be adjusted to obtain better compression efficiency. Particularly, the use of Lagrangian function with a given multiplier enables the encoder to select the most suitable quantization step determined by the quantization parameter QP. Moreover, the quantization offset added before discarding the fraction value after quantization can be adjusted. In order to select the best quantization parameter and offset in real time, the HD/SD encoder should be implemented in the hardware. In particular, the hardware architecture should embed the transformation and quantization modules able to process the same residuals many times. In this work, such an architecture is used. Experimental results show what improvements in terms of compression efficiency are achievable for Intra coding.

  18. Tachyon dynamics — for neutrinos?

    NASA Astrophysics Data System (ADS)

    Schwartz, Charles

    2018-04-01

    Following earlier studies that provided a consistent theory of kinematics for tachyons (faster-than-light particles), we here embark on a study of tachyon dynamics, both in classical physics and in the quantum theory. Examining a general scattering process, we come to recognize that the labels given to “in” and “out” states are not Lorentz invariant for tachyons; and this lets us find a sensible interpretation of negative energy states. For statistical mechanics, as well as for scattering problems, we study what should be the proper expression for density of states for tachyons. We review the previous work on quantization of a Dirac field for tachyons and go on to expand earlier considerations of neutrinos as tachyons in the context of cosmology. We stumble into the realization that tachyon neutrinos would contribute to gravitation with the opposite sign compared to tachyon antineutrinos. This leads to the gobsmacking prediction that the Cosmic Neutrino Background, if they are indeed tachyons, might explain both phenomena of Dark Matter and Dark Energy. This theoretical study also makes contact with the anticipated results from the experiments KATRIN and PTOLEMY, which focus on beta decay and neutrino absorption by Tritium.

  19. Peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus

    NASA Astrophysics Data System (ADS)

    Voronov, B. L.; Gitman, D. M.; Levin, A. D.; Ferreira, R.

    2016-05-01

    We consider the peculiarities of the electron energy spectrum in the Coulomb field of a superheavy nucleus and discuss the long history of an incorrect interpretation of this problem in the case of a pointlike nucleus and its current correct solution. We consider the spectral problem in the case of a regularized Coulomb potential. For some special regularizations, we derive an exact equation for the point spectrum in the energy interval (-m,m) and find some of its solutions numerically. We also derive an exact equation for charges yielding bound states with the energy E = -m; some call them supercritical charges. We show the existence of an infinite number of such charges. Their existence does not mean that the oneparticle relativistic quantum mechanics based on the Dirac Hamiltonian with the Coulomb field of such charges is mathematically inconsistent, although it is physically unacceptable because the spectrum of the Hamiltonian is unbounded from below. The question of constructing a consistent nonperturbative second-quantized theory remains open, and the consequences of the existence of supercritical charges from the standpoint of the possibility of constructing such a theory also remain unclear.

  20. Quantized transport and steady states of Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Esin, Iliya; Rudner, Mark S.; Refael, Gil; Lindner, Netanel H.

    2018-06-01

    Robust electronic edge or surface modes play key roles in the fascinating quantized responses exhibited by topological materials. Even in trivial materials, topological bands and edge states can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs) inherently exist out of equilibrium; the extent to which they can host quantized transport, which depends on the steady-state population of their dynamically induced edge states, remains a crucial question. In this work, we obtain the steady states of two-dimensional FTIs in the presence of the natural dissipation mechanisms present in solid state systems. We give conditions under which the steady-state distribution resembles that of a topological insulator in the Floquet basis. In this state, the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the bulk hosts a small density of excitations. We determine the regimes where topological edge-state transport persists and can be observed in FTIs.

  1. Quantized Average Consensus on Gossip Digraphs with Reduced Computation

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Ishii, Hideaki

    The authors have recently proposed a class of randomized gossip algorithms which solve the distributed averaging problem on directed graphs, with the constraint that each node has an integer-valued state. The essence of this algorithm is to maintain local records, called “surplus”, of individual state updates, thereby achieving quantized average consensus even though the state sum of all nodes is not preserved. In this paper we study a modified version of this algorithm, whose feature is primarily in reducing both computation and communication effort. Concretely, each node needs to update fewer local variables, and can transmit surplus by requiring only one bit. Under this modified algorithm we prove that reaching the average is ensured for arbitrary strongly connected graphs. The condition of arbitrary strong connection is less restrictive than those known in the literature for either real-valued or quantized states; in particular, it does not require the special structure on the network called balanced. Finally, we provide numerical examples to illustrate the convergence result, with emphasis on convergence time analysis.

  2. Application of path-integral quantization to indistinguishable particle systems topologically confined by a magnetic field

    NASA Astrophysics Data System (ADS)

    Jacak, Janusz E.

    2018-01-01

    We demonstrate an original development of path-integral quantization in the case of a multiply connected configuration space of indistinguishable charged particles on a 2D manifold and exposed to a strong perpendicular magnetic field. The system occurs to be exceptionally homotopy-rich and the structure of the homotopy essentially depends on the magnetic field strength resulting in multiloop trajectories at specific conditions. We have proved, by a generalization of the Bohr-Sommerfeld quantization rule, that the size of a magnetic field flux quantum grows for multiloop orbits like (2 k +1 ) h/c with the number of loops k . Utilizing this property for electrons on the 2D substrate jellium, we have derived upon the path integration a complete FQHE hierarchy in excellent consistence with experiments. The path integral has been next developed to a sum over configurations, displaying various patterns of trajectory homotopies (topological configurations), which in the nonstationary case of quantum kinetics, reproduces some unclear formerly details in the longitudinal resistivity observed in experiments.

  3. Periodic Toda lattice in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, A.

    The quantum mechanical periodic Toda lattice is studied by the direct diagonalization of the Hamiltonian. The eigenstates are classified according to the irreducible representations of the dihedral group D[sub N]. It is shown that Gutzwiller's quantization conditions are satisfied and they have a one-to-one correspondence to the irreducible representation of the D[sub N] group. The authors have also carried out the semiclassical quantization of the periodic Toda lattice by the EBK formulation. The eigenvalues of the semiclassical quantization have a one-to-one correspondence to the integer quantum numbers, and those quantum numbers also have a close relationship to the symmetry ofmore » the state. Numerical calculations have been done for N = 3, 4, 5, and 6 particle periodic Toda lattices. The distributions of the eigenvalues are systematic and distinguished by the symmetry of the state. As illustrative examples, amplitudes of the wave functions and density distributions are shown. 14 refs., 8 figs., 11 tabs.« less

  4. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.

  5. Full Spectrum Conversion Using Traveling Pulse Wave Quantization

    DTIC Science & Technology

    2017-03-01

    Full Spectrum Conversion Using Traveling Pulse Wave Quantization Michael S. Kappes Mikko E. Waltari IQ-Analog Corporation San Diego, California...temporal-domain quantization technique called Traveling Pulse Wave Quantization (TPWQ). Full spectrum conversion is defined as the complete...pulse width measurements that are continuously generated hence the name “traveling” pulse wave quantization. Our TPWQ-based ADC is composed of a

  6. Magnon Dirac materials

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Black-Schaffer, A. M.; Balatsky, A. V.

    2016-08-01

    We demonstrate how a Dirac-like magnon spectrum is generated for localized magnetic moments forming a two-dimensional honeycomb lattice. The Dirac crossing point is proven to be robust against magnon-magnon interactions, as these only shift the spectrum. Local defects induce impurity resonances near the Dirac point, as well as magnon Friedel oscillations. The energy of the Dirac point is controlled by the exchange coupling, and thus a two-dimensional array of magnetic dots is an experimentally feasible realization of Dirac magnons with tunable dispersion.

  7. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  8. Statistical mechanics of light elements at high pressure. V Three-dimensional Thomas-Fermi-Dirac theory. [relevant to Jovian planetary interiors

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.; Hubbard, W. B.

    1983-01-01

    A numerical technique for solving the Thomas-Fermi-Dirac (TED) equation in three dimensions, for an array of ions obeying periodic boundary conditions, is presented. The technique is then used to calculate deviations from ideal mixing for an alloy of hydrogen and helium at zero temperature and high presures. Results are compared with alternative models which apply perturbation theory to calculation of the electron distribution, based upon the assumption of weak response of the electron gas to the ions. The TFD theory, which permits strong electron response, always predicts smaller deviations from ideal mixing than would be predicted by perturbation theory. The results indicate that predicted phase separation curves for hydrogen-helium alloys under conditions prevailing in the metallic zones of Jupiter and Saturn are very model dependent.

  9. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    PubMed

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  10. Paul Dirac

    NASA Astrophysics Data System (ADS)

    Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.

    2005-09-01

    Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.

  11. Paul Dirac

    NASA Astrophysics Data System (ADS)

    Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.

    1998-02-01

    Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.

  12. Interplay of Dirac electrons and magnetism in CaMnBi 2 and SrMnBi 2

    DOE PAGES

    Zhang, Anmin; Liu, Changle; Yi, Changjiang; ...

    2016-12-16

    Dirac materials exhibit intriguing low-energy carrier dynamics that offer a fertile ground for novel physics discovery. Something of particular interest is the interplay of Dirac carriers with other quantum phenomena such as magnetism. We report on a two-magnon Raman scattering study of AMnBi 2 (A=Ca, Sr), a prototypical magnetic Dirac system comprising alternating Dirac carrier and magnetic layers. We present the first accurate determination of the exchange energies in these compounds and, by comparison with the reference compound BaMn 2Bi 2, we show that the Dirac carrier layers in AMnBi 2 significantly enhance the exchange coupling between the magnetic layers,more » which in turn drives a charge-gap opening along the Dirac locus. These findings break new grounds in unveiling the fundamental physics of magnetic Dirac materials, which offer a novel platform for probing a distinct type of spin–Fermion interaction. Our results also hold great promise for applications in magnetic Dirac devices.« less

  13. Interplay of Dirac electrons and magnetism in CaMnBi2 and SrMnBi2

    PubMed Central

    Zhang, Anmin; Liu, Changle; Yi, Changjiang; Zhao, Guihua; Xia, Tian-long; Ji, Jianting; Shi, Youguo; Yu, Rong; Wang, Xiaoqun; Chen, Changfeng; Zhang, Qingming

    2016-01-01

    Dirac materials exhibit intriguing low-energy carrier dynamics that offer a fertile ground for novel physics discovery. Of particular interest is the interplay of Dirac carriers with other quantum phenomena such as magnetism. Here we report on a two-magnon Raman scattering study of AMnBi2 (A=Ca, Sr), a prototypical magnetic Dirac system comprising alternating Dirac carrier and magnetic layers. We present the first accurate determination of the exchange energies in these compounds and, by comparison with the reference compound BaMn2Bi2, we show that the Dirac carrier layers in AMnBi2 significantly enhance the exchange coupling between the magnetic layers, which in turn drives a charge-gap opening along the Dirac locus. Our findings break new grounds in unveiling the fundamental physics of magnetic Dirac materials, which offer a novel platform for probing a distinct type of spin–Fermion interaction. The results also hold great promise for applications in magnetic Dirac devices. PMID:27982036

  14. New excitations in the Thirring model

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.

    1998-12-01

    The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.

  15. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-05-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.

  16. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Hopper, T.

    1993-01-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salehi, M.; Jafari, S.A., E-mail: jafari@physics.sharif.edu; Center of Excellence for Complex Systems and Condensed Matter

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances themore » 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.« less

  18. Modeling and analysis of energy quantization effects on single electron inverter performance

    NASA Astrophysics Data System (ADS)

    Dan, Surya Shankar; Mahapatra, Santanu

    2009-08-01

    In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.

  19. Photoconductivity in Dirac materials

    NASA Astrophysics Data System (ADS)

    Shao, J. M.; Yang, G. W.

    2015-11-01

    Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi's golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.

  20. A Short Biography of Paul A. M. Dirac and Historical Development of Dirac Delta Function

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2013-01-01

    This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic…

  1. Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Fransson, J.; Black-Schaffer, A. M.; Ågren, H.; Balatsky, A. V.

    2016-04-01

    We examine the low-energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene, we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective bosonic modes cross at the K and K' points in the Brillouin zone and form Dirac nodes. We show how two different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic Dirac materials extensively discussed in the literature.

  2. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators

    PubMed Central

    Miao, Lin; Wang, Z. F.; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y. R.; Zhu, Fengfeng; Fedorov, Alexei V.; Sun, Z.; Gao, C. L.; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng

    2013-01-01

    Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi2Te3 substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi2Te3 film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi2Se3, where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi2Se3 are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states. PMID:23382185

  3. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators.

    PubMed

    Miao, Lin; Wang, Z F; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y R; Zhu, Fengfeng; Fedorov, Alexei V; Sun, Z; Gao, C L; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng

    2013-02-19

    Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi(2)Te(3) substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi(2)Te(3) film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi(2)Se(3), where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi(2)Se(3) are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states.

  4. Bloch-Siegert shift in Dirac-Weyl fermionic systems

    NASA Astrophysics Data System (ADS)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-04-01

    The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.

  5. Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Schlichenmaier, Martin

    2018-04-01

    For compact quantizable Kähler manifolds the Berezin-Toeplitz quantization schemes, both operator and deformation quantization (star product) are reviewed. The treatment includes Berezin's covariant symbols and the Berezin transform. The general compact quantizable case was done by Bordemann-Meinrenken-Schlichenmaier, Schlichenmaier, and Karabegov-Schlichenmaier. For star products on Kähler manifolds, separation of variables, or equivalently star product of (anti-) Wick type, is a crucial property. As canonically defined star products the Berezin-Toeplitz, Berezin, and the geometric quantization are treated. It turns out that all three are equivalent, but different.

  6. Quantum supersymmetric Bianchi IX cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.

  7. On the basis property of the system of eigenfunctions and associated functions of a one-dimensional Dirac operator

    NASA Astrophysics Data System (ADS)

    Savchuk, A. M.

    2018-04-01

    We study a one-dimensional Dirac system on a finite interval. The potential (a 2× 2 matrix) is assumed to be complex- valued and integrable. The boundary conditions are assumed to be regular in the sense of Birkhoff. It is known that such an operator has a discrete spectrum and the system \\{\\mathbf{y}_n\\}_1^∞ of its eigenfunctions and associated functions is a Riesz basis (possibly with brackets) in L_2\\oplus L_2. Our results concern the basis property of this system in the spaces L_μ\\oplus L_μ for μ\

  8. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.

    PubMed

    Godino-Llorente, J I; Gómez-Vilda, P

    2004-02-01

    It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.

  9. Full utilization of semi-Dirac cones in photonics

    NASA Astrophysics Data System (ADS)

    Yasa, Utku G.; Turduev, Mirbek; Giden, Ibrahim H.; Kurt, Hamza

    2018-05-01

    In this study, realization and applications of anisotropic zero-refractive-index materials are proposed by exposing the unit cells of photonic crystals that exhibit Dirac-like cone dispersion to rotational symmetry reduction. Accidental degeneracy of two Bloch modes in the Brillouin zone center of two-dimensional C2-symmetric photonic crystals gives rise to the semi-Dirac cone dispersion. The proposed C2-symmetric photonic crystals behave as epsilon-and-mu-near-zero materials (ɛeff≈ 0 , μeff≈ 0 ) along one propagation direction, but behave as epsilon-near-zero material (ɛeff≈ 0 , μeff≠ 0 ) for the perpendicular direction at semi-Dirac frequency. By extracting the effective medium parameters of the proposed C4- and C2-symmetric periodic media that exhibit Dirac-like and semi-Dirac cone dispersions, intrinsic differences between isotropic and anisotropic materials are investigated. Furthermore, advantages of utilizing semi-Dirac cone materials instead of Dirac-like cone materials in photonic applications are demonstrated in both frequency and time domains. By using anisotropic transmission behavior of the semi-Dirac materials, photonic application concepts such as beam deflectors, beam splitters, and light focusing are proposed. Furthermore, to the best of our knowledge, semi-Dirac cone dispersion is also experimentally demonstrated for the first time by including negative, zero, and positive refraction states of the given material.

  10. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.

    PubMed

    Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun

    2017-08-15

    Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.

  11. Dirac structures in vakonomic mechanics

    NASA Astrophysics Data System (ADS)

    Jiménez, Fernando; Yoshimura, Hiroaki

    2015-08-01

    In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics in the context of Lagrange-Dirac dynamical systems using a Dirac structure and its associated Hamilton-Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space TQ ×V∗, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler-Lagrange equations can be formulated by the Hamilton-Pontryagin variational principle for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ ⊕T∗ Q) ×V∗. Associated with this variational principle, we establish a Dirac structure on (TQ ⊕T∗ Q) ×V∗ in order to define an intrinsic vakonomic Lagrange-Dirac system. Furthermore, we also establish another construction for the vakonomic Lagrange-Dirac system using a Dirac structure on T∗ Q ×V∗, where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange-Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.

  12. Video data compression using artificial neural network differential vector quantization

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.

    1991-01-01

    An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.

  13. DIRAC in Large Particle Physics Experiments

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC

    2017-10-01

    The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.

  14. Realization of non-symmorphic Dirac cones in PbFCl materials

    NASA Astrophysics Data System (ADS)

    Schoop, Leslie

    While most 3D Dirac semimetals require two bands with different orbital character to be protected, there is also the possibility to find 3D Dirac semimetals that are guaranteed to exist in certain space groups. Those are resulting from the non-symmoprhic symmetry of the space group, which forces the bands to degenerate at high symmetry points in the Brillouin zone. Non-symmorphic space groups can force three- four, six and eight fold degeneracies which led to the proposal to find 3D Dirac Semimetals as well as new quasiparticles in such space groups. Problematic for realizing this types of Dirac materials is that they require and odd band filling in order to have the Fermi level located at or also near by the band crossing points. Therefore, although the first prediction for using non-symmoprhic symmetry to create a Dirac material was made in 2012, it took almost four years for an experimental verification of this type of Dirac crossing. In this talk I will introduce the material ZrSiS that has, besides other Dirac features, a Dirac cone protected by non-symmorphic symmetry at about 0.5 eV below the Fermi level and was the first material where this type of Dirac cone was imaged with ARPES. I will then proceed to discuss ways to shift this crossing to the Fermi edge and finally show an experimental verification of a fourfold Dirac crossing, protected by non-symmorphic symmetry, at the Fermi energy.

  15. Optimal Quantization Scheme for Data-Efficient Target Tracking via UWSNs Using Quantized Measurements.

    PubMed

    Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei

    2017-11-07

    Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.

  16. Spectrum of the Wilson Dirac operator at finite lattice spacings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akemann, G.; Damgaard, P. H.; Splittorff, K.

    2011-04-15

    We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the Wilson Dirac operator. The low-energymore » constants of Wilson chiral perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator.« less

  17. Dirac fermions in an antiferromagnetic semimetal

    NASA Astrophysics Data System (ADS)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng

    2016-12-01

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.

  18. Consistency of multi-time Dirac equations with general interaction potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deckert, Dirk-André, E-mail: deckert@math.lmu.de; Nickel, Lukas, E-mail: nickel@math.lmu.de

    In 1932, Dirac proposed a formulation in terms of multi-time wave functions as candidate for relativistic many-particle quantum mechanics. A well-known consistency condition that is necessary for existence of solutions strongly restricts the possible interaction types between the particles. It was conjectured by Petrat and Tumulka that interactions described by multiplication operators are generally excluded by this condition, and they gave a proof of this claim for potentials without spin-coupling. Under suitable assumptions on the differentiability of possible solutions, we show that there are potentials which are admissible, give an explicit example, however, show that none of them fulfills themore » physically desirable Poincaré invariance. We conclude that in this sense, Dirac’s multi-time formalism does not allow to model interaction by multiplication operators, and briefly point out several promising approaches to interacting models one can instead pursue.« less

  19. Atiyah-Patodi-Singer index theorem for domain-wall fermion Dirac operator

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi

    2018-03-01

    Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.

  20. Precise identification of Dirac-like point through a finite photonic crystal square matrix

    PubMed Central

    Dong, Guoyan; Zhou, Ji; Yang, Xiulun; Meng, Xiangfeng

    2016-01-01

    The phenomena of the minimum transmittance spectrum or the maximum reflection spectrum located around the Dirac frequency have been observed to demonstrate the 1/L scaling law near the Dirac-like point through the finite ribbon structure. However, so far there is no effective way to identify the Dirac-like point accurately. In this work we provide an effective measurement method to identify the Dirac-like point accurately through a finite photonic crystal square matrix. Based on the Dirac-like dispersion achieved by the accidental degeneracy at the centre of the Brillouin zone of dielectric photonic crystal, both the simulated and experimental results demonstrate that the transmittance spectra through a finite photonic crystal square matrix not only provide the clear evidence for the existence of Dirac-like point but also can be used to identify the precise location of Dirac-like point by the characteristics of sharp cusps embedded in the extremum spectra surrounding the conical singularity. PMID:27857145

  1. Dirac node arcs in PtSn 4

    DOE PAGES

    Wu, Yun; Wang, Lin -Lin; Mun, Eundeok; ...

    2016-04-04

    In topological quantum materials 1,2,3 the conduction and valence bands are connected at points or along lines in the momentum space. A number of studies have demonstrated that several materials are indeed Dirac/Weyl semimetals 4,5,6,7,8. However, there is still no experimental confirmation of materials with line nodes, in which the Dirac nodes form closed loops in the momentum space 2,3. Here we report the discovery of a novel topological structure—Dirac node arcs—in the ultrahigh magnetoresistive material PtSn 4 using laser-based angle-resolved photoemission spectroscopy data and density functional theory calculations. Unlike the closed loops of line nodes, the Dirac node arcmore » structure arises owing to the surface states and resembles the Dirac dispersion in graphene that is extended along a short line in the momentum space. Here, we propose that this reported Dirac node arc structure is a novel topological state that provides an exciting platform for studying the exotic properties of Dirac fermions.« less

  2. Tuning the Fermi velocity in Dirac materials with an electric field.

    PubMed

    Díaz-Fernández, A; Chico, Leonor; González, J W; Domínguez-Adame, F

    2017-08-14

    Dirac materials are characterized by energy-momentum relations that resemble those of relativistic massless particles. Commonly denominated Dirac cones, these dispersion relations are considered to be their essential feature. These materials comprise quite diverse examples, such as graphene and topological insulators. Band-engineering techniques should aim to a full control of the parameter that characterizes the Dirac cones: the Fermi velocity. We propose a general mechanism that enables the fine-tuning of the Fermi velocity in Dirac materials in a readily accessible way for experiments. By embedding the sample in a uniform electric field, the Fermi velocity is substantially modified. We first prove this result analytically, for the surface states of a topological insulator/semiconductor interface, and postulate its universality in other Dirac materials. Then we check its correctness in carbon-based Dirac materials, namely graphene nanoribbons and nanotubes, thus showing the validity of our hypothesis in different Dirac systems by means of continuum, tight-binding and ab-initio calculations.

  3. Perceptual Optimization of DCT Color Quantization Matrices

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.

  4. Tight-binding modeling and low-energy behavior of the semi-Dirac point.

    PubMed

    Banerjee, S; Singh, R R P; Pardo, V; Pickett, W E

    2009-07-03

    We develop a tight-binding model description of semi-Dirac electronic spectra, with highly anisotropic dispersion around point Fermi surfaces, recently discovered in electronic structure calculations of VO2-TiO2 nanoheterostructures. We contrast their spectral properties with the well-known Dirac points on the honeycomb lattice relevant to graphene layers and the spectra of bands touching each other in zero-gap semiconductors. We also consider the lowest order dispersion around one of the semi-Dirac points and calculate the resulting electronic energy levels in an external magnetic field. In spite of apparently similar electronic structures, Dirac and semi-Dirac systems support diverse low-energy physics.

  5. Strong topological metal material with multiple Dirac cones

    DOE PAGES

    Ji, Huiwen; Valla, T.; Pletikosic, I.; ...

    2016-01-25

    We report a new, cleavable, strong topological metal, Zr 2Te 2P, which has the same tetradymite-type crystal structure as the topological insulator Bi 2Te 2Se. Instead of being a semiconductor, however, Zr 2Te 2P is metallic with a pseudogap between 0.2 and 0.7 eV above the Fermi energy (E F). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone with a largely linear dispersion over a 2 eV energy range. A third surface TRS-protected Dirac cone is predicted, andmore » observed using angle-resolved photoemission spectroscopy, making Z r2Te 2P the first system, to our knowledge, to realize TRS-protected Dirac cones at M¯ points. The high anisotropy of this Dirac cone is similar to the one in the hypothetical Dirac semimetal BiO 2. As a result, we propose that if E F can be tuned into the pseudogap where the Dirac dispersions exist, it may be possible to observe ultrahigh carrier mobility and large magnetoresistance in this material.« less

  6. Relativistic top: An application of the BFV quantization procedure for systems with degenerate constraints

    NASA Astrophysics Data System (ADS)

    Nielsen, N. K.; Quaade, U. J.

    1995-07-01

    The physical phase space of the relativistic top, as defined by Hansson and Regge, is expressed in terms of canonical coordinates of the Poincaré group manifold. The system is described in the Hamiltonian formalism by the mass-shell condition and constraints that reduce the number of spin degrees of freedom. The constraints are second class and are modified into a set of first class constraints by adding combinations of gauge-fixing functions. The Batalin-Fradkin-Vilkovisky method is then applied to quantize the system in the path integral formalism in Hamiltonian form. It is finally shown that different gauge choices produce different equivalent forms of the constraints.

  7. The Flow of Energy

    NASA Astrophysics Data System (ADS)

    Znidarsic, F.; Robertson, G. A.

    In this paper, the flow of energy in materials is presented as mechanical waves with a distinct velocity or speed of transition. This speed of transition came about through the observations of cold fusion experiments, i.e., Low Energy Nuclear Reactions (LENR) and superconductor gravity experiments, both assumed speculative by mainstream science. In consideration of superconductor junctions, the LENR experiments have a similar speed of transition, which seems to imply that the reactions in the LENR experiment are discrete quantized reactions (energy - burst vs. continuous). Here an attempt is made to quantify this new condition as it applies to electrons; toward the progression of quantized energy flows (discrete energy burst) as a new source of clean energy and force mechanisms (i.e, propulsion).

  8. Stochastic quantization and holographic Wilsonian renormalization group of free massive fermion

    NASA Astrophysics Data System (ADS)

    Moon, Sung Pil

    2018-06-01

    We examine a suggested relation between stochastic quantization and the holographic Wilsonian renormalization group in the massive fermion case on Euclidean AdS space. The original suggestion about the general relation between the two theories is posted in arXiv:1209.2242. In the previous researches, it is already verified that scalar fields, U(1) gauge fields, and massless fermions are consistent with the relation. In this paper, we examine the relation in the massive fermion case. Contrary to the other case, in the massive fermion case, the action needs particular boundary terms to satisfy boundary conditions. We finally confirm that the proposed suggestion is also valid in the massive fermion case.

  9. Non-Abelian statistics of vortices with non-Abelian Dirac fermions.

    PubMed

    Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto

    2013-05-01

    We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.

  10. LHCbDIRAC as Apache Mesos microservices

    NASA Astrophysics Data System (ADS)

    Haen, Christophe; Couturier, Benjamin

    2017-10-01

    The LHCb experiment relies on LHCbDIRAC, an extension of DIRAC, to drive its offline computing. This middleware provides a development framework and a complete set of components for building distributed computing systems. These components are currently installed and run on virtual machines (VM) or bare metal hardware. Due to the increased workload, high availability is becoming more and more important for the LHCbDIRAC services, and the current installation model is showing its limitations. Apache Mesos is a cluster manager which aims at abstracting heterogeneous physical resources on which various tasks can be distributed thanks to so called “frameworks” The Marathon framework is suitable for long running tasks such as the DIRAC services, while the Chronos framework meets the needs of cron-like tasks like the DIRAC agents. A combination of the service discovery tool Consul together with HAProxy allows to expose the running containers to the outside world while hiding their dynamic placements. Such an architecture brings a greater flexibility in the deployment of LHCbDirac services, allowing for easier deployment maintenance and scaling of services on demand (e..g LHCbDirac relies on 138 services and 116 agents). Higher reliability is also easier, as clustering is part of the toolset, which allows constraints on the location of the services. This paper describes the investigations carried out to package the LHCbDIRAC and DIRAC components into Docker containers and orchestrate them using the previously described set of tools.

  11. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  12. Double Dirac point semimetal in 2D material: Ta2Se3

    NASA Astrophysics Data System (ADS)

    Ma, Yandong; Jing, Yu; Heine, Thomas

    2017-06-01

    Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac feature in this system is layer-dependent and a metal-to-insulator transition is identified in Ta2Se3 when reducing the layer-thickness from bilayer to monolayer. These findings are of fundamental interests and of great importance for nanoscale device applications.

  13. Dirac fermions in an antiferromagnetic semimetal

    DOE PAGES

    Tang, Peizhe; Zhou, Quan; Xu, Gang; ...

    2016-08-08

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry. Here in this paper, we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections andmore » demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.« less

  14. Spinning particle and gauge theories as integrability conditions

    NASA Astrophysics Data System (ADS)

    Eisenberg, Yeshayahu

    1992-02-01

    Starting from a new four dimensional spinning point particle we obtain new representations of the standard four dimensional gauge field equations in terms of a generalized space (Minkowski + light cone). In terms of this new formulation we define linear systems whose integrability conditions imply the massive Dirac-Maxwell and the Yang-Mills equations. Research supported by the Rothschild Fellowship.

  15. Exploring graphene superlattices: Magneto-optical properties

    NASA Astrophysics Data System (ADS)

    Duque, C. A.; Hernández-Bertrán, M. A.; Morales, A. L.; de Dios-Leyva, M.

    2017-02-01

    We present a detailed study of magnetic subbands, wave functions, and transition strengths for graphene superlattices (SLs) subject to a perpendicular magnetic field. It is shown that, for a weak magnetic field, the flat subbands of a SL exhibiting extra Dirac points are grouped into subsets, each of which consists of a singlet subband and a nearly degenerate doublet subband, and one nearly degenerate triplet subband. It was found that the wave functions corresponding to a singlet or to a doublet are always located around the image in real space of the central or extra Dirac points in k-space. The latter properties were explained by assuming that the electron motion is quasi-classical. Our study revealed that, for an intermediate field, the general characteristics of the wave functions are very similar to those of the pristine graphene, while for weak field, their behavior is drastically different. The latter is characterized by rapid oscillations which were understood using the solutions provided by the formalism of Luttinger-Kohn. The study on transition strengths allows us to obtain, for SLs with extra Dirac points in a weak magnetic field and different polarizations, the conditions under which transitions between multiplets are approximately allowed. It was shown that these conditions correspond to an unusual selection rule that is broken when the magnetic field intensity increases from weak to an intermediate value.

  16. Optimal block cosine transform image coding for noisy channels

    NASA Technical Reports Server (NTRS)

    Vaishampayan, V.; Farvardin, N.

    1986-01-01

    The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.

  17. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Sadurní, Emerson; Seligman, Thomas H.

    2010-12-01

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.

  18. Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei

    NASA Astrophysics Data System (ADS)

    Gallone, Matteo; Michelangeli, Alessandro

    2018-02-01

    We derive a classification of the self-adjoint extensions of the three-dimensional Dirac-Coulomb operator in the critical regime of the Coulomb coupling. Our approach is solely based upon the Kreĭn-Višik-Birman extension scheme, or also on Grubb's universal classification theory, as opposite to previous works within the standard von Neumann framework. This let the boundary condition of self-adjointness emerge, neatly and intrinsically, as a multiplicative constraint between regular and singular part of the functions in the domain of the extension, the multiplicative constant giving also immediate information on the invertibility property and on the resolvent and spectral gap of the extension.

  19. Course 4: Anyons

    NASA Astrophysics Data System (ADS)

    Myrheim, J.

    Contents 1 Introduction 1.1 The concept of particle statistics 1.2 Statistical mechanics and the many-body problem 1.3 Experimental physics in two dimensions 1.4 The algebraic approach: Heisenberg quantization 1.5 More general quantizations 2 The configuration space 2.1 The Euclidean relative space for two particles 2.2 Dimensions d=1,2,3 2.3 Homotopy 2.4 The braid group 3 Schroedinger quantization in one dimension 4 Heisenberg quantization in one dimension 4.1 The coordinate representation 5 Schroedinger quantization in dimension d ≥ 2 5.1 Scalar wave functions 5.2 Homotopy 5.3 Interchange phases 5.4 The statistics vector potential 5.5 The N-particle case 5.6 Chern-Simons theory 6 The Feynman path integral for anyons 6.1 Eigenstates for position and momentum 6.2 The path integral 6.3 Conjugation classes in SN 6.4 The non-interacting case 6.5 Duality of Feynman and Schroedinger quantization 7 The harmonic oscillator 7.1 The two-dimensional harmonic oscillator 7.2 Two anyons in a harmonic oscillator potential 7.3 More than two anyons 7.4 The three-anyon problem 8 The anyon gas 8.1 The cluster and virial expansions 8.2 First and second order perturbative results 8.3 Regularization by periodic boundary conditions 8.4 Regularization by a harmonic oscillator potential 8.5 Bosons and fermions 8.6 Two anyons 8.7 Three anyons 8.8 The Monte Carlo method 8.9 The path integral representation of the coefficients GP 8.10 Exact and approximate polynomials 8.11 The fourth virial coefficient of anyons 8.12 Two polynomial theorems 9 Charged particles in a constant magnetic field 9.1 One particle in a magnetic field 9.2 Two anyons in a magnetic field 9.3 The anyon gas in a magnetic field 10 Interchange phases and geometric phases 10.1 Introduction to geometric phases 10.2 One particle in a magnetic field 10.3 Two particles in a magnetic field 10.4 Interchange of two anyons in potential wells 10.5 Laughlin's theory of the fractional quantum Hall effect

  20. Type-II Dirac photons

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Xiao; Chen, Yige; Hang, Zhi Hong; Kee, Hae-Young; Jiang, Jian-Hua

    2017-09-01

    The Dirac equation for relativistic electron waves is the parent model for Weyl and Majorana fermions as well as topological insulators. Simulation of Dirac physics in three-dimensional photonic crystals, though fundamentally important for topological phenomena at optical frequencies, encounters the challenge of synthesis of both Kramers double degeneracy and parity inversion. Here we show how type-II Dirac points—exotic Dirac relativistic waves yet to be discovered—are robustly realized through the nonsymmorphic screw symmetry. The emergent type-II Dirac points carry nontrivial topology and are the mother states of type-II Weyl points. The proposed all-dielectric architecture enables robust cavity states at photonic-crystal—air interfaces and anomalous refraction, with very low energy dissipation.

  1. An adaptive vector quantization scheme

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.

    1990-01-01

    Vector quantization is known to be an effective compression scheme to achieve a low bit rate so as to minimize communication channel bandwidth and also to reduce digital memory storage while maintaining the necessary fidelity of the data. However, the large number of computations required in vector quantizers has been a handicap in using vector quantization for low-rate source coding. An adaptive vector quantization algorithm is introduced that is inherently suitable for simple hardware implementation because it has a simple architecture. It allows fast encoding and decoding because it requires only addition and subtraction operations.

  2. Aspects of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Wigner, E. P.

    2010-03-01

    Preface; List of contributors; Bibliography of P. A. M. Dirac; 1. Dirac in Cambridge R. J. Eden and J. C. Polkinghorne; 2. Travels with Dirac in the Rockies J. H. Van Vleck; 3. 'The golden age of theoretical physics': P. A. M. Dirac's scientific work from 1924 to 1933 Jagdish Mehra; 4. Foundation of quantum field theory Res Jost; 5. The early history of the theory of electron: 1897-1947 A. Pais; 6. The Dirac equation A. S. Wightman; 7. Fermi-Dirac statistics Rudolph Peierls; 8. Indefinite metric in state space W. Heisenberg; 9. On bras and kets J. M. Jauch; 10. The Poisson bracket C. Lanczos; 11. La 'fonction' et les noyaux L. Schwartz; 12. On the Dirac magnetic poles Edoardo Amadli and Nicola Cabibbo; 13. The fundamental constants and their time variation Freeman J. Dyson; 14. On the time-energy uncertainty relation Eugene P. Wigner; 15. The path-integral quantisation of gravity Abdus Salam and J. Strathdee; Index; Plates.

  3. Bosonic Dirac materials in two dimensions

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Fransson, Jonas; Black-Schaffer, Annica; Ågren, Hans; Balatsky, Alexander

    We examine the low energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in honeycomb lattice structure. Two different types of collective phase oscillations are obtained, which are analogous to the massive Leggett and massless Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. It is shown that the spectra of these collective bosonic modes cross each other at the K and K' points in the Brillouin zone and form a Dirac node. Dirac node dispersion of bosonic excitations is representative of Bosonic Dirac Materials (BDM). We show that the Dirac node is preserved in presence of an inter-grain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with Fermionic Dirac materials.

  4. Tilted Dirac Cone Effect on Interlayer Magnetoresistance in α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Tajima, Naoya; Morinari, Takao

    2018-04-01

    We report the effect of Dirac cone tilting on interlayer magnetoresistance in α-(BEDT-TTF)2I3, which is a Dirac semimetal under pressure. Fitting of the experimental data by the theoretical formula suggests that the system is close to a type-II Dirac semimetal.

  5. The GridPP DIRAC project - DIRAC for non-LHC communities

    NASA Astrophysics Data System (ADS)

    Bauer, D.; Colling, D.; Currie, R.; Fayer, S.; Huffman, A.; Martyniak, J.; Rand, D.; Richards, A.

    2015-12-01

    The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communities.

  6. All-Metallic Vertical Transistors Based on Stacked Dirac Materials

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Ni, Zeyuan; Liu, Qihang; Quhe, Ruge; Zheng, Jiaxin; Ye, Meng; Yu, Dapeng; Shi, Junjie; Yang, Jinbo; Li, Ju; Lu, Jing; Collaborative Innovation Center of Quantum Matter, Beijing Collaboration

    2015-03-01

    All metallic transistor can be fabricated from pristine semimetallic Dirac materials (such as graphene, silicene, and germanene), but the on/off current ratio is very low. In a vertical heterostructure composed by two Dirac materials, the Dirac cones of the two materials survive the weak interlayer van der Waals interaction based on density functional theory method, and electron transport from the Dirac cone of one material to the one of the other material is therefore forbidden without assistance of phonon because of momentum mismatch. First-principles quantum transport simulations of the all-metallic vertical Dirac material heterostructure devices confirm the existence of a transport gap of over 0.4 eV, accompanied by a switching ratio of over 104. Such a striking behavior is robust against the relative rotation between the two Dirac materials and can be extended to twisted bilayer graphene. Therefore, all-metallic junction can be a semiconductor and novel avenue is opened up for Dirac material vertical structures in high-performance devices without opening their band gaps. A visiting student in MIT now.

  7. Thermal Casimir and Casimir–Polder interactions in N parallel 2D Dirac materials

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, Nail; Kashapov, Rashid; Woods, Lilia M.

    2018-07-01

    The Casimir and Casimir–Polder interactions are investigated in a stack of equally spaced graphene layers. The optical response of the individual graphene is taken into account using gauge invariant components of the polarization tensor extended to the whole complex frequency plane. The planar symmetry for the electromagnetic boundary conditions is further used to obtain explicit forms for the Casimir energy stored in the stack and the Casimir–Polder energy between an atom above the stack. Our calculations show that these fluctuation induced interactions experience strong thermal effects due to the graphene Dirac-like energy spectrum. The spatial dispersion and temperature dependence in the optical response are also found to be important for enhancing the interactions especially at smaller separations. Analytical expressions for low and high temperature limits and their comparison with corresponding expressions for an infinitely conducting planar stack are further used to expand our understanding of Casimir and Casimir–Polder energies in Dirac materials. Our results may be useful to experimentalists as new ways to probe thermal effects at the nanoscale in such universal interactions.

  8. Large single crystal growth, transport property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd3As2.

    PubMed

    Sankar, R; Neupane, M; Xu, S-Y; Butler, C J; Zeljkovic, I; Panneer Muthuselvam, I; Huang, F-T; Guo, S-T; Karna, Sunil K; Chu, M-W; Lee, W L; Lin, M-T; Jayavel, R; Madhavan, V; Hasan, M Z; Chou, F C

    2015-08-14

    The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and transport property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRRρ300K/ρ5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.

  9. Status of the DIRAC Project

    NASA Astrophysics Data System (ADS)

    Casajus, A.; Ciba, K.; Fernandez, V.; Graciani, R.; Hamar, V.; Mendez, V.; Poss, S.; Sapunov, M.; Stagni, F.; Tsaregorodtsev, A.; Ubeda, M.

    2012-12-01

    The DIRAC Project was initiated to provide a data processing system for the LHCb Experiment at CERN. It provides all the necessary functionality and performance to satisfy the current and projected future requirements of the LHCb Computing Model. A considerable restructuring of the DIRAC software was undertaken in order to turn it into a general purpose framework for building distributed computing systems that can be used by various user communities in High Energy Physics and other scientific application domains. The CLIC and ILC-SID detector projects started to use DIRAC for their data production system. The Belle Collaboration at KEK, Japan, has adopted the Computing Model based on the DIRAC system for its second phase starting in 2015. The CTA Collaboration uses DIRAC for the data analysis tasks. A large number of other experiments are starting to use DIRAC or are evaluating this solution for their data processing tasks. DIRAC services are included as part of the production infrastructure of the GISELA Latin America grid. Similar services are provided for the users of the France-Grilles and IBERGrid National Grid Initiatives in France and Spain respectively. The new communities using DIRAC started to provide important contributions to its functionality. Among recent additions can be mentioned the support of the Amazon EC2 computing resources as well as other Cloud management systems; a versatile File Replica Catalog with File Metadata capabilities; support for running MPI jobs in the pilot based Workload Management System. Integration with existing application Web Portals, like WS-PGRADE, is demonstrated. In this paper we will describe the current status of the DIRAC Project, recent developments of its framework and functionality as well as the status of the rapidly evolving community of the DIRAC users.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serwer, Philip, E-mail: serwer@uthscsa.edu; Wright, Elena T.; Liu, Zheng

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNAmore » missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.« less

  11. Dimensional quantization effects in the thermodynamics of conductive filaments

    NASA Astrophysics Data System (ADS)

    Niraula, D.; Grice, C. R.; Karpov, V. G.

    2018-06-01

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  12. Nearly associative deformation quantization

    NASA Astrophysics Data System (ADS)

    Vassilevich, Dmitri; Oliveira, Fernando Martins Costa

    2018-04-01

    We study several classes of non-associative algebras as possible candidates for deformation quantization in the direction of a Poisson bracket that does not satisfy Jacobi identities. We show that in fact alternative deformation quantization algebras require the Jacobi identities on the Poisson bracket and, under very general assumptions, are associative. At the same time, flexible deformation quantization algebras exist for any Poisson bracket.

  13. Dimensional quantization effects in the thermodynamics of conductive filaments.

    PubMed

    Niraula, D; Grice, C R; Karpov, V G

    2018-06-29

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  14. Polar phase of superfluid 3He: Dirac lines in the parameter and momentum spaces

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.

    2018-03-01

    The time reversal symmetric polar phase of the spin-triplet superfluid 3He has two types of Dirac nodal lines. In addition to the Dirac loop in the spectrum of the fermionic Bogoliubov quasiparticles in the momentum space (p x , p y , p z ), the spectrum of bosons (magnons) has Dirac loop in the 3D space of parameters-the components of magnetic field (H x , H y , H z ). The bosonic Dirac system lives on the border between the type-I and type-II.

  15. Photoinduced Chern insulating states in semi-Dirac materials

    NASA Astrophysics Data System (ADS)

    Saha, Kush

    2016-08-01

    Two-dimensional (2D) semi-Dirac materials are characterized by a quadratic dispersion in one direction and a linear dispersion along the orthogonal direction. We study the topological phase transition in such 2D systems in the presence of an electromagnetic field. We show that a Chern insulating state emerges in a semi-Dirac system with two gapless Dirac nodes in the presence of light. In particular, we show that the intensity of a circularly polarized light can be used as a knob to generate topological states with nonzero Chern number. In addition, for fixed intensity and frequency of the light, a semi-Dirac system with two gapped Dirac nodes with trivial band topology can reveal the topological transition as a function of polarization of the light.

  16. Three-Dimensional Models of Topological Insulators: Engineering of Dirac Cones and Robustness of the Spin Texture

    NASA Astrophysics Data System (ADS)

    Soriano, David; Ortmann, Frank; Roche, Stephan

    2012-12-01

    We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin texture of surface states changes from a spin-momentum-locking symmetry to a surface spin randomization upon the introduction of bulk disorder. These findings illustrate the richness of the Dirac physics emerging in thin films of topological insulators and may prove utile for engineering Dirac cones and for quantifying bulk disorder in materials with ultraclean surfaces.

  17. Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold

    NASA Astrophysics Data System (ADS)

    Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph

    2018-05-01

    In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.

  18. Topological quantization in units of the fine structure constant.

    PubMed

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H Dennis; Zhang, Shou-Cheng

    2010-10-15

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant α=e²/ℏc. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  19. On the Dequantization of Fedosov's Deformation Quantization

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    2003-08-01

    To each natural deformation quantization on a Poisson manifold M we associate a Poisson morphism from the formal neighborhood of the zero section of the cotangent bundle to M to the formal neighborhood of the diagonal of the product M x M~, where M~ is a copy of M with the opposite Poisson structure. We call it dequantization of the natural deformation quantization. Then we "dequantize" Fedosov's quantization.

  20. Clifford Algebra Implying Three Fermion Generations Revisited

    NASA Astrophysics Data System (ADS)

    Krolikowski, Wojciech

    2002-09-01

    The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √ {p2} → {Γ }(N)p works, leading to a sequence N = 1,2,3, ... of Dirac-type equations, where four Dirac-type matrices {Γ }(N)μ are embedded into a Clifford algebra via a Jacobi definition introducing four ``centre-of-mass'' and (N-1)× four ``relative'' Dirac-type matrices. These define one ``centre-of-mass'' and (N-1) ``relative'' Dirac bispinor indices. Secundo, the ``centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while (N-1) ``relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ``relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1,3,5 in the case of N odd, and two with N = 2,4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3x3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is mτ = 1776.80 MeV, when the input of experimental me and mμ is used.

  1. Topological insulator nanowires and nanowire hetero-junctions

    NASA Astrophysics Data System (ADS)

    Deng, Haiming; Zhao, Lukas; Wade, Travis; Konczykowski, Marcin; Krusin-Elbaum, Lia

    2014-03-01

    The existing topological insulator materials (TIs) continue to present a number of challenges to complete understanding of the physics of topological spin-helical Dirac surface conduction channels, owing to a relatively large charge conduction in the bulk. One way to reduce the bulk contribution and to increase surface-to-volume ratio is by nanostructuring. Here we report on the synthesis and characterization of Sb2Te3, Bi2Te3 nanowires and nanotubes and Sb2Te3/Bi2Te3 heterojunctions electrochemically grown in porous anodic aluminum oxide (AAO) membranes with varied (from 50 to 150 nm) pore diameters. Stoichiometric rigid polycrystalline nanowires with controllable cross-sections were obtained using cell voltages in the 30 - 150 mV range. Transport measurements in up to 14 T magnetic fields applied along the nanowires show Aharonov-Bohm (A-B) quantum oscillations with periods corresponding to the nanowire diameters. All nanowires were found to exhibit sharp weak anti-localization (WAL) cusps, a characteristic signature of TIs. In addition to A-B oscillations, new quantization plateaus in magnetoresistance (MR) at low fields (< 0 . 7T) were observed. The analysis of MR as well as I - V characteristics of heterojunctions will be presented. Supported in part by NSF-DMR-1122594, NSF-DMR-1312483-MWN, and DOD-W911NF-13-1-0159.

  2. Dirac materials

    NASA Astrophysics Data System (ADS)

    Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.

    2014-01-01

    A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.

  3. Strong Anisotropy of Dirac Cones in SrMnBi2 and CaMnBi2 Revealed by Angle-Resolved Photoemission Spectroscopy

    PubMed Central

    Feng, Ya; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Xie, Zhuojin; Yi, Hemian; Liang, Aiji; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2014-01-01

    The Dirac materials, such as graphene and three-dimensional topological insulators, have attracted much attention because they exhibit novel quantum phenomena with their low energy electrons governed by the relativistic Dirac equations. One particular interest is to generate Dirac cone anisotropy so that the electrons can propagate differently from one direction to the other, creating an additional tunability for new properties and applications. While various theoretical approaches have been proposed to make the isotropic Dirac cones of graphene into anisotropic ones, it has not yet been met with success. There are also some theoretical predictions and/or experimental indications of anisotropic Dirac cone in novel topological insulators and AMnBi2 (A = Sr and Ca) but more experimental investigations are needed. Here we report systematic high resolution angle-resolved photoemission measurements that have provided direct evidence on the existence of strongly anisotropic Dirac cones in SrMnBi2 and CaMnBi2. Distinct behaviors of the Dirac cones between SrMnBi2 and CaMnBi2 are also observed. These results have provided important information on the strong anisotropy of the Dirac cones in AMnBi2 system that can be governed by the spin-orbital coupling and the local environment surrounding the Bi square net. PMID:24947490

  4. Pbte Nanostructures for Spin Filtering and Detecting

    NASA Astrophysics Data System (ADS)

    Grabecki, G.

    2005-08-01

    An uniqueness of lead telluride PbTe relies on combination of excellent semiconducting properties, like high electron mobility and tunable carrier concentration, with paraelectric behavior leading to huge dielectric constant at low temperatures. The present article is a review of our experimental works performed on PbTe nanostructures. The main result is observation of one-dimensional quantization of the electron motion at much impure conditions than in any other system studied so far. We explain this in terms of dielectric screening of Coulomb potentials produced by charged defects. Furthermore, in an external magnetic field, the conductance quantization steps show very pronounced spin splitting, already visible at several kilogauss. This indicates that PbTe nanostructures have a potential as local spin filtering devices.

  5. Image coding using entropy-constrained residual vector quantization

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Barnes, Christopher F.

    1993-01-01

    The residual vector quantization (RVQ) structure is exploited to produce a variable length codeword RVQ. Necessary conditions for the optimality of this RVQ are presented, and a new entropy-constrained RVQ (ECRVQ) design algorithm is shown to be very effective in designing RVQ codebooks over a wide range of bit rates and vector sizes. The new EC-RVQ has several important advantages. It can outperform entropy-constrained VQ (ECVQ) in terms of peak signal-to-noise ratio (PSNR), memory, and computation requirements. It can also be used to design high rate codebooks and codebooks with relatively large vector sizes. Experimental results indicate that when the new EC-RVQ is applied to image coding, very high quality is achieved at relatively low bit rates.

  6. Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators.

    PubMed

    Karayiannis, N B

    2000-01-01

    This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.

  7. A Route to Dirac Liquid Theory: A Fermi Liquid Description for Dirac Materials

    NASA Astrophysics Data System (ADS)

    Gochan, Matthew; Bedell, Kevin

    Since the pioneering work developed by L.V. Landau sixty years ago, Fermi Liquid Theory has seen great success in describing interacting Fermi systems. While much interest has been generated over the study of non-Fermi Liquid systems, Fermi Liquid theory serves as a formidable model for many systems and offers a rich amount of of results and insight. The recent classification of Dirac Materials, and the lack of a unifying theoretical framework for them, has motivated our study. Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, graphene, is the focus of this work. We present our Fermi Liquid description of Graphene. We find many interesting results, specifically in the transport and dynamics of the system. Additionally, we expand on previous work regarding the Virial Theorem and its impact on the Fermi Liquid parameters in graphene. Finally, we remark on viscoelasticity of Dirac Materials and other unusual results that are consequences of AdS-CFT.

  8. Excitonic gap formation in pumped Dirac materials

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Pertsova, Anna; Markiewicz, Robert S.; Balatsky, Alexander V.

    2017-05-01

    Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.

  9. Inverse Perovskites - A New Platform For 3D Dirac Electron Physics

    NASA Astrophysics Data System (ADS)

    Rost, A. W.; Kim, J.; Shota, S.; Hayama, K.; Abdolazimi, V.; Bruin, J. A. N.; Muehle, C.; Schnyder, A.; Yaresko, A. N.; Nuss, J.; Takagi, H.

    3D Dirac semimetals show a wealth of phenomena including ultrahigh mobility, extreme transverse magnetoresistance and potential for negative longitudinal magnetoresistance. Furthermore, by introducing a gap these are often found to be topological crystalline insulators. Here, I will introduce our experiments on a new family of 3D Dirac materials - the inverse perovskites A3BO (A =Ca,Sr,Eu/B =Pb,Sn). These open up the possibility to chemically control the properties of Dirac electrons including (i) the anisotropy of the Dirac dispersion, (ii) role of spin orbit coupling, and (iii) magnetism. Our physical property measurements show all (Ca/Sr)3(Pb/Sn)O compounds host Dirac electrons at the Fermi energy with no other bands crossing EF. Quantum oscillations unveil small Fermi surfaces (frequencies <5 T) and light carriers (<0.02 me) only consistent with Dirac electrons. With the successful synthesis of Sr3Pb0.5Sn0.5O this group of materials therefore offers a unique chemical control over the physical properties of 3D Dirac electrons. Crucially, Eu3(Pb/Sn)O compounds allow for the introduction of magnetism. I will discuss the implications of this in particular with respect to surface states in these topological crystalline insulators.

  10. Dirac Fermions in an Antiferromagnetic Semimetal

    NASA Astrophysics Data System (ADS)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.

    Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry  and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both  and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.

  11. Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces.

    PubMed

    Mann, Charlie-Ray; Sturges, Thomas J; Weick, Guillaume; Barnes, William L; Mariani, Eros

    2018-06-06

    Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties without modifying the lattice structure. Here we theoretically investigate polaritons supported by honeycomb metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming from a non-trivial winding in the light-matter interaction. The metasurfaces simultaneously exhibit two distinct species of massless Dirac polaritons, namely type-I and type-II. By modifying only the photonic environment via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to qualitatively different polariton phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserving the lattice structure-a unique scenario which has no analog in real or artificial graphene systems. Exploiting the photonic environment will thus give rise to unexplored Dirac physics at the subwavelength scale.

  12. Three Dimensional Photonic Dirac Points in Metamaterials

    NASA Astrophysics Data System (ADS)

    Guo, Qinghua; Yang, Biao; Xia, Lingbo; Gao, Wenlong; Liu, Hongchao; Chen, Jing; Xiang, Yuanjiang; Zhang, Shuang

    2017-11-01

    Topological semimetals, representing a new topological phase that lacks a full band gap in bulk states and exhibiting nontrivial topological orders, recently have been extended to photonic systems, predominantly in photonic crystals and to a lesser extent metamaterials. Photonic crystal realizations of Dirac degeneracies are protected by various space symmetries, where Bloch modes span the spin and orbital subspaces. Here, we theoretically show that Dirac points can also be realized in effective media through the intrinsic degrees of freedom in electromagnetism under electromagnetic duality. A pair of spin-polarized Fermi-arc-like surface states is observed at the interface between air and the Dirac metamaterials. Furthermore, eigenreflection fields show the decoupling process from a Dirac point to two Weyl points. We also find the topological correlation between a Dirac point and vortex or vector beams in classical photonics. The experimental feasibility of our scheme is demonstrated by designing a realistic metamaterial structure. The theoretical proposal of the photonic Dirac point lays the foundation for unveiling the connection between intrinsic physics and global topology in electromagnetism.

  13. Bosonic Dirac Materials in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Black-Schaffer, A. M.; Fransson, J.; Agren, H.; Balatsky, A. V.

    We examine the low energy effective theory of phase oscillations in a two dimensional granular superconducting sheet where the grains are arranged in honeycomb lattice structure. Two different types of collective phase oscillations are obtained, which are analogous to the massive Leggett and massless Bogoliubov-Anderson-Gorkov modes for two-band superconductor. It is explicitly shown that the spectra of these collective Bosonic modes cross each other at K and K' points in the Brillouin zone and form a Dirac node. This Dirac node behavior in Bosonic excitations represent the case of Bosonic Dirac Materials (BDM). Dirac node is preserved in presence of an inter-grain interaction despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sub lattice symmetry by choosing different on-site potentials for the two sub lattices leads to a gap opening near the Dirac node, in analogy with Fermionic Dirac material. Supported by US DOE E304, ERC DM 321031, KAW, VR2012-3447.

  14. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics.

    PubMed

    Wang, Z F; Liu, Feng

    2015-07-10

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1/3 monolayer halogen coverage. The sp(3) dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (∼10(6)  m/s) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  15. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics

    NASA Astrophysics Data System (ADS)

    Wang, Z. F.; Liu, Feng

    2015-07-01

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  16. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5

    PubMed Central

    Liu, Yanwen; Yuan, Xiang; Zhang, Cheng; Jin, Zhao; Narayan, Awadhesh; Luo, Chen; Chen, Zhigang; Yang, Lei; Zou, Jin; Wu, Xing; Sanvito, Stefano; Xia, Zhengcai; Li, Liang; Wang, Zhong; Xiu, Faxian

    2016-01-01

    Dirac semimetals have attracted extensive attentions in recent years. It has been theoretically suggested that many-body interactions may drive exotic phase transitions, spontaneously generating a Dirac mass for the nominally massless Dirac electrons. So far, signature of interaction-driven transition has been lacking. In this work, we report high-magnetic-field transport measurements of the Dirac semimetal candidate ZrTe5. Owing to the large g factor in ZrTe5, the Zeeman splitting can be observed at magnetic field as low as 3 T. Most prominently, high pulsed magnetic field up to 60 T drives the system into the ultra-quantum limit, where we observe abrupt changes in the magnetoresistance, indicating field-induced phase transitions. This is interpreted as an interaction-induced spontaneous mass generation of the Dirac fermions, which bears resemblance to the dynamical mass generation of nucleons in high-energy physics. Our work establishes Dirac semimetals as ideal platforms for investigating emerging correlation effects in topological matters. PMID:27515493

  17. Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.

    2016-12-01

    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.

  18. First Experimental Realization of the Dirac Oscillator

    NASA Astrophysics Data System (ADS)

    Franco-Villafañe, J. A.; Sadurní, E.; Barkhofen, S.; Kuhl, U.; Mortessagne, F.; Seligman, T. H.

    2013-10-01

    We present the first experimental microwave realization of the one-dimensional Dirac oscillator, a paradigm in exactly solvable relativistic systems. The experiment relies on a relation of the Dirac oscillator to a corresponding tight-binding system. This tight-binding system is implemented as a microwave system by a chain of coupled dielectric disks, where the coupling is evanescent and can be adjusted appropriately. The resonances of the finite microwave system yield the spectrum of the one-dimensional Dirac oscillator with and without a mass term. The flexibility of the experimental setup allows the implementation of other one-dimensional Dirac-type equations.

  19. Pythagoras's theorem on a two-dimensional lattice from a `natural' Dirac operator and Connes's distance formula

    NASA Astrophysics Data System (ADS)

    Dai, Jian; Song, Xing-Chang

    2001-07-01

    One of the key ingredients of Connes's noncommutative geometry is a generalized Dirac operator which induces a metric (Connes's distance) on the pure state space. We generalize such a Dirac operator devised by Dimakis et al, whose Connes distance recovers the linear distance on an one-dimensional lattice, to the two-dimensional case. This Dirac operator has the local eigenvalue property and induces a Euclidean distance on this two-dimensional lattice, which is referred to as `natural'. This kind of Dirac operator can be easily generalized into any higher-dimensional lattices.

  20. Quantum Computing and Second Quantization

    DOE PAGES

    Makaruk, Hanna Ewa

    2017-02-10

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  1. Quantum Computing and Second Quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makaruk, Hanna Ewa

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  2. BSIFT: toward data-independent codebook for large scale image search.

    PubMed

    Zhou, Wengang; Li, Houqiang; Hong, Richang; Lu, Yijuan; Tian, Qi

    2015-03-01

    Bag-of-Words (BoWs) model based on Scale Invariant Feature Transform (SIFT) has been widely used in large-scale image retrieval applications. Feature quantization by vector quantization plays a crucial role in BoW model, which generates visual words from the high- dimensional SIFT features, so as to adapt to the inverted file structure for the scalable retrieval. Traditional feature quantization approaches suffer several issues, such as necessity of visual codebook training, limited reliability, and update inefficiency. To avoid the above problems, in this paper, a novel feature quantization scheme is proposed to efficiently quantize each SIFT descriptor to a descriptive and discriminative bit-vector, which is called binary SIFT (BSIFT). Our quantizer is independent of image collections. In addition, by taking the first 32 bits out from BSIFT as code word, the generated BSIFT naturally lends itself to adapt to the classic inverted file structure for image indexing. Moreover, the quantization error is reduced by feature filtering, code word expansion, and query sensitive mask shielding. Without any explicit codebook for quantization, our approach can be readily applied in image search in some resource-limited scenarios. We evaluate the proposed algorithm for large scale image search on two public image data sets. Experimental results demonstrate the index efficiency and retrieval accuracy of our approach.

  3. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  4. Reliable aerial thermography for energy conservation

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Bowman, R. L.

    1981-01-01

    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations.

  5. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  6. Hydrodynamics of the Dirac fluid in graphene

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    Recent advances in materials physics have allowed us to observe hydrodynamic electron flow in multiple materials. A uniquely interesting possibility is the emergence of a quasi-relativistic plasma of electrons and holes appearing in Dirac semimetals such as graphene. I will briefly review the unique features of the hydrodynamics of the Dirac fluid, and then discuss the theroetical signatures for the Dirac fluid, and its observation in experiment.

  7. Harmonic spinors on a family of Einstein manifolds

    NASA Astrophysics Data System (ADS)

    Franchetti, Guido

    2018-06-01

    The purpose of this paper is to study harmonic spinors defined on a 1-parameter family of Einstein manifolds which includes Taub–NUT, Eguchi–Hanson and with the Fubini–Study metric as particular cases. We discuss the existence of and explicitly solve for spinors harmonic with respect to the Dirac operator twisted by a geometrically preferred connection. The metrics examined are defined, for generic values of the parameter, on a non-compact manifold with the topology of and extend to as edge-cone metrics. As a consequence, the subtle boundary conditions of the Atiyah–Patodi–Singer index theorem need to be carefully considered in order to show agreement between the index of the twisted Dirac operator and the result obtained by counting the explicit solutions.

  8. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Juan Mauricio; Sadurni, Emerson; Seligman, Thomas H.

    2010-12-23

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which canmore » be used to emulate the former.« less

  9. Comment on “Approximate solutions of the Dirac equation for the Rosen-Morse potential including the spin-orbit centrifugal term” [J. Math. Phys. 51, 023525 (2010)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoumaid, A.; Benamira, F.; Guechi, L.

    2016-02-15

    It is shown that the application of the Nikiforov-Uvarov method by Ikhdair for solving the Dirac equation with the radial Rosen-Morse potential plus the spin-orbit centrifugal term is inadequate because the required conditions are not satisfied. The energy spectra given is incorrect and the wave functions are not physically acceptable. We clarify the problem and prove that the spinor wave functions are expressed in terms of the generalized hypergeometric functions {sub 2}F{sub 1}(a, b, c; z). The energy eigenvalues for the bound states are given by the solution of a transcendental equation involving the hypergeometric function.

  10. Magnetic charge and photon mass: Physical string singularities, Dirac condition, and magnetic confinement

    NASA Astrophysics Data System (ADS)

    Evans, Timothy J.; Singleton, Douglas

    2018-04-01

    We find exact, simple solutions to the Proca version of Maxwell’s equations with magnetic sources. Several properties of these solutions differ from the usual case of magnetic charge with a massless photon: (i) the string singularities of the usual 3-vector potentials become real singularities in the magnetic fields; (ii) the different 3-vector potentials become gauge inequivalent and physically distinct solutions; (iii) the magnetic field depends on r and 𝜃 and thus is no longer rotationally symmetric; (iv) a combined system of electric and magnetic charge carries a field angular momentum even when the electric and magnetic charges are located at the same place (i.e. for dyons); (v) for these dyons, one recovers the standard Dirac condition despite the photon being massive. We discuss the reason for this. We conclude by proposing that the string singularity in the magnetic field of an isolated magnetic charge suggests a confinement mechanism for magnetic charge, similar to the flux tube confinement of quarks in QCD.

  11. Pseudo-Kähler Quantization on Flag Manifolds

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.

  12. Instant-Form and Light-Front Quantization of Field Theories

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; Vary, James

    2018-05-01

    In this work we consider the instant-form and light-front quantization of some field theories. As an example, we consider a class of gauged non-linear sigma models with different regularizations. In particular, we present the path integral quantization of the gauged non-linear sigma model in the Faddeevian regularization. We also make a comparision of the possible differences in the instant-form and light-front quantization at appropriate places.

  13. Dirac Equation in (1 +1 )-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model

    NASA Astrophysics Data System (ADS)

    Pedernales, J. S.; Beau, M.; Pittman, S. M.; Egusquiza, I. L.; Lamata, L.; Solano, E.; del Campo, A.

    2018-04-01

    We introduce an exact mapping between the Dirac equation in (1 +1 )-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1 +1 )-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1 +1 )-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.

  14. A new Dirac cone material: a graphene-like Be3C2 monolayer.

    PubMed

    Wang, Bing; Yuan, Shijun; Li, Yunhai; Shi, Li; Wang, Jinlan

    2017-05-04

    Two-dimensional (2D) materials with Dirac cones exhibit rich physics and many intriguing properties, but the search for new 2D Dirac materials is still a current hotspot. Using the global particle-swarm optimization method and density functional theory, we predict a new stable graphene-like 2D Dirac material: a Be 3 C 2 monolayer with a hexagonal honeycomb structure. The Dirac point occurs exactly at the Fermi level and arises from the merging of the hybridized p z bands of Be and C atoms. Most interestingly, this monolayer exhibits a high Fermi velocity in the same order of graphene. Moreover, the Dirac cone is very robust and retains even included spin-orbit coupling or external strain. These outstanding properties render the Be 3 C 2 monolayer a promising 2D material for special electronics applications.

  15. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang

    2018-03-01

    Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.

  16. Quantization improves stabilization of dynamical systems with delayed feedback

    NASA Astrophysics Data System (ADS)

    Stepan, Gabor; Milton, John G.; Insperger, Tamas

    2017-11-01

    We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.

  17. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  18. Using OSG Computing Resources with (iLC)Dirac

    NASA Astrophysics Data System (ADS)

    Sailer, A.; Petric, M.; CLICdp Collaboration

    2017-10-01

    CPU cycles for small experiments and projects can be scarce, thus making use of all available resources, whether dedicated or opportunistic, is mandatory. While enabling uniform access to the LCG computing elements (ARC, CREAM), the DIRAC grid interware was not able to use OSG computing elements (GlobusCE, HTCondor-CE) without dedicated support at the grid site through so called ‘SiteDirectors’, which directly submit to the local batch system. This in turn requires additional dedicated effort for small experiments on the grid site. Adding interfaces to the OSG CEs through the respective grid middleware is therefore allowing accessing them within the DIRAC software without additional site-specific infrastructure. This enables greater use of opportunistic resources for experiments and projects without dedicated clusters or an established computing infrastructure with the DIRAC software. To allow sending jobs to HTCondor-CE and legacy Globus computing elements inside DIRAC the required wrapper classes were developed. Not only is the usage of these types of computing elements now completely transparent for all DIRAC instances, which makes DIRAC a flexible solution for OSG based virtual organisations, but it also allows LCG Grid Sites to move to the HTCondor-CE software, without shutting DIRAC based VOs out of their site. In these proceedings we detail how we interfaced the DIRAC system to the HTCondor-CE and Globus computing elements and explain the encountered obstacles and solutions developed, and how the linear collider community uses resources in the OSG.

  19. A beautiful sea: P. A. M. Dirac's epistemology and ontology of the vacuum.

    PubMed

    Wright, Aaron Sidney

    2016-07-01

    This paper charts P.A.M. Dirac's development of his theory of the electron, and its radical picture of empty space as an almost-full plenum. Dirac's Quantum Electrodynamics famously accomplished more than the unification of special relativity and quantum mechanics. It also accounted for the 'duplexity phenomena' of spectral line splitting that we now attribute to electron spin. But the extra mathematical terms that allowed for spin were not alone, and this paper charts Dirac's struggle to ignore or account for them as a sea of strange, negative-energy, particles with positive 'holes'. This work was not done in solitude, but rather in exchanges with Dirac's correspondence network. This social context for Dirac's work contests his image as a lone genius, and documents a community wrestling with the ontological consequences of their work. Unification, consistency, causality, and community are common factors in explanations in the history of physics. This paper argues on the basis of materials in Dirac's archive that --- in addition --- mathematical beauty was an epistemological factor in the development of the electron and hole theory. In fact, if we believe that Dirac's beautiful mathematics captures something of the world, then there is both an epistemology and an ontology of mathematical beauty.

  20. Hidden symmetries of Eisenhart-Duval lift metrics and the Dirac equation with flux

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco

    2012-10-01

    The Eisenhart-Duval lift allows embedding nonrelativistic theories into a Lorentzian geometrical setting. In this paper we study the lift from the point of view of the Dirac equation and its hidden symmetries. We show that dimensional reduction of the Dirac equation for the Eisenhart-Duval metric in general gives rise to the nonrelativistic Lévy-Leblond equation in lower dimension. We study in detail in which specific cases the lower dimensional limit is given by the Dirac equation, with scalar and vector flux, and the relation between lift, reduction, and the hidden symmetries of the Dirac equation. While there is a precise correspondence in the case of the lower dimensional massive Dirac equation with no flux, we find that for generic fluxes it is not possible to lift or reduce all solutions and hidden symmetries. As a by-product of this analysis, we construct new Lorentzian metrics with special tensors by lifting Killing-Yano and closed conformal Killing-Yano tensors and describe the general conformal Killing-Yano tensor of the Eisenhart-Duval lift metrics in terms of lower dimensional forms. Last, we show how, by dimensionally reducing the higher dimensional operators of the massless Dirac equation that are associated with shared hidden symmetries, it is possible to recover hidden symmetry operators for the Dirac equation with flux.

  1. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim

    2013-03-01

    Strong topological insulators are materials that host exotic states on their surfaces due to a topological band inversion in their bulk band structure. These surface states have Dirac dispersion as if they were massless relativistic particles, and are assured to remain metallic by time reversal symmetry. The helical spin texture associated with the Dirac dispersion prohibits backscattering, which we have imaged using scanning tunneling microscopy (STM) and spectroscopic mappings. This topological protection can be lifted by time-reversal breaking perturbations that induce a gap at the Dirac point and cant the helical spin texture. Massive Dirac electrons had been visualized by angular resolved photo emission spectroscopy in magnetically doped topological insulators. While we do not identify a gapped spectrum in our STM measurements of similar compounds, we do find a dominating electrostatic response to the charged content of those dopants. In their presence the Dirac spectrum exhibits strong spatial fluctuations. As a result translational invariance is broken over a characteristic length scale and the Dirac-point energy is only locally defined. Possible global manifestations of these local fluctuations will be discussed, as well as alternative avenues for breaking time reversal symmetry while maintaining the integrity of the Dirac spectrum. This work was supported by NSF, NSF-MRSEC, and DARPA.

  2. Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins

    USGS Publications Warehouse

    Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.

    2006-01-01

    The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.

  3. The new physician as unwitting quantum mechanic: is adapting Dirac's inference system best practice for personalized medicine, genomics, and proteomics?

    PubMed

    Robson, Barry

    2007-08-01

    What is the Best Practice for automated inference in Medical Decision Support for personalized medicine? A known system already exists as Dirac's inference system from quantum mechanics (QM) using bra-kets and bras where A and B are states, events, or measurements representing, say, clinical and biomedical rules. Dirac's system should theoretically be the universal best practice for all inference, though QM is notorious as sometimes leading to bizarre conclusions that appear not to be applicable to the macroscopic world of everyday world human experience and medical practice. It is here argued that this apparent difficulty vanishes if QM is assigned one new multiplication function @, which conserves conditionality appropriately, making QM applicable to classical inference including a quantitative form of the predicate calculus. An alternative interpretation with the same consequences is if every i = radical-1 in Dirac's QM is replaced by h, an entity distinct from 1 and i and arguably a hidden root of 1 such that h2 = 1. With that exception, this paper is thus primarily a review of the application of Dirac's system, by application of linear algebra in the complex domain to help manipulate information about associations and ontology in complicated data. Any combined bra-ket can be shown to be composed only of the sum of QM-like bra and ket weights c(), times an exponential function of Fano's mutual information measure I(A; B) about the association between A and B, that is, an association rule from data mining. With the weights and Fano measure re-expressed as expectations on finite data using Riemann's Incomplete (i.e., Generalized) Zeta Functions, actual counts of observations for real world sparse data can be readily utilized. Finally, the paper compares identical character, distinguishability of states events or measurements, correlation, mutual information, and orthogonal character, important issues in data mining and biomedical analytics, as in QM.

  4. Data Mining for 3D Organic Dirac Materials

    NASA Astrophysics Data System (ADS)

    Geilhufe, R. Matthias; Borysov, Stanislav S.; Bouhon, Adrien; Balatsky, Alexander V.

    The study of Dirac materials, i.e. materials where the low-energy fermionic excitations behave as massless Dirac particles has been of ongoing interest for more than two decades. Such massless Dirac fermions are characterized by a linear dispersion relation with respect to the particle momentum. A combined study using group theory and data mining within the Organic Materials Database leads to the discovery of stable Dirac-point nodes and Dirac line-nodes within the electronic band structure in the class of 3-dimensional organic crystals. The nodes are protected by crystalline symmetry. As a result of this study, we present band structure calculations and symmetry analysis for previously synthesized organic materials. In all these materials, the Dirac nodes are well separated within the energy and located near the Fermi surface, which opens up a possibility for their direct experimental observation. The authors acknowledge support by the US Department of Energy, BES E3B7, the swedish Research Council Grant No. 638-2013-9243, the Knut and Alice Wallenberg Foundation, and the European Research Council (FP/2207-2013)/ERC Grant Agreement No. DM-321031.

  5. Electrodynamic properties of the semimetallic Dirac material SrMnB i2 : Two-carrier-model analysis

    NASA Astrophysics Data System (ADS)

    Park, H. J.; Park, Byung Cheol; Lee, Min-Cheol; Jeong, D. W.; Park, Joonbum; Kim, Jun Sung; Ji, Hyo Seok; Shim, J. H.; Kim, K. W.; Moon, S. J.; Kim, Hyeong-Do; Cho, Deok-Yong; Noh, T. W.

    2017-10-01

    The electrodynamics of free carriers in the semimetallic Dirac material SrMnB i2 was investigated using optical spectroscopy and first-principles calculations. Using a two-carrier-model analysis, the total free-carrier response was successfully decomposed into individual contributions from Dirac fermions and non-Dirac free carriers. Possible roles of chiral pseudospin, spin-orbit interaction (SOI), antiferromagnetism, and electron-phonon (e -p h ) coupling in the Dirac fermion transport were also addressed. The Dirac fermions possess a low scattering rate of ˜10 meV at low temperature and thereby experience coherent transport. However, at high temperatures, we observed that the Dirac fermion transport becomes significantly incoherent, possibly due to strong e -p h interactions. The SOI-induced gap and antiferromagnetism play minor roles in the electrodynamics of the free carriers in SrMnB i2 . We also observed a seemingly optical-gap-like feature near 120 meV, which emerges at low temperatures but becomes filled in with increasing temperature. This gap-filling phenomenon is ascribed to phonon-assisted indirect transitions promoted at high temperatures.

  6. Spatial Charge Inhomogeneity and Defect States in Topological Dirac Semimetal Thin Films

    NASA Astrophysics Data System (ADS)

    Edmonds, Mark; Collins, James; Hellerstedt, Jack; Yudhistira, Indra; Rodrigues, Joao Nuno Barbosa; Gomes, Lidia Carvalho; Adam, Shaffique; Fuhrer, Michael

    Dirac materials are characterized by a charge neutrality point, where the system breaks into electron/hole puddles. In graphene, substrate disorder drives fluctuations in EF, necessitating ultra-clean substrates to observe Dirac point physics. Three-dimensional topological Dirac semimetals (TDS) obviate the substrate, and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. Yet, the local response of the charge carriers in a TDS to various perturbations has yet to be explored. Here we map the potential fluctuations in TDS 20nm Na3Bi films grown via MBE using scanning tunneling microscopy/spectroscopy. The potential fluctuations are significantly smaller than room temperature (ΔEF 5 meV = 60 K) and comparable to the highest quality graphene on h-BN; far smaller than graphene on SiO2,or the Dirac surface state of a topological insulator. This observation bodes well for exploration of Dirac point physics in TDS materials. Furthermore, surface Na vacancies show a bound resonance state close to the Dirac point with large spatial extent, a possible analogue to resonant impurities in graphene.

  7. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride

    NASA Astrophysics Data System (ADS)

    Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun

    2017-07-01

    Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF3 ) as a novel spin-polarized Dirac material by using first-principles calculations. MnF3 exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF3 possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF3 , CrF3 , and FeF3 ). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.

  8. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride.

    PubMed

    Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun

    2017-07-07

    Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF_{3}) as a novel spin-polarized Dirac material by using first-principles calculations. MnF_{3} exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF_{3} possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF_{3}, CrF_{3}, and FeF_{3}). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.

  9. Book Review:

    NASA Astrophysics Data System (ADS)

    Parthasarathy, R.

    2005-06-01

    This book gives a clear exposition of quantum field theory at the graduate level and the contents could be covered in a two semester course or, with some effort, in a one semester course. The book is well organized, and subtle issues are clearly explained. The margin notes are very useful, and the problems given at the end of each chapter are relevant and help the student gain an insight into the subject. The solutions to these problems are given in chapter 12. Care is taken to keep the numerical factors and notation very clear. Chapter 1 gives a clear overview and typical scales in high energy physics. Chapter 2 presents an excellent account of the Lorentz group and its representation. The decomposition of Lorentz tensors under SO(3) and the subsequent spinorial representations are introduced with clarity. After giving the field representation for scalar, Weyl, Dirac, Majorana and vector fields, the Poincaré group is introduced. Representations of 1-particle states using m2 and the Pauli Lubanski vector, although standard, are treated lucidly. Classical field theory is introduced in chapter 3 and a careful treatment of the Noether theorem and the energy momentum tensor are given. After covering real and complex scalar fields, the author impressively introduces the Dirac spinor via the Weyl spinor; Abelian gauge theory is also introduced. Chapter 4 contains the essentials of free field quantization of real and complex scalar fields, Dirac fields and massless Weyl fields. After a brief discussion of the CPT theorem, the quantization of electromagnetic field is carried out both in radiation gauge and Lorentz gauge. The presentation of the Gupta Bleuler method is particularly impressive; the margin notes on pages 85, 100 and 101 invaluable. Chapter 5 considers the essentials of perturbation theory. The derivation of the LSZ reduction formula for scalar field theory is clearly expressed. Feynman rules are obtained for the λphi4 theory in detail and those of QED briefly. The basic idea of renormalization is explained using the λphi4 theory as an example. There is a very lucid discussion on the `running coupling' constant in section 5.9. Chapter 6 explains the use of the matrix elements, formally given in the previous chapter, to compute decay rates and cross sections. The exposition is such that the reader will have no difficulty in following the steps. However, bearing in mind the continuity of the other chapters, this material could have been consigned to an appendix. In the short chapter 7, the QED Lagrangian is shown to respect P, C and T invariance. One-loop divergences are described. Dimensional and Pauli Villars regularization are introduced and explained, although there is no account of their use in evaluating a typical one-loop divergent integral. Chapter 8 describes the low energy limit of the Weinberg Salam theory. Examples for μ-→ e-barnueν μ, π+→ l+νl and K0→ π-l+νl are explicitly solved, although the serious reader should work them out independently. On page 197 the `V-A structure of the currents proposed by Feynman and Gell-Mann' is stated; the first such proposal was by E C G Sudarshan and R E Marshak. In chapter 9 the path integral quantization method is developed. After deriving the transition amplitude as the sum over all paths, in quantum mechanics, a demonstration that the integration of functions in the path integral gives the expectation value of the time ordered product of the corresponding operators is given and applied to real scalar free field theory to get the Feynman propagator. Then the Euclidean formulation is introduced and its `tailor made' role in critical phenomena is illustrated with the 2-d Ising model as an example, including the RG equation. Chapter 10 introduces Yang Mills theory. After writing down the typical gauge invariant Lagrangian and outlining the ingredients of QCD, the adjoint representation for fields is given. It could have been made complete by giving the Feynman rules for the cubic and quartic vertices for non-Abelian gauge fields, although the reader can obtain them from the last term in equation 10.27. In chapter 11, spontaneous symmetry breaking in quantum field theory is described. The difference in quantum mechanics and QFT with respect to the degenerate vacua is clearly brought out by considering the tunnelling amplitude between degenerate vacua. This is very good, as this aspect is mostly overlooked in many textbooks. The Goldstone theorem is then illustrated by an example. The Higgs mechanism is explained in Abelian and non-Abelian (SU(2)) gauge theories and the situation in SU(2)xU(1) gauge theory is discussed. This book certainly covers most of the modern developments in quantum field theory. The reader will be able to follow the content and apply it to specific problems. The bibliography is certainly useful. It will be an asset to libraries in teaching and research institutions.

  10. Quantization of charged fields in the presence of critical potential steps

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. P.; Gitman, D. M.

    2016-02-01

    QED with strong external backgrounds that can create particles from the vacuum is well developed for the so-called t -electric potential steps, which are time-dependent external electric fields that are switched on and off at some time instants. However, there exist many physically interesting situations where external backgrounds do not switch off at the time infinity. E.g., these are time-independent nonuniform electric fields that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x -electric potential steps for charged particles. They can also create particles from the vacuum, the Klein paradox being closely related to this process. Approaches elaborated for treating quantum effects in the t -electric potential steps are not directly applicable to the x -electric potential steps and their generalization for x -electric potential steps was not sufficiently developed. We believe that the present work represents a consistent solution of the latter problem. We have considered a canonical quantization of the Dirac and scalar fields with x -electric potential step and have found in- and out-creation and annihilation operators that allow one to have particle interpretation of the physical system under consideration. To identify in- and out-operators we have performed a detailed mathematical and physical analysis of solutions of the relativistic wave equations with an x -electric potential step with subsequent QFT analysis of correctness of such an identification. We elaborated a nonperturbative (in the external field) technique that allows one to calculate all characteristics of zero-order processes, such, for example, scattering, reflection, and electron-positron pair creation, without radiation corrections, and also to calculate Feynman diagrams that describe all characteristics of processes with interaction between the in-, out-particles and photons. These diagrams have formally the usual form, but contain special propagators. Expressions for these propagators in terms of in- and out-solutions are presented. We apply the elaborated approach to two popular exactly solvable cases of x -electric potential steps, namely, to the Sauter potential and to the Klein step.

  11. Noncommutative gerbes and deformation quantization

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Baković, Igor; Jurčo, Branislav; Schupp, Peter

    2010-11-01

    We define noncommutative gerbes using the language of star products. Quantized twisted Poisson structures are discussed as an explicit realization in the sense of deformation quantization. Our motivation is the noncommutative description of D-branes in the presence of topologically non-trivial background fields.

  12. Quantized discrete space oscillators

    NASA Technical Reports Server (NTRS)

    Uzes, C. A.; Kapuscik, Edward

    1993-01-01

    A quasi-canonical sequence of finite dimensional quantizations was found which has canonical quantization as its limit. In order to demonstrate its practical utility and its numerical convergence, this formalism is applied to the eigenvalue and 'eigenfunction' problem of several harmonic and anharmonic oscillators.

  13. Seesaw roadmap to neutrino mass and dark matter

    NASA Astrophysics Data System (ADS)

    Centelles Chuliá, Salvador; Srivastava, Rahul; Valle, José W. F.

    2018-06-01

    We describe the many pathways to generate Majorana and Dirac neutrino mass through generalized dimension-5 operators a la Weinberg. The presence of new scalars beyond the Standard Model Higgs doublet implies new possible field contractions, which are required in the case of Dirac neutrinos. We also notice that, in the Dirac neutrino case, the extra symmetries needed to ensure the Dirac nature of neutrinos can also be made responsible for stability of dark matter.

  14. On the spring and mass of the Dirac oscillator

    NASA Technical Reports Server (NTRS)

    Crawford, James P.

    1993-01-01

    The Dirac oscillator is a relativistic generalization of the quantum harmonic oscillator. In particular, the square of the Hamiltonian for the Dirac oscillator yields the Klein-Gordon equation with a potential of the form: (ar(sub 2) + b(L x S)), where a and b are constants. To obtain the Dirac oscillator, a 'minimal substitution' is made in the Dirac equation, where the ordinary derivative is replaced with a covariant derivative. However, an unusual feature of the covariant derivative in this case is that the potential is a non-trivial element of the Clifford algebra. A theory which naturally gives rise to gage potentials which are non-trivial elements of the Clifford algebra is that based on local automorphism invariance. An exact solution of the automorphism gage field equations which reproduces both the potential term and the mass term of the Dirac oscillator is presented.

  15. Dirac structures in nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-01-01

    Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169-193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.

  16. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de; Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen; Longhi, Stefano

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An opticalmore » analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.« less

  17. Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor

    PubMed Central

    Hirata, Michihiro; Ishikawa, Kyohei; Miyagawa, Kazuya; Tamura, Masafumi; Berthier, Claude; Basko, Denis; Kobayashi, Akito; Matsuno, Genki; Kanoda, Kazushi

    2016-01-01

    The Coulomb interaction among massless Dirac fermions in graphene is unscreened around the isotropic Dirac points, causing a logarithmic velocity renormalization and a cone reshaping. In less symmetric Dirac materials possessing anisotropic cones with tilted axes, the Coulomb interaction can provide still more exotic phenomena, which have not been experimentally unveiled yet. Here, using site-selective nuclear magnetic resonance, we find a non-uniform cone reshaping accompanied by a bandwidth reduction and an emergent ferrimagnetism in tilted Dirac cones that appear on the verge of charge ordering in an organic compound. Our theoretical analyses based on the renormalization-group approach and the Hubbard model show that these observations are the direct consequences of the long-range and short-range parts of the Coulomb interaction, respectively. The cone reshaping and the bandwidth renormalization, as well as the magnetic behaviour revealed here, can be ubiquitous and vital for many Dirac materials. PMID:27578363

  18. High efficiency and non-Richardson thermionics in three dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Huang, Sunchao; Sanderson, Matthew; Zhang, Yan; Zhang, Chao

    2017-10-01

    Three dimensional (3D) topological materials have a linear energy dispersion and exhibit many electronic properties superior to conventional materials such as fast response times, high mobility, and chiral transport. In this work, we demonstrate that 3D Dirac materials also have advantages over conventional semiconductors and graphene in thermionic applications. The low emission current suffered in graphene due to the vanishing density of states is enhanced by an increased group velocity in 3D Dirac materials. Furthermore, the thermal energy carried by electrons in 3D Dirac materials is twice of that in conventional materials with a parabolic electron energy dispersion. As a result, 3D Dirac materials have the best thermal efficiency or coefficient of performance when compared to conventional semiconductors and graphene. The generalized Richardson-Dushman law in 3D Dirac materials is derived. The law exhibits the interplay of the reduced density of states and enhanced emission velocity.

  19. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions.

    PubMed

    Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro

    2016-01-01

    For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm(2)/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials.

  20. Face Centered Cubic SnSe as a Z2 Trivial Dirac Nodal Line Material

    NASA Astrophysics Data System (ADS)

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-07-01

    The presence of a Dirac nodal line in a time-reversal and inversion symmetric system is dictated by the Z2 index when spin-orbit interaction is absent. In a first principles calculation, we show that a Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe in a face centered cubic lattice as an example. We qualitatively show that it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obtaining irreducible representations corresponding to bands and explain the triviality of the Z2 index. We construct an effective model representing the Dirac nodal line using the k · p method, and discuss the Berry phase and a surface state expected from the Dirac nodal line.

  1. Graphene Dirac point tuned by ferroelectric polarization field

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-01

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  2. Antimonene: Experiments and theory of surface conductivity

    NASA Astrophysics Data System (ADS)

    Palacios, Juan Jose; Ares, Pablo; Pakdel, Sahar; Paz, Wendel; Zamora, Felix; Gomez-Herrero, Julio

    Very recently antimony has been demonstrated to be amenable to standard exfoliation procedures opening the possibility of studying the electronic properties of isolated few-layers flakes of this material, a.k.a. antimonene. Antimony is a topological semimetal, meaning that its electronic structure presents spin-split helical states (or Dirac cones) on the surface, but it is still trivially metallic in bulk. Antimonene, on the other hand, may present a much reduced electronic bulk contribution for a small number of layers. A novel technique to make electrical contacts on the surface of individual thin flakes (5-10 monolayers) has allowed us to measure the (surface) conductivity of these in ambient conditions. Our measurements show a high conductivity in the range of 1 - 2e2 / h , which we attribute to the surface Dirac electrons. We have also carried out theoretical work to address the origin of this value, in particular, the importance of scattering between the Dirac electrons and the bulk bands. Our calculations are based on density functional theory for the electronic structure and Kubo formalism for the conductivity, the latter considering random disorder and the presence of water. Ministerio de Economia y Competitividad, Grant FIS2016-80434-P.

  3. Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals

    NASA Astrophysics Data System (ADS)

    Majumder, Subir; Biswas, Tushar; Bhadra, Shaymal K.

    2016-10-01

    Existence of out-of-plane conical dispersion for a triangular photonic crystal lattice is reported. It is observed that conical dispersion is maintained for a number of out-of-plane wave vectors (k z ). We study a case where Dirac like linear dispersion exists but the photonic density of states is not vanishing, called Dwarf Dirac cone (DDC) which does not support localized modes. We demonstrate the trapping of such modes by introducing defects in the crystal. Interestingly, we find by k-point sampling as well as by tuning trapped frequency that such a conical dispersion has an inherent light confining property and it is governed by neither of the known wave confining mechanisms like total internal reflection, band gap guidance. Our study reveals that such a conical dispersion in a non-vanishing photonic density of states induces unexpected intense trapping of light compared with those at other points in the continuum. Such studies provoke fabrication of new devices with exciting properties and new functionalities. Project supported by Director, CSIR-CGCRI, the DST, Government of India, and the CSIR 12th Plan Project (GLASSFIB), India.

  4. Dirac Cellular Automaton from Split-step Quantum Walk

    PubMed Central

    Mallick, Arindam; Chandrashekar, C. M.

    2016-01-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159

  5. Exotic quantum properties under high magnetic fields and pressure-induced superconductivity in layered ZrTe5 and pyrite PtBi2

    NASA Astrophysics Data System (ADS)

    Tian, Mingliang; Tian, Zhaorong; Ning, Wei; Mingliang Tian Team

    Topological Dirac semimetal is a newly discovered class of materials which has attracted intense attention. This material can be viewed as a three-dimensional (3D) analog of graphene and has linear energy dispersion in bulk, leading to a range of exotic transport properties. Here we report direct quantum transport evidence of the 3D Dirac semimetal phase of semimetallic materials ZrTe5 and pyrite PtBi2 by angular-dependent magnetoresistance measurements under high magnetic fields up to 35 T, as well as the pressure-induced superconductivity. We observed very clear negative longitudinal magnetoresistance in ZrTe5 induced by chiral anomaly under the condition of the magnetic field aligned only along the current direction, and the extreme large unsaturated magnetoresistance in pyrite PtBi2 up to 11.2 million percent at T = 1.8 K and 33 T, which surpasses the previously reported Dirac materials, such as LaSb, WTe2 and NbP. Analysis of the Shubnikov de Haas oscillations suggest that both ZrTe5 and PtBi2\\ are likely a new topological semimetals.

  6. Lattice gauge action suppressing near-zero modes of H{sub W}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi

    2006-11-01

    We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less

  7. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  8. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  9. Dirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators

    DOE PAGES

    Zeljkovic, Ilija; Okada, Yoshinori; Serbyn, Maksym; ...

    2015-02-16

    The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Recent studies have detected signatures of a spontaneously generated Dirac gap in TCIs; however, the mechanism of mass formation remains elusive. In this work, we present scanning tunnelling microscopy (STM) measurements of the TCI Pb 1-xSn xSe for a widemore » range of alloy compositions spanning the topological and non-topological regimes. The STM topographies reveal a symmetry-breaking distortion on the surface, which imparts mass to the otherwise massless Dirac electrons—a mechanism analogous to the long sought-after Higgs mechanism in particle physics. Interestingly, the measured Dirac gap decreases on approaching the trivial phase, whereas the magnitude of the distortion remains nearly constant. Our data and calculations reveal that the penetration depth of Dirac surface states controls the magnitude of the Dirac mass. At the limit of the critical composition, the penetration depth is predicted to go to infinity, resulting in zero mass, consistent with our measurements. Lastly, we discover the existence of surface states in the non-topological regime, which have the characteristics of gapped, double-branched Dirac fermions and could be exploited in realizing superconductivity in these materials.« less

  10. Work on a quantum dipole by a single-photon pulse.

    PubMed

    Valente, D; Brito, F; Ferreira, R; Werlang, T

    2018-06-01

    Energy transfer from a quantized field to a quantized dipole is investigated. We find that a single photon can transfer energy to a two-level dipole by inducing a dynamic Stark shift, going beyond the well-known absorption and emission processes. A quantum thermodynamical perspective allows us to unravel these two energy transfer mechanisms and to identify the former as a generalized work and the latter as a generalized heat. We show two necessary conditions for the generalized work transfer by a single photon to occur, namely, off-resonance and finite linewidth of the pulse. We also show that the generalized work performed by a single-photon pulse equals the reactive (dispersive) contribution of the work performed by a semiclassical pulse in the low-excitation regime.

  11. Vortex filament method as a tool for computational visualization of quantum turbulence

    PubMed Central

    Hänninen, Risto; Baggaley, Andrew W.

    2014-01-01

    The vortex filament model has become a standard and powerful tool to visualize the motion of quantized vortices in helium superfluids. In this article, we present an overview of the method and highlight its impact in aiding our understanding of quantum turbulence, particularly superfluid helium. We present an analysis of the structure and arrangement of quantized vortices. Our results are in agreement with previous studies showing that under certain conditions, vortices form coherent bundles, which allows for classical vortex stretching, giving quantum turbulence a classical nature. We also offer an explanation for the differences between the observed properties of counterflow and pure superflow turbulence in a pipe. Finally, we suggest a mechanism for the generation of coherent structures in the presence of normal fluid shear. PMID:24704873

  12. Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time

    NASA Astrophysics Data System (ADS)

    de Montigny, Marc; Zare, Soroush; Hassanabadi, Hassan

    2018-05-01

    We investigate the relativistic dynamics of a Dirac field in the Som-Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som-Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov-Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som-Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.

  13. Spin symmetry in the Dirac sea derived from the bare nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan

    2018-06-01

    The spin symmetry in the Dirac sea has been investigated with relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. Taking the nucleus 16O as an example and comparing the theoretical results with the data, the definition of the single-particle potential in the Dirac sea is studied in detail. It is found that if the single-particle states in the Dirac sea are treated as occupied states, the ground state properties are in better agreement with experimental data. Moreover, in this case, the spin symmetry in the Dirac sea is better conserved and it is more consistent with the findings using phenomenological relativistic density functionals.

  14. Generalized radiation-field quantization method and the Petermann excess-noise factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.-J.; Siegman, A.E.; E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305

    2003-10-01

    We propose a generalized radiation-field quantization formalism, where quantization does not have to be referenced to a set of power-orthogonal eigenmodes as conventionally required. This formalism can be used to directly quantize the true system eigenmodes, which can be non-power-orthogonal due to the open nature of the system or the gain/loss medium involved in the system. We apply this generalized field quantization to the laser linewidth problem, in particular, lasers with non-power-orthogonal oscillation modes, and derive the excess-noise factor in a fully quantum-mechanical framework. We also show that, despite the excess-noise factor for oscillating modes, the total spatially averaged decaymore » rate for the laser atoms remains unchanged.« less

  15. Polymer-Fourier quantization of the scalar field revisited

    NASA Astrophysics Data System (ADS)

    Garcia-Chung, Angel; Vergara, J. David

    2016-10-01

    The polymer quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincaré invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincaré invariant Fock quantization. The resulting symmetry group of such polymer quantization is the subgroup SDiff(ℝ4) which is a subgroup of Diff(ℝ4) formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the canonical commutation relations, nonunitary equivalent to the standard Fock representation. We also compared the Poincaré invariant Fock vacuum with the polymer Fourier vacuum.

  16. Quantized Rabi oscillations and circular dichroism in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Cooper, N. R.; Goldman, N.

    2018-06-01

    The dissipative response of a quantum system upon periodic driving can be exploited as a probe of its topological properties. Here we explore the implications of such phenomena in two-dimensional gases subjected to a uniform magnetic field. It is shown that a filled Landau level exhibits a quantized circular dichroism, which can be traced back to its underlying nontrivial topology. Based on selection rules, we find that this quantized effect can be suitably described in terms of Rabi oscillations, whose frequencies satisfy simple quantization laws. We discuss how quantized dissipative responses can be probed locally, both in the bulk and at the boundaries of the system. This work suggests alternative forms of topological probes based on circular dichroism.

  17. Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.

    PubMed

    Hu, Liang; Wang, Zidong; Liu, Xiaohui

    2016-08-01

    In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.

  18. Direct comparison of fractional and integer quantized Hall resistance

    NASA Astrophysics Data System (ADS)

    Ahlers, Franz J.; Götz, Martin; Pierz, Klaus

    2017-08-01

    We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3  ±  6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.

  19. Canonical quantization of classical mechanics in curvilinear coordinates. Invariant quantization procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Błaszak, Maciej, E-mail: blaszakm@amu.edu.pl; Domański, Ziemowit, E-mail: ziemowit@amu.edu.pl

    In the paper is presented an invariant quantization procedure of classical mechanics on the phase space over flat configuration space. Then, the passage to an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. An explicit form of position and momentum operators as well as their appropriate ordering in arbitrary curvilinear coordinates is demonstrated. Finally, the extension of presented formalism onto non-flat case and related ambiguities of the process of quantization are discussed. -- Highlights: •An invariant quantization procedure of classical mechanics on the phase space over flat configuration space is presented. •The passage tomore » an operator representation of quantum mechanics in a Hilbert space over configuration space is derived. •Explicit form of position and momentum operators and their appropriate ordering in curvilinear coordinates is shown. •The invariant form of Hamiltonian operators quadratic and cubic in momenta is derived. •The extension of presented formalism onto non-flat case and related ambiguities of the quantization process are discussed.« less

  20. Quantization noise in digital speech. M.S. Thesis- Houston Univ.

    NASA Technical Reports Server (NTRS)

    Schmidt, O. L.

    1972-01-01

    The amount of quantization noise generated in a digital-to-analog converter is dependent on the number of bits or quantization levels used to digitize the analog signal in the analog-to-digital converter. The minimum number of quantization levels and the minimum sample rate were derived for a digital voice channel. A sample rate of 6000 samples per second and lowpass filters with a 3 db cutoff of 2400 Hz are required for 100 percent sentence intelligibility. Consonant sounds are the first speech components to be degraded by quantization noise. A compression amplifier can be used to increase the weighting of the consonant sound amplitudes in the analog-to-digital converter. An expansion network must be installed at the output of the digital-to-analog converter to restore the original weighting of the consonant sounds. This technique results in 100 percent sentence intelligibility for a sample rate of 5000 samples per second, eight quantization levels, and lowpass filters with a 3 db cutoff of 2000 Hz.

  1. Atomic rate coefficients in a degenerate plasma

    NASA Astrophysics Data System (ADS)

    Aslanyan, Valentin; Tallents, Greg

    2015-11-01

    The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.

  2. Spin polarization effects and their time evolutions

    NASA Astrophysics Data System (ADS)

    Vernes, A.; Weinberger, P.

    2015-04-01

    The time evolution of the density corresponding to the polarization operator, originally constructed to commute with the Dirac Hamiltonian in the absence of an external electromagnetic field, is investigated in terms of the time-dependent Dirac equation taking the presence of an external electromagnetic field into account. It is found that this time evolution leads to 'tensorial' and 'vectorial' particle current densities and to the interaction of the spin density with the external electromagnetic field. As the time evolution of the spin density does not refer to a constant of motion (continuity condition) it only serves as auxiliary density. By taking the non-relativistic limit, it is shown that the polarization, spin and magnetization densities are independent of electric field effects and, in addition, no preferred directions can be defined.

  3. Spin-resolved conductance of Dirac electrons through multibarrier arrays

    NASA Astrophysics Data System (ADS)

    Dahal, Dipendra; Gumbs, Godfrey; Iurov, Andrii

    We use a transfer matrix method to calculate the transmission coefficient of Dirac electrons through an arbitrary number of square potential barrier in gapped monolayer graphene(MLG) and bilayer graphene (BLG). The widths of barriers may not be chosen equal. The shift in the angle of incidence and the width of the barrier required for resonance are investigated numerically for both MLG and BLG. We compare the effects due to energy gap on these two transmission coefficient for each of these two structures (MLG and BLG). We present our results as functions of barrier width, height as well as incoming electron energy as well as band gap and examine the conditions for which perfect reflection or transmission occurs. Our transmission data are further used to calculate conductivity.

  4. Topological Phases in the Real World

    NASA Astrophysics Data System (ADS)

    Hsu, Yi-Ting

    The experimental discovery and subsequent theoretical understanding of the integer quantum Hall effect, the first known topological phase, has started a revolutionary breakthrough in understanding states of matter since its discovery four decades ago. Topological phases are predicted to have many generic signatures resulting from their underlying topological nature, such as quantized Hall transport, robust boundary states, and possible fractional excitations. The intriguing nature of these signatures and their potential applications in quantum computation has intensely fueled the efforts of the physics community to materialize topological phases. Among various topological phases initially predicted on theoretical grounds, chiral topological superconductors and time-reversal symmetric topological insulators (TI) in three dimension (3D) are two promising candidates for experimental realization and application. The family of materials, Bi2X3 (X = Se, Te), has been predicted and shown experimentally to be time-reversal symmetric 3D TIs through the observation of robust Dirac surface states with Rashba-type spin-winding. Due to their robust surface states with spin-windings, these 3D TIs are expected to be promising materials for producing large spin-transfer torques which are advantageous for spintronics application. As for topological superconductors, despite the exotic excitations that have been extensively proposed as qubits for topological quantum computing, materials hosting topological superconductivity are rare to date and the leading candidate in two dimensions (2D), Sr 2RuO4, has a low transition temperature (Tc ). The goal of my phd study is to push forward the current status of realization of topological phases by materializing higher Tc topological superconductors and investigating the stability of Dirac surface states in 3D TIs. In the first part of this thesis, I will discuss our double-pronged objective for topological superconductors: to propose how to enhance the T c of the existing leading candidate Sr2RuO 4 and to propose new material candidates for topological superconductors. First, by carrying out perturbative renormalization group (RG) analysis, we predicted that straining the ruthenate films will maximize the T c for triplet pairing channel when the Fermi surface is close to van Hove singularities without tuning on to the singularity. Then with a similar RG approach and a self-consistent calculation for the gap equations, we investigated the repulsion-mediated intrinsic and proximity-induced superconductivity in a family of lightly hole-doped noncentrosymmetric semiconductors, monolayer transition metal dichalcogenides (TMDs). We found that thanks to the spin-valley locking in lightly hole-doped TMDs, two distinct topological pairing states are favored for the intrinsically superconducting case: an interpocket paired state with Chern number 2 and an intrapocket paired state with finite pair momentum. Moreover, nematic odd-parity pairing with a possibly high Tc can be induced when proximitized by a cuprate. A confirmation of our predictions will open up possibilities for manipulating unconventional and topological superconductivity at a higher temperature on the device-friendly platform of strained ruthenate films and monolayer TMDs. In the second part, I will discuss our studies on the stability of the Dirac surface states in 3D TIs in the presence of bulk states and in TI-ferromagnetic metal heterostructures. We constructed simple microscopic models with Fano-type couplings between localized and extended states for each situation. Then with ab initio calculations we investigated the fate of the Dirac surface states in terms of the spectrum, the spatial profile and the spin-texture. Based on our results, we proposed explanations for existing experimental spectroscopic and spin-torque results.

  5. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  6. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation

    NASA Astrophysics Data System (ADS)

    Shao, Zhiqiang

    2018-04-01

    The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

  7. Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Wen; Lee, Yu-Li

    2018-01-01

    We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.

  8. Bulk Fermi Surfaces of the Dirac Type-II Semimetallic Candidates M Al3 (Where M =V , Nb, and Ta)

    NASA Astrophysics Data System (ADS)

    Chen, K.-W.; Lian, X.; Lai, Y.; Aryal, N.; Chiu, Y.-C.; Lan, W.; Graf, D.; Manousakis, E.; Baumbach, R. E.; Balicas, L.

    2018-05-01

    We report a de Haas-van Alphen (dHvA) effect study on the Dirac type-II semimetallic candidates M Al3 (where, M =V , Nb and Ta). The angular dependence of their Fermi surface (FS) cross-sectional areas reveals a remarkably good agreement with our first-principles calculations. Therefore, dHvA supports the existence of tilted Dirac cones with Dirac type-II nodes located at 100, 230 and 250 meV above the Fermi level ɛF for VAl3 , NbAl3 and TaAl3 respectively, in agreement with the prediction of broken Lorentz invariance in these compounds. However, for all three compounds we find that the cyclotron orbits on their FSs, including an orbit nearly enclosing the Dirac type-II node, yield trivial Berry phases. We explain this via an analysis of the Berry phase where the position of this orbit, relative to the Dirac node, is adjusted within the error implied by the small disagreement between our calculations and the experiments. We suggest that a very small amount of doping could displace ɛF to produce topologically nontrivial orbits encircling their Dirac node(s).

  9. DIRAC3 - the new generation of the LHCb grid software

    NASA Astrophysics Data System (ADS)

    Tsaregorodtsev, A.; Brook, N.; Casajus Ramo, A.; Charpentier, Ph; Closier, J.; Cowan, G.; Graciani Diaz, R.; Lanciotti, E.; Mathe, Z.; Nandakumar, R.; Paterson, S.; Romanovsky, V.; Santinelli, R.; Sapunov, M.; Smith, A. C.; Seco Miguelez, M.; Zhelezov, A.

    2010-04-01

    DIRAC, the LHCb community Grid solution, was considerably reengineered in order to meet all the requirements for processing the data coming from the LHCb experiment. It is covering all the tasks starting with raw data transportation from the experiment area to the grid storage, data processing up to the final user analysis. The reengineered DIRAC3 version of the system includes a fully grid security compliant framework for building service oriented distributed systems; complete Pilot Job framework for creating efficient workload management systems; several subsystems to manage high level operations like data production and distribution management. The user interfaces of the DIRAC3 system providing rich command line and scripting tools are complemented by a full-featured Web portal providing users with a secure access to all the details of the system status and ongoing activities. We will present an overview of the DIRAC3 architecture, new innovative features and the achieved performance. Extending DIRAC3 to manage computing resources beyond the WLCG grid will be discussed. Experience with using DIRAC3 by other user communities than LHCb and in other application domains than High Energy Physics will be shown to demonstrate the general-purpose nature of the system.

  10. Coherent state quantization of quaternions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com; Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  11. Counter-diabatic driving for Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Fan, Qi-Zhen; Cheng, Xiao-Hang; Chen, Xi

    2018-03-01

    In this paper, we investigate the fast quantum control of Dirac equation dynamics by counter-diabatic driving, sharing the concept of shortcut to adiabaticity. We systematically calculate the counter-diabatic terms in different Dirac systems, like graphene and trapped ions. Specially, the fast and robust population inversion processes are achieved in Dirac system, taking into account the quantum simulation with trapped ions. In addition, the population transfer between two bands can be suppressed by counter-diabatic driving in graphene system, which might have potential applications in opt-electric devices.

  12. Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    2000-04-01

    It is shown analytically that the Dirac equation has no normalizable, time-periodic solutions in a Reissner-Nordström black hole background; in particular, there are no static solutions of the Dirac equation in such a background metric. The physical interpretation is that Dirac particles can either disappear into the black hole or escape to infinity, but they cannot stay on a periodic orbit around the black hole.

  13. Magnetotransport study of Dirac fermions in YbMnBi 2 antiferromagnet

    DOE PAGES

    Wang, Aifeng; Zaliznyak, I.; Ren, Weijun; ...

    2016-10-15

    We report quantum transport and Dirac fermions in YbMnBi 2 single crystals. YbMnBi 2 is a layered material with anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, and small cyclotron mass indicate the presence of Dirac fermions. Lastly, angular-dependent magnetoresistance indicates a possible quasi-two-dimensional Fermi surface, whereas the deviation from the nontrivial Berry phase expected for Dirac states suggests the contribution of parabolic bands at the Fermi level or spin-orbit coupling.

  14. Digital quantum simulation of Dirac equation with a trapped ion

    NASA Astrophysics Data System (ADS)

    Shen, Yangchao; Zhang, Xiang; Zhang, Junhua; Casanova, Jorge; Lamata, Lucas; Solano, Enrique; Yung, Man-Hong; Zhang, Jingning; Kim, Kihwan; Department Of Physical Chemistry Collaboration

    2014-05-01

    Recently there has been growing interest in simulating relativistic effects in controllable physical system. We digitally simulate the Dirac equation in 3 +1 dimensions with a single trapped ion. We map four internal levels of 171Yb+ ion to the Dirac bispinor. The time evolution of the Dirac equation is implemented by trotter expansion. In the 3 +1 dimension, we can observe a helicoidal motion of a free Dirac particle which reduces to Zitterbewegung in 1 +1 dimension. This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61061130540. KK acknowledge the support from the recruitment program of global youth experts.

  15. Dirac cone pairs in silicene induced by interface Si-Ag hybridization: A first-principles effective band study

    NASA Astrophysics Data System (ADS)

    Lian, Chao; Meng, Sheng

    2017-06-01

    Using density functional theory combined with orbital-selective band unfolding techniques, we study the effective band structure of silicene (3 ×3 )/Ag(111) (4 ×4 ) structure. Consistent with the ARPES spectra recently obtained by [Feng et al. Proc. Natl. Acad. Sci. USA 113, 14656 (2016), 10.1073/pnas.1613434114], we observe six pairs of Dirac cones near the boundary of the Brillouin zone (BZ) of Ag (1 ×1 ) , while no Dirac cone is observed inside the BZ. Furthermore, we find that these Dirac cones are induced by the interfacial Si-Ag hybridization, mainly composed of Si pz orbitals and Ag s p bands, which is intrinsically different from the Dirac cones in free-standing silicene.

  16. Evolution of magnetic Dirac bosons in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Boyko, D.; Balatsky, A. V.; Haraldsen, J. T.

    2018-01-01

    We examine the presence and evolution of magnetic Dirac nodes in the Heisenberg honeycomb lattice. Using linear spin theory, we evaluate the collinear phase diagram as well as the change in the spin dynamics with various exchange interactions. We show that the ferromagnetic structure produces bosonic Dirac and Weyl points due to the competition between the interactions. Furthermore, it is shown that the criteria for magnetic Dirac nodes are coupled to the magnetic structure and not the overall crystal symmetry, where the breaking of inversion symmetry greatly affects the antiferromagnetic configurations. The tunability of the nodal points through variation of the exchange parameters leads to the possibility of controlling Dirac symmetries through an external manipulation of the orbital interactions.

  17. Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yoshiki; Morinari, Takao

    2018-03-01

    We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.

  18. Educational Information Quantization for Improving Content Quality in Learning Management Systems

    ERIC Educational Resources Information Center

    Rybanov, Alexander Aleksandrovich

    2014-01-01

    The article offers the educational information quantization method for improving content quality in Learning Management Systems. The paper considers questions concerning analysis of quality of quantized presentation of educational information, based on quantitative text parameters: average frequencies of parts of speech, used in the text; formal…

  19. A Heisenberg Algebra Bundle of a Vector Field in Three-Space and its Weyl Quantization

    NASA Astrophysics Data System (ADS)

    Binz, Ernst; Pods, Sonja

    2006-01-01

    In these notes we associate a natural Heisenberg group bundle Ha with a singularity free smooth vector field X = (id,a) on a submanifold M in a Euclidean three-space. This bundle yields naturally an infinite dimensional Heisenberg group HX∞. A representation of the C*-group algebra of HX∞ is a quantization. It causes a natural Weyl-deformation quantization of X. The influence of the topological structure of M on this quantization is encoded in the Chern class of a canonical complex line bundle inside Ha.

  20. BFV quantization on hermitian symmetric spaces

    NASA Astrophysics Data System (ADS)

    Fradkin, E. S.; Linetsky, V. Ya.

    1995-02-01

    Gauge-invariant BFV approach to geometric quantization is applied to the case of hermitian symmetric spaces G/ H. In particular, gauge invariant quantization on the Lobachevski plane and sphere is carried out. Due to the presence of symmetry, master equations for the first-class constraints, quantum observables and physical quantum states are exactly solvable. BFV-BRST operator defines a flat G-connection in the Fock bundle over G/ H. Physical quantum states are covariantly constant sections with respect to this connection and are shown to coincide with the generalized coherent states for the group G. Vacuum expectation values of the quantum observables commuting with the quantum first-class constraints reduce to the covariant symbols of Berezin. The gauge-invariant approach to quantization on symplectic manifolds synthesizes geometric, deformation and Berezin quantization approaches.

  1. Use of Fermi-Dirac statistics for defects in solids

    NASA Astrophysics Data System (ADS)

    Johnson, R. A.

    1981-12-01

    The Fermi-Dirac distribution function is an approximation describing a special case of Boltzmann statistics. A general occupation probability formula is derived and a criterion given for the use of Fermi-Dirac statistics. Application to classical problems of defects in solids is discussed.

  2. Electric and magnetic superlattices in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Uddin, Salah; Chan, K. S.

    2016-01-01

    The properties of one dimensional Kronig-Penney type of periodic electric and vector potential on ABC-trilayer graphene superlattices are investigated. The energy spectra obtained with periodic vector potentials shows the emergence of extra Dirac points in the energy spectrum with finite energies. For identical barrier and well widths, the original as well as the extra Dirac points are located in the ky = 0 plane. An asymmetry between the barrier and well widths causes a shift in the extra Dirac points away from the ky = 0 plane. Extra Dirac points having same electron hole crossing energy as that of the original Dirac point as well as finite energy Dirac points are generated in the energy spectrum when periodic electric potential is applied to the system. By applying electric and vector potential together, the symmetry of the energy spectrum about the Fermi level is broken. A tunable band gap is induced in the energy spectrum by applying both electric and vector potential simultaneously with different barrier and well widths.

  3. Photonic crystal surface-emitting lasers enabled by an accidental Dirac point

    DOEpatents

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2014-12-02

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  4. Topological edge states in ultra thin Bi(110) puckered crystal lattice

    NASA Astrophysics Data System (ADS)

    Wang, Baokai; Hsu, Chuanghan; Chang, Guoqing; Lin, Hsin; Bansil, Arun

    We discuss the electronic structure of a 2-ML Bi(110) film with a crystal structure similar to that of black phosphorene. In the absence of Spin-Orbit coupling (SOC), the film is found to be a semimetal with two kinds of Dirac cones, which are classified by their locations in the Brillouin zone. All Dirac nodes are protected by crystal symmetry and carry non-zero winding numbers. When considering ribbons, along specific directions, projections of Dirac nodes serve as starting or ending points of edge bands depending on the sign of their carried winding number. After the inclusion of the SOC, all Dirac nodes are gapped out. Correspondingly, the edge states connecting Dirac nodes split and cross each other, and thus form a Dirac node at the boundary of the 1D Brillouin zone, which suggests that the system is a Quantum Spin Hall insulator. The nontrivial Quantum Spin Hall phase is also confirmed by counting the product of parities of the occupied bands at time-reversal invariant points.

  5. C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity

    NASA Astrophysics Data System (ADS)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang

    2017-11-01

    Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.

  6. Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac Fermions in ZrTe 5

    DOE PAGES

    R. Y. Chen; Gu, G. D.; Chen, Z. G.; ...

    2015-10-22

    We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe 5. We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe 5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weakmore » magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. As a result, our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.« less

  7. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2

    PubMed Central

    Liu, Jinyu; Hu, Jin; Cao, Huibo; Zhu, Yanglin; Chuang, Alyssa; Graf, D.; Adams, D. J.; Radmanesh, S. M. A.; Spinu, L.; Chiorescu, I.; Mao, Zhiqiang

    2016-01-01

    Layered compounds AMnBi2 (A = Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm2V−1S−1) and a π Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120 K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits a G-type antiferromagnetic order below 283 K. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons. PMID:27466151

  8. Dirac-Kähler particle in Riemann spherical space: boson interpretation

    NASA Astrophysics Data System (ADS)

    Ishkhanyan, A. M.; Florea, O.; Ovsiyuk, E. M.; Red'kov, V. M.

    2015-11-01

    In the context of the composite boson interpretation, we construct the exact general solution of the Dirac--K\\"ahler equation for the case of the spherical Riemann space of constant positive curvature, for which due to the geometry itself one may expect to have a discrete energy spectrum. In the case of the minimal value of the total angular momentum, $j=0$, the radial equations are reduced to second-order ordinary differential equations, which are straightforwardly solved in terms of the hypergeometric functions. For non-zero values of the total angular momentum, however, the radial equations are reduced to a pair of complicated fourth-order differential equations. Employing the factorization approach, we derive the general solution of these equations involving four independent fundamental solutions written in terms of combinations of the hypergeometric functions. The corresponding discrete energy spectrum is then determined via termination of the involved hypergeometric series, resulting in quasi-polynomial wave-functions. The constructed solutions lead to notable observations when compared with those for the ordinary Dirac particle. The energy spectrum for the Dirac-K\\"ahler particle in spherical space is much more complicated. Its structure substantially differs from that for the Dirac particle since it consists of two paralleled energy level series each of which is twofold degenerate. Besides, none of the two separate series coincides with the series for the Dirac particle. Thus, the Dirac--K\\"ahler field cannot be interpreted as a system of four Dirac fermions. Additional arguments supporting this conclusion are discussed.

  9. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou

    2016-07-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x -k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ˜150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the National Natural Science Foundation of China (Grant No. 11574367), the National Basic Research Program of China (Grant Nos. 2013CB921700, 2013CB921904, and 2015CB921300), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300). The synchrotron radiation experiments have been done under the HiSOR Proposal numbers, 12-B-47 and 13-B-16.

  10. A comparison of frame synchronization methods. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Swanson, L.

    1982-01-01

    Different methods are considered for frame synchronization of a concatenated block code/Viterbi link. Synchronization after Viterbi decoding, synchronization before Viterbi decoding based on hard-quantized channel symbols are all compared. For each scheme, the probability under certain conditions of true detection of sync within four 10,000 bit frames is tabulated.

  11. Self-assembly of concentric quantum double rings.

    PubMed

    Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki

    2005-03-01

    We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.

  12. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  13. Quantization Distortion in Block Transform-Compressed Data

    NASA Technical Reports Server (NTRS)

    Boden, A. F.

    1995-01-01

    The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.

  14. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan

    2015-11-15

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is themore » mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.« less

  15. Low-rate image coding using vector quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makur, A.

    1990-01-01

    This thesis deals with the development and analysis of a computationally simple vector quantization image compression system for coding monochrome images at low bit rate. Vector quantization has been known to be an effective compression scheme when a low bit rate is desirable, but the intensive computation required in a vector quantization encoder has been a handicap in using it for low rate image coding. The present work shows that, without substantially increasing the coder complexity, it is indeed possible to achieve acceptable picture quality while attaining a high compression ratio. Several modifications to the conventional vector quantization coder aremore » proposed in the thesis. These modifications are shown to offer better subjective quality when compared to the basic coder. Distributed blocks are used instead of spatial blocks to construct the input vectors. A class of input-dependent weighted distortion functions is used to incorporate psychovisual characteristics in the distortion measure. Computationally simple filtering techniques are applied to further improve the decoded image quality. Finally, unique designs of the vector quantization coder using electronic neural networks are described, so that the coding delay is reduced considerably.« less

  16. Quantized impedance dealing with the damping behavior of the one-dimensional oscillator

    NASA Astrophysics Data System (ADS)

    Zhu, Jinghao; Zhang, Jing; Li, Yuan; Zhang, Yong; Fang, Zhengji; Zhao, Peide; Li, Erping

    2015-11-01

    A quantized impedance is proposed to theoretically establish the relationship between the atomic eigenfrequency and the intrinsic frequency of the one-dimensional oscillator in this paper. The classical oscillator is modified by the idea that the electron transition is treated as a charge-discharge process of a suggested capacitor with the capacitive energy equal to the energy level difference of the jumping electron. The quantized capacitance of the impedance interacting with the jumping electron can lead the resonant frequency of the oscillator to the same as the atomic eigenfrequency. The quantized resistance reflects that the damping coefficient of the oscillator is the mean collision frequency of the transition electron. In addition, the first and third order electric susceptibilities based on the oscillator are accordingly quantized. Our simulation of the hydrogen atom emission spectrum based on the proposed method agrees well with the experimental one. Our results exhibits that the one-dimensional oscillator with the quantized impedance may become useful in the estimations of the refractive index and one- or multi-photon absorption coefficients of some nonmagnetic media composed of hydrogen-like atoms.

  17. Probabilistic distance-based quantizer design for distributed estimation

    NASA Astrophysics Data System (ADS)

    Kim, Yoon Hak

    2016-12-01

    We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.

  18. Upper-Division Student Difficulties with the Dirac Delta Function

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…

  19. Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi 2

    DOE PAGES

    Li, Lijun; Wang, Kefeng; Graf, D.; ...

    2016-03-28

    Here, we report two-dimensional quantum transport and Dirac fermions in BaMnBi 2 single crystals. BaMnBi 2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.

  20. Variational Integrators for Interconnected Lagrange-Dirac Systems

    NASA Astrophysics Data System (ADS)

    Parks, Helen; Leok, Melvin

    2017-10-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  1. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu

    2014-05-01

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  2. Large optical conductivity of Dirac semimetal Fermi arc surface states

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  3. Comparative study of the requantization of the time-dependent mean field for the dynamics of nuclear pairing

    NASA Astrophysics Data System (ADS)

    Ni, Fang; Nakatsukasa, Takashi

    2018-04-01

    To describe quantal collective phenomena, it is useful to requantize the time-dependent mean-field dynamics. We study the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory for the two-level pairing Hamiltonian, and compare results of different quantization methods. The one constructing microscopic wave functions, using the TDHFB trajectories fulfilling the Einstein-Brillouin-Keller quantization condition, turns out to be the most accurate. The method is based on the stationary-phase approximation to the path integral. We also examine the performance of the collective model which assumes that the pairing gap parameter is the collective coordinate. The applicability of the collective model is limited for the nuclear pairing with a small number of single-particle levels, because the pairing gap parameter represents only a half of the pairing collective space.

  4. Method and apparatus for providing pulse pile-up correction in charge quantizing radiation detection systems

    DOEpatents

    Britton, Jr., Charles L.; Wintenberg, Alan L.

    1993-01-01

    A radiation detection method and system for continuously correcting the quantization of detected charge during pulse pile-up conditions. Charge pulses from a radiation detector responsive to the energy of detected radiation events are converted to voltage pulses of predetermined shape whose peak amplitudes are proportional to the quantity of charge of each corresponding detected event by means of a charge-sensitive preamplifier. These peak amplitudes are sampled and stored sequentially in accordance with their respective times of occurrence. Based on the stored peak amplitudes and times of occurrence, a correction factor is generated which represents the fraction of a previous pulses influence on a preceding pulse peak amplitude. This correction factor is subtracted from the following pulse amplitude in a summing amplifier whose output then represents the corrected charge quantity measurement.

  5. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  6. Quantization of high dimensional Gaussian vector using permutation modulation with application to information reconciliation in continuous variable QKD

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar

    This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal-to-Noise Ratio (SNR) exasperating the problem. Quantization over higher dimensions is advantageous since it allows for fractional bit per sample accuracy which may be needed at very low SNR conditions whereby the achievable secret key rate is significantly less than one bit per sample. In this paper, we propose to use Permutation Modulation (PM) for quantization of Gaussian vectors potentially containing thousands of samples. PM is applied to the magnitudes of the Gaussian samples and we explore the dependence of the sign error probability on the magnitude of the samples. At very low SNR, we may transmit the entire label of the PM code from Bob to Alice in Reverse Reconciliation (RR) over public channel. The side information extracted from this label can then be used by Alice to characterize the sign error probability of her individual samples. Forward Error Correction (FEC) coding can be used by Bob on each subset of samples with similar sign error probability to aid Alice in error correction. This can be done for different subsets of samples with similar sign error probabilities leading to an Unequal Error Protection (UEP) coding paradigm.

  7. A hybrid LBG/lattice vector quantizer for high quality image coding

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, V.; Sayood, K.; Arikan, E. (Editor)

    1991-01-01

    It is well known that a vector quantizer is an efficient coder offering a good trade-off between quantization distortion and bit rate. The performance of a vector quantizer asymptotically approaches the optimum bound with increasing dimensionality. A vector quantized image suffers from the following types of degradations: (1) edge regions in the coded image contain staircase effects, (2) quasi-constant or slowly varying regions suffer from contouring effects, and (3) textured regions lose details and suffer from granular noise. All three of these degradations are due to the finite size of the code book, the distortion measures used in the design, and due to the finite training procedure involved in the construction of the code book. In this paper, we present an adaptive technique which attempts to ameliorate the edge distortion and contouring effects.

  8. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B; Pai, P I

    1999-02-01

    This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.

  9. Splitting Times of Doubly Quantized Vortices in Dilute Bose-Einstein Condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huhtamaeki, J. A. M.; Pietilae, V.; Virtanen, S. M. M.

    2006-09-15

    Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)]. In particular, the dependency of the splitting time on the peak particle density was studied. We present results of theoretical simulations which closely mimic the experimental setup. We show that the combination of gravitational sag and time dependency of the trapping potential alone suffices to split the doubly quantized vortex in time scales which are in good agreement with the experiments.

  10. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  11. A Gauge Invariant Description for the General Conic Constrained Particle from the FJBW Iteration Algorithm

    NASA Astrophysics Data System (ADS)

    Barbosa, Gabriel D.; Thibes, Ronaldo

    2018-06-01

    We consider a second-degree algebraic curve describing a general conic constraint imposed on the motion of a massive spinless particle. The problem is trivial at classical level but becomes involved and interesting concerning its quantum counterpart with subtleties in its symplectic structure and symmetries. We start with a second-class version of the general conic constrained particle, which encompasses previous versions of circular and elliptical paths discussed in the literature. By applying the symplectic FJBW iteration program, we proceed on to show how a gauge invariant version for the model can be achieved from the originally second-class system. We pursue the complete constraint analysis in phase space and perform the Faddeev-Jackiw symplectic quantization following the Barcelos-Wotzasek iteration program to unravel the essential aspects of the constraint structure. While in the standard Dirac-Bergmann approach there are four second-class constraints, in the FJBW they reduce to two. By using the symplectic potential obtained in the last step of the FJBW iteration process, we construct a gauge invariant model exhibiting explicitly its BRST symmetry. We obtain the quantum BRST charge and write the Green functions generator for the gauge invariant version. Our results reproduce and neatly generalize the known BRST symmetry of the rigid rotor, clearly showing that this last one constitutes a particular case of a broader class of theories.

  12. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes

    PubMed Central

    Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.

    2016-01-01

    Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability. PMID:27270569

  13. Quantum Sets and Clifford Algebras

    NASA Astrophysics Data System (ADS)

    Finkelstein, David

    1982-06-01

    The mathematical language presently used for quantum physics is a high-level language. As a lowest-level or basic language I construct a quantum set theory in three stages: (1) Classical set theory, formulated as a Clifford algebra of “ S numbers” generated by a single monadic operation, “bracing,” Br = {…}. (2) Indefinite set theory, a modification of set theory dealing with the modal logical concept of possibility. (3) Quantum set theory. The quantum set is constructed from the null set by the familiar quantum techniques of tensor product and antisymmetrization. There are both a Clifford and a Grassmann algebra with sets as basis elements. Rank and cardinality operators are analogous to Schroedinger coordinates of the theory, in that they are multiplication or “ Q-type” operators. “ P-type” operators analogous to Schroedinger momenta, in that they transform the Q-type quantities, are bracing (Br), Clifford multiplication by a set X, and the creator of X, represented by Grassmann multiplication c( X) by the set X. Br and its adjoint Br* form a Bose-Einstein canonical pair, and c( X) and its adjoint c( X)* form a Fermi-Dirac or anticanonical pair. Many coefficient number systems can be employed in this quantization. I use the integers for a discrete quantum theory, with the usual complex quantum theory as limit. Quantum set theory may be applied to a quantum time space and a quantum automaton.

  14. Restoration of four-dimensional diffeomorphism covariance in canonical general relativity: An intrinsic Hamilton-Jacobi approach

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald; Renn, Jürgen; Sundermeyer, Kurt

    2016-02-01

    Classical background independence is reflected in Lagrangian general relativity through covariance under the full diffeomorphism group. We show how this independence can be maintained in a Hamilton-Jacobi approach that does not accord special privilege to any geometric structure. Intrinsic space-time curvature-based coordinates grant equal status to all geometric backgrounds. They play an essential role as a starting point for inequivalent semiclassical quantizations. The scheme calls into question Wheeler’s geometrodynamical approach and the associated Wheeler-DeWitt equation in which 3-metrics are featured geometrical objects. The formalism deals with variables that are manifestly invariant under the full diffeomorphism group. Yet, perhaps paradoxically, the liberty in selecting intrinsic coordinates is precisely as broad as is the original diffeomorphism freedom. We show how various ideas from the past five decades concerning the true degrees of freedom of general relativity can be interpreted in light of this new constrained Hamiltonian description. In particular, we show how the Kuchař multi-fingered time approach can be understood as a means of introducing full four-dimensional diffeomorphism invariants. Every choice of new phase space variables yields new Einstein-Hamilton-Jacobi constraining relations, and corresponding intrinsic Schrödinger equations. We show how to implement this freedom by canonical transformation of the intrinsic Hamiltonian. We also reinterpret and rectify significant work by Dittrich on the construction of “Dirac observables.”

  15. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system

    PubMed Central

    Feng, Ya; Liu, Defa; Feng, Baojie; Liu, Xu; Zhao, Lin; Xie, Zhuojin; Liu, Yan; Liang, Aiji; Hu, Cheng; Hu, Yong; He, Shaolong; Liu, Guodong; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Lan; Wu, Kehui; Liu, Yu-Tzu; Lin, Hsin; Huang, Zhi-Quan; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Bansil, Arun; Zhou, X. J.

    2016-01-01

    Silicene, analogous to graphene, is a one-atom-thick 2D crystal of silicon, which is expected to share many of the remarkable properties of graphene. The buckled honeycomb structure of silicene, along with enhanced spin-orbit coupling, endows silicene with considerable advantages over graphene in that the spin-split states in silicene are tunable with external fields. Although the low-energy Dirac cone states lie at the heart of all novel quantum phenomena in a pristine sheet of silicene, a hotly debated question is whether these key states can survive when silicene is grown or supported on a substrate. Here we report our direct observation of Dirac cones in monolayer silicene grown on a Ag(111) substrate. By performing angle-resolved photoemission measurements on silicene(3 × 3)/Ag(111), we reveal the presence of six pairs of Dirac cones located on the edges of the first Brillouin zone of Ag(111), which is in sharp contrast to the expected six Dirac cones centered at the K points of the primary silicene(1 × 1) Brillouin zone. Our analysis shows clearly that the unusual Dirac cone structure we have observed is not tied to pristine silicene alone but originates from the combined effects of silicene(3 × 3) and the Ag(111) substrate. Our study thus identifies the case of a unique type of Dirac cone generated through the interaction of two different constituents. The observation of Dirac cones in silicene/Ag(111) opens a unique materials platform for investigating unusual quantum phenomena and for applications based on 2D silicon systems. PMID:27930314

  16. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Liu, Defa; Feng, Baojie; Liu, Xu; Zhao, Lin; Xie, Zhuojin; Liu, Yan; Liang, Aiji; Hu, Cheng; Hu, Yong; He, Shaolong; Liu, Guodong; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Lan; Wu, Kehui; Liu, Yu-Tzu; Lin, Hsin; Huang, Zhi-Quan; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Bansil, Arun; Zhou, X. J.

    2016-12-01

    Silicene, analogous to graphene, is a one-atom-thick 2D crystal of silicon, which is expected to share many of the remarkable properties of graphene. The buckled honeycomb structure of silicene, along with enhanced spin-orbit coupling, endows silicene with considerable advantages over graphene in that the spin-split states in silicene are tunable with external fields. Although the low-energy Dirac cone states lie at the heart of all novel quantum phenomena in a pristine sheet of silicene, a hotly debated question is whether these key states can survive when silicene is grown or supported on a substrate. Here we report our direct observation of Dirac cones in monolayer silicene grown on a Ag(111) substrate. By performing angle-resolved photoemission measurements on silicene(3 × 3)/Ag(111), we reveal the presence of six pairs of Dirac cones located on the edges of the first Brillouin zone of Ag(111), which is in sharp contrast to the expected six Dirac cones centered at the K points of the primary silicene(1 × 1) Brillouin zone. Our analysis shows clearly that the unusual Dirac cone structure we have observed is not tied to pristine silicene alone but originates from the combined effects of silicene(3 × 3) and the Ag(111) substrate. Our study thus identifies the case of a unique type of Dirac cone generated through the interaction of two different constituents. The observation of Dirac cones in silicene/Ag(111) opens a unique materials platform for investigating unusual quantum phenomena and for applications based on 2D silicon systems.

  17. BOOK REVIEWS: Quantum Mechanics: Fundamentals

    NASA Astrophysics Data System (ADS)

    Whitaker, A.

    2004-02-01

    This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a chapter of his book to these matters, titled ‘The Measurement Process and the Statistical Interpretation of Quantum Mechanics’. Gottfried considered the von Neumann or Dirac ‘collapse of state-vector’ (or ‘reduction postulate’ or ‘projection postulate’) was unsatisfactory, as he argued that it led inevitably to the requirement to include ‘consciousness’ in the theory. He replaced this by a more mathematically and conceptually sophisticated treatment in which, following measurement, the density matrix of the correlated measured and measuring systems, rho, is replaced by hat rho, in which the interference terms from rho have been removed. rho represents a pure state, and hat rho a mixture, but Gottfried argued that they are ‘indistinguishable’, and that we may make our replacement, ‘safe in the knowledge that the error will never be found’. Now our combined state is represented as a mixture, it is intuitive, Gottfried argued, to interpret it in a probabilistic way, |cm|2 being the probability of obtaining the mth measurement result. Bell liked Gottfried’s treatment little more than the cruder ‘collapse’ idea of von Neumann, and when, shortly before Bell’s death, his polemical article ‘Against measurement’ was published in the August 1990 issue of Physics World (pages 33-40), his targets included, not only Landau and Lifshitz’s classic Quantum Mechanics, pilloried for its advocacy of old-fashioned collapse, and a paper by van Kampen in Physica, but also Gottfried’s approach. Bell regarded his replacement of rho by hat rho as a ‘butchering’ of the density matrix, and considered, in any case, that even the butchered density matrix should represent co-existence of different terms, not a set of probabilities. Gottfried has replied to Bell ( Physics World, October 1991, pages 34-40; Nature 405, 533-36 (2000)). He has also become a major commentator on Bell’s work, for example editing the section on quantum foundations in the World Scientific edition of Bell’s collected works. Thus it is exceedingly interesting to discover how he has responded to Bell’s criticisms in the new edition of the book. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The 1966 edition had what seems, at least in retrospect, a relatively soft opening covering the basic ideas of wave mechanics and a substantial number of applications; it did not reach the Dirac formalism in the first two hundred pages, though it then moved on to tackle rather advanced topics, including a very substantial section on symmetries, which tackled a range of sophisticated issues. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. A brief introductory chapter gives a useful, though not particularly straightforward, discussion of complementarity, uncertainty and superposition, and concludes with an informative though very short summary of the discovery of quantum mechanics, together with a few nice photographs of some of its founders. There follow two substantial chapters which are preparation for the later study of actual systems. The first, called ‘The Formal Framework’ is a fairly comprehensive survey of the methods of quantum theory---Hilbert space, Dirac notation, mixtures, the density matrix, entanglement, canonical quantization, equations of motion, symmetries, conservation laws, propagators, Green’s functions, semiclassical quantum mechanics. The level of mathematical rigour is stated as ‘typical of the bulk of theoretical physics literature---slovenly’; those unhappy with this are directed to the well-known books of Jordan and Thirring. The next chapter---‘Basic Tools’---explains a set of topics which students will need to use when studying particular systems---angular momentum and its addition, free particles, the two-body system, and the standard approximation techniques. There follow chapters on low-dimensional systems---harmonic oscillator, Aharanov--Bohm effect, one-dimensional scattering, WKB and so on; hydrogenic atoms---the Kepler problem, fine and hyperfine structure, Zeeman and Stark effects; and on two-electron atoms---spin and statistics. As in the first edition, there is a substantial treatment of symmetries, including time reversal, Galileo transformations, the rotation group, the Wigner-Eckart theorem and the Berry phase. There are two long chapters on scattering---elastic and inelastic respectively, including an account of the S matrix. The treatment of electrodynamics is much extended and modernised compared to that in the first edition. There are discussions of the quantization of the free field, causality and uncertainty in electrodynamics, vacuum fluctuations including the Casimir effect and the Lamb shift, and radiative transitions. There is a treatment of quantum optics, but this a only a brief introduction to a rapidly expanding subject, designed to facilitate understanding of the experiments on Bell’s inequalities discussed in the later chapter on interpretation. Other topics are the photoeffect in hydrogen, scattering of photons, resonant scattering and spontaneous decay. Identical particles are discussed, with a treatment of second quantization and an introduction to Bose--Einstein condensation, and the last chapter is a brief introduction to relativistic quantum mechanics, including the Dirac equation, the electromagnetic interaction of a Dirac particle, the scattering of ultra-relativistic electrons and a treatment of bound states in a Coulomb field. Gottfried and Yan’s response both to the growing interest in work on foundational matters in general, and to the specific criticism of Bell on the previous edition is included in the chapter entitled `Interpretation'. This chapter appears to be something of a hybrid. The first four sections broadly discuss hidden variables. An account of the Einstein--Podolsky--Rosen approach is followed by a general study of hidden variables, including a discussion of what the authors call the Bell--Kochen--Specker theorem. Bell’s theorem is analysed in some detail; also included are the Clauser--Horne inequality and the experimental test of the Bell inequality by Aspect. There is an interesting discussion of locality. Granted that both quantum mechanics and experiment (the latter admittedly with a remaining loophole) are in conflict with what the authors call a classical conception of locality as embodied in the Bell inequality, they ask whether quantum mechanics is actually non-local if one uses a definition of locality entailing no ingredients unknown to quantum mechanics. Their answer is that it is a matter of taste. In the statistical distribution of measurement outcomes on separate systems in entangled states, there is no hint of non-locality and no question of superluminal signalling. But quantum mechanics displays perfect correlations between distant outcomes, even though Bell’s theorem demonstrates that pre-existing values cannot be assumed. The second part of this chapter is a discussion of the measurement procedure similar to that in the first edition. The authors aim to show how measurement results are obtained and displayed, and how the appropriate probabilities are determined. The expression of this intention, however, is accompanied by the statement that they are not attempting to derive the statistical interpretation of quantum mechanics, which is assumed, but to examine whether it gives a consistent account of measurement. The conclusion is that after a measurement, interference terms are ‘effectively’ absent; the set of ‘one-to-one correlations between states of the apparatus and the object’ has the same form as that of everyday statistics and is thus a probability distribution. This probability distribution refers to potentialities, only one of which is actually realized in any one trial. Opinions may differ on whether their treatment is any less vulnerable to criticisms such as those of Bell. To sum up, Gottfried and Yan’s book contains a vast amount of knowledge and understanding. As well as explaining the way in which quantum theory works, it attempts to illuminate fundamental aspects of the theory. A typical example is the ‘fable’ elaborated in Gottfried’s article in Nature cited above, that if Newton were shown Maxwell’s equations and the Lorentz force law, he could deduce the meaning of E and B, but if Maxwell were shown Schrödinger’s equation, he could not deduce the meaning of Psi. For use with a well-constructed course (and, of course, this is the avowed purpose of the book; a useful range of problems is provided for each chapter), or for the relative expert getting to grips with particular aspects of the subject or aiming for a deeper understanding, the book is certainly ideal. It might be suggested, though, that, even compared to the first edition, the isolated learner might find the wide range of topics, and the very large number of mathematical and conceptual techniques, introduced in necessarily limited space, somewhat overwhelming. The second book under consideration, that of Schwabl, contains ‘Advanced’ elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl’s own `Quantum Mechanics' might be recommended. It is the second edition in English, and is a translation of the third German edition. It has a restricted range of general topics, and consists of three parts entitled `Nonrelativistic Many-Particle Systems', `Relativistic Wave Equations', and `Relativistic Fields'. Thus it studies in some depth areas of physics which are either dealt with in an introductory fashion, or not reached at all, by Gottfried and Yan. Despite its more advanced level, this book may actually be the more accessible to an isolated learner, because the various aspects are developed in an unhurried fashion; the author remarks that ‘the inclusion of all mathematical steps and full presentation of intermediate calculations ensures ease of understanding’. Many useful student problems are included. The presentation is said to be rigorous, but again this is a book for the physicist rather than the mathematician. The treatment of many-particle systems begins with a rather general introduction to second quantization, and then applies this formalism to spin-1/2 fermions and bosons. The study of fermions includes consideration of the Fermi sphere, the electron gas, and the Hartree--Fock equations for atoms; that of bosons includes Bose--Einstein condensation, Bogoliubov theory of the weakly interacting Bose gas, and a brief account of superfluidity. The last section of this part of the book investigates in detail the dynamics of many-particle systems on a microscopic quantum-mechanical basis using, in particular, the dynamical correlation functions. In the second part which considers relativistic wave equations, the Klein--Gordon and Dirac equations are derived, and the Lorentz covariance of the Dirac equation is established. The role of angular momentum in relativistic quantum mechanics is explained, as a preliminary to the study of the energy levels in a Coulomb potential using both the Klein--Gordon and Dirac equations, the latter being solved exactly for the hydrogen atom. For larger atoms, the Foldy--Wouthuysen transformation is explained, and also relativistic corrections and the Lamb shift. There is an interesting chapter on the physical interpretation of the Dirac equation, including such topics as the negative energy solutions, the Zitterbewegung and the Klein paradox. The last chapter in this part of the book is an extensive treatment of the symmetries and other properties of the Dirac equation, including the behaviour under rotation, translation, reflection, charge conjugation and time reversal. Helicity is explained, and the behaviour of zero-mass fermions is discussed; even though it now seems certain that neutrinos do not have zero-mass, this treatment provides a good approximation to their behaviour if they have high enough momenta. The last section on relativistic fields contains chapters on the quantization of relativistic fields, the free Klein--Gordon and Dirac fields, quantization of the radiation field, interacting fields and quantum electrodynamics, including the S matrix, Wick’s theorem and Feynman diagrams. Schwabl’s book would be excellent for those requiring a detailed presentation of the topics it includes, at a level of rigour appropriate to the physicist. It includes a substantial number of interesting problems. The third book under consideration, that by Gustafson and Sigal is very different from the others. In academic level, at least the initial sections may actually be slightly lower; the book covers a one-term course taken by senior undergraduates or junior graduate students in mathematics or physics, and the initial chapters are on basic topics, such as the physical background, basic dynamics, observables and the uncertainty principle. However the level of mathematical sophistication is far higher than in the other books. While the mathematical prerequisites are modest---real and complex analysis, elementary differential equations and preferably Lebesgue integration, a third of the book is made up of what are called mathematical supplements---on operator adjoints, the Fourier transform, tensor products, the trace and trace class operators, the Trotter product formula, operator determinants, the calculus of variations (a substantial treatment in a full chapter), spectral projections, and the projecting-out procedure. On the basis of these supplements, the level of mathematical sophistication and difficulty is increased substantially in the middle section of the book, where the topics considered are many-particle systems, density matrices, positive temperatures, the Feynman path integral, and quasi-classical analysis, and there is a final substantial step for the concluding chapters on resonances, an introduction to quantum field theory, and quantum electrodynamics of non-relativistic particles. A supplementary chapter contains an interesting approach to the remormalization group due to Bach, Fröhlich and Sigal himself. This book is well-written, and the topics discussed have been well thought-out. It would provide a useful approach to quantum theory for the mathematician, and would also provide access for the physicist to some mathematically advanced methods and topics, but the physicist would definitely have to be prepared to work hard at the mathematics required.

  18. Universe creation from the third-quantized vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuigan, M.

    1989-04-15

    Third quantization leads to a Hilbert space containing a third-quantized vacuum in which no universes are present as well as multiuniverse states. We consider the possibility of universe creation for the special case where the universe emerges in a no-particle state. The probability of such a creation is computed from both the path-integral and operator formalisms.

  19. Universe creation from the third-quantized vacuum

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael

    1989-04-01

    Third quantization leads to a Hilbert space containing a third-quantized vacuum in which no universes are present as well as multiuniverse states. We consider the possibility of universe creation for the special case where the universe emerges in a no-particle state. The probability of such a creation is computed from both the path-integral and operator formalisms.

  20. 4D Sommerfeld quantization of the complex extended charge

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, Igor E.

    2017-12-01

    Gravitational fields and accelerations cannot change quantized magnetic flux in closed line contours due to flat 3D section of curved 4D space-time-matter. The relativistic Bohr-Sommerfeld quantization of the imaginary charge reveals an electric analog of the Compton length, which can introduce quantitatively the fine structure constant and the Plank length.

  1. Notes on oscillator-like interactions of various spin relativistic particles

    NASA Technical Reports Server (NTRS)

    Dvoeglazov, Valeri V.; Delsolmesa, Antonio

    1995-01-01

    The equations for various spin particles with oscillator-like interactions are discussed in this talk. Topics discussed include: (1) comment on 'The Klein-Gordon Oscillator'; (2) the Dirac oscillator in quaternion form; (3) the Dirac-Dowker oscillator; (4) the Weinberg oscillator; and (5) note on the two-body Dirac oscillator.

  2. Quantum oscillations in the type-II Dirac semi-metal candidate PtSe2

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Schmidt, Marcus; Süss, Vicky; Chan, Mun; Balakirev, Fedor F.; McDonald, Ross D.; Parkin, Stuart S. P.; Felser, Claudia; Yan, Binghai; Moll, Philip J. W.

    2018-04-01

    Three-dimensional topological semi-metals carry quasiparticle states that mimic massless relativistic Dirac fermions, elusive particles that have never been observed in nature. As they appear in the solid body, they are not bound to the usual symmetries of space-time and thus new types of fermionic excitations that explicitly violate Lorentz-invariance have been proposed, the so-called type-II Dirac fermions. We investigate the electronic spectrum of the transition-metal dichalcogenide PtSe2 by means of quantum oscillation measurements in fields up to 65 T. The observed Fermi surfaces agree well with the expectations from band structure calculations, that recently predicted a type-II Dirac node to occur in this material. A hole- and an electron-like Fermi surface dominate the semi-metal at the Fermi level. The quasiparticle mass is significantly enhanced over the bare band mass value, likely by phonon renormalization. Our work is consistent with the existence of type-II Dirac nodes in PtSe2, yet the Dirac node is too far below the Fermi level to support free Dirac–fermion excitations.

  3. Quasi-Dirac neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin

    2018-05-01

    Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.

  4. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators

    DOE PAGES

    Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.

    2016-05-04

    Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe 2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at themore » double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less

  5. Spin Nernst effect and intrinsic magnetization in two-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.

    2015-05-01

    We begin with a brief description of the role of the Nernst-Ettingshausen effect in the studies of the high-temperature superconductors and Dirac materials such as graphene. The theoretical analysis of the NE effect is involved because the standard Kubo formalism has to be modified by the presence of magnetization currents in order to satisfy the third law of thermodynamics. A new generation of the low-buckled Dirac materials is expected to have a strong spin Nernst effect that represents the spintronics analog of the NE effect. These Dirac materials can be considered as made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem the gap breaks a time-reversal symmetry and thus plays a role of an effective magnetic field. We explicitly demonstrate how the correct thermoelectric coefficient emerges both by the explicit calculation of the magnetization and by a formal cancelation in the modified Kubo formula. We conclude by showing that the nontrivial dependences of the spin Nersnt signal on the carrier concentration and electric field applied are expected in silicene and other low-buckled Dirac materials.

  6. Magnons in a honeycomb ferromagnet

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat

    The original discovery of the Dirac electron dispersion in graphene led naturally to the question of Dirac cone stability with respect to interactions, and the Coulomb interaction between electrons was shown to induce a logarithmic renormalization of the Dirac dispersion. With the rapid expansion of the list of Dirac fermion compounds, the concept of bosonic Dirac materials has emerged. At the single particle level, these materials closely resemble the fermionic counterparts. However, the changed particle statistics affects the stability of Dirac cones differently. Here we study the effect of interactions focusing on the honeycomb ferromagnet - where the quasi-particles are magnetic spin waves (magnons). We demonstrate that magnon-magnon interactions lead to a significant renormalization of the bare band structure. We also address the question of the edge and surface states for a finite system. We applied these results to ferromagnetic CrBr3, where the Cr3+ atoms are arranged in weakly coupled honeycomb layers. Our theory qualitatively accounts for the unexplained anomalies in neutron scattering data from 40 years ago for CrBr3 and hereby expand the theory of ferromagnets beyond the standard Dyson theory.

  7. Multiple Dirac cones and topological magnetism in honeycomb-monolayer transition metal trichalcogenides

    NASA Astrophysics Data System (ADS)

    Sugita, Yusuke; Miyake, Takashi; Motome, Yukitoshi

    2018-01-01

    The discovery of monolayer graphene has initiated two fertile fields in condensed matter physics: Dirac semimetals and atomically thin layered materials. When these trends meet again in transition metal compounds, which possess spin and orbital degrees of freedom and strong electron correlations, more exotic phenomena are expected to emerge in the cross section of topological states of matter and Mott physics. Here, we show by using ab initio calculations that a monolayer form of transition metal trichalcogenides (TMTs), which has a honeycomb network of 4 d and 5 d transition metal cations, may exhibit multiple Dirac cones in the electronic structure of the half-filled eg orbitals. The Dirac cones are gapped by the spin-orbit coupling under the trigonal lattice distortion and, hence, can be tuned by tensile strain. Furthermore, we show that electron correlations and carrier doping turn the multiple Dirac semimetal into a topological ferromagnet with high Chern number. Our findings indicate that the honeycomb-monolayer TMTs provide a good playground for correlated Dirac electrons and topologically nontrivial magnetism.

  8. A relativistically interacting exactly solvable multi-time model for two massless Dirac particles in 1 + 1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienert, Matthias, E-mail: lienert@math.lmu.de

    2015-04-15

    The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to amore » relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.« less

  9. Response Functions to Critical Shocks in Social Sciences:

    NASA Astrophysics Data System (ADS)

    Roehner, B. M.; Sornette, D.; Andersen, J. V.

    We show that, provided one focuses on properly selected episodes, one can apply to the social sciences the same observational strategy that has proved successful in natural sciences such as astrophysics or geodynamics. For instance, in order to probe the cohesion of a society, one can, in different countries, study the reactions to some huge and sudden exogenous shocks, which we call Dirac shocks. This approach naturally leads to the notion of structural (as opposed or complementary to temporal) forecast. Although structural predictions are by far the most common way to test theories in the natural sciences, they have been much less used in the social sciences. The Dirac shock approach opens the way to testing structural predictions in the social sciences. The examples reported here suggest that critical events are able to reveal pre-existing "cracks" because they probe the social cohesion which is an indicator and predictor of future evolution of the system, and in some cases they foreshadow a bifurcation. We complement our empirical work with numerical simulations of the response function ("damage spreading") to Dirac shocks in the Sznajd model of consensus build-up. We quantify the slow relaxation of the difference between perturbed and unperturbed systems, the conditions under which the consensus is modified by the shock and the large variability from one realization to another.

  10. Dirac State in Giant Magnetoresistive Materials

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Jo, N. H.; Ochi, M.; Huang, L.; Mou, D.; Kong, T.; Mun, E.; Wang, L.; Lee, Y.; Bud'Ko, S. L.; Canfield, P. C.; Trivedi, N.; Arito, R.; Kaminski, A.

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of materials that recently were discovered to display titanic magnetoresistance. We find that that several of these materials have Dirac-like features in their band structure. In some materials those features are ``ordinary'' Dirac cones, while in others the linear Dirac dispersion of two crossing bands forms a linear object in 3D momentum space. Our observation poses an important question about the role of Dirac dispersion in the unusually high, non-saturating magnetoresistance of these materials. Research was supported by the US DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-07CH11358; Gordon and Betty Moore Foundation EPiQS Initiative (Grant No. GBMF4411); CEM, a NSF MRSEC, under Grant No. DMR-1420451.

  11. Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems

    NASA Astrophysics Data System (ADS)

    Milletarı, Mirco; Offidani, Manuel; Ferreira, Aires; Raimondi, Roberto

    2017-12-01

    We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin-valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important benchmark for testing the validity of numerical methodologies.

  12. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Baik, Seung Su; Jung, Sung Won; Sohn, Yeongsup; Ryu, Sae Hee; Choi, Hyoung Joon; Yang, Bohm-Jung; Kim, Keun Su

    2017-12-01

    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ˜0.6 eV . High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.

  13. Dirac Fermions in Borophene

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Sugino, Osamu; Liu, Ro-Ya; Zhang, Jin; Yukawa, Ryu; Kawamura, Mitsuaki; Iimori, Takushi; Kim, Howon; Hasegawa, Yukio; Li, Hui; Chen, Lan; Wu, Kehui; Kumigashira, Hiroshi; Komori, Fumio; Chiang, Tai-Chang; Meng, Sheng; Matsuda, Iwao

    2017-03-01

    Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the β12 sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the β12 sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.

  14. Elastic gauge fields and Hall viscosity of Dirac magnons

    NASA Astrophysics Data System (ADS)

    Ferreiros, Yago; Vozmediano, María A. H.

    2018-02-01

    We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.

  15. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    PubMed

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  16. The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry

    PubMed Central

    He, Wen-Yu; Chan, C. T.

    2015-01-01

    We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry. The Dirac nodes can be unbuckled through breaking the mirror symmetry and a photonic analog of Chern insulator can be achieved through time reversal symmetry breaking. Breaking time reversal symmetry can lead to unidirectional helical edge states and breaking mirror symmetry can reduce the band gap to amplify the finite size effect, providing ways to engineer helical edge states. PMID:25640993

  17. Dirac directional emission in anisotropic zero refractive index photonic crystals

    PubMed Central

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-01-01

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal. PMID:26271208

  18. Reducing weight precision of convolutional neural networks towards large-scale on-chip image recognition

    NASA Astrophysics Data System (ADS)

    Ji, Zhengping; Ovsiannikov, Ilia; Wang, Yibing; Shi, Lilong; Zhang, Qiang

    2015-05-01

    In this paper, we develop a server-client quantization scheme to reduce bit resolution of deep learning architecture, i.e., Convolutional Neural Networks, for image recognition tasks. Low bit resolution is an important factor in bringing the deep learning neural network into hardware implementation, which directly determines the cost and power consumption. We aim to reduce the bit resolution of the network without sacrificing its performance. To this end, we design a new quantization algorithm called supervised iterative quantization to reduce the bit resolution of learned network weights. In the training stage, the supervised iterative quantization is conducted via two steps on server - apply k-means based adaptive quantization on learned network weights and retrain the network based on quantized weights. These two steps are alternated until the convergence criterion is met. In this testing stage, the network configuration and low-bit weights are loaded to the client hardware device to recognize coming input in real time, where optimized but expensive quantization becomes infeasible. Considering this, we adopt a uniform quantization for the inputs and internal network responses (called feature maps) to maintain low on-chip expenses. The Convolutional Neural Network with reduced weight and input/response precision is demonstrated in recognizing two types of images: one is hand-written digit images and the other is real-life images in office scenarios. Both results show that the new network is able to achieve the performance of the neural network with full bit resolution, even though in the new network the bit resolution of both weight and input are significantly reduced, e.g., from 64 bits to 4-5 bits.

  19. Hierarchically clustered adaptive quantization CMAC and its learning convergence.

    PubMed

    Teddy, S D; Lai, E M K; Quek, C

    2007-11-01

    The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC), learning convergence, nonuniform quantization.

  20. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  1. Integral Sliding Mode Fault-Tolerant Control for Uncertain Linear Systems Over Networks With Signals Quantization.

    PubMed

    Hao, Li-Ying; Park, Ju H; Ye, Dan

    2017-09-01

    In this paper, a new robust fault-tolerant compensation control method for uncertain linear systems over networks is proposed, where only quantized signals are assumed to be available. This approach is based on the integral sliding mode (ISM) method where two kinds of integral sliding surfaces are constructed. One is the continuous-state-dependent surface with the aim of sliding mode stability analysis and the other is the quantization-state-dependent surface, which is used for ISM controller design. A scheme that combines the adaptive ISM controller and quantization parameter adjustment strategy is then proposed. Through utilizing H ∞ control analytical technique, once the system is in the sliding mode, the nature of performing disturbance attenuation and fault tolerance from the initial time can be found without requiring any fault information. Finally, the effectiveness of our proposed ISM control fault-tolerant schemes against quantization errors is demonstrated in the simulation.

  2. Topology-optimized dual-polarization Dirac cones

    NASA Astrophysics Data System (ADS)

    Lin, Zin; Christakis, Lysander; Li, Yang; Mazur, Eric; Rodriguez, Alejandro W.; Lončar, Marko

    2018-02-01

    We apply a large-scale computational technique, known as topology optimization, to the inverse design of photonic Dirac cones. In particular, we report on a variety of photonic crystal geometries, realizable in simple isotropic dielectric materials, which exhibit dual-polarization Dirac cones. We present photonic crystals of different symmetry types, such as fourfold and sixfold rotational symmetries, with Dirac cones at different points within the Brillouin zone. The demonstrated and related optimization techniques open avenues to band-structure engineering and manipulating the propagation of light in periodic media, with possible applications to exotic optical phenomena such as effective zero-index media and topological photonics.

  3. Observation of a two-dimensional Fermi surface and Dirac dispersion in YbMnSb2

    NASA Astrophysics Data System (ADS)

    Kealhofer, Robert; Jang, Sooyoung; Griffin, Sinéad M.; John, Caolan; Benavides, Katherine A.; Doyle, Spencer; Helm, T.; Moll, Philip J. W.; Neaton, Jeffrey B.; Chan, Julia Y.; Denlinger, J. D.; Analytis, James G.

    2018-01-01

    We present the crystal structure, electronic structure, and transport properties of the material YbMnSb2, a candidate system for the investigation of Dirac physics in the presence of magnetic order. Our measurements reveal that this system is a low-carrier-density semimetal with a two-dimensional Fermi surface arising from a Dirac dispersion, consistent with the predictions of density-functional-theory calculations of the antiferromagnetic system. The low temperature resistivity is very large, suggesting that scattering in this system is highly efficient at dissipating momentum despite its Dirac-like nature.

  4. A New Definition to the Phase Operator and its Properties

    NASA Technical Reports Server (NTRS)

    Duan, Lu-Ming; Guo, Guang-Can

    1996-01-01

    By introducing a series of mathematical symbols and the phase quantization condition, we give a new definition of the phase operator, which not only is made directly in infinite state spaces, but also circumvents all difficulties appearing in the traditional approach Properties of the phase operator and its expressions in some widely-used representations are also given.

  5. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  6. Robust vector quantization for noisy channels

    NASA Technical Reports Server (NTRS)

    Demarca, J. R. B.; Farvardin, N.; Jayant, N. S.; Shoham, Y.

    1988-01-01

    The paper briefly discusses techniques for making vector quantizers more tolerant to tranmsission errors. Two algorithms are presented for obtaining an efficient binary word assignment to the vector quantizer codewords without increasing the transmission rate. It is shown that about 4.5 dB gain over random assignment can be achieved with these algorithms. It is also proposed to reduce the effects of error propagation in vector-predictive quantizers by appropriately constraining the response of the predictive loop. The constrained system is shown to have about 4 dB of SNR gain over an unconstrained system in a noisy channel, with a small loss of clean-channel performance.

  7. Image data compression having minimum perceptual error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1995-01-01

    A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  8. Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Veraguth, Olivier J.; Wang, Charles H.-T.

    2017-10-01

    Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.

  9. Tribology of the lubricant quantized sliding state.

    PubMed

    Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio

    2009-11-07

    In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.

  10. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    PubMed

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  11. Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information

    NASA Technical Reports Server (NTRS)

    Pence, William D.; White, R. L.; Seaman, R.

    2010-01-01

    We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.

  12. Dirac equation in Kerr-NUT-(A)dS spacetimes: Intrinsic characterization of separability in all dimensions

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco; Krtouš, Pavel; Kubizňák, David

    2011-07-01

    We intrinsically characterize separability of the Dirac equation in Kerr-NUT-(A)dS spacetimes in all dimensions. Namely, we explicitly demonstrate that, in such spacetimes, there exists a complete set of first-order mutually commuting operators, one of which is the Dirac operator, that allows for common eigenfunctions which can be found in a separated form and correspond precisely to the general solution of the Dirac equation found by Oota and Yasui [Phys. Lett. BPYLBAJ0370-2693 659, 688 (2008)10.1016/j.physletb.2007.11.057]. Since all the operators in the set can be generated from the principal conformal Killing-Yano tensor, this establishes the (up-to-now) missing link among the existence of hidden symmetry, presence of a complete set of commuting operators, and separability of the Dirac equation in these spacetimes.

  13. Creation of half-metallic f -orbital Dirac fermion with superlight elements in orbital-designed molecular lattice

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Huang, Bing; Li, Chong; Zhang, Xiaoming; Jin, Kyung-Hwan; Zhang, Lizhi; Jiang, Wei; Liu, Desheng; Liu, Feng

    2017-08-01

    Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f -orbital Dirac fermion from superlight s p elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f -molecular orbitals (MOs) derived from s p -atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.

  14. ‘Parabolic’ trapped modes and steered Dirac cones in platonic crystals

    PubMed Central

    McPhedran, R. C.; Movchan, A. B.; Movchan, N. V.; Brun, M.; Smith, M. J. A.

    2015-01-01

    This paper discusses the properties of flexural waves governed by the biharmonic operator, and propagating in a thin plate pinned at doubly periodic sets of points. The emphases are on the design of dispersion surfaces having the Dirac cone topology, and on the related topic of trapped modes in plates for a finite set (cluster) of pinned points. The Dirac cone topologies we exhibit have at least two cones touching at a point in the reciprocal lattice, augmented by another band passing through the point. We show that these Dirac cones can be steered along symmetry lines in the Brillouin zone by varying the aspect ratio of rectangular lattices of pins, and that, as the cones are moved, the involved band surfaces tilt. We link Dirac points with a parabolic profile in their neighbourhood, and the characteristic of this parabolic profile decides the direction of propagation of the trapped mode in finite clusters. PMID:27547089

  15. Photonic crystal surface-emitting lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-planemore » feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.« less

  16. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials

    NASA Astrophysics Data System (ADS)

    Hübener, Hannes; Sentef, Michael A.; de Giovannini, Umberto; Kemper, Alexander F.; Rubio, Angel

    2017-01-01

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

  17. Dirac State in the FeB2 Monolayer with Graphene-Like Boron Sheet.

    PubMed

    Zhang, Haijun; Li, Yafei; Hou, Jianhou; Du, Aijun; Chen, Zhongfang

    2016-10-12

    By introducing the commonly utilized Fe atoms into a two-dimensional (2D) honeycomb boron network, we theoretically designed a new Dirac material of FeB 2 monolayer with a Fermi velocity in the same order of graphene. The electron transfer from Fe atoms to B networks not only effectively stabilizes the FeB 2 networks but also leads to the strong interaction between the Fe and B atoms. The Dirac state in FeB 2 system primarily arises from the Fe d orbitals and hybridized orbital from Fe-d and B-p states. The newly predicted FeB 2 monolayer has excellent dynamic and thermal stabilities and is also the global minimum of 2D FeB 2 system, implying its experimental feasibility. Our results are beneficial to further uncovering the mechanism of the Dirac cones and providing a feasible strategy for Dirac materials design.

  18. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials.

    PubMed

    Hübener, Hannes; Sentef, Michael A; De Giovannini, Umberto; Kemper, Alexander F; Rubio, Angel

    2017-01-17

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na 3 Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

  19. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials

    PubMed Central

    Hübener, Hannes; Sentef, Michael A.; De Giovannini, Umberto; Kemper, Alexander F.; Rubio, Angel

    2017-01-01

    Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet–Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance. PMID:28094286

  20. Dirac equation on a curved surface

    NASA Astrophysics Data System (ADS)

    Brandt, F. T.; Sánchez-Monroy, J. A.

    2016-09-01

    The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein-Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles.

Top