Sample records for direct 3d patterning

  1. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    PubMed Central

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-01-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915

  2. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOEpatents

    Malba, Vincent; Bernhardt, Anthony F.

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  3. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  4. Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2009-08-01

    We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions in temporal speckle pattern interferometry. We show that this approach can effectively recover phase distributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels. The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limitations of this approach are finally discussed.

  5. Laser direct-write for fabrication of three-dimensional paper-based devices.

    PubMed

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2016-08-16

    We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.

  6. Multivoxel Pattern Analysis Reveals 3D Place Information in the Human Hippocampus.

    PubMed

    Kim, Misun; Jeffery, Kate J; Maguire, Eleanor A

    2017-04-19

    The spatial world is three dimensional (3D) and humans and other animals move both horizontally and vertically within it. Extant neuroscientific studies have typically investigated spatial navigation on a horizontal 2D plane, leaving much unknown about how 3D spatial information is represented in the brain. Specifically, horizontal and vertical information may be encoded in the same or different neural structures with equal or unequal sensitivity. Here, we investigated these possibilities using fMRI while participants were passively moved within a 3D lattice structure as if riding a rollercoaster. Multivoxel pattern analysis was used to test for the existence of information relating to where and in which direction participants were heading in this virtual environment. Behaviorally, participants had similarly accurate memory for vertical and horizontal locations and the right anterior hippocampus (HC) expressed place information that was sensitive to changes along both horizontal and vertical axes. This is suggestive of isotropic 3D place encoding. In contrast, participants indicated their heading direction faster and more accurately when they were heading in a tilted-up or tilted-down direction. This direction information was expressed in the right retrosplenial cortex and posterior HC and was only sensitive to vertical pitch, which could reflect the importance of the vertical (gravity) axis as a reference frame. Overall, our findings extend previous knowledge of how we represent the spatial world and navigate within it by taking into account the important third dimension. SIGNIFICANCE STATEMENT The spatial world is 3D. We can move horizontally across surfaces, but also vertically, going up slopes or stairs. Little is known about how the brain supports representations of 3D space. A key question is whether horizontal and vertical information is equally well represented. Here, we measured fMRI response patterns while participants moved within a virtual 3D environment and found that the anterior hippocampus (HC) expressed location information that was sensitive to the vertical and horizontal axes. In contrast, information about heading direction, found in retrosplenial cortex and posterior HC, favored the vertical axis, perhaps due to gravity effects. These findings provide new insights into how we represent our spatial 3D world and navigate within it. Copyright © 2017 Kim et al.

  7. Direct laser interference patterning for decreased bacterial attachment

    NASA Astrophysics Data System (ADS)

    Guenther, Denise; Valle, Jaoine; Burgui, Saioa; Gil, Carmen; Solano, Cristina; Toledo-Arana, Alejandro; Helbig, Ralf; Werner, Carsten; Lasa, Inigo; Lasagni, Andrés. F.

    2016-03-01

    In the past 15 years, many efforts were made to create functionalized artificial surfaces showing special anti-bacterial and anti-biofouling properties. Thereby, the topography of medical relevant materials plays an important role. However, the targeted fabrication of promising surface structures like hole-, lamella- and pyramid-like patterns with feature sizes in the sub-micrometer range in a one-step process is still a challenge. Optical and e-beam lithography, molding and selfassembly layers show a great potential to design topographies for this purpose. At the same time, most of these techniques are based on sequential processes, require masks or molds and thus are very device relevant and time consuming. In this work, we present the Direct Laser Interference Patterning (DLIP) technology as a capable method for the fast, flexible and direct fabrication of periodic micrometer- and submicrometer structures. This method offers the possibility to equip large plain areas and curved devices with 1D, 2D and 3D patterns. Simple 1D (e.g. lines) and complex 3D (e.g. lamella, pillars) patterns with periodic distances from 0.5 μm to 5 μm were fabricated on polymeric materials (polyimide, polystyrene). Subsequently, we characterized the adhesion behavior of Staphylococcus epidermidis and S. aureus bacteria under in vitro and in vivo conditions. The results revealed that the topographies have a significant impact on bacteria adhesion. On the one side, one-dimensional line-like structures especially with dimensions of the bacteria enhanced microbe attachment. While on the other hand, complex three-dimensional patterns prevented biofilm formation even after implantation and contamination in living organisms.

  8. Directionality of dog vocalizations

    NASA Astrophysics Data System (ADS)

    Frommolt, Karl-Heinz; Gebler, Alban

    2004-07-01

    The directionality patterns of sound emission in domestic dogs were measured in an anechoic environment using a microphone array. Mainly long-distance signals from four dogs were investigated. The radiation pattern of the signals differed clearly from an omnidirectional one with average differences in sound-pressure level between the frontal and rear position of 3-7 dB depending from the individual. Frequency dependence of directionality was shown for the range from 250 to 3200 Hz. The results indicate that when studying acoustic communication in mammals, more attention should be paid to the directionality pattern of sound emission.

  9. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.

    PubMed

    Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin

    2016-07-01

    An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM.

  10. Three-dimensional reconstruction of prostate cancer architecture with serial immunohistochemical sections: hallmarks of tumour growth, tumour compartmentalisation, and implications for grading and heterogeneity.

    PubMed

    Tolkach, Yuri; Thomann, Stefan; Kristiansen, Glen

    2018-05-01

    Conventional morphology of prostate cancer considers only the two-dimensional (2D) architecture of the tumour. Our aim was to examine the feasibility of three-dimensional (3D) reconstruction of tumour morphology based on multiple consecutive histological sections and to decipher relevant features of prostate cancer architecture. Seventy-five consecutive histological sections (5 μm) of a typical prostate adenocarcinoma (Gleason score of 3 + 4 = 7) were immunostained (pan-cytokeratin) and scanned for further 3D reconstructions with fiji/imagej software. The main findings related to the prostate cancer architecture in this case were: (i) continuity of all glands, with the tumour being an integrated system, even in Gleason pattern 4 with poorly formed glands-no short-range migration of cells by Gleason pattern 4 (poorly formed glands); (ii) no repeated interconnections between the glands, with a tumour building a tree-like branched structure with very 'plastic' branches (maximal depth of investigation 375 μm); (iii) very stark compartmentalisation of the tumour related to extensive branching, the coexistence of independent terminal units of such branches in one 2D slice explaining intratumoral heterogeneity; (iv) evidence of a craniocaudal growth direction in interglandular regions of the prostate and for a lateromedial growth direction in subcapsular posterolateral regions; and (v) a 3D architecture-based description of Gleason pattern 4 with poorly formed glands, and its continuum with Gleason pattern 3. Consecutive histological sections provide high-quality material for 3D reconstructions of the tumour architecture, with excellent resolution. The reconstruction of multiple regions in this typical case of a Gleason score 3 + 4 = 7 tumour provides insights into relevant aspects of tumour growth, the continuity of Gleason patterns 3 and 4, and tumour heterogeneity. © 2018 John Wiley & Sons Ltd.

  11. Design of Vivaldi Microstrip Antenna for Ultra-Wideband Radar Applications

    NASA Astrophysics Data System (ADS)

    Perdana, M. Y.; Hariyadi, T.; Wahyu, Y.

    2017-03-01

    The development of radar technology has an important role in several fields such as aviation, civil engineering, geology, and medicine. One of the essential components of the radar system is the antenna. The bandwidth can specify the resolution of the radar. The wider the bandwidth, the higher the resolution of radar. For Ground penetrating radar (GPR) or medical applications need with a high-resolution radar so it needs an antenna with a wide bandwidth. In addition, for the radar application is required antenna with directional radiation pattern. So, we need an antenna with wide bandwidth and directional radiation pattern. One of antenna that has meet with these characteristics is vivaldi antenna. In previous research, has designed several vivaldi microstrip antenna for ultra-wideband radar applications which has a working frequency of 3.1 to 10.7 GHz. However, these studies there is still a shortage of one of them is the radiation pattern from lowest to highest frequency radiation pattern is not uniform in the sense that not all directional. Besides the antenna material used is also not easily available and the price is not cheap. This paper will discuss the design of a vivaldi microstrip antenna which has a wide bandwidth with directional radiation pattern works on 3.1 to 10.7 GHz and using cheaper substrate. Substrates used for vivaldi microstrip antenna vivaldi is FR4 with a dielectric constant of 4.3 and a thickness of 1.6 mm. Based on the simulation results we obtained that the antenna design has frequency range 3.1-10.7 GHz for return loss less than -10 dB with a directional radiation pattern. This antenna gain is 4.8 to 8 dBi with the largest dimension is 50 mm x 40 mm.

  12. 3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture.

    PubMed

    Kolewe, Martin E; Park, Hyoungshin; Gray, Caprice; Ye, Xiaofeng; Langer, Robert; Freed, Lisa E

    2013-08-27

    Microfabricated elastomeric scaffolds with 3D structural patterns are created by semiautomated layer-by-layer assembly of planar polymer sheets with through-pores. The mesoscale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sub-10-nm suspended nano-web formation by direct laser writing

    NASA Astrophysics Data System (ADS)

    Wang, Sihao; Yu, Ye; Liu, Hailong; Lim, Kevin T. P.; Madurai Srinivasan, Bharathi; Zhang, Yong Wei; Yang, Joel K. W.

    2018-06-01

    A diffraction-limited three-dimensional (3D) direct laser writing (DLW) system based on two-photon polymerization can routinely pattern structures at the 100 nm length scale. Several schemes have been developed to improve the patterning resolution of 3D DLW but often require customized resist formulations or multi-wavelength exposures. Here, we introduce a scheme to produce suspended nano-webs with feature sizes below 10 nm in IP-Dip resist using sub-threshold exposure conditions in a commercial DLW system. The narrowest suspended lines (nano-webs) measured 7 nm in width. Larger ∼20 nm nano-webs were patterned with ∼80% yield at increased laser powers. In addition, closely spaced nano-gaps with a center-to-center distance of 33 nm were produced by patterning vertically displaced suspended lines followed by metal deposition and liftoff. We provide hypotheses and present preliminary results for a mechanism involving the initiation of a percolative path and a strain-induced narrowing in the nano-web formation. Our approach allows selective features to be patterned with dimensions comparable to the sub-10 nm patterning capability of electron-beam lithography (EBL).

  14. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting

    PubMed Central

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-01-01

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique. PMID:27214495

  15. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    PubMed

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  16. Direct k-space imaging of Mahan cones at clean and Bi-covered Cu(111) surfaces

    NASA Astrophysics Data System (ADS)

    Winkelmann, Aimo; Akin Ünal, A.; Tusche, Christian; Ellguth, Martin; Chiang, Cheng-Tien; Kirschner, Jürgen

    2012-08-01

    Using a specifically tailored experimental approach, we revisit the exemplary effect of photoemission from quasi-free electronic states in crystals. Applying a momentum microscope, we measure photoelectron momentum patterns emitted into the complete half-space above the sample after excitation from a linearly polarized laser light source. By the application of a fully three-dimensional (3D) geometrical model of direct optical transitions, we explain the characteristic intensity distributions that are formed by the photoelectrons in k-space under the combination of energy conservation and crystal momentum conservation in the 3D bulk as well as at the two-dimensional (2D) surface. For bismuth surface alloys on Cu(111), the energy-resolved photoelectron momentum patterns allow us to identify specific emission processes in which bulk excited electrons are subsequently diffracted by an atomic 2D surface grating. The polarization dependence of the observed intensity features in momentum space is explained based on the different relative orientations of characteristic reciprocal space directions with respect to the electric field vector of the incident light.

  17. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.

    PubMed

    Kwon, Min-Woo; Kim, Seung-Cheol; Kim, Eun-Soo

    2016-01-20

    A three-directional motion-compensation mask-based novel look-up table method is proposed and implemented on graphics processing units (GPUs) for video-rate generation of digital holographic videos of three-dimensional (3D) scenes. Since the proposed method is designed to be well matched with the software and memory structures of GPUs, the number of compute-unified-device-architecture kernel function calls can be significantly reduced. This results in a great increase of the computational speed of the proposed method, allowing video-rate generation of the computer-generated hologram (CGH) patterns of 3D scenes. Experimental results reveal that the proposed method can generate 39.8 frames of Fresnel CGH patterns with 1920×1080 pixels per second for the test 3D video scenario with 12,088 object points on dual GPU boards of NVIDIA GTX TITANs, and they confirm the feasibility of the proposed method in the practical application fields of electroholographic 3D displays.

  18. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems.

    PubMed

    Aghaeinezhadfirouzja, Saeid; Liu, Hui; Balador, Ali

    2018-04-12

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.

  19. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems †

    PubMed Central

    Aghaeinezhadfirouzja, Saeid; Liu, Hui

    2018-01-01

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data. PMID:29649177

  20. Fabrication of optical waveguides using laser direct writing method

    NASA Astrophysics Data System (ADS)

    Cho, Sung H.; Kim, Jung Min; Kim, Jae G.; Chang, Won S.; Lee, Eung S.

    2004-09-01

    Laser direct writing (LDW) process is developed using 3-rd harmonic Diode Pumped Solid State Laser (DPSSL) with the near UV wavelength of 355 nm. Photo-sensitive curable polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D patterns. We performed basic experiments for the various process conditions such as laser power, writing speed, laser focus, and optical polymer property to get the optimal conditions. This process could be applied to fabricate a single-mode waveguide without expensive mask projection method. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8.4μm width and 7.5μm height. Propagation loss of planar waveguide was 1.42 dB/cm at wavelength of 1,550 nm.

  1. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  2. Quasi-crystalline and disordered photonic structures fabricated using direct laser writing

    NASA Astrophysics Data System (ADS)

    Sinelnik, Artem D.; Pinegin, Konstantin V.; Bulashevich, Grigorii A.; Rybin, Mikhail V.; Limonov, Mikhail F.; Samusev, Kirill B.

    2017-09-01

    Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.

  3. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  4. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    NASA Astrophysics Data System (ADS)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  5. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  6. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lanctot, M. J.; Lasnier, C. L.; Mordijck, S.; Moyer, R. A.; Reimerdes, H.; the DIII-D Team

    2014-01-01

    First time experimental evidence is presented for a direct link between the decay of a n = 3 plasma response and the formation of a three-dimensional (3D) plasma boundary. We inspect a lower single-null L-mode plasma which first reacts at sufficiently high rotation with an ideal resonant screening response to an external toroidal mode number n = 3 resonant magnetic perturbation field. Decay of this response due to reduced bulk plasma rotation changes the plasma state considerably. Signatures such as density pump out and a spin up of the edge rotation—which are usually connected to formation of a stochastic boundary—are detected. Coincident, striation of the divertor single ionized carbon emission and a 3D emission structure in double ionized carbon at the separatrix is seen. The striated C II pattern follows in this stage the perturbed magnetic footprint modelled without a plasma response (vacuum approach). This provides for the first time substantial experimental evidence, that a 3D plasma boundary with direct impact on the divertor particle flux pattern is formed as soon as the internal plasma response decays. The resulting divertor structure follows the vacuum modelled magnetic field topology. However, the inward extension of the perturbed boundary layer can still not directly be determined from these measurements.

  7. Site-specific strong ground motion prediction using 2.5-D modelling

    NASA Astrophysics Data System (ADS)

    Narayan, J. P.

    2001-08-01

    An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of the site with respect to the epicentre. This adjustment is necessary since the response is computed keeping the epicentre, focus and the desired site in the same xz-plane, with the x-axis pointing in the north direction.

  8. Laser Fabrication of Two-Dimensional Rotating-Lattice Single Crystal

    DOE PAGES

    Savytskii, Dmytro; Au-Yeung, Courtney; Dierolf, Volkmar; ...

    2017-03-09

    A rotating lattice single (RLS) crystal is a unique form of solid, which was fabricated recently as one-dimensional architecture in glass via solid state transformation induced by laser irradiation. In these objects, the lattice rotates gradually and predictably about an axis that lies in the plane of the crystal and is normal to the laser scanning direction. This paper reports on the fabrication of Sb 2S 3 two-dimensional (2D) RLS crystals on the surface of 16SbI 3-84Sb 2S 3 glass, as a model example: individual RLS crystal lines are joined together using "stitching" or "rastering" as two successful protocols. Themore » electron back scattered diffraction mapping and scanning Laue X-ray microdiffraction of the 2D RLS crystals show gradual rotation of lattice comprising of two components, one along the length of each line and another normal to this direction. The former component is determined by the rotation of the first line of the 2D pattern, but the relative contribution of the last component depends on the extent of overlap between two successive lines. By the appropriate choice of initial seed orientation and the direction of scanning, it is possible to control the lattice rotation, and even to reduce it down to 5 for a 50 × 50 μm 2 2D pattern of Sb 2S 3 crystal.« less

  9. Three-dimensional imaging of nanoscale materials by using coherent x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jianwei

    X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less

  10. Three-dimensional chimera patterns in networks of spiking neuron oscillators

    NASA Astrophysics Data System (ADS)

    Kasimatis, T.; Hizanidis, J.; Provata, A.

    2018-05-01

    We study the stable spatiotemporal patterns that arise in a three-dimensional (3D) network of neuron oscillators, whose dynamics is described by the leaky integrate-and-fire (LIF) model. More specifically, we investigate the form of the chimera states induced by a 3D coupling matrix with nonlocal topology. The observed patterns are in many cases direct generalizations of the corresponding two-dimensional (2D) patterns, e.g., spheres, layers, and cylinder grids. We also find cylindrical and "cross-layered" chimeras that do not have an equivalent in 2D systems. Quantitative measures are calculated, such as the ratio of synchronized and unsynchronized neurons as a function of the coupling range, the mean phase velocities, and the distribution of neurons in mean phase velocities. Based on these measures, the chimeras are categorized in two families. The first family of patterns is observed for weaker coupling and exhibits higher mean phase velocities for the unsynchronized areas of the network. The opposite holds for the second family, where the unsynchronized areas have lower mean phase velocities. The various measures demonstrate discontinuities, indicating criticality as the parameters cross from the first family of patterns to the second.

  11. Components, Assembly and Electrochemical Properties of Three-Dimensional Battery Architectures

    DTIC Science & Technology

    2016-03-01

    batteries is directed at our project on 3-D lithium - ion batteries where improvements in materials and fabrication methods are expected to facilitate...reporting period, we focused on new materials and electrode array fabrication processes for 3-D lithium - ion batteries and made substantial progress. In...to facilitate the assembly of a full 3-D lithium - ion battery system. a Pattern silicon dioxide etch I I I I I mask b DRIE etch silicon posts c I I

  12. High-speed 3D imaging using digital binary defocusing method vs sinusoidal method

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Hyun, Jae-Sang; Li, Beiwen

    2017-02-01

    This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  13. Future direction of direct writing

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Soo; Han, Kenneth N.

    2010-11-01

    Direct write technology using special inks consisting of finely dispersed metal nanoparticles in liquid is receiving an undivided attention in recent years for its wide range of applicability in modern electronic industry. The application of this technology covers radio frequency identification-tag (RFID-tag), flexible-electronics, organic light emitting diodes (OLED) display, e-paper, antenna, bumpers used in flip-chip, underfilling, frit, miniresistance applications and biological uses, artificial dental applications and many more. In this paper, the authors have reviewed various direct write technologies on the market and discussed their advantages and shortfalls. Emphasis has given on microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and ink-jet technologies. All of these technologies allow printing various patterns without employing a mask or a resist with an enhanced speed with the aid of computer. MDDW and M3D are capable of drawing patterns in three-dimension and MDDW, in particular, is capable of writing nanoinks with high viscosity. However, it is still far away for direct write to be fully implemented in the commercial arena. One of the hurdles to overcome is in manufacturing conductive inks which are chemically and physically stable, capable of drawing patterns with acceptable conductivity, and also capable of drawing patterns with acceptable adhesiveness with the substrates. The authors have briefly discussed problems involved in manufacturing nanometal inks to be used in various writing devices. There are numerous factors to be considered in manufacturing such inks. They are reducing agents, concentrations, oxidation, compact ability allowing good conductivity, and stability in suspension.

  14. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  15. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  16. Disruption of direct 3D telomere-TRF2 interaction through two molecularly disparate mechanisms is a hallmark of primary Hodgkin and Reed-Sternberg cells.

    PubMed

    Knecht, Hans; Johnson, Nathalie A; Haliotis, Tina; Lichtensztejn, Daniel; Mai, Sabine

    2017-07-01

    In classical Hodgkin's lymphoma (cHL), specific changes in the 3D telomere organization cause progression from mononuclear Hodgkin cells (H) to multinucleated Reed-Sternberg cells (RS). In a post-germinal center B-cell in vitro model, permanent latent membrane protein 1 (LMP1) expression, as observed in Epstein-Barr virus (EBV)-associated cHL, results in multinuclearity and complex chromosomal aberrations through downregulation of key element of the shelterin complex, the telomere repeat binding factor 2 (TRF2). Thus, we hypothesized that the three-dimensional (3D) telomere-TRF2 interaction was progressively disturbed during transition from H to RS cells. To this end, we developed and applied for the first time a combined quantitative 3D TRF2-telomere immune fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) technique to monolayers of primary H and RS cells, and adjacent benign internal control lymphocytes of lymph node biopsy suspensions from diagnostic lymph node biopsies of 14 patients with cHL. We show that H and RS cells are characterized by two distinct patterns of disruption of 3D telomere-TRF2 interaction. Disruption pattern A is defined by massive attrition of telomere signals and a considerable increase of TRF2 signals not associated with telomeres. This pattern is restricted to EBV-negative cHL. Disruption pattern B is defined by telomere de-protection due to an impressive loss of TRF2 signals, physically linked to telomeres. This pattern is typical of, but is not restricted to, LMP1+EBV-associated cHL. In the disruption pattern B group, so-called 'ghost' end-stage RS cells, void of both TRF2 and telomere signals, were identified, whether or not associated with EBV. Our findings demonstrate that two molecularly disparate mechanisms converge on the level of 3D telomere-TRF2 interaction in the formation of RS cells.

  17. Performance analysis of a brushless dc motor due to magnetization distribution in a continuous ring magnet

    NASA Astrophysics Data System (ADS)

    Hur, Jin; Jung, In-Soung; Sung, Ha-Gyeong; Park, Soon-Sup

    2003-05-01

    This paper represents the force performance of a brushless dc motor with a continuous ring-type permanent magnet (PM), considering its magnetization patterns: trapezoidal, trapezoidal with dead zone, and unbalanced trapezoidal magnetization with dead zone. The radial force density in PM motor causes vibration, because vibration is induced the traveling force from the rotating PM acting on the stator. Magnetization distribution of the PM as well as the shape of the teeth determines the distribution of force density. In particular, the distribution has a three-dimensional (3-D) pattern because of overhang, that is, it is not uniform in axial direction. Thus, the analysis of radial force density required dynamic analysis considering the 3-D shape of the teeth and overhang. The results show that the force density as a source of vibration varies considerably depending on the overhang and magnetization distribution patterns. In addition, the validity of the developed method, coupled 3-D equivalent magnetic circuit network method, with driving circuit and motion equation, is confirmed by comparison of conventional method using 3D finite element method.

  18. Flexible fabrication of multi-scale integrated 3D periodic nanostructures with phase mask

    NASA Astrophysics Data System (ADS)

    Yuan, Liang Leon

    Top-down fabrication of artificial nanostructures, especially three-dimensional (3D) periodic nanostructures, that forms uniform and defect-free structures over large area with the advantages of high throughput and rapid processing and in a manner that can further monolithically integrate into multi-scale and multi-functional devices is long-desired but remains a considerable challenge. This thesis study advances diffractive optical element (DOE) based 3D laser holographic nanofabrication of 3D periodic nanostructures and develops new kinds of DOEs for advanced diffracted-beam control during the fabrication. Phase masks, as one particular kind of DOE, are a promising direction for simple and rapid fabrication of 3D periodic nanostructures by means of Fresnel diffraction interference lithography. When incident with a coherent beam of light, a suitable phase mask (e.g. with 2D nano-grating) can create multiple diffraction orders that are inherently phase-locked and overlap to form a 3D light interference pattern in the proximity of the DOE. This light pattern is typically recorded in photosensitive materials including photoresist to develop into 3D photonic crystal nanostructure templates. Two kinds of advanced phase masks were developed that enable delicate phase control of multiple diffraction beams. The first exploits femtosecond laser direct writing inside fused silica to assemble multiple (up to nine) orthogonally crossed (2D) grating layers, spaced on Talbot planes to overcome the inherent weak diffraction efficiency otherwise found in low-contrast volume gratings. A systematic offsetting of orthogonal grating layers to establish phase offsets over 0 to pi/2 range provided precise means for controlling the 3D photonic crystal structure symmetry between body centered tetragonal (BCT) and woodpile-like tetragonal (wTTR). The second phase mask consisted of two-layered nanogratings with small sub-wavelength grating periods and phase offset control. That was designed with isotropic properties attractive for generating a complete photonic band gap (PBG). An isolation layer was used between adjacent polymer layers to offer a reversal coating for sample preparation of scanning electron microscopy (SEM) imaging and top surface planarization. Electron beam lithography has been employed to fabricate a multi-level nano-grating phase mask that produces a diamond-like 3D nanostructure via phase mask lithography, promising for creating photonic crystal (PC) templates that can be inverted with high-index materials and form a complete PBG at telecommunication wavelengths. A laser scanning holographic method for 3D exposure in thick photoresist is introduced that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form highly uniform 3D nanostructure with beam size scaled to small 200 microm diameter. Further direct-write holography demonstrates monolithical writing of multi-scale lab-on-a-chip with multiple functionalities including on-chip integrated fluorescence. Various 3D periodic nanostructures are demonstrated over a 15 mmx15 mm area, through full 40 microm photoresist thickness and with uniform structural and optical properties revealed by focused ion beam (FIB) milling, SEM imaging and stopband measures. The lateral and axial periods scale from respective 1500 nm to 570 nm and 9.2 microm to 1.2 microm to offer a Gamma-Z stopband at 1.5 microm. Overall, laser scanning is presented as a facile means to embed 3D PC nanostructure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  19. UDOF direct improvement by modulating mask absorber thickness

    NASA Astrophysics Data System (ADS)

    Yu, Tuan-Yen; Lio, En Chuan; Chen, Po Tsang; Wei, Chih I.; Chen, Yi Ting; Peng, Ming Chun; Chou, William; Yu, Chun Chi

    2016-10-01

    As the process generation migrate to advanced and smaller dimension or pitch, the mask and resist 3D effects will impact the lithography focus common window severely because of both individual depth-of-focus (iDOF) range decrease and center mismatch. Furthermore, some chemical or thermal factors, such as PEB (Post Exposure Bake) also worsen the usable depth-of-focus (uDOF) performance. So the mismatch of thru-pitch iDOF center should be considered as a lithography process integration issue, and more complicated to partition the 3D effects induced by optical or chemical factors. In order to reduce the impact of 3D effects induced by both optical and chemical issues, and improve iDOF center mismatch, we would like to propose a mask absorber thickness offset approach, which is directly to compensate the iDOF center bias by adjusting mask absorber thickness, for iso, semi-iso or dense characteristics in line, space or via patterns to enlarge common process window, i.e uDOF, which intends to provide similar application as Flexwave[1] (ASML trademark). By the way, since mask absorber thickness offset approach is similar to focus tuning or change on wafer lithography process, it could be acted as the process tuning method of photoresist (PR) profile optimization locally, PR scum improvement in specific patterns or to modulate etching bias to meet process integration request. For mass production consideration, and available material, current att-PSM blank, quartz, MoSi with chrome layer as hard-mask in reticle process, will be implemented in this experiment, i.e. chrome will be kept remaining above partial thru-pitch patterns, and act as the absorber thickness bias in different patterns. And then, from the best focus offset of thru-pitch patterns, the iDOF center shifts could be directly corrected and to enlarge uDOF by increasing the overlap of iDOF. Finally, some negative tone development (NTD) result in line patterns will be demonstrated as well.

  20. Azimuthal sound localization in the European starling (Sturnus vulgaris): I. Physical binaural cues.

    PubMed

    Klump, G M; Larsen, O N

    1992-02-01

    The physical measurements reported here test whether the European starling (Sturnus vulgaris) evaluates the azimuth direction of a sound source with a peripheral auditory system composed of two acoustically coupled pressure-difference receivers (1) or of two decoupled pressure receivers (2). A directional pattern of sound intensity in the free-field was measured at the entrance of the auditory meatus using a probe microphone, and at the tympanum using laser vibrometry. The maximum differences in the sound-pressure level measured with the microphone between various speaker positions and the frontal speaker position were 2.4 dB at 1 and 2 kHz, 7.3 dB at 4 kHz, 9.2 dB at 6 kHz, and 10.9 dB at 8 kHz. The directional amplitude pattern measured by laser vibrometry did not differ from that measured with the microphone. Neither did the directional pattern of travel times to the ear. Measurements of the amplitude and phase transfer function of the starling's interaural pathway using a closed sound system were in accord with the results of the free-field measurements. In conclusion, although some sound transmission via the interaural canal occurred, the present experiments support the hypothesis 2 above that the starling's peripheral auditory system is best described as consisting of two functionally decoupled pressure receivers.

  1. Large area micro-/nano-structuring using direct laser interference patterning

    NASA Astrophysics Data System (ADS)

    Lasagni, Andrés. F.; Kunze, Tim; Bieda, Matthias; Günther, Denise; Gärtner, Anne; Lang, Valentin; Rank, Andreas; Roch, Teja

    2016-03-01

    Smart surfaces are a source of innovation in the 21st Century. Potential applications can be found in a wide range of fields where improved optical, mechanical or biological properties can enhance the functions of products. In the last years, a method called Direct Laser Interference Patterning (DLIP) has demonstrated to be capable of fabricating a wide range of periodic surface patterns even with resolution at the nanometer and sub-micrometer scales. This article describes recent advances of the DLIP method to process 2D and 3D parts. Firstly, the possibility to fabricate periodic arrays on metallic substrates with sub-micrometer resolution is shown. After that, different concepts to process three dimensional parts are shown, including the use of Cartesian translational stages as well as an industrial robot arm. Finally, some application examples are described.

  2. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  3. Fabrication of 3D surface structures using grayscale lithography

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.

    2014-03-01

    The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.

  4. Fringe-projection profilometry based on two-dimensional empirical mode decomposition.

    PubMed

    Zheng, Suzhen; Cao, Yiping

    2013-11-01

    In 3D shape measurement, because deformed fringes often contain low-frequency information degraded with random noise and background intensity information, a new fringe-projection profilometry is proposed based on 2D empirical mode decomposition (2D-EMD). The fringe pattern is first decomposed into numbers of intrinsic mode functions by 2D-EMD. Because the method has partial noise reduction, the background components can be removed to obtain the fundamental components needed to perform Hilbert transformation to retrieve the phase information. The 2D-EMD can effectively extract the modulation phase of a single direction fringe and an inclined fringe pattern because it is a full 2D analysis method and considers the relationship between adjacent lines of a fringe patterns. In addition, as the method does not add noise repeatedly, as does ensemble EMD, the data processing time is shortened. Computer simulations and experiments prove the feasibility of this method.

  5. A High-Resolution 3D Separated-Local-Field Experiment by Means of Magic-Angle Turning

    PubMed

    Hu; Alderman; Pugmire; Grant

    1997-05-01

    A 3D separated-local-field (SLF) experiment based on the 2D PHORMAT technique is described. In the 3D experiment, the conventional 2D SLF powder pattern for each chemically inequivalent carbon is separated according to their different isotropic chemical shifts. The dipolar coupling constant of a C-H pair, hence the bond distance, and the relative orientation of the chemical-shift tensor to the C-H vector can all be determined for the protonated carbons with a single measurement. As the sample turns at only about 30 Hz in a MAT experiment, the SLF patterns obtained approach those of a stationary sample, and an accuracy in the measurement similar to that obtained on a stationary sample is expected. The technique is demonstrated on 2,6-dimethoxynaphthalene, where the 13 C-1 H separated-local-field powder patterns for the six chemically inequivalent carbons are clearly identified and measured. The observed dipolar coupling for the methoxy carbon is effectively reduced by the fast rotation of the group about its C3 symmetry axis. The average angle between the C-H bond direction and the C3 rotation axis in the OCH3 group is found to be about 66°.

  6. Topologically Micropatterned Collagen and Poly(ε-caprolactone) Struts Fabricated Using the Poly(vinyl alcohol) Fibrillation/Leaching Process To Develop Efficiently Engineered Skeletal Muscle Tissue.

    PubMed

    Kim, Minseong; Kim, WonJin; Kim, GeunHyung

    2017-12-20

    Optimally designed three-dimensional (3D) biomedical scaffolds for skeletal muscle tissue regeneration pose significant research challenges. Currently, most studies on scaffolds focus on the two-dimensional (2D) surface structures that are patterned in the micro-/nanoscales with various repeating sizes and shapes to induce the alignment of myoblasts and myotube formation. The 2D patterned surface clearly provides effective analytical results of pattern size and shape of the myoblast alignment and differentiation. However, it is inconvenient in terms of the direct application for clinical usage due to the limited thickness and 3D shapeability. Hence, the present study suggests an innovative hydrogel or synthetic structure that consists of uniaxially surface-patterned cylindrical struts for skeleton muscle regeneration. The alignment of the pattern on the hydrogel (collagen) and poly(ε-caprolactone) struts was attained with the fibrillation of poly(vinyl alcohol) and the leaching process. Various cell culture results indicate that the C2C12 cells on the micropatterned collagen structure were fully aligned, and that a significantly high level of myotube formation was achieved when compared to the collagen structures that were not treated with the micropatterning process.

  7. Does shape co-variation between the skull and the mandible have functional consequences? A 3D approach for a 3D problem

    PubMed Central

    Cornette, Raphaël; Baylac, Michel; Souter, Thibaud; Herrel, Anthony

    2013-01-01

    Morpho-functional patterns are important drivers of phenotypic diversity given their importance in a fitness-related context. Although modularity of the mandible and skull has been studied extensively in mammals, few studies have explored shape co-variation between these two structures. Despite being developmentally independent, the skull and mandible form a functionally integrated unit. In the present paper we use 3D surface geometric morphometric methods allowing us to explore the form of both skull and mandible in its 3D complexity using the greater white-toothed shrew as a model. This approach allows an accurate 3D description of zones devoid of anatomical landmarks that are functionally important. Two-block partial least-squares approaches were used to describe the co-variation of form between skull and mandible. Moreover, a 3D biomechanical model was used to explore the functional consequences of the observed patterns of co-variation. Our results show the efficiency of the method in investigations of complex morpho-functional patterns. Indeed, the description of shape co-variation between the skull and the mandible highlighted the location and the intensity of their functional relationships through the jaw adductor muscles linking these two structures. Our results also demonstrated that shape co-variation in form between the skull and mandible has direct functional consequences on the recruitment of muscles during biting. PMID:23964811

  8. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.

    PubMed

    Yuk, Hyunwoo; Zhao, Xuanhe

    2018-02-01

    Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    NASA Astrophysics Data System (ADS)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  10. Direct single-layered fabrication of 3D concavo convex patterns in nano-stereolithography

    NASA Astrophysics Data System (ADS)

    Lim, T. W.; Park, S. H.; Yang, D. Y.; Kong, H. J.; Lee, K. S.

    2006-09-01

    A nano-surfacing process (NSP) is proposed to directly fabricate three-dimensional (3D) concavo convex-shaped microstructures such as micro-lens arrays using two-photon polymerization (TPP), a promising technique for fabricating arbitrary 3D highly functional micro-devices. In TPP, commonly utilized methods for fabricating complex 3D microstructures to date are based on a layer-by-layer accumulating technique employing two-dimensional sliced data derived from 3D computer-aided design data. As such, this approach requires much time and effort for precise fabrication. In this work, a novel single-layer exposure method is proposed in order to improve the fabricating efficiency for 3D concavo convex-shaped microstructures. In the NSP, 3D microstructures are divided into 13 sub-regions horizontally with consideration of the heights. Those sub-regions are then expressed as 13 characteristic colors, after which a multi-voxel matrix (MVM) is composed with the characteristic colors. Voxels with various heights and diameters are generated to construct 3D structures using a MVM scanning method. Some 3D concavo convex-shaped microstructures were fabricated to estimate the usefulness of the NSP, and the results show that it readily enables the fabrication of single-layered 3D microstructures.

  11. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.

    PubMed

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook

    2017-01-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.

  12. Relation between the Macroscopic Pattern of Elephant Ivory and Its Three-Dimensional Micro-Tubular Network

    PubMed Central

    Albéric, Marie; Dean, Mason N.; Gourrier, Aurélien; Wagermaier, Wolfgang; Dunlop, John W. C.; Staude, Andreas; Fratzl, Peter; Reiche, Ina

    2017-01-01

    Macroscopic, periodic, dark and bright patterns are observed on sections of elephant tusk, in the dentin part (ivory). The motifs—also called Schreger pattern—vary depending on the orientation in the tusk: on sections perpendicular to the tusk axis, a checkerboard pattern is present whereas on sections longitudinal to it, alternating stripes are observed. This pattern has been used to identify elephant and mammoth ivory in archeological artifacts and informs on the continuous tissue growth mechanisms of tusk. However, its origin, assumed to be related to the 3D structure of empty microtubules surrounded by the ivory matrix has yet to be characterized unequivocally. Based on 2D observations of the ivory microtubules by means of a variety of imaging techniques of three different planes (transverse, longitudinal and tangential to the tusk axis), we show that the dark areas of the macroscopic pattern are due to tubules oblique to the surface whereas bright areas are related to tubules parallel to it. The different microstructures observed in the three planes as well as the 3D data obtained by SR-μCT analysis allow us to propose a 3D model of the microtubule network with helical tubules phase-shifted in the tangential direction. The phase shift is a combination of a continuous phase shift of π every 1 mm with a stepwise phase shift of π/2 every 500 μm. By using 3D modeling, we show how the 3D helical model better represents the experimental microstructure observed in 2D planes compared to previous models in the literature. This brings new information on the origin of the unique Schreger pattern of elephant ivory, crucial for better understanding how archaeological objects were processed and for opening new routes to rethink how biological materials are built. PMID:28125603

  13. 3D mapping of breast surface using digital fringe projection

    NASA Astrophysics Data System (ADS)

    Vairavan, Rajendaran; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Leng, Lai Siang; Wan Norhaimi, Wan Mokhzani; Marimuthu, Rajeswaran; Abdullah, Othman; Kirtsaeng, Supap

    2017-02-01

    Optical sensing technique has inherited non-contact nature for generating 3D surface mapping where its application ranges from MEMS component characterization, corrosion analysis, and vibration analysis. In particular, the digital fringe projection is utilized for 3D mapping of objects through the illumination of structured light for medical application extending from oral dental measurements, lower back deformation analysis, monitoring of scoliosis and 3D face reconstruction for biometric identification. However, the usage of digital fringe projection for 3D mapping of human breast is very minimal. Thus, this paper addresses the application of digital fringe projection for 3D mapping of breast surface based on total non-contact nature. In this work, phase shift method is utilized to perform the 3D mapping. The phase shifted fringe pattern are displayed through a digital projector onto the breast surface, and the distorted fringe patterns are captured by a CCD camera. A phase map is produced, and phase unwrapping was executed to obtain the 3D surface mapping of the breast. The surface height profile from 3D fringe projection was compared with the surface height measured by a direct method using electronic digital vernier caliper. Preliminary results showed the feasibility of digital fringe projection in providing a 3D mapping of breast and its application could be further extended for breast carcinoma detection.

  14. TU-H-CAMPUS-IeP2-05: Breast and Soft Tissue-Equivalent 3D Printed Phantoms for Imaging and Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hintenlang, D; Terracino, B

    Purpose: The study has the goal to demonstrate that breast and soft tissue-equivalent phantoms for dosimetry applications in the diagnostic energy range can be fabricated using common 3D printing methods. Methods: 3D printing provides the opportunity to rapidly prototype uniquely designed objects from a variety of materials. Common 3D printers are usually limited to printing objects based on thermoplastic materials such as PLA, or ABS. The most commonly available plastic is PLA, which has a density significantly greater than soft tissue. We utilized a popular 3D printer to demonstrate that tissue specific phantom materials can be generated through the carefulmore » selection of 3D printing parameters. A series of stepwedges were designed and printed using a Makerbot Replicator2 3D printing system. The print file provides custom adjustment of the infill density, orientation and position of the object on the printer stage, selection of infill patterns, and other control parameters. The x-ray attenuation and uniformity of fabricated phantoms were evaluated and compared to common tissue-equivalent phantom materials, acrylic and BR12. X-ray exposure measurements were made using narrow beam geometry on a clinical mammography unit at 28 kVp on the series of phantoms. The 3D printed phantoms were imaged at 28 kVp to visualize the internal structure and uniformity in different planes of the phantoms. Results: By utilizing specific in-fill density and patterns we are able to produce a phantom closely matching the attenuation characteristics of BR12 at 28 kVp. The in-fill patterns used are heterogeneous, so a judicious selection of fill pattern and the orientation of the fill pattern must be made in order to obtain homogenous attenuation along the intended direction of beam propagation. Conclusions: By careful manipulation of the printing parameters, breast and soft tissue-equivalent phantoms appropriate for use at imaging energies can be fabricated using 3D printing techniques.« less

  15. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.

    PubMed

    Gramigna, V; Caruso, M V; Rossi, M; Serraino, G F; Renzulli, A; Fragomeni, G

    2015-01-01

    In the modern era, stroke remains a main cause of morbidity after cardiac surgery despite continuing improvements in the cardiopulmonary bypass (CPB) techniques. The aim of the current work was to numerically investigate the blood flow in aorta and epiaortic vessels during standard and pulsed CPB, obtained with the intra-aortic balloon pump (IABP). A multi-scale model, realized coupling a 3D computational fluid dynamics study with a 0D model, was developed and validated with in vivo data. The presence of IABP improved the flow pattern directed towards the epiaortic vessels with a mean flow increase of 6.3% and reduced flow vorticity.

  16. Motion processing with two eyes in three dimensions.

    PubMed

    Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2011-02-11

    The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.

  17. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  18. Controllable curvature from planar polymer sheets in response to light.

    PubMed

    Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan

    2017-03-22

    The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, T a . We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.

  19. Signatures of personality on dense 3D facial images.

    PubMed

    Hu, Sile; Xiong, Jieyi; Fu, Pengcheng; Qiao, Lu; Tan, Jingze; Jin, Li; Tang, Kun

    2017-03-06

    It has long been speculated that cues on the human face exist that allow observers to make reliable judgments of others' personality traits. However, direct evidence of association between facial shapes and personality is missing from the current literature. This study assessed the personality attributes of 834 Han Chinese volunteers (405 males and 429 females), utilising the five-factor personality model ('Big Five'), and collected their neutral 3D facial images. Dense anatomical correspondence was established across the 3D facial images in order to allow high-dimensional quantitative analyses of the facial phenotypes. In this paper, we developed a Partial Least Squares (PLS) -based method. We used composite partial least squares component (CPSLC) to test association between the self-tested personality scores and the dense 3D facial image data, then used principal component analysis (PCA) for further validation. Among the five personality factors, agreeableness and conscientiousness in males and extraversion in females were significantly associated with specific facial patterns. The personality-related facial patterns were extracted and their effects were extrapolated on simulated 3D facial models.

  20. Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior

    NASA Astrophysics Data System (ADS)

    Meco, Edi; Lampe, Kyle J.

    2018-02-01

    Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  1. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    PubMed

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune different neuronal subtypes in 3-D differentiation from hiPSCs and the differential cellular responses of region-specific neuronal subtypes to various biomolecules have not been fully investigated. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog signaling, this study provides knowledge on the differential susceptibility of region-specific neuronal subtypes derived from hiPSCs to different biomolecules in extracellular matrix remodeling and neurotoxicity. The findings are significant for understanding 3-D neural patterning of hiPSCs for the applications in brain organoid formation, neurological disease modeling, and drug discovery. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. 802GHz integrated horn antennas imaging array

    NASA Technical Reports Server (NTRS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-01-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  3. BRDF-dependent accuracy of array-projection-based 3D sensors.

    PubMed

    Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther

    2017-03-10

    In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.

  4. Pattern Informatics Approach to Earthquake Forecasting in 3D

    NASA Astrophysics Data System (ADS)

    Toya, Y.; Tiampo, K. F.; Rundle, J. B.; Chen, C.; Li, H.; Klein, W.

    2009-05-01

    Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale (e.g., seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi's donut. Recognizing that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. in 2002 [Europhys. Lett., 60 (3), 481-487,] Rundle et al., 2002 [PNAS 99, suppl. 1, 2514-2521.] In this study, we expand the PI approach to forecasting earthquakes into the third, or vertical dimension, and illustrate its further improvement in the forecasting performance through case studies of both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns as angular drifts of a unit state vector in a high dimensional correlation space, and systematically identifies anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting tool. [Submitted to: Concurrency and Computation: Practice and Experience, Wiley, Special Issue: ACES2008.

  5. Window-based method for approximating the Hausdorff in three-dimensional range imagery

    DOEpatents

    Koch, Mark W [Albuquerque, NM

    2009-06-02

    One approach to pattern recognition is to use a template from a database of objects and match it to a probe image containing the unknown. Accordingly, the Hausdorff distance can be used to measure the similarity of two sets of points. In particular, the Hausdorff can measure the goodness of a match in the presence of occlusion, clutter, and noise. However, existing 3D algorithms for calculating the Hausdorff are computationally intensive, making them impractical for pattern recognition that requires scanning of large databases. The present invention is directed to a new method that can efficiently, in time and memory, compute the Hausdorff for 3D range imagery. The method uses a window-based approach.

  6. [Applications of 2D and 3D landscape pattern indices in landscape pattern analysis of mountainous area at county level].

    PubMed

    Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na

    2012-05-01

    Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.

  7. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  8. Work step indication with grid-pattern projection for demented senior people.

    PubMed

    Uranishi, Yuki; Yamamoto, Goshiro; Asghar, Zeeshan; Pulli, Petri; Kato, Hirokazu; Oshiro, Osamu

    2013-01-01

    This paper proposes a work step indication method for supporting daily work with a grid-pattern projection. To support an independent life of demented senior people, it is desirable that an instruction is easy to understand visually and not complicated. The proposed method in this paper uses a range image sensor and a camera in addition to a projector. A 3D geometry of a target scene is measured by the range image sensor, and the grid-pattern is projected onto the scene directly. Direct projection of the work step is easier to be associated with the target objects around the assisted person, and the grid-pattern is a solution to indicate the spatial instruction. A prototype has been implemented and has demonstrated that the proposed grid-pattern projection is easy to show the work step.

  9. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.

    PubMed

    Freud, Erez; Macdonald, Scott N; Chen, Juan; Quinlan, Derek J; Goodale, Melvyn A; Culham, Jody C

    2018-01-01

    In the current era of touchscreen technology, humans commonly execute visually guided actions directed to two-dimensional (2D) images of objects. Although real, three-dimensional (3D), objects and images of the same objects share high degree of visual similarity, they differ fundamentally in the actions that can be performed on them. Indeed, previous behavioral studies have suggested that simulated grasping of images relies on different representations than actual grasping of real 3D objects. Yet the neural underpinnings of this phenomena have not been investigated. Here we used functional magnetic resonance imaging (fMRI) to investigate how brain activation patterns differed for grasping and reaching actions directed toward real 3D objects compared to images. Multivoxel Pattern Analysis (MVPA) revealed that the left anterior intraparietal sulcus (aIPS), a key region for visually guided grasping, discriminates between both the format in which objects were presented (real/image) and the motor task performed on them (grasping/reaching). Interestingly, during action planning, the representations of real 3D objects versus images differed more for grasping movements than reaching movements, likely because grasping real 3D objects involves fine-grained planning and anticipation of the consequences of a real interaction. Importantly, this dissociation was evident in the planning phase, before movement initiation, and was not found in any other regions, including motor and somatosensory cortices. This suggests that the dissociable representations in the left aIPS were not based on haptic, motor or proprioceptive feedback. Together, these findings provide novel evidence that actions, particularly grasping, are affected by the realness of the target objects during planning, perhaps because real targets require a more elaborate forward model based on visual cues to predict the consequences of real manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Highly noise-tolerant hybrid algorithm for phase retrieval from a single-shot spatial carrier fringe pattern

    NASA Astrophysics Data System (ADS)

    Dong, Zhichao; Cheng, Haobo

    2018-01-01

    A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.

  11. Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks.

    PubMed

    Limongi, Tania; Cesca, Fabrizia; Gentile, Francesco; Marotta, Roberto; Ruffilli, Roberta; Barberis, Andrea; Dal Maschio, Marco; Petrini, Enrica Maria; Santoriello, Stefania; Benfenati, Fabio; Di Fabrizio, Enzo

    2013-02-11

    The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites adhere to the nanopatterned pillar sidewalls and they are subsequently pulled between pillars in a suspended position. These neurons display an enhanced survival rate compared to standard cultures and develop mature networks with physiological excitability. These findings underline the importance of using nanostructured SH surfaces for directing 3D neuronal growth, as well as for the design of biomaterials for neuronal regeneration. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Extending X-Ray Crystallography to Allow the Imaging of Noncrystalline Materials, Cells, and Single Protein Complexes

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Ishikawa, Tetsuya; Shen, Qun; Earnest, Thomas

    2008-05-01

    In 1999, researchers extended X-ray crystallography to allow the imaging of noncrystalline specimens by measuring the X-ray diffraction pattern of a noncrystalline specimen and then directly phasing it using the oversampling method with iterative algorithms. Since then, the field has evolved moving in three important directions. The first is the 3D structural determination of noncrystalline materials, which includes the localization of the defects and strain field inside nanocrystals, and quantitative 3D imaging of disordered materials such as nanoparticles and biomaterials. The second is the 3D imaging of frozen-hydrated whole cells at a resolution of 10 nm or better. A main thrust is to localize specific multiprotein complexes inside cells. The third is the potential of imaging single large protein complexes using extremely intense and ultrashort X-ray pulses. In this article, we review the principles of this methodology, summarize recent developments in each of the three directions, and illustrate a few examples.

  13. A novel orthogonal transmission-virtual grating method and its applications in measuring micro 3-D shape of deformed liquid surface

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Huang, Xianfu; Xie, Huimin

    2013-02-01

    Deformed liquid surface directly involves the surface tension, which can always be used to account for the kinematics of aquatic insects in gas-liquid interface and the light metal floating on the water surface. In this paper a novel method based upon deformed transmission-virtual grating is proposed for determination of deformed liquid surface. By addressing an orthogonal grating (1-5 line/mm) under the transparent water groove and then capturing images from upset of the deformed water surface, a displacement vector of full-field which directly associates the 3-D deformed liquid surface then can be evaluated by processing the recorded deformed fringe pattern in the two directions (x- and y-direction). Theories and equations for the method are thoroughly delivered. Validation test to measure the deformed water surface caused by a Chinese 1-cent coin has been conducted to demonstrate the ability of the developed method. The obtained results show that the method is robust in determination of micro 3-D surface of deformed liquid with a submicron scale resolution and with a wide range application scope.

  14. Three-dimensional finite amplitude electroconvection in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2018-02-01

    Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.

  15. The mystery of perpendicular fivefold axes and the fourth dimension in intermetallic structures.

    PubMed

    Berger, Robert F; Lee, Stephen; Johnson, Jeffreys; Nebgen, Ben; Sha, Fernando; Xu, Jiaqi

    2008-01-01

    The structures of eight related known intermetallic structure types are the impetus to this paper: Li21Si5, Mg44Rh7, Zn13(Fe,Ni)2, Mg6Pd, Na6Tl, Zn91Ir11, Li13Na29Ba19, and Al69Ta39. All belong to the F43m space group, have roughly 400 atoms in their cubic unit cells, are built up at least partially from the gamma-brass structure, and exhibit pseudo-tenfold symmetric diffraction patterns. These pseudo-tenfold axes lie in the {110} directions, and thus present a paradox. The {110} set is comprised of three pairs of perpendicular directions. Yet no 3D point group contains a single pair of perpendicular fivefold axes (by Friedel's Law, a fivefold axis leads to a tenfold diffraction pattern). The current work seeks to resolve this paradox. Its resolution is based on the largest of all 4D Platonic solids, the 600-cell. We first review the 600-cell, building an intuition discussing 4D polyhedroids (4D polytopes). We then show that the positions of common atoms in the F43m structures lie close to the positions of vertices in a 3D projection of the 600-cell. For this purpose, we develop a projection method that we call intermediate projection. The introduction of the 600-cell resolves the above paradox. This 4D Platonic solid contains numerous orthogonal fivefold rotations. The six fivefold directions that are best preserved after projection prove to lie along the {110} directions of the F43m structures. Finally, this paper shows that at certain ideal projected cluster sizes related to one another by the golden mean (tau=(1+ radical 5)/2), constructive interference leading to tenfold diffraction patterns is optimized. It is these optimal values that predominate in actual F43m structures. Explicit comparison of experimental cluster sizes and theoretically derived cluster sizes shows a clear correspondence, both for isolated and crystalline pairs of projected 600-cells.

  16. Recent Advances in Visualizing 3D Flow with LIC

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1998-01-01

    Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.

  17. Novel Nanoscale Materials for Energy Conversion Applications

    DTIC Science & Technology

    2011-03-10

    Kuljanishvili, I. Dikin D., S. Rozhok, S. Mayle, V. Chandrasekhar,: Controllable Patterning and CVD Growth of Isolated Carbon Nanotubes with Direct Parallel...catalyst particles”, I. Kuljanishvili, O. Loh, D. Dikin , H. Espinosa, R. Piner, R. S. Ruoff and V. Chandrasekhar, March Meeting of the Am. Phys. Soc... Dikin , S. Rozhok, S. Mayle and V. Chandrasekhar, March Meeting of the Am. Phys. Soc., Pittsburg, Pennsylvania, 2009 (oral presentation). 3

  18. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.

    PubMed

    Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J

    2017-03-01

    The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.

  19. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting.

    PubMed

    Dubbin, Karen; Hori, Yuki; Lewis, Kazuomori K; Heilshorn, Sarah C

    2016-10-01

    Current bioinks for cell-based 3D bioprinting are not suitable for technology scale-up due to the challenges of cell sedimentation, cell membrane damage, and cell dehydration. A novel bioink hydrogel is presented with dual-stage crosslinking specifically designed to overcome these three major hurdles. This bioink enables the direct patterning of highly viable, multicell type constructs with long-term spatial fidelity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Wigner analysis of three dimensional pupil with finite lateral aperture

    PubMed Central

    Chen, Hsi-Hsun; Oh, Se Baek; Zhai, Xiaomin; Tsai, Jui-Chang; Cao, Liang-Cai; Barbastathis, George; Luo, Yuan

    2015-01-01

    A three dimensional (3D) pupil is an optical element, most commonly implemented on a volume hologram, that processes the incident optical field on a 3D fashion. Here we analyze the diffraction properties of a 3D pupil with finite lateral aperture in the 4-f imaging system configuration, using the Wigner Distribution Function (WDF) formulation. Since 3D imaging pupil is finite in both lateral and longitudinal directions, the WDF of the volume holographic 4-f imager theoretically predicts distinct Bragg diffraction patterns in phase space. These result in asymmetric profiles of diffracted coherent point spread function between degenerate diffraction and Bragg diffraction, elucidating the fundamental performance of volume holographic imaging. Experimental measurements are also presented, confirming the theoretical predictions. PMID:25836443

  1. Zn concentration in esophageal tissue in patients with and without upper gastrointestinal disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, R.K.H.; Kadakia, S.C.; Maydonovitch, C.

    1986-03-05

    Measurements of tissue Zn in humans with upper gastrointestinal disease could provide information about underlying pathophysiology but these data have never been obtained. With recent endoscopic methods they obtained 2-6 mg pinch mucosal biopsies of epithelium and lamina propria from proximal (P), middle (M) and distal (D) areas of esophagus under direct vision through a flexible 1 cm endoscope in 35 subjects without gastrointestinal disease (N) and in 35 patients with the following endoscopically proven gastrointestinal pathology: 12 with esophagitis (E), 14 with duodenal ulcer disease (DU) and 9 with gastritis (G). Samples were dried, weighed, digested with HNO/sub 3/,more » dried, resuspended in 3% HNO/sub 3/ and Zn estimated by flame atomic absorption spectrophotometry. Esophageal Zn in N decreased progressively as biopsies extended from P to D (P, 108 +/- 29 ..mu..g/g dry weight, Mean +/- SEM; M, 158 +/- 23; D, 134 +/- 16) but this pattern was generally reversed in patients, with D consistently demonstrating Zn elevated 50-120% above normal. The greatest increase was in G in whom Zn in D was more than twice normal (DU, 290 +/- 76, p < 0.01). These are the first Zn levels obtained from esophagus in living human subjects and indicate (1) a specific pattern of Zn distribution in normal esophagus and (2) a significantly altered pattern in D in several diseases of the upper gastrointestinal tract.« less

  2. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.

    PubMed

    Nishi, Kengo; Shibayama, Mitsuhiro

    2017-05-03

    Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.

  3. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    NASA Astrophysics Data System (ADS)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  4. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  5. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity.

    PubMed

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-18

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  6. Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation.

    PubMed

    Khodadad, Davood; Singh, Alok Kumar; Pedrini, Giancarlo; Sjödahl, Mikael

    2016-09-20

    The objective of this paper is to describe a full-field deformation measurement method based on 3D speckle displacements. The deformation is evaluated from the slope of the speckle displacement function that connects the different reconstruction planes. For our experiment, a symmetrical arrangement with four illuminations parallel to the planes (x,z) and (y,z) was used. Four sets of speckle patterns were sequentially recorded by illuminating an object from the four directions, respectively. A single camera is used to record the holograms before and after deformations. Digital speckle photography is then used to calculate relative speckle displacements in each direction between two numerically propagated planes. The 3D speckle displacements vector is calculated as a combination of the speckle displacements from the holograms recorded in each illumination direction. Using the speckle displacements, problems associated with rigid body movements and phase wrapping are avoided. In our experiment, the procedure is shown to give the theoretical accuracy of 0.17 pixels yielding the accuracy of 2×10-3 in the measurement of deformation gradients.

  7. Three-dimensional ultrasound strain imaging of skeletal muscles

    NASA Astrophysics Data System (ADS)

    Gijsbertse, K.; Sprengers, A. M. J.; Nillesen, M. M.; Hansen, H. H. G.; Lopata, R. G. P.; Verdonschot, N.; de Korte, C. L.

    2017-01-01

    In this study, a multi-dimensional strain estimation method is presented to assess local relative deformation in three orthogonal directions in 3D space of skeletal muscles during voluntary contractions. A rigid translation and compressive deformation of a block phantom, that mimics muscle contraction, is used as experimental validation of the 3D technique and to compare its performance with respect to a 2D based technique. Axial, lateral and (in case of 3D) elevational displacements are estimated using a cross-correlation based displacement estimation algorithm. After transformation of the displacements to a Cartesian coordinate system, strain is derived using a least-squares strain estimator. The performance of both methods is compared by calculating the root-mean-squared error of the estimated displacements with the calculated theoretical displacements of the phantom experiments. We observe that the 3D technique delivers more accurate displacement estimations compared to the 2D technique, especially in the translation experiment where out-of-plane motion hampers the 2D technique. In vivo application of the 3D technique in the musculus vastus intermedius shows good resemblance between measured strain and the force pattern. Similarity of the strain curves of repetitive measurements indicates the reproducibility of voluntary contractions. These results indicate that 3D ultrasound is a valuable imaging tool to quantify complex tissue motion, especially when there is motion in three directions, which results in out-of-plane errors for 2D techniques.

  8. 2D Analytical Model for the Directivity Prediction of Ultrasonic Contact Type Transducers in the Generation of Guided Waves.

    PubMed

    Tiwari, Kumar Anubhav; Raisutis, Renaldas; Mazeika, Liudas; Samaitis, Vykintas

    2018-03-26

    In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications. The model is demonstrated for P1-type macro-fiber composite (MFC) transducer glued on a 2 mm thick aluminum (Al) alloy plate. The directivity patterns of MFC transducer in the generation of fundamental guided Lamb modes (the S0 and A0) and shear horizontal mode (the SH0) are successfully obtained at 80 kHz, 5-period excitation signal. The results are verified using 3D finite element (FE) modelling and experimental investigation. The results obtained using the proposed model shows the good agreement with those obtained using numerical simulations and experimental analysis. The calculation time using the analytical model was significantly shorter as compared to the time spent in experimental analysis and FE numerical modelling.

  9. Laser-Induced Molybdenum Carbide-Graphene Composites for 3D Foldable Paper Electronics.

    PubMed

    Zang, Xining; Shen, Caiwei; Chu, Yao; Li, Buxuan; Wei, Minsong; Zhong, Junwen; Sanghadasa, Mohan; Lin, Liwei

    2018-05-15

    Versatile and low-cost manufacturing processes/materials are essential for the development of paper electronics. Here, a direct-write laser patterning process is developed to make conductive molybdenum carbide-graphene (MCG) composites directly on paper substrates. The hierarchically porous MCG structures are converted from fibrous paper soaked with the gelatin-mediated inks containing molybdenum ions. The resulting Mo 3 C 2 and graphene composites are mechanically stable and electrochemically active for various potential applications, such as electrochemical ion detectors and gas sensors, energy harvesters, and supercapacitors. Experimentally, the electrical conductivity of the composite is resilient to mechanical deformation with less than 5% degradation after 750 cycles of 180° repeated folding tests. As such, the direct laser conversion of MCGs on papers can be applicable for paper-based electronics, including the 3D origami folding structures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Large-Area Direct Laser-Shock Imprinting of a 3D Biomimic Hierarchical Metal Surface for Triboelectric Nanogenerators.

    PubMed

    Jin, Shengyu; Wang, Yixiu; Motlag, Maithilee; Gao, Shengjie; Xu, Jin; Nian, Qiong; Wu, Wenzhuo; Cheng, Gary J

    2018-03-01

    Ongoing efforts in triboelectric nanogenerators (TENGs) focus on enhancing power generation, but obstacles concerning the economical and cost-effective production of TENGs continue to prevail. Micro-/nanostructure engineering of polymer surfaces has been dominantly utilized for boosting the contact triboelectrification, with deposited metal electrodes for collecting the scavenged energy. Nevertheless, this state-of-the-art approach is limited by the vague potential for producing 3D hierarchical surface structures with conformable coverage of high-quality metal. Laser-shock imprinting (LSI) is emerging as a potentially scalable approach for directly surface patterning of a wide range of metals with 3D nanoscale structures by design, benefiting from the ultrahigh-strain-rate forming process. Here, a TENG device is demonstrated with LSI-processed biomimetic hierarchically structured metal electrodes for efficient harvesting of water-drop energy in the environment. Mimicking and transferring hierarchical microstructures from natural templates, such as leaves, into these water-TENG devices is effective regarding repelling water drops from the device surface, since surface hydrophobicity from these biomicrostructures maximizes the TENG output. Among various leaves' microstructures, hierarchical microstructures from dried bamboo leaves are preferable regarding maximizing power output, which is attributed to their unique structures, containing both dense nanostructures and microscale features, compared with other types of leaves. Also, the triboelectric output is significantly improved by closely mimicking the hydrophobic nature of the leaves in the LSI-processed metal surface after functionalizing it with low-surface-energy self-assembled-monolayers. The approach opens doors to new manufacturable TENG technologies for economically feasible and ecologically friendly production of functional devices with directly patterned 3D biomimic metallic surfaces in energy, electronics, and sensor applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    PubMed

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand.

    PubMed

    Jiang, Jianjuan; Zhang, Shaoqing; Qian, Zhigang; Qin, Nan; Song, Wenwen; Sun, Long; Zhou, Zhitao; Shi, Zhifeng; Chen, Liang; Li, Xinxin; Mao, Ying; Kaplan, David L; Gilbert Corder, Stephanie N; Chen, Xinzhong; Liu, Mengkun; Omenetto, Fiorenzo G; Xia, Xiaoxia; Tao, Tiger H

    2018-05-01

    Precise patterning of polymer-based biomaterials for functional bio-nanostructures has extensive applications including biosensing, tissue engineering, and regenerative medicine. Remarkable progress is made in both top-down (based on lithographic methods) and bottom-up (via self-assembly) approaches with natural and synthetic biopolymers. However, most methods only yield 2D and pseudo-3D structures with restricted geometries and functionalities. Here, it is reported that precise nanostructuring on genetically engineered spider silk by accurately directing ion and electron beam interactions with the protein's matrix at the nanoscale to create well-defined 2D bionanopatterns and further assemble 3D bionanoarchitectures with shape and function on demand, termed "Protein Bricks." The added control over protein sequence and molecular weight of recombinant spider silk via genetic engineering provides unprecedented lithographic resolution (approaching the molecular limit), sharpness, and biological functions compared to natural proteins. This approach provides a facile method for patterning and immobilizing functional molecules within nanoscopic, hierarchical protein structures, which sheds light on a wide range of biomedical applications such as structure-enhanced fluorescence and biomimetic microenvironments for controlling cell fate. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fold pattern formation in 3D

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Dabrowski, Marcin; Krotkiewski, Marcin

    2010-05-01

    The vast majority of studies concerned with folding focus on 2D and assume that the resulting fold structures are cylindrically extended in the out of place direction. This simplification is often justified as fold aspect ratios, length/width, are quite large. However, folds always exhibit finite aspect ratios and it is unclear what controls this (cf. Fletcher 1995). Surprisingly little is known about the fold pattern formation in 3D for different in-plane loading conditions. Even more complicated is the pattern formation when several folding events are superposed. Let us take the example of a plane strain pure shear superposed by the same kind of deformation but rotated by 90 degrees. The text book prediction for this event is the formation of an egg carton structure; relevant analogue models either agree and produce type 1 interference patterns or contradict and produce type 2. In order to map out 3D fold pattern formation we have performed a systematic parameter space investigation using BILAMIN, our efficient unstructured mesh finite element Stokes solver. BILAMIN is capable of solving problems with more than half a billion unknowns. This allows us to study fold patterns that emerge in randomly (red noise) perturbed layers. We classify the resulting structures with differential geometry tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton shaped dome and basin structures resulting from folding instabilities in constriction is largely oversimplified. The fold patterns resulting in this setting are curved, elongated folds with random orientation. Reference Fletcher, R. C. 1995. 3-Dimensional Folding and Necking of a Power-Law Layer - Are Folds Cylindrical, and, If So, Do We Understand Why. Tectonophysics 147(1-4), 65-83.

  14. Active heat pulse sensing of 3-D-flow fields in streambeds

    NASA Astrophysics Data System (ADS)

    Banks, Eddie W.; Shanafield, Margaret A.; Noorduijn, Saskia; McCallum, James; Lewandowski, Jörg; Batelaan, Okke

    2018-03-01

    Profiles of temperature time series are commonly used to determine hyporheic flow patterns and hydraulic dynamics in the streambed sediments. Although hyporheic flows are 3-D, past research has focused on determining the magnitude of the vertical flow component and how this varies spatially. This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude up to 200 mm below the water-sediment interface. Short, 1 min heat pulses were injected at one of the three heat sources and the temperature response was monitored over a period of 30 min. Breakthrough curves from each of the sensors were analysed using a heat transport equation. Parameter estimation and uncertainty analysis was undertaken using the differential evolution adaptive metropolis (DREAM) algorithm, an adaption of the Markov chain Monte Carlo method, to estimate the flux and its orientation. Measurements were conducted in the field and in a sand tank under an extensive range of controlled hydraulic conditions to validate the method. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes at the water-streambed interface.

  15. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-08-01

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.

  16. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-08-26

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.

  17. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-01-01

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities. PMID:27561388

  18. Observations of plan-view sand ripple behavior and spectral wave climate on the inner shelf of San Pedro Bay, California

    USGS Publications Warehouse

    Xu, J. P.

    2005-01-01

    Concurrent video images of sand ripples and current meter measurements of directional wave spectra are analyzed to study the relations between waves and wave-generated sand ripples. The data were collected on the inner shelf off Huntington Beach, California, at 15 m water depth, where the sea floor is comprised of well-sorted very fine sands (D50=92 ??m), during the winter of 2002. The wave climate, which was controlled by southerly swells (12-18 s period) and westerly wind waves (5-10 s period), included three wave types: (A) uni-modal, swells only; (B) bi-modal, swells dominant; and (C) bi-modal, wind-wave dominant. Each wave type has distinct relations with the plan-view shapes of ripples that are classified into five types: (1) sharp-crested, two-dimensional (2-D) ripples; (2) sharp-crested, brick-pattern, 3-D ripples; (3) bifurcated, 3-D ripples; (4) round-crested, shallow, 3-D ripples; and (5) flat bed. The ripple spacing is very small and varies between 4.5 and 7.5 cm. These ripples are anorbital as ripples in many field studies. Ripple orientation is only correlated with wave directions during strong storms (wave type C). In a poly-modal, multi-directional spectral wave environment, the use of the peak parameters (frequency, direction), a common practice when spectral wave measurements are unavailable, may lead to significant errors in boundary layer and sediment transport calculations. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    PubMed Central

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  20. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  1. Geometric features of workspace and joint-space paths of 3D reaching movements.

    PubMed

    Klein Breteler, M D; Meulenbroek, R G; Gielen, S C

    1998-11-01

    The present study focuses on geometric features of workspace and joint-space paths of three-dimensional reaching movements. Twelve subjects repeatedly performed a three-segment, triangular-shaped movement pattern in an approximately 60 degrees tilted horizontal plane. Task variables elicited movement patterns that varied in position, rotational direction and speed. Trunk, arm, hand and finger-tip movements were recorded by means of a 3D motion-tracking system. Angular excursions of the shoulder and elbow joints were extracted from position data. Analyses of the shape of 3D workspace and joint-space paths focused on the extent to which the submovements were produced in a plane, and on the curvature of the central parts of the submovements. A systematic tendency to produce movements in a plane was found in addition to an increase of finger-tip path curvature with increasing speed. The findings are discussed in relation to the role of optimization principles in trajectory-formation models.

  2. One-Dimensional Photonic Crystal Superprisms

    NASA Technical Reports Server (NTRS)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  3. Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis

    NASA Astrophysics Data System (ADS)

    Zimmer, Walter M. X.; Tyack, Peter L.; Johnson, Mark P.; Madsen, Peter T.

    2005-03-01

    The three-dimensional beam pattern of a sperm whale (Physeter macrocephalus) tagged in the Ligurian Sea was derived using data on regular clicks from the tag and from hydrophones towed behind a ship circling the tagged whale. The tag defined the orientation of the whale, while sightings and beamformer data were used to locate the whale with respect to the ship. The existence of a narrow, forward-directed P1 beam with source levels exceeding 210 dBpeak re: 1 μPa at 1 m is confirmed. A modeled forward-beam pattern, that matches clicks >20° off-axis, predicts a directivity index of 26.7 dB and source levels of up to 229 dBpeak re: 1 μPa at 1 m. A broader backward-directed beam is produced by the P0 pulse with source levels near 200 dBpeak re: 1 μPa at 1 m and a directivity index of 7.4 dB. A low-frequency component with source levels near 190 dBpeak re: 1 μPa at 1 m is generated at the onset of the P0 pulse by air resonance. The results support the bent-horn model of sound production in sperm whales. While the sperm whale nose appears primarily adapted to produce an intense forward-directed sonar signal, less-directional click components convey information to conspecifics, and give rise to echoes from the seafloor and the surface, which may be useful for orientation during dives..

  4. Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking1234

    PubMed Central

    Mekary, Rania A; Giovannucci, Edward; Willett, Walter C; van Dam, Rob M

    2012-01-01

    Background: Little is known about the association between eating patterns and type 2 diabetes (T2D) risk. Objective: The objective of this study was to prospectively examine associations between breakfast omission, eating frequency, snacking, and T2D risk in men. Design: Eating patterns were assessed in 1992 in a cohort of 29,206 US men in the Health Professionals Follow-Up Study who were free of T2D, cardiovascular disease, and cancer and were followed for 16 y. We used Cox proportional hazards analysis to evaluate associations with incident T2D. Results: We documented 1944 T2D cases during follow-up. After adjustment for known risk factors for T2D, including BMI, men who skipped breakfast had 21% higher risk of T2D than did men who consumed breakfast (RR: 1.21; 95% CI: 1.07, 1.35). Compared with men who ate 3 times/d, men who ate 1–2 times/d had a higher risk of T2D (RR: 1.25; 95% CI: 1.08, 1.45). These findings persisted after stratification by BMI or diet quality. Additional snacks beyond the 3 main meals (breakfast, lunch, and dinner) were associated with increased T2D risk, but these associations were attenuated after adjustment for BMI. Conclusions: Breakfast omission was associated with an increased risk of T2D in men even after adjustment for BMI. A direct association between snacking between meals and T2D risk was mediated by BMI. PMID:22456660

  5. Generation and transmission of DPSK signals using a directly modulated passive feedback laser.

    PubMed

    Karar, Abdullah S; Gao, Ying; Zhong, Kang Ping; Ke, Jian Hong; Cartledge, John C

    2012-12-10

    The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of -45 dBm at a bit-error-ratio of 3.8 × 10(-3) and a 49 dB loss margin.

  6. 3D imaging of translucent media with a plenoptic sensor based on phase space optics

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanzhe; Shu, Bohong; Du, Shaojun

    2015-05-01

    Traditional stereo imaging technology is not working for dynamical translucent media, because there are no obvious characteristic patterns on it and it's not allowed using multi-cameras in most cases, while phase space optics can solve the problem, extracting depth information directly from "space-spatial frequency" distribution of the target obtained by plenoptic sensor with single lens. This paper discussed the presentation of depth information in phase space data, and calculating algorithms with different transparency. A 3D imaging example of waterfall was given at last.

  7. Characterization of Nanoporous as a Medium for Size-Selective Filtration, Preconcentration, and Detection of Biomolecules

    DTIC Science & Technology

    2016-07-04

    dimensional patterning and morphological control of porous nanomaterials by gray -scale direct imprinting, Scientific Reports, (03 2013): 1502. doi: 10.1038...detection with the exception that a different DNA apatamer sequence was required:  5’-GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA-3’. Figure 6b shows...nanomaterials by gray -scale direct imprinting," Sci Rep 3, 1502 (2013). 8J. D. Ryckman, M. Liscidini, J. E. Sipe, S. M. Weiss, "Porous silicon structures

  8. Conveying 3D shape with texture: recent advances and experimental findings

    NASA Astrophysics Data System (ADS)

    Interrante, Victoria; Kim, Sunghee; Hagh-Shenas, Haleh

    2002-06-01

    If we could design the perfect texture pattern to apply to any smooth surface in order to enable observers to more accurately perceive the surface's shape in a static monocular image taken from an arbitrary generic viewpoint under standard lighting conditions, what would the characteristics of that texture pattern be? In order to gain insight into this question, our group has developed an efficient algorithm for synthesizing a high resolution texture pattern, derived from a provided 2D sample, over an arbitrary doubly curved surface in such a way that the orientation of the texture is constrained to follow a specified underlying vector field over the surface, at a per-pixel level, without evidence of seams or projective distortion artifacts. In this paper, we report the findings of a recent experiment in which we attempt to use this new texture synthesis method to assess the shape information carrying capacity of two different types of directional texture patterns (unidirectional and bi-directional) under three different orientation conditions (following the first principal direction, following a constant uniform direction, or swirling sinusoidally in the surface). In a four alternative forced choice task, we asked participants to identify the quadrant in which two B-spline surfaces, illuminated from different random directions and simultaneously and persistently displayed, differed in their shapes. We found, after all subjects had gained sufficient training in the task, that accuracy increased fairly consistently with increasing magnitude of surface shape disparity, but that the characteristics of this increase differed under the different texture orientation conditions. Subjects were able to more reliably perceive smaller shape differences when the surfaces were textured with a pattern whose orientation followed one of the principal directions than when the surfaces were textured with a pattern that either gradually swirled in the surface or followed a constant uniform direction in the tangent plane regardless of the surface shape characteristics. These findings appear to support our hypothesis that anisotropic textures aligned with the first principal direction may facilitate shape perception, for a generic view, by making more, reliable information about the extent of the surface curvature explicitly available to the observer than would be available if the texture pattern were oriented in any other way.

  9. Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2018-03-01

    In this paper, we present a first direct numerical simulation (DNS) of a turbulent pipe flow using the mesoscopic lattice Boltzmann method (LBM) on both a D3Q19 lattice grid and a D3Q27 lattice grid. DNS of turbulent pipe flows using LBM has never been reported previously, perhaps due to inaccuracy and numerical stability associated with the previous implementations of LBM in the presence of a curved solid surface. In fact, it was even speculated that the D3Q19 lattice might be inappropriate as a DNS tool for turbulent pipe flows. In this paper, we show, through careful implementation, accurate turbulent statistics can be obtained using both D3Q19 and D3Q27 lattice grids. In the simulation with D3Q19 lattice, a few problems related to the numerical stability of the simulation are exposed. Discussions and solutions for those problems are provided. The simulation with D3Q27 lattice, on the other hand, is found to be more stable than its D3Q19 counterpart. The resulting turbulent flow statistics at a friction Reynolds number of Reτ = 180 are compared systematically with both published experimental and other DNS results based on solving the Navier-Stokes equations. The comparisons cover the mean-flow profile, the r.m.s. velocity and vorticity profiles, the mean and r.m.s. pressure profiles, the velocity skewness and flatness, and spatial correlations and energy spectra of velocity and vorticity. Overall, we conclude that both D3Q19 and D3Q27 simulations yield accurate turbulent flow statistics. The use of the D3Q27 lattice is shown to suppress the weak secondary flow pattern in the mean flow due to numerical artifacts.

  10. Dietary patterns and odds of Type 2 diabetes in Beirut, Lebanon: a case-control study.

    PubMed

    Naja, Farah; Hwalla, Nahla; Itani, Leila; Salem, Maya; Azar, Sami T; Zeidan, Maya Nabhani; Nasreddine, Lara

    2012-12-27

    In Lebanon, Type 2 diabetes (T2D) has a major public health impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. Diet is an important environmental factor in the development and prevention of T2D. Dietary patterns may exert greater effects on health than individual foods, nutrients, or food groups. The objective of this study is to examine the association between dietary patterns and the odds of T2D among Lebanese adults. Fifty-eight recently diagnosed cases of T2D and 116 population-based age, sex, and place of residence matched control participants were interviewed. Data collection included a standard socio-demographic and lifestyle questionnaire. Dietary intake was evaluated by a semi-quantitative 97-item food frequency questionnaire. Anthropometric measurements including weight, height, waist circumference, and percent body fat were also obtained. Dietary patterns were identified by factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of extracted patterns with T2D. Pearson correlations between these patterns and obesity markers, energy, and nutrient intakes were also examined. Four dietary patterns were identified: Refined Grains & Desserts, Traditional Lebanese, Fast Food and Meat & Alcohol. While scores of the "Refined Grains & Desserts" had the highest correlations with energy (r = 0.74) and carbohydrates (r = 0.22), those of the "Fast Food" had the highest correlation with fat intake (r = 0.34). After adjustment for socio-demographic and lifestyle characteristics, scores of the Refined Grains & Desserts and Fast Food patterns were associated with higher odds of T2D (OR: 3.85, CI: 1.13-11.23 and OR: 2.80, CI: 1.14-5.59; respectively) and scores of the Traditional Lebanese pattern were inversely associated with the odds of T2D (OR: 0.46, CI: 0.22-0.97). The findings of this study demonstrate direct associations of the Refined Grains & Desserts and Fast Food patterns with T2D and an inverse association between the Traditional Lebanese pattern and the disease among Lebanese adults. These results may guide the development of nutrition interventions for the prevention and management of T2D among Lebanese adults.

  11. Single-shot real-time three dimensional measurement based on hue-height mapping

    NASA Astrophysics Data System (ADS)

    Wan, Yingying; Cao, Yiping; Chen, Cheng; Fu, Guangkai; Wang, Yapin; Li, Chengmeng

    2018-06-01

    A single-shot three-dimensional (3D) measurement based on hue-height mapping is proposed. The color fringe pattern is encoded by three sinusoidal fringes with the same frequency but different shifting phase into red (R), green (G) and blue (B) color channels, respectively. It is found that the hue of the captured color fringe pattern on the reference plane maintains monotonic in one period even it has the color crosstalk. Thus, unlike the traditional color phase shifting technique, the hue information is utilized to decode the color fringe pattern and map to the pixels of the fringe displacement in the proposed method. Because the monotonicity of the hue is limited within one period, displacement unwrapping is proposed to obtain the continuous displacement that is finally used to map to the height distribution. This method directly utilizes the hue under the effect of color crosstalk for mapping the height so that no color calibration is involved. Also, as it requires only single shot deformed color fringe pattern, this method can be applied into the real-time or dynamic 3D measurements.

  12. Fabrication of silicon films from patterned protruded seeds

    NASA Astrophysics Data System (ADS)

    Zeng, Huang; Zhang, Wei; Li, Jizhou; Wang, Cong; Yang, Hui; Chen, Yigang; Chen, Xiaoyuan; Liu, Dongfang

    2017-05-01

    Thin, flexible silicon crystals are starting up applications such as light-weighted flexible solar cells, SOI, flexible IC chips, 3D ICs imagers and 3D CMOS imagers on the demand of high performance with low cost. Kerfless wafering technology by direct conversion of source gases into mono-crystalline wafers on reusable substrates is highly cost-effective and feedstock-effective route to cheap wafers with the thickness down to several microns. Here we show a prototype for direct conversion of silicon source gases to wafers by using the substrate with protruded seeds. A reliable and controllable method of wafer-scaled preparation of protruded seed patterns has been developed by filling liquid wax into a rod array as the mask for the selective removal of oxide layer on the rod head. Selectively epitaxial growth is performed on the protruded seeds, and the voidless film is formed by the merging of neighboring seeds through growing. And structured hollows are formed between the grown film and the substrate, which would offer the transferability of the grown film and the reusability of the protruded seeds.

  13. Dynamics of spacing adjustment and recovery mechanisms of ABAC-type growth pattern in ternary eutectic systems

    NASA Astrophysics Data System (ADS)

    Mohagheghi, Samira; Şerefoğlu, Melis

    2017-07-01

    In directionally solidified 2D samples at ternary eutectic compositions, the stable three-phase pattern is established to be lamellar structure with ABAC stacking, where A, B, and C are crystalline phases. Beyond the stability limits of the ABAC pattern, the system uses various spacing adjustment mechanisms to revert to the stable regime. In this study, the dynamics of spacing adjustment and recovery mechanisms of isotropic ABAC patterns were investigated using three-phase In-Bi-Sn alloy. Unidirectional solidification experiments were performed on 23.0 and 62.7 μm-thick samples, where solidification front was monitored in real-time from both sides of the sample using a particular microscopy system. At these thicknesses, the pattern was found to be 2D during steady-state growth, i.e. both top and bottom microstructures were the same. However, during spacing adjustment and recovery mechanisms, 3D features were observed. Dynamics of two major instabilities, lamellae branching and elimination, were quantified. After these instabilities, two key ABAC pattern recovery mechanisms, namely, phase invasion and phase exchange processes, were identified and analyzed. After elimination, ABAC pattern is recovered by either continuous eliminations of all phases or by phase exchange. After branching, the recovery mechanisms are established to be phase invasion and phase exchange.

  14. Biswas Receives 2012 Donald L. Turcotte Award

    NASA Astrophysics Data System (ADS)

    2013-06-01

    Asim Biswas has been awarded the Donald L. Turcotte Award, given annually to recent Ph.D. recipients for outstanding dissertation research that contributes directly to the field of nonlinear geophysics. Asim's Ph.D. thesis is entitled "Multi-scale controls on spatial patterns of soil water storage in the hummocky regions of North America." He gave an invited talk and was formally presented with the award at the 2012 AGU Fall Meeting, held 3-7 December in San Francisco, Calif.

  15. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    PubMed Central

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non-human animal behaviour science. Further improvements and validation are needed, and future applications and limitations are discussed. PMID:27415814

  16. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non-human animal behaviour science. Further improvements and validation are needed, and future applications and limitations are discussed.

  17. Simulation of Channel Segregation During Directional Solidification of In—75 wt pct Ga. Qualitative Comparison with In Situ Observations

    NASA Astrophysics Data System (ADS)

    Saad, Ali; Gandin, Charles-André; Bellet, Michel; Shevchenko, Natalia; Eckert, Sven

    2015-11-01

    Freckles are common defects in industrial casting. They result from thermosolutal convection due to buoyancy forces generated from density variations in the liquid. The present paper proposes a numerical analysis for the formation of channel segregation using the three-dimensional (3D) cellular automaton (CA)—finite element (FE) model. The model integrates kinetics laws for the nucleation and growth of a microstructure with the solution of the conservation equations for the casting, while introducing an intermediate modeling scale for a direct representation of the envelope of the dendritic grains. Directional solidification of a cuboid cell is studied. Its geometry, the alloy chosen as well as the process parameters are inspired from experimental observations recently reported in the literature. Snapshots of the convective pattern, the solute distribution, and the morphology of the growth front are qualitatively compared. Similitudes are found when considering the coupled 3D CAFE simulations. Limitations of the model to reach direct simulation of the experiments are discussed.

  18. Omni Directional Multimaterial Soft Cylindrical Actuator and Its Application as a Steerable Catheter.

    PubMed

    Gul, Jahan Zeb; Yang, Young Jin; Su, Kim Young; Choi, Kyung Hyun

    2017-09-01

    Soft actuators with complex range of motion lead to strong interest in applying devices like biomedical catheters and steerable soft pipe inspectors. To facilitate the use of soft actuators in devices where controlled, complex, precise, and fast motion is required, a structurally controlled Omni directional soft cylindrical actuator is fabricated in a modular way using multilayer composite of polylactic acid based conductive Graphene, shape memory polymer, shape memory alloy, and polyurethane. Multiple fabrication techniques are discussed step by step that mainly include fused deposition modeling based 3D printing, dip coating, and UV curing. A mathematical control model is used to generate patterned electrical signals for the Omni directional deformations. Characterizations like structural control, bending, recovery, path, and thermal effect are carried out with and without load (10 g) to verify the new cylindrical design concept. Finally, the application of Omni directional actuator as a steerable catheter is explored by fabricating a scaled version of carotid artery through 3D printing using a semitransparent material.

  19. Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders

    PubMed Central

    Heidbreder, Christian A.; Newman, Amy H.

    2011-01-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D3 receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D3 receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D3 receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D2/D3 receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D3 versus D2 receptor, and their efficacy profile is related primarily to functional antagonism at D2 receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D3 receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed. PMID:20201845

  20. Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders.

    PubMed

    Heidbreder, Christian A; Newman, Amy H

    2010-02-01

    Repeated exposure to drugs of abuse produces long-term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D(3) receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D(3) receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self-administer drugs and disrupt drug-associated cue-induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D(3) receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D(2)/D(3) receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D(3) versus D(2) receptor, and their efficacy profile is related primarily to functional antagonism at D(2) receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D(3) receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so-called proof-of-concept studies for drug addiction indications will be discussed.

  1. Direct Numerical Simulation of Cell Printing

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; He, Ping

    2010-11-01

    Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.

  2. Optimizing countershading camouflage.

    PubMed

    Cuthill, Innes C; Sanghera, N Simon; Penacchio, Olivier; Lovell, Paul George; Ruxton, Graeme D; Harris, Julie M

    2016-11-15

    Countershading, the widespread tendency of animals to be darker on the side that receives strongest illumination, has classically been explained as an adaptation for camouflage: obliterating cues to 3D shape and enhancing background matching. However, there have only been two quantitative tests of whether the patterns observed in different species match the optimal shading to obliterate 3D cues, and no tests of whether optimal countershading actually improves concealment or survival. We use a mathematical model of the light field to predict the optimal countershading for concealment that is specific to the light environment and then test this prediction with correspondingly patterned model "caterpillars" exposed to avian predation in the field. We show that the optimal countershading is strongly illumination-dependent. A relatively sharp transition in surface patterning from dark to light is only optimal under direct solar illumination; if there is diffuse illumination from cloudy skies or shade, the pattern provides no advantage over homogeneous background-matching coloration. Conversely, a smoother gradation between dark and light is optimal under cloudy skies or shade. The demonstration of these illumination-dependent effects of different countershading patterns on predation risk strongly supports the comparative evidence showing that the type of countershading varies with light environment.

  3. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    PubMed

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.

  4. Spatial Pattern of Cell Damage in Tissue from Heavy Ions

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.

  5. Generation of 3D templates of active sites of proteins with rigid prosthetic groups.

    PubMed

    Nebel, Jean-Christophe

    2006-05-15

    With the increasing availability of protein structures, the generation of biologically meaningful 3D patterns from the simultaneous alignment of several protein structures is an exciting prospect: active sites could be better understood, protein functions and protein 3D structures could be predicted more accurately. Although patterns can already be generated at the fold and topological levels, no system produces high-resolution 3D patterns including atom and cavity positions. To address this challenge, our research focuses on generating patterns from proteins with rigid prosthetic groups. Since these groups are key elements of protein active sites, the generated 3D patterns are expected to be biologically meaningful. In this paper, we present a new approach which allows the generation of 3D patterns from proteins with rigid prosthetic groups. Using 237 protein chains representing proteins containing porphyrin rings, our method was validated by comparing 3D templates generated from homologues with the 3D structure of the proteins they model. Atom positions were predicted reliably: 93% of them had an accuracy of 1.00 A or less. Moreover, similar results were obtained regarding chemical group and cavity positions. Results also suggested our system could contribute to the validation of 3D protein models. Finally, a 3D template was generated for the active site of human cytochrome P450 CYP17, the 3D structure of which is unknown. Its analysis showed that it is biologically meaningful: our method detected the main patterns of the cytochrome P450 superfamily and the motifs linked to catalytic reactions. The 3D template also suggested the position of a residue, which could be involved in a hydrogen bond with CYP17 substrates and the shape and location of a cavity. Comparisons with independently generated 3D models comforted these hypotheses. Alignment software (Nestor3D) is available at http://www.kingston.ac.uk/~ku33185/Nestor3D.html

  6. Pattern and polarization measurements of integrated-circuit spiral antennas at 10-μm wavelength

    NASA Astrophysics Data System (ADS)

    MacDonald, Michael E.; Grossman, Erich N.

    1996-12-01

    Radiation patterns are presented for planar equiangular spiral antennas at wavelengths of approximately 10 micrometers . These antennas are fabricated using integrated-circuit processes on silicon substrates and are coupled through dielectric lenses. Patterns are presented over a full 2D scan for orthogonal linear polarizations, and for left- circular (LCP) and right-circular (RCP) polarizations. The antennas respond preferentially to left-circularly polarized radiation, as expected for the left-handed sense of the spiral arms. Cross-polarization ratios as large as 10 dB in circular polarization are obtained, corresponding to an axial ratio of 1.2. No difference in response between horizontally and vertically polarized radiation is observed, as expected for circularly polarized antennas. Directivities as large as 14 dB in left-circular polarization have been obtained. The cross-polarized directivity is considerably lower than the co-polarized directivity. All patterns are approximately circularly symmetric about the (theta) equals 0 axis. The cross-polarization ratio and pattern symmetry strongly depend on the alignment of the antenna and detector response is antenna coupled, even at radiation wavelength of the same order of magnitude as the resolution limit of the optical lithography used to define the antenna geometry.

  7. Color and luminance in the perception of 1- and 2-dimensional motion.

    PubMed

    Farell, B

    1999-08-01

    An isoluminant color grating usually appears to move more slowly than a luminance grating that has the same physical speed. Yet a grating defined by both color and luminance is seen as perceptually unified and moving at a single intermediate speed. In experiments measuring perceived speed and direction, it was found that color- and luminance-based motion signals are combined differently in the perception of 1-D motion than they are in the perception of 2-D motion. Adding color to a moving 1-D luminance pattern, a grating, slows its perceived speed. Adding color to a moving 2-D luminance pattern, a plaid made of orthogonal gratings, leaves its perceived speed unchanged. Analogous results occur for the perception of the direction of 2-D motion. The visual system appears to discount color when analyzing the motion of luminance-bearing 2-D patterns. This strategy has adaptive advantages, making the sensing of object motion more veridical without sacrificing the ability to see motion at isoluminance.

  8. Dense Tracking and Mapping with a Quadrocopter

    NASA Astrophysics Data System (ADS)

    Sturm, J.; Bylow, E.; Kerl, C.; Kahl, F.; Cremers, D.

    2013-08-01

    In this paper, we present an approach for acquiring textured 3D models of room-sized indoor spaces using a quadrocopter. Such room models are for example useful for architects and interior designers as well as for factory planners and construction managers. The model is internally represented by a signed distance function (SDF) and the SDF is used to directly track the camera with respect to the model. Our solution enables accurate position control of the quadrocopter, so that it can automatically follow a pre-defined flight pattern. Our system provides live feedback of the acquired 3D model to the user. The final model consisting of a textured 3D triangle mesh can be saved in several standard CAD file formats.

  9. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography.

    PubMed

    Tricinci, Omar; Terencio, Tercio; Mazzolai, Barbara; Pugno, Nicola M; Greco, Francesco; Mattoli, Virgilio

    2015-11-25

    Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere.

  10. VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription.

    PubMed

    Singh, Prashant K; Long, Mark D; Battaglia, Sebastiano; Hu, Qiang; Liu, Song; Sucheston-Campbell, Lara E; Campbell, Moray J

    2015-01-01

    The Vitamin D Receptor (VDR) is a member of the nuclear receptor superfamily and is of therapeutic interest in cancer and other settings. Regulation of microRNA (miRNA) by the VDR appears to be important to mediate its actions, for example, to control cell growth. To identify if and to what extent VDR-regulated miRNA patterns change in prostate cancer progression, we undertook miRNA microarray analyses in 7 cell models representing non-malignant and malignant prostate cells (RWPE-1, RWPE-2, HPr1, HPr1AR, LNCaP, LNCaP-C4-2, and PC-3). To focus on primary VDR regulatory events, we undertook expression analyses after 30 minutes treatment with 1α,25(OH)2D3. Across all models, 111 miRNAs were significantly modulated by 1α,25(OH)2D3 treatment. Of these, only 5 miRNAs were modulated in more than one cell model, and of these, only 3 miRNAs were modulated in the same direction. The patterns of miRNA regulation, and the networks they targeted, significantly distinguished the different cell types. Integration of 1α,25(OH)2D3-regulated miRNAs with published VDR ChIP-seq data showed significant enrichment of VDR peaks in flanking regions of miRNAs. Furthermore, mRNA and miRNA expression analyses in non-malignant RWPE-1 cells revealed patterns of miRNA and mRNA co-regulation; specifically, 13 significant reciprocal patterns were identified and these patterns were also observed in TCGA prostate cancer data. Lastly, motif search analysis revealed differential motif enrichment within VDR peaks flanking mRNA compared to miRNA genes. Together, this study revealed that miRNAs are rapidly regulated in a highly cell-type specific manner, and are significantly co-integrated with mRNA regulation.

  11. Development of adaptive bust for female soft body armour using three dimensional (3D) warp interlock fabrics: Three dimensional (3D) design process

    NASA Astrophysics Data System (ADS)

    Abtew, M. A.; Bruniaux, P.; Boussu, F.

    2017-10-01

    The traditional two dimensional (2D) pattern making method for developing female body armour has a negative effect on the ballistic protective performance as well as the comfort of the wearer. This is due to, unlike the male body armour, the female body armour manufacturing involves different darts to accommodate the natural curvature of the female body, i.e. bust area, which will reveals the weak parts at the seam and stitch area while ballistic impact. Moreover, the proper bra size also plays an important role not only in bra design but also in the design of a women’s ballistic vest. The present research study tried to propose the novel 3D designing approach for developing different volumes of breast using feature points (both bust surface and outline points) in the specific 3D adaptive mannequin. Later the flattened 3D bra patterns of this method has been also compare with the 2D standard pattern making in order to modify and match with 2D traditional method. The result indicated that the proposed method which conceives the 3D patterns on the 3D bust is easier to implement and can generate patterns with satisfactory fit and comfort as compared to 2D patterns.

  12. 3D Printed Programmable Release Capsules.

    PubMed

    Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C

    2015-08-12

    The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients.

  13. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    DOE PAGES

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-12-06

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less

  14. 4D Bioprinting for Biomedical Applications.

    PubMed

    Gao, Bin; Yang, Qingzhen; Zhao, Xin; Jin, Guorui; Ma, Yufei; Xu, Feng

    2016-09-01

    3D bioprinting has been developed to effectively and rapidly pattern living cells and biomaterials, aiming to create complex bioconstructs. However, placing biocompatible materials or cells into direct contact via bioprinting is necessary but insufficient for creating these constructs. Therefore, '4D bioprinting' has emerged recently, where 'time' is integrated with 3D bioprinting as the fourth dimension, and the printed objects can change their shapes or functionalities when an external stimulus is imposed or when cell fusion or postprinting self-assembly occurs. In this review, we highlight recent developments in 4D bioprinting technology. Additionally, we review the uses of 4D bioprinting in tissue engineering and drug delivery. Finally, we discuss the major roadblocks to this approach, together with possible solutions, to provide future perspectives on this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Volume moiré tomography based on projection extraction by spatial phase shifting of double crossed gratings

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun

    2018-01-01

    To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.

  16. 3D face analysis by using Mesh-LBP feature

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    Objective: Face Recognition is one of the widely application of image processing. Corresponding two-dimensional limitations, such as the pose and illumination changes, to a certain extent restricted its accurate rate and further development. How to overcome the pose and illumination changes and the effects of self-occlusion is the research hotspot and difficulty, also attracting more and more domestic and foreign experts and scholars to study it. 3D face recognition fusing shape and texture descriptors has become a very promising research direction. Method: Our paper presents a 3D point cloud based on mesh local binary pattern grid (Mesh-LBP), then feature extraction for 3D face recognition by fusing shape and texture descriptors. 3D Mesh-LBP not only retains the integrity of the 3D geometry, is also reduces the need for recognition process of normalization steps, because the triangle Mesh-LBP descriptor is calculated on 3D grid. On the other hand, in view of multi-modal consistency in face recognition advantage, construction of LBP can fusing shape and texture information on Triangular Mesh. In this paper, some of the operators used to extract Mesh-LBP, Such as the normal vectors of the triangle each face and vertex, the gaussian curvature, the mean curvature, laplace operator and so on. Conclusion: First, Kinect devices obtain 3D point cloud face, after the pretreatment and normalization, then transform it into triangular grid, grid local binary pattern feature extraction from face key significant parts of face. For each local face, calculate its Mesh-LBP feature with Gaussian curvature, mean curvature laplace operator and so on. Experiments on the our research database, change the method is robust and high recognition accuracy.

  17. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    PubMed

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Three Dimensional Assembly in Directed Self-assembly of Block Copolymers

    DOE PAGES

    Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...

    2016-09-02

    The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.

  19. Engineering Breast Cancer Microenvironments and 3D Bioprinting

    PubMed Central

    Belgodere, Jorge A.; King, Connor T.; Bursavich, Jacob B.; Burow, Matthew E.; Martin, Elizabeth C.; Jung, Jangwook P.

    2018-01-01

    The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments. PMID:29881724

  20. Comparison of marginal and internal adaptation of copings fabricated from three different fabrication techniques: An in vitro study.

    PubMed

    Arora, Aman; Yadav, Avneet; Upadhyaya, Viram; Jain, Prachi; Verma, Mrinalini

    2018-01-01

    The purpose of this study was to compare the marginal and internal adaptation of cobalt-chromium (Co-Cr) copings fabricated from conventional wax pattern, three-dimensional (3D)-printed resin pattern, and laser sintering technique. A total of thirty copings were made, out of which ten copings were made from 3D-printed resin pattern (Group A), ten from inlay wax pattern (Group B), and ten copings were obtained from direct metal laser sintering (DMLS) technique (Group C). All the thirty samples were seated on their respective dies and sectioned carefully using a laser jet cutter and were evaluated for marginal and internal gaps at the predetermined areas using a stereomicroscope. The values were then analyzed using one-way ANOVA test and post hoc Bonferroni test. One-way ANOVA showed lowest mean marginal discrepancy for DMLS and highest value for copings fabricated from inlay wax. The values for internal discrepancy were highest for DMLS (169.38) and lowest for 3D-printed resin pattern fabricated copings (133.87). Post hoc Bonferroni test for both marginal and internal discrepancies showed nonsignificant difference when Group A was compared to Group B ( P > 0.05) and significant when Group A was compared with Group C ( P < 0.05). Group B showed significant difference ( P < 0.05) when compared with Group C. Marginal and internal discrepancies of all the three casting techniques were within clinically acceptable values. Marginal fit of DMLS was superior as compared to other two techniques, whereas when internal fit was evaluated, conventional technique showed the best internal fit.

  1. Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao

    This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in differentmore » positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.« less

  2. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.

    PubMed

    Zhao, Qian; Liang, Yunhong; Ren, Lei; Qiu, Feng; Zhang, Zhihui; Ren, Luquan

    2018-02-01

    A hydrogel material system which was fit for molding and 3D printing was developed to fabricate bilayer hydrogel actuators with controllable temperature and near infrared laser responses. Polymerization on interface boundary of layered structure enhanced the bonding strength of hydrogel actuators. By utilizing anisotropic of microstructure along with thickness direction, bilayer hydrogel actuators fabricated via molding realized intelligent bending/shrinking responses, which guided the preparation of hydrogel ink for 3D printing. In-situ free radical polymerization under vacuum realized the solidification of printed hydrogel actuators with graphene oxide. Based on anisotropic swelling/deswelling behaviors of precise structure fabricated via 3D printing, the printed bilayer hydrogel actuators achieved temperature and near infrared laser responsive deformation. Changes of programmable printing path effectively resulted in corresponding deformation patterns. Combination of advantages of molding and 3D printing can promote the design and fabrication of hydrogel actuators with high mechanical strength, response speed and deformation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    NASA Astrophysics Data System (ADS)

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3-D printing of full length proteins in collagen, fibrin and gelatin methacrylate scaffolds, as well as printing in agarose and agarose methacrylate scaffolds. We also present a novel method for 3-D printing collagen scaffolds at unprecedented speeds, up to 14layers per second, generating complex shapes in seconds with sub-micron resolution. Finally, we demonstrate that 3-D printing of scaffold architecture and protein cues inside the scaffold can be combined, for the first time enabling structures with complex sub-micron architectures and chemical cues for directing development. We believe that the ultra-rapid printing technology presented in this thesis will be a key enabler in the development of complex, artificially engineered tissues and organs. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  4. Comparison of two structured illumination techniques based on different 3D illumination patterns

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.

    2017-02-01

    Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.

  5. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Heinig, N. F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K. T.

    2015-06-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion-Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation.

  6. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Song, K; Chetty, I

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was alsomore » evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF-based system provides accurate target positioning for frameless image-guided cranial stereotactic radiosurgery.« less

  7. Hybrid 2D patterning using UV laser direct writing and aerosol jet printing of UV curable polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Obata, Kotaro; Schonewille, Adam; Slobin, Shayna; Hohnholz, Arndt; Unger, Claudia; Koch, Jürgen; Suttmann, Oliver; Overmeyer, Ludger

    2017-09-01

    The hybrid technique of aerosol jet printing and ultraviolet (UV) laser direct writing was developed for 2D patterning of thin film UV curable polydimethylsiloxane (PDMS). A dual atomizer module in an aerosol jet printing system generated aerosol jet streams from material components of the UV curable PDMS individually and enables the mixing in a controlled ratio. Precise control of the aerosol jet printing achieved the layer thickness of UV curable PDMS as thin as 1.6 μm. This aerosol jet printing system is advantageous because of its ability to print uniform thin-film coatings of UV curable PDMS on planar surfaces as well as free-form surfaces without the use of solvents. In addition, the hybrid 2D patterning using the combination of UV laser direct writing and aerosol jet printing achieved selective photo-initiated polymerization of the UV curable PDMS layer with an X-Y resolution of 17.5 μm.

  8. Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-10-01

    Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.

  9. Advanced fast 3D DSA model development and calibration for design technology co-optimization

    NASA Astrophysics Data System (ADS)

    Lai, Kafai; Meliorisz, Balint; Muelders, Thomas; Welling, Ulrich; Stock, Hans-Jürgen; Marokkey, Sajan; Demmerle, Wolfgang; Liu, Chi-Chun; Chi, Cheng; Guo, Jing

    2017-04-01

    Direct Optimization (DO) of a 3D DSA model is a more optimal approach to a DTCO study in terms of accuracy and speed compared to a Cahn Hilliard Equation solver. DO's shorter run time (10X to 100X faster) and linear scaling makes it scalable to the area required for a DTCO study. However, the lack of temporal data output, as opposed to prior art, requires a new calibration method. The new method involves a specific set of calibration patterns. The calibration pattern's design is extremely important when temporal data is absent to obtain robust model parameters. A model calibrated to a Hybrid DSA system with a set of device-relevant constructs indicates the effectiveness of using nontemporal data. Preliminary model prediction using programmed defects on chemo-epitaxy shows encouraging results and agree qualitatively well with theoretical predictions from a strong segregation theory.

  10. Impact of 3-D seismic data on the Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture development drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quam, S.

    The Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture has been acquiring three-dimensional (3-D) seismic data over its concessions since 1984. To date, 1700 km[sup 2] have been recorded and processed at a cumulative cost of US $39 million. During 1991 - 1992, 20 development wells were drilled based directly on new 3-D seismic interpretations. These wells have added 148 million bbl of oil in new recoverable reserves, and to date have added 37,000 bbl/day to the joint venture's production. In addition, the 3-D interpretations have resulted in a sizable inventory of wells for future development drilling. The new 3-Dmore » interpretations provided more accurate pictures of fault patterns, fluid contacts, channel trends, stratigraphic continuity, and velocity/amplitude anomalies. In addition, the 3-D data were invaluable in designing low risk, directional well trajectories to tap relatively thin oil legs under large gas caps. Wells often were programmed to hit several objectives at their respective gas/oil contacts, resulting in maximized net oil sand pays and reducing the risk of gas production. In order to do this, directional [open quotes]sharpshooting,[close quotes] accurate depth conversion of the seismic time maps, was critical. By using the 3-D seismic, checkshot, and sonic data to develop a variable velocity space, well-top prognoses within 50 ft at depths of 6,000-10,000 ft were possible, and were key to the success of the program. As the joint venture acreage becomes more mature, development wells will be drilled for smaller numbers of stacked objectives, and sometimes for single sands. Highly accurate 3-D interpretations and depth conversions will become even more critical in order to tap thinner pay zones in a cost-effect manner.« less

  11. All dispenser printed flexible 3D structured thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Cao, Z.; Shi, J. J.; Torah, R. N.; Tudor, M. J.; Beeby, S. P.

    2015-12-01

    This work presents a vertically fabricated 3D thermoelectric generator (TEG) by dispenser printing on flexible polyimide substrate. This direct-write technology only involves printing of electrodes, thermoelectric active materials and structure material, which needs no masks to transfer the patterns onto the substrate. The dimension for single thermoelectric element is 2 mm × 2 mm × 0.5 mm while the distance between adjacent cubes is 1.2 mm. The polymer structure layer was used to support the electrodes which are printed to connect the top ends of the thermoelectric material and ensure the flexibility as well. The advantages and the limitations of the dispenser printed 3D TEGs will also be evaluated in this paper. The proposed method is potential to be a low-cost and scalable fabrication solution for TEGs.

  12. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography

    PubMed Central

    2015-01-01

    Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere. PMID:26558410

  13. Three-dimensional bioprinting of rat embryonic neural cells.

    PubMed

    Lee, Wonhye; Pinckney, Jason; Lee, Vivian; Lee, Jong-Hwan; Fischer, Krisztina; Polio, Samuel; Park, Je-Kyun; Yoo, Seung-Schik

    2009-05-27

    We present a direct cell printing technique to pattern neural cells in a three-dimensional (3D) multilayered collagen gel. A layer of collagen precursor was printed to provide a scaffold for the cells, and the rat embryonic neurons and astrocytes were subsequently printed on the layer. A solution of sodium bicarbonate was applied to the cell containing collagen layer as nebulized aerosols, which allowed the gelation of the collagen. This process was repeated layer-by-layer to construct the 3D cell-hydrogel composites. Upon characterizing the relationship between printing resolutions and the growth of printed neural cells, single/multiple layers of neural cell-hydrogel composites were constructed and cultured. The on-demand capability to print neural cells in a multilayered hydrogel scaffold offers flexibility in generating artificial 3D neural tissue composites.

  14. Non-Covalent Photo-Patterning of Gelatin Matrices Using Caged Collagen Mimetic Peptides

    PubMed Central

    Li, Yang; Hoa San, Boi; L. Kessler, Julian; Hwan Kim, Jin; Xu, Qingguo; Hanes, Justin; Yu, Seungju Michael

    2015-01-01

    Advancements in photolithography have enabled us to spatially encode biochemical cues in biocompatible platforms such as synthetic hydrogels. Conventional patterning works through photo-activated chemical reactions on inert polymer networks. However, these techniques cannot be directly applied to protein hydrogels without chemically altering the protein scaffolds. To this end, we developed a non-covalent photo-patterning strategy for gelatin (denatured collagen) hydrogels utilizing a caged collagen mimetic peptide (caged CMP) which binds to gelatin strands through UV activated, triple helix hybridization. Here we present 2D and 3D photo-patterning of gelatin hydrogels enabled by the caged CMPs as well as creation of concentration gradients of CMPs. We show that photo-patterning of PEG-conjugated caged CMPs can be used to spatially control cell adhesion on gelatin films. CMP’s specificity for binding to gelatin allows patterning of almost any synthetic or natural gelatin-containing matrix, such as zymograms, gelatin-methacrylate hydrogels, and even a corneal tissue. Since the CMP is a chemically and biologically inert peptide which is proven to be an ideal carrier for bioactive molecules, our patterning method provides a radically new tool for immobilizing drugs to natural tissues and for functionalizing scaffolds for complex tissue formation. PMID:25476588

  15. Dietary patterns and odds of Type 2 diabetes in Beirut, Lebanon: a case–control study

    PubMed Central

    2012-01-01

    Background In Lebanon, Type 2 diabetes (T2D) has a major public health impact through high disease prevalence, significant downstream pathophysiologic effects, and enormous financial liabilities. Diet is an important environmental factor in the development and prevention of T2D. Dietary patterns may exert greater effects on health than individual foods, nutrients, or food groups. The objective of this study is to examine the association between dietary patterns and the odds of T2D among Lebanese adults. Methods Fifty-eight recently diagnosed cases of T2D and 116 population-based age, sex, and place of residence matched control participants were interviewed. Data collection included a standard socio-demographic and lifestyle questionnaire. Dietary intake was evaluated by a semi-quantitative 97-item food frequency questionnaire. Anthropometric measurements including weight, height, waist circumference, and percent body fat were also obtained. Dietary patterns were identified by factor analysis. Multivariate logistic regression analysis was used to evaluate the associations of extracted patterns with T2D. Pearson correlations between these patterns and obesity markers, energy, and nutrient intakes were also examined. Results Four dietary patterns were identified: Refined Grains & Desserts, Traditional Lebanese, Fast Food and Meat & Alcohol. While scores of the “Refined Grains & Desserts” had the highest correlations with energy (r = 0.74) and carbohydrates (r = 0.22), those of the “Fast Food” had the highest correlation with fat intake (r = 0.34). After adjustment for socio-demographic and lifestyle characteristics, scores of the Refined Grains & Desserts and Fast Food patterns were associated with higher odds of T2D (OR: 3.85, CI: 1.13-11.23 and OR: 2.80, CI: 1.14-5.59; respectively) and scores of the Traditional Lebanese pattern were inversely associated with the odds of T2D (OR: 0.46, CI: 0.22-0.97). Conclusions The findings of this study demonstrate direct associations of the Refined Grains & Desserts and Fast Food patterns with T2D and an inverse association between the Traditional Lebanese pattern and the disease among Lebanese adults. These results may guide the development of nutrition interventions for the prevention and management of T2D among Lebanese adults. PMID:23270372

  16. Correlation of generation interval and scale of large-scale submarine landslides using 3D seismic data off Shimokita Peninsula, Northeast Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuki; Ashi, Juichiro; Morita, Sumito

    2016-04-01

    To clarify timing and scale of past submarine landslides is important to understand formation processes of the landslides. The study area is in a part of continental slope of the Japan Trench, where a number of large-scale submarine landslide (slump) deposits have been identified in Pliocene and Quaternary formations by analysing METI's 3D seismic data "Sanrikuoki 3D" off Shimokita Peninsula (Morita et al., 2011). As structural features, swarm of parallel dikes which are likely dewatering paths formed accompanying the slumping deformation, and slip directions are basically perpendicular to the parallel dikes. Therefore, parallel dikes are good indicator for estimation of slip directions. Slip direction of each slide was determined one kilometre grid in the survey area of 40 km x 20 km. The remarkable slip direction varies from Pliocene to Quaternary in the survey area. Parallel dike structure is also available for the distinguishment of the slump deposit and normal deposit on time slice images. By tracing outline of slump deposits at each depth, we identified general morphology of the overall slump deposits, and calculated the volume of the extracted slump deposits so as to estimate the scale of each event. We investigated temporal and spatial variation of depositional pattern of the slump deposits. Calculating the generation interval of the slumps, some periodicity is likely recognized, especially large slump do not occur in succession. Additionally, examining the relationship of the cumulative volume and the generation interval, certain correlation is observed in Pliocene and Quaternary. Key words: submarine landslides, 3D seismic data, Shimokita Peninsula

  17. Perceived crosstalk assessment on patterned retarder 3D display

    NASA Astrophysics Data System (ADS)

    Zou, Bochao; Liu, Yue; Huang, Yi; Wang, Yongtian

    2014-03-01

    CONTEXT: Nowadays, almost all stereoscopic displays suffer from crosstalk, which is one of the most dominant degradation factors of image quality and visual comfort for 3D display devices. To deal with such problems, it is worthy to quantify the amount of perceived crosstalk OBJECTIVE: Crosstalk measurements are usually based on some certain test patterns, but scene content effects are ignored. To evaluate the perceived crosstalk level for various scenes, subjective test may bring a more correct evaluation. However, it is a time consuming approach and is unsuitable for real­ time applications. Therefore, an objective metric that can reliably predict the perceived crosstalk is needed. A correct objective assessment of crosstalk for different scene contents would be beneficial to the development of crosstalk minimization and cancellation algorithms which could be used to bring a good quality of experience to viewers. METHOD: A patterned retarder 3D display is used to present 3D images in our experiment. By considering the mechanism of this kind of devices, an appropriate simulation of crosstalk is realized by image processing techniques to assign different values of crosstalk to each other between image pairs. It can be seen from the literature that the structures of scenes have a significant impact on the perceived crosstalk, so we first extract the differences of the structural information between original and distorted image pairs through Structural SIMilarity (SSIM) algorithm, which could directly evaluate the structural changes between two complex-structured signals. Then the structural changes of left view and right view are computed respectively and combined to an overall distortion map. Under 3D viewing condition, because of the added value of depth, the crosstalk of pop-out objects may be more perceptible. To model this effect, the depth map of a stereo pair is generated and the depth information is filtered by the distortion map. Moreover, human attention is one of important factors for crosstalk assessment due to the fact that when viewing 3D contents, perceptual salient regions are highly likely to be a major contributor to determining the quality of experience of 3D contents. To take this into account, perceptual significant regions are extracted, and a spatial pooling technique is used to combine structural distortion map, depth map and visual salience map together to predict the perceived crosstalk more precisely. To verify the performance of the proposed crosstalk assessment metric, subjective experiments are conducted with 24 participants viewing and rating 60 simuli (5 scenes * 4 crosstalk levels * 3 camera distances). After an outliers removal and statistical process, the correlation with subjective test is examined using Pearson and Spearman rank-order correlation coefficient. Furthermore, the proposed method is also compared with two traditional 2D metrics, PSNR and SSIM. The objective score is mapped to subjective scale using a nonlinear fitting function to directly evaluate the performance of the metric. RESULIS: After the above-mentioned processes, the evaluation results demonstrate that the proposed metric is highly correlated with the subjective score when compared with the existing approaches. Because the Pearson coefficient of the proposed metric is 90.3%, it is promising for objective evaluation of the perceived crosstalk. NOVELTY: The main goal of our paper is to introduce an objective metric for stereo crosstalk assessment. The novelty contributions are twofold. First, an appropriate simulation of crosstalk by considering the characteristics of patterned retarder 3D display is developed. Second, an objective crosstalk metric based on visual attention model is introduced.

  18. Fast prototyping of microtubes with embedded sensing elements made possible with an inkjet printing and rolling process

    NASA Astrophysics Data System (ADS)

    Wang, N.; Meissner, M. V.; MacKinnon, N.; Luchnikov, V.; Mager, D.; Korvink, J. G.

    2018-02-01

    We present a new fabrication process to create sub-mm micro tubes with embedded conductive patterns. Based on common 2D patterning techniques and a specially designed rolling process, it achieves 3D structures featuring potentially complex, embedded electrical, mechanical and micro-fluidic functions. We demonstrate the advantage in creating freeform electrical conductors around sub-mm tubes, such as needed for a tube-integrated micro heater. The production of the 2D patterns is flexible, and we demonstrate that both additive manufacturing (fast, accessible) and conventional micro-fabrication processes (cleanroom, wafer-scale) are compatible with the rolling process. To adapt the rolling process for high frequency applications, the patterned tracks can be directly electroplated, with good adhesion, to reduce electrical resistance. For the first time, we achieve saddle-geometry NMR micro detectors. They feature 100 μm wide, 10 μm thick conductive tracks on 25 μm thick polyimide film, and were successfully tested in a 500 MHz (11.7 T) NMR spectrometer. Using a 620 μm diameter coil, we measured the single-shot SNR of deionized water sample, which corresponded to a mole sensitivity of 18.78 nmolHz-1/2 , and a water line shape of 1.52/26.8/37.3 Hz (50, 0.55, 0.11% of the maximum height) from a sample volume of only 82 nl.

  19. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.

    PubMed

    Lee, Sanghyeon; Kim, Jung Hyun; Wajahat, Muhammad; Jeong, Hwakyung; Chang, Won Suk; Cho, Sung Ho; Kim, Ji Tae; Seol, Seung Kwon

    2017-06-07

    Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (∼7 mPa·s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteristics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (>10 4 S·cm -1 ) 3D metallic patterns are demonstrated for applications in electronic devices. This research is expected to widen the range of materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.

  20. Simulating three dimensional wave run-up over breakwaters covered by antifer units

    NASA Astrophysics Data System (ADS)

    Najafi-Jilani, A.; Niri, M. Zakiri; Naderi, Nader

    2014-06-01

    The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

  1. Geomfinder: a multi-feature identifier of similar three-dimensional protein patterns: a ligand-independent approach.

    PubMed

    Núñez-Vivanco, Gabriel; Valdés-Jiménez, Alejandro; Besoaín, Felipe; Reyes-Parada, Miguel

    2016-01-01

    Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility of Geomfinder, which was able to discriminate between similar and different 3D patterns related to binding sites of common substrates in a range of diverse proteins. Geomfinder allows detecting similar 3D patterns between any two pair of protein structures, regardless of the divergency among their amino acids sequences. Although the software is not intended for simultaneous multiple comparisons in a large number of proteins, it can be particularly useful in cases such as the structure-based design of multitarget drugs, where a detailed analysis of 3D patterns similarities between a few selected protein targets is essential.

  2. Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation

    PubMed Central

    Vitale, Alessandra; Cabral, João T.

    2016-01-01

    We investigate the impact of the non-uniform spatio-temporal conversion, intrinsic to photopolymerisation, in the context of light-driven 3D printing of polymers. The polymerisation kinetics of a series of model acrylate and thiol-ene systems, both neat and doped with a light-absorbing dye, is investigated experimentally and analysed according to a descriptive coarse-grained model for photopolymerisation. In particular, we focus on the relative kinetics of polymerisation with those of 3D printing, by comparing the evolution of the position of the conversion profile (zf) to the sequential displacement of the object stage (∆z). After quantifying the characteristic sigmoidal monomer-to-polymer conversion of the various systems, with a combination of patterning experiments, FT-IR mapping, and modelling, we compute representative regimes for which zf is smaller, commensurate with, or larger than ∆z. While non-monotonic conversion can be detrimental to 3D printing, for instance in causing differential shrinkage of inhomogeneity in material properties, we identify opportunities for facile fabrication of modulated materials in the z-direction (i.e., along the illuminated axis). Our simple framework and model, based on directly measured parameters, can thus be employed in photopolymerisation-based 3D printing, both in process optimisation and in the precise design of complex, internally stratified materials by coupling the z-stage displacement and frontal polymerisation kinetics. PMID:28773881

  3. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  4. Direct G-code manipulation for 3D material weaving

    NASA Astrophysics Data System (ADS)

    Koda, S.; Tanaka, H.

    2017-04-01

    The process of conventional 3D printing begins by first build a 3D model, then convert to the model to G-code via a slicer software, feed the G-code to the printer, and finally start the printing. The most simple and popular 3D printing technique is Fused Deposition Modeling. However, in this method, the printing path that the printer head can take is restricted by the G-code. Therefore the printed 3D models with complex pattern have structural errors like holes or gaps between the printed material lines. In addition, the structural density and the material's position of the printed model are difficult to control. We realized the G-code editing, Fabrix, for making a more precise and functional printed model with both single and multiple material. The models with different stiffness are fabricated by the controlling the printing density of the filament materials with our method. In addition, the multi-material 3D printing has a possibility to expand the physical properties by the material combination and its G-code editing. These results show the new printing method to provide more creative and functional 3D printing techniques.

  5. Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers.

    PubMed

    Zhang, Cheng; Su, Jheng-Wun; Deng, Heng; Xie, Yunchao; Yan, Zheng; Lin, Jian

    2017-11-29

    An assembly of three-dimensional (3D) architectures with defined configurations has important applications in broad areas. Among various approaches of constructing 3D structures, a stress-driven assembly provides the capabilities of creating 3D architectures in a broad range of functional materials with unique merits. However, 3D architectures built via previous methods are simple, irreversible, or not free-standing. Furthermore, the substrates employed for the assembly remain flat, thus not involved as parts of the final 3D architectures. Herein, we report a reversible self-assembly of various free-standing 3D architectures actuated by the self-folding of smart polymer substrates with programmed geometries. The strategically designed polymer substrates can respond to external stimuli, such as organic solvents, to initiate the 3D assembly process and subsequently become the parts of the final 3D architectures. The self-assembly process is highly controllable via origami and kirigami designs patterned by direct laser writing. Self-assembled geometries include 3D architectures such as "flower", "rainbow", "sunglasses", "box", "pyramid", "grating", and "armchair". The reported self-assembly also shows wide applicability to various materials including epoxy, polyimide, laser-induced graphene, and metal films. The device examples include 3D architectures integrated with a micro light-emitting diode and a flex sensor, indicting the potential applications in soft robotics, bioelectronics, microelectromechanical systems, and others.

  6. Three-dimensional contrast-enhanced magnetic resonance angiography for anterolateral thigh flap outlining: A retrospective case series of 68 patients.

    PubMed

    Jiang, Chunjing; Lin, Ping; Fu, Xiaoyan; Shu, Jiner; Li, Huimin; Hu, Xiaogang; He, Jianrong; Ding, Mingxing

    2016-08-01

    Flap transfer is increasingly used for repairing limb defects secondary to trauma or tumor, and appropriate preoperative planning plays a critical role. The present study aimed to examine the use of three-dimensional (3D) contrast-enhanced magnetic resonance angiography (CE-MRA) in evaluating the blood supply distribution and perforating branch pattern of anterolateral thigh (ALT) flaps. Bilateral donor lower limbs were scanned in 68 patients (136 limbs) using a Siemens Avanto 1.5 T magnetic resonance imaging scanner with a 3D fast low-angle shot sequence, following the thin-slab maximum intensity projection (TS-MIP) technique. The lateral femoral circumflex artery (LFCA) was visualized in all patients: 101 limbs (101/136, 74.3%) were type I; 20 limbs (20/136, 14.7%) were type II; 3 limbs (3/136, 2.2%) were type III; and 12 limbs (12/136, 8.8%) were type IV. Tertiary branches were identified in 94 limbs (94/136, 69.1%). Donor flaps were outlined according to MRA TS-MIP findings in 4 patients. All flaps survived uneventfully following the transfer. In donor flap outlining, 3D CE-MRA with the TS-MIP technique allowed an accurate, direct visualization of the branching pattern and distribution profile of the LFCA supplying the ALT flap.

  7. Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography

    PubMed Central

    He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling

    2016-01-01

    With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment. PMID:26902520

  8. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique

    NASA Astrophysics Data System (ADS)

    Bich Do, Danh; Lin, Jian Hung; Diep Lai, Ngoc; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-01

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest--host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  9. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique.

    PubMed

    Do, Danh Bich; Lin, Jian Hung; Lai, Ngoc Diep; Kan, Hung-Chih; Hsu, Chia Chen

    2011-08-10

    We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

  10. Waveform inversion for 3-D earth structure using the Direct Solution Method implemented on vector-parallel supercomputer

    NASA Astrophysics Data System (ADS)

    Hara, Tatsuhiko

    2004-08-01

    We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.

  11. Fabrication and Deformation of 3D Multilayered Kirigami Microstructures.

    PubMed

    Humood, Mohammad; Shi, Yan; Han, Mengdi; Lefebvre, Joseph; Yan, Zheng; Pharr, Matt; Zhang, Yihui; Huang, Yonggang; Rogers, John A; Polycarpou, Andreas A

    2018-03-01

    Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single-crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as out-of-plane compression, which can induce damage in or failure of the structures/devices. Here, the mechanical responses of a few mechanically assembled 3D kirigami mesostructures under flat-punch compression are studied through combined experiment and finite element analyses. These 3D kirigami mesostructures consisting of a bilayer of Si and SU-8 epoxy are formed through integration of patterned 2D precursors with a prestretched elastomeric substrate at predefined bonding sites to allow controlled buckling that transforms them into desired 3D configurations. In situ scanning electron microscopy measurement enables detailed studies of the mechanical behavior of these structures. Analysis of the load-displacement curves allows the measurement of the effective stiffness and elastic recovery of various 3D structures. The compression experiments indicate distinct regimes in the compressive force/displacement curves and reveals different geometry-dependent deformation for the structures. Complementary computational modeling supports the experimental findings and further explains the geometry-dependent deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    PubMed Central

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  13. Self-Directed Digital Learning: When Do Dental Students Study?

    PubMed

    Jackson, Tate H; Zhong, James; Phillips, Ceib; Koroluk, Lorne D

    2018-04-01

    The Growth and Development (G&D) curriculum at the University of North Carolina at Chapel Hill School of Dentistry uses self-directed web-based learning modules in the place of lectures and includes scheduled self-study times during the 8 am-5 pm school hours. The aim of this study was to use direct observation to evaluate dental students' access patterns with the self-directed, web-based learning modules in relation to planned self-study time allocated across the curriculum, proximity to course examinations, and course performance. Module access for all 80 students in the DDS Class of 2014 was recorded for date and time across the four G&D courses. Module access data were used to determine likelihood of usage during scheduled time and frequency of usage in three timeframes: >7, 3 to 7, and 0 to 2 days before the final exam. The results showed a statistically significant difference in the likelihood of module access during scheduled time across the curriculum (p<0.0001). Among the students, 64% accessed modules at least once during scheduled time in G&D1, but only 10%, 19%, and 18% in G&D2, G&D3, and G&D4, respectively. For all courses, the proportion of module accesses was significantly higher 0-2 days before an exam compared to the other two timeframes. Module access also differed significantly within each timeframe across all four courses (p<0.001). There was no association between module access and course performance. In this non-traditional, non-lecture, self-directed curriculum, students rarely accessed learning modules during syllabus-budgeted self-study time and accessed modules more frequently as course exams approached.

  14. Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles.

    PubMed

    Chen, Qiu Lan; Liu, Zhou; Shum, Ho Cheung

    2014-11-01

    In this work, we demonstrate the use of stereolithographic 3D printing to fabricate millifluidic devices, which are used to engineer particles with multiple compartments. As the 3D design is directly transferred to the actual prototype, this method accommodates 3D millimeter-scaled features that are difficult to achieve by either lithographic-based microfabrication or traditional macrofabrication techniques. We exploit this approach to produce millifluidic networks to deliver multiple fluidic components. By taking advantage of the laminar flow, the fluidic components can form liquid jets with distinct patterns, and each pattern has clear boundaries between the liquid phases. Afterwards, droplets with controlled size are fabricated by spraying the liquid jet in an electric field, and subsequently converted to particles after a solidification step. As a demonstration, we fabricate calcium alginate particles with structures of (1) slice-by-slice multiple lamellae, (2) concentric core-shells, and (3) petals surrounding the particle centers. Furthermore, distinct hybrid particles combining two or more of the above structures are also obtained. These compartmentalized particles impart spatially dependent functionalities and properties. To show their applicability, various ingredients, including fruit juices, drugs, and magnetic nanoparticles are encapsulated in the different compartments as proof-of-concepts for applications, including food, drug delivery, and bioassays. Our 3D printed electro-millifluidic approach represents a convenient and robust method to extend the range of structures of functional particles.

  15. Formalizing and Promoting Collaboration in 3D Virtual Environments - A Blueprint for the Creation of Group Interaction Patterns

    NASA Astrophysics Data System (ADS)

    Schmeil, Andreas; Eppler, Martin J.

    Despite the fact that virtual worlds and other types of multi-user 3D collaboration spaces have long been subjects of research and of application experiences, it still remains unclear how to best benefit from meeting with colleagues and peers in a virtual environment with the aim of working together. Making use of the potential of virtual embodiment, i.e. being immersed in a space as a personal avatar, allows for innovative new forms of collaboration. In this paper, we present a framework that serves as a systematic formalization of collaboration elements in virtual environments. The framework is based on the semiotic distinctions among pragmatic, semantic and syntactic perspectives. It serves as a blueprint to guide users in designing, implementing, and executing virtual collaboration patterns tailored to their needs. We present two team and two community collaboration pattern examples as a result of the application of the framework: Virtual Meeting, Virtual Design Studio, Spatial Group Configuration, and Virtual Knowledge Fair. In conclusion, we also point out future research directions for this emerging domain.

  16. Cellular-automata-based learning network for pattern recognition

    NASA Astrophysics Data System (ADS)

    Tzionas, Panagiotis G.; Tsalides, Phillippos G.; Thanailakis, Adonios

    1991-11-01

    Most classification techniques either adopt an approach based directly on the statistical characteristics of the pattern classes involved, or they transform the patterns in a feature space and try to separate the point clusters in this space. An alternative approach based on memory networks has been presented, its novelty being that it can be implemented in parallel and it utilizes direct features of the patterns rather than statistical characteristics. This study presents a new approach for pattern classification using pseudo 2-D binary cellular automata (CA). This approach resembles the memory network classifier in the sense that it is based on an adaptive knowledge based formed during a training phase, and also in the fact that both methods utilize pattern features that are directly available. The main advantage of this approach is that the sensitivity of the pattern classifier can be controlled. The proposed pattern classifier has been designed using 1.5 micrometers design rules for an N-well CMOS process. Layout has been achieved using SOLO 1400. Binary pseudo 2-D hybrid additive CA (HACA) is described in the second section of this paper. The third section describes the operation of the pattern classifier and the fourth section presents some possible applications. The VLSI implementation of the pattern classifier is presented in the fifth section and, finally, the sixth section draws conclusions from the results obtained.

  17. Statistical properties of bidimensional patterns generated from delayed and extended maps

    NASA Astrophysics Data System (ADS)

    Giacomelli, Giovanni; Lepri, Stefano; Politi, Antonio

    1995-05-01

    The space-time chaotic patterns associated with a class of dynamical systems ranging from delayed to extended maps are investigated. All the systems are constructed in such a way that the corresponding two-dimensional (2D) representation is characterized by the same updating rule in the bulk. The main difference among them is the direction of the ``time'' axis in the plane. Despite the different causality relations among the various models, the resulting patterns are shown to be statistically equivalent. In particular, the Kolmogorov-Sinai entropy density assumes always the same value. Therefore, it can be considered as an absolute indicator, measuring the amount of disorder of a 2D pattern. The Kaplan-Yorke dimension density is instead rule dependent: this indicator alone cannot be used to quantify the degrees of freedom of a given pattern; one must further specify the direction of propagation in the plane.

  18. Evaluation of 3D metrology potential using a multiple detector CDSEM

    NASA Astrophysics Data System (ADS)

    Hakii, Hidemitsu; Yonekura, Isao; Nishiyama, Yasushi; Tanaka, Keishi; Komoto, Kenji; Murakawa, Tsutomu; Hiroyama, Mitsuo; Shida, Soichi; Kuribara, Masayuki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki

    2012-06-01

    As feature sizes of semiconductor device structures have continuously decreased, needs for metrology tools with high precision and excellent linearity over actual pattern sizes have been growing. And it has become important to measure not only two-dimensional (2D) but also three-dimensional (3D) shapes of patterns at 22 nm node and beyond. To meet requirements for 3D metrology capabilities, various pattern metrology tools have been developed. Among those, we assume that CDSEM metrology is the most qualified candidate in the light of its non-destructive, high throughput measurement capabilities that are expected to be extended to the much-awaited 3D metrology technology. On the basis of this supposition, we have developed the 3D metrology system, in which side wall angles and heights of photomask patterns can be measured with high accuracy through analyzing CDSEM images generated by multi-channel detectors. In this paper, we will discuss our attempts to measure 3D shapes of defect patterns on a photomask by using Advantest's "Multi Vision Metrology SEM" E3630 (MVM-SEM' E3630).

  19. Efficient generation of 3D hologram for American Sign Language using look-up table

    NASA Astrophysics Data System (ADS)

    Park, Joo-Sup; Kim, Seung-Cheol; Kim, Eun-Soo

    2010-02-01

    American Sign Language (ASL) is one of the languages giving the greatest help for communication of the hearing impaired person. Current 2-D broadcasting, 2-D movies are used the ASL to give some information, help understand the situation of the scene and translate the foreign language. These ASL will not be disappeared in future three-dimensional (3-D) broadcasting or 3-D movies because the usefulness of the ASL. On the other hands, some approaches for generation of CGH patterns have been suggested like the ray-tracing method and look-up table (LUT) method. However, these methods have some drawbacks that needs much time or needs huge memory size for look-up table. Recently, a novel LUT (N-LUT) method for fast generation of CGH patterns of 3-D objects with a dramatically reduced LUT without the loss of computational speed was proposed. Therefore, we proposed the method to efficiently generate the holographic ASL in holographic 3DTV or 3-D movies using look-up table method. The proposed method is largely consisted of five steps: construction of the LUT for each ASL images, extraction of characters in scripts or situation, call the fringe patterns for characters in the LUT for each ASL, composition of hologram pattern for 3-D video and hologram pattern for ASL and reconstruct the holographic 3D video with ASL. Some simulation results confirmed the feasibility of the proposed method in efficient generation of CGH patterns for ASL.

  20. A new detection scheme for ultrafast 2D J-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Akoka, Serge

    2007-06-01

    Recent ultrafast techniques enable 2D NMR spectra to be obtained in a single scan. A modification of the detection scheme involved in this technique is proposed, permitting the achievement of 2D 1H J-resolved spectra in 500 ms. The detection gradient echoes are substituted by spin echoes to obtain spectra where the coupling constants are encoded along the direct ν2 domain. The use of this new J-resolved detection block after continuous phase-encoding excitation schemes is discussed in terms of resolution and sensitivity. J-resolved spectra obtained on cinnamic acid and 3-ethyl bromopropionate are presented, revealing the expected 2D J-patterns with coupling constants as small as 2 Hz.

  1. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.

    PubMed

    Lee, Wonjae; Park, Jon

    2016-07-06

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  2. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  3. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    PubMed Central

    Lee, Wonjae; Park, Jon

    2016-01-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues. PMID:27381562

  4. Comparison of CT-derived Ventilation Maps with Deposition Patterns of Inhaled Microspheres in Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, Rick E.; Lamm, W. J.; Einstein, Daniel R.

    2015-04-01

    Purpose: Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examiningmore » particle deposition patterns using cryomicrotome imaging. Materials and Methods: Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ~1µm FMS for ~5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. Results: Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r=0.888, p<0.0001). Conclusion: We conclude that ventilation maps derived from CT imaging are predictive of the 1µm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies.« less

  5. GPU-Accelerated Forward and Back-Projections with Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction.

    PubMed

    Ha, S; Matej, S; Ispiryan, M; Mueller, K

    2013-02-01

    We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.

  6. GPU-Accelerated Forward and Back-Projections With Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction

    NASA Astrophysics Data System (ADS)

    Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.

    2013-02-01

    We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.

  7. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  8. Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusers

    PubMed Central

    Wiers, C E; Shumay, E; Cabrera, E; Shokri-Kojori, E; Gladwin, T E; Skarda, E; Cunningham, S I; Kim, S W; Wong, T C; Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Neuroimaging studies have documented reduced striatal dopamine D2/D3 receptor (D2/D3R) availability in cocaine abusers, which has been associated with impaired prefrontal activity and vulnerability for relapse. However, the mechanism(s) underlying the decreases in D2/D3R remain poorly understood. Recent studies have shown that sleep deprivation is associated with a downregulation of striatal D2/D3R in healthy volunteers. As cocaine abusers have disrupted sleep patterns, here we investigated whether reduced sleep duration mediates the relationship between cocaine abuse and low striatal D2/D3R availability. We used positron emission tomography with [11C]raclopride to measure striatal D2/D3R availability in 24 active cocaine abusers and 21 matched healthy controls, and interviewed them about their daily sleep patterns. Compared with controls, cocaine abusers had shorter sleep duration, went to bed later and reported longer periods of sleep disturbances. In addition, cocaine abusers had reduced striatal D2/D3R availability. Sleep duration predicted striatal D2/D3R availability and statistically mediated the relationship between cocaine abuse and striatal D2/D3R availability. These findings suggest that impaired sleep patterns contribute to the low striatal D2/D3R availability in cocaine abusers. As sleep impairments are similarly observed in other types of substance abusers (for example, alcohol and methamphetamine), this mechanism may also underlie reductions in D2/D3R availability in these groups. The current findings have clinical implications suggesting that interventions to improve sleep patterns in cocaine abusers undergoing detoxification might be beneficial in improving their clinical outcomes. PMID:26954979

  9. Vertical visual features have a strong influence on cuttlefish camouflage.

    PubMed

    Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T

    2013-04-01

    Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.

  10. Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind

    2017-11-01

    The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.

  11. Robust curb detection with fusion of 3D-Lidar and camera data.

    PubMed

    Tan, Jun; Li, Jian; An, Xiangjing; He, Hangen

    2014-05-21

    Curb detection is an essential component of Autonomous Land Vehicles (ALV), especially important for safe driving in urban environments. In this paper, we propose a fusion-based curb detection method through exploiting 3D-Lidar and camera data. More specifically, we first fuse the sparse 3D-Lidar points and high-resolution camera images together to recover a dense depth image of the captured scene. Based on the recovered dense depth image, we propose a filter-based method to estimate the normal direction within the image. Then, by using the multi-scale normal patterns based on the curb's geometric property, curb point features fitting the patterns are detected in the normal image row by row. After that, we construct a Markov Chain to model the consistency of curb points which utilizes the continuous property of the curb, and thus the optimal curb path which links the curb points together can be efficiently estimated by dynamic programming. Finally, we perform post-processing operations to filter the outliers, parameterize the curbs and give the confidence scores on the detected curbs. Extensive evaluations clearly show that our proposed method can detect curbs with strong robustness at real-time speed for both static and dynamic scenes.

  12. Directed high-power THz radiation from transverse laser wakefield excited in an electron density filament

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serge; Englesbe, Alexander; Elle, Jennifer; Domonkos, Matthew; Schmitt-Sody, Andreas

    2017-10-01

    A tightly focused femtosecond, weakly relativistic laser pulse partially ionizes the ambient gas, creating a string (a ``filament'') of electron density, locally reducing the nonlinear index and compensating for the self-focusing effect caused by bound electrons. While maintaining the filament over many Rayleigh lengths, the pulse drives inside it a three-dimensional (3D) wave of charge separation - the plasma wake. If the pulse waist size is much smaller than the Langmuir wavelength, electron current in the wake is mostly transverse. Electrons, driven by the wake across the sharp radial boundary of the filament, lose coherence within 2-3 periods of wakefield oscillations, and the wake decays. The laser pulse is thus accompanied by a short-lived, almost aperiodic electron current coupled to the sharp index gradient. The comprehensive 3D hydrodynamic model shows that this structure emits a broad-band THz radiation, with the highest power emitted in the near-forward direction. The THz radiation pattern contains information on wake currents surrounding the laser pulse, thus serving as an all-optical diagnostic tool. The results are tested in cylindrical and full 3D PIC simulations using codes WAKE and EPOCH.

  13. What measurements of proton self emission tell us about hohlraum fields and yield anomalies

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Li, C.; Seguin, F.; Frenje, J.; Rosenberg, M.; Rinderknecht, H.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Bourgade, J.-L.; Amendt, P.; Izumi, N.; Koch, J.; Landen, O.; Milovich, J.; Park, H.; Robey, H.; Robey, R.; Town, R.; Nikroo, A.; Kilkenny, J.

    2009-11-01

    Measurements have been made of 14.7-MeV self-emission protons, from reactions of D-3He fuel, for a variety of hohlraums - scale 1 and scale .5ex3 -.1em/ -.15em.25ex3 , gold and cocktail hohlraums, vacuum and gas-filled hohlraums, cylindrical and rugby geometries, drive with and without phase plates, drive with different numbers of beams, and implosions with different capsule parameters. The picture that emerges is quite consistent: large anisotropies in the proton fluence pattern are generally observed out the LEH but little if any variations through the hohlraum equator. In addition, we examine whether the scaling of yields from pure D2 to D-3He mixtures is found to deviate from the expected density scaling (i.e. the Rygg Effect), as reported recently for directly driven capsules (1). (1) H. Herrmann et al., PoP 16, 056312(2009)

  14. Which Way Is the Flow?

    NASA Technical Reports Server (NTRS)

    Kao, David

    1999-01-01

    The line integral convolution (LIC) technique has been known to be an effective tool for depicting flow patterns in a given vector field. There have been many extensions to make it run faster and reveal useful flow information such as velocity magnitude, motion, and direction. There are also extensions to unsteady flows and 3D vector fields. Surprisingly, none of these extensions automatically highlight flow features, which often represent the most important and interesting physical flow phenomena. In this sketch, a method for highlighting flow direction in LIC images is presented. The method gives an intuitive impression of flow direction in the given vector field and automatically reveals saddle points in the flow.

  15. Calculating point of origin of blood spatter using laser scanning technology.

    PubMed

    Hakim, Nashad; Liscio, Eugene

    2015-03-01

    The point of origin of an impact pattern is important in establishing the chain of events in a bloodletting incident. In this study, the accuracy and reproducibility of the point of origin estimation using the FARO Scene software with the FARO Focus(3D) laser scanner was determined. Five impact patterns were created for each of three combinations of distances from the floor (z) and the front wall (x). Fifteen spatters were created using a custom impact rig, scanned using the laser scanner, photographed using a DSLR camera, and processed using the Scene software. Overall results gave a SD = 3.49 cm (p < 0.0001) in the x-direction, SD = 1.14 cm (p = 0.9291) in the y-direction, and SD = 9.08 cm (p < 0.0115) in the z-direction. The technique performs within literature ranges of accepted accuracy and reproducibility and is comparable to results reported for other virtual stringing software. © 2015 American Academy of Forensic Sciences.

  16. 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 2. Kinetic and hydrogen-transfer studies.

    PubMed

    Livingston, D J; Fox, J A; Orme-Johnson, W H; Walsh, C T

    1987-07-14

    Steady-state kinetic parameters have been obtained for the pure 8-hydroxy-5-deazaflavin-reducing hydrogenase. With H2 and 8-hydroxy-5-deazariboflavin (F0) as substrates, Km (H2) = 12 microM, Km (F0) = 26 microM, and Kcat = 225 s-1. In the back-direction, F0H2 is reoxidized (anaerobically) at 225 s-1. Initial velocity patterns, product inhibition patterns, dead-end inhibition by carbon monoxide, and transhydrogenation to Procion Red HE-3B suggest a two-site hybrid ping-pong mechanism. A kinetic derivation for the rate equation is provided in the Appendix. Studies with D2 and with D2O reveal that no steps involving D transfer are substantially rate determining. Further, D2 yields F0H2 with no deuterium at C5 while in D2O a 5-monodeuterio F0H2 product is formed, indicating complete exchange of hydrogens from H2 with solvent before final transfer of a hydride ion out from reduced enzyme to C5 of F0.

  17. The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy

    PubMed Central

    Jenett, Arnim; Schindelin, Johannes E; Heisenberg, Martin

    2006-01-01

    Background In the fly Drosophila melanogaster, new genetic, physiological, molecular and behavioral techniques for the functional analysis of the brain are rapidly accumulating. These diverse investigations on the function of the insect brain use gene expression patterns that can be visualized and provide the means for manipulating groups of neurons as a common ground. To take advantage of these patterns one needs to know their typical anatomy. Results This paper describes the Virtual Insect Brain (VIB) protocol, a script suite for the quantitative assessment, comparison, and presentation of neuroanatomical data. It is based on the 3D-reconstruction and visualization software Amira, version 3.x (Mercury Inc.) [1]. Besides its backbone, a standardization procedure which aligns individual 3D images (series of virtual sections obtained by confocal microscopy) to a common coordinate system and computes average intensities for each voxel (volume pixel) the VIB protocol provides an elaborate data management system for data administration. The VIB protocol facilitates direct comparison of gene expression patterns and describes their interindividual variability. It provides volumetry of brain regions and helps to characterize the phenotypes of brain structure mutants. Using the VIB protocol does not require any programming skills since all operations are carried out at an intuitively usable graphical user interface. Although the VIB protocol has been developed for the standardization of Drosophila neuroanatomy, the program structure can be used for the standardization of other 3D structures as well. Conclusion Standardizing brains and gene expression patterns is a new approach to biological shape and its variability. The VIB protocol provides a first set of tools supporting this endeavor in Drosophila. The script suite is freely available at [2] PMID:17196102

  18. Application of Combined Two-Dimensional and Three-Dimensional Transvaginal Contrast Enhanced Ultrasound in the Diagnosis of Endometrial Carcinoma

    PubMed Central

    Zhou, Hui-li; Xiang, Hong; Duan, Li; Shahai, Gulinaer; Liu, Hui; Li, Xiang-hong; Mou, Rui-xue

    2015-01-01

    Objective. The goal of this study was to explore the clinical value of combining two-dimensional (2D) and three-dimensional (3D) transvaginal contrast-enhanced ultrasounds (CEUS) in diagnosis of endometrial carcinoma (EC). Methods. In this prospective diagnostic study, transvaginal 2D and 3D CEUS were performed on 68 patients with suspected EC, and the results of the obtained 2D-CEUS and 3D-CEUS images were compared with the gold standard for statistical analysis. Results. 2D-CEUS benign endometrial lesions showed the normal uterine perfusion phase while EC cases showed early arrival and early washout of the contrast agent and nonuniform enhancement. The 3D-CEUS images differed in central blood vessel manifestation, blood vessel shape, and vascular pattern between benign and malignant endometrial lesions (P < 0.05). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of transvaginal 2D-CEUS and 2D-CEUS combined with 3D-CEUS for diagnosis of benign and malignant endometrial lesions were 76.9%, 73.8%, 64.5%, 83.8%, and 75.0% and 84.6%, 83.3%, 75.9%, 89.7%, and 83.8%, respectively. Conclusion. 3D-CEUS is a useful supplement to 2D-CEUS and can clearly reveal the angioarchitecture spatial relationships between vessels and depth of myometrial invasion in EC. The combined use of 2D and 3D-CEUS can offer direct, accurate, and comprehensive diagnosis of early EC. PMID:26090396

  19. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    NASA Astrophysics Data System (ADS)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  20. Cube search, revisited.

    PubMed

    Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth

    2015-03-16

    Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with "equivalent" 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. © 2015 ARVO.

  1. Cube search, revisited

    PubMed Central

    Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth

    2015-01-01

    Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with “equivalent” 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. PMID:25780063

  2. Verification of real sensor motion for a high-dynamic 3D measurement inspection system

    NASA Astrophysics Data System (ADS)

    Breitbarth, Andreas; Correns, Martin; Zimmermann, Manuel; Zhang, Chen; Rosenberger, Maik; Schambach, Jörg; Notni, Gunther

    2017-06-01

    Inline three-dimensional measurements are a growing part of optical inspection. Considering increasing production capacities and economic aspects, dynamic measurements under motion are inescapable. Using a sequence of different pattern, like it is generally done in fringe projection systems, relative movements of the measurement object with respect to the 3d sensor between the images of one pattern sequence have to be compensated. Based on the application of fully automated optical inspection of circuit boards at an assembly line, the knowledge of the relative speed of movement between the measurement object and the 3d sensor system should be used inside the algorithms of motion compensation. Optimally, this relative speed is constant over the whole measurement process and consists of only one motion direction to avoid sensor vibrations. The quantified evaluation of this two assumptions and the error impact on the 3d accuracy are content of the research project described by this paper. For our experiments we use a glass etalon with non-transparent circles and transmitted light. Focused on the circle borders, this is one of the most reliable methods to determine subpixel positions using a couple of searching rays. The intersection point of all rays characterize the center of each circle. Based on these circle centers determined with a precision of approximately 1=50 pixel, the motion vector between two images could be calculated and compared with the input motion vector. Overall, the results are used to optimize the weight distribution of the 3d sensor head and reduce non-uniformly vibrations. Finally, there exists a dynamic 3d measurement system with an error of motion vectors about 4 micrometer. Based on this outcome, simulations result in a 3d standard deviation at planar object regions of 6 micrometers. The same system yields a 3d standard deviation of 9 µm without the optimization of weight distribution.

  3. 1D design style implications for mask making and CEBL

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2013-09-01

    At advanced nodes, CMOS logic is being designed in a highly regular design style because of the resolution limitations of optical lithography equipment. Logic and memory layouts using 1D Gridded Design Rules (GDR) have been demonstrated to nodes beyond 12nm.[1-4] Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. One of the significant advantages of 1D GDR is the ease of splitting layouts into lines and cuts. A lines and cuts approach has been used to achieve good pattern fidelity and process margin to below 12nm.[4] Line scaling with excellent line-edge roughness (LER) has been demonstrated with self-aligned spacer processing.[5] This change in design style has important implications for mask making: • The complexity of the masks will be greatly reduced from what would be required for 2D designs with very complex OPC or inverse lithography corrections. • The number of masks will initially increase, as for conventional multiple patterning. But in the case of 1D design, there are future options for mask count reduction. • The line masks will remain simple, with little or no OPC, at pitches (1x) above 80nm. This provides an excellent opportunity for continual improvement of line CD and LER. The line pattern will be processed through a self-aligned pitch division sequence to divide pitch by 2 or by 4. • The cut masks can be done with "simple OPC" as demonstrated to beyond 12nm.[6] Multiple simple cut masks may be required at advanced nodes. "Coloring" has been demonstrated to below 12nm for two colors and to 8nm for three colors. • Cut/hole masks will eventually be replaced by e-beam direct write using complementary e-beam lithography (CEBL).[7-11] This transition is gated by the availability of multiple column e-beam systems with throughput adequate for high- volume manufacturing. A brief description of 1D and 2D design styles will be presented, followed by examples of 1D layouts. Mask complexity for 1D layouts patterned directly will be compared to mask complexity for lines and cuts at nodes larger than 20nm. No such comparison is possible below 20nm since single-patterning does not work below ~80nm pitch using optical exposure tools. Also discussed will be recently published wafer results for line patterns with pitch division by-2 and by-4 at sub-12nm nodes, plus examples of post-etch results for 1D patterns done with cut masks and compared to cuts exposed by a single-column e-beam direct write system.

  4. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    NASA Astrophysics Data System (ADS)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the displacement fields. Displacement fields derived from both approaches are then combined and provide a better understanding of the landslide kinematics.

  5. Laser fabrication of porous silicon-based platforms for cell culturing.

    PubMed

    Peláez, Ramón-J; Afonso, Carmen-N; Vega, Fidel; Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso-Silván, Miguel; García-Ruiz, Josefa-P; Martín-Palma, Raúl-J

    2013-11-01

    In this study, we explore the selective culturing of human mesenchymal stem cells (hMSCs) on Si-based diffractive platforms. We demonstrate a single-step and flexible method for producing platforms on nanostructured porous silicon (nanoPS) based on the use of single pulses of an excimer laser to expose phase masks. The resulting patterns are typically 1D patterns formed by fringes or 2D patterns formed by circles. They are formed by alternate regions of almost unmodified nanoPS and regions where the nanoPS surface has melted and transformed into Si nanoparticles. The patterns are produced in relatively large areas (a few square millimeters) and can have a wide range of periodicities and aspect ratios. Direct binding, that is, with no previous functionalization of the pattern, alignment, and active polarization of hMSCs are explored. The results show the preferential direct binding of the hMSCs along the transformed regions whenever their width compares with the dimensions of the cells and they escape from patterns for smaller widths suggesting that the selectivity can be tailored through the pattern period. Copyright © 2013 Wiley Periodicals, Inc.

  6. Spatial tuning of a RF frequency selective surface through origami

    NASA Astrophysics Data System (ADS)

    Fuchi, Kazuko; Buskohl, Philip R.; Bazzan, Giorgio; Durstock, Michael F.; Joo, James J.; Reich, Gregory W.; Vaia, Richard A.

    2016-05-01

    Origami devices have the ability to spatially reconfigure between 2D and 3D states through folding motions. The precise mapping of origami presents a novel method to spatially tune radio frequency (RF) devices, including adaptive antennas, sensors, reflectors, and frequency selective surfaces (FSSs). While conventional RF FSSs are designed based upon a planar distribution of conductive elements, this leaves the large design space of the out of plane dimension underutilized. We investigated this design regime through the computational study of four FSS origami tessellations with conductive dipoles. The dipole patterns showed increased resonance shift with decreased separation distances, with the separation in the direction orthogonal to the dipole orientations having a more significant effect. The coupling mechanisms between dipole neighbours were evaluated by comparing surface charge densities, which revealed the gain and loss of coupling as the dipoles moved in and out of alignment via folding. Collectively, these results provide a basis of origami FSS designs for experimental study and motivates the development of computational tools to systematically predict optimal fold patterns for targeted frequency response and directionality.

  7. The study of craniofacial growth patterns using 3D laser scanning and geometric morphometrics

    NASA Astrophysics Data System (ADS)

    Friess, Martin

    2006-02-01

    Throughout childhood, braincase and face grow at different rates and therefore exhibit variable proportions and positions relative to each other. Our understanding of the direction and magnitude of these growth patterns is crucial for many ergonomic applications and can be improved by advanced 3D morphometrics. The purpose of this study is to investigate this known growth allometry using 3D imaging techniques. The geometry of the head and face of 840 children, aged 2 to 19, was captured with a laser surface scanner and analyzed statistically. From each scan, 18 landmarks were extracted and registered using General Procrustes Analysis (GPA). GPA eliminates unwanted variation due to position, orientation and scale by applying a least-squares superimposition algorithm to individual landmark configurations. This approach provides the necessary normalization for the study of differences in size, shape, and their interaction (allometry). The results show that throughout adolescence, boys and girls follow a different growth trajectory, leading to marked differences not only in size but also in shape, most notably in relative proportions of the braincase. These differences can be observed during early childhood, but become most noticeable after the age of 13 years, when craniofacial growth in girls slows down significantly, whereas growth in boys continues for at least 3 more years.

  8. Analysis of 3D Modeling Software Usage Patterns for K-12 Students

    ERIC Educational Resources Information Center

    Wu, Yi-Chieh; Liao, Wen-Hung; Chi, Ming-Te; Li, Tsai-Yen

    2016-01-01

    In response to the recent trend in maker movement, teachers are learning 3D techniques actively and bringing 3D printing into the classroom to enhance variety and creativity in designing lectures. This study investigates the usage pattern of a 3D modeling software, Qmodel Creator, which is targeted at K-12 students. User logs containing…

  9. Moiré patterns in doubly differential electron-momentum distributions in atomic ionization by mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Dran, Martín; Arbó, Diego G.

    2018-05-01

    We analyze the doubly differential electron momentum distribution in above-threshold ionization of atomic hydrogen by a linearly polarized mid-infrared laser pulse. We reproduce side rings in the momentum distribution with forward-backward symmetry previously observed by Lemell et al. [Phys. Rev. A 87, 013421 (2013), 10.1103/PhysRevA.87.013421], whose origin, as far as we know, has not been explained so far. By developing a Fourier theory of moiré patterns, we demonstrate that such structures stem from the interplay between intra- and intercycle interference patterns which work as two separate grids in the two-dimensional momentum domain. We use a three-dimensional (3D) description based on the saddle-point approximation (SPA) to unravel the nature of these structures. When the periods of the two grids (intra- and intercycle) are similar, principal moiré patterns arise symmetrically as concentric rings in the forward and backward directions at high electron kinetic energy. Higher order moiré patterns are observed and characterized when the period of one grid is multiple of the other. We find a scale law for the position (in momentum space) of the center of the moiré rings in the tunneling regime. We verify the SPA predictions by comparison with time-dependent distorted-wave strong-field approximation calculations and the solutions of the full 3D time-dependent Schrödinger equation.

  10. Flexible Regenerative Nanoelectronics for Advanced Peripheral Neural Interfaces

    DTIC Science & Technology

    2017-10-01

    these materials will be developed based on 3D printing . Page 4 Task 3. Construct nerve guidance scaffolds comprising of embedded mesh electrodes with...Develop photo mask patterning methods. 1-9 In progress 50% Subtask 2.2.2. Develop 3D printing patterning methods. 9-18 9/1/2017 Milestone(s...research into patterning techniques, we found that 10% gelatin methacrylate (GelMA) base gel was the best for performing 3D printing of the gels

  11. 3D structured illumination microscopy using an incoherent illumination system based on a Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Doblas, A.; Saavedra, G.; Preza, C.

    2018-02-01

    Three-dimensional (3D) structured illumination (SI) patterns that include lateral and axial variations have attracted more attention recently as their use in fluorescence microscope enhances the 3D resolution of the native imaging system. 3D SI patterns have already been created by interfering three mutually-coherent waves using a diffraction grating or some electro-optical devices such as spatial light modulators. Here, an interesting approach to generate a 3D SI pattern of tunable modulation frequency is shown. Our proposed illumination system is based on the incoherent illumination of a Fresnel biprism using several equidistant linear sources (i.e., slits). Previously, we investigated and compared numerically this tunable SI microscopy (SIM) system with the one achieved with three-wave interference. In this contribution, we implement our proposed incoherent 3D SIM system of tunable-frequency in an open-setup. We evaluate the axial confinement of the illumination pattern obtained with this system by recording the SI pattern using a mirror sample and different number of slits and compare these data with simulation results. Moreover, we verify that with a higher number of slits used, the axial confinement of the pattern increases, and consequently, the system's optical sectioning capability improves.

  12. Characteristics of Double Exponentially Tapered Slot Antenna (DETSA) Conformed in the Longitudinal Direction Around a Cylindrical Structure

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.

    2006-01-01

    The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.

  13. Deformation of the Eastern Franciscan Belt, northern California

    USGS Publications Warehouse

    Jayko, A.S.; Blake, M.C.

    1989-01-01

    The late Jurassic and Cretaceous Eastern Franciscan belt of the northern California Coast Range consists of two multiply deformed, blueschist-facies terranes; the Pickett Peak and Yolla Bolly terranes. Four deformations have been recognized in the Pickett Peak terrane, and three in the Yolla Bolly terrane. The earliest recognized penetrative fabric, D1, occurs only in the Pickett Peak terrane. The later penetrative fabrics, D2 and D3, occur in both the Yolla Bolly and Pickett Peak terranes. D1 and D2 apparently represent fabrics that formed during subduction and accretion of the terranes. Fabrics from both D1 and D2 are consistent with SW-NE movement directions with respect to their present geographic positions. D3 postdates blueschist-facies metamorphism of the terranes and may be related to emplacement of the terranes to higher structural levels. A broad regional warping, D4, is evident from the map pattern and folding of large metamorphosed thrust sheets. D4 folds may be related to deformation associated with oblique convergence along the continental margin in late Cretaceous and (or) early Tertiary time. ?? 1989.

  14. A Numerical Study of Forbush Decreases with a 3D Cosmic-Ray Modulation Model Based on an SDE Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xi; Feng, Xueshang; Potgieter, Marius S.

    Based on the reduced diffusion mechanism for producing Forbush decreases (Fds) in the heliosphere, we constructed a three-dimensional (3D) diffusion barrier, and by incorporating it into a stochastic differential equation (SDE) based time-dependent, cosmic-ray transport model, a 3D numerical model for simulating Fds is built and applied to a period of relatively quiet solar activity. This SDE model generally corroborates previous Fd simulations concerning the effects of the solar magnetic polarity, the tilt angle of the heliospheric current sheet (HCS), and cosmic-ray particle energy. Because the modulation processes in this 3D model are multi-directional, the barrier’s geometrical features affect themore » intensity profiles of Fds differently. We find that both the latitudinal and longitudinal extent of the barrier have relatively fewer effects on these profiles than its radial extent and the level of decreased diffusion inside the disturbance. We find, with the 3D approach, that the HCS rotational motion causes the relative location from the observation point to the HCS to vary, so that a periodic pattern appears in the cosmic-ray intensity at the observing location. Correspondingly, the magnitude and recovery time of an Fd change, and the recovering intensity profile contains oscillation as well. Investigating the Fd magnitude variation with heliocentric radial distance, we find that the magnitude decreases overall and, additionally, that the Fd magnitude exhibits an oscillating pattern as the radial distance increases, which coincides well with the wavy profile of the HCS under quiet solar modulation conditions.« less

  15. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing

    The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.

  17. Analysis of dynamics and fit of diving suits

    NASA Astrophysics Data System (ADS)

    Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.

    2017-10-01

    Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.

  18. SU-D-BRA-03: Analysis of Systematic Errors with 2D/3D Image Registration for Target Localization and Treatment Delivery in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Chetty, I; Wen, N

    Purpose: Determine systematic deviations between 2D/3D and 3D/3D image registrations with six degrees of freedom (6DOF) for various imaging modalities and registration algorithms on the Varian Edge Linac. Methods: The 6DOF systematic errors were assessed by comparing automated 2D/3D (kV/MV vs. CT) with 3D/3D (CBCT vs. CT) image registrations from different imaging pairs, CT slice thicknesses, couch angles, similarity measures, etc., using a Rando head and a pelvic phantom. The 2D/3D image registration accuracy was evaluated at different treatment sites (intra-cranial and extra-cranial) by statistically analyzing 2D/3D pre-treatment verification against 3D/3D localization of 192 Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy treatmentmore » fractions for 88 patients. Results: The systematic errors of 2D/3D image registration using kV-kV, MV-kV and MV-MV image pairs using 0.8 mm slice thickness CT images were within 0.3 mm and 0.3° for translations and rotations with a 95% confidence interval (CI). No significant difference between 2D/3D and 3D/3D image registrations (P>0.05) was observed for target localization at various CT slice thicknesses ranging from 0.8 to 3 mm. Couch angles (30, 45, 60 degree) did not impact the accuracy of 2D/3D image registration. Using pattern intensity with content image filtering was recommended for 2D/3D image registration to achieve the best accuracy. For the patient study, translational error was within 2 mm and rotational error was within 0.6 degrees in terms of 95% CI for 2D/3D image registration. For intra-cranial sites, means and std. deviations of translational errors were −0.2±0.7, 0.04±0.5, 0.1±0.4 mm for LNG, LAT, VRT directions, respectively. For extra-cranial sites, means and std. deviations of translational errors were - 0.04±1, 0.2±1, 0.1±1 mm for LNG, LAT, VRT directions, respectively. 2D/3D image registration uncertainties for intra-cranial and extra-cranial sites were comparable. Conclusion: The Varian Edge radiosurgery 6DOF-based system, can perform 2D/3D image registration with high accuracy for target localization in image-guided stereotactic radiosurgery. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.« less

  19. Marked Direct Hyperbilirubinemia due to Ceftriaxone in an Adult with Sickle Cell Disease

    PubMed Central

    Khurram, Daniyeh; Shamban, Leonid; Kornas, Robert; Paul, Maryann

    2015-01-01

    Drugs are a significant cause of liver injury. Drug-induced liver injury (DILI) can cause acute hepatitis, cholestasis, or a mixed pattern. Ceftriaxone is a commonly used antibiotic and has been associated with reversible biliary sludge, pseudolithiasis, and cholestasis. A 32-year-old male with sickle cell disease was admitted to the hospital for acute sickle cell crisis. On the second day of hospitalization, he developed cough and rhonchi with chest X-ray revealing right middle lobe infiltrates. Ceftriaxone and azithromycin were initiated. Subsequently, he developed conjugated hyperbilirubinemia and mild transaminitis. His total bilirubin trended upwards from 3.3 mg/dL on admission to 17 mg/dL. It was predominantly conjugated bilirubin, with preadmission bilirubin levels of 3-4 mg/dL. His transaminases were mildly elevated as well compared to previous levels. Extensive workup for bilirubin elevation was unremarkable. Ceftriaxone was switched to levofloxacin and the hyperbilirubinemia improved. On ambulatory follow-up, his bilirubin remained below 4 mg/dL. Ceftriaxone may be associated with marked direct hyperbilirubinemia particularly in sickle cell patients with chronic liver chemistry abnormalities. In the case of elevated bilirubin with concomitant ceftriaxone use, elimination of the offending agent should be considered. PMID:26101675

  20. A 3D Monte Carlo model of radiation affecting cells, and its application to neuronal cells and GCR irradiation

    NASA Astrophysics Data System (ADS)

    Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.

    A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.

  1. Coherent 3D nanostructure of γ-Al{sub 2}O{sub 3}: Simulation of whole X-ray powder diffraction pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090

    2017-02-15

    The structure and nanostructure features of nanocrystalline γ-Al{sub 2}O{sub 3} obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. The models of nanostructured γ-Al{sub 2}O{sub 3} particles were first confirmed by a direct simulation of powder X–Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al{sub 2}O{sub 3} was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al{sub 2}O{sub 3} platelets were heterogeneous on a nanometer scalemore » and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al{sub 2}O{sub 3} particles with formation of planar defects on (001), (100), and (101) planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al{sub 2}O{sub 3} structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al{sub 2}O{sub 3} oxide. - Highlights: • Thin plate-like crystallites of γ-Al{sub 2}O{sub 3} were obtained. • Models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. • Models were verified by simulating XRD patterns using the Debye Scattering Equation. • Specific broadening of XRD peaks was explained in terms of planar defects. • Primary crystalline blocks in γ-Al{sub 2}O{sub 3} are separated by partially coherent interfaces.« less

  2. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu

    2011-03-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.

  3. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    NASA Astrophysics Data System (ADS)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (<10 nm) possess advantages for surface enhanced Raman scattering (SERS) via the synergic effects of nanogaps and efficient decoupling from the substrate through an elevated three-dimensional (3D) design. In this work, we demonstrate a pattern-transfer-free process to reliably define elevated nanometer-separated mushroom-shaped dimers directly from 3D resist patterns based on the gap-narrowing effect during the metallic film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  4. Ghost Particle Velocimetry: Accurate 3D Flow Visualization Using Standard Lab Equipment

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto

    2013-07-01

    We describe and test a new approach to particle velocimetry, based on imaging and cross correlating the scattering speckle pattern generated on a near-field plane by flowing tracers with a size far below the diffraction limit, which allows reconstructing the velocity pattern in microfluidic channels without perturbing the flow. As a matter of fact, adding tracers is not even strictly required, provided that the sample displays sufficiently refractive-index fluctuations. For instance, phase separation in liquid mixtures in the presence of shear is suitable to be directly investigated by this “ghost particle velocimetry” technique, which just requires a microscope with standard lamp illumination equipped with a low-cost digital camera. As a further bonus, the peculiar spatial coherence properties of the illuminating source, which displays a finite longitudinal coherence length, allows for a 3D reconstruction of the profile with a resolution of few tenths of microns and makes the technique suitable to investigate turbid samples with negligible multiple scattering effects.

  5. A simple method of fabricating mask-free microfluidic devices for biological analysis

    PubMed Central

    Yi, Xin; Kodzius, Rimantas; Gong, Xiuqing; Xiao, Kang; Wen, Weijia

    2010-01-01

    We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper to form intricate patterns and differently configured channels for specific purposes. Bonded with cyanoacrylate-based resin, the prepared paper sheet is sandwiched between glass slides (hydrophilic) or polymer-based plates (hydrophobic) to obtain a multilayer structure. In order to examine the chip’s biocompatibility and applicability, protein concentration was measured while DNA capillary electrophoresis was carried out, and both of them show positive results. With the utilization of direct laser cutting and one-step gas-sacrificing techniques, the whole fabrication processes for complicated 2D and 3D microfluidic devices are shorten into several minutes which make it a good alternative of poly(dimethylsiloxane) microfluidic chips used in biological analysis researches. PMID:20890452

  6. Mask-induced aberration in EUV lithography

    NASA Astrophysics Data System (ADS)

    Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko

    2009-04-01

    We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.

  7. Regionalizing muscle activity causes changes to the magnitude and direction of the force from whole muscles-a modeling study.

    PubMed

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M

    2014-01-01

    Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active.

  8. Directed assembly-based printing of homogeneous and hybrid nanorods using dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Chai, Zhimin; Yilmaz, Cihan; Busnaina, Ahmed A.; Lissandrello, Charles A.; Carter, David J. D.

    2017-11-01

    Printing nano and microscale three-dimensional (3D) structures using directed assembly of nanoparticles has many potential applications in electronics, photonics and biotechnology. This paper presents a reproducible and scalable 3D dielectrophoresis assembly process for printing homogeneous silica and hybrid silica/gold nanorods from silica and gold nanoparticles. The nanoparticles are assembled into patterned vias under a dielectrophoretic force generated by an alternating current (AC) field, and then completely fused in situ to form nanorods. The assembly process is governed by the applied AC voltage amplitude and frequency, pattern geometry, and assembly time. Here, we find out that complete assembly of nanorods is not possible without applying both dielectrophoresis and electrophoresis. Therefore, a direct current offset voltage is used to add an additional electrophoretic force to the assembly process. The assembly can be precisely controlled to print silica nanorods with diameters from 20-200 nm and spacing from 500 nm to 2 μm. The assembled nanorods have good uniformity in diameter and height over a millimeter scale. Besides homogeneous silica nanorods, hybrid silica/gold nanorods are also assembled by sequentially assembling silica and gold nanoparticles. The precision of the assembly process is further demonstrated by assembling a single particle on top of each nanorod to demonstrate an additional level of functionalization. The assembled hybrid silica/gold nanorods have potential to be used for metamaterial applications that require nanoscale structures as well as for plasmonic sensors for biosensing applications.

  9. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    PubMed

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Understanding women's anger: a description of relational patterns.

    PubMed

    Jack, D C

    2001-06-01

    Sixty women's narratives about their anger were coded for elements of anger expression. Their decisions regarding how and where to express anger are most strongly influenced by the anticipated reactions of others. Six patterns of bringing anger into relationships or keeping it out were identified. Women bring anger into relationship: (1) positively and directly, with the goal of removing barriers to relationship; (2) aggressively, with the goal of hurting another; and (3) indirectly, through disguising anger with the goal of remaining safe from interpersonal consequences, using strategies of (a) quiet sabotage, (b) hostile distance, (c) deflection, and (d) loss of control. Women keep anger out of relationship (1) consciously and constructively, choosing to express it in positive ways; (2) explosively expressing anger, but not in the presence of another; and (3) through self-silencing, which ranges from conscious to less-conscious awareness of anger and its suppression. Implications of differing patterns for women's health are discussed.

  11. Spatial Point Pattern Analysis of Neurons Using Ripley's K-Function in 3D

    PubMed Central

    Jafari-Mamaghani, Mehrdad; Andersson, Mikael; Krieger, Patrik

    2010-01-01

    The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains. PMID:20577588

  12. A semi-automated process for the production of custom-made shoes

    NASA Technical Reports Server (NTRS)

    Farmer, Franklin H.

    1991-01-01

    A more efficient, cost-effective and timely way of designing and manufacturing custom footware is needed. A potential solution to this problem lies in the use of computer-aided design and manufacturing (CAD/CAM) techniques in the production of custom shoes. A prototype computer-based system was developed, and the system is primarily a software entity which directs and controls a 3-D scanner, a lathe or milling machine, and a pattern-cutting machine to produce the shoe last and the components to be assembled into a shoe. The steps in this process are: (1) scan the surface of the foot to obtain a 3-D image; (2) thin the foot surface data and create a tiled wire model of the foot; (3) interactively modify the wire model of the foot to produce a model of the shoe last; (4) machine the last; (5) scan the surface of the last and verify that it correctly represents the last model; (6) design cutting patterns for shoe uppers; (7) cut uppers; (8) machine an inverse mold for the shoe innersole/sole combination; (9) mold the innersole/sole; and (10) assemble the shoe. For all its capabilities, this system still requires the direction and assistance of skilled operators, and shoemakers to assemble the shoes. Currently, the system is running on a SUN3/260 workstation with TAAC application accelerator. The software elements of the system are written in either Fortran or C and run under a UNIX operator system.

  13. SU-F-T-181: Proton Therapy Tissue-Equivalence of 3D Printed Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P; Craft, D; Followill, D

    Purpose: This work investigated the proton tissue-equivalence of various 3D printed materials. Methods: Three 3D printers were used to create 5 cm cubic phantoms made of different plastics with varying percentages of infill. White resin, polylactic acid (PLA), and NinjaFlex plastics were used. The infills ranged from 15% to 100%. Each phantom was scanned with a CT scanner to obtain the HU value. The relative linear stopping power (RLSP) was then determined using a multi-layer ion chamber in a 200 MeV proton beam. The RLSP was measured both parallel and perpendicular to the print direction for each material. Results: Themore » HU values of the materials ranged from lung-equivalent (−820 HU σ160) when using a low infill, to soft-tissue-equivalent 159 (σ12). The RLSP of the materials depended on the orientation of the beam relative to the print direction. When the proton beam was parallel to the print direction, the RLSP was generally higher than the RLSP in the perpendicular orientation, by up to 45%. This difference was smaller (less than 6%) for the materials with 100% infill. For low infill cubes irradiated parallel to the print direction, the SOBP curve showed extreme degradation of the beam in the distal region. The materials with 15–25% infill had wide-ranging agreement with a clinical HU-RLSP conversion curve, with some measurements falling within 1% of the curve and others deviating up to 45%. The materials with 100% infill all fell within 7% of the curve. Conclusion: While some materials tested fall within 1% of a clinical HU-RLSP curve, caution should be taken when using 3D printed materials with proton therapy, as the orientation of the beam relative to the print direction can result in a large change in RLSP. Further investigation is needed to measure how the infill pattern affects the material RLSP. This work was supported by PHS grant CA180803.« less

  14. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  15. Advanced treatment planning using direct 4D optimisation for pencil-beam scanned particle therapy

    NASA Astrophysics Data System (ADS)

    Bernatowicz, Kinga; Zhang, Ye; Perrin, Rosalind; Weber, Damien C.; Lomax, Antony J.

    2017-08-01

    We report on development of a new four-dimensional (4D) optimisation approach for scanned proton beams, which incorporates both irregular motion patterns and the delivery dynamics of the treatment machine into the plan optimiser. Furthermore, we assess the effectiveness of this technique to reduce dose to critical structures in proximity to moving targets, while maintaining effective target dose homogeneity and coverage. The proposed approach has been tested using both a simulated phantom and a clinical liver cancer case, and allows for realistic 4D calculations and optimisation using irregular breathing patterns extracted from e.g. 4DCT-MRI (4D computed tomography-magnetic resonance imaging). 4D dose distributions resulting from our 4D optimisation can achieve almost the same quality as static plans, independent of the studied geometry/anatomy or selected motion (regular and irregular). Additionally, current implementation of the 4D optimisation approach requires less than 3 min to find the solution for a single field planned on 4DCT of a liver cancer patient. Although 4D optimisation allows for realistic calculations using irregular breathing patterns, it is very sensitive to variations from the planned motion. Based on a sensitivity analysis, target dose homogeneity comparable to static plans (D5-D95  <5%) has been found only for differences in amplitude of up to 1 mm, for changes in respiratory phase  <200 ms and for changes in the breathing period of  <20 ms in comparison to the motions used during optimisation. As such, methods to robustly deliver 4D optimised plans employing 4D intensity-modulated delivery are discussed.

  16. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z; Pang, J; Yang, W

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The techniquemore » was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins. Comparison with 4D-CT in a clinical setting is warranted to assess the value of 4D-MRI in radiotherapy planning. This work supported in part by grant 1R03CA173273-01.« less

  17. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths.

    PubMed

    Ledermann, Alexandra; Cademartiri, Ludovico; Hermatschweiler, Martin; Toninelli, Costanza; Ozin, Geoffrey A; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg

    2006-12-01

    Quasicrystals are a class of lattices characterized by a lack of translational symmetry. Nevertheless, the points of the lattice are deterministically arranged, obeying rotational symmetry. Thus, we expect properties that are different from both crystals and glasses. Indeed, naturally occurring electronic quasicrystals (for example, AlPdMn metal alloys) show peculiar electronic, vibrational and physico-chemical properties. Regarding artificial quasicrystals for electromagnetic waves, three-dimensional (3D) structures have recently been realized at GHz frequencies and 2D structures have been reported for the near-infrared region. Here, we report on the first fabrication and characterization of 3D quasicrystals for infrared frequencies. Using direct laser writing combined with a silicon inversion procedure, we achieve high-quality silicon inverse icosahedral structures. Both polymeric and silicon quasicrystals are characterized by means of electron microscopy and visible-light Laue diffraction. The diffraction patterns of structures with a local five-fold real-space symmetry axis reveal a ten-fold symmetry as required by theory for 3D structures.

  18. A 3D scanning laser endoscope architecture utilizing a circular piezoelectric membrane

    NASA Astrophysics Data System (ADS)

    Khayatzadeh, Ramin; Çivitci, Fehmi; Ferhanoğlu, Onur

    2017-12-01

    A piezo-scanning fiber endoscopic device architecture is proposed for 3D imaging or ablation. The endoscopic device consists of a piezoelectric membrane that is placed perpendicular to the optical axis, a fiber optic cable that extends out from and actuated by the piezoelectric membrane, and one or multiple lenses for beam delivery and collection. Unlike its counterparts that utilize piezoelectric cylinders for fiber actuation, the proposed architecture offers quasi-static actuation in the axial direction along with resonant actuation in the lateral directions forming a 3D scanning pattern, allowing adjustment of the focus plane. The actuation of the four-quadrant piezoelectric membrane involves driving of two orthogonal electrodes with AC signals for lateral scanning, while simultaneously driving all electrodes for axial scanning and focus adjustment. We have characterized piezoelectric membranes (5 -15mm diameter) with varying sizes to monitor axial displacement behavior with respect to applied DC voltage. We also demonstrate simultaneous lateral and axial actuation on a resolution target, and observe the change of lateral resolution on a selected plane through performing 1D cross-sectional images, as an indicator of focal shift through axial actuation. Based on experimental results, we identify the optical and geometrical parameters for optimal 3D imaging of tissue samples. Our findings reveal that a simple piezoelectric membrane, having comparable dimensions and drive voltage requirement with off-the-shelf MEMS scanner chips, offers tissue epithelial imaging with sub-cellular resolution.

  19. Efficient generation of holographic news ticker in holographic 3DTV

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Cheol; Kim, Eun-Soo

    2009-08-01

    News ticker is used to show breaking news or news headlines in conventional 2-D broadcasting system. For the case of the breaking news, the fast creation is need, because the information should be sent quickly. In addition, if holographic 3- D broadcasting system is started in the future, news ticker will remain. On the other hands, some approaches for generation of CGH patterns have been suggested like the ray-tracing method and look-up table (LUT) method. However, these methods have some drawbacks that needs much time or needs huge memory size for look-up table. Recently, a novel LUT (N-LUT) method for fast generation of CGH patterns of 3-D objects with a dramatically reduced LUT without the loss of computational speed was proposed. Therefore, we proposed the method to efficiently generate the holographic news ticker in holographic 3DTV or 3-D movies using N-LUT method. The proposed method is largely consisted of five steps: construction of the LUT for each character, extraction of characters in news ticker, generation and shift of the CGH pattern for news ticker using the LUT for each character, composition of hologram pattern for 3-D video and hologram pattern for news ticker and reconstruct the holographic 3D video with news ticker. To confirm the proposed method, moving car in front of the castle is used as a 3D video and the words 'HOLOGRAM CAPTION GENERATOR' is used as a news ticker. From this simulation results confirmed the feasibility of the proposed method in fast generation of CGH patterns for holographic captions.

  20. The dopamine D2 receptor regulates Akt and GSK-3 via Dvl-3.

    PubMed

    Sutton, Laurie P; Rushlow, Walter J

    2012-08-01

    The dopamine D2 receptor (D2DR) regulates Akt and may also target the Wnt pathway, two signalling cascades that inhibit glycogen synthase kinase-3 (GSK-3). This study examined whether the Wnt pathway is regulated by D2DR and the role of Akt and dishevelled-3 (Dvl-3) in regulating GSK-3 and the transcription factor β-catenin in the rat brain. Western blotting showed that subchronic treatment of raclopride (D2DR antagonist) increase phosphorylated Akt, Dvl-3, GSK-3, phosphorylated GSK-3 and β-catenin, whereas subchronic treatment of quinpirole (D2DR agonist) induced the opposite response. Co-immunopreciptations revealed an association between GSK-3 and the D2DR complex that was altered following raclopride and quinpirole, albeit in opposite directions. SCH23390 (D1DR antagonist) and nafadotride (D3DR antagonist) were also used to determine if the response was specific to the D2DR. Neither subchronic treatment affected Dvl-3, GSK-3, Akt nor β-catenin protein levels, although nafadotride altered the phosphorylation state of Akt and GSK-3. In addition, in-vitro experiments were conducted to manipulate Akt and Dvl-3 activity in SH-SY5Y cells to elucidate how the pattern of change observed following manipulation of D2DR developed. Results indicate that Akt affects the phosphorylation state of GSK-3 but has no effect on β-catenin levels. However, altering Dvl-3 levels resulted in changes in Akt and the Wnt pathway similar to what was observed following raclopride or quinpirole treatment. Collectively, the data suggests that the D2DR very specifically regulates Wnt and Akt signalling via Dvl-3.

  1. Direct comparison of intra-articular versus intravenous delayed gadolinium-enhanced MRI of hip joint cartilage.

    PubMed

    Zilkens, Christoph; Miese, Falk; Kim, Young-Jo; Jäger, Marcus; Mamisch, Tallal C; Hosalkar, Harish; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2014-01-01

    To investigate the potential of delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) after intra-articular (ia) contrast agent administration at 3 Tesla (T), a paired study comparing intravenous (iv) dGEMRIC (standard) with ia-dGEMRIC was performed. Thirty-five symptomatic patients with suspected cartilage damage underwent ia- and iv-dGEMRIC. MRI was performed with a 3T system wherein the interval between both measurements was 2 weeks. For iv-dGEMRIC, FDA approved Gd-DOTA(-) was injected intravenously 45 min before the MRI scan. For ia-dGEMRIC, 10-20 mL of a 2 mM solution of Gd- DOTA(-) was injected under fluoroscopic guidance 30 min before the MRI scan. Both ia- and iv-dGEMRIC demonstrated the typical T1Gd pattern in hip joint cartilage with increasing values toward the superior regions in acetabular cartilage reflecting the higher glycosaminoglycan (GAG) content in the main weight-bearing area. Correlation analysis revealed a moderate correlation between both techniques (r = 0.439, P-value < 0.001), whereas the T1Gd values for iv-dGEMRIC were significantly higher than those for ia-dGEMRIC. This corresponds with the Bland-Altman plot analysis, which revealed a systemic bias (higher T1Gd values after iv gadolinium application) of ∼70 ms. Ia-dGEMRIC was able to reveal the characteristic T1Gd pattern in hip joint cartilage confirming the sensitivity of ia-dGEMRIC for GAG. In addition, there was a significant correlation between iv-dGEMRIC and ia-dGEMRIC. However, the T1Gd values after ia contrast media application were significantly lower than those after iv application that has to be considered for future studies. Copyright © 2013 Wiley Periodicals, Inc.

  2. Antigenic relatedness of glucosyltransferase enzymes from streptococcus mutans.

    PubMed

    Smith, D J; Taubman, M A

    1977-01-01

    The antigenic relationship of glucosyltransferases (GTF) produced by different serotypes of Streptococcus mutans was studied by using a functional inhibition assay. Rat, rabbit, or hamster immune fluids, directed to cell-associated or supernatant-derived GTF, were tested against ammonium sulfate-precipitated culture supernatants containing GTF from seven strains of S. mutans representing six different serotypes. An antigenic relationship was shown to exist among GTF from serotypes a, d, and g, since both rat and rabbit antisera directed to serotype a or g GTF inhibited GTF of serotypes d and g similarly and both antisera also inhibited serotype a GTF. Furthermore, serum inhibition patterns indicated that GTF of serotypes c and e, and possibly b, are antigenically related to each other, but are antigenically distinct from GTF of serotype a, d, or g. Serum antibody directed to antigens other than enzyme (e.g., serotype-specific antigen or teichoic acid) had little effect on the inhibition assay. Salivas from rats immunized with cell-associated or supernatant-derived GTF exhibited low but consistent inhibition of GTF activity, which generally corresponded to the serum patterns. The sera of two groups of hamsters immunized with GTF (serotype g), enriched either in water-insoluble or water-soluble glucan synthetic activity, gave patterns of inhibition quite similar to those seen with sera from more heterogenous cell-associated or crude supernatant-derived GTF preparations. Both groups of hamster sera also gave virtually identical patterns, suggesting that the two enzyme forms used as antigen share common antigenic determinants. The results from the three animal models suggest that among the cariogenic organisms tested, two (serotypes a, d, g and b, c, e), or perhaps three (serotypes a, d, g; b; and c, e), different subsets of GTF exist that have distinct antigenic determinants within a subset.

  3. 3D Diffraction Microscope Provides a First Deep View

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei

    2005-03-01

    When a coherent diffraction pattern is sampled at a spacing sufficiently finer than the Bragg peak frequency (i.e. the inverse of the sample size), the phase information is in principle encoded inside the diffraction pattern, and can be directly retrieved by using an iterative process. In combination of this oversampling phasing method with either coherent X-rays or electrons, a novel form of diffraction microscopy has recently been developed to image nanoscale materials and biological structures. In this talk, I will present the principle of the oversampling method, discuss the first experimental demonstration of this microscope, and illustrate some applications in nanoscience and biology.

  4. Cilia driven flow networks in the brain

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Faubel, Regina; Westendorf, Chrsitian; Eichele, Gregor; Bodenschatz, Eberhard

    Neurons exchange soluble substances via the cerebrospinal fluid (CSF) that fills the ventricular system. The walls of the ventricular cavities are covered with motile cilia that constantly beat and thereby induce a directional flow. We recently discovered that cilia in the third ventricle generate a complex flow pattern leading to partitioning of the ventricular volume and site-directed transport paths along the walls. Transient and daily recurrent alterations in the cilia beating direction lead to changes in the flow pattern. This has consequences for delivery of CSF components along the near wall flow. The contribution of this cilia-induced flow to overall CSF flow remains to be investigated. The state-of-art lattice Boltzmann method is adapted for studying the CFS flow. The 3D geometry of the third ventricle at high resolution was reconstructed. Simulation of CSF flow without cilia in this geometry confirmed that the previous idea about unidirectional flow does not explain how different components of CSF can be delivered to their various target sites. We study the contribution of the cilia-induced flow pattern to overall CSF flow and identify target areas for site-specific delivery of CSF-constituents with respect to the temporal changes.

  5. Classification of brain MRI with big data and deep 3D convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Wegmayr, Viktor; Aitharaju, Sai; Buhmann, Joachim

    2018-02-01

    Our ever-aging society faces the growing problem of neurodegenerative diseases, in particular dementia. Magnetic Resonance Imaging provides a unique tool for non-invasive investigation of these brain diseases. However, it is extremely difficult for neurologists to identify complex disease patterns from large amounts of three-dimensional images. In contrast, machine learning excels at automatic pattern recognition from large amounts of data. In particular, deep learning has achieved impressive results in image classification. Unfortunately, its application to medical image classification remains difficult. We consider two reasons for this difficulty: First, volumetric medical image data is considerably scarcer than natural images. Second, the complexity of 3D medical images is much higher compared to common 2D images. To address the problem of small data set size, we assemble the largest dataset ever used for training a deep 3D convolutional neural network to classify brain images as healthy (HC), mild cognitive impairment (MCI) or Alzheimers disease (AD). We use more than 20.000 images from subjects of these three classes, which is almost 9x the size of the previously largest data set. The problem of high dimensionality is addressed by using a deep 3D convolutional neural network, which is state-of-the-art in large-scale image classification. We exploit its ability to process the images directly, only with standard preprocessing, but without the need for elaborate feature engineering. Compared to other work, our workflow is considerably simpler, which increases clinical applicability. Accuracy is measured on the ADNI+AIBL data sets, and the independent CADDementia benchmark.

  6. Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods.

    PubMed

    Kim, Seung-Cheol; Kim, Eun-Soo

    2009-02-20

    In this paper we propose a new approach for fast generation of computer-generated holograms (CGHs) of a 3D object by using the run-length encoding (RLE) and the novel look-up table (N-LUT) methods. With the RLE method, spatially redundant data of a 3D object are extracted and regrouped into the N-point redundancy map according to the number of the adjacent object points having the same 3D value. Based on this redundancy map, N-point principle fringe patterns (PFPs) are newly calculated by using the 1-point PFP of the N-LUT, and the CGH pattern for the 3D object is generated with these N-point PFPs. In this approach, object points to be involved in calculation of the CGH pattern can be dramatically reduced and, as a result, an increase of computational speed can be obtained. Some experiments with a test 3D object are carried out and the results are compared to those of the conventional methods.

  7. Robust Curb Detection with Fusion of 3D-Lidar and Camera Data

    PubMed Central

    Tan, Jun; Li, Jian; An, Xiangjing; He, Hangen

    2014-01-01

    Curb detection is an essential component of Autonomous Land Vehicles (ALV), especially important for safe driving in urban environments. In this paper, we propose a fusion-based curb detection method through exploiting 3D-Lidar and camera data. More specifically, we first fuse the sparse 3D-Lidar points and high-resolution camera images together to recover a dense depth image of the captured scene. Based on the recovered dense depth image, we propose a filter-based method to estimate the normal direction within the image. Then, by using the multi-scale normal patterns based on the curb's geometric property, curb point features fitting the patterns are detected in the normal image row by row. After that, we construct a Markov Chain to model the consistency of curb points which utilizes the continuous property of the curb, and thus the optimal curb path which links the curb points together can be efficiently estimated by dynamic programming. Finally, we perform post-processing operations to filter the outliers, parameterize the curbs and give the confidence scores on the detected curbs. Extensive evaluations clearly show that our proposed method can detect curbs with strong robustness at real-time speed for both static and dynamic scenes. PMID:24854364

  8. A molluscan model system in the search for the engram.

    PubMed

    Lukowiak, Ken; Sangha, Susan; Scheibenstock, Andi; Parvez, Kashif; McComb, Chloe; Rosenegger, David; Varshney, Nishi; Sadamoto, Hisayo

    2003-01-01

    A 3-neuron central pattern generator, whose sufficiency and necessity has been directly demonstrated, mediates aerial respiratory behaviour in the pond snail, Lymnaea stagnalis. This behaviour can be operantly conditioned, and this associative learning is consolidated into long-lasting memory. Depending on the operant conditioning training procedure used the learning can be consolidated into intermediate term (ITM) or long-term memory (LTM). ITM persists for only 2-3 h, whilst LTM persists for days to weeks. LTM is dependent on both altered gene activity and new protein synthesis while ITM is only dependent on new protein synthesis. We have now directly established that one of the 3-CPG neurons, RPeD1, is a site of LTM formation and storage. We did this by ablating the soma of RPeD1 and leaving behind a functional primary neurite capable of mediating the necessary synaptic interactions to drive aerial respiratory behaviour by the 3-neuron CPG. However, following soma ablation the neuronal circuit is only capable of mediating learning and ITM. LTM can no longer be demonstrated. However, if RPeD1's soma is ablated after LTM consolidation memory is still present. Thus the soma is not needed for the retention of LTM. Using a similar strategy it may be possible to block forgetting.

  9. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  10. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2018-01-16

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  11. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    PubMed

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  12. Spatial organization and Synchronization in collective swimming of Hemigrammus bleheri

    NASA Astrophysics Data System (ADS)

    Ashraf, Intesaaf; Ha, Thanh-Tung; Godoy-Diana, Ramiro; Thiria, Benjamin; Halloy, Jose; Collignon, Bertrand; Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH) Team; Laboratoire Interdisciplinaire des Energies de Demain (LIED) Team

    2016-11-01

    In this work, we study the collective swimming of Hemigrammus bleheri fish using experiments in a shallow swimming channel. We use high-speed video recordings to track the midline kinematics and the spatial organization of fish pairs and triads. Synchronizations are characterized by observance of "out of phase" and "in phase" configurations. We show that the synchronization state is highly correlated to swimming speed. The increase in synchronization led to efficient swimming based on Strouhal number. In case of fish pairs, the collective swimming is 2D and the spatial organization is characterized by two characteristic lengths: the lateral and longitudinal separation distances between fish pairs.For fish triads, different swimming patterns or configurations are observed having three dimensional structures. We performed 3D kinematic analysis by employing 3D reconstruction using the Direct Linear Transformation (DLT). We show that fish still keep their nearest neighbor distance (NND) constant irrespective of swimming speeds and configuration. We also point out characteristic angles between neighbors, hence imposing preferred patterns. At last we will give some perspectives on spatial organization for larger population. Sorbonne Paris City College of Doctoral Schools. European Union Information and Communication Technologies project ASSISIbf, FP7-ICT-FET-601074.

  13. SU-E-T-786: Utility of Gold Wires to Optimize Intensity Modulation Capacity of a Novel Directional Modulated Brachytherapy Tandem Applicator for Image Guided Cervical Cancer Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario; Safigholi, H

    2015-06-15

    Purpose: To evaluate the impact of using gold wires to differentially fill various channels on plan quality compared with conventional T&R applicator, inside a novel directional modulated brachytherapy (DMBT) tandem applicator for cervical cancer brachytherapy. Materials and Methods: The novel DMBT tandem applicator has a 5.4-mm diameter MR-compatible tungsten alloy enclosed in a 0.3-mm thick plastic tubing that wraps around the tandem. To modulate the radiation intensity, 6 symmetric peripheral holes of 1.3-mm diameter are grooved along the tungsten alloy rod. These grooved holes are differentially filled with gold wires to generate various degrees of directional beams. For example, threemore » different fill patterns of 1) all void, 2) all filled except the hole containing the 192-Ir source, and 3) two adjacent holes to the 192-Ir source filled were Monte Carlo simulated. The resulting 3D dose distributions were imported into an in-house-coded inverse optimization planning system to generate HDR brachytherapy clinical plans for 19 patient cases. All plans generated were normalized to the same D90 as the clinical plans and D2cc doses of OARs were evaluated. Prescription ranged between 15 and 17.5Gy. Results: In general, the plans in case 1) resulted in the highest D2cc doses for the OARs with 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for bladder, rectum, and sigmoid, respectively, although the differences were small. For the case 2), D2cc doses were 11.61±2.29Gy, 7.41±3.07Gy, and 9.75±2.45Gy, respectively. And, for the case 3), D2cc doses were 11.60±2.28Gy, 7.41±3.05Gy, and 9.74±2.45Gy, respectively. Difference between 1) and 2) cases were small with the average D2cc difference of <0.64%. Difference between 1) and 3) cases were even smaller with the average D2cc difference of <0.1%. Conclusions: There is a minimal clinical benefit by differentially filling grooved holes in the novel DMBT tandem applicator for image guided cervical cancer brachytherapy.« less

  14. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S; Dolly, S; Cai, B

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less

  15. YieldStar based reticle 3D measurements and its application

    NASA Astrophysics Data System (ADS)

    Vaenkatesan, Vidya; Finders, Jo; ten Berge, Peter; Plug, Reinder; Sijben, Anko; Schellekens, Twan; Dillen, Harm; Pocobiej, Wojciech; Jorge, Vasco G.; van Dijck, Jurgen

    2016-09-01

    YieldStar (YS) is an established ASML-built scatterometer that is capable of measuring wafer Critical Dimension (CD), Overlay and Focus. In a recent work, the application range of YS was extended to measure 3D CD patterns on a reticle (pattern CD, height, Side Wall Angle-SWA). The primary motivation for this study came from imaging studies that indicated a need for measuring and controlling reticle 3D topography. CD scanning electron microscope (CD-SEM), Atomic force microscope (AFM), 3D multiple detector SEM (3D-SEM) are the preferred tools for reticle metrology. While these tools serve the industry well, the current research to the impact of reticle 3D involves extensive costs, logistic challenges and increased reticle lead time. YS provides an attractive alternative as it can measure pattern CD, SWA and height in a single measurement and at high throughput. This work demonstrates the capability of YS as a reticle metrology tool.

  16. Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei

    2016-12-01

    In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.

  17. Reliable landmarks for precise topographical analyses of pathological structural changes of the ovine tibial plateau in 2-D and 3-D subspaces.

    PubMed

    Oláh, Tamás; Reinhard, Jan; Gao, Liang; Goebel, Lars K H; Madry, Henning

    2018-01-08

    Selecting identical topographical locations to analyse pathological structural changes of the osteochondral unit in translational models remains difficult. The specific aim of the study was to provide objectively defined reference points on the ovine tibial plateau based on 2-D sections of micro-CT images useful for reproducible sample harvesting and as standardized landmarks for landmark-based 3-D image registration. We propose 5 reference points, 11 reference lines and 12 subregions that are detectable macroscopically and on 2-D micro-CT sections. Their value was confirmed applying landmark-based rigid and affine 3-D registration methods. Intra- and interobserver comparison showed high reliabilities, and constant positions (standard errors < 1%). Spatial patterns of the thicknesses of the articular cartilage and subchondral bone plate were revealed by measurements in 96 individual points of the tibial plateau. As a case study, pathological phenomena 6 months following OA induction in vivo such as osteophytes and areas of OA development were mapped to the individual subregions. These new reference points and subregions are directly identifiable on tibial plateau specimens or macroscopic images, enabling a precise topographical location of pathological structural changes of the osteochondral unit in both 2-D and 3-D subspaces in a region-appropriate fashion relevant for translational investigations.

  18. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    PubMed

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  19. Integrating Remote Sensing Data with Directional Two- Dimensional Wavelet Analysis and Open Geospatial Techniques for Efficient Disaster Monitoring and Management.

    PubMed

    Lin, Yun-Bin; Lin, Yu-Pin; Deng, Dong-Po; Chen, Kuan-Wei

    2008-02-19

    In Taiwan, earthquakes have long been recognized as a major cause oflandslides that are wide spread by floods brought by typhoons followed. Distinguishingbetween landslide spatial patterns in different disturbance regimes is fundamental fordisaster monitoring, management, and land-cover restoration. To circumscribe landslides,this study adopts the normalized difference vegetation index (NDVI), which can bedetermined by simply applying mathematical operations of near-infrared and visible-redspectral data immediately after remotely sensed data is acquired. In real-time disastermonitoring, the NDVI is more effective than using land-cover classifications generatedfrom remotely sensed data as land-cover classification tasks are extremely time consuming.Directional two-dimensional (2D) wavelet analysis has an advantage over traditionalspectrum analysis in that it determines localized variations along a specific direction whenidentifying dominant modes of change, and where those modes are located in multi-temporal remotely sensed images. Open geospatial techniques comprise a series ofsolutions developed based on Open Geospatial Consortium specifications that can beapplied to encode data for interoperability and develop an open geospatial service for sharing data. This study presents a novel approach and framework that uses directional 2Dwavelet analysis of real-time NDVI images to effectively identify landslide patterns andshare resulting patterns via open geospatial techniques. As a case study, this study analyzedNDVI images derived from SPOT HRV images before and after the ChiChi earthquake(7.3 on the Richter scale) that hit the Chenyulan basin in Taiwan, as well as images aftertwo large typhoons (Xangsane and Toraji) to delineate the spatial patterns of landslidescaused by major disturbances. Disturbed spatial patterns of landslides that followed theseevents were successfully delineated using 2D wavelet analysis, and results of patternrecognitions of landslides were distributed simultaneously to other agents using geographymarkup language. Real-time information allows successive platforms (agents) to work withlocal geospatial data for disaster management. Furthermore, the proposed is suitable fordetecting landslides in various regions on continental, regional, and local scales usingremotely sensed data in various resolutions derived from SPOT HRV, IKONOS, andQuickBird multispectral images.

  20. Spontaneous wrinkling in azlactone-based functional polymer thin films in 2D and 3D geometries for guided nanopatterning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, Muruganathan; Lokitz, Bradley S.; Messman, Jamie M.

    We report a simple, one step process for developing wrinkling patterns in azlactone-based polymer thin films and brushes in 2D and 3D surfaces. The polymer used in this work wrinkles spontaneously upon deposition and solidification on a substrate without applying any external strain to the substrate, with the mode of deposition defining the direction of the wrinkles. Wrinkle formation is shown to occur on a variety of substrates over large areas. We also find that a very thin brush-like layer of an azlactone-containing block copolymer also exhibits wrinkled topology. Given the spontaneity and versatility of wrinkle formation, we further demonstratemore » two proofs-of-concept, i) that these periodic wrinkled structures are not limited to planar surfaces, but are also developed in complex geometries including tubes, cones and other 3D structures; and ii) that this one-step wrinkling process can be used to guide the deposition of metal nanoparticles and quantum dots, creating a periodic, nanopatterned film.« less

  1. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    PubMed Central

    Aoki, Michio

    2018-01-01

    Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894

  2. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    NASA Astrophysics Data System (ADS)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  3. 3D palmprint data fast acquisition and recognition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua

    2014-11-01

    This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.

  4. The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis

    PubMed Central

    Boehm, Bernd; Westerberg, Henrik; Lesnicar-Pucko, Gaja; Raja, Sahdia; Rautschka, Michael; Cotterell, James; Swoger, Jim; Sharpe, James

    2010-01-01

    Although the vertebrate limb bud has been studied for decades as a model system for spatial pattern formation and cell specification, the cellular basis of its distally oriented elongation has been a relatively neglected topic by comparison. The conventional view is that a gradient of isotropic proliferation exists along the limb, with high proliferation rates at the distal tip and lower rates towards the body, and that this gradient is the driving force behind outgrowth. Here we test this hypothesis by combining quantitative empirical data sets with computer modelling to assess the potential role of spatially controlled proliferation rates in the process of directional limb bud outgrowth. In particular, we generate two new empirical data sets for the mouse hind limb—a numerical description of shape change and a quantitative 3D map of cell cycle times—and combine these with a new 3D finite element model of tissue growth. By developing a parameter optimization approach (which explores spatial patterns of tissue growth) our computer simulations reveal that the observed distribution of proliferation rates plays no significant role in controlling the distally extending limb shape, and suggests that directional cell activities are likely to be the driving force behind limb bud outgrowth. This theoretical prediction prompted us to search for evidence of directional cell orientations in the limb bud mesenchyme, and we thus discovered a striking highly branched and extended cell shape composed of dynamically extending and retracting filopodia, a distally oriented bias in Golgi position, and also a bias in the orientation of cell division. We therefore provide both theoretical and empirical evidence that limb bud elongation is achieved by directional cell activities, rather than a PD gradient of proliferation rates. PMID:20644711

  5. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  6. 3D Product Development for Loose-Fitting Garments Based on Parametric Human Models

    NASA Astrophysics Data System (ADS)

    Krzywinski, S.; Siegmund, J.

    2017-10-01

    Researchers and commercial suppliers worldwide pursue the objective of achieving a more transparent garment construction process that is computationally linked to a virtual body, in order to save development costs over the long term. The current aim is not to transfer the complete pattern making step to a 3D design environment but to work out basic constructions in 3D that provide excellent fit due to their accurate construction and morphological pattern grading (automatic change of sizes in 3D) in respect of sizes and body types. After a computer-aided derivation of 2D pattern parts, these can be made available to the industry as a basis on which to create more fashionable variations.

  7. High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor

    NASA Astrophysics Data System (ADS)

    Lazarev, Grigory; Bonifer, Stefanie; Engel, Philip; Höhne, Daniel; Notni, Gunther

    2017-06-01

    We report about the implementation of the liquid crystal on silicon (LCOS) microdisplay with 1920 by 1080 resolution and 720 Hz frame rate. The driving solution is FPGA-based. The input signal is converted from the ultrahigh-resolution HDMI 2.0 signal into HD frames, which follow with the specified 720 Hz frame rate. Alternatively the signal is generated directly on the FPGA with built-in pattern generator. The display is showing switching times below 1.5 ms for the selected working temperature. The bit depth of the addressed image achieves 8 bit within each frame. The microdisplay is used in the fringe projection-based 3D sensing system, implemented by Fraunhofer IOF.

  8. SU-E-J-26: A Novel Technique for Markerless Self-Sorted 4D-CBCT Using Patient Motion Modeling: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L; Zhang, Y; Harris, W

    2015-06-15

    Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for eachmore » single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System.« less

  9. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  10. Movement coordination patterns between the foot joints during walking.

    PubMed

    Arnold, John B; Caravaggi, Paolo; Fraysse, François; Thewlis, Dominic; Leardini, Alberto

    2017-01-01

    In 3D gait analysis, kinematics of the foot joints are usually reported via isolated time histories of joint rotations and no information is provided on the relationship between rotations at different joints. The aim of this study was to identify movement coordination patterns in the foot during walking by expanding an existing vector coding technique according to an established multi-segment foot and ankle model. A graphical representation is also described to summarise the coordination patterns of joint rotations across multiple patients. Three-dimensional multi-segment foot kinematics were recorded in 13 adults during walking. A modified vector coding technique was used to identify coordination patterns between foot joints involving calcaneus, midfoot, metatarsus and hallux segments. According to the type and direction of joints rotations, these were classified as in-phase (same direction), anti-phase (opposite directions), proximal or distal joint dominant. In early stance, 51 to 75% of walking trials showed proximal-phase coordination between foot joints comprising the calcaneus, midfoot and metatarsus. In-phase coordination was more prominent in late stance, reflecting synergy in the simultaneous inversion occurring at multiple foot joints. Conversely, a distal-phase coordination pattern was identified for sagittal plane motion of the ankle relative to the midtarsal joint, highlighting the critical role of arch shortening to locomotor function in push-off. This study has identified coordination patterns between movement of the calcaneus, midfoot, metatarsus and hallux by expanding an existing vector cording technique for assessing and classifying coordination patterns of foot joints rotations during walking. This approach provides a different perspective in the analysis of multi-segment foot kinematics, and may be used for the objective quantification of the alterations in foot joint coordination patterns due to lower limb pathologies or following injuries.

  11. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics

    PubMed Central

    Le Garrec, Jean-François; Ivanovitch, Kenzo D; Raphaël, Etienne; Bangham, J Andrew; Torres, Miguel; Coen, Enrico; Mohun, Timothy J

    2017-01-01

    How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects. PMID:29179813

  12. Convection Effects During Bulk Transparent Alloy Solidification in DECLIC-DSI and Phase-Field Simulations in Diffusive Conditions

    NASA Astrophysics Data System (ADS)

    Mota, F. L.; Song, Y.; Pereda, J.; Billia, B.; Tourret, D.; Debierre, J.-M.; Trivedi, R.; Karma, A.; Bergeon, N.

    2017-08-01

    To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.

  13. 3D shape measurement of automotive glass by using a fringe reflection technique

    NASA Astrophysics Data System (ADS)

    Skydan, O. A.; Lalor, M. J.; Burton, D. R.

    2007-01-01

    In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.

  14. The seismic response of the Los Angeles basin, California

    USGS Publications Warehouse

    Wald, D.J.; Graves, R.W.

    1998-01-01

    Using strong-motion data recorded in the Los Angeles region from the 1992 (Mw 7.3) Landers earthquake, we have tested the accuracy of existing three-dimensional (3D) velocity models on the simulation of long-period (???2 sec) ground motions in the Los Angeles basin and surrounding San Fernando and San Gabriel Valleys. First, the overall pattern and degree of long-period excitation of the basins were identified in the observations. Within the Los Angeles basin, the recorded amplitudes are about three to four times larger than at sites outside the basins; amplitudes within the San Fernando and San Gabriel Valleys are nearly a factor of 3 greater than surrounding bedrock sites. Then, using a 3D finite-difference numerical modeling approach, we analyzed how variations in 3D earth structure affect simulated waveforms, amplitudes, and the fit to the observed patterns of amplification. Significant differences exist in the 3D velocity models of southern California that we tested (Magistrale et al., 1996; Graves, 1996a; Hauksson and Haase, 1997). Major differences in the models include the velocity of the assumed background models; the depth of the Los Angeles basin; and the depth, location, and geometry of smaller basins. The largest disparities in the response of the models are seen for the San Fernando Valley and the deepest portion of the Los Angeles basin. These arise in large part from variations in the structure of the basins, particularly the effective depth extent, which is mainly due to alternative assumptions about the nature of the basin sediment fill. The general ground-motion characteristics are matched by the 3D model simulations, validating the use of 3D modeling with geologically based velocity-structure models. However, significant shortcomings exist in the overall patterns of amplification and the duration of the long-period response. The successes and limitations of the models for reproducing the recorded ground motions as discussed provide the basis and direction for necessary improvements to earth structure models, whether geologically or tomographically derived. The differences in the response of the earth models tested also translate to variable success in the ability to successfully model the data and add uncertainty to estimates of the basin response given input "scenario" earthquake source models.

  15. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls

    NASA Astrophysics Data System (ADS)

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S.; Kim, Namwon; Park, Sunggook

    2017-03-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.[Figure not available: see fulltext.

  16. A novel 3D micron-scale DPTV (Defocused Particle Tracking Velocimetry) and its applications in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Roberts, John

    2005-11-01

    The rapid advancements in micro/nano biotechnology demand quantitative tools for characterizing microfluidic flows in lab-on-a-chip applications, validation of computational results for fully 3D flows in complex micro-devices, and efficient observation of cellular dynamics in 3D. We present a novel 3D micron-scale DPTV (defocused particle tracking velocimetry) that is capable of mapping out 3D Lagrangian, as well as 3D Eulerian velocity flow fields at sub-micron resolution and with one camera. The main part of the imaging system is an epi-fluorescent microscope (Olympus IX 51), and the seeding particles are fluorescent particles with diameter range 300nm - 10um. A software package has been developed for identifying (x,y,z,t) coordinates of the particles using the defocused images. Using the imaging system, we successfully mapped the pressure driven flow fields in microfluidic channels. In particular, we measured the Laglangian flow fields in a microfluidic channel with a herring bone pattern at the bottom, the later is used to enhance fluid mixing in lateral directions. The 3D particle tracks revealed the flow structure that has only been seen in numerical computation. This work is supported by the National Science Foundation (CTS - 0514443), the Nanobiotechnology Center at Cornell, and The New York State Center for Life Science Enterprise.

  17. Three-dimensional quantitative analysis of adhesive remnants and enamel loss resulting from debonding orthodontic molar tubes

    PubMed Central

    2014-01-01

    Aims Presenting a new method for direct, quantitative analysis of enamel surface. Measurement of adhesive remnants and enamel loss resulting from debonding molar tubes. Material and methods Buccal surfaces of fifteen extracted human molars were directly scanned with an optic blue-light 3D scanner to the nearest 2 μm. After 20 s etching molar tubes were bonded and after 24 h storing in 0.9% saline - debonded. Then 3D scanning was repeated. Superimposition and comparison were proceeded and shape alterations of the entire objects were analyzed using specialized computer software. Residual adhesive heights as well as enamel loss depths have been obtained for the entire buccal surfaces. Residual adhesive volume and enamel loss volume have been calculated for every tooth. Results The maximum height of adhesive remaining on enamel surface was 0.76 mm and the volume on particular teeth ranged from 0.047 mm3 to 4.16 mm3. The median adhesive remnant volume was 0.988 mm3. Mean depths of enamel loss for particular teeth ranged from 0.0076 mm to 0.0416 mm. Highest maximum depth of enamel loss was 0.207 mm. Median volume of enamel loss was 0.104 mm3 and maximum volume was 1.484 mm3. Conclusions Blue-light 3D scanning is able to provide direct precise scans of the enamel surface, which can be superimposed in order to calculate shape alterations. Debonding molar tubes leaves a certain amount of adhesive remnants on the enamel, however the interface fracture pattern varies for particular teeth and areas of enamel loss are present as well. PMID:25208969

  18. Three-dimensional quantitative analysis of adhesive remnants and enamel loss resulting from debonding orthodontic molar tubes.

    PubMed

    Janiszewska-Olszowska, Joanna; Tandecka, Katarzyna; Szatkiewicz, Tomasz; Sporniak-Tutak, Katarzyna; Grocholewicz, Katarzyna

    2014-09-10

    Presenting a new method for direct, quantitative analysis of enamel surface. Measurement of adhesive remnants and enamel loss resulting from debonding molar tubes. Buccal surfaces of fifteen extracted human molars were directly scanned with an optic blue-light 3D scanner to the nearest 2 μm. After 20 s etching molar tubes were bonded and after 24 h storing in 0.9% saline - debonded. Then 3D scanning was repeated. Superimposition and comparison were proceeded and shape alterations of the entire objects were analyzed using specialized computer software. Residual adhesive heights as well as enamel loss depths have been obtained for the entire buccal surfaces. Residual adhesive volume and enamel loss volume have been calculated for every tooth. The maximum height of adhesive remaining on enamel surface was 0.76 mm and the volume on particular teeth ranged from 0.047 mm3 to 4.16 mm3. The median adhesive remnant volume was 0.988 mm3. Mean depths of enamel loss for particular teeth ranged from 0.0076 mm to 0.0416 mm. Highest maximum depth of enamel loss was 0.207 mm. Median volume of enamel loss was 0.104 mm3 and maximum volume was 1.484 mm3. Blue-light 3D scanning is able to provide direct precise scans of the enamel surface, which can be superimposed in order to calculate shape alterations. Debonding molar tubes leaves a certain amount of adhesive remnants on the enamel, however the interface fracture pattern varies for particular teeth and areas of enamel loss are present as well.

  19. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  20. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.

    PubMed

    Lee, Howon; Fang, Nicholas X

    2012-11-27

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes(1), it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability(2-5). Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels(6-11). Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force(6-10). Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution(12,13). Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror(14). Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops inhomogeneous stress during swelling, which gives rise to buckling instability. Various wavy patterns appear along the circumference of the tube when the gel structures undergo buckling. Experiment shows that circumferential buckling of desired mode can be created in a controlled manner. Pattern transformation of three-dimensionally structured tubular gels has significant implication not only in mechanics and material science, but also in many other emerging fields such as tunable matamaterials.

  1. Image processing and 3D visualization in the interpretation of patterned injury of the skin

    NASA Astrophysics Data System (ADS)

    Oliver, William R.; Altschuler, Bruce R.

    1995-09-01

    The use of image processing is becoming increasingly important in the evaluation of violent crime. While much work has been done in the use of these techniques for forensic purposes outside of forensic pathology, its use in the pathologic examination of wounding has been limited. We are investigating the use of image processing in the analysis of patterned injuries and tissue damage. Our interests are currently concentrated on 1) the use of image processing techniques to aid the investigator in observing and evaluating patterned injuries in photographs, 2) measurement of the 3D shape characteristics of surface lesions, and 3) correlation of patterned injuries with deep tissue injury as a problem in 3D visualization. We are beginning investigations in data-acquisition problems for performing 3D scene reconstructions from the pathology perspective of correlating tissue injury to scene features and trace evidence localization. Our primary tool for correlation of surface injuries with deep tissue injuries has been the comparison of processed surface injury photographs with 3D reconstructions from antemortem CT and MRI data. We have developed a prototype robot for the acquisition of 3D wound and scene data.

  2. obtain3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eftink, Benjamin Paul; Maloy, Stuart Andrew

    This computer code uses the concept of the parallax to compute the x, y and z coordinates of points found using transmission electron microscopy (TEM), or any transmission imaging technique, using two images, each taken at a different perspective of the region containing the points. Points correspond, but are not limited, to the center of cavities or precipitates, positions of irradiation black dot damage, positions along a dislocation line, or positions along where an interface meets a free surface. The code allows the user to visualize the features containing the points in three dimensions. Features can include dislocations, interfaces, cavities,more » precipitates, inclusions etc. The x, y and z coordinates of the points are output in a text file as well. The program can also combine the x, y and z coordinates of the points with crystallographic directional information from diffraction pattern(s) to calculate dislocation line directions and interface plane normals.« less

  3. Study of blur discrimination for 3D stereo viewing

    NASA Astrophysics Data System (ADS)

    Subedar, Mahesh; Karam, Lina J.

    2014-03-01

    Blur is an important attribute in the study and modeling of the human visual system. Blur discrimination was studied extensively using 2D test patterns. In this study, we present the details of subjective tests performed to measure blur discrimination thresholds using stereoscopic 3D test patterns. Specifically, the effect of disparity on the blur discrimination thresholds is studied on a passive stereoscopic 3D display. The blur discrimination thresholds are measured using stereoscopic 3D test patterns with positive, negative and zero disparity values, at multiple reference blur levels. A disparity value of zero represents the 2D viewing case where both the eyes will observe the same image. The subjective test results indicate that the blur discrimination thresholds remain constant as we vary the disparity value. This further indicates that binocular disparity does not affect blur discrimination thresholds and the models developed for 2D blur discrimination thresholds can be extended to stereoscopic 3D blur discrimination thresholds. We have presented fitting of the Weber model to the 3D blur discrimination thresholds measured from the subjective experiments.

  4. The pattern of parallel edge plasma flows due to pressure gradients, recycling, and resonant magnetic perturbations in DIII-D

    DOE PAGES

    Frerichs, H.; Schmitz, Oliver; Evans, Todd; ...

    2015-07-13

    High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e. where the safety factor is equal to rational values q = m/n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are alignedmore » with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. Lastly, an additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.« less

  5. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface.

  6. 3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures.

    PubMed

    Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Giannobile, William V; Seol, Yang-Jo

    2017-09-08

    Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.

  7. A Direction Finding Method with A 3-D Array Based on Aperture Synthesis

    NASA Astrophysics Data System (ADS)

    Li, Shiwen; Chen, Liangbing; Gao, Zhaozhao; Ma, Wenfeng

    2018-01-01

    Direction finding for electronic warfare application should provide a wider field of view as possible. But the maximum unambiguous field of view for conventional direction finding methods is a hemisphere. It cannot distinguish the direction of arrival of the signals from the back lobe of the array. In this paper, a full 3-D direction finding method based on aperture synthesis radiometry is proposed. The model of the direction finding system is illustrated, and the fundamentals are presented. The relationship between the outputs of the measurements of a 3-D array and the 3-D power distribution of the point sources can be represented by a 3-D Fourier transform, and then the 3-D power distribution of the point sources can be reconstructed by an inverse 3-D Fourier transform. And in order to display the 3-D power distribution of the point sources conveniently, the whole spherical distribution is represented by two 2-D circular distribution images, one of which is for the upper hemisphere, and the other is for the lower hemisphere. Then a numeric simulation is designed and conducted to demonstrate the feasibility of the method. The results show that the method can estimate the arbitrary direction of arrival of the signals in the 3-D space correctly.

  8. Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns

    NASA Astrophysics Data System (ADS)

    Lasagni, Andrés Fabián

    2017-06-01

    Fabrication of two- and three-dimensional (2D and 3D) structures in the micro- and nano-range allows a new degree of freedom to the design of materials by tailoring desired material properties and, thus, obtaining a superior functionality. Such complex designs are only possible using novel fabrication techniques with high resolution, even in the nanoscale range. Starting from a simple concept, transferring the shape of an interference pattern directly to the surface of a material, laser interferometric processing methods have been continuously developed. These methods enable the fabrication of repetitive periodic arrays and microstructures by irradiation of the sample surface with coherent beams of light. This article describes the capabilities of laser interference lithographic methods for the treatment of both photoresists and solid materials. Theoretical calculations are used to calculate the intensity distributions of patterns that can be realized by changing the number of interfering laser beams, their polarization, intensity and phase. Finally, different processing systems and configurations are described and, thus, demonstrating the possibility for the fast and precise tailoring of material surface microstructures and topographies on industrial relevant scales as well as several application cases for both methods.

  9. Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films

    PubMed Central

    Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.

    2013-01-01

    Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617

  10. Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.

    PubMed

    Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S

    2013-12-03

    Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.

  11. Effects of astigmatic axis orientation on postural stabilization with stationary equilibrium

    NASA Astrophysics Data System (ADS)

    Kanazawa, Masatsugu; Uozato, Hiroshi; Asakawa, Ken; Kawamorita, Takushi

    2018-02-01

    We evaluated 15 healthy participants by assessing their maintenance of postural control while standing on a platform stabilometer for 1 min under the following conditions: eyes open; eyes open with + 3.00 D on both eyes on same directions (45, 90, 135, 180 degree axis); right eye on 45 degree axis and left eye on 135 degree axis (inverted V-pattern), and right eye on 135 degree axis and left eye on axis 45 degree axis (V-pattern). The differences in the linear length, area and maximum velocity of center of pressure during postural control before and after the six types of positive cylinder-oriented axes were analyzed. Comparing the antero-posterior lengths and antero-posterior maximum velocities, there were significant differences between the V-pattern condition and the six other conditions. Astigmatic defocus in the antagonistic axes conditions, particularly the V-pattern condition, affects postural control of antero-posterior sway (143/150).

  12. HRTEMFringeAnalyzer a free python module for an automated analysis of fringe pattern in transmission electron micrographs.

    PubMed

    Alxneit, Ivo

    2018-03-30

    A python module (HRTEMFringeAnalyzer) is reported to evaluate the local crystallinity of samples from high-resolution transmission electron microscopy images in a mostly automated fashion. The user only selects the size of a square analyser window and a step size which translates the window in the micrograph. Together they define the resolution of the results obtained. Regions where fringe patterns are visible are identified and their lattice spacing d and direction ϕ as well as the corresponding mean errors σ determined. 1/σd is proportional to the coherence length of the structure, whereas σφ is a measure of how well the direction of the fringes is defined. Maps of these four indicators are computed. The performance of the program is demonstrated on two very different samples: ill-crystalline carbon deposits on a coked Ni/LFNO (reduced LaFe 0.8 Ni 0.2 O3±δ) catalyst and well-crystallized nanoparticles of zinc doped ceria. In the latter case, the automatic segmentation of large aggregates into individual crystalline domains is achieved by ϕ maps. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  13. Estimation of 3D shape from image orientations.

    PubMed

    Fleming, Roland W; Holtmann-Rice, Daniel; Bülthoff, Heinrich H

    2011-12-20

    One of the main functions of vision is to estimate the 3D shape of objects in our environment. Many different visual cues, such as stereopsis, motion parallax, and shading, are thought to be involved. One important cue that remains poorly understood comes from surface texture markings. When a textured surface is slanted in 3D relative to the observer, the surface patterns appear compressed in the retinal image, providing potentially important information about 3D shape. What is not known, however, is how the brain actually measures this information from the retinal image. Here, we explain how the key information could be extracted by populations of cells tuned to different orientations and spatial frequencies, like those found in the primary visual cortex. To test this theory, we created stimuli that selectively stimulate such cell populations, by "smearing" (filtering) images of 2D random noise into specific oriented patterns. We find that the resulting patterns appear vividly 3D, and that increasing the strength of the orientation signals progressively increases the sense of 3D shape, even though the filtering we apply is physically inconsistent with what would occur with a real object. This finding suggests we have isolated key mechanisms used by the brain to estimate shape from texture. Crucially, we also find that adapting the visual system's orientation detectors to orthogonal patterns causes unoriented random noise to look like a specific 3D shape. Together these findings demonstrate a crucial role of orientation detectors in the perception of 3D shape.

  14. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.

    PubMed

    Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui

    2017-09-26

    Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.

  15. Helical flow in RFX-mod tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Piron, L.; Zaniol, B.; Bonfiglio, D.; Carraro, L.; Kirk, A.; Marrelli, L.; Martin, R.; Piron, C.; Piovesan, P.; Zuin, M.

    2017-05-01

    This work presents the first evidence of helical flow in RFX-mod q(a)  <  2 tokamak plasmas. The flow pattern is characterized by the presence of convective cells with m  =  1 and n  =  1 periodicity in the poloidal and toroidal directions, respectively. A similar helical flow deformation has been observed in the same device when operated as a reversed field pinch (RFP). In RFP plasmas, the flow dynamic is tailored by the innermost resonant m  =  1, n  =  7 tearing mode, which sustains the magnetic field configuration through the dynamo mechanism (Bonomo et al 2011 Nucl. Fusion 51 123007). By contrast, in the tokamak experiments presented here, it is strongly correlated with the m  =  1, n  =  1 MHD activity. A helical deformation of the flow pattern, associated with the deformation of the magnetic flux surfaces, is predicted by several codes, such as Specyl (Bonfiglio et al 2005 Phys. Rev. Lett. 94 145001), PIXIE3D (Chacón et al 2008 Phys. Plasmas 15 056103), NIMROD (King et al 2012 Phys. Plasmas 19 055905) and M3D-C1 (Jardin et al 2015 Phys. Rev. Lett. 115 215001). Among them, the 3D fully non-linear PIXIE3D has been used to calculate synthetic flow measurements, using a 2D flow modelling code. Inputs to the code are the PIXIE3D flow maps, the ion emission profiles as calculated by a 1D collisional radiative impurity transport code (Carraro et al 2000 Plasma Phys. Control. Fusion 42 731) and a synthetic diagnostic with the same geometry installed in RFX-mod. Good agreement between the synthetic and the experimental flow behaviour has been obtained, confirming that the flow oscillations observed with the associated convective cells are a signature of helical flow.

  16. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.

    PubMed

    Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng

    2017-12-01

    To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.

    PubMed

    Li, Ruijiang; Lewis, John H; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-05-01

    To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s. Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D tumor localization to be on the order of 1 mm on average and 2 mm at 95 percentile for both digital and physical phantoms, and within 2 mm on average and 4 mm at 95 percentile for lung cancer patients. The results also indicate that the accuracy is not affected by the breathing pattern, be it regular or irregular. High computational efficiency can be achieved on GPU, requiring 0.1-0.3 s for each x-ray projection.

  18. Positional Accuracy in Optical Trap-Assisted Nanolithography

    NASA Astrophysics Data System (ADS)

    Arnold, Craig B.; McLeod, Euan

    2009-03-01

    The ability to directly print patterns on size scales below 100 nm is important for many applications where the production or repair of high resolution and density features are important. Laser-based direct-write methods have the benefit of quickly and easily being able to modify and create structures on existing devices, but feature sizes are conventionally limited by diffraction. In this presentation, we show how to overcome this limit with a new method of probe-based near-field nanopatterning in which we employ a CW laser to optically trap and manipulate dispersed microspheres against a substrate using a 2-d Bessel beam optical trap. A secondary, pulsed nanosecond laser at 355 nm is directed through the bead and used to modify the surface below the microsphere, taking advantage of the near-field enhancement in order to produce materials modification with feature sizes under 100 nm. Here, we analyze the 3-d positioning accuracy of the microsphere through analytic modeling as a function of experimental parameters. The model is verified in all directions for our experimental conditions and is used to predict the conditions required for improved positional accuracy.

  19. Modelling of surface roughness effects on impurity erosion and deposition in TEXTOR with a code package SURO/ERO/SDPIC

    NASA Astrophysics Data System (ADS)

    Dai, Shuyu; Kirschner, A.; Sun, Jizhong; Tskhakaya, D.; Wang, Dezhen

    2014-12-01

    The roughness-induced uneven erosion-deposition behaviour is widely observed on plasma-wetted surfaces in tokamaks. The three-dimensional (3D) angular distribution of background plasma and impurities is expected to have an impact on the local erosion-deposition characteristic on rough surfaces. The investigations of 13C deposition on rough surfaces in TEXTOR experiments have been re-visited by 3D treatment of surface morphology to evaluate the effect of 3D angular distribution and its connection with surface topography by the code package SURO/ERO/SDPIC. The simulation results show that the erosion/deposition patterns and evolution of surface topography are strongly affected by the azimuthal direction of incident flux. A reduced aspect ratio of rough surface leads to an increase in 13C deposition due to the enhanced trapping ability at surface recessions. The shadowing effect of rough surface has been revealed based on the relationship between 3D incident direction and surface topography properties. The more realistic surface structures used by 3D SURO can well reproduce the experimental results of the increase in the 13C deposition efficiency by a factor of 3-5 on a rough surface compared with a smooth one. The influence of sheath electric field on the local impact angle and resulting 13C deposition has been studied, which indicates that the difference in 13C deposition caused by sheath electric field can be alleviated by the use of more realistic surface structures. The difference in 13C deposition on smooth graphite and tungsten substrates has been specified by consideration of effects of kinetic reflection, enhanced physical sputtering and nucleation.

  20. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.

    PubMed

    Lämmerhardt, Nico; Merzsch, Stephan; Ledig, Johannes; Bora, Achyut; Waag, Andreas; Tornow, Marc; Mischnick, Petra

    2013-07-02

    The huge and intelligent processing power of three-dimensional (3D) biological "processors" like the human brain with clock speeds of only 0.1 kHz is an extremely fascinating property, which is based on a massively parallel interconnect strategy. Artificial silicon microprocessors are 7 orders of magnitude faster. Nevertheless, they do not show any indication of intelligent processing power, mostly due to their very limited interconnectivity. Massively parallel interconnectivity can only be realized in three dimensions. Three-dimensional artificial processors would therefore be at the root of fabricating artificially intelligent systems. A first step in this direction would be the self-assembly of silicon based building blocks into 3D structures. We report on the self-assembly of such building blocks by molecular recognition, and on the electrical characterization of the formed assemblies. First, planar silicon substrates were functionalized with self-assembling monolayers of 3-aminopropyltrimethoxysilane for coupling of oligonucleotides (single stranded DNA) with glutaric aldehyde. The oligonucleotide immobilization was confirmed and quantified by hybridization with fluorescence-labeled complementary oligonucleotides. After the individual processing steps, the samples were analyzed by contact angle measurements, ellipsometry, atomic force microscopy, and fluorescence microscopy. Patterned DNA-functionalized layers were fabricated by microcontact printing (μCP) and photolithography. Silicon microcubes of 3 μm edge length as model objects for first 3D self-assembly experiments were fabricated out of silicon-on-insulator (SOI) wafers by a combination of reactive ion etching (RIE) and selective wet etching. The microcubes were then surface-functionalized using the same protocol as on planar substrates, and their self-assembly was demonstrated both on patterned silicon surfaces (88% correctly placed cubes), and to cube aggregates by complementary DNA functionalization and hybridization. The yield of formed aggregates was found to be about 44%, with a relative fraction of dimers of some 30%. Finally, the electrical properties of the formed dimers were characterized using probe tips inside a scanning electron microscope.

  1. Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications

    NASA Astrophysics Data System (ADS)

    Valjibhai, Gohil Jayesh; Bhatia, Deepak

    2013-01-01

    This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Y; Tachibana, H

    Purpose: For head and neck VMAT (HN-VMAT), variations of position and deformation of patient’s shoulders is a concern to affect inaccuracy of dose distribution. It has been reported that the setup error of the shoulders was variable from 5 mm – 1 cm. The beams of the HN-VMAT pass through the shoulders. We assessed the impact of shoulder deformation to dose distribution for HN-VMAT. Methods: One HN-VMAT plan was generated using a patient’s CT. The patient’s CT was deformed using ImSimQA (Oncology Systems Limited, Shrewsbury, Shropshire, UK) to generate several patterns of the shoulders’ deformations when the right and leftmore » humeral heads were shifted with 3, 6, and 15 mm in the superior and inferior directions (SI), 3, 5, and 15 mm in the anterior and posterior directions (AP), and 5 and 15 mm in the right or left direction (LR). DVH comparison was performed in the different deformation patterns. The dosimetric parameters of D95% for CTV70Gy, CTV60Gy and CTV54Gy and dmax for Spinal cord were also measured. Gamma index evaluation (Criteria: 3%/2mm) was performed to exhibit clinically tolerable area in the comparison. Results: DVH comparison shows similar for all structures. As the comparison for the dosimetric parameters, the variations of D95% in the LR and AP were within 1%. There were larger variations in the SI than those in the other directions, however were within 1.5%. In gamma index evaluation, the small spots with higher gamma index values were appeared when the shift was 6 mm, however the pass ratio was 99.13%. Conclusion: HN-VMAT should be robust for shoulder deformation and geometric accuracy within 6 mm from patient’s setup and image-guided radiotherapy may be clinically acceptable for target dose coverage or normal tissue dose sparing.« less

  3. Multiple Generations of Boudinage in a P-T Path: Insights from 3D Analysis of Amphibolite Boudins in Marble on Naxos, Greece

    NASA Astrophysics Data System (ADS)

    von Hagke, C.; Virgo, S.; Urai, J. L.

    2016-12-01

    Boudins are periodic structures in mechanically layered rocks deformed by layer parallel extension. At first sight, 2D sections of boudinaged layers are similar although 3D boudin patterns can be dramatically different. We aim to develop criteria to infer 3D strain from 2D outcrop observation of boudins. In marble quarries in the high grade complex on Naxos, Greece, we studied spectacular outcrops of amphibolite and pegmatite boudins, in combination with serial slicing of quarried blocks to reconstruct the 3D boudin structures. We identified multiple boudin generations, with early, high grade pinch and swell boudins followed by two generations of brittle shearband and torn boudins formed along the retrograde path under greenschist facies conditions. This shows how the rheological contract between marble and amphibolite changes from amphibolite to greenschist facies and suggests E-W shortening and N-S stretching in the footwall of the Naxos detachment. The later phases of boudinage interact with existing boudin geometries, producing complex structures in 3D. In 2D section the complexity is not directly apparent and reveals itself only in statistical analysis of long continuous sections. Our findings highlight the importance of 3D characterization of boudinage structures for boudin classification. The insights we gain from the analysis of multiphase boudinage structures on Naxos are the basis for quantitative boudin analysis to infer rheology, effective stress, vorticity and strain and establish a mechanics-based boudin classification scheme.

  4. Modelling and forecasting 3D-hypocentre seismicity in the Kanto region

    NASA Astrophysics Data System (ADS)

    Guo, Yicun; Zhuang, Jiancang; Hirata, Naoshi

    2018-04-01

    This study analyses the seismicity in the Kanto region by fitting the 2D-epicentre and 3D-hypocentre ETAS models to the JMA catalogue for events above magnitude M4.0. In the 3D ETAS model, the focal depth is assumed to follow the beta distribution. Compared with results from the 2D-epicentre ETAS model, the 3D ETAS model greatly improves the data fitting. In addition, the stochastic reconstruction method is used when validating the results of the 3D ETAS model, with results indicating that the shallow events are more productive and their aftershocks decay slightly faster in the time and epicentre dimensions. We also study the changes of seismicity patterns before and after the 2011 Tohoku earthquake. The direct aftershocks of events from the post-Tohoku period are more diffusive in time and epicentre but more concentrated in depth. The seismicity rate increases significantly following the Tohoku earthquake, especially along the interface of the subducting Pacific plate. The curve of cumulative background probabilities for events above M4.0 implies that the background rate decays back to the pre-Tohoku level in about 5 years after the Tohoku earthquake. However, the occurrence rates of smaller events (from M2.0 to M4.0) indicate that the adjustments of local stress field continue at finer scales. Finally, we verify that the 3D model can reproduce the focal depths better than the 2D model and improve the forecasting performance.

  5. Response of human corneal fibroblasts on silk film surface patterns.

    PubMed

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  6. Cascades, ``Blobby'' Turbulence, and Target Pattern Formation in Elastic Systems: A New Take on Classic Themes in Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang

    2017-10-01

    Concerns central to understanding turbulence and transport include: 1) Dynamics of dual cascades in EM turbulence; 2) Understanding `negative viscosity phenomena' in drift-ZF systems; 3) The physics of blobby turbulence (re: SOL). Here, we present a study of a simple model - that of Cahn-Hilliard Navier-Stokes (CHNS) Turbulence - which sheds important new light on these issues. The CHNS equations describe the motion of binary fluid undergoing a second order phase transition and separation called spinodal decomposition. The CHNS system and 2D MHD are analogous, as they both contain a vorticity equation and a ``diffusion'' equation. The CHNS system differs from 2D MHD by the appearance of negative diffusivity, and a nonlinear dissipative flux. An analogue of the Alfven wave exists in the 2D CHNS system. DNS shows that mean square concentration spectrum Hkψ scales as k - 7 / 3 in the elastic range. This suggests an inverse cascade of Hψ . However, the kinetic energy spectrum EkK scales as k-3 , as in the direct enstrophy cascade range for a 2D fluid (not MHD!). The resolution is that the feedback of capillarity acts only at blob interfaces. Thus, as blob merger progresses, the packing fraction of interfaces decreases, thus explaining the weakened surface tension feedback and the outcome for EkK. We also examine the evolution of scalar concentration in a single eddy in the Cahn-Hilliard system. This extends the classic problem of flux expulsion in 2D MHD. The simulation results show that a target pattern is formed. Target pattern is a meta stable state, since the band merger process continues on a time scale exponentially long relative to the eddy turnover time. Band merger resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  7. An error-dependent model of instrument-scanning behavior in commercial airline pilots. Ph.D. Thesis - May 1983

    NASA Technical Reports Server (NTRS)

    Jones, D. H.

    1985-01-01

    A new flexible model of pilot instrument scanning behavior is presented which assumes that the pilot uses a set of deterministic scanning patterns on the pilot's perception of error in the state of the aircraft, and the pilot's knowledge of the interactive nature of the aircraft's systems. Statistical analyses revealed that a three stage Markov process composed of the pilot's three predicted lookpoints (LP), occurring 1/30, 2/30, and 3/30 of a second prior to each LP, accurately modelled the scanning behavior of 14 commercial airline pilots while flying steep turn maneuvers in a Boeing 737 flight simulator. The modelled scanning data for each pilot were not statistically different from the observed scanning data in comparisons of mean dwell time, entropy, and entropy rate. These findings represent the first direct evidence that pilots are using deterministic scanning patterns during instrument flight. The results are interpreted as direct support for the error dependent model and suggestions are made for further research that could allow for identification of the specific scanning patterns suggested by the model.

  8. Rapid prototyping--when virtual meets reality.

    PubMed

    Beguma, Zubeda; Chhedat, Pratik

    2014-01-01

    Rapid prototyping (RP) describes the customized production of solid models using 3D computer data. Over the past decade, advances in RP have continued to evolve, resulting in the development of new techniques that have been applied to the fabrication of various prostheses. RP fabrication technologies include stereolithography (SLA), fused deposition modeling (FDM), computer numerical controlled (CNC) milling, and, more recently, selective laser sintering (SLS). The applications of RP techniques for dentistry include wax pattern fabrication for dental prostheses, dental (facial) prostheses mold (shell) fabrication, and removable dental prostheses framework fabrication. In the past, a physical plastic shape of the removable partial denture (RPD) framework was produced using an RP machine, and then used as a sacrificial pattern. Yet with the advent of the selective laser melting (SLM) technique, RPD metal frameworks can be directly fabricated, thereby omitting the casting stage. This new approach can also generate the wax pattern for facial prostheses directly, thereby reducing labor-intensive laboratory procedures. Many people stand to benefit from these new RP techniques for producing various forms of dental prostheses, which in the near future could transform traditional prosthodontic practices.

  9. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  10. Temporal dynamics of 2D motion integration for ocular following in macaque monkeys.

    PubMed

    Barthélemy, Fréderic V; Fleuriet, Jérome; Masson, Guillaume S

    2010-03-01

    Several recent studies have shown that extracting pattern motion direction is a dynamical process where edge motion is first extracted and pattern-related information is encoded with a small time lag by MT neurons. A similar dynamics was found for human reflexive or voluntary tracking. Here, we bring an essential, but still missing, piece of information by documenting macaque ocular following responses to gratings, unikinetic plaids, and barber-poles. We found that ocular tracking was always initiated first in the grating motion direction with ultra-short latencies (approximately 55 ms). A second component was driven only 10-15 ms later, rotating tracking toward pattern motion direction. At the end the open-loop period, tracking direction was aligned with pattern motion direction (plaids) or the average of the line-ending motion directions (barber-poles). We characterized the dependency on contrast of each component. Both timing and direction of ocular following were quantitatively very consistent with the dynamics of neuronal responses reported by others. Overall, we found a remarkable consistency between neuronal dynamics and monkey behavior, advocating for a direct link between the neuronal solution of the aperture problem and primate perception and action.

  11. Electron density determination and bonding in tetragonal binary intermetallics by convergent beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan

    Intermetallics offer unique property combinations often superior to those of more conventional solid solution alloys of identical composition. Understanding of bonding in intermetallics would greatly accelerate development of intermetallics for advanced and high performance engineering applications. Tetragonal intermetallics L10 ordered TiAl, FePd and FePt are used as model systems to experimentally measure their electron densities using quantitative convergent beam electron diffraction (QCBED) method and then compare details of the 3d-4d (FePd) and 3d-5d (FePt) electron interactions to elucidate their role on properties of the respective ferromagnetic L10-ordered intermetallics FePd and FePt. A new multi-beam off-zone axis condition QCBED method has been developed to increase sensitivity of CBED patterns to change of structure factors and the anisotropic Debye-Waller (DW) factors. Unprecedented accuracy and precision in structure and DW factor measurements has been achieved by acquiring CBED patterns using beam-sample geometry that ensures strong dynamical interaction between the fast electrons and the periodic potential in the crystalline samples. This experimental method has been successfully applied to diamond cubic Si, and chemically ordered B2 cubic NiAl, tetragonal L10 ordered TiAl and FePd. The accurate and precise experimental DW and structure factors for L10 TiAl and FePd allow direct evaluation of computer calculations using the current state of the art density functional theory (DFT) based electron structure modeling. The experimental electron density difference map of L1 0 TiAl shows that the DFT calculations describe bonding to a sufficient accuracy for s- and p- electrons interaction, e. g., the Al-layer. However, it indicate significant quantitative differences to the experimental measurements for the 3d-3d interactions of the Ti atoms, e.g. in the Ti layers. The DFT calculations for L10 FePd also show that the current DFT approximations insufficiently describe the interaction between Fe-Fe (3d-3d), Fe-Pd (3d-4d) and Pd-Pd (4d-4d) electrons, which indicates the necessity to evaluate applicability of different DFT approximations, and also provides experimental data for the development of new DFT approximation that better describes transition metal based intermetallic systems.

  12. Mott Electrons in an Artificial Graphenelike Crystal of Rare-Earth Nickelate S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middey, Srimanta; Meyers, Derek J.; Doennig, D.

    2016-02-05

    Deterministic control over the periodic geometrical arrangement of the constituent atoms is the backbone of the material properties, which, along with the interactions, define the electronic and magnetic ground state. Following this notion, a bilayer of a prototypical rare-earth nickelate, NdNiO3, combined with a dielectric spacer, LaAlO3, has been layered along the pseudocubic [111] direction. The resulting artificial graphenelike Mott crystal with magnetic 3d electrons has antiferromagnetic correlations. In addition, a combination of resonant X-ray linear dichroism measurements and ab initio calculations reveal the presence of an ordered orbital pattern, which is unattainable in either bulk nickelates or nickelate basedmore » heterostructures grown along the [001] direction. These findings highlight another promising venue towards designing new quantum many-body states by virtue of geometrical engineering.« less

  13. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; Wang, Cong; Winterfeld, Philip

    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added tomore » the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.« less

  14. Selected quality parameters of salmon and meat when fried with or without added fat.

    PubMed

    Elmadfa, I; Al-Saghir, S; Kanzler, S; Frisch, G; Majchrzak, D; Wagner, K-H

    2006-07-01

    To determine whether pan-frying (pork, beef and salmon) without oil or with different fats (olive oil, corn oil or a partially hydrogenated plant oil) or steaming (only salmon) have effects on the total fat content, the fatty acid pattern, lipid peroxidation, tocopherols and in particular for salmon on vitamin D(3) and astaxanthin. Pork, beef patties and salmon were pan-fried (6 min each), beef fillet was pan-fried (5 min) with an additional braising period of 90 minutes and salmon was steamed for 12 minutes. Each pan-frying treatment was done with the above mentioned fats and without fat. Total fat was determined gravimetrically, the fatty acid pattern with GC, the tocopherols, astaxanthin and vitamin D(3) by using HPLC. The effects on the fat quality and quantity in the final products were related to the pan-frying fat used, however, the power of the outcome was depending on the surface to volume ratio. The highest increase in total fat was observed for pork, followed by the beef patties and the braised beef. The same has been assessed for the fatty acid pattern. Tocopherols changed according to the oil used, in particular gamma-tocopherol significantly increased for each preparation after the use of corn oil. Only in pork an increase in lipid oxidation of the oil preparations has been observed. Vitamin D(3) in salmon significantly decreased after heat treatment, however a 150 g salmon portion would provide between 13.9 and 14.7 mug Vitamin D(3) which is around five times more than the average daily intake. Pan-frying without fat can be recommended for the daily use, since the total fat intake is too high in developed countries and one main task of nutritional recommendations is to reduce the total fat intake. When pan-fried with fat, the choice of the fat is of high importance since it directly influences the quality and the flavour of the final product. In order to increase the fat quality from nutritional point of view only oils of plant or vegetable origin should be used in households. Pan-fried salmon is a good source of Vitamin D(3).

  15. Semi-automatic mapping for identifying complex geobodies in seismic images

    NASA Astrophysics Data System (ADS)

    Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid

    2017-03-01

    Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.

  16. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects.

    PubMed

    Szőke, István; Farkas, Arpád; Balásházy, Imre; Hofmann, Werner; Madas, Balázs G; Szőke, Réka

    2012-06-01

    The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.

  17. 3D documentation and visualization of external injury findings by integration of simple photography in CT/MRI data sets (IprojeCT).

    PubMed

    Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula

    2016-05-01

    This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.

  18. Substance use patterns and in-hospital care of adolescents and young adults attending music concerts.

    PubMed

    Ruest, Stephanie M; Stephan, Alexander M; Masiakos, Peter T; Biddinger, Paul D; Camargo, Carlos A; Kharasch, Sigmund

    2018-01-09

    Few studies describe medical complaints and substance use patterns related to attending music concerts. As such, the objective of this study is to describe patient demographics, substance use and intoxication patterns, and medical interventions provided to adolescents and young adults assessed in an emergency department (ED) for complaints directly related to concert attendance. A retrospective chart review of patients 13-30 years old who were transported to the ED directly from music concerts between January 2011 and December 2015 was conducted. Descriptive statistics and logistic regression were used to analyze patient demographic, intervention, and substance use data. There were 115 concerts identified, of which 48 (42%) were linked to 142 relevant ED visits; the total number of attendees at each concert is unknown. The mean age of the 142 described patients was 19.5 years (SD 3.3) with 72% < 21 and 33% < 18; 71% of patients were female and 96% of visits were substance-use related. Mean blood alcohol level was 242 mg/dL (range 104-412, SD 70). Glasgow Coma Scale (GCS) scores ranged from 3 to 15, with a mean of 14. Two patients required intubation and 61% of patients received interventions, including medications (47%), intravenous fluids (46%), specialty consultation (20%), restraints (14%), imaging (6%), and laceration repair (3%). Attendance at pop and electronic dance music concerts was associated with the widest ranges of GCS scores (8-15 and 6-14 respectively), mass casualty incident declarations, and among the highest mean blood alcohol levels (246 and 244 mg/dL, respectively). Substance use is the predominant reason for music concert related ED visits and patients may have serious levels of intoxication, receiving multiple medical interventions. These data demonstrate the need for additional large-scale studies to confirm trends and increase awareness of this important public health problem.

  19. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts.

    PubMed

    Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2016-08-01

    Shear waves propagating through interfaces where there is a change in stiffness cause reflected waves that can lead to artifacts in shear wave speed (SWS) reconstructions. Two-dimensional (2-D) directional filters are commonly used to reduce in-plane reflected waves; however, SWS artifacts arise from both in- and out-of-imaging-plane reflected waves. Herein, we introduce 3-D shear wave reconstruction methods as an extension of the previous 2-D estimation methods and quantify the reduction in image artifacts through the use of volumetric SWS monitoring and 4-D-directional filters. A Gaussian acoustic radiation force impulse excitation was simulated in phantoms with Young's modulus ( E ) of 3 kPa and a 5-mm spherical lesion with E = 6, 12, or 18.75 kPa. The 2-D-, 3-D-, and 4-D-directional filters were applied to the displacement profiles to reduce in-and out-of-plane reflected wave artifacts. Contrast-to-noise ratio and SWS bias within the lesion were calculated for each reconstructed SWS image to evaluate the image quality. For 2-D SWS image reconstructions, the 3-D-directional filters showed greater improvements in image quality than the 2-D filters, and the 4-D-directional filters showed marginal improvement over the 3-D filters. Although 4-D-directional filters can further reduce the impact of large magnitude out-of-plane reflection artifacts in SWS images, computational overhead and transducer costs to acquire 3-D data may outweigh the modest improvements in image quality. The 4-D-directional filters have the largest impact in reducing reflection artifacts in 3-D SWS volumes.

  20. 3D Chemical Patterning of Micromaterials for Encoded Functionality.

    PubMed

    Ceylan, Hakan; Yasa, Immihan Ceren; Sitti, Metin

    2017-03-01

    Programming local chemical properties of microscale soft materials with 3D complex shapes is indispensable for creating sophisticated functionalities, which has not yet been possible with existing methods. Precise spatiotemporal control of two-photon crosslinking is employed as an enabling tool for 3D patterning of microprinted structures for encoding versatile chemical moieties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks

    PubMed Central

    Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan

    2014-01-01

    Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747

  2. Missing Optomotor Head-Turning Reflex in the DBA/2J Mouse

    PubMed Central

    Huang, Wei; Chen, Hui; Koehler, Christopher L.; Howell, Gareth; John, Simon W. M.; Tian, Ning; Rentería, René C.; Križaj, David

    2011-01-01

    Purpose. The optomotor reflex of DBA/2J (D2), DBA/2J-Gpnmb+ (D2-Gpnmb+), and C57BL/6J (B6) mouse strains was assayed, and the retinal ganglion cell (RGC) firing patterns, direction selectivity, vestibulomotor function and central vision was compared between the D2 and B6 mouse lines. Methods. Intraocular pressure (IOP) measurements, real-time PCR, and immunohistochemical analysis were used to assess the time course of glaucomatous changes in D2 retinas. Behavioral analyses of optomotor head-turning reflex, visible platform Morris water maze and Rotarod measurements were conducted to test vision and vestibulomotor function. Electroretinogram (ERG) measurements were used to assay outer retinal function. The multielectrode array (MEA) technique was used to characterize RGC spiking and direction selectivity in D2 and B6 retinas. Results. Progressive increase in IOP and loss of Brn3a signals in D2 animals were consistent with glaucoma progression starting after 6 months of age. D2 mice showed no response to visual stimulation that evoked robust optomotor responses in B6 mice at any age after eye opening. Spatial frequency threshold was also not measurable in the D2-Gpnmb+ strain control. ERG a- and b-waves, central vision, vestibulomotor function, the spiking properties of ON, OFF, ON-OFF, and direction-selective RGCs were normal in young D2 mice. Conclusions. The D2 strain is characterized by a lack of optomotor reflex before IOP elevation and RGC degeneration are observed. This behavioral deficit is D2 strain–specific, but is independent of retinal function and glaucoma. Caution is advised when using the optomotor reflex to follow glaucoma progression in D2 mice. PMID:21757588

  3. Enhancing the imaging quality and fabrication efficiency of bionic compound eyes using a sandwich structure

    NASA Astrophysics Data System (ADS)

    Luo, Jiasai; Guo, Yongcai; Wang, Xin

    2018-06-01

    This paper puts forward a novel method for fabrication of sandwich-structured BCE using a detachable micro-hole array (MHA) prepared by 3D printing. Compared with most traditional methods, 3D printing enables effective implementation of direct micro-fabrication for curved BCE without the pattern transfer and substrate reshaping process. This 3D fabrication method allows rapid fabrication of the curved BCE and automatic assembly of the detachable MHA using a custom-built mold under negative pressure. The formation of a multi-focusing micro-lens array (MLA) was realized by adjusting the parameters of the curved detachable MHA. The imaging performance was effectively enhanced by the sandwich structure that consist of the multi-focusing MLA, the outer detachable MHA and the inner solidified MHA. This method is suitable for mass production due to its advantages as a time-saving, cost-effective and simple process. Optical design software was used to analyze the optical properties, and an imaging simulation was performed.

  4. Towards artificial tissue models: past, present, and future of 3D bioprinting.

    PubMed

    Arslan-Yildiz, Ahu; El Assal, Rami; Chen, Pu; Guven, Sinan; Inci, Fatih; Demirci, Utkan

    2016-03-01

    Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research.

  5. Spatially oriented plasmonic ‘nanograter’ structures

    PubMed Central

    Liu, Zhe; Cui, Ajuan; Gong, Zhijie; Li, Hongqiang; Xia, Xiaoxiang; Shen, Tiehan H.; Li, Junjie; Yang, Haifang; Li, Wuxia; Gu, Changzhi

    2016-01-01

    One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits. PMID:27357610

  6. Faulting of Rocks in a Three-Dimensional Stress Field by Micro-Anticracks

    PubMed Central

    Ghaffari, H. O.; Nasseri, M. H. B.; Young, R. Paul

    2014-01-01

    Nucleation and propagation of a shear fault is known to be the result of interaction and coalescence of many microcracks. Yet the character and rate of the microcracks' interactions, and their dependence on the three-dimensional stress state are poorly understood. Here we investigate formation of microcracks during sandstone faulting under 3D-polyaxial stress fields by analyzing multi-stationary acoustic waveforms. We show that in a true three-dimensional stress state (a) faulting forms in a orthorhombic pattern, and (b) the emitted acoustic waveforms from microcracking carry a shorter rapid slip phase. The later is associated with microcracking that dominantly develops parallel to the minimum stress direction. Our results imply that due to inducing the micro-anticracks, the three-dimensional (3D) stress state can quicken dynamic weakening and rupture propagation by a factor of two relatively to simpler stress states. The results suggest a new nucleation mechanism of 3D-faulting with implications for earthquakes' instabilities, as well as the understanding of avalanches associated with dislocations. PMID:24862447

  7. Improving the strength of additively manufactured objects via modified interior structure

    NASA Astrophysics Data System (ADS)

    Al, Can Mert; Yaman, Ulas

    2017-10-01

    Additive manufacturing (AM), in other words 3D printing, is becoming more common because of its crucial advantages such as geometric complexity, functional interior structures, etc. over traditional manufacturing methods. Especially, Fused Filament Fabrication (FFF) 3D printing technology is frequently used because of the fact that desktop variants of these types of printers are highly appropriate for different fields and are improving rapidly. In spite of the fact that there are significant advantages of AM, the strength of the parts fabricated with AM is still a major problem especially when plastic materials, such as Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Nylon, etc., are utilized. In this study, an alternative method is proposed in which the strength of AM fabricated parts is improved employing direct slicing approach. Traditional Computer Aided Manufacturing (CAM) software of 3D printers takes only the geometry as an input in triangular mesh form (stereolithography, STL file) generated by Computer Aided Design software. This file format includes data only about the outer boundaries of the geometry. Interior of the artifacts are manufactured with homogeneous infill patterns, such as diagonal, honeycomb, linear, etc. according to the paths generated in CAM software. The developed method within this study provides a way to fabricate parts with heterogeneous infill patterns by utilizing the stress field data obtained from a Finite Element Analysis software, such as ABAQUS. According to the performed tensile tests, the strength of the test specimen is improved by about 45% compared to the conventional way of 3D printing.

  8. Development of scanning holographic display using MEMS SLM

    NASA Astrophysics Data System (ADS)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  9. NEW 3D TECHNIQUES FOR RANKING AND PRIORITIZATION OF CHEMICAL INVENTORIES

    EPA Science Inventory

    New three-dimensional quantitative structure activity (3-D QSAR) techniques for prioritizing chemical inventories for endocrine activity will be presented. The Common Reactivity Pattern (COREPA) approach permits identification of common steric and/or electronic patterns associate...

  10. Accuracy and reliability of 3D stereophotogrammetry: A comparison to direct anthropometry and 2D photogrammetry.

    PubMed

    Dindaroğlu, Furkan; Kutlu, Pınar; Duran, Gökhan Serhat; Görgülü, Serkan; Aslan, Erhan

    2016-05-01

    To evaluate the accuracy of three-dimensional (3D) stereophotogrammetry by comparing it with the direct anthropometry and digital photogrammetry methods. The reliability of 3D stereophotogrammetry was also examined. Six profile and four frontal parameters were directly measured on the faces of 80 participants. The same measurements were repeated using two-dimensional (2D) photogrammetry and 3D stereophotogrammetry (3dMDflex System, 3dMD, Atlanta, Ga) to obtain images of the subjects. Another observer made the same measurements for images obtained with 3D stereophotogrammetry, and interobserver reproducibility was evaluated for 3D images. Both observers remeasured the 3D images 1 month later, and intraobserver reproducibility was evaluated. Statistical analysis was conducted using the paired samples t-test, intraclass correlation coefficient, and Bland-Altman limits of agreement. The highest mean difference was 0.30 mm between direct measurement and photogrammetry, 0.21 mm between direct measurement and 3D stereophotogrammetry, and 0.5 mm between photogrammetry and 3D stereophotogrammetry. The lowest agreement value was 0.965 in the Sn-Pro parameter between the photogrammetry and 3D stereophotogrammetry methods. Agreement between the two observers varied from 0.90 (Ch-Ch) to 0.99 (Sn-Me) in linear measurements. For intraobserver agreement, the highest difference between means was 0.33 for observer 1 and 1.42 mm for observer 2. Measurements obtained using 3D stereophotogrammetry indicate that it may be an accurate and reliable imaging method for use in orthodontics.

  11. Nano-spatial parameters from 3D to 2D lattice dimensionality by organic variant in [ZnCl4]- [R]+ hybrid materials: Structure, architecture-lattice dimensionality, microscopy, optical Eg and PL correlations

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh

    2016-04-01

    The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.

  12. Polyphase tertiary fold-and-thrust tectonics in the Belluno Dolomites: new mapping, kinematic analysis, and 3D modelling

    NASA Astrophysics Data System (ADS)

    Chistolini, Filippo; Bistacchi, Andrea; Massironi, Matteo; Consonni, Davide; Cortinovis, Silvia

    2014-05-01

    The Belluno Dolomites are comprised in the eastern sector of the Southern Alps, which corresponds to the fold-and-thrust belt at the retro-wedge of the Alpine collisional orogen. They are characterized by a complex and polyphase fold-and-thrust tectonics, highlighted by multiple thrust sheets and thrust-related folding. We have studied this tectonics in the Vajont area where a sequence of Jurassic, Cretaceous and Tertiary units have been involved in multiple deformations. The onset of contractional tectonics in this part of the Alps is constrained to be Tertiary (likely Post-Eocene) by structural relationships with the Erto Flysch, whilst in the Mesozoic tectonics was extensional. We have recognized two contractional deformation phases (D1 and D2 in the following), of which only the second was mentioned in previous studies of the area and attributed to the Miocene Neoalpine event. D1 and D2 are characterized by roughly top-to-WSW (possibly Dinaric) and top-to-S (Alpine) transport directions respectively, implying a 90° rotation of the regional-scale shortening axis, and resulting in complex thrust and fold interference and reactivation patterns. Geological mapping and detailed outcrop-scale kinematic analysis allowed us to characterize the kinematics and chronology of deformations. Particularly, relative chronology was unravelled thanks to (1) diagnostic fold interference patterns and (2) crosscutting relationships between thrust faults and thrust-related folds. A km-scale D1 syncline, filled with the Eocene Erto Flysch and "decapitated" by a D2 thrust fault, provides the best map-scale example of crosscutting relationships allowing to reconstruct the faulting history. Due to the strong competence contrast between Jurassic carbonates and Tertiary flysch, in this syncline spectacular duplexes were also developed during D2. In order to quantitatively characterize the complex interference pattern resulting from two orthogonal thrusting and folding events, we performed a dip-domain analysis that allowed to categorize the different fold limbs and reduce the uncertainty in the reconstruction of the fault network topology in map view. This enabled us to reconstruct a high-quality, low-uncertainty 3D structural and geological model, which unambiguously proves that deformations with a top-to-WSW Dinaric transport direction propagate farther to the west than previously supposed in this part of the Southern Alps. Our new structural reconstruction of the Vajont valley have also clarified the structural control on the 1963 catastrophic landslide (which caused over 2000 losses). Besides being a challenging natural laboratory for testing analysis and modelling methodologies to be used when reconstructing in 3D this kind of complex interference structures, the Vajont area also provides useful clues on the still-enigmatic structures in the frontal part of the Friuli-Venetian Southern Alps, buried in the Venetian Plain foredeep. These include active seismogenic thrust-faults and, at the same time, represent a growing interest for the oil industry.

  13. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples

    NASA Astrophysics Data System (ADS)

    Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.

    2017-10-01

    Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.

  14. Characteristics of Planar Monopole Antenna on High Impedance Electromagnetic Surface

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Jastram, Nathan; Ponchak, George E.; Franklin, Rhonda R.

    2011-01-01

    This paper presents for the first time measured characteristics of a planar monopole antenna placed directly on a high impedance electromagnetic surface or artificial magnetic conductor (AMC). The return loss and radiation patterns are compared between the antenna in free space, and when placed directly on a perfect electrical conductor (PEC), and on the AMC. The antenna measured in free space has a wide pass band from 3 to 10 GHz. The return loss for the antenna on the PEC is nearly all reflected back and the return loss for the antenna on the AMC has a 10 dB bandwidth from 7.5 to 9.5 GHz. The gain of the antenna in free space, on PEC and on AMC is 1, -12 and 10 dBi, respectively. This indicates that the AMC is working properly, sending all the radiation outward with little loss.

  15. 3D plasmonic nanoarchitectures for extreme light concentration

    NASA Astrophysics Data System (ADS)

    Arnob, Md Masud Parvez; Zhao, Fusheng; Shih, Wei-Chuan

    2017-08-01

    Plasmonic nanomaterials are known to concentrate incident light to their surfaces by collective electron oscillation. Plasmonic hot-spot refers to locations where electromagnetic fields are particularly enhanced relative to the incident field. Traditional plasmonic nanomaterials are 1D (e.g., colloidal nanoparticles) or 2D (lithographically patterned nanostructure arrays) in nature, which typically result in sparse field concentration patterns. To improve efficiency and better utilization of hot-spots, we investigate 3D plasmonic nanoarchitecture where abundant hot-spots are formed in a 3D volumetric fashion, a feature drastically departing from traditional nanostructures.

  16. Transient Rotor Activity During Prolonged 3-Dimensional Phase Mapping in Human Persistent Atrial Fibrillation.

    PubMed

    Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Prabhu, Sandeep; Nalliah, Chrishan; Kistler, Peter; Lee, Geoffrey

    2018-01-01

    This study sought to validate a 3-dimensional (3D) phase mapping system and determine the distribution of dominant propagation patterns in persistent atrial fibrillation (AF). Currently available systems display phase as simplified 2-dimensional maps. We developed a novel 3D phase mapping system that uses the 3D location of basket catheter electrodes and the patient's 3D left atrial surface geometry to interpolate phase and create a 3D representation of phase progression. Six-min AF recordings from the left atrium were obtained in 14 patients using the Constellation basket catheter and analyzed offline. Exported signals underwent both phase and traditional activation analysis and were then visualized using a novel 3D mapping system. Analysis involved: 1) validation of phase analysis by comparing beat-to-beat AF cycle length calculated using phase inversion with that determined from activation timing in the same 20-s segment; 2) validation of 3D phase by comparing propagation patterns observed using 3D phase with 3D activation in the same 1-min segment; and 3) determining the distribution of dominant propagation patterns in 6-min recordings using 3D phase. There was strong agreement of beat-to-beat AF cycle length between activation analysis and phase inversion (R 2  = 0.91). There was no significant difference between 3D activation and 3D phase in mean percentage of propagation patterns classified as single wavefronts (p = 0.99), focal activations (p = 0.26), disorganized activity (p = 0.76), or multiple wavefronts (p = 0.70). During prolonged 3D phase, single wavefronts were the most common propagation pattern (50.2%). A total of 34 rotors were seen in 9 of 14 patients. All rotors were transient with mean duration of 1.0 ± 0.6 s. Rotors were only observed in areas of high electrode density where the interelectrode distance was significantly shorter than nonrotor sites (7.4 [interquartile range: 6.3 to 14.6] vs. 15.3 mm [interquartile range: 10.1 to 22.2]; p < 0.001). During prolonged 3D phase mapping, transient rotors were observed in 64% of patients and reformed at the same anatomic location in 44% of patients. The electrode density of the basket catheter may limit the detection of rotors. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices

    PubMed Central

    Li, Yanfen

    2016-01-01

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we will explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, we will review the maturation of micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366

  18. Synthetic perspective optical flow: Influence on pilot control tasks

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.

    1989-01-01

    One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.

  19. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  20. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells.

    PubMed

    Ortinau, Stefanie; Schmich, Jürgen; Block, Stephan; Liedmann, Andrea; Jonas, Ludwig; Weiss, Dieter G; Helm, Christiane A; Rolfs, Arndt; Frech, Moritz J

    2010-11-11

    3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3D-scaffolds protocols prior to in vivo engraftment of stem and progenitor cells in the context of regenerative medicine.

  1. Coherent beam control with an all-dielectric transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  2. Coherent beam control with an all-dielectric transformation optics based lens.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-05

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  3. Biologically Inspired Model for Inference of 3D Shape from Texture

    PubMed Central

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387

  4. An Analytical Model of Periodic Waves in Shallow Water,

    DTIC Science & Technology

    1984-07-01

    the KP equation , "f’ + 6f +x + 3 f 0 (1.8) "’ S(t o x yy describes their evolution if they are weakly two-dimensional ( Kadomtsev & Petviashvili ...directions. Both short-crested and long-crested waves are available from the model. Every wave pattern is an exact solution of the Kadomtsev - Petviashvili ...vol. 9, pp 65-66 Kadomtsev , B. B. & V. I. Petviashvili , 1970, Soy. Phys. Doklady, vol. 15, pp 539-541 Korteweg, D. J. & G. de~ries, 1895, Phil Mag

  5. Bistatic 3D Electromagnetic Scattering From a Right-Angle Dihedral at Arbitrary Orientation and Position

    DTIC Science & Technology

    2011-03-24

    compared to shooting and bouncing rays (SBR) and method of moments (MoM) predictions, as well as measured data for applicable cases. The model in this...prediction codes based on Shooting and Bouncing Rays (SBR) or Method of Moments (MoM) can be used to obtain accurate bistatic scatter- ing solutions for a...in-plane RCS pattern for dihedral. (a) For monostatic in-plane scattering, rays entering a right-angle dihedral are reflected back in the direction

  6. Bioprinting of Micro-Organ Tissue Analog for Drug Metabolism Study

    NASA Astrophysics Data System (ADS)

    Sun, Wei

    An evolving application of tissue engineering is to develop in vitro 3D cell/tissue models for drug screening and pharmacological study. In order to test in space, these in vitro models are mostly manufactured through micro-fabrication techniques and incorporate living cells with MEMS or microfluidic devices. These cell-integrated microfluidic devices, or referred as microorgans, are effective in furnishing reliable and inexpensive drug metabolism and toxicity studies [1-3]. This paper will present an on-going research collaborated between Drexel University and NASA JSC Radiation Physics Laboratory for applying a direct cell printing technique to freeform fabrication of 3D liver tissue analog in drug metabolism study. The paper will discuss modeling, design, and solid freeform fabrication of micro-fluidic flow patterns and bioprinting of 3D micro-liver chamber that biomimics liver physiological microenvironment for enhanced drug metabolization. Technical details to address bioprinting of 3D liver tissue analog, integration with a microfluidic device, and basic drug metabolism study for NASA's interests will presented. 1. Holtorf H. Leslie J. Chang R, Nam J, Culbertson C, Sun W, Gonda S, "Development of a Three-Dimensional Tissue-on-a-Chip Micro-Organ Device for Pharmacokinetic Analysis", the 47th Annual Meeting of the American Society for Cell Biology, Washington, DC, December 1-5, 2007. 2. Chang, R., Nam, J., Culbertson C., Holtorf, H., Jeevarajan, A., Gonda, S. and Sun, W., "Bio-printing and Modeling of Flow Patterns for Cell Encapsulated 3D Liver Chambers For Pharmacokinetic Study", TERMIS North America 2007 Conference and Exposition, Westin Harbour Castle, Toronto, Canada, June 13-16, 2007. 3.Starly, B., Chang, R., Sun, W., Culbertson, C., Holtorf, H. and Gonda, S., "Bioprinted Tissue-on-chip Application for Pharmacokinetic Studies", Proceedings of World Congress on Tissue Engineering and Regenerative Medicine, Pittsburgh, PA, USA, April 24-27, 2006.

  7. Reusable High Aspect Ratio 3-D Nickel Shadow Mask

    PubMed Central

    Shandhi, M.M.H.; Leber, M.; Hogan, A.; Warren, D.J.; Bhandari, R.; Negi, S.

    2017-01-01

    Shadow Mask technology has been used over the years for resistless patterning and to pattern on unconventional surfaces, fragile substrate and biomaterial. In this work, we are presenting a novel method to fabricate high aspect ratio (15:1) three-dimensional (3D) Nickel (Ni) shadow mask with vertical pattern length and width of 1.2 mm and 40 μm respectively. The Ni shadow mask is 1.5 mm tall and 100 μm wide at the base. The aspect ratio of the shadow mask is 15. Ni shadow mask is mechanically robust and hence easy to handle. It is also reusable and used to pattern the sidewalls of unconventional and complex 3D geometries such as microneedles or neural electrodes (such as the Utah array). The standard Utah array has 100 active sites at the tip of the shaft. Using the proposed high aspect ratio Ni shadow mask, the Utah array can accommodate 300 active sites, 200 of which will be along and around the shaft. The robust Ni shadow mask is fabricated using laser patterning and electroplating techniques. The use of Ni 3D shadow mask will lower the fabrication cost, complexity and time for patterning out-of-plane structures. PMID:29056835

  8. 3D displacement field measurement with correlation based on the micro-geometrical surface texture

    NASA Astrophysics Data System (ADS)

    Bubaker-Isheil, Halima; Serri, Jérôme; Fontaine, Jean-François

    2011-07-01

    Image correlation methods are widely used in experimental mechanics to obtain displacement field measurements. Currently, these methods are applied using digital images of the initial and deformed surfaces sprayed with black or white paint. Speckle patterns are then captured and the correlation is performed with a high degree of accuracy to an order of 0.01 pixels. In 3D, however, stereo-correlation leads to a lower degree of accuracy. Correlation techniques are based on the search for a sub-image (or pattern) displacement field. The work presented in this paper introduces a new correlation-based approach for 3D displacement field measurement that uses an additional 3D laser scanner and a CMM (Coordinate Measurement Machine). Unlike most existing methods that require the presence of markers on the observed object (such as black speckle, grids or random patterns), this approach relies solely on micro-geometrical surface textures such as waviness, roughness and aperiodic random defects. The latter are assumed to remain sufficiently small thus providing an adequate estimate of the particle displacement. The proposed approach can be used in a wide range of applications such as sheet metal forming with large strains. The method proceeds by first obtaining cloud points using the 3D laser scanner mounted on a CMM. These points are used to create 2D maps that are then correlated. In this respect, various criteria have been investigated for creating maps consisting of patterns, which facilitate the correlation procedure. Once the maps are created, the correlation between both configurations (initial and moved) is carried out using traditional methods developed for field measurements. Measurement validation was conducted using experiments in 2D and 3D with good results for rigid displacements in 2D, 3D and 2D rotations.

  9. A 3-D CFD Analysis of the Space Shuttle RSRM With Propellant Fins @ 1 sec. Burn-Back

    NASA Technical Reports Server (NTRS)

    Morstadt, Robert A.

    2003-01-01

    In this study 3-D Computational Fluid Dynamic (CFD) runs have been made for the Space Shuttle RSRM using 2 different grids and 4 different turbulent models, which were the Standard KE, the RNG KE, the Realizable KE, and the Reynolds stress model. The RSRM forward segment consists of 11 fins. By taking advantage of the forward fin symmetry only half of one fin along the axis had to be used in making the grid. This meant that the 3-D model consisted of a pie slice that encompassed 1/22nd of the motor circumference and went along the axis of the entire motor. The 3-D flow patterns in the forward fin region are of particular interest. Close inspection of these flow patterns indicate that 2 counter-rotating axial vortices emerge from each submerged solid propellant fin. Thus, the 3-D CFD analysis allows insight into complicated internal motor flow patterns that are not available from the simpler 2-D axi-symmetric studies. In addition, a comparison is made between the 3-D bore pressure drop and the 2-D axi-symmetric pressure drop.

  10. Microscopy using source and detector arrays

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Castello, Marco; Vicidomini, Giuseppe; Duocastella, Martí; Diaspro, Alberto

    2016-03-01

    There are basically two types of microscope, which we call conventional and scanning. The former type is a full-field imaging system. In the latter type, the object is illuminated with a probe beam, and a signal detected. We can generalize the probe to a patterned illumination. Similarly we can generalize the detection to a patterned detection. Combining these we get a range of different modalities: confocal microscopy, structured illumination (with full-field imaging), spinning disk (with multiple illumination points), and so on. The combination allows the spatial frequency bandwidth of the system to be doubled. In general we can record a four dimensional (4D) image of a 2D object (or a 6D image from a 3D object, using an acoustic tuneable lens). The optimum way to directly reconstruct the resulting image is by image scanning microscopy (ISM). But the 4D image is highly redundant, so deconvolution-based approaches are also relevant. ISM can be performed in fluorescence, bright field or interference microscopy. Several different implementations have been described, with associated advantages and disadvantages. In two-photon microscopy, the illumination and detection point spread functions are very different. This is also the case when using pupil filters or when there is a large Stokes shift.

  11. Three-dimensional nonlinear responses to impact loads on free-span pipeline: Torsional coupling and load steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J.S.; Huttelmaier, H.P.; Cheng, B.R.

    1995-12-31

    For a heavy object falling on a free-span pipeline, this study assesses three-dimensional (3-D) pipe-span responses with the torsional ({theta}x-) coupling of a pipeline through the biaxial (y) bending responses. The static pipe-span equilibrium is achieved with its self-weight and buoyancy and the external torsional moment induced by the cross-flow (y-directional) current on the sagged pipe span. Load steps taken for 2 different sequences of applying static loads induced different pipe deformations, and the pipe twists in entirely different pattern. The two types of impact loads are applied in the vertical (z-) direction to excite the pipe span in itsmore » static equilibrium: (1) triangular impulse loading and (2) ramp loading. Boundary condition of the span supports is ``fixed-fixed`` at both ends in both displacement and rotation. 3-D coupled axial (x-), bending (y- and z-) and torsional ({theta}x-) responses, both state and dynamic, to the z-directional impact loadings, are modeled and analyzed by a nonlinear FEM method for a 16-in pipeline. The 3-D responses are compared with 2-D responses. The comparison shows significant torsional vibrations caused by the cross-flow current, especially for longer spans. The torsional ({theta}x-) coupling is very sensitive to the time-step size in achieving numerical stability and accuracy, particularly for the ramp loading and for a shorter span. For very large impact loads, the response frequencies differ from the fundamental frequencies of the span, exhibiting beatings and strong bending-to-axial and to-twist couplings. Also, the eigenvalues for the linear system are not necessarily the resonance frequencies for these nonlinear coupled responses.« less

  12. The biosynthesis of polysaccharides. Incorporation of d-[1-14C]glucose and d-[6-14C]glucose into plum-leaf polysaccharides

    PubMed Central

    Andrews, P.; Hough, L.; Picken, J. M.

    1965-01-01

    1. The utilization of specifically labelled d-glucose in the biosynthesis of plum-leaf polysaccharides has been studied. After these precursors had been metabolized in plum leaves, the polysaccharides were isolated from the leaves, and their monosaccharide constituents isolated and purified. 2. Both the specific activities and the distribution of 14C along the carbon chains of the monosaccharides were determined. Significant 14C activity was found in units of d-galactose, d-glucose, d-xylose and l-arabinose, but their specific activities varied widely. The labelling patterns suggest that in the leaves the other monosaccharides all arise directly from d-glucose without any skeletal change in the carbon chain, other than the loss of a terminal carbon atom in the synthesis of pentoses. 3. The results indicated that within the leaf there are various precursor pools for polysaccharide synthesis and that these pools are not in equilibrium with one another. PMID:14342252

  13. Impact of local diffusion on macroscopic dispersion in three-dimensional porous media

    NASA Astrophysics Data System (ADS)

    Dartois, Arthur; Beaudoin, Anthony; Huberson, Serge

    2018-02-01

    While macroscopic longitudinal and transverse dispersion in three-dimensional porous media has been simulated previously mostly under purely advective conditions, the impact of diffusion on macroscopic dispersion in 3D remains an open question. Furthermore, both in 2D and 3D, recurring difficulties have been encountered due to computer limitation or analytical approximation. In this work, we use the Lagrangian velocity covariance function and the temporal derivative of second-order moments to study the influence of diffusion on dispersion in highly heterogeneous 2D and 3D porous media. The first approach characterizes the correlation between the values of Eulerian velocity components sampled by particles undergoing diffusion at two times. The second approach allows the estimation of dispersion coefficients and the analysis of their behaviours as functions of diffusion. These two approaches allowed us to reach new results. The influence of diffusion on dispersion seems to be globally similar between highly heterogeneous 2D and 3D porous media. Diffusion induces a decrease in the dispersion in the direction parallel to the flow direction and an increase in the dispersion in the direction perpendicular to the flow direction. However, the amplification of these two effects with the permeability variance is clearly different between 2D and 3D. For the direction parallel to the flow direction, the amplification is more important in 3D than in 2D. It is reversed in the direction perpendicular to the flow direction.

  14. Three-dimensional patterning in biomedicine: Importance and applications in neuropharmacology.

    PubMed

    Vikram Singh, Ajay; Gharat, Tanmay; Batuwangala, Madu; Park, Byung-Wook; Endlein, Thomas; Sitti, Metin

    2018-04-01

    Nature manufactures biological systems in three dimensions with precisely controlled spatiotemporal profiles on hierarchical length and time scales. In this article, we review 3D patterning of biological systems on synthetic platforms for neuropharmacological applications. We briefly describe 3D versus 2D chemical and topographical patterning methods and their limitations. Subsequently, an overview of introducing a third dimension in neuropharmacological research with delineation of chemical and topographical roles is presented. Finally, toward the end of this article, an explanation of how 3D patterning has played a pivotal role in relevant fields of neuropharmacology to understand neurophysiology during development, normal health, and disease conditions is described. The future prospects of organs-on-a--like devices to mimic patterned blood-brain barrier in the context of neurotherapeutic discovery and development for the prioritization of lead candidates, membrane potential, and toxicity testing are also described. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1369-1382, 2018. © 2017 Wiley Periodicals, Inc.

  15. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner.

    PubMed

    Doerflinger, Sylvie Y; Throop, Andrea L; Herbst-Kralovetz, Melissa M

    2014-06-15

    Bacterial vaginosis increases the susceptibility to sexually transmitted infections and negatively affects women's reproductive health. To investigate host-vaginal microbiota interactions and the impact on immune barrier function, we colonized 3-dimensional (3-D) human vaginal epithelial cells with 2 predominant species of vaginal microbiota (Lactobacillus iners and Lactobacillus crispatus) or 2 prevalent bacteria associated with bacterial vaginosis (Atopobium vaginae and Prevotella bivia). Colonization of 3-D vaginal epithelial cell aggregates with vaginal microbiota was observed with direct attachment to host cell surface with no cytotoxicity. A. vaginae infection yielded increased expression membrane-associated mucins and evoked a robust proinflammatory, immune response in 3-D vaginal epithelial cells (ie, expression of CCL20, hBD-2, interleukin 1β, interleukin 6, interleukin 8, and tumor necrosis factor α) that can negatively affect barrier function. However, P. bivia and L. crispatus did not significantly upregulate pattern-recognition receptor-signaling, mucin expression, antimicrobial peptides/defensins, or proinflammatory cytokines in 3-D vaginal epithelial cell aggregates. Notably, L. iners induced pattern-recognition receptor-signaling activity, but no change was observed in mucin expression or secretion of interleukin 6 and interleukin 8. We identified unique species-specific immune signatures from vaginal epithelial cells elicited by colonization with commensal and bacterial vaginosis-associated bacteria. A. vaginae elicited a signature that is consistent with significant disruption of immune barrier properties, potentially resulting in enhanced susceptibility to sexually transmitted infections during bacterial vaginosis. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.

    PubMed

    Lin, Yi-Chung; Pandy, Marcus G

    2017-07-05

    The aim of this study was to perform full-body three-dimensional (3D) dynamic optimization simulations of human locomotion by driving a neuromusculoskeletal model toward in vivo measurements of body-segmental kinematics and ground reaction forces. Gait data were recorded from 5 healthy participants who walked at their preferred speeds and ran at 2m/s. Participant-specific data-tracking dynamic optimization solutions were generated for one stride cycle using direct collocation in tandem with an OpenSim-MATLAB interface. The body was represented as a 12-segment, 21-degree-of-freedom skeleton actuated by 66 muscle-tendon units. Foot-ground interaction was simulated using six contact spheres under each foot. The dynamic optimization problem was to find the set of muscle excitations needed to reproduce 3D measurements of body-segmental motions and ground reaction forces while minimizing the time integral of muscle activations squared. Direct collocation took on average 2.7±1.0h and 2.2±1.6h of CPU time, respectively, to solve the optimization problems for walking and running. Model-computed kinematics and foot-ground forces were in good agreement with corresponding experimental data while the calculated muscle excitation patterns were consistent with measured EMG activity. The results demonstrate the feasibility of implementing direct collocation on a detailed neuromusculoskeletal model with foot-ground contact to accurately and efficiently generate 3D data-tracking dynamic optimization simulations of human locomotion. The proposed method offers a viable tool for creating feasible initial guesses needed to perform predictive simulations of movement using dynamic optimization theory. The source code for implementing the model and computational algorithm may be downloaded at http://simtk.org/home/datatracking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Super-resolved Mirau digital holography by structured illumination

    NASA Astrophysics Data System (ADS)

    Ganjkhani, Yasaman; Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Moradi, Ali-Reza

    2017-12-01

    In this paper, we apply structured illumination toward super-resolved 3D imaging in a common-path digital holography arrangement. Digital holographic microscopy (DHM) provides non-invasive 3D images of transparent samples as well as 3D profiles of reflective surfaces. A compact and vibration-immune arrangement for DHM may be obtained through the use of a Mirau microscope objective. However, high-magnification Mirau objectives have a low working distance and are expensive. Low-magnification ones, on the other hand, suffer from low lateral resolution. Structured illumination has been widely used for resolution improvement of intensity images, but the technique can also be readily applied to DHM. We apply structured illumination to Mirau DHM by implementing successive sinusoidal gratings with different orientations onto a spatial light modulator (SLM) and forming its image on the specimen. Moreover, we show that, instead of different orientations of 1D gratings, alternative single 2D gratings, e.g. checkerboard or hexagonal patterns, can provide resolution enhancement in multiple directions. Our results show a 35% improvement in the resolution power of the DHM. The presented arrangement has the potential to serve as a table-top device for high resolution holographic microscopy.

  18. Visualizing 3D Fracture Morphology in Granular Media

    NASA Astrophysics Data System (ADS)

    Dalbe, M. J.; Juanes, R.

    2015-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  19. Three-dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas Fault

    USGS Publications Warehouse

    Frankel, A.

    1993-01-01

    Three-dimensional finite difference simulations of elastic waves in the San Bernardino Valley were performed for two hypothetical earthquakes on the San Andreas fault: a point source with moment magnitude M5 and an extended rupture with M6.5. A method is presented for incorporating a source with arbitrary focal mechanism in the grid. Synthetics from the 3-D simulations are compared with those derived from 2-D (vertical cross section) and 1-D (flat-layered) models. The synthetic seismograms from the 3-D and 2-D simulations exhibit large surface waves produced by conversion of incident S waves at the edge of the basin. Seismograms from the flat-layered model do not contain these converted surface waves and underestimate the duration of shaking. Maps of maximum ground velocities occur in localized portions of the basin. The location of the largest velocities changes with the rupture propagation direction. Contours of maximum shaking are also dependent on asperity positions and radiation pattern. -from Author

  20. 3D Nanochannel Array Platform for High-throughput Cell Manipulation and Nano-electroporation

    NASA Astrophysics Data System (ADS)

    Chang, Lingqian

    Electroporation is one of the most common non-viral methods for gene delivery. Recent progress in gene therapy has offered special opportunities to electroporation for in vitro and in vivo applications. However, conventional bulk electroporation (BEP) inevitably causes serious cell damage and stochastic transfection between cells. Microfluidic electroporation (MEP) has been claimed to provide benign single cell transfection for the last decade. Nevertheless, the intracellular transport in both MEP and BEP systems is highly diffusion-dominant, which prevents precise dose control and high uniformity. In this Ph.D. research, we developed a 3D nanochannel-electroporation (3D NEP) platform for mass cell transfection. A silicon-based nanochannel array (3D NEP) chip was designed and fabricated for cell manipulation and electroporation. The chip, designed as Z-directional microchannel - nanochannel array, was fabricated by clean room techniques including projection photolithography and deep reactive-ion etching (DRIE). The fabricated 3D NEP chip is capable of handling 40,000 cells per 1 cm2, up to 1 million per wafer (100 mm diameter). High-throughput cell manipulation technologies were investigated for precise alignment of individual cells to the nanochannel array, a key step for NEP to achieve dose control. We developed three techniques for cell trapping in this work. (1) Magnetic tweezers (MTs) were integrated on the chip to remotely control cells under a programmed magnetic field. (2) A positive dielectrophoresis (pDEP) power system was built as an alternative to trap cells onto the nanochannel array using DEP force. (3) A novel yet simple 'dipping-trap' method was used to rapidly trap cells onto a nanochannel array, aligned by a micro-cap array pattern on the 3D NEP chip, which eventually offered 70 - 90 % trapping efficiency and 90 % specificity. 3D NEP platforms were assembled for cell transfection based on the Si-based nanochannel array chip and cell manipulation techniques. Cells were patterned on the nanochannel array and collectively were electroporated in parallel, injected with cargo in Z-direction. Controlling the dose was demonstrated with the external pulse durations at high-throughput. The 'electrophoretic'- expedited delivery of large molecular weight plasmids were demonstrated with large numbers of primary cells simultaneously, which cannot be achieved in BEP and MEP. Two clinically valuable case studies were performed with our 3D NEP for living cell sensing / interrogation. (1) In the case of in vitro transfection of primary cardiomyocytes, we studied the dose-effects of miR-29 on mitochondrial changes and the suppression of the Mcl-1 gene in adult mouse cardiomyocytes by precisely controlling the miR-29 dose injected. (2) Glioma stem cells (GSCs), a type of cell hypothesized to be highly aggressive and to lead to the relapses of gliobastoma in human brain, was studied at single cell resolution on 3D NEP platform. The developed 3D NEP system moves towards clinically oriented and user-friendly tools for life science applications. The batch-treated cells with controlled dosage delivery provide a useful tool for single cell analysis. The pioneering experiments in this work have demonstrated the 3D NEP for the applications of cell reprogramming, adoptive immunotherapy, in vitro cardiomyocytes transfection and glioma stem cells study.

  1. Shear wave splitting and shear wave splitting tomography of the southern Puna plateau

    NASA Astrophysics Data System (ADS)

    Calixto, Frank J.; Robinson, Danielle; Sandvol, Eric; Kay, Suzanne; Abt, David; Fischer, Karen; Heit, Ben; Yuan, Xiaohui; Comte, Diana; Alvarado, Patricia

    2014-11-01

    We have investigated the seismic anisotropy beneath the Central Andean southern Puna plateau by applying shear wave splitting analysis and shear wave splitting tomography to local S waves and teleseismic SKS, SKKS and PKS phases. Overall, a very complex pattern of fast directions throughout the southern Puna plateau region and a circular pattern of fast directions around the region of the giant Cerro Galan ignimbrite complex are observed. In general, teleseismic lag times are much greater than those for local events which are interpreted to reflect a significant amount of sub and inner slab anisotropy. The complex pattern observed from shear wave splitting analysis alone is the result of a complex 3-D anisotropic structure under the southern Puna plateau. Our application of shear wave splitting tomography provides a 3-D model of anisotropy in the southern Puna plateau that shows different patterns depending on the driving mechanism of upper-mantle flow and seismic anisotropy. The trench parallel a-axes in the continental lithosphere above the slab east of 68W may be related to deformation of the overriding continental lithosphere since it is under compressive stresses which are orthogonal to the trench. The more complex pattern below the Cerro Galan ignimbrite complex and above the slab is interpreted to reflect delamination of continental lithosphere and upwelling of hot asthenosphere. The a-axes beneath the Cerro Galan, Cerro Blanco and Carachi Pampa volcanic centres at 100 km depth show some weak evidence for vertically orientated fast directions, which could be due to vertical asthenospheric flow around a delaminated block. Additionally, our splitting tomographic model shows that there is a significant amount of seismic anisotropy beneath the slab. The subslab mantle west of 68W shows roughly trench parallel horizontal a-axes that are probably driven by slab roll back and the relatively small coupling between the Nazca slab and the underlying mantle. In contrast, the subslab region (i.e. depths greater than 200 km) east of 68W shows a circular pattern of a-axes centred on a region with small strength of anisotropy (Cerro Galan and its eastern edge) which suggest the dominant mechanism is a combination of slab roll back and flow driven by an overlying abnormally heated slab or possibly a slab gap. There seems to be some evidence for vertical flow below the slab at depths of 200-400 km driven by the abnormally heated slab or slab gap. This cannot be resolved by the tomographic inversion due to the lack of ray crossings in the subslab mantle.

  2. Multi-scale Fracture Patterns Associated with a Complex Anticline Structure: Insights from Field Outcrop Analogues of the Jebel Hafit Pericline, Al Ain-UAE

    NASA Astrophysics Data System (ADS)

    Kokkalas, S.; Jones, R. R.; Long, J. J.; Zampos, M.; Wilkinson, M. W.; Gilment, S.

    2017-12-01

    The formation of folds and their associated fracture patterns plays an important role in controlling the migration and concentration of fluids within the upper crust. Prediction of fracture patterns from various fold shapes and kinematics still remains poorly understood in terms of spatial and temporal distribution of fracture sets. Thus, a more detailed field-based multi scale approach is required to better constrain 3D models of fold-fracture relationships, which are critical for reservoir characterization studies. In order to generate reservoir-scale fracture models representative fracture properties across a wider range of scales are needed. For this reason we applied modern geospatial technologies, including terrestrial LiDAR, photogrammetry and satellite images in the asymmetric, east verging, four-way closure Jebel Hafit anticline, in the eastern part of the United Arab Emirates. The excellent surface outcrops allowed the rapid acquisition of extensive areas of fracture data from both limbs and fold hinge area of the anticline, even from large areas of steep exposure that are practically inaccessible on foot. The digital outcrops provide longer 1D transects, and 2D or 3D surface datasets and give more robust data, particularly for fracture heights, lengths, spacing, clustering, termination and connectivity. The fracture patterns across the folded structure are more complex than those predicted from conceptual models and geomechanical fracture modeling. Mechanical layering, pre-existing structures and sedimentation during fold growth seem to exert a critical influence in the development of fracture systems within Jebel Hafit anticline and directly affect fracture orientations, spacing/intensity, segmentation and connectivity. Seismic and borehole data provide additional constraints on the sub-surface fold geometry and existence of large-scale thrusting in the core of the anticline. The complexity of the relationship between fold geometry and fracture intensity is presented and the implications for prediction of fracture networks in naturally fractured reservoirs are discussed.

  3. Mantle Flow Induced by Subduction Beneath Taurides Mountains

    NASA Astrophysics Data System (ADS)

    Hui, H.; Sandvol, E. A.; Rey, P. F.; Brocard, G. Y.

    2017-12-01

    GPS data of Anatolian Plateau shows westward plate motion with respect to the Eurasian plate at a rate of approximately 20 mm/yr, however, the fast direction of shear-wave splitting data in Anatolian Plateau is dominantly northeast-southwest, with significant variations around the central Taurides Mountains. To address the decoupling between the deformation in the crust and in the mantle, we explore the mantle strain pattern beneath Anatoian Plateau. Numerical models of the African plate subducting beneath the Taurides have been constructed with the open source code Underworld by Louis Moresi and the Lithospheric Modeling Recipe by EarthByte Group. We have constructed a 2-D model with dimension of 400km × 480km with 60km thick plate subducting into the mantle. In our numerical model, we observe a poloidal component of the mantle flow around the edge of the subducting plate, which could be explained by straight-forward corner flow. The horizontal component of mantle flow above the subducting plate may explain the shear-wave splitting pattern that is nearly perpendicular to the trench at Anatolia. We are also working on 3-D models with dimension of 400km×400km×480km with the subducting plate width 100km. The asthenospheric mantle below the subducting plate exhibits a flow parallel to the trench, then rotates around the edge of the plate and becomes perpendicular to the trench. This mantle flow pattern may explain the shear-wave splitting directions in central Anatolia.

  4. Templated Sub-100-nm-Thick Double-Gyroid Structure from Si-Containing Block Copolymer Thin Films.

    PubMed

    Aissou, Karim; Mumtaz, Muhammad; Portale, Giuseppe; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges

    2017-05-01

    The directed self-assembly of diblock copolymer chains (poly(1,1-dimethyl silacyclobutane)-block-polystyrene, PDMSB-b-PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double-wave pattern formation is reported within the 3D-nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent-vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub-100-nm-thick PDMSB-b-PS films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Demonstration of an X-Band Multilayer Yagi-Like Microstrip Patch Antenna With High Directivity and Large Bandwidth

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Zaman, Afroz; Lee, Richard Q.; Lambert, Kevin

    2005-01-01

    The feasibility of obtaining large bandwidth and high directivity from a multilayer Yagi-like microstrip patch antenna at 10 GHz is investigated. A measured 10-dB bandwidth of approximately 20 percent and directivity of approximately 11 dBi is demonstrated through the implementation of a vertically-stacked structure with three parasitic directors, above the driven patch, and a single reflector underneath the driven patch. Simulated and measured results are compared and show fairly close agreement. This antenna offers the advantages of large bandwidth, high directivity, and symmetrical broadside patterns, and could be applicable to satellite as well as terrestrial communications.

  6. 4D Biofabrication of Branching Multicellular Structures: A Morphogenesis Simulation Based on Turing’s Reaction-Diffusion Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolu; Yang, Hao

    2017-12-01

    The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.

  7. Directed self-assembly of virus particles at nanoscale chemical templates

    NASA Astrophysics Data System (ADS)

    Chung, Sung-Wook; Cheung, Chin Li; Chatterji, Anju; Lin, Tianwei; Johnson, Jack; de Yoreo, Jim

    2006-03-01

    Because viruses can be site-specifically engineered to present catalytic, electronic, and optical moieties, they are attractive as building blocks for hierarchical nanostructures. We report results using scanned probe nanolithography to direct virus organization into 1D and 2D patterns and in situ AFM investigations of organization dynamics as pattern geometry, inter-viral potential, virus flux, and virus-pattern interaction are varied. Cowpea Mosaic Virus was modified to present surface sites with histidine (His) or cysteine (Cys) groups. Flat gold substrates were patterned with 10-100nm features of alkyl thiols terminated by Ni-NTA or meleimide groups to reversibly and irreversibly bind to the Hys and Cys groups, respectively. We show how assembly kinetics, degree of ordering and cluster-size distribution at these templates depend on the control parameters and present a physical picture of virus assembly at templates that incorporates growth dynamics of small-molecule epitaxial systems and condensation dynamics of colloidal systems. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  8. Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases

    PubMed Central

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed disparity in T2D incidence rates across ethnic populations. PMID:22511877

  9. Water Budget for the Island of Kauai, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1995-01-01

    A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).

  10. Active origami by 4D printing

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.

    2014-09-01

    Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.

  11. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    PubMed

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  12. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography

    DOE PAGES

    Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...

    2016-11-21

    Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less

  13. Understanding Atmospheric Anomalies Associated With Seasonal Pluvial-Drought Processes Using Southwest China as an Example

    NASA Astrophysics Data System (ADS)

    Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian

    2017-11-01

    Seasonal pluvial-drought transition processes are unique natural phenomena. To explore possible mechanisms, we considered Southwest China (SWC) as the study region and comprehensively investigated the temporal evolution or spatial patterns of large-scale and regional atmospheric variables with the simple method of Standardized Anomalies (SA). Some key procedures and results include the following: (1) Because regional atmospheric variables are more directly responsible for the transition processes, we investigate it in detail. The temporal evolution of net vertical integral water vapor flux (net VIWVF) across SWC, together with vertical SA-based patterns of regional horizontal divergence (D) and vertical motion (ω), coincides well with pluvial-drought transition processes. (2) With respect to large-scale circulation patterns, a well-organized Eurasian (EU) Pattern is one important feature during the pluvial-drought transitions over SWC. (3) Based on these large-scale and regional atmospheric anomalous features, relevant SA-based indices were built, to explore the possibility of simulating drought development using previous pluvial anomalies. As a whole, simulated drought development only with SA-based indices of large-scale circulation patterns does not perform well. Further, it can be improved a lot when SA-based indices of regional D and net VIWVF are introduced. (4) In addition, the potential drought prediction using pluvial anomalies, together with the deep understanding of physical mechanisms responsible for pluvial-drought transitions, need to be further explored.

  14. Three-dimensional motion aftereffects reveal distinct direction-selective mechanisms for binocular processing of motion through depth.

    PubMed

    Czuba, Thaddeus B; Rokers, Bas; Guillet, Kyle; Huk, Alexander C; Cormack, Lawrence K

    2011-09-26

    Motion aftereffects are historically considered evidence for neuronal populations tuned to specific directions of motion. Despite a wealth of motion aftereffect studies investigating 2D (frontoparallel) motion mechanisms, there is a remarkable dearth of psychophysical evidence for neuronal populations selective for the direction of motion through depth (i.e., tuned to 3D motion). We compared the effects of prolonged viewing of unidirectional motion under dichoptic and monocular conditions and found large 3D motion aftereffects that could not be explained by simple inheritance of 2D monocular aftereffects. These results (1) demonstrate the existence of neurons tuned to 3D motion as distinct from monocular 2D mechanisms, (2) show that distinct 3D direction selectivity arises from both interocular velocity differences and changing disparities over time, and (3) provide a straightforward psychophysical tool for further probing 3D motion mechanisms. © ARVO

  15. Three-dimensional motion aftereffects reveal distinct direction-selective mechanisms for binocular processing of motion through depth

    PubMed Central

    Czuba, Thaddeus B.; Rokers, Bas; Guillet, Kyle; Huk, Alexander C.; Cormack, Lawrence K.

    2013-01-01

    Motion aftereffects are historically considered evidence for neuronal populations tuned to specific directions of motion. Despite a wealth of motion aftereffect studies investigating 2D (frontoparallel) motion mechanisms, there is a remarkable dearth of psychophysical evidence for neuronal populations selective for the direction of motion through depth (i.e., tuned to 3D motion). We compared the effects of prolonged viewing of unidirectional motion under dichoptic and monocular conditions and found large 3D motion aftereffects that could not be explained by simple inheritance of 2D monocular aftereffects. These results (1) demonstrate the existence of neurons tuned to 3D motion as distinct from monocular 2D mechanisms, (2) show that distinct 3D direction selectivity arises from both interocular velocity differences and changing disparities over time, and (3) provide a straightforward psychophysical tool for further probing 3D motion mechanisms. PMID:21945967

  16. Task 1, Fractal characteristics of drainage patterns observed in the Appalachian Valley and Ridge and Plateau provinces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.; Dominic, J.; Halverson, J.

    1996-04-10

    Drainage patterns observed in the Appalachian Valley and Ridge and Plateau provinces exhibit distinctly different patterns. The patterns appear to be controlled by varying influences of local structural and lithologic variability. Drainage patterns in the Valley and Ridge study area can be classified as a combination of dendritic and trellis arrangements. The patterns vary over short distances in both the strike and dip directions. In the Granny Creek area of the Appalachian Plateau drainage patterns are predominantly dendritic. The possibility that these drainage patterns have fractal characteristics was evaluated by box-counting. Results obtained from box counting do not yield amore » well defined fractal regime in either areas. In the Valley and Ridge a space-filling, or random regime (D=2) is observed for boxes with side-lengths of 300 meters and greater. Below 300 meters, large changes in D occur between consecutively smaller box sizes. From side lengths of 300 to 150m, 150 to 75m, and 75 to 38m, D is measured at 1.77, 1.39, and 1.08 respectively. For box sizes less than 38m the fractal dimension is 1 or less. While the l0g-log response of the box counting data is nonlinear and does not define a fractal regime, the curves offer the possibility of characterizing non-fractal patterns. The rate at which D drops outside the random regime correlates to drainage density. D in areas with a smaller density of drainage segments fell toward saturation (D=1) more abruptly. The break-away point from the random regime and the transition to the saturated regime may provide useful information about the relative lengths of stream segments.« less

  17. Determination of displacements and their derivatives from 3D fringe patterns via extended monogenic phasor method

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Lamberti, Luciano

    2018-05-01

    For 1D signals, it is necessary to resort to a 2D abstract space because the concept of phase utilized in the retrieval of fringe pattern analysis information relies on the use of a vectorial function. Fourier and Hilbert transforms provide in-quadrature signals that lead to the very important basic concept of local phase. A 3D abstract space must hence be generated in order to analyze 2D signals. A 3D vector space in a Cartesian complex space is graphically represented by a Poincare sphere. In this study, the extension of the associated spaces is extended to 3D. A 4D hypersphere is defined for that purpose. The proposed approach is illustrated by determining the deformations of the heart left ventricle.

  18. Goal-directed arm movements in children with fetal alcohol syndrome: a kinematic approach.

    PubMed

    Domellöf, E; Fagard, J; Jacquet, A-Y; Rönnqvist, L

    2011-02-01

    Although many studies have documented deficits in general motor functioning in children with fetal alcohol syndrome (FAS), few have employed detailed measurements to explore the specific nature of such disabilities. This pilot study explores whether three-dimensional (3D) kinematic analysis may generate increased knowledge of the effect of intrauterine alcohol exposure on motor control processes by detecting atypical upper-limb movement pattern specificity in children with FAS relative to typically developing (TD) children. Left and right arm and head movements during a sequential unimanual goal-directed precision task in a sample of children with FAS and in TD children were registered by an optoelectronic tracking system (ProReflex, Qualisys Inc.). Children with FAS demonstrated evidently poorer task performance compared with TD children. Additionally, analyses of arm movement kinematics revealed atypical spatio-temporal organization in the children with FAS. In general, they exhibited longer arm movement trajectories at both the proximal and distal level, faster velocities at the proximal level but slower at the distal level, and more segmented distal movements. Children with FAS also showed atypically augmented and fast head movements during the task performance. Findings indicate neuromotor deficits and developmental delay in goal-directed arm movements because of prenatal alcohol exposure. It is suggested that 3D kinematic analysis is a valid technique for furthering the understanding of motor control processes in children with FAS/fetal alcohol spectrum disorders. A combination with relevant neuroimaging techniques in future studies would enable a more clear-cut interpretation of how atypical movement patterns relate to underlying brain abnormalities. © 2010 The Author(s). European Journal of Neurology © 2010 EFNS.

  19. A computer-aided differential diagnosis between UIP and NSIP using automated assessment of the extent and distribution of regional disease patterns at HRCT: comparison with the radiologist's decision

    NASA Astrophysics Data System (ADS)

    Kim, Namkug; Seo, Joon Beom; Park, Sang Ok; Lee, Youngjoo; Lee, Jeongjin

    2009-02-01

    To evaluate the accuracy of computer aided differential diagnosis (CADD) between usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP) at HRCT in comparison with that of a radiologist's decision. A computerized classification for six local disease patterns (normal, NL; ground-glass opacity, GGO; reticular opacity, RO; honeycombing, HC; emphysema, EM; and consolidation, CON) using texture/shape analyses and a SVM classifier at HRCT was used for pixel-by-pixel labeling on the whole lung area. The mode filter was applied on the results to reduce noise. Area fraction (AF) of each pattern, directional probabilistic density function (pdf) (dPDF: mean, SD, skewness of pdf /3 directions: superior-inferior, anterior-posterior, central-peripheral), regional cluster distribution pattern (RCDP: number, mean, SD of clusters, mean, SD of centroid of clusters) were automatically evaluated. Spatially normalized left and right lungs were evaluated separately. Disease division index (DDI) on every combination of AFs and asymmetric index (AI) between left and right lung ((left-right)/left) were also evaluated. To assess the accuracy of the system, fifty-four HRCT data sets in patients with pathologically diagnosed UIP (n=26) and NSIP (n=28) were used. For a classification procedure, a CADD-SVM classifier with internal parameter optimization, and sequential forward floating feature selection (SFFS) were employed. The accuracy was assessed by a 5-folding cross validation with 20- times repetition. For comparison, two thoracic radiologists reviewed the whole HRCT images without clinical information and diagnose each case either as UIP or NSIP. The accuracies of radiologists' decision were 0.75 and 0.87, respectively. The accuracies of the CADD system using the features of AF, dPDF, AI of dPDF, RDP, AI of RDP, DDI were 0.70, 0.79, 0.77, 0.80, 0.78, 0.81, respectively. The accuracy of optimized CADD using all features after SFFS was 0.91. We developed the CADD system to differentiate between UIP and NSIP using automated assessment of the extent and distribution of regional disease patterns at HRCT.

  20. Ground motion in the presence of complex Topography II: Earthquake sources and 3D simulations

    USGS Publications Warehouse

    Hartzell, Stephen; Ramirez-Guzman, Leonardo; Meremonte, Mark; Leeds, Alena L.

    2017-01-01

    Eight seismic stations were placed in a linear array with a topographic relief of 222 m over Mission Peak in the east San Francisco Bay region for a period of one year to study topographic effects. Seventy‐two well‐recorded local earthquakes are used to calculate spectral amplitude ratios relative to a reference site. A well‐defined fundamental resonance peak is observed with individual station amplitudes following the theoretically predicted progression of larger amplitudes in the upslope direction. Favored directions of vibration are also seen that are related to the trapping of shear waves within the primary ridge dimensions. Spectral peaks above the fundamental one are also related to topographic effects but follow a more complex pattern. Theoretical predictions using a 3D velocity model and accurate topography reproduce many of the general frequency and time‐domain features of the data. Shifts in spectral frequencies and amplitude differences, however, are related to deficiencies of the model and point out the importance of contributing factors, including the shear‐wave velocity under the topographic feature, near‐surface velocity gradients, and source parameters.

  1. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry

    PubMed Central

    Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian

    2017-01-01

    The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced. PMID:29215600

  2. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry.

    PubMed

    Zhang, Zonghua; Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian

    2017-12-07

    The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced.

  3. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST.

    PubMed

    Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich

    2010-07-01

    To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Microstructural Characterization of a Directionally-Solidified Ni-33 (at. %)Al-31Cr-3Mo Eutectic Alloy as a Function of Withdrawal Rate

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.; Salem, J. A.

    2000-01-01

    The Ni-33 (at. %)Al-3lCr-3Mo eutectic alloy was directionally-solidified (DS) at different rates, V(sub I), varying between 2.5 to 508 mm/ h. Detailed qualitative and quantitative metallographic and chemical analyses were conducted on the directionally-solidified rods. The microstructures consisted of eutectic colonies with parallel lamellar NiAl/(Cr,Mo) plates for solidification rates at and below 12.7 mm/ h. Cellular eutectic microstructures were observed at higher solidification rates, where the plates exhibited a radial pattern. The microstructures were demonstrated to be fairly uniform throughout a 100 mm length of the DS zone by quantitative metallography. The average cell size, bar-d, decreased with increasing growth rate to a value of 125 microns at 508 mm/ h according to the relation bar-d (microns) approx. = 465 V(sup -0.22, sub I), where V(sub I) is in mm/ h. Both the average NiAl plate thickness, bar-Delta(sub NiAl), and the interlamellar spacing, bar-lambda, were observed to be constant for V(sub I) less than or = 50.8 mm/ h but decreased with increasing growth rate above this value as 0.93 bar-Delta(sub NiAl)(microns) = 61.2 V(sup -0.93, sub I) and bar-lambda (microns) = 47.7 V(sup -0.64, sub I), respectively. The present results are detailed on a microstructural map. Keywords Optical microscopy, microstructure, compounds intermetallic, directional solidification

  5. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  6. 3-Dimensional shear wave elastography of breast lesions

    PubMed Central

    Chen, Ya-ling; Chang, Cai; Zeng, Wei; Wang, Fen; Chen, Jia-jian; Qu, Ning

    2016-01-01

    Abstract Color patterns of 3-dimensional (3D) shear wave elastography (SWE) is a promising method in differentiating tumoral nodules recently. This study was to evaluate the diagnostic accuracy of color patterns of 3D SWE in breast lesions, with special emphasis on coronal planes. A total of 198 consecutive women with 198 breast lesions (125 malignant and 73 benign) were included, who underwent conventional ultrasound (US), 3D B-mode, and 3D SWE before surgical excision. SWE color patterns of Views A (transverse), T (sagittal), and C (coronal) were determined. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated. Distribution of SWE color patterns was significantly different between malignant and benign lesions (P = 0.001). In malignant lesions, “Stiff Rim” was significantly more frequent in View C (crater sign, 60.8%) than in View A (51.2%, P = 0.013) and View T (54.1%, P = 0.035). AUC for combination of “Crater Sign” and conventional US was significantly higher than View A (0.929 vs 0.902, P = 0.004) and View T (0.929 vs 0.907, P = 0.009), and specificity significantly increased (90.4% vs 78.1%, P = 0.013) without significant change in sensitivity (85.6% vs 88.0%, P = 0.664) as compared with conventional US. In conclusion, combination of conventional US with 3D SWE color patterns significantly increased diagnostic accuracy, with “Crater Sign” in coronal plane of the highest value. PMID:27684820

  7. Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices.

    PubMed

    Li, Yanfen; Kilian, Kristopher A

    2015-12-30

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, techniques for micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels will be discussed in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Labean, Thomas H.; Feng, Liping; Reif, John H.

    2003-07-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  9. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices.

    PubMed

    Yan, Hao; LaBean, Thomas H; Feng, Liping; Reif, John H

    2003-07-08

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  10. Film patterned retarder for stereoscopic three-dimensional display using ink-jet printing method.

    PubMed

    Lim, Young Jin; Yu, Ji Hoon; Song, Ki Hoon; Lee, Myong-Hoon; Ren, Hongwen; Mun, Byung-June; Lee, Gi-Dong; Lee, Seung Hee

    2014-09-22

    We propose a film patterned retarder (FPR) for stereoscopic three-dimensional display with polarization glasses using ink-jet printing method. Conventional FPR process requires coating of photo-alignment and then UV exposure using wire-grid mask, which is very expensive and difficult. The proposed novel fabrication method utilizes a plastic substrate made of polyether sulfone and an alignment layer, poly (4, 4' - (9, 9 -fluorenyl) diphenylene cyclobutanyltetracarboximide) (9FDA/CBDA) in which the former and the latter aligns reactive mesogen along and perpendicular to the rubbing direction, respectively. The ink-jet printing of 9FDA/CBDA line by line allows fabricating the cost effective FPR which can be widely applied for 3D display applications.

  11. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  12. Decoding fMRI Signatures of Real-world Autobiographical Memory Retrieval.

    PubMed

    Rissman, Jesse; Chow, Tiffany E; Reggente, Nicco; Wagner, Anthony D

    2016-04-01

    Extant neuroimaging data implicate frontoparietal and medial-temporal lobe regions in episodic retrieval, and the specific pattern of activity within and across these regions is diagnostic of an individual's subjective mnemonic experience. For example, in laboratory-based paradigms, memories for recently encoded faces can be accurately decoded from single-trial fMRI patterns [Uncapher, M. R., Boyd-Meredith, J. T., Chow, T. E., Rissman, J., & Wagner, A. D. Goal-directed modulation of neural memory patterns: Implications for fMRI-based memory detection. Journal of Neuroscience, 35, 8531-8545, 2015; Rissman, J., Greely, H. T., & Wagner, A. D. Detecting individual memories through the neural decoding of memory states and past experience. Proceedings of the National Academy of Sciences, U.S.A., 107, 9849-9854, 2010]. Here, we investigated the neural patterns underlying memory for real-world autobiographical events, probed at 1- to 3-week retention intervals as well as whether distinct patterns are associated with different subjective memory states. For 3 weeks, participants (n = 16) wore digital cameras that captured photographs of their daily activities. One week later, they were scanned while making memory judgments about sequences of photos depicting events from their own lives or events captured by the cameras of others. Whole-brain multivoxel pattern analysis achieved near-perfect accuracy at distinguishing correctly recognized events from correctly rejected novel events, and decoding performance did not significantly vary with retention interval. Multivoxel pattern classifiers also differentiated recollection from familiarity and reliably decoded the subjective strength of recollection, of familiarity, or of novelty. Classification-based brain maps revealed dissociable neural signatures of these mnemonic states, with activity patterns in hippocampus, medial PFC, and ventral parietal cortex being particularly diagnostic of recollection. Finally, a classifier trained on previously acquired laboratory-based memory data achieved reliable decoding of autobiographical memory states. We discuss the implications for neuroscientific accounts of episodic retrieval and comment on the potential forensic use of fMRI for probing experiential knowledge.

  13. Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor.

    PubMed

    You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen

    2017-03-31

    The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face.

  14. Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor

    PubMed Central

    You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen

    2017-01-01

    The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face. PMID:28362349

  15. A 3D Self-Shaping Strategy for Nanoresolution Multicomponent Architectures.

    PubMed

    Su, Meng; Huang, Zhandong; Li, Yifan; Qian, Xin; Li, Zheng; Hu, Xiaotian; Pan, Qi; Li, Fengyu; Li, Lihong; Song, Yanlin

    2018-01-01

    3D printing or fabrication pursues the essential surface behavior manipulation of droplets or a liquid for rapidly and precisely constructing 3D multimaterial architectures. Further development of 3D fabrication desires a self-shaping strategy that can heterogeneously integrate functional materials with disparate electrical or optical properties. Here, a 3D liquid self-shaping strategy is reported for rapidly patterning materials over a series of compositions and accurately achieving micro- and nanoscale structures. The predesigned template selectively pins the droplet, and the surface energy minimization drives the self-shaping processing. The as-prepared 3D circuits assembled by silver nanoparticles carry a current of 208-448 µA at 0.01 V impressed voltage, while the 3D architectures achieved by two different quantum dots show noninterfering optical properties with feature resolution below 3 µm. This strategy can facilely fabricate micro-nanogeometric patterns without a modeling program, which will be of great significance for the development of 3D functional devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 3D laser printing by ultra-short laser pulses for micro-optical applications: towards telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Mizeikis, Vygantas; Morikawa, Junko; Magallanes, Hernando; Brasselet, Etienne; Varapnickas, Simonas; Malinauskas, Mangirdas; Juodkazis, Saulius

    2017-08-01

    Three dimensional (3D) fast (< 0.5 hour) printing of micro-optical elements down to sub-wavelength resolution over 100 μm footprint areas using femtosecond (fs-)laser oscillator is presented. Using sub-1 nJ pulse energies, optical vortex generators made of polymerised grating segments with an azimuthally changing orientation have been fabricated in SZ2080 resist; width of polymerised rods was 150 nm and period 0.6-1 μm. Detailed phase retardance analysis was carried out manually with Berek compensator (under a white light illumination) and using an equivalent principle by an automated Abrio implementation at 546 nm. Direct experimental measurements of retardance was required since the period of the grating was comparable (or larger) than the wavelength of visible light. By gold sputtering, transmissive optical vortex generators were turned into reflective ones with augmented retardance, Δn × h defined by the form birefringence, Δn, and the height h = 2d where d is the thickness of the polymerised structure. Retardance reached 315 nm as measured with Berek compensator at visible wavelengths. Birefringent phase delays of π (or λ/2 in wavelength) required for high purity vortex generators can be made based on the proposed approach. Optical vortex generators for telecom wavelengths with sub-wavelength patterns of azimuthally oriented gratings are amenable by direct laser polymerisation.

  17. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done onmore » CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.« less

  18. Prototyping method for Bragg-type atom interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, Brandon; Krygier, Michael; Heward, Jeffrey

    2011-10-15

    We present a method for rapid modeling of new Bragg ultracold atom-interferometer (AI) designs useful for assessing the performance of such interferometers. The method simulates the overall effect on the condensate wave function in a given AI design using two separate elements. These are (1) modeling the effect of a Bragg pulse on the wave function and (2) approximating the evolution of the wave function during the intervals between the pulses. The actual sequence of these pulses and intervals is then followed to determine the approximate final wave function from which the interference pattern can be calculated. The exact evolutionmore » between pulses is assumed to be governed by the Gross-Pitaevskii (GP) equation whose solution is approximated using a Lagrangian variational method to facilitate rapid estimation of performance. The method presented here is an extension of an earlier one that was used to analyze the results of an experiment [J. E. Simsarian et al., Phys. Rev. Lett. 85, 2040 (2000)], where the phase of a Bose-Einstein condensate was measured using a Mach-Zehnder-type Bragg AI. We have developed both 1D and 3D versions of this method and we have determined their validity by comparing their predicted interference patterns with those obtained by numerical integration of the 1D GP equation and with the results of the above experiment. We find excellent agreement between the 1D interference patterns predicted by this method and those found by the GP equation. We show that we can reproduce all of the results of that experiment without recourse to an ad hoc velocity-kick correction needed by the earlier method, including some experimental results that the earlier model did not predict. We also found that this method provides estimates of 1D interference patterns at least four orders-of-magnitude faster than direct numerical solution of the 1D GP equation.« less

  19. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, P. G. C.; Benilov, M. S.

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently,more » but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.« less

  20. Shear induced alignment of short nanofibers in 3D printed polymer composites.

    PubMed

    Yunus, Doruk Erdem; Shi, Wentao; Sohrabi, Salman; Liu, Yaling

    2016-12-09

    3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material's tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.

  1. Table screen 360-degree holographic display using circular viewing-zone scanning.

    PubMed

    Inoue, Tatsuaki; Takaki, Yasuhiro

    2015-03-09

    A table screen 360-degree holographic display is proposed, with an increased screen size, having an expanded viewing zone over all horizontal directions around the table screen. It consists of a microelectromechanical systems spatial light modulator (MEMS SLM), a magnifying imaging system, and a rotating screen. The MEMS SLM generates hologram patterns at a high frame rate, the magnifying imaging system increases the screen of the MEMS SLM, and the reduced viewing zones are scanned circularly by the rotating screen. The viewing zones are localized to practically realize wavefront reconstruction. An experimental system has been constructed. The generation of 360-degree three-dimensional (3D) images was achieved by scanning 800 reduced and localized viewing zones circularly. The table screen had a diameter of 100 mm, and the frame rate of 3D image generation was 28.4 Hz.

  2. [Analysis of the Effect of Non-phacoemulsification Cataract Operation on Corneal Endothelial Cell Nucleus Division].

    PubMed

    Huang, Zufeng; Miao, Xiaoqing

    2015-09-01

    To investigate the effect of non-phacoemulsification cataract operation in two different patterns of nucleus delivery on the quantity and morphology of corneal endothelial cells and postoperative visual acuity. Forty patients diagnosed with cataract underwent cataract surgery and were assigned into the direct nuclear delivery and semi-nuclear delivery groups. Lens density was measured and divided into the hard and soft lenses according to Emery-little lens nucleus grading system. Non-phacoemulsification cataract operation was performed. At 3 d after surgery, the quantity and morphology of corneal endothelium were counted and observed under corneal endothelial microscope. During 3-month postoperative follow-up, the endothelial cell loss rate, morphological changes and visual acuity were compared among four groups. Corneal endothelial cell loss rate in the direct delivery of hard nucleus group significantly differed from those in the other three groups before and 3 months after operation (P < 0.01), whereas no statistical significance was found among the direct delivery of soft nucleus, semi-delivery of hard nucleus and semi-delivery soft nucleus groups (all P > 0.05). Preoperative and postoperative 2-d visual acuity did not differ between the semi-delivery of hard nucleus and direct delivery of soft nucleus groups (P = 0.49), significantly differed from those in the semi-delivery of soft nucleus (P = 0.03) and direct delivery of hard nucleus groups (P = 0.14). Visual acuity at postoperative four months did not differ among four groups (P = 0.067). During non-phacoemulsification cataract surgery, direct delivery of hard nucleus caused severe injury to corneal endothelium and semi-delivery of soft nucleus yielded mild corneal endothelial injury. Slight corneal endothelial injury exerted no apparent effect upon visual acuity and corneal endothelial morphology at three months after surgery.

  3. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running.

    PubMed

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-07-01

    In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Descriptive laboratory study. In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries.

  4. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running

    PubMed Central

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-01-01

    Background: In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. Purpose: To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Study Design: Descriptive laboratory study. Methods: In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). Results: For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. Conclusion: FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Clinical Relevance: Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries. PMID:28812039

  5. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform.

    PubMed

    Morales, Jesús; Plaza-Leiva, Victoria; Mandow, Anthony; Gomez-Ruiz, Jose Antonio; Serón, Javier; García-Cerezo, Alfonso

    2018-01-30

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley's K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL.

  6. Analysis of 3D Scan Measurement Distribution with Application to a Multi-Beam Lidar on a Rotating Platform

    PubMed Central

    Plaza-Leiva, Victoria; Serón, Javier

    2018-01-01

    Multi-beam lidar (MBL) rangefinders are becoming increasingly compact, light, and accessible 3D sensors, but they offer limited vertical resolution and field of view. The addition of a degree-of-freedom to build a rotating multi-beam lidar (RMBL) has the potential to become a common solution for affordable rapid full-3D high resolution scans. However, the overlapping of multiple-beams caused by rotation yields scanning patterns that are more complex than in rotating single beam lidar (RSBL). In this paper, we propose a simulation-based methodology to analyze 3D scanning patterns which is applied to investigate the scan measurement distribution produced by the RMBL configuration. With this purpose, novel contributions include: (i) the adaption of a recent spherical reformulation of Ripley’s K function to assess 3D sensor data distribution on a hollow sphere simulation; (ii) a comparison, both qualitative and quantitative, between scan patterns produced by an ideal RMBL based on a Velodyne VLP-16 (Puck) and those of other 3D scan alternatives (i.e., rotating 2D lidar and MBL); and (iii) a new RMBL implementation consisting of a portable tilting platform for VLP-16 scanners, which is presented as a case study for measurement distribution analysis as well as for the discussion of actual scans from representative environments. Results indicate that despite the particular sampling patterns given by a RMBL, its homogeneity even improves that of an equivalent RSBL. PMID:29385705

  7. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.

    PubMed

    Aronov, Dmitriy; Tank, David W

    2014-10-22

    Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.

  8. Broadband Integrated Lens for Illuminating Reflector Antenna With Constant Aperture Efficiency

    NASA Astrophysics Data System (ADS)

    Fernandes, Carlos A.; Lima, Eduardo B.; Costa, Jorge R.

    2010-12-01

    A new integrated shaped lens antenna configuration is described with frequency stable radiation pattern and phase center position across a broad 1:3 frequency band, which can be used for focal plane reflector feeding in quasi-optical radio telescope systems. The lens is compatible with the integration of ultrawideband uniplanar printed feeds at its base and equally broadband mixing devices, like the Hot Electron Bolometer (HEB), although these are not used in the present work. Measurements on a scaled mm-wave lab prototype have confirmed stable performance versus frequency, with only dB directivity variation, and better than 94% Gaussicity, thanks to the possibility to impose a predefined output radiation pattern template. Simulations were performed to test the illumination of an off-set parabolic reflector by the lens radiation pattern, which confirmed reasonably constant aperture efficiency in the order of 78% across the 100% bandwidth.

  9. Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies.

    PubMed

    Homsy, Foudda R; Özcan, Mutlu; Khoury, Marwan; Majzoub, Zeina A K

    2018-05-01

    The subtractive and additive computer-aided design and computer-aided manufacturing (CAD-CAM) of lithium disilicate partial coverage restorations is poorly documented. The purpose of this in vitro study was to compare the marginal and internal fit accuracy of lithium disilicate glass-ceramic inlays fabricated with conventional, milled, and 3-dimensional (3D) printed wax patterns. A dentoform mandibular first molar was prepared for a mesio-occlusal ceramic inlay. Five groups of 15 inlays were obtained through conventional impression and manual wax pattern (group CICW); conventional impression, laboratory scanning of the stone die, CAD-CAM milled wax blanks (group CIDW) or 3D printed wax patterns (group CI3DW); and scanning of the master preparation with intraoral scanner and CAD-CAM milled (group DSDW) or 3D printed wax patterns (group DS3DW). The same design was used to produce the wax patterns in the last 4 groups. The replica technique was used to measure marginal and internal adaptation by using stereomicroscopy. Mixed-model ANOVA was used to assess differences according to the groups and discrepancy location (α=.05). Group DSDW showed the smallest marginal discrepancy (24.3 μm) compared with those of groups CICW (45.1 μm), CIDW (33.7 μm), CI3DW (39.8 μm), and DS3DW (39.7 μm) (P<.001). No statistically significant differences were detected among groups CICW, CIDW, CI3DW, and DS3DW relative to the marginal discrepancy. The internal discrepancy was significantly larger than the marginal discrepancy within all groups (P<.001). Lithium disilicate glass-ceramic inlays produced from digital scans and subtractive milling of wax patterns resulted in better marginal and internal fit accuracy than either conventional impression/fabrication or additive 3D manufacturing. Three-dimensional printed wax patterns yielded fit values similar to those of the conventionally waxed inlays. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies.

    PubMed

    Oakes, Jessica M; Marsden, Alison L; Grandmont, Céline; Darquenne, Chantal; Vignon-Clementel, Irene E

    2015-04-13

    In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact

    PubMed Central

    Gopal, Venkatesh; Solomon, Joseph H.; Hartmann, Mitra J. Z.

    2011-01-01

    In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker) system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the three-dimensional morphology of the vibrissal array has not been characterized. Quantifying array morphology is important because it directly constrains the mechanosensory inputs that will be generated during behavior. These inputs in turn shape all subsequent neural processing in the vibrissal-trigeminal system, from the trigeminal ganglion to primary somatosensory (“barrel”) cortex. Here we develop a set of equations for the morphology of the vibrissal array that accurately describes the location of every point on every whisker to within ±5% of the whisker length. Given only a whisker's identity (row and column location within the array), the equations establish the whisker's two-dimensional (2D) shape as well as three-dimensional (3D) position and orientation. The equations were developed via parameterization of 2D and 3D scans of six rat vibrissal arrays, and the parameters were specifically chosen to be consistent with those commonly measured in behavioral studies. The final morphological model was used to simulate the contact patterns that would be generated as a rat uses its whiskers to tactually explore objects with varying curvatures. The simulations demonstrate that altering the morphology of the array changes the relationship between the sensory signals acquired and the curvature of the object. The morphology of the vibrissal array thus directly constrains the nature of the neural computations that can be associated with extraction of a particular object feature. These results illustrate the key role that the physical embodiment of the sensor array plays in the sensing process. PMID:21490724

  12. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian

    2018-03-01

    Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.

  13. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Chao; Tao, Tianyang; Feng, Shijie

    We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less

  14. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    DOE PAGES

    Zuo, Chao; Tao, Tianyang; Feng, Shijie; ...

    2017-11-06

    We report that fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time,more » we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Lastly, based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.« less

  15. Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes

    NASA Astrophysics Data System (ADS)

    Huang, Shaoming

    2003-06-01

    An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.

  16. Comparative Evaluation of Marginal and Internal Gap of Co-Cr Copings Fabricated from Conventional Wax Pattern, 3D Printed Resin Pattern and DMLS Tech: An In Vitro Study.

    PubMed

    Bhaskaran, Eswaran; Azhagarasan, N S; Miglani, Saket; Ilango, T; Krishna, G Phani; Gajapathi, B

    2013-09-01

    Accuracy of the fit of the restoration has always remained as one of the primary factors in determining success of the restoration. A well fitting restoration needs to be accurate both along its margins and internal surface. This study was conducted to comparatively evaluate the marginal gap and internal gap of cobalt-chromium (Co-Cr) copings fabricated by conventional casting procedures and with direct metal laser sintering (DMLS) technique. Among the total of 30 test samples 10 cast copings were made from inlay casting wax and 10 from 3D printed resin pattern. 10 copings were obtained from DMLS technique. All the 30 test samples were then cemented sequentially on stainless steel model using pressure indicating paste and evaluated for vertical marginal gap in 8 predetermined reference areas. All copings were then removed and partially sectioned and cemented sequentially on same master model for evaluation of internal gap at 4 predetermined reference areas. Both marginal gap and internal gap were measured in microns using video measuring system (VMS2010F). The results obtained for both marginal and internal gap were statistically analyzed and the values fall within the clinically acceptable range. The DMLS technique had an edge over the other two techniques used, as it exhibited minimal gap in the marginal region which is an area of chief concern.

  17. Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines

    NASA Astrophysics Data System (ADS)

    Mu, Quanyi; Dunn, Conner K.; Wang, Lei; Dunn, Martin L.; Qi, H. Jerry; Wang, Tiejun

    2017-04-01

    Recent developments in soft materials and 3D printing are promoting the rapid development of novel technologies and concepts, such as 4D printing and soft machines, that in turn require new methods for fabricating conductive materials. Despite the ubiquity of silver nanoparticles (NPs) in the conducting electrodes of printed electronic devices, their potential use in stretchable conductors has not been fully explored in 4D printing and soft machines. This paper studies the effect of thermal cure conditions on conductivity and electro-mechanical behaviors of silver ink by the direct ink write (DIW) printing approach. We found that the electro-mechanical properties of silver wires can be tailored by controlling cure time and cure temperature to achieve conductivity as well as stretchability. For the silver NP ink we used in the experiments, silver wires cured at 80 °C for 10-30 min have conductivity >1% bulk silver, Young’s modulus <100 MPa, yield strain ˜9%, and can retain conductivity up to 300% strain. In addition, under stress controlled cyclic loading/unloading conditions, the resistance of these wires is only about 1.3 times the initial value after the 100th repeat cycle (7.6% maximum strain in the first cycle). Silver wires cured at 120 °C for 10-20 min are more sensitive to strain and have a yield strain of around 6%. These properties indicate that the silver ink can be used to fabricate stretchable electrodes and flex sensors. Using the DIW fabrication method, we printed silver ink patterns on the surface of 3D printed polymer parts, with the future goal of constructing fully 3D printed arbitrarily formed soft and stretchable devices and of applying them to 4D printing. We demonstrated a fully printed functional soft-matter sensor and a circuit element that can be stretched by as much as 45%.

  18. Comprehensive study on compositional modification of Tb3+ doped zinc phosphate glass

    NASA Astrophysics Data System (ADS)

    Yaacob, S. N. S.; Sahar, M. R.; Sazali, E. S.; Mahraz, Zahra Ashur; Sulhadi, K.

    2018-07-01

    Series of glass composition (60-x) P2O5 -40 ZnO -(x) Tb2O3 where x = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol % are prepared by conventional melt quenching technique. X-Ray Diffraction (XRD), FTIR, UV-Vis-NIR and the photoluminescence (PL) spectroscopy are used to characterize the physical, structural and optical behavior of the glass sample. The XRD pattern confirms the amorphous nature and DTA verified the thermal stability of all the glass samples. Glass with 1.5 mol % of Tb2O3 possesses the highest thermal stability. Glass density is found to increase proportionally with increasing amount of Tb3+ while the molar volume behaves reversely. Six main IR absorption bands centered at about 540, 748, 891, 1085 and 1294 cm- 1 are evidenced. The UV-Vis NIR absorption spectra reveals the absorption center band at about 540, 376, 488 and 1920 nm corresponding to the absorption from 7F6 ground state to various excited state of Tb3+ ion. The optical band gaps for direct and indirect transition are in the range 4.53-5.07 eV and 4.30 eV-4.56 eV respectively. The Urbach energy decreases with the increasing concentration of Tb2O3. The PL emission spectra reveals several prominent peaks at 413, 435, 457, 488, 540, 585 and 620 nm due to electronic transition from 5D3→7F5, 5D3→7F4, 5D3→7F3, 5D4→7F6, 5D4→7F5, 5D4→7F3 and 5D4→7F5 respectively.

  19. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer

    PubMed Central

    de Visser, Pieter H. B.; Buck-Sorlin, Gerhard H.; van der Heijden, Gerie W. A. M.

    2014-01-01

    Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency (LUE). A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or high pressure sodium lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20°) increased light absorption and LUE relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception. The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic potential. PMID:24600461

  20. A defocus-information-free autostereoscopic three-dimensional (3D) digital reconstruction method using direct extraction of disparity information (DEDI)

    NASA Astrophysics Data System (ADS)

    Li, Da; Cheung, Chifai; Zhao, Xing; Ren, Mingjun; Zhang, Juan; Zhou, Liqiu

    2016-10-01

    Autostereoscopy based three-dimensional (3D) digital reconstruction has been widely applied in the field of medical science, entertainment, design, industrial manufacture, precision measurement and many other areas. The 3D digital model of the target can be reconstructed based on the series of two-dimensional (2D) information acquired by the autostereoscopic system, which consists multiple lens and can provide information of the target from multiple angles. This paper presents a generalized and precise autostereoscopic three-dimensional (3D) digital reconstruction method based on Direct Extraction of Disparity Information (DEDI) which can be used to any transform autostereoscopic systems and provides accurate 3D reconstruction results through error elimination process based on statistical analysis. The feasibility of DEDI method has been successfully verified through a series of optical 3D digital reconstruction experiments on different autostereoscopic systems which is highly efficient to perform the direct full 3D digital model construction based on tomography-like operation upon every depth plane with the exclusion of the defocused information. With the absolute focused information processed by DEDI method, the 3D digital model of the target can be directly and precisely formed along the axial direction with the depth information.

  1. A Unit-Cell Model for Predicting the Elastic Constants of 3D Four Directional Cylindrical Braided Composite Shafts

    NASA Astrophysics Data System (ADS)

    Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo

    2018-06-01

    In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.

  2. Integrated Optical Mach-Zehnder Interferometer Based on Organic-Inorganic Hybrids for Photonics-on-a-Chip Biosensing Applications.

    PubMed

    Bastos, Ana R; Vicente, Carlos M S; Oliveira-Silva, Rui; Silva, Nuno J O; Tacão, Marta; Costa, João P da; Lima, Mário; André, Paulo S; Ferreira, Rute A S

    2018-03-12

    The development of portable low-cost integrated optics-based biosensors for photonics-on-a-chip devices for real-time diagnosis are of great interest, offering significant advantages over current analytical methods. We report the fabrication and characterization of an optical sensor based on a Mach-Zehnder interferometer to monitor the growing concentration of bacteria in a liquid medium. The device pattern was imprinted on transparent self-patternable organic-inorganic di-ureasil hybrid films by direct UV-laser, reducing the complexity and cost production compared with lithographic techniques or three-dimensional (3D) patterning using femtosecond lasers. The sensor performance was evaluated using, as an illustrative example, E. coli cell growth in an aqueous medium. The measured sensitivity (2 × 10 -4 RIU) and limit of detection (LOD = 2 × 10 -4 ) are among the best values known for low-refractive index contrast sensors. Furthermore, the di-ureasil hybrid used to produce this biosensor has additional advantages, such as mechanical flexibility, thermal stability, and low insertion losses due to fiber-device refractive index mismatch (~1.49). Therefore, the proposed sensor constitutes a direct, compact, fast, and cost-effective solution for monitoring the concentration of lived-cells.

  3. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.

    PubMed

    Silvatti, Amanda P; Cerveri, Pietro; Telles, Thiago; Dias, Fábio A S; Baroni, Guido; Barros, Ricardo M L

    2013-01-01

    In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm - 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.

  4. A compositional segmentation of the human mitochondrial genome is related to heterogeneities in the guanine mutation rate

    PubMed Central

    Samuels, David C.; Boys, Richard J.; Henderson, Daniel A.; Chinnery, Patrick F.

    2003-01-01

    We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence. PMID:14530452

  5. The effect of wing flexibility on sound generation of flapping wings.

    PubMed

    Geng, Biao; Xue, Qian; Zheng, Xudong; Liu, Geng; Ren, Yan; Dong, Haibo

    2017-12-13

    In this study, the unsteady flow and acoustic characteristics of a three-dimensional (3D) flapping wing model of a Tibicen linnei cicada in forward-flight are numerically investigated. A single cicada wing is modelled as a membrane with a prescribed motion reconstructed from high-speed videos of a live insect. The numerical solution takes a hydrodynamic/acoustic splitting approach: the flow field is solved with an incompressible Navier-Stokes flow solver based on an immersed boundary method, and the acoustic field is solved with linearized perturbed compressible equations. The 3D simulation allows for the examination of both the directivity and frequency compositions of the flapping wing sound in a full space. Along with the flexible wing model, a rigid wing model that is extracted from real motion is also simulated to investigate the effects of wing flexibility. The simulation results show that the flapping sound is directional; the dominant frequency varies around the wing. The first and second frequency harmonics show different radiation patterns in the rigid and flexible wing cases, which are demonstrated to be highly associated with wing kinematics and loadings. Furthermore, the rotation and deformation in the flexible wing is found to help lower the sound strength in all directions.

  6. Lithography alternatives meet design style reality: How do they "line" up?

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2016-03-01

    Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to set the channel length of select and memory transistors.

  7. Plasma-Assisted Dry Etching of Ferroelectric Capacitor Modules and Application to a 32M Ferroelectric Random Access Memory Devices with Submicron Feature Sizes

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Woo; Joo, Suk-Ho; Cho, Sung Lae; Son, Yoon-Ho; Lee, Kyu-Mann; Nam, Sang-Don; Park, Kun-Sang; Lee, Yong-Tak; Seo, Jung-Suk; Kim, Young-Dae; An, Hyeong-Geun; Kim, Hyoung-Joon; Jung, Yong-Ju; Heo, Jang-Eun; Lee, Moon-Sook; Park, Soon-Oh; Chung, U-In; Moon, Joo-Tae

    2002-11-01

    In the manufacturing of a 32M ferroelectric random access memory (FRAM) device on the basis of 0.25 design rule (D/R), one of the most difficult processes is to pattern a submicron capacitor module while retaining good ferroelectric properties. In this paper, we report the ferroelectric property of patterned submicron capacitor modules with a stack height of 380 nm, where the 100 nm-thick Pb(Zr, Ti)O3 (PZT) films were prepared by the sol-gel method. After patterning, overall sidewall slope was approximately 70° and cell-to-cell node separation was made to be 80 nm to prevent possible twin-bit failure in the device. Finally, several heat treatment conditions were investigated to retain the ferroelectric property of the patterned capacitor. It was found that rapid thermal processing (RTP) treatment yields better properties than conventional furnace annealing. This result is directly related to the near-surface chemistry of the PZT films, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The resultant switching polarization value of the submicron capacitor was approximately 30 μC/cm2 measured at 3 V.

  8. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.

    PubMed

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-25

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.

  9. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging

    PubMed Central

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-01-01

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176

  10. Self-organization of neural patterns and structures in 3D culture of stem cells

    NASA Astrophysics Data System (ADS)

    Sasai, Yoshiki

    2013-05-01

    Over the last several years, much progress has been made for in vitro culture of mouse and human ES cells. Our laboratory focuses on the molecular and cellular mechanisms of neural differentiation from pluripotent cells. Pluripotent cells first become committed to the ectodermal fate and subsequently differentiate into uncommitted neuroectodermal cells. Both previous mammalian and amphibian studies on pluripotent cells have indicated that the neural fate is a sort of the basal direction of the differentiation of these cells while mesoendodermal differentiation requires extrinsic inductive signals. ES cells differentiate into neuroectodermal cells with a rostral-most character (telencephalon and hypothalamus) when they are cultured in the absence of strong patterning signals. In this talk, I first discuss this issue by referring to our recent data on the mechanism of spontaneous neural differentiation in serum-free culture of mouse ES cells. Then, I will talk about self-organization phenomena observed in 3D culture of ES cells, which lead to tissue-autonomous formation of regional structures such as layered cortical tissues. I also discuss our new attempt to monitor these in vitro morphogenetic processes by live imaging, in particular, self-organizing morphogenesis of the optic cup in three-dimensional cultures.

  11. Spared Ability to Perceive Direction of Locomotor Heading and Scene-Relative Object Movement Despite Inability to Perceive Relative Motion

    PubMed Central

    Vaina, Lucia M.; Buonanno, Ferdinando; Rushton, Simon K.

    2014-01-01

    Background All contemporary models of perception of locomotor heading from optic flow (the characteristic patterns of retinal motion that result from self-movement) begin with relative motion. Therefore it would be expected that an impairment on perception of relative motion should impact on the ability to judge heading and other 3D motion tasks. Material/Methods We report two patients with occipital lobe lesions whom we tested on a battery of motion tasks. Patients were impaired on all tests that involved relative motion in plane (motion discontinuity, form from differences in motion direction or speed). Despite this they retained the ability to judge their direction of heading relative to a target. A potential confound is that observers can derive information about heading from scale changes bypassing the need to use optic flow. Therefore we ran further experiments in which we isolated optic flow and scale change. Results Patients’ performance was in normal ranges on both tests. The finding that ability to perceive heading can be retained despite an impairment on ability to judge relative motion questions the assumption that heading perception proceeds from initial processing of relative motion. Furthermore, on a collision detection task, SS and SR’s performance was significantly better for simulated forward movement of the observer in the 3D scene, than for the static observer. This suggests that in spite of severe deficits on relative motion in the frontoparlel (xy) plane, information from self-motion helped identification objects moving along an intercept 3D relative motion trajectory. Conclusions This result suggests a potential use of a flow parsing strategy to detect in a 3D world the trajectory of moving objects when the observer is moving forward. These results have implications for developing rehabilitation strategies for deficits in visually guided navigation. PMID:25183375

  12. Escherichia coli and enterococci at beaches in the Grand Traverse Bay, Lake Michigan: Sources, characteristics, and environmental pathways

    USGS Publications Warehouse

    Haack, S.K.; Fogarty, L.R.; Wright, C.

    2003-01-01

    This study quantified Escherichia coli(EC) and enterococci (ENT) in beach waters and dominant source materials, correlated these with ambient conditions, and determined selected EC genotypes and ENT phenotypes. Bathing-water ENT criteria were exceeded more frequently than EC criteria, providing conflicting interpretations of water quality. Dominant sources of EC and ENT were bird feces (108/d/bird), storm drains (107/d), and river water (1011/d); beach sands, shallow groundwater and detritus were additional sources. Beach-water EC genotypes and ENT phenotypes formed clusters with those from all source types, reflecting diffuse inputs. Some ENT isolates had phenotypes similar to those of human pathogens and/or exhibited high-level resistance to human-use antibiotics. EC and ENT concentrations were influenced by collection time and wind direction. There was a 48-72-h lag between rainfall and elevated EC concentrations at three southern shoreline beaches, but no such lag at western and eastern shoreline beaches, reflecting the influence of beach orientation with respect to cyclic (3-5 d) summer weather patterns. In addition to local contamination sources and processes, conceptual or predictive models of Great Lakes beach water quality should consider regional weather patterns, lake hydrodynamics, and the influence of monitoring method variables (time of day, frequency).

  13. 3D-printed coded apertures for x-ray backscatter radiography

    NASA Astrophysics Data System (ADS)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.

  14. Identification of superficial defects in reconstructed 3D objects using phase-shifting fringe projection

    NASA Astrophysics Data System (ADS)

    Madrigal, Carlos A.; Restrepo, Alejandro; Branch, John W.

    2016-09-01

    3D reconstruction of small objects is used in applications of surface analysis, forensic analysis and tissue reconstruction in medicine. In this paper, we propose a strategy for the 3D reconstruction of small objects and the identification of some superficial defects. We applied a technique of projection of structured light patterns, specifically sinusoidal fringes and an algorithm of phase unwrapping. A CMOS camera was used to capture images and a DLP digital light projector for synchronous projection of the sinusoidal pattern onto the objects. We implemented a technique based on a 2D flat pattern as calibration process, so the intrinsic and extrinsic parameters of the camera and the DLP were defined. Experimental tests were performed in samples of artificial teeth, coal particles, welding defects and surfaces tested with Vickers indentation. Areas less than 5cm were studied. The objects were reconstructed in 3D with densities of about one million points per sample. In addition, the steps of 3D description, identification of primitive, training and classification were implemented to recognize defects, such as: holes, cracks, roughness textures and bumps. We found that pattern recognition strategies are useful, when quality supervision of surfaces has enough quantities of points to evaluate the defective region, because the identification of defects in small objects is a demanding activity of the visual inspection.

  15. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow.

    PubMed

    Markl, Michael; Harloff, Andreas; Bley, Thorsten A; Zaitsev, Maxim; Jung, Bernd; Weigang, Ernst; Langer, Mathias; Hennig, Jürgen; Frydrychowicz, Alex

    2007-04-01

    To evaluate an improved image acquisition and data-processing strategy for assessing aortic vascular geometry and 3D blood flow at 3T. In a study with five normal volunteers and seven patients with known aortic pathology, prospectively ECG-gated cine three-dimensional (3D) MR velocity mapping with improved navigator gating, real-time adaptive k-space ordering and dynamic adjustment of the navigator acceptance criteria was performed. In addition to morphological information and three-directional blood flow velocities, phase-contrast (PC)-MRA images were derived from the same data set, which permitted 3D isosurface rendering of vascular boundaries in combination with visualization of blood-flow patterns. Analysis of navigator performance and image quality revealed improved scan efficiencies of 63.6%+/-10.5% and temporal resolution (<50 msec) compared to previous implementations. Semiquantitative evaluation of image quality by three independent observers demonstrated excellent general image appearance with moderate blurring and minor ghosting artifacts. Results from volunteer and patient examinations illustrate the potential of the improved image acquisition and data-processing strategy for identifying normal and pathological blood-flow characteristics. Navigator-gated time-resolved 3D MR velocity mapping at 3T in combination with advanced data processing is a powerful tool for performing detailed assessments of global and local blood-flow characteristics in the aorta to describe or exclude vascular alterations. Copyright (c) 2007 Wiley-Liss, Inc.

  16. Transition to chaos of natural convection between two infinite differentially heated vertical plates

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.

    2013-08-01

    Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.

  17. Computerized lateral-shear interferometer

    NASA Astrophysics Data System (ADS)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  18. Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts

    NASA Astrophysics Data System (ADS)

    Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying

    2017-10-01

    The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.

  19. Offline multiple adaptive planning strategy for concurrent irradiation of the prostate and pelvic lymph nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Peng; Xia, Ping, E-mail: xiap@ccf.org; Pouliot, Jean

    2014-02-15

    Purpose: Concurrent irradiation of the prostate and pelvic lymph nodes (PLNs) can be challenging due to the independent motion of the two target volumes. To address this challenge, the authors have proposed a strategy referred to as Multiple Adaptive Planning (MAP). To minimize the number of MAP plans, the authors’ previous work only considered the prostate motion in one major direction. After analyzing the pattern of the prostate motion, the authors investigated a practical number of intensity-modulated radiotherapy (IMRT) plans needed to accommodate the prostate motion in two major directions simultaneously. Methods: Six patients, who received concurrent irradiation of themore » prostate and PLNs, were selected for this study. Nine MAP-IMRT plans were created for each patient with nine prostate contours that represented the prostate at nine locations with respect to the PLNs, including the original prostate contour and eight contours shifted either 5 mm in a single anterior-posterior (A-P), or superior-inferior (S-I) direction, or 5 mm in both A-P and S-I directions simultaneously. From archived megavoltage cone beam CT (MV-CBCT) and a dual imaging registration, 17 MV-CBCTs from 33 available MV-CBCT from these patients showed large prostate displacements (>3 mm in any direction) with respect to the pelvic bones. For each of these 17 fractions, one of nine MAP-IMRT plans was retrospectively selected and applied to the MV-CBCT for dose calculation. For comparison, a simulated isocenter-shifting plan and a reoptimized plan were also created for each of these 17 fractions. The doses to 95% (D95) of the prostate and PLNs, and the doses to 5% (D5) of the rectum and bladder were calculated and analyzed. Results: For the prostate, D95 > 97% of the prescription dose was observed in 16, 16, and 17 of 17 fractions for the MAP, isocenter-shifted, and reoptimized plans, respectively. For PLNs, D95 > 97% of the prescription doses was observed in 10, 3, and 17 of 17 fractions for the three types of verification plans, respectively. The D5 (mean ± SD) of the rectum was 45.78 ± 5.75, 45.44 ± 4.64, and 44.64 ± 2.71 Gy, and the D5 (mean ± SD) of the bladder was 45.18 ± 2.70, 46.91 ± 3.04, and 45.67 ± 3.61 Gy for three types of verification plans, respectively. Conclusions: The MAP strategy with nine IMRT plans to accommodate the prostate motions in two major directions achieved good dose coverage to the prostate and PLNs. The MAP approach can be immediately used in clinical practice without requiring extra hardware and software.« less

  20. [Biomechanical study of internal midface distraction after different types of maxillary osteotomy in patients with cleft lip and palate].

    PubMed

    Hou, Min; Shi, Guang-Yu; Pu, Li-Chen; Song, Da-Li; Zhang, Xi-Zhong; Liu, Chun-Ming

    2009-09-01

    To investigate the biomechanical changes of internal midface distraction after different types of maxillary osteotomy in patients with cleft lip and palate (CLP). 3-D finite element (FEM) analysis was used. 3-D models of Le Fort I, II, III osteotomy and soft tissue were established. Based on the new pattern of internal midface distractor, the distraction of maxillary complex was simulated to advance 10 mm anteriorly. The mechanical change was studied. The maxillary complex in CLP were advanced after distraction. Constriction of alveolar crest and palate occurred in Le Fort I osteotomy, but not in Le Fort II and III osteotomy. The maxillary complex was moved anteriorly en bloc after Le Fort III osteotomy, but some degree of rotation of maxillary complex was observed during the distraction after Le Fort I and II osteotomy. In vertical direction, the maxillary complex had more counterclockwise rotation after Le Fort II osteotomy. 3-D FEM analysis can be used for the study of internal distraction. It can reflect the maxillary movement and provide the theory basis for preoperative design.

  1. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    ERIC Educational Resources Information Center

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  2. Mixing in 3D Sparse Multi-Scale Grid Generated Turbulence

    NASA Astrophysics Data System (ADS)

    Usama, Syed; Kopec, Jacek; Tellez, Jackson; Kwiatkowski, Kamil; Redondo, Jose; Malik, Nadeem

    2017-04-01

    Flat 2D fractal grids are known to alter turbulence characteristics downstream of the grid as compared to the regular grids with the same blockage ratio and the same mass inflow rates [1]. This has excited interest in the turbulence community for possible exploitation for enhanced mixing and related applications. Recently, a new 3D multi-scale grid design has been proposed [2] such that each generation of length scale of turbulence grid elements is held in its own frame, the overall effect is a 3D co-planar arrangement of grid elements. This produces a 'sparse' grid system whereby each generation of grid elements produces a turbulent wake pattern that interacts with the other wake patterns downstream. A critical motivation here is that the effective blockage ratio in the 3D Sparse Grid Turbulence (3DSGT) design is significantly lower than in the flat 2D counterpart - typically the blockage ratio could be reduced from say 20% in 2D down to 4% in the 3DSGT. If this idea can be realized in practice, it could potentially greatly enhance the efficiency of turbulent mixing and transfer processes clearly having many possible applications. Work has begun on the 3DSGT experimentally using Surface Flow Image Velocimetry (SFIV) [3] at the European facility in the Max Planck Institute for Dynamics and Self-Organization located in Gottingen, Germany and also at the Technical University of Catalonia (UPC) in Spain, and numerically using Direct Numerical Simulation (DNS) at King Fahd University of Petroleum & Minerals (KFUPM) in Saudi Arabia and in University of Warsaw in Poland. DNS is the most useful method to compare the experimental results with, and we are studying different types of codes such as Imcompact3d, and OpenFoam. Many variables will eventually be investigated for optimal mixing conditions. For example, the number of scale generations, the spacing between frames, the size ratio of grid elements, inflow conditions, etc. We will report upon the first set of findings from the 3DSGT by the time of the conference. {Acknowledgements}: This work has been supported partly by the EuHIT grant, 'Turbulence Generated by Sparse 3D Multi-Scale Grid (M3SG)', 2017. {References} [1] S. Laizet, J. C. Vassilicos. DNS of Fractal-Generated Turbulence. Flow Turbulence Combust 87:673705, (2011). [2] N. A. Malik. Sparse 3D Multi-Scale Grid Turbulence Generator. USPTO Application no. 14/710,531, Patent Pending, (2015). [3] J. Tellez, M. Gomez, B. Russo, J.M. Redondo. Surface Flow Image Velocimetry (SFIV) for hydraulics applications. 18th Int. Symposium on the Application of Laser Imaging Techniques in Fluid Mechanics, Lisbon, Portugal (2016).

  3. Nanopattern-guided growth of single-crystal silicon on amorphous substrates and high-performance sub-100 nm thin-film transistors for three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Gu, Jian

    This thesis explores how nanopatterns can be used to control the growth of single-crystal silicon on amorphous substrates at low temperature, with potential applications on flat panel liquid-crystal display and 3-dimensional (3D) integrated circuits. I first present excimer laser annealing of amorphous silicon (a-Si) nanostructures on thermally oxidized silicon wafer for controlled formation of single-crystal silicon islands. Preferential nucleation at pattern center is observed due to substrate enhanced edge heating. Single-grain silicon is obtained in a 50 nm x 100 nm rectangular pattern by super lateral growth (SLG). Narrow lines (such as 20-nm-wide) can serve as artificial heterogeneous nucleation sites during crystallization of large patterns, which could lead to the formation of single-crystal silicon islands in a controlled fashion. In addition to eximer laser annealing, NanoPAtterning and nickel-induced lateral C&barbelow;rystallization (NanoPAC) of a-Si lines is presented. Single-crystal silicon is achieved by NanoPAC. The line width of a-Si affects the grain structure of crystallized silicon lines significantly. Statistics show that single-crystal silicon is formed for all lines with width between 50 nm to 200 nm. Using in situ transmission electron microscopy (TEM), nickel-induced lateral crystallization (Ni-ILC) of a-Si inside a pattern is revealed; lithography-constrained single seeding (LISS) is proposed to explain the single-crystal formation. Intragrain line and two-dimensional defects are also studied. To test the electrical properties of NanoPAC silicon films, sub-100 nm thin-film transistors (TFTs) are fabricated using Patten-controlled crystallization of Ṯhin a-Si channel layer and H&barbelow;igh temperature (850°C) annealing, coined PaTH process. PaTH TFTs show excellent device performance over traditional solid phase crystallized (SPC) TFTs in terms of threshold voltage, threshold voltage roll-off, leakage current, subthreshold swing, on/off current ratio, device-to-device uniformity etc. Two-dimensional device simulations show that PaTH TFTs are comparable to silicon-on-insulator (SOI) devices, making it a promising candidate for the fabrication of future high performance, low-power 3D integrated circuits. Finally, an ultrafast nanolithography technique, laser-assisted direct imprint (LADI) is introduced. LADI shows the ability of patterning nanostructures directly in silicon in nanoseconds with sub-10 nm resolution. The process has potential applications in multiple disciplines, and could be extended to other materials and processes.

  4. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  5. In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy.

    PubMed

    Culver, Kayla S B; Liu, Tingting; Hryn, Alexander J; Fang, Ning; Odom, Teri W

    2018-05-11

    Diffraction-limited optical microscopy lacks the resolution to characterize directly nanoscale features of single nanoparticles. This paper describes how surprisingly rich structural features of small gold nanostars can be identified using differential interference contrast (DIC) microscopy. First, we established a library of structure-property relationships between nanoparticle shape and DIC optical image and then validated the correlation with electrodynamic simulations and electron microscopy. We found that DIC image patterns of single nanostars could be differentiated between 2D and 3D geometries. Also, DIC images could elucidate the symmetry properties and orientation of nanoparticles. Finally, we demonstrated how this wide-field optical technique can be used for in situ characterization of single nanoparticles rotating at a glass-water interface.

  6. Evaluation of Interdental Spaces of the Mandibular Posterior Area for Orthodontic Mini-Implants with Cone-Beam Computed Tomography

    PubMed Central

    Moslemzadeh, Seyed Hossein; Sohrabi, Aydin; Kananizadeh, Yusef; Nourizadeh, Amin

    2017-01-01

    Introduction The use of mini-implants has increased in recent years because of their role in absolute anchorage, but the placement sites may affect the success or failure of the procedure, so it is very important to determine the appropriate and safe location for orthodontic mini-implants. On the other hand, the Cone Beam Computed Tomography (CBCT), which offers clear 3-Dimentional (3D) images, has been widely used in orthodontics and implant dentistry for surgical guidance of mini-implant placement. Aim The aim of this retrospective study was to evaluate inter-radicular spaces between mandibular canines to second molars using cone beam 3D images. Materials and Methods In this retrospective cross-sectional descriptive study, maxillofacial CBCT scan data were obtained from 40 adults. The 3D images were evaluated in five axial sections at 2, 4, 6, 8 and 10 mm from the cementoenamel Junction (CEJ). To determine inter-radicular spaces, tangent lines were drawn buccolingually to the roots in axial section and the minimum distance between these two lines was measured. The data was analysed using Friedman test with SPSS(ver.13). Results Interradicular spaces of canine to second molar increased from cervical to apical direction. The maximum distance was recorded at 4 mm from the CEJ between first and second molars. Conclusion According to our findings there is a distinct pattern of inter-radicular space changes in mandible. Attention to this pattern during placement of mini-implants can ensure the safety of the procedure. PMID:28571251

  7. Magnetophoretic Conductors and Diodes in a 3D Magnetic Field.

    PubMed

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Van Heest, Melissa; Baker, Cody; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2016-06-14

    We demonstrate magnetophoretic conductor tracks that can transport single magnetized beads and magnetically labeled single cells in a 3-dimensional time-varying magnetic field. The vertical field bias, in addition to the in-plane rotating field, has the advantage of reducing the attraction between particles, which inhibits the formation of particle clusters. However, the inclusion of a vertical field requires the re-design of magnetic track geometries which can transport magnetized objects across the substrate. Following insights from magnetic bubble technology, we found that successful magnetic conductor geometries defined in soft magnetic materials must be composed of alternating sections of positive and negative curvature. In addition to the previously studied magnetic tracks taken from the magnetic bubble literature, a drop-shape pattern was found to be even more adept at transporting small magnetic beads and single cells. Symmetric patterns are shown to achieve bi-directional conduction, whereas asymmetric patterns achieve unidirectional conduction. These designs represent the electrical circuit corollaries of the conductor and diode, respectively. Finally, we demonstrate biological applications in transporting single cells and in the size based separation of magnetic particles.

  8. Micropunching lithography for generating micro- and submicron-patterns on polymer substrates.

    PubMed

    Chakraborty, Anirban; Liu, Xinchuan; Luo, Cheng

    2012-07-02

    Conducting polymers have attracted great attention since the discovery of high conductivity in doped polyacetylene in 1977(1). They offer the advantages of low weight, easy tailoring of properties and a wide spectrum of applications(2,3). Due to sensitivity of conducting polymers to environmental conditions (e.g., air, oxygen, moisture, high temperature and chemical solutions), lithographic techniques present significant technical challenges when working with these materials(4). For example, current photolithographic methods, such as ultra-violet (UV), are unsuitable for patterning the conducting polymers due to the involvement of wet and/or dry etching processes in these methods. In addition, current micro/nanosystems mainly have a planar form(5,6). One layer of structures is built on the top surfaces of another layer of fabricated features. Multiple layers of these structures are stacked together to form numerous devices on a common substrate. The sidewall surfaces of the microstructures have not been used in constructing devices. On the other hand, sidewall patterns could be used, for example, to build 3-D circuits, modify fluidic channels and direct horizontal growth of nanowires and nanotubes. A macropunching method has been applied in the manufacturing industry to create macropatterns in a sheet metal for over a hundred years. Motivated by this approach, we have developed a micropunching lithography method (MPL) to overcome the obstacles of patterning conducting polymers and generating sidewall patterns. Like the macropunching method, the MPL also includes two operations (Fig. 1): (i) cutting; and (ii) drawing. The "cutting" operation was applied to pattern three conducting polymers(4), polypyrrole (PPy), Poly(3,4-ethylenedioxythiophen)-poly(4-styrenesulphonate) (PEDOT) and polyaniline (PANI). It was also employed to create Al microstructures(7). The fabricated microstructures of conducting polymers have been used as humidity(8), chemical(8), and glucose sensors(9). Combined microstructures of Al and conducting polymers have been employed to fabricate capacitors and various heterojunctions(9,10,11). The "cutting" operation was also applied to generate submicron-patterns, such as 100- and 500-nm-wide PPy lines as well as 100-nm-wide Au wires. The "drawing" operation was employed for two applications: (i) produce Au sidewall patterns on high density polyethylene (HDPE) channels which could be used for building 3D microsystems(12,13,14), and (ii) fabricate polydimethylsiloxane (PDMS) micropillars on HDPE substrates to increase the contact angle of the channel(15).

  9. Physical activity in 3-6 year old children measured by SenseWear Pro®: direct accelerometry in the course of the week and relation to weight status, media consumption, and socioeconomic factors.

    PubMed

    Vorwerg, Yvonne; Petroff, David; Kiess, Wieland; Blüher, Susann

    2013-01-01

    Data on objectively measured physical activity (PA) in preschoolers are controversial. Direct accelerometry was performed in children aged 3-6 years, and differences in PA patterns over the course of the week were evaluated. Data were analyzed with gender, BMI, lifestyle, and socioeconomic parameters as covariates. PA was measured in 119 children by the SensewearPro® accelerometer and analyzed in the 92 (40 girls) that wore it for at least 4 days including one day of the weekend. Median measuring time in this group was 7 consecutive days (median/mean daily measuring time: 23.5 h/d and 21.8 h/d, respectively), corresponding to 834,000 analyzed minutes. PA questionnaires were completed by 103 parents and 87 preschool teachers to collect anthropometric, lifestyle, and socioeconomic data. Median daily PA (MET>3) was 4.3 hours (mean: 4.4 hours). Boys spent an estimated 52 min/week more being very active (MET>6) than girls (95% CI [6, 96] min/week, p = 0.02). PA was lower during the weekend (3.7 h/d) compared to weekdays (4.5 h/d), p = 3 × 10(-6)), where a 95% CI for the difference is [0.5, 1.0] h/d. PA levels did not differ between overweight/obese children (median 4.7 h/d) and normal-weight peers (median 4.2 h/d). Daily media consumption increased with decreasing social class on weekdays (p = 0.05) and during the weekend (p = 0.01), but was not related to the amount of daily PA. A multivariate regression with BMI-SDS as independent variable and gender, age, amount of PA>6 MET, parental BMI, media time and socioeconomic status as explanatory variables revealed that only SES had a significant contribution. The negative impact of obesity-promoting factors in older children is rather low for preschoolers, but there is evidently a gradient in PA between weekdays and weekends already in this age group. Weight status of preschoolers is already considerably influenced by SES, but not physical activity levels.

  10. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    PubMed Central

    Yan, Hao; LaBean, Thomas H.; Feng, Liping; Reif, John H.

    2003-01-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping. PMID:12821776

  11. Optofluidic fabrication for 3D-shaped particles

    NASA Astrophysics Data System (ADS)

    Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.

    2015-04-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.

  12. Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    You, Jeong Ho; Lee, Jun Hee

    2013-10-01

    Transport dimensionality of Ti d electrons in (LaTiO3)1/(SrTiO3)N superlattices has been investigated using density functional theory with local spin-density approximation + U method. Different spatial distribution patterns have been found between Ti t2g orbital electrons. The dxy orbital electrons are highly localized near interfaces due to the potentials by positively charged LaO layers, while the degenerate dyz and dxz orbital electrons are more distributed inside SrTiO3 insulators. For N ≥ 3 unit cells (u.c.), the Ti dxy densities of state exhibit the staircaselike increments, which appear at the same energy levels as the dxy flat bands along the Γ-Z direction in band structures. The kz-independent discrete energy levels indicate that the electrons in dxy flat bands are two-dimensional electron gases (2DEGs) which can transport along interfaces, but they cannot transport perpendicularly to interfaces due to the confinements in the potential wells by LaO layers. Unlike the dxy orbital electrons, the dyz and dxz orbital electrons have three-dimensional (3D) transport characteristics, regardless of SrTiO3 thicknesses. The 2DEG formation by dxy orbital electrons, when N ≥ 3 u.c., indicates the existence of critical SrTiO3 thickness where the electron transport dimensionality starts to change from 3D to 2D in (LaTiO3)1/(SrTiO3)N superlattices.

  13. Laser direct writing and inkjet printing for a sub-2 μm channel length MoS2 transistor with high-resolution electrodes

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Jun; Chung, Seungjun; Jang, Jaewon; Grigoropoulos, Costas P.

    2016-10-01

    Patterns formed by the laser direct writing (LDW) lithography process are used either as channels or barriers for MoS2 transistors fabricated via inkjet printing. Silver (Ag) nanoparticle ink is printed over patterns formed on top of the MoS2 flakes in order to construct high-resolution source/drain (S/D) electrodes. When positive photoresist is used, the produced grooves are filled with inkjetted Ag ink by capillary forces. On the other hand, in the case of negative photoresist, convex barrier-like patterns are written on the MoS2 flakes and patterns, dividing the printed Ag ink into the S/D electrodes by self-alignment. LDW lithography combined with inkjet printing is applied to MoS2 thin-film transistors that exhibit moderate electrical performance such as mobility and subthreshold swing. However, especially in the linear operation regime, their features are limited by the contact effect. The Y-function method can exclude the contact effect and allow proper evaluation of the maximum available mobility and contact resistance. The presented fabrication methods may facilitate the development of cost-effective fabrication processes.

  14. Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing.

    PubMed

    Chan, Ho-Fung; Stewart, Neil J; Parra-Robles, Juan; Collier, Guilhem J; Wild, Jim M

    2017-05-01

    To demonstrate three-dimensional (3D) multiple b-value diffusion-weighted (DW) MRI of hyperpolarized 3 He gas for whole lung morphometry with compressed sensing (CS). A fully-sampled, two b-value, 3D hyperpolarized 3 He DW-MRI dataset was acquired from the lungs of a healthy volunteer and retrospectively undersampled in the k y and k z phase-encoding directions for CS simulations. Optimal k-space undersampling patterns were determined by minimizing the mean absolute error between reconstructed and fully-sampled 3 He apparent diffusion coefficient (ADC) maps. Prospective three-fold, undersampled, 3D multiple b-value 3 He DW-MRI datasets were acquired from five healthy volunteers and one chronic obstructive pulmonary disease (COPD) patient, and the mean values of maps of ADC and mean alveolar dimension (Lm D ) were validated against two-dimensional (2D) and 3D fully-sampled 3 He DW-MRI experiments. Reconstructed undersampled datasets showed no visual artifacts and good preservation of the main image features and quantitative information. A good agreement between fully-sampled and prospective undersampled datasets was found, with a mean difference of +3.4% and +5.1% observed in mean global ADC and Lm D values, respectively. These differences were within the standard deviation range and consistent with values reported from healthy and COPD lungs. Accelerated CS acquisition has facilitated 3D multiple b-value 3 He DW-MRI scans in a single breath-hold, enabling whole lung morphometry mapping. Magn Reson Med 77:1916-1925, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  15. Metal oxide multilayer hard mask system for 3D nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko

    2018-02-01

    We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

  16. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  17. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  18. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.

    2018-05-01

    A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.

  19. Orthogonal switching of AMS axes during type-2 fold interference: Insights from integrated X-ray computed tomography, AMS and 3D petrography

    NASA Astrophysics Data System (ADS)

    Sayab, Mohammad; Miettinen, Arttu; Aerden, Domingo; Karell, Fredrik

    2017-10-01

    We applied X-ray computed microtomography (μ-CT) in combination with anisotropy of magnetic susceptibility (AMS) analysis to study metamorphic rock fabrics in an oriented drill core sample of pyrite-pyrrhotite-quartz-mica schist. The sample is extracted from the Paleoproterozoic Martimo metasedimentary belt of northern Finland. The μ-CT resolves the spatial distribution, shape and orientation of 25,920 pyrrhotite and 153 pyrite grains localized in mm-thick metapelitic laminae. Together with microstructural analysis, the μ-CT allows us to interpret the prolate symmetry of the AMS ellipsoid and its relationship to the deformation history. AMS of the sample is controlled by pyrrhotite porphyroblasts that grew syntectonically during D1 in subhorizontal microlithons. The short and intermediate axes (K3 and K2) of the AMS ellipsoid interchanged positions during a subsequent deformation (D2) that intensely crenulated S1 and deformed pyrrhotite, while the long axes (K1) maintained a constant position parallel to the maximum stretching direction. However, it is likely that all the three AMS axes switched, similar to the three principal axes of the shape ellipsoid of pyrite porphyroblasts from D1 to D2. The superposition of D1 and D2 produced a type-2 fold interference pattern.

  20. Transverse Tensile Properties of 3 Dimension-4 Directional Braided Cf/SiC Composite Based on Double-Scale Model

    NASA Astrophysics Data System (ADS)

    Niu, Xuming; Sun, Zhigang; Song, Yingdong

    2017-11-01

    In this thesis, a double-scale model for 3 Dimension-4 directional(3D-4d) braided C/SiC composites(CMCs) has been proposed to investigate mechanical properties of it. The double-scale model involves micro-scale which takes fiber/matrix/porosity in fibers tows into consideration and the unit cell scale which considers the 3D-4d braiding structure. Basing on the Micro-optical photographs of composite, we can build a parameterized finite element model that reflects structure of 3D-4d braided composites. The mechanical properties of fiber tows in transverse direction are studied by combining the crack band theory for matrix cracking and cohesive zone model for interface debonding. Transverse tensile process of 3D-4d CMCs can be simulated by introducing mechanical properties of fiber tows into finite element of 3D-4d braided CMCs. Quasi-static tensile tests of 3D-4d braided CMCs have been performed with PWS-100 test system. The predicted tensile stress-strain curve by the double scale model finds good agreement with the experimental results.

  1. A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.

    PubMed

    Fedele, Marco; Faggiano, Elena; Dedè, Luca; Quarteroni, Alfio

    2017-10-01

    In this paper, we propose a full computational framework to simulate the hemodynamics in the aorta including the valve. Closed and open valve surfaces, as well as the lumen aorta, are reconstructed directly from medical images using new ad hoc algorithms, allowing a patient-specific simulation. The fluid dynamics problem that accounts from the movement of the valve is solved by a new 3D-0D fluid-structure interaction model in which the valve surface is implicitly represented through level set functions, yielding, in the Navier-Stokes equations, a resistive penalization term enforcing the blood to adhere to the valve leaflets. The dynamics of the valve between its closed and open position is modeled using a reduced geometric 0D model. At the discrete level, a finite element formulation is used and the SUPG stabilization is extended to include the resistive term in the Navier-Stokes equations. Then, after time discretization, the 3D fluid and 0D valve models are coupled through a staggered approach. This computational framework, applied to a patient-specific geometry and data, allows to simulate the movement of the valve, the sharp pressure jump occurring across the leaflets, and the blood flow pattern inside the aorta.

  2. Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.

    PubMed

    Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W

    2017-11-28

    Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.

  3. Ventrolateral Striatal Medium Spiny Neurons Positively Regulate Food-Incentive, Goal-Directed Behavior Independently of D1 and D2 Selectivity.

    PubMed

    Natsubori, Akiyo; Tsutsui-Kimura, Iku; Nishida, Hiroshi; Bouchekioua, Youcef; Sekiya, Hiroshi; Uchigashima, Motokazu; Watanabe, Masahiko; de Kerchove d'Exaerde, Alban; Mimura, Masaru; Takata, Norio; Tanaka, Kenji F

    2017-03-08

    The ventral striatum is involved in motivated behavior. Akin to the dorsal striatum, the ventral striatum contains two parallel pathways: the striatomesencephalic pathway consisting of dopamine receptor Type 1-expressing medium spiny neurons (D1-MSNs) and the striatopallidal pathway consisting of D2-MSNs. These two genetically identified pathways are thought to encode opposing functions in motivated behavior. It has also been reported that D1/D2 genetic selectivity is not attributed to the anatomical discrimination of two pathways. We wanted to determine whether D1- and D2-MSNs in the ventral striatum functioned in an opposing manner as previous observations claimed, and whether D1/D2 selectivity corresponded to a functional segregation in motivated behavior of mice. To address this question, we focused on the lateral portion of ventral striatum as a region implicated in food-incentive, goal-directed behavior, and recorded D1 or D2-MSN activity by using a gene-encoded ratiometric Ca 2+ indicator and by constructing a fiberphotometry system, and manipulated their activities via optogenetic inhibition during ongoing behaviors. We observed concurrent event-related compound Ca 2+ elevations in ventrolateral D1- and D2-MSNs, especially at trial start cue-related and first lever press-related times. D1 or D2 selective optogenetic inhibition just after the trial start cue resulted in a reduction of goal-directed behavior, indicating a shared coding of motivated behavior by both populations at this time. Only D1-selective inhibition just after the first lever press resulted in the reduction of behavior, indicating D1-MSN-specific coding at that specific time. Our data did not support opposing encoding by both populations in food-incentive, goal-directed behavior. SIGNIFICANCE STATEMENT An opposing role of dopamine receptor Type 1 or Type 2-expressing medium spiny neurons (D1-MSNs or D2-MSNs) on striatum-mediated behaviors has been widely accepted. However, this idea has been questioned by recent reports. In the present study, we measured concurrent Ca 2+ activity patterns of D1- and D2-MSNs in the ventrolateral striatum during food-incentive, goal-directed behavior in mice. According to Ca 2+ activity patterns, we conducted timing-specific optogenetic inhibition of each type of MSN. We demonstrated that both D1- and D2-MSNs in the ventrolateral striatum commonly and positively encoded action initiation, whereas only D1-MSNs positively encoded sustained motivated behavior. These findings led us to reconsider the prevailing notion of a functional segregation of MSN activity in the ventral striatum. Copyright © 2017 the authors 0270-6474/17/372724-11$15.00/0.

  4. PIV measurements in the near wakes of hollow cylinders with holes

    NASA Astrophysics Data System (ADS)

    Firat, Erhan; Ozkan, Gokturk M.; Akilli, Huseyin

    2017-05-01

    The wake flows behind fixed, hollow, rigid circular cylinders with two rows of holes connecting the front and rear stagnation lines were investigated using particle image velocimetry (PIV) for various combinations of three hole diameters, d = 0.1 D, 0.15 D, and 0.20 D, six hole-to-hole distances, l = 2 d, 3 d, 4 d, 5 d, 6 d, and 7 d, and ten angles of incidence ( α), from 0° to 45° in steps of 5°, at a Reynolds number of Re = 6,900. Time-averaged velocity distributions, instantaneous and time-averaged vorticity patterns, time-averaged streamline topology, and hot spots of turbulent kinetic energy occurred through the interaction of shear layers from the models were presented to show how the wake flow was modified by the presence of the self-issuing jets with various momentums emanating from the downstream holes. In general, as hole diameter which is directly related to jet momentum increased, the values of time-averaged wake characteristics (length of time-averaged recirculation region, vortex formation length, length of shear layers, and gap between the shear layers) increased. Irrespective to d and l tested, the values of the vortex formation length of the models are greater than that of the cylinder without hole (reference model). That is, vortex formation process was shifted downstream by aid of jets. It was found that time-averaged wake characteristics were very sensitive to α. As α increased, the variation of these characteristics can be modeled by exponential decay functions. The effect of l on the three-dimensional vortex shedding patterns in the near wake of the models was also discussed.

  5. Compact 2D OPC modeling of a metal oxide EUV resist for a 7nm node BEOL layer

    NASA Astrophysics Data System (ADS)

    Lyons, Adam; Rio, David; Lee, Sook; Wallow, Thomas; Delorme, Maxence; Fumar-Pici, Anita; Kocsis, Michael; de Schepper, Peter; Greer, Michael; Stowers, Jason K.; Gillijns, Werner; De Simone, Danilo; Bekaert, Joost

    2017-03-01

    Inpria has developed a directly patternable metal oxide hard-mask as a high-resolution photoresist for EUV lithography1. In this contribution, we describe a Tachyon 2D OPC full-chip model for an Inpria resist as applied to an N7 BEOL block mask application.

  6. Mechanically Oriented 3D Collagen Hydrogel for Directing Neurite Growth.

    PubMed

    Antman-Passig, Merav; Levy, Shahar; Gartenberg, Chaim; Schori, Hadas; Shefi, Orit

    2017-05-01

    Recent studies in the field of neuro-tissue engineering have demonstrated the promising effects of aligned contact guidance cue to scaffolds of enhancement and direction of neuronal growth. In vivo, neurons grow and develop neurites in a complex three-dimensional (3D) extracellular matrix (ECM) surrounding. Studies have utilized hydrogel scaffolds derived from ECM molecules to better simulate natural growth. While many efforts have been made to control neuronal growth on 2D surfaces, the development of 3D scaffolds with an elaborate oriented topography to direct neuronal growth still remains a challenge. In this study, we designed a method for growing neurons in an aligned and oriented 3D collagen hydrogel. We aligned collagen fibers by inducing controlled uniaxial strain on gels. To examine the collagen hydrogel as a suitable scaffold for neuronal growth, we evaluated the physical properties of the hydrogel and measured collagen fiber properties. By combining the neuronal culture in 3D collagen hydrogels with strain-induced alignment, we were able to direct neuronal growth in the direction of the aligned collagen matrix. Quantitative evaluation of neurite extension and directionality within aligned gels was performed. The analysis showed neurite growth aligned with collagen matrix orientation, while maintaining the advantageous 3D growth.

  7. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    PubMed

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, Gregory; Hoff, James; Jindariani, Sergo

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less

  9. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography.

    PubMed

    Burgess, Ian B; Abedzadeh, Navid; Kay, Theresa M; Shneidman, Anna V; Cranshaw, Derek J; Lončar, Marko; Aizenberg, Joanna

    2016-01-21

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.

  10. Shape morphing and motion of responsive hydrogel composites

    NASA Astrophysics Data System (ADS)

    Hayward, Ryan

    Composites of stimuli-responsive hydrogels paired with stiff structural elements or functional inorganic materials offer myriad opportunities to control the shape, properties, and motion of materials. In one example, our group has studied the geometry and mechanics of swelling-induced buckling of polymer trilayer films consisting of patterning rigid layers sandwiching a swellable hydrogel layer. Of particular recent interest has been the formation of helical structures from seedpod-type architectures with perpendicular orientation of stripes on opposite faces. We have studied the concatenation of two or more helical segments, yielding simple geometric design rules for the fabrication of 3D constructs. In a second example, we have considered the light-driven reshaping and motion of hydrogels containing plasmonic nanoparticles as photothermal heating elements. In contrast to systems pre-programmed to take on a single, or perhaps a few, different 3D shapes, this approach enables continuous shape reconfiguration, and correspondingly, directed motion of composite hydrogel sheets.

  11. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    PubMed Central

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  12. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    PubMed

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-24

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  13. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    NASA Astrophysics Data System (ADS)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  14. IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank

    PubMed Central

    Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2013-01-01

    We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645

  15. Fast interactive exploration of 4D MRI flow data

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.

  16. Diffuse Scattering in the Icosahedral AL-Li-Cu Quasicrystal

    NASA Astrophysics Data System (ADS)

    Proult, A.; Donnadieu, P.; Wang, K.; Garoche, P.

    1995-12-01

    Electron diffraction patterns of icosahedral quasicrystals frequently exhibit diffuse scattering features. We report a detailed analysis of diffuse scattering in Al{6}Li{3}Cu (T2) quasicrystalline samples. The samples have been specifically heat-treated which allows to observe pronounced diffuse effects. Diffuse streaks are observed along the 5-fold and 2-fold symmetry axes and are elongated perpendicularly to these directions. These streaks are due to discs in the 3-dimensional reciprocal space. The diffuse disc positions are only indexable in the 6-dimensional hyperspace but the disc intensities do not agree with the ones predicted by the Cut-and-Project method. The diffuse discs we observed seem to be related to an original quasicrystalline phenomenon overlapping with the icosahedral phase. Les diagrammes de diffraction électronique des quasicristaux icosaédriques présentent fréquemment des diffusions diffuses. Nous les analysons ici en détails sur des échantillons de phase quasicristalline Al{6}Li{3}Cu (T2) traités thermiquement dans lesquels les diffusions diffuses sont trés prononcées. Les intensités diffuses forment des batônnets centrés sur des positions appartenant aux rangées réciproques d'ordre 5 et d'ordre 2 et allongés perpendiculairement à ces directions. On montre qu'il s'agit en fait de disques diffus. dans le réseau réciproque à 3 dimensions, dont les positions ne peuvent s'indexer que sur le réseau à 6 dimensions. Toutefois, les intensités ne correspondent pas à celle prédites par l'algorithme de Coupe-et-Projection. Les disques de diffusion diffuse semblent relever d'une organisation quasicristalline originale se superposant à la phase icosaédrique.

  17. Multiview face detection based on position estimation over multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh

    2012-02-01

    In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.

  18. 3D physical modeling for patterning process development

    NASA Astrophysics Data System (ADS)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  19. Game theory-based mode cooperative selection mechanism for device-to-device visible light communication

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Huang, Zhitong; Li, Wei; Ji, Yuefeng

    2016-03-01

    Various patterns of device-to-device (D2D) communication, from Bluetooth to Wi-Fi Direct, are emerging due to the increasing requirements of information sharing between mobile terminals. This paper presents an innovative pattern named device-to-device visible light communication (D2D-VLC) to alleviate the growing traffic problem. However, the occlusion problem is a difficulty in D2D-VLC. This paper proposes a game theory-based solution in which the best-response dynamics and best-response strategies are used to realize a mode-cooperative selection mechanism. This mechanism uses system capacity as the utility function to optimize system performance and selects the optimal communication mode for each active user from three candidate modes. Moreover, the simulation and experimental results show that the mechanism can attain a significant improvement in terms of effectiveness and energy saving compared with the cases where the users communicate via only the fixed transceivers (light-emitting diode and photo diode) or via only D2D.

  20. Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor.

    PubMed

    Field, Aaron S; Alexander, Andrew L; Wu, Yu-Chien; Hasan, Khader M; Witwer, Brian; Badie, Behnam

    2004-10-01

    To categorize the varied appearances of tumor-altered white matter (WM) tracts on diffusion tensor eigenvector directional color maps. Diffusion tensor imaging (DTI) was obtained preoperatively in 13 patients with brain tumors ranging from benign to high-grade malignant, including primary and metastatic lesions, and maps of apparent diffusion coefficient (ADC), fractional anisotropy (FA), and major eigenvector direction were generated. Regions of interest (ROIs) were drawn within identifiable WM tracts affected by tumor, avoiding grossly cystic and necrotic regions, known fiber crossings, and gray matter. Patterns of WM tract alteration were categorized on the basis of qualitative analysis of directional color maps and correlation analysis of ADC and FA. Four basic patterns of WM alteration were identified: 1) normal or nearly normal FA and ADC, with abnormal tract location or tensor directions attributable to bulk mass displacement, 2) moderately decreased FA and increased ADC with normal tract locations and tensor directions, 3) moderately decreased FA and increased ADC with abnormal tensor directions, and 4) near isotropy. FA and ADC were inversely correlated for Patterns 1-3 but did not discriminate edema from infiltrating tumor. However, in the absence of mass displacement, infiltrating tumor was found to produce tensor directional changes that were not observed with vasogenic edema, suggesting the possibility of discrimination on the basis of directional statistics. Tumor alteration of WM tracts tends to produce one of four patterns on FA and directional color maps. Clinical application of these patterns must await further study. Copyright 2004 Wiley-Liss, Inc.

  1. Automated anatomical labeling of bronchial branches using multiple classifiers and its application to bronchoscopy guidance based on fusion of virtual and real bronchoscopy

    NASA Astrophysics Data System (ADS)

    Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Hasegawa, Yoshinori; Imaizumi, Kazuyoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2008-03-01

    This paper presents a method for automated anatomical labeling of bronchial branches (ALBB) extracted from 3D CT datasets. The proposed method constructs classifiers that output anatomical names of bronchial branches by employing the machine-learning approach. We also present its application to a bronchoscopy guidance system. Since the bronchus has a complex tree structure, bronchoscopists easily tend to get disoriented and lose the way to a target location. A bronchoscopy guidance system is strongly expected to be developed to assist bronchoscopists. In such guidance system, automated presentation of anatomical names is quite useful information for bronchoscopy. Although several methods for automated ALBB were reported, most of them constructed models taking only variations of branching patterns into account and did not consider those of running directions. Since the running directions of bronchial branches differ greatly in individuals, they could not perform ALBB accurately when running directions of bronchial branches were different from those of models. Our method tries to solve such problems by utilizing the machine-learning approach. Actual procedure consists of three steps: (a) extraction of bronchial tree structures from 3D CT datasets, (b) construction of classifiers using the multi-class AdaBoost technique, and (c) automated classification of bronchial branches by using the constructed classifiers. We applied the proposed method to 51 cases of 3D CT datasets. The constructed classifiers were evaluated by leave-one-out scheme. The experimental results showed that the proposed method could assign correct anatomical names to bronchial branches of 89.1% up to segmental lobe branches. Also, we confirmed that it was quite useful to assist the bronchoscopy by presenting anatomical names of bronchial branches on real bronchoscopic views.

  2. Hartree-Fock and density functional theory study of alpha-cyclodextrin conformers.

    PubMed

    Jiménez, Verónica; Alderete, Joel B

    2008-01-31

    Herein, we report the geometry optimization of four conformers of alpha-cyclodextrin (alpha-CD) by means of PM3, HF/STO-3G, HF/3-21G, HF/6-31G(d), B3LYP/6-31G(d), and X3LYP/6-31G(d) calculations. The analysis of several geometrical parameters indicates that all conformers possess bond lengths, angles, and dihedrals that agree fairly well with the crystalline structure of alpha-CD. However, only three of them (1-3) resemble the polar character of CDs and show intramolecular hydrogen-bonding patterns that agree with experimental NMR data. Among them, conformer 3 appears to be the most stable species both in the gas phase and in solution; therefore, it is expected to be the most suitable representative structure for alpha-CD conformation. The purpose of selecting such a species is to identify an appropriate structure to be employed as a starting point for reliable computational studies on complexation phenomena. Our results indicate that the choice of a particular alpha-CD conformer should affect the results of ab initio computational studies on the inclusion complexation with this cyclodextrin since both the direction and the magnitude of the dipole moment depend strongly on the conformation of alpha-CD.

  3. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    PubMed

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  4. Aberration improvement of the floating 3D display system based on Tessar array and directional diffuser screen

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Zhang, Wanlu; Yan, Binbin; Yu, Chongxiu

    2018-06-01

    The floating 3D display system based on Tessar array and directional diffuser screen is proposed. The directional diffuser screen can smoothen the gap of lens array and make the 3D image's brightness continuous. The optical structure and aberration characteristics of the floating three-dimensional (3D) display system are analyzed. The simulation and experiment are carried out, which show that the 3D image quality becomes more and more deteriorative with the further distance of the image plane and the increasing viewing angle. To suppress the aberrations, the Tessar array is proposed according to the aberration characteristics of the floating 3D display system. A 3840 × 2160 liquid crystal display panel (LCD) with the size of 23.6 inches, a directional diffuser screen and a Tessar array are used to display the final 3D images. The aberrations are reduced and the definition is improved compared with that of the display with a single-lens array. The display depth of more than 20 cm and the viewing angle of more than 45° can be achieved.

  5. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  6. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets.

    PubMed

    Gurkan, Umut A; El Assal, Rami; Yildiz, Simin E; Sung, Yuree; Trachtenberg, Alexander J; Kuo, Winston P; Demirci, Utkan

    2014-07-07

    Over the past decade, bioprinting has emerged as a promising patterning strategy to organize cells and extracellular components both in two and three dimensions (2D and 3D) to engineer functional tissue mimicking constructs. So far, tissue printing has neither been used for 3D patterning of mesenchymal stem cells (MSCs) in multiphase growth factor embedded 3D hydrogels nor been investigated phenotypically in terms of simultaneous differentiation into different cell types within the same micropatterned 3D tissue constructs. Accordingly, we demonstrated a biochemical gradient by bioprinting nanoliter droplets encapsulating human MSCs, bone morphogenetic protein 2 (BMP-2), and transforming growth factor β1 (TGF- β1), engineering an anisotropic biomimetic fibrocartilage microenvironment. Assessment of the model tissue construct displayed multiphasic anisotropy of the incorporated biochemical factors after patterning. Quantitative real time polymerase chain reaction (qRT-PCR) results suggested genomic expression patterns leading to simultaneous differentiation of MSC populations into osteogenic and chondrogenic phenotype within the multiphasic construct, evidenced by upregulation of osteogenesis and condrogenesis related genes during in vitro culture. Comprehensive phenotypic network and pathway analysis results, which were based on genomic expression data, indicated activation of differentiation related mechanisms, via signaling pathways, including TGF, BMP, and vascular endothelial growth factor.

  7. Engineering Anisotropic Biomimetic Fibrocartilage Microenvironment by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel Droplets

    PubMed Central

    2015-01-01

    Over the past decade, bioprinting has emerged as a promising patterning strategy to organize cells and extracellular components both in two and three dimensions (2D and 3D) to engineer functional tissue mimicking constructs. So far, tissue printing has neither been used for 3D patterning of mesenchymal stem cells (MSCs) in multiphase growth factor embedded 3D hydrogels nor been investigated phenotypically in terms of simultaneous differentiation into different cell types within the same micropatterned 3D tissue constructs. Accordingly, we demonstrated a biochemical gradient by bioprinting nanoliter droplets encapsulating human MSCs, bone morphogenetic protein 2 (BMP-2), and transforming growth factor β1 (TGF- β1), engineering an anisotropic biomimetic fibrocartilage microenvironment. Assessment of the model tissue construct displayed multiphasic anisotropy of the incorporated biochemical factors after patterning. Quantitative real time polymerase chain reaction (qRT-PCR) results suggested genomic expression patterns leading to simultaneous differentiation of MSC populations into osteogenic and chondrogenic phenotype within the multiphasic construct, evidenced by upregulation of osteogenesis and condrogenesis related genes during in vitro culture. Comprehensive phenotypic network and pathway analysis results, which were based on genomic expression data, indicated activation of differentiation related mechanisms, via signaling pathways, including TGF, BMP, and vascular endothelial growth factor. PMID:24495169

  8. Strain map of the tongue in normal and ALS speech patterns from tagged and diffusion MRI

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Reese, Timothy G.; Atassi, Nazem; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye

    2018-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  9. Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.

    PubMed

    Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Reese, Timothy G; Atassi, Nazem; Wedeen, Van J; El Fakhri, Georges; Woo, Jonghye

    2018-02-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  10. Understanding Angiography-Based Aneurysm Flow Fields through Comparison with Computational Fluid Dynamics.

    PubMed

    Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D

    2017-06-01

    Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms. The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases. Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate. © 2017 by American Journal of Neuroradiology.

  11. Use of Amplified Fragment Length Polymorphisms for Typing Corynebacterium diphtheriae

    PubMed Central

    De Zoysa, Aruni; Efstratiou, Androulla

    2000-01-01

    Amplified fragment length polymorphism (AFLP) was investigated for the differentiation of Corynebacterium diphtheriae isolates. Analysis using Taxotron revealed 10 distinct AFLP profiles among 57 isolates. Strains with ribotype patterns D1, D4, and D12 could not be distinguished; however, the technique discriminated isolates of ribotype patterns D3, D6, and D7 further. AFLP was rapid, fairly inexpensive, and reproducible and could be used as an alternative to ribotyping. PMID:11015416

  12. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed Central

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006

  13. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.

  14. Is the Bifactor Model a Better Model or Is It Just Better at Modeling Implausible Responses? Application of Iteratively Reweighted Least Squares to the Rosenberg Self-Esteem Scale.

    PubMed

    Reise, Steven P; Kim, Dale S; Mansolf, Maxwell; Widaman, Keith F

    2016-01-01

    Although the structure of the Rosenberg Self-Esteem Scale (RSES) has been exhaustively evaluated, questions regarding dimensionality and direction of wording effects continue to be debated. To shed new light on these issues, we ask (a) for what percentage of individuals is a unidimensional model adequate, (b) what additional percentage of individuals can be modeled with multidimensional specifications, and (c) what percentage of individuals respond so inconsistently that they cannot be well modeled? To estimate these percentages, we applied iteratively reweighted least squares (IRLS) to examine the structure of the RSES in a large, publicly available data set. A distance measure, d s , reflecting a distance between a response pattern and an estimated model, was used for case weighting. We found that a bifactor model provided the best overall model fit, with one general factor and two wording-related group factors. However, on the basis of d r  values, a distance measure based on individual residuals, we concluded that approximately 86% of cases were adequately modeled through a unidimensional structure, and only an additional 3% required a bifactor model. Roughly 11% of cases were judged as "unmodelable" due to their significant residuals in all models considered. Finally, analysis of d s revealed that some, but not all, of the superior fit of the bifactor model is owed to that model's ability to better accommodate implausible and possibly invalid response patterns, and not necessarily because it better accounts for the effects of direction of wording.

  15. Directed deposition of inorganic oxide networks on patterned polymer templates

    NASA Astrophysics Data System (ADS)

    Ford, Thomas James Robert

    Inspired by nature, we have successfully directed the deposition of inorganic oxide materials on polymer templates via a combination of top-down and bottom-up fabrication methods. We have functionally mimicked the hierarchical silica exoskeletons of diatoms, where specialized proteins chaperone the condensation of silicic acid into nanoscale silica networks confined by microscopic vesicle walls. We replaced the proteins with functionally analogous polyamines and vesicles with lithographically defined polymer templates. We grafted the polyamines either to the surface or throughout the template by changing the template chemistry and altering our grafting strategy. Exposure to an inorganic oxide precursor solution led to electrostatic aggregation at the polyamine chains, catalyzing hydrolysis and condensation to form long-range inorganic oxide nanoparticle networks. Grafted to epoxy surfaces, swelling effects and the hyperbranched brush morphology lead to the formation of nanofruit features that generated thin, conformal inorganic coatings. When the polyamines were grafted throughout hydrogel templates, we obtained composite networks that yielded faithful inorganic replicas of the original patterns. By varying the polyamine chain length and combustion parameters, we controlled the nanoparticle size, morphology, and crystalline phase. The polyamine morphology affected the resulting inorganic network in both fabrication schemes and we could control the depostion over multiple length scales. Because our methods were compatible with a variety of lithographic methods, we were able to generate inorganic replicas of 1D, 2D, and 3D polymer structures. These may be used for a wide range of applications, including sensing, catalysis, photonic, phononic, photovoltaic, and others that require well-defined inorganic structures.

  16. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets

    PubMed Central

    Liao, Yunlong; Cao, Wei; Connell, John W.; Chen, Zhongfang; Lin, Yi

    2016-01-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm2) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images. PMID:27188697

  17. Regulatory analysis of the mouse Hoxb3 gene: multiple elements work in concert to direct temporal and spatial patterns of expression.

    PubMed

    Kwan, C T; Tsang, S L; Krumlauf, R; Sham, M H

    2001-04-01

    The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression. Copyright 2001 Academic Press.

  18. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    NASA Astrophysics Data System (ADS)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  19. New 3D structuring process for non-integrated circuit related technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nouri, Lamia; Possémé, Nicolas; Landis, Stéfan; Milesi, Frédéric; Gaillard, Frédéric-Xavier

    2017-04-01

    Fabrication processes that microelectronic developed for Integrated circuit (IC) technologies for decades, do not meet the new emerging structuration's requirements, in particular non-IC related technologies one, such as MEMS/NEMS, Micro-Fluidics, photovoltaics, lenses. Actually complex 3D structuration requires complex lithography patterning approaches such as gray-scale electron beam lithography, laser ablation, focused ion beam lithography, two photon polymerization. It is now challenging to find cheaper and easiest technique to achieve 3D structures. In this work, we propose a straightforward process to realize 3D structuration, intended for silicon based materials (Si, SiN, SiOCH). This structuration technique is based on nano-imprint lithography (NIL), ion implantation and selective wet etching. In a first step a pattern is performed by lithography on a substrate, then ion implantation is realized through a resist mask in order to create localized modifications in the material, thus the pattern is transferred into the subjacent layer. Finally, after the resist stripping, a selective wet etching is carried out to remove selectively the modified material regarding the non-modified one. In this paper, we will first present results achieved with simple 2D line array pattern processed either on Silicon or SiOCH samples. This step have been carried out to demonstrate the feasibility of this new structuration process. SEM pictures reveals that "infinite" selectivity between the implanted areas versus the non-implanted one could be achieved. We will show that a key combination between the type of implanted ion species and wet etching chemistries is required to obtain such results. The mechanisms understanding involved during both implantation and wet etching processes will also be presented through fine characterizations with Photoluminescence, Raman and Secondary Ion Mass Spectrometry (SIMS) for silicon samples, and ellipso-porosimetry and Fourier Transform InfraRed spectroscopy (FTIR) for SiOCH samples. Finally the benefit of this new patterning approach will be presented on 3D patterns structures.

  20. A real-time 3D range image sensor based on a novel tip-tilt-piston micromirror and dual frequency phase shifting

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor

    2015-03-01

    Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.

Top