Science.gov

Sample records for direct borohydride fuel

  1. Catalytic polymeric electrodes for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Bayatsarmadi, Bita; Peters, Alice; Talemi, Pejman

    2016-08-01

    The direct borohydride fuel cell (DBFC) is a new class of fuel cells that produces non-toxic by-products and has a potential for a high voltage and high energy density. A major challenge in developing efficient DBFCs is the development of an efficient, stable, and economic catalyst for the oxidation of borohydride. In this paper, we report the use of conducting polymer Poly(3,4-ethylenedioxythiophene) (PEDOT) as electrocatalysts in DBFC. PEDOT electrodes prepared by vacuum phase polymerization exhibited electrocatalytic behavior towards oxidation of borohydride and reduction of hydrogen peroxide. Spectroscopic analysis of samples showed that PEDOT can act as an interface for electron transfer from borohydride ions. Comparing the polarization curves of DBFCs with PEDOT coated on graphite electrodes and cells with bare graphite electrodes, demonstrated higher voltage, maximum power density, and stability.

  2. Direct borohydride fuel cell using Ni-based composite anodes

    NASA Astrophysics Data System (ADS)

    Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.

    In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm -2 Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm -2 for NaBH 4/O 2 fuel cell at 60 °C, 665 mW cm -2 for NaBH 4/H 2O 2 fuel cell at 60 °C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded.

  3. Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Verma, A.; Basu, S.

    The performance of an alkaline fuel cell (AFC) was studied at different electrolyte concentrations and temperatures for the direct feeding of methanol, ethanol and sodium borohydride as fuels. Potassium hydroxide is used as the electrolyte in the alkaline fuel cell. The anode was prepared by using Pt black, carbon paper and Nafion dispersion. Nickel mesh was used as the current collector. A standard cathode made of manganese dioxide/carbon paper/Ni-mesh/Teflon dispersion (Electro-Chem-Technic, UK) was used for testing the fuel cell performance. The experimental results showed that the current density increases with increase in KOH concentration. Maximum current densities of 300, 270 and 360 A m -2 were obtained for methanol, ethanol and sodium borohydride as fuel respectively with 3 M KOH electrolyte at 25 °C. The cell performance decreases with further increase in the KOH concentration. The current density of the alkaline fuel cell increases with increase in temperature for all the three fuels. The increase in current density with temperature is not as high as expected for sodium borohydride. These results are explained based on an electrochemical phenomenon and different associated losses.

  4. Platinum-rare earth cathodes for direct borohydride-peroxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cardoso, D. S. P.; Santos, D. M. F.; Šljukić, B.; Sequeira, C. A. C.; Macciò, D.; Saccone, A.

    2016-03-01

    Hydrogen peroxide (H2O2) is being actively investigated as an oxidant for direct borohydride fuel cells. Herein, platinum-rare earth (RE = Sm, Dy, Ho) alloys are prepared by arc melting and their activity for hydrogen peroxide reduction reaction (HPRR) is studied in alkaline media. Cyclic voltammetry and chronoamperometry measurements show that Pt-Sm electrode displays the highest catalytic activity for HPRR with the lowest activation energy, followed by Pt-Ho, while Pt-Dy alloys show practically no activity. Laboratory direct borohydride-peroxide fuel cells (DBPFCs) are assembled using these alloys. The DBPFC with Pt-Sm cathode gives the highest peak power density of 85 mW cm-2, which is more than double of that obtained in a DBPFC with Pt electrodes.

  5. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts

    PubMed Central

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO3 and MnO2, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm−2 has been achieved at 65°C, which increases by a factor of 1.7–3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC. PMID:22880160

  6. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts.

    PubMed

    Yang, Xiaodong; Liu, Yongning; Li, Sai; Wei, Xiaozhu; Wang, Li; Chen, Yuanzhen

    2012-01-01

    Polymer electrolyte membranes (PEM) and Pt-based catalysts are two crucial components which determine the properties and price of fuel cells. Even though, PEM faces problem of fuel crossover in liquid fuel cells such as direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), which lowers power output greatly. Here, we report a DBFC in which a polymer fiber membrane (PFM) was used, and metal oxides, such as LaNiO₃ and MnO₂, were used as cathode catalysts, meanwhile CoO was used as anode catalyst. Peak power density of 663 mW·cm⁻² has been achieved at 65°C, which increases by a factor of 1.7-3.7 compared with classic DBFCs. This fuel cell structure can also be extended to other liquid fuel cells, such as DMFC.

  7. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian

    2016-09-01

    In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.

  8. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Gu, Lifeng; Luo, Nie; Miley, George H.

    Catalyst selection, deposition method and substrate material selection are essential aspects for the design of efficient electrodes for fuel cells. Research is described to identify a potential catalyst for hydrogen peroxide reduction, an effective catalyst deposition method, and supporting material for a direct borohydride/hydrogen peroxide fuel cell. Several conclusions are reached. Using Pourbaix diagrams to guide experimental testing, gold is identified as an effective catalyst which minimizes gas evolution of hydrogen peroxide while providing high power density. Activated carbon cloth which features high surface area and high microporosity is found to be well suited for the supporting material for catalyst deposition. Electrodeposition and plasma sputtering deposition methods are compared to conventional techniques for depositing gold on diffusion layers. Both methods provide much higher power densities than the conventional method. The sputtering method however allows a much lower catalyst loading and well-dispersed deposits of nanoscale particles. Using these techniques, a peak power density of 680 mW cm -2 is achieved at 60 °C with a direct borohydride/hydrogen peroxide fuel cell which employs palladium as the anode catalyst and gold as the cathode catalyst.

  9. High performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar

    2012-07-01

    Novel, cost-effective, and environmentally benign polymer electrolyte membranes (PEMs) consisting of ionically cross-linked chitosan (CS) hydrogel is reported for direct borohydride fuel cells (DBFCs). The membranes have been prepared by ionic cross-linking of CS with sulfate and hydrogen phosphate salts of sodium. Use of Na2SO4 and Na2HPO4 as cross-linking agents in the preparation of ionically cross-linked CS hydrogel membrane electrolytes (ICCSHMEs) not only enhances cost-effectiveness but also environmental friendliness of fuel cell technologies. The DBFCs have been assembled with a composite of nickel and carbon-supported palladium as anode catalyst, carbon-supported platinum as cathode catalyst and ICCSHMEs as electrolytes-cum-separators. The DBFCs have been studied by using an aqueous alkaline solution of sodium borohydride as fuel in flowing mode using a peristaltic pump and oxygen as oxidant. A maximum peak power density of about 810 mW cm-2 has been achieved for the DBFC employing Na2HPO4-based ICCSHME and operating at a cell temperature of 70 °C.

  10. Electrocatalytic performance of Pt-Dy alloys for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Šljukić, Biljana; Milikić, Jadranka; Santos, Diogo M. F.; Sequeira, César A. C.; Macciò, Daniele; Saccone, Adriana

    2014-12-01

    The electrochemical oxidation of sodium borohydride (NaBH4) is systematically studied on platinum-dysprosium (Pt-Dy) alloys in alkaline media with respect to application in direct borohydride fuel cells (DBFCs). Using several different techniques, namely cyclic voltammetry, chronoamperometry and chronopotentiometry, reaction parameters are evaluated for NaBH4 electrooxidation in 2 M NaOH supporting electrolyte. The values obtained for the number of electrons exchanged are comparable for the two alloys and close to 2.5. Dependence of Pt-Dy alloys activity for NaBH4 oxidation on the electrolyte composition and temperature is also investigated. Test fuel cell is assembled using Pt-Dy alloy as anode, reaching peak power density of 298 mW cm-2 at current density of 595 mA cm-2 and cell potential of 0.5 V at 25 °C. Pt-Dy alloys exhibit comparable behavior with pure Pt electrode at room temperature, while at higher temperature they exhibit improved Coulombic efficiency, with the advantage of significantly lower price.

  11. Depression of hydrogen evolution during operation of a direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Liu, B. H.; Zhu, J. K.; Suda, S.

    Hydrogen evolution from the anode usually occurs during operation of a Direct Borohydride Fuel Cell (DBFC). This would not only decrease the fuel utilization, but also lower the cell performance because hydrogen bubbles would hinder ion movement in the anolyte. In this paper, the hydrogen evolution behavior is investigated based on relations of hydrogen evolution rates versus operation currents of the DBFC. The effects of anode modification on the hydrogen evolution rate and the cell performance were investigated. It was found that hydrogen evolution was depressed by adding Pd, Ag and Au catalysts in the anode. Coating a thin Nafion film on the catalyst surfaces was another effective way to decrease the hydrogen evolution rate. Depression of the hydrogen evolution and improvement of the DBFC performance can be achieved by adding carbon supported Pd in Ni anode with a suitable content of Nafion. However, too much Nafion in the anode would degrade the DBFC performance.

  12. Performance enhancement of a direct borohydride fuel cell in practical running conditions

    NASA Astrophysics Data System (ADS)

    Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong

    To investigate the possibility of a cost-effective direct borohydride fuel cell (DBFC), the performance enhancement of a single cell is investigated under practical running conditions by adopting non-precious metal for the anode. Fluorinated Zr-based AB 2-type hydrogen storage alloy with an effective area of 100 cm 2 is selected as the anode catalyst. To minimize pressure loss from the enlarged cell size, a parallel-type anode channel is designed, then the principal reasons for performance degradation are analyzed. Single-cell performance is mainly enhanced by adopting a corrugated anode design, applying an anti-corrosion coating on the cathode channel, and controlling the fuel flow-rate and air humidity. The cell performance is estimated simply by measuring the wall temperature of the cell.

  13. Investigation of the characteristics of a stacked direct borohydride fuel cell for portable applications

    NASA Astrophysics Data System (ADS)

    Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong

    To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.

  14. Porous polybenzimidazole membranes with excellent chemical stability and ion conductivity for direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Dongju; Yu, Shanshan; Liu, Xue; Li, Xianfeng

    2015-05-01

    Porous membranes based on polybenzimidazole (PBI) are firstly introduced in direct borohydride fuel cell application (DBFC). Membranes with different thicknesses and porosity are successfully fabricated via water vapor phase inversion process. The prepared membranes show excellent ion conductivity and chemical stability under DBFC operating condition. Compare with Nafion 115, the prepared membranes show higher ion conductivity, as a result, much higher peak power density. No weight loss is observed after immersing the prepared membranes in a 3 M NaOH solution for 30 days, indicating the excellent chemical stability of porous PBI membranes. And the DBFC cells assembled with prepared membranes could discharge at 200 mA cm-2 for more than 250 h without voltage decay, which is the longest time reported by far. This work provides a totally new idea for fabricating versatile DBFC membranes.

  15. A cobalt polypyrrole composite catalyzed cathode for the direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Qin, H. Y.; Liu, Z. X.; Yin, W. X.; Zhu, J. K.; Li, Z. P.

    A cobalt polypyrrole carbon (Co-PPY-C) composite has been attempted for use as a cathode catalyst in a direct borohydride fuel cell (DBFC). A Co-PPY-C composite has been fabricated in laboratory and characterized by the field emission scanning electron microscopy, transmission electron microscopy, as well as X-ray photoemission spectroscopy. Fabricated Co-PPY-C catalyst demonstrates good short-term durability and activity which are comparable to those obtained from the Pt/C catalyst. A maximum power density of 65 mW cm -2 has been achieved at ambient conditions. This research concludes that metallo-organic coordination compounds would be potential candidates for use as cathode catalysts in the DBFC.

  16. A calibrated hydrogen-peroxide direct-borohydride fuel cell model

    NASA Astrophysics Data System (ADS)

    Stroman, Richard O.; Jackson, Gregory S.; Garsany, Yannick; Swider-Lyons, Karen

    2014-12-01

    A numerical model with global reaction rates is calibrated to measurements from a simple hydrogen-peroxide direct-borohydride fuel cell (H2O2-DBFC), and then used to unravel complex electrochemical and competing parasitic reactions. In this H2O2-DBFC, fuel (1-50 mM NaBH4/2 M NaOH) is oxidized at a Au anode and oxidizer (10-40 mM H2O2/1 M H2SO4) is reduced at a Pd:Ir cathode. Polarization curves and electrode potentials, as functions of fuel and oxidizer feeds support global reaction rate parameter fitting. The measurements and calibrated model showed H2O2 decomposition at the cathode depresses open circuit voltage from 3.01 V theoretical to 1.65 V, and when H2O2 supply is limited, cathode potentials are sufficiently negative to make H+ reduction to H2 thermodynamically favorable. Calibrated model results show that thin concentration boundary layers limit reactant utilization and current density. Decreasing the inlet concentrations, flow rates, and cell voltage slow parasitic reactions and favor desirable charge transfer reactions. Peak conversion efficiency and peak power density coincide because thermodynamic efficiency and parasitic reaction rates decrease (relative to charge transfer reaction rates) with increasing current density. We conclude that the performance of a fuel cell with parasitic side reactions can be predicted through numerical modeling.

  17. Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Lianqin; Bambagioni, Valentina; Bevilacqua, Manuela; Bianchini, Claudio; Filippi, Jonathan; Lavacchi, Alessandro; Marchionni, Andrea; Vizza, Francesco; Fang, Xiang; Shen, Pei Kang

    The effect of adding small quantities (0.1-1 wt.%) of sodium borohydride (NaBH 4) to the anolyte solution of direct ethanol fuel cells (DEFCs) with membrane-electrode assemblies constituted by nanosized Pd/C anode, Fe-Co cathode and anion-exchange membrane (Tokuyama A006) was investigated by means of various techniques. These include cyclic voltammetry, in situ FTIR spectroelectrochemistry, a study of the performance of monoplanar fuel cells and an analysis of the ethanol oxidation products. A comparison with fuel cells fed with aqueous solutions of ethanol proved unambiguously the existence of a promoting effect of NaBH 4 on the ethanol oxidation. Indeed, the potentiodynamic curves of the ethanol-NaBH 4 mixtures showed higher power and current densities, accompanied by a remarkable increase in the fuel consumption at comparable working time of the cell. A 13C and 11B { 1H}NMR analysis of the cell exhausts and an in situ FTIR spectroelectrochemical study showed that ethanol is converted selectively to acetate while the oxidation product of NaBH 4 is sodium metaborate (NaBO 2). The enhancement of the overall cell performance has been explained in terms of the ability of NaBH 4 to reduce the PdO layer on the catalyst surface.

  18. Preparation method of Ni@Pt/C nanocatalyst affects the performance of direct borohydride-hydrogen peroxide fuel cell: Improved power density and increased catalytic oxidation of borohydride.

    PubMed

    Hosseini, Mir Ghasem; Mahmoodi, Raana

    2017-08-15

    The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH4(-) oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92AgPt(-1)) in comparison with a catalyst prepared in the presence of SDS (17766.15AgPt(-1)) in NaBH4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH4 and 2M H2O2 (133.38mWcm(-2)). Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of hydrazine addition on gas evolution and performance of the direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Qin, H. Y.; Liu, Z. X.; Yin, W. X.; Zhu, J. K.; Li, Z. P.

    A fuel cell configuration using alkaline NaBH 4-N 2H 4 solutions as the fuel is suggested. Gas evolution behaviors and cell performances of alkaline NaBH 4-N 2H 4 solutions on different catalysts have been studied. It is found that gas evolution behaviors are influenced by the applied anodic catalysts and the concentration of NaBH 4 and N 2H 4. NaBH 4 is mainly electro-oxidized on Pd but N 2H 4 is mainly electro-oxidized on Ni and surface-treated Zr-Ni alloy when using NaBH 4-N 2H 4 solutions as the fuel and a composite of Pd, Ni and surface-treated Zr-Ni alloy as the anodic catalyst. The cyclic voltammetry results show that electrochemical oxidation potential of NaBH 4 is higher than that of N 2H 4. Adding hydrazine into alkaline sodium borohydride solutions can suppress gas evolution and improve the cell performance of the DBFC. The performances of fuel cells using NaBH 4-N 2H 4 solutions are comparable to that of fuel cell using N 2H 4 solution.

  20. Intrinsic borohydride fuel cell/battery hybrid power sources

    NASA Astrophysics Data System (ADS)

    Hong, Jian; Fang, Bin; Wang, Chunsheng; Currie, Kenneth

    The electrochemical oxidation behaviors of NaBH 4 on Zn, Zn-MH, and MH (metal-hydride) electrodes were investigated, and an intrinsic direct borohydride fuel cell (DBFC)/battery hybrid power source using MH (or Zn-MH) as the anode and MnO 2 as the cathode was tested. Borohydride cannot be effectively oxidized on Zn electrodes at the Zn oxidation potential because of the poor electrocatalytic ability of Zn for borohydride oxidation and the high overpotential, even though borohydride has the same oxidation potential of Zn in an alkaline solution. The borohydride can be electrochemically oxidized on Ni and MH electrodes through a 4e reaction at a high overpotential. Simply adding borohydride into an alkaline electrolyte of a Zn/air or MH/air battery can greatly increase the capacity, while an intrinsic DBFC/MH(or Zn)-MnO 2 battery can deliver a higher peak power than regular DBFCs.

  1. Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Duan, Donghong; Liu, Huihong; You, Xiu; Wei, Huikai; Liu, Shibin

    2015-10-01

    Carbon-supported Cu@Ag core-shell nanoparticles are prepared by a successive reduction method in an aqueous solution and are used as an anode electrocatalyst for the direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronopotentiometry (CP), and fuel cell tests. In situ Fourier transform infrared (FTIR) spectroscopy is employed in 2 M NaOH/0.1 M NaBH4 to understand the borohydride oxidation reaction (BOR) mechanism by studying the intermediate reactions occurring on the Cu@Ag/C electrode. The TEM images show that the average size of the Cu1@Ag1/C particles is approximately 18 nm. Among the as-prepared catalysts, the Cu2@Ag1/C catalyst presents the highest catalytic activity. As shown by in situ FTIR, the oxidation reaction mechanism of BH4- is similar to that of Ag/C: BHn(OH)4-n- + 2OH- → BHn-1(OH)5-n- +H2 O + 2e . At 25 °C, the DBHFC with Cu2@Ag1/C as the anode electrocatalyst and Pt mesh (1 cm2) as the cathode electrode exhibits a maximum anodic power density of 17.27 mW mg-1 at a discharge current density of 27.8 mA mg-1.

  2. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Deschamps, Fabien; Caldarella, Giuseppe; Chatenet, Marian; Job, Nathalie

    2015-11-01

    Platinum and palladium are investigated as anodic catalysts for direct borohydride and direct ammonia borane fuel cells (DBFC and DABFC). Half-cell characterizations performed at 25 °C using NH3BH3 or NaBH4 alkaline electrolytes demonstrate the lowest open-circuit potential and highest electrocatalytic activity for the NH3BH3 alkaline electrolyte for Pd and Pt rotating disk electrodes, respectively. Voltammograms performed in fuel cell configuration at 25 °C confirm this trend: the highest open circuit voltage (1.05 V) and peak power density (181 mW·cm-2) are monitored for DABFC using Pd/C and Pt/C anodes, respectively. Increasing the temperature heightens the peak power density (that reaches 420 mW·cm-2 at 60 °C for DBFC using Pt/C anodes), but strongly generates gas from the fuel hydrolysis, hindering the overall fuel cells performances. The anode texture strongly influences the fuel cell performances, highlighting: (i) that an open anode texture is required to efficiently circulate the anolyte and (ii) the difficulty to compare potential anodic catalysts characterized using different fuel cell setups within the literature. Furthermore, TEM imaging of Pt/C and Pd/C catalysts prior/post DBFC and DABFC operation shows fast degradation of the carbon-supported nanoparticles.

  3. Direct synthesis of calcium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor; Majzoub, Eric H.

    2009-10-27

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  4. Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou

    2015-07-01

    Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.

  5. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  6. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  7. Development of high-performance cathode catalyst of polypyrrole modified carbon supported CoOOH for direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    He, Yan; Zhu, Cai; Chen, Kaijian; Wang, Juan; Qin, Haiying; Liu, Jiabin; Yan, Shuai; Yang, Ke; Li, Aiguo

    2017-01-01

    Polypyrrole modified carbon supported CoOOH electrocatalyst (CoOOH-PPy-C) is prepared by impregnation-chemical method, and the catalytic properties for the oxygen reduction reaction (ORR) in alkaline media are investigated. The X-ray diffraction and transmission electron microscopy results confirm the presence of the expected CoOOH. The electrochemical tests show that the CoOOH-PPy-C catalyst exhibits good electrocatalytic activity towards ORR. The direct borohydride fuel cell using CoOOH-PPy-C as the cathode catalyst demonstrates a good stability performance. There is only 4% decrease of the cell voltage after 80-h operation. The ORR occurs an average 4-electron transfer pathway on the CoOOH-PPy-C catalyst. The good catalytic activity towards ORR benefits from the Cosbnd N bond, which is identified by X-ray photoelectron spectroscopy test. X-ray absorption fine structure experiments further show that two nearest O atoms are substituted by two N atoms bonding to Co ion at a distance of 1.64 Å. The CoOOH-PPy-C exhibits better electrochemical properties than the Co(OH)2 counterpart even though the valence state of Co ion is +3 in CoOOH-PPy-C. Those results indicate that the bonding of Co ion with N atoms should be a key issue regardless the valence of Co ion.

  8. Direct synthesis of magnesium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor [Kennewick, WA; Severa, Godwin [Honolulu, HI; Jensen, Craig M [Kailua, HI

    2012-04-03

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.

  9. The high utilization of fuel in direct borohydride fuel cells with a PdNix-B/carbon nanotubes-catalysed anode

    NASA Astrophysics Data System (ADS)

    Zhou, Yaping; Li, Sai; Chen, Yuanzhen; Liu, Yongning

    2017-05-01

    Direct borohydride fuel cells (DBFCs) exhibit the potential for a wide range of applications due to their high energy and power density; however, the hydrolysis of BH4- significantly limits the use of DBFCs. In this paper, PdNix-B/carbon nanotubes (PdNix-B/CNTs) (x = 0, 0.3, 0.6, 0.9) composites have been prepared by a chemical reduction method in which PdNix-B nanoparticles of approximately 3.5 nm are grown on the surface of carbon nanotubes. A cell was assembled with PdNix-B/CNTs as the anode catalyst, a polymer fibre membrane (PFM) as a substitute for the Nafion membrane and LaNiO3 as the cathode catalyst. The results show that the Ni element displays an ability to balance the competition between the hydrolysis and oxidation of BH4-. A peak power density of 105 mW cm-2 (x = 0.9) was achieved at 25 °C. However, the highest fuel efficiency of 69% was achieved at x = 0.3, and the corresponding power density was 87 mW cm-2, which represents the best comprehensive performance of these DBFCs.

  10. Preparation and Growth of N-Doped Hollow Carbon Nanospheres and Their Application as Catalyst Support in Direct Borohydride Fuel Cell.

    PubMed

    Chen, Yuanzhen; Dong, Shujuan; Li, Sai; Liu, Yongning; Yan, Wei

    2015-05-01

    N-doped hollow carbon nanospheres (HCNSs) were prepared by electric arc discharge method in N2 atmosphere. X-ray Photoelectron Spectroscopy (XPS) analysis shows that their nitrogen content reaches up to 4.9 atom%. Both the low thermal conductivity of N2 and the doping of nitrogen atom make carbon unit bend to form hollow nanosphere structure. High-resolution transmission electron microscopy (HRTEM) and X-ray diffusion (XRD) analysis prove the presence of detected defects and a poor crystallinity on the HCNSs shell. Moreover, annealing treatment of HCNSs was carried out at 1100 degrees C/10 h and 1400 degrees C/2 h to research their fracture extension. It is found that HCNSs could grow into closed-tubes even with a shell at high annealing temperature. HCNSs were applied in direct borohydride fuel cell (DBFC) to evaluate their catalytic performance. The electrochemical results show that pure HCNSs doesn't have any catalysis effect, but they can greatly promote the catalytic performance of CoO, and the largest polarization current density of which achieves 1.845 A x cm(-2) at -0.7 V (vs. Hg/HgO electrode).

  11. Borohydride Ionic Liquids as Hypergolic Fuels: A Quest for Improved Stability.

    PubMed

    Chand, Deepak; Zhang, Jiaheng; Shreeve, Jean'ne M

    2015-09-14

    Hydrazine and its derivatives are used as fuels in rocket propellant systems; however, due to high vapor pressure, toxicity, and carcinogenicity, handling of such compounds is extremely hazardous. Hypergolic ionic liquids have shown great promise to become viable replacements for hydrazines as fuels. Borohydride-containing ionic liquids have now been synthesized using a more efficient synthetic pathway that does not require liquid ammonia and halide precursors. Among the eight new compounds, 1-allyl-3-n-butyl-imidazolium borohydride (1) and 1, 3-diallylimidazolium borohydride (5) exhibit very short ignition-delay times (ID) of 8 and 3 ms, respectively. The hydrolytic stability of borohydride compounds has been greatly improved by attaching long-chain alkyl substituents to the imidazole ring. 1,3-Di-(n-octyl)-imidazolium borohydride (3) is a water stable borohydride-containing ionic liquid. 1,3-Di-(n-butyl)-imidazolium borohydride (2) is a unique example of a borohydride liquid crystal. These ionic liquids have some unusual advantages, including negligible vapor pressures, good ignition delay (ID) times, and reduced synthetic and storage costs, thereby showing good application potential as environmentally friendly fuels in bipropellant formulations. In addition, they also have potential applications in the form of reducing agents and hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels.

    PubMed

    Liu, Tianlin; Qi, Xiujuan; Huang, Shi; Jiang, Linhai; Li, Jianling; Tang, Chenglong; Zhang, Qinghua

    2016-02-04

    A family of hydrophobic borohydride-rich ionic liquids was developed, which exhibited the shortest ignition delay times of 1.7 milliseconds and the lowest viscosity (10 mPa s) of hypergolic ionic fluids, demonstrating their great potential as faster-igniting rocket fuels to replace toxic hydrazine derivatives in liquid bipropellant formulations.

  13. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghwan; Kim, Taegyu; Lee, Kiseong; Kwon, Sejin

    In this study, we design and fabricate a fuel cell system for application as a power source in unmanned aerial vehicles (UAVs). The fuel cell system consists of a fuel cell stack, hydrogen generator, and hybrid power management system. PEMFC stack with an output power of 100 W is prepared and tested to decide the efficient operating conditions; the stack must be operated in the dead-end mode with purge in order to ensure prolonged stack performance. A hydrogen generator is fabricated to supply gaseous hydrogen to the stack. Sodium borohydride (NaBH 4) is used as the hydrogen source in the present study. Co/Al 2O 3 catalyst is prepared for the hydrolysis of the alkaline NaBH 4 solution at room temperature. The fabricated Co catalyst is comparable to the Ru catalyst. The UAV consumes more power in the takeoff mode than in the cruising mode. A hybrid power management system using an auxiliary battery is developed and evaluated for efficient energy management. Hybrid power from both the fuel cell and battery powers takeoff and turning flight operations, while the fuel cell supplies steady power during the cruising flight. The capabilities of the fuel-cell UAVs for long endurance flights are validated by successful flight tests.

  14. Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack

    NASA Astrophysics Data System (ADS)

    Arzac, G. M.; Fernández, A.; Justo, A.; Sarmiento, B.; Jiménez, M. A.; Jiménez, M. M.

    Catalyzed hydrolysis of sodium borohydride (SBH) is a promising method for the hydrogen supply of fuel cells. In this study a system for controlled production of hydrogen from aqueous sodium borohydride (SBH) solutions has been designed and built. This simple and low cost system operates under controlled addition of stabilized SBH solutions (fuel solutions) to a supported CoB catalyst. The system works at constant temperature delivering hydrogen at 1 L min -1 constant rate to match a 60-W polymer electrolyte membrane fuel cell (PEMFC). For optimization of the system, several experimental conditions were changed and their effect was investigated. A simple model based only on thermodynamic considerations was proposed to optimize system parameters at constant temperature and hydrogen evolution rate. It was found that, for a given SBH concentration, the use of the adequate fuel addition rate can maximize the total conversion and therefore the gravimetric storage capacity. The hydrogen storage capacity was as high as 3.5 wt% for 19 wt% SBH solution at 90% fuel conversion and an operation temperature of 60 °C. It has been demonstrated that these optimized values can also be achieved for a wide range of hydrogen generation rates. Studies on the durability of the catalyst showed that a regeneration step is needed to restore the catalytic activity before reusing.

  15. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    SciTech Connect

    Schubert, David; Neiner, Doinita; Bowden, Mark; Whittemore, Sean; Holladay, Jamie; Huang, Zhenguo; Autrey, Tom

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of

  16. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  17. Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation

    NASA Astrophysics Data System (ADS)

    Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki

    2014-09-01

    The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.

  18. Hydrogen Generation Via Sodium Borohydride

    NASA Astrophysics Data System (ADS)

    Mohring, Richard M.; Wu, Ying

    2003-07-01

    Along with the technological challenges associated with developing fuel cells and hydrogen burning engines, a major issue that must be addressed to ensure the ultimate success of a hydrogen economy is the ability to store and transport hydrogen effectively. Millennium Cell has developed and patented a proprietary system for storing and generating hydrogen gas called Hydrogen on Demand™. The system releases the hydrogen stored in fuel solutions of sodium borohydride as needed through an easily controllable catalytic process. The fuel itself is water-based, rich in hydrogen content, and non-flammable. It can be stored in plastic containers under no pressure. After the hydrogen from the fuel is consumed, the remaining product, sodium metaborate (chemically similar to borax), can be recycled back into fresh fuel. In this paper, an overview of the Hydrogen on Demand™ technology is presented along with data showing the performance characteristics of practical hydrogen generation systems. A brief discussion of sodium borohydride regeneration chemistry is also provided.

  19. Direct-fuelled fuel cells

    NASA Astrophysics Data System (ADS)

    Waidhas, M.; Drenckhahn, W.; Preidel, W.; Landes, H.

    Fuel supply is one important problem to be solved for commercial application of fuel cell technology. Conventional fuel-cell types require hydrogen as the fuel, which has to be free from impurities when operated at temperatures below 100 °C. The storage and distribution of this explosive and extremely fugitive gas is one of the open questions in the context of a customer-oriented broad commercial market. The direct-fuelled fuel cells (DMFCs) overcome the hydrogen specific restrictions. They are capable of directly using natural gas or fuels which are liquid under ambient conditions. In this paper the different options from direct-fuelled systems are described and their general aspects discussed. The state-of-the-art at Siemens in this field, and also the remaining technical questions are outlined as a basis for assessing future applications.

  20. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  1. Electrochemical research in chemical hydrogen storage materials: Sodium borohydride and organotin hydrides

    NASA Astrophysics Data System (ADS)

    McLafferty, Jason

    Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from "spent fuel," i.e., the material remaining after discharge of hydrogen. In this thesis, some research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this thesis, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described.

  2. Method for producing a borohydride

    DOEpatents

    Kong, Peter C.

    2010-06-22

    A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.

  3. Method for producing a borohydride

    DOEpatents

    Kong, Peter C.

    2008-09-02

    A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.

  4. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  5. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  6. Low contaminant formic acid fuel for direct liquid fuel cell

    DOEpatents

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  7. Direct methanol fuel cell for portable applications

    SciTech Connect

    Valdez, T.I.; Narayanan, S.R.; Frank, H.; Chun, W.

    1997-12-01

    A five cell direct methanol fuel cell stack has been developed at the Jet Propulsion Laboratory. Presently direct methanol fuel cell technology is being incorporated into a system for portable applications. Electrochemical performance and its dependence on flow rate and temperature for a five cell stack are presented. Water transport data, and water transport mechanisms for direct methanol fuel cells are discussed. Stack response to pulse loads has been characterized. Implications of stack performance and operating conditions on system design have been addressed.

  8. DIRECT AMMONIA-AIR FUEL CELL.

    DTIC Science & Technology

    Experimental runs were conducted on direct ammonia fuel cells . Effects of temperature, composition, as well as run effect and block effect were...cells and to electrode flooding are discussed. Data on performance of complete laboratory direct ammonia-oxygen fuel cells are presented and discussed. (Author)

  9. Direct carbonate fuel cell power plant operating with logistic fuels

    SciTech Connect

    Abens, S.G.; Steinfeld, G.

    1997-12-31

    In response to the US Department of Defense need for power generators which operate with logistic fuels, Energy Research Corporation and its subcontractors, Haldor Topsoe and Fluor Daniel, have conducted design studies and subscale equipment tests toward the development of fuel cell power plants with multifuel capability. A principal objective of this work was the development of a fixed-base carbonate fuel cell power plant design which can utilize both natural gas and military logistic fuels DF-2 and JP-8. To verify ERC`s technical approach, a 32 kW brassboard logistic fuel preprocessing system was assembled and operated with a Direct Carbonate Fuel Cell (DFC) stack. The project was conducted as part of DARPA`s Fuel Cell Power Plant Initiative Program for the development of dual use fuel cell power plants. The logistic fuel preprocessor consisted of a hydrodesulfurization plant which supplied desulfurized feed to an adiabatic prereformer. The methane-rich product gas provides fuel cell performance similar to that with natural gas. A preliminary design of a 3MW multifuel power plant prepared with input from the 32kW brassboard test confirmed that the thermal efficiency of a DFC power plant is nearly as high with logistic fuel (57%) as it is with natural gas (58%).

  10. Trioxane: A Fuel For Direct-Oxidation Fuel Cells

    NASA Technical Reports Server (NTRS)

    Olah, George A.; Prakash, Surya G.; Narayanan, Sekharipuram R.; Vamos, Eugene; Surampudi, Subbarao

    1995-01-01

    Trioxane identified as high-energy, nontoxic, solid substitute for formaldehyde as water-soluble fuel for use in direct-oxidation fuel cells. Found to undergo facile electrochemical oxidation to water and carbon dioxide at platinum and platinum-alloy electrodes in liquid-feed-type fuel cells that contain acid electrolytes or solid proton-exchange membrane electrolytes. Exhibits less crossover than do such conventional fuels as methanol and formaldehyde. Being solid at ambient temperature, trioxane offers significant advantages in handling and transportation. Synthesized from natural gas with relative ease.

  11. Sodium borohydride based hybrid power system

    NASA Astrophysics Data System (ADS)

    Richardson, Bradley S.; Birdwell, Joseph F.; Pin, François G.; Jansen, John F.; Lind, Randall F.

    Sodium borohydride's properties make it a good source of hydrogen for use with a fuel cell for an on-demand system that is easily controllable and has no idle costs. Previous work, as described in the literature, indicated that ruthenium (Ru) is an efficient catalyst for generating hydrogen from sodium borohydride. Tests were conducted to evaluate catalyst loading with the results of these tests indicating that the hydrolysis rate is affected by the loading of the catalyst. It was also apparent that the substrate surface is not completely occupied by Ru at the lower loadings, and that increased loadings are needed to optimize the reaction rate. A differential rate test with a fixed bed reactor was also conducted. It was observed that temperature has a significant effect on the rate of reaction. Feed rate also affected the rate of reaction with lower feed rates (longer residence time in the reactor) having higher reaction rates. A bench-top hybrid system was also developed and tested. This test bed demonstrated how a system based on a chemically generated hydrogen-fed proton exchange membrane fuel cell could be integrated with batteries to provide a hybrid power system that can meet the demands of a highly varying electrical load up to four times the rated output of the fuel cell.

  12. Direct Fuel Injector Temporal Measurements

    DTIC Science & Technology

    2014-10-01

    ignition timing, and oxides of nitrogen emissions from biodiesel -fueled engines”. Transactions of the Asabe, 50(4): 1123-1128, 2007. 20. Postrioti...SAE Technical Paper 2003-01-0768, 2003, doi:10.4271/2003- 01-0768. 21. Bittle, J., Knight, B., and Jacobs, T., “The Impact of Biodiesel on

  13. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  14. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  15. Chrysler Pentastar direct hydrogen fuel cell program

    SciTech Connect

    Kimble, M.; Deloney, D.

    1995-08-01

    The Chrysler Pentastar Electronics, Inc. Direct Hydrogen Fueled PEM Fuel Cell Hybrid Vehicle Program (DPHV) was initiated 1 July, 1994 with the following mission, {open_quotes}Design, fabricate, and test a Direct Hydrogen Fueled Proton Exchange Membrane (PEM) Fuel Cell System including onboard hydrogen storage, an efficient lightweight fuel cell, a gas management system, peak power augmentation and a complete system controls that can be economically mass produced and comply with all safety environmental and consumer requirements for vehicle applications for the 21st century.{close_quotes} The Conceptual Design for the entire system based upon the selection of an applicable vehicle and performance requirements that are consistent with the PNGV goals will be discussed. A Hydrogen Storage system that has been selected, packaged, and partially tested in accordance with perceived Hydrogen Safety and Infrastructure requirements will be discussed in addition to our Fuel Cell approach along with design of the {open_quotes}real{close_quotes} module. The Gas Management System and the Load Leveling System have been designed and the software programs have been developed and will be discussed along with a complete fuel cell test station that has the capability to test up to a 60 kW fuel cell system.

  16. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  17. Surface modification of carbon fuels for direct carbon fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhu, Zhonghua; Chen, Jiuling; De Marco, Roland; Dicks, Andrew; Bradley, John; Lu, Gaoqing

    The direct carbon fuel cell (DCFC) is a promising power-generation device that has much higher efficiency (80%) and less emissions than conventional coal-fired power plants. Two commercial carbons (activated carbon and carbon black) pre-treated with HNO 3, HCl or air plasma are tested in a DCFC. The correlation between the surface properties and electrochemical performance of the carbon fuels is explored. The HNO 3-treated carbon fuels have the highest electrochemical reactivity in the DCFC due to the largest degree of surface oxygen functional groups. The overall effect on changing the electrochemical reactivity of carbon fuels is in the order HNO 3 > air plasma ≈ HCl. Product gas analysis indicates that complete oxidation of carbon to CO 2 can be achieved at 600-700 °C.

  18. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  19. Direct formate fuel cells: A review

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  20. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  1. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride.

    PubMed

    Rajendran, Kamalraj V; Gilheany, Declan G

    2012-01-21

    A variety of phosphine oxides and sulfides can be efficiently converted directly to the corresponding phosphine boranes using oxalyl chloride followed by sodium borohydride. Optically active P-stereogenic phosphine oxides can be converted stereospecifically to phosphine boranes with inversion of configuration by treatment with Meerwein's salt followed by sodium borohydride. This journal is © The Royal Society of Chemistry 2012

  2. Improved Direct Methanol Fuel Cell Stack

    SciTech Connect

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  3. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  4. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  5. Catalyzed borohydrides for hydrogen storage

    DOEpatents

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  6. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  7. Ejector device for direct injection fuel jet

    DOEpatents

    Upatnieks, Ansis

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  8. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  9. Direct fuel cell product design improvement

    SciTech Connect

    Maru, H.C.; Farooque, M.

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  10. Architecture for portable direct liquid fuel cells

    NASA Astrophysics Data System (ADS)

    Qian, Weimin; Wilkinson, David P.; Shen, Jun; Wang, Haijiang; Zhang, Jiujun

    Direct fuel cells (DFCs) are receiving increased interest for portable power applications. Cell and stack architecture is a vital technical issue for portable DFCs. The architecture of a DFC not only has to meet particular application requirements such as a compact size and easy handling, but also has to ensure desired performance, reliability and fabrication costs. In this paper, the most recent advances related to portable DFCs and their architecture are reviewed. The current status of system architecture, stack/unit cell architecture, flow-field designs and MEA morphology strategies along with analysis are surveyed. In addition, promising methods of passive fuel delivery are also presented.

  11. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  12. The Direct FuelCell™ stack engineering

    NASA Astrophysics Data System (ADS)

    Doyon, J.; Farooque, M.; Maru, H.

    FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.

  13. Towards operating direct methanol fuel cells with highly concentrated fuel

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.

    A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.

  14. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  15. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  16. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  17. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  18. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  19. Advanced direct methanol fuel cells. Final report

    SciTech Connect

    Hamdan, Monjid; Kosek, John A.

    1999-11-01

    The goal of the program was an advanced proton-exchange membrane (PEM) for use as the electrolyte in a liquid feed direct methanol fuel cell which provides reduced methanol crossover while simultaneously providing high conductivity and low membrane water content. The approach was to use a membrane containing precross-linked fluorinated base polymer films and subsequently to graft the base film with selected materials. Over 80 different membranes were prepared. The rate of methanol crossover through the advanced membranes was reduced 90%. A 5-cell stack provided stable performance over a 100-hour life test. Preliminary cost estimates predicted a manufacturing cost at $4 to $9 per kW.

  20. Direct carbon fuel cell: Fundamentals and recent developments

    NASA Astrophysics Data System (ADS)

    Cao, Dianxue; Sun, Yong; Wang, Guiling

    The direct carbon fuel cell is a special type of high temperature fuel cell that directly uses solid carbon as anode and fuel. As an electrical power generator for power plants, it has a higher achievable efficiency (80%) than the molten carbonate and solid oxide fuel cells, and has less emissions than conventional coal-burning power plants. More importantly, its solid carbon-rich fuels (e.g. coal, biomass, organic garbage) are readily available and abundant. In this review, some fundamental study results of electrochemical oxidation of carbon in molten salts are summarized. Recent developments in direct carbon fuel cell configurations and performance are also discussed.

  1. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  2. Selectivity of Direct Methanol Fuel Cell Membranes.

    PubMed

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  3. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  4. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F [Oakland, CA; Cherepy, Nerine [Oakland, CA

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  5. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F [Oakland, CA; Cherepy, Nerine [Oakland, CA

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  6. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  7. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  8. The Direct Methanol Liquid-Feed Fuel Cell

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald

    1997-01-01

    Until the early 1990's the idea of a practical direct methanol fuel cell from transportation and other applications was just that, an idea. Several types of fuel cells that operate under near ambient conditions were under development.

  9. A micro direct methanol fuel cell demonstrator

    NASA Astrophysics Data System (ADS)

    Wozniak, Konrad; Johansson, David; Bring, Martin; Sanz-Velasco, Anke; Enoksson, Peter

    2004-09-01

    The demand for compact power sources with high energy density is increasing. A direct methanol fuel cell (DMFC) is a renewable energy source which works at near room temperature, and allows for easier liquid fuel storage, which makes it a potential candidate. We report the design, fabrication and characterization of a self-driven DMFC made by micromachining techniques and macro-assembly. Several designs were created on the basis of state-of-the-art DMFCs. A simplified mathematical model was used mainly to design the flow channels and verify the polarization curves, which reveal the output power of a cell. Silicon was used as a substrate for the fabrication of electrodes, and the membrane electrode assembly was provided by Ion Power, Inc. A 0.25 cm2 cell showed a performance of 0.29 mW cm-2 and an open circuit voltage of 0.7 V. Ten microliters of 6 M methanol solution is sufficient to operate the cell for more than 1 h.

  10. Interleaved mesoporous copper for the anode catalysis in direct ammonium borane fuel cells.

    PubMed

    Auxilia, Francis M; Tanabe, Toyokazu; Ishihara, Shinsuke; Saravanan, Govindachetty; Ramesh, Gubbala V; Matsumoto, Futoshi; Ya, Xu; Ariga, Katsuhiko; Dakshanamoorthy, Arivuoli; Abe, Hideki

    2014-06-01

    Mesoporous materials with tailored microstructures are of increasing importance in practical applications particularly for energy generation and/or storage. Here we report a mesoporous copper material (MS-Cu) can be prepared in a hierarchical microstructure and exhibit high catalytic performance for the half-cell reaction of direct ammonium borane (NH3BH3) fuel cells (DABFs). Hierarchical copper oxide (CuO) nanoplates (CuO Npls) were first synthesized in a hydrothermal condition. CuO Npls were then reduced at room temperature using water solution of sodium borohydride (NaBH4) to yield the desired mesoporous copper material, MS-Cu, consisting of interleaved nanoplates with a high density of mesopores. The surface of MS-Cu comprised high-index facets, whereas a macroporous copper material (MC-Cu), which was prepared from CuO Npls at elevated temperatures in a hydrogen stream, was surrounded by low-index facets with a low density of active sites. MS-Cu exhibited a lower onset potential and improved durability for the electro-oxidation of NH3BH3 than MC-Cu or copper particles because of the catalytically active mesopores on the interleaved nanoplates.

  11. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes

    PubMed Central

    Rivera Gavidia, Luis M.; Sebastián, David; Pastor, Elena; Aricò, Antonino S.; Baglio, Vincenzo

    2017-01-01

    Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation. PMID:28772937

  12. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes.

    PubMed

    Rivera Gavidia, Luis M; Sebastián, David; Pastor, Elena; Aricò, Antonino S; Baglio, Vincenzo

    2017-05-25

    Direct methanol fuel cells (DMFCs) are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM) and X-ray techniques such as photoelectron spectroscopy (XPS), diffraction (XRD) and energy dispersive spectroscopy (EDX). The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M) and temperatures (60 °C and 90 °C). The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm(-2) at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.

  13. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  14. Chloride substitution in sodium borohydride

    SciTech Connect

    Ravnsbaek, Dorthe B.; Rude, Line H.; Jensen, Torben R.

    2011-07-15

    The dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. The dissolution reaction is facilitated by two methods: ball milling or combination of ball milling and annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples in molar ratios of 0.5:0.5 and 0.75:0.25. The degree of dissolution is studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction (SR-PXD) data. The results show that dissolution of 10 mol% NaCl into NaBH{sub 4}, forming Na(BH{sub 4}){sub 0.9}Cl{sub 0.1}, takes place during ball milling. A higher degree of dissolution of NaCl in NaBH{sub 4} is obtained by annealing resulting in solid solutions containing up to 57 mol% NaCl, i.e. Na(BH{sub 4}){sub 0.43}Cl{sub 0.57}. In addition, annealing results in dissolution of 10-20 mol% NaBH{sub 4} into NaCl. The mechanism of the dissolution during annealing and the decomposition pathway of the solid solutions are studied by in situ SR-PXD. Furthermore, the stability upon hydrogen release and uptake were studied by Sieverts measurements. - Graphical Abstract: Dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. Dissolution is facilitated by two methods: ball milling or annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples. Sample compositions and dissolution mechanism are studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction data. Highlights: > Studies of dissolution of sodium chloride and sodium borohydride into each other. > Solid state diffusion facilitated by mechanical and thermal treatments. > Dissolution is more efficiently induced by heating than by mechanical treatment. > Mechanism for dissolution studied by Rietveld refinement of in situ SR-PXD data.

  15. On direct and indirect methanol fuel cells for transportation applications

    SciTech Connect

    Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

    1995-09-01

    Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

  16. Modified borohydrides for reversible hydrogen storage

    SciTech Connect

    Au, Ming

    2005-08-29

    In attempt to develop lithium borohydrides as the reversible hydrogen storage materials with the high capacity, the feasibility to reduce dehydrogenation temperature of the lithium borohydride and moderate rehydrogenation condition has been explored. The commercial available lithium borohydride has been modified by ball milling with metal oxides and metal chlorides as the additives. The modified lithium borohydrides release 9 wt% hydrogen starting from 473K. The dehydrided modified lithium borohydrides absorb 7-9 wt% hydrogen at 873K and 7 MPa. The additive modification reduces dehydriding temperature from 673K to 473K and moderates rehydrogenation conditions to 923K and 15 MPa. XRD and SEM analysis discovered the formation of the intermediate compound TiB{sub 2} that may plays the key role in change the reaction path resulting the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide modified lithium borohydrides decreases gradually during hydriding-dehydriding cycling due to the lost of the boron during dehydrogenation. But, it can be prevented by selecting the suitable additive, forming intermediate boron compounds and changing the reaction path. The additives reduce dehydriding temperature and improve the reversibility, it also reduces the hydrogen storage capacity. The best compromise can be reached by optimization of the additive loading and introducing new process other than ball milling.

  17. Modified lithium borohydrides for reversible hydrogen storage.

    PubMed

    Au, Ming; Jurgensen, Arthur

    2006-04-06

    In an attempt to develop lithium borohydrides as reversible hydrogen storage materials with high hydrogen storage capacities, the feasibility of reducing the dehydrogenation temperature of the lithium borohydride and moderating rehydrogenation conditions was explored. The lithium borohydride was modified by ball milling with metal oxides and metal chlorides as additives. The modified lithium borohydrides released 9 wt % hydrogen starting from 473 K. The dehydrided modified lithium borohydrides absorbed 7-9 wt % hydrogen at 873 K and 7 MPa. The modification with additives reduced the dehydriding starting temperature from 673 to 473 K and moderated the rehydrogenation conditions from 923 K/15 MPa to 873 K/7 MPa. XRD and SEM analysis revealed the formation of an intermediate compound that might play a key role in changing the reaction path, resulting in the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide-modified lithium borohydrides decreased gradually during hydriding/dehydriding cycling. One of the possible reasons for this effect might be the loss of boron during dehydrogenation, but this can be prevented by changing the dehydriding path using appropriate additives. The additives reduced the dehydriding temperature and improved the reversibility, but they also reduced the hydrogen storage capacity. The best compromise can be reached by selecting appropriate additives, optimizing the additive loading, and using new synthesis processes other than ball milling.

  18. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  19. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2004-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  20. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  1. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  2. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2001-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  3. Recent Advances in High-Performance Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Chun, W.; Valdez, T. I.; Jeffries-Nakamura, B.; Frank, H.; Surumpudi, S.; Halpert, G.; Kosek, J.; Cropley, C.; La Conti, A. B.; hide

    1996-01-01

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed, direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant.

  4. High specific power, direct methanol fuel cell stack

    SciTech Connect

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  5. Static Compression of Tetramethylammonium Borohydride

    SciTech Connect

    Dalton, Douglas Allen; Somayazulu, M.; Goncharov, Alexander F.; Hemley, Russell J.

    2011-11-15

    Raman spectroscopy and synchrotron X-ray diffraction are used to examine the high-pressure behavior of tetramethylammonium borohydride (TMAB) to 40 GPa at room temperature. The measurements reveal weak pressure-induced structural transitions around 5 and 20 GPa. Rietveld analysis and Le Bail fits of the powder diffraction data based on known structures of tetramethylammonium salts indicate that the transitions are mediated by orientational ordering of the BH{sub 4}{sup -} tetrahedra followed by tilting of the (CH{sub 3}){sub 4}N{sup +} groups. X-ray diffraction patterns obtained during pressure release suggest reversibility with a degree of hysteresis. Changes in the Raman spectrum confirm that these transitions are not accompanied by bonding changes between the two ionic species. At ambient conditions, TMAB does not possess dihydrogen bonding, and Raman data confirms that this feature is not activated upon compression. The pressure-volume equation of state obtained from the diffraction data gives a bulk modulus [K{sub 0} = 5.9(6) GPa, K'{sub 0} = 9.6(4)] slightly lower than that observed for ammonia borane. Raman spectra obtained over the entire pressure range (spanning over 40% densification) indicate that the intramolecular vibrational modes are largely coupled.

  6. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  7. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  8. Diborane release and structure distortion in borohydrides.

    PubMed

    Callini, Elsa; Borgschulte, Andreas; Ramirez-Cuesta, Anibal Javier; Züttel, Andreas

    2013-01-21

    Hydrogen desorption from borohydrides is often accompanied by the release of diborane. The amount of diborane released as a byproduct during the decomposition of borohydrides scales inversely with the borohydride stability, which in turn depends on the electronegativity of the corresponding cation. We present a model based on the difference between the symmetric and asymmetric assembly of B(2)H(6) units at the surface. The origin of this reaction is the degree of distortion of the BH(4)(-) anions in the bulk, hitherto depending on the degree of ionization of the cation. A practical measure of the distortion is the range in which the stretching vibration modes appear, which is the difference in the energy of the stretching vibrations of hydrogen atoms with maximum different bonding lengths (Badger's rule). We propose from this relation that the diborane released from the surface of the relatively unstable LiZn(2)(BH(4))(5) is formed from a recombination of BH(2)(δ+) and BH(4)(δ-) units. Ultra high vacuum mass spectroscopy measurements support the presented model and clarify the decomposition of stable borohydrides, such as LiBH(4). The sublimation of borohydrides in UHV competes with their decomposition.

  9. DIRECT AMMONIA-AIR FUEL CELL.

    DTIC Science & Technology

    fuel cell was investigated. This cell is based on the use of a non-aqueous fused hydroxide electrolyte matrix, and operates in the intermediate temperature range of 180-300 C. Studies have been carried out to determine the nature of the ratecontrolling step in the kinetics of the anodic oxidation of ammonia. A new type of Ni/NiOOH reference electrode was developed for the measurement of single electrode potentials in experimental galvanic fuel cells employing this type of matrix electrolyte. In addition to various exploratory studies, two statistical analysis

  10. A direct ascorbate fuel cell with an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.

    2017-05-01

    Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.

  11. Capillary siphons and their application in the fuel delivery system of direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Guo, Zhen

    The objective of the work is to develop a fuel delivery system for potable direct methanol fuel cell. Currently, one of the most fundamental limitations of direct methanol fuel cells is that the fuel supplied to the anode of the DMFC must be a very dilute aqueous methanol solution (usually 0.5˜1.5 M). If a DMFC is filled with a dilute aqueous methanol solution, the fuel cell operation time per refuel would be very short, which would considerably diminish the advantage of a DMFC over a conventional battery. To overcome this difficulty, a complex fuel delivery system based on the modern micro system technology was proposed by the author. The proposed fuel delivery system would include micro-pumps, a methanol sensor, and a control unit. The fuel delivery system adds considerable costs to the fuel cell system and consume considerable amount of electricity from the fuel cell, which in turn significantly reduces the net power output of the fuel cell. As a result, the DMFC would have tremendous difficulty to compete with the conventional battery technology in terms of costs and power output. This work presents a novel passive fuel delivery system for direct methanol fuel cells. In this particular system, a methanol fuel and an aqueous methanol solution are stored separately in two containers and a wick is disposed between the two containers in a siphon fashion, with the container of the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the aqueous solution container in-situ when the methanol in the aqueous methanol solution is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC could be maintained within a preferable range.

  12. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  13. On direct and indirect methanol fuel cells for transportation applications

    SciTech Connect

    Gottesfield, S.

    1996-04-01

    Research on direct oxidation methanol fuel cells (DMFCs) and polymer electrolyte fuel cells (PEFCs) is discussed. Systems considered for transportation applications are addressed. The use of platinum/ruthenium anode electrocatalysts and platinum cathode electrocatalysts in polymer electrolyte DMFCs has resulted in significant performance enhancements.

  14. The JPL Direct Methanol Liquid-feed PEM Fuel Cell

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Surampudi, S.

    1994-01-01

    Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...

  15. Parametric Design Studies on a Direct Liquid Feed Fuel Cell

    NASA Technical Reports Server (NTRS)

    Frank, H. A.; Narayanan, S. R.; Nakamura, B.; Surampudi, S.; Halpert, G.

    1995-01-01

    Parametric design studies were carried out on a direct methanol liquid feed fuel cell employing 1 M MeOH fuel, air and oxygen as oxidant in a 2 inch x 2 inch cell employing polymeric electrolyte membranes. Measurements include voltage-current output parameters, methanol crossover rate, and impedance as a function of several design and operational variables. Design variables are described.

  16. Fuel Cross Leak of Direct Di-methyl-ether Fuel Cell

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasuyuki; Nakano, Yasuhiro; Haraguchi, Tadao

    Fuel cross leak through a polymer electrolyte membrane of the direct dimethyl ether fuel cell (DDFC) was investigated and was found to be approximately one-tenth that of the direct methanol fuel cell (DMFC). Three phenomena known to appear in the DMFC were also observed in the DDFC. These were (1) fuel cross leak due to the diffusion which increases with the fuel concentration on an open circuit condition, (2) electro-osmotic cross leak, which increases with the current density and fuel concentration, and (3) decrease of fuel cross leak with the increase of the current density due to fuel consumption at low fuel concentration. The decreased fuel cross leak realized by using Nafion ®117 as a membrane and the low fuel concentration of 11% resulted in an increase of the Farady efficiency of the DDFC of up to 90% at a current density of 80mA/cm2. The CO2 quantity at the anode outlet of the operating DDFC was slightly less than 2 mol per 12 protons, as estimated from an electrochemical reaction on the anode. The CO2 quantity at the cathode outlet was also investigated. The CO2 cross leak increased with current density at every CO2 concentration and the diffusion appeared to be the dominant phenomenon of the CO2 cross leak.

  17. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  18. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  1. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  2. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  3. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  4. Direct hydrogen fuel cell systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  5. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.

    PubMed

    Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L

    2013-05-01

    Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells.

  6. Modeling and Simulation of the Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Wohr, M.; Narayanan, S. R.; Halpert, G.

    1996-01-01

    From intro.: The direct methanol liquid feed fuel cell uses aqueous solutions of methanol as fuel and oxygen or air as the oxidant and uses an ionically conducting polymer membrane such as Nafion(sup r)117 and the electrolyte. This type of direct oxidation cell is fuel versatile and offers significant advantages in terms of simplicity of design and operation...The present study focuses on the results of a phenomenological model based on current understanding of the various processed operating in these cells.

  7. INERT-MATRIX FUEL: ACTINIDE ''BURINGIN'' AND DIRECT DISPOSAL

    SciTech Connect

    Rodney C. Ewing; Lumin Wang

    2002-10-30

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers.

  8. Liquid fuels by direct liquefaction of biomass

    SciTech Connect

    Davis, H.G.; Figueroa, C.; Schaleger, L.L.

    1982-03-01

    Conversion of Douglas fir wood chips to a crude fuel oil, under an atmosphere of carbon monoxide, hydrogen and steam has been accomplished by at least two proceses. An oil-wood-flour slurry (oil recycle) process has been operated smoothly at DOE's process development unit (PDU) in Albany, Oregon. Operability was achieved at the cost of extremely high recycle ratio of product oil (about 19/1) and of effluent water. A single pass, water-slurry process, originally developed at the Lawrence Berkeley Laboratory (LBL), has also been tested at Albany. LBL is currently operating a bench-scale continuous liquefaction unit. The feedstock has been an aqueous slurry of prehydrolyzed Douglas fir wood chips. Yields of oil product are higher than was estimated from the Albany experience but are consistently lower than achieved by the recycle process. The difference is real, and is caused by a greater formation of water-soluble products such as carboxylic acids in the water-slurry process. In work to date at LBL, no significant difference in either oil yield or product analysis has been found when the CO-H/sub 2/ reactant gas mixture is replaced by either CO or H/sub 2/ alone. Since CO feed largely reacts to form H/sub 2/ and CO/sub 2/ by shift reaction, it is economically desirable to use a hydrogen-rich reaction gas. The product oil is a crude material, feedable as a heavy liquid fuel oil at temperatures somewhat above ambient, very low in sulfur and nitrogen, but containing 10 to 19% oxygen, largely as phenols. The crude product has been shown to be capable of replacing number 6 fuel oil in the test boiler at the Pittsburgh Energy Technology Center. Process flow sheets, stoichiometry, operating problems, and methods of product characterization are discussed, as well as possibilities for an improved process.

  9. Plants can be a direct fuel source

    SciTech Connect

    Calvin, M.; Nemethy, E.K.; Redenbaugh, K.; Otvos, J.W.

    1982-06-01

    Euphorbia lathyrus is a biennial shrub that grows wild in semi-arid regions of California and produces a hydrocarbon-containing latex. The current stage of research to assess its potential as an ''energy farm'' species is reported here. Information is required in four basic areas: (1) crop yield and cultivation conditions; (2) optimum methods of extracting the useful components and chemical characterization of the plant extracts; (3) suitable methods for modification of the plant extracts to liquid fuel form; and (4) various methods of increasing the 'hydrocarbon' content via plant selection, hormone treatment, or by tissue culture techniques. (Refs. 9).

  10. Recent advances in high-performance direct methanol fuel cells

    SciTech Connect

    Narayanan, S.R.; Chun, W.; Valdez, T.I.

    1996-12-31

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

  11. Direct deposit of catalyst on the membrane of direct feed fuel cells

    NASA Technical Reports Server (NTRS)

    Chun, William (Inventor); Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor); Linke, Juergen (Inventor)

    2001-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Catalyst utilization and catalyst/membrane interface improvements are disclosed. Specifically, the catalyst layer is applied directly onto the membrane electrolyte.

  12. Transition metal based borohydrides for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Jayanthi, Chakram; Liu, Jianjun; Wei, Suhuai; Zhao, Yufeng

    2010-03-01

    Using ab-initio studies based on the density-functional theory, we have calculated binding energies per hydrogen molecule for decomposition reactions of transition metal borohydrides MHxB12H12 to MB12 structures, where M corresponds to Sc, Ti, or V. Depending on the valence of the transition metal, x can be 1, 2, or 3. Crystal structures considered for MB12 included both hypothetical and those found in the international crystallographic structural database. On the other hand, the crystal structure considered for MHxB12H12 belongs to C2/c (space group 15) structure as reported in a previous study [V. Ozolins et al. JACS, 131, 230 (2009)]. Among the structures investigated, Titanium-based metal borohydride structure has the lowest binding energy per hydrogen molecule relative to the cubic TiB12 structure (˜0.37 eV/H2). Our finding should be contrasted with the binding energy/H2 for simple metal based borohydrides (e.g., CaB12H12 ), which has a value of ˜ 1.5 eV/H2, suggesting that transition metals play a significant role in lowering the H2 binding energy in borohydrides.

  13. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  14. Single passive direct methanol fuel cell supplied with pure methanol

    NASA Astrophysics Data System (ADS)

    Feng, Ligang; Zhang, Jing; Cai, Weiwei; Liang, Liang; Xing, Wei; Liu, Changpeng

    2011-03-01

    A new single passive direct methanol fuel cell (DMFC) supplied with pure methanol is designed, assembled and tested using a pervaporation membrane (PM) to control the methanol transport. The effect of the PM size on the fuel cell performances and the constant current discharge of the fuel cell with one-fueling are studied. The results show that the fuel cell with PM 9 cm2 can yield a maximum power density of about 21 mW cm-2, and a stable performances at a discharge current of 100 mA can last about 45 h. Compared with DMFC supplied with 3 M methanol solution, the energy density provided by this new DMFC has increased about 6 times.

  15. High performance direct methanol fuel cell with thin electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  16. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  17. Direct methanol/air fuel cells: Systems considerations

    SciTech Connect

    Huff, J.R.

    1990-01-01

    Successful operation of a direct methanol/air fuel cell system depends upon appropriate integration of the fuel cell components and accommodation of the need for heat and mass transfer within the system. The features of the system that must be considered separately and in an interactive fashion are: (1) the physical state of the fuel feed stream, (2) electrode characteristics, (3) characteristics of the electrolyte, (4) product water removal, (5) heat transfer into our out of the stack, and (6) methanol loss modes. The operating temperature and pressure will be determined, to a large extent, by these features. An understanding of the component features and their interactions is necessary for initial system considerations for direct methanol/air fuel cells.

  18. Methanol crossover in direct methanol fuel cell systems.

    SciTech Connect

    Pivovar, B. S.; Bender, G.; Davey, J. R.; Zelenay, P.

    2003-01-01

    Direct methanol fuel cells (DMFCs) are currently being investigated for a number of different applications from several milliwatts to near kilowatt size scales (cell phones, laptops, auxiliary power units, etc .). Because methanol has a very high energy density, over 6000 W hr/kg, a DMFC can possibly have greatly extended lifetimes compared to the batteries, doesn't present the storage problems associated with hydrogen fuel cells and can possibly operate more efficiently and cleanly than internal combustion engines.

  19. Complex metal borohydrides: multifunctional materials for energy storage and conversion.

    PubMed

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-07

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  20. Complex metal borohydrides: multifunctional materials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world’s energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  1. Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi

    2006-01-01

    A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions

  2. Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi

    2006-01-01

    A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions

  3. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  4. A Computer Model for Direct Carbonate Fuel Cells

    SciTech Connect

    Ding, J.; Patel, P.S.; Farooque, M.; Maru, H.C.

    1997-04-01

    A 3-D computer model, describing fluid flow, heat and mass transfer, and chemical and electrochemical reaction processes, has been developed for guiding the direct carbonate fuel cell (DFC) stack design. This model is able to analyze the direct internal reforming (DIR) as well as the integrated IIR (indirect internal reforming)-DIR designs. Reasonable agreements between computed and fuel cell tested results, such as flow variations, temperature distributions, cell potentials, and exhaust gas compositions as well as methane conversions, were obtained. Details of the model and comparisons of the modeling results with experimental DFC stack data are presented in the paper.

  5. MODIFIED BOROHYDRIDES FOR REVERSIBLE HYDROGEN STORAGE

    SciTech Connect

    Au, Ming

    2006-05-10

    This paper reports the results in the effort to destabilize lithium borohydride for reversible hydrogen storage. A number of metals, metal hydrides, metal chlorides and complex hydrides were selected and evaluated as the destabilization agents for reducing dehydriding temperature and generating dehydriding-rehydriding reversibility. It is found that some additives are effective. The Raman spectroscopic analysis shows the change of B-H binding nature.

  6. BIMETALLIC LITHIUM BOROHYDRIDES TOWARD REVERSIBLE HYDROGEN STORAGE

    SciTech Connect

    Au, M.

    2010-10-21

    Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.

  7. Direct fuel cells: Putting power where you need it!

    SciTech Connect

    Glenn, D.R.

    1996-12-31

    The world`s largest capacity carbonate fuel cell power plant is expected to commence operation at a substation located in California on the City of Santa Clara`s electric system in the first half of 1996. With a nominal capacity of two megawatts (1.8-MW delivered), the plant is a first-of-a-kind demonstration of a power system based on an internally-reforming fuel cell technology called the Direct Fuel Cell (DFC), developed by the Energy Research Corporation (ERC). As important as the introduction of the technology itself, is its use in a distributed generation strategy. The power plant being demonstrated at Santa Clara is an enabling technology to advance the applicability of locally-sited generation usually at smaller scales, say 1-6 megawatts, near served loads. This is not a new idea as it relates to previous incarnations as total energy systems or cogenerators, where the by-product heat from the usually inefficient combustion-driven generator is recovered and applied for spaceheating, raising steam, etc. What makes the fuel cell-based system special is that it operates quietly, emits virtually no pollution, and converts the energy value of the inlet gaseous fuel(s) to electricity electrochemically (non-Carnot cycle limited). For the ERC technology, this translates to attainable electric efficiencies of over 50%, or heat rates of less than 6800 BTU/kWh, even in smaller size equipment.

  8. Porous silicon-based direct hydrogen sulphide fuel cells.

    PubMed

    Dzhafarov, T D; Yuksel, S Aydin

    2011-10-01

    In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.

  9. Direct LSC method for measurements of biofuels in fuel.

    PubMed

    Krištof, Romana; Logar, Jasmina Kožar

    2013-07-15

    Direct liquid scintillation counting (LSC) for quantification of biofuels content in fuels was implemented and validated on three liquid fossil fuel matrices-ethanol, gasoline and diesel. Fatty acid methyl esters (FAMEs), hydrogenated vegetable oils (HVO) and bio-ethanol were used as biofuels. The method is applicable in the range up to 100% for all tested combinations of bio components. The sensitivity and precision of the method are suitable for determination of bio component content in the blends which is appearing on the global market. The method does not require special equipment for sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A direct 2-propanol polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Cao, Dianxue; Bergens, Steven H.

    We report the performance of a polymer electrolyte membrane direct 2-propanol fuel cell (DPFC). The cell consisted of a Pt-Ru (atomic ratio of 1:1) black anode, a Pt black cathode, and a Nafion ®-117 membrane electrolyte. The cell was operated at 90 °C with aqueous 2-propanol as fuel and with oxygen as oxidant. The performance of the cell operating on 2-propanol is substantially higher than when it was operating on methanol at current densities lower than ˜200 mA/cm 2. The electrical efficiency of the direct 2-propanol fuel cell is nearly 1.5 times that of the direct methanol fuel cell at power densities below 128 mW/cm 2. Studies on the effects of electrocatalyst loading, of 2-propanol concentration, and of oxygen pressure on cell performance indicate that the cells operating on 2-propanol require lower anode and cathode loadings than cells operating on methanol. Cathode poisoning by 2-propanol is less severe than by methanol. Hydrogen gas evolution observed at the anode at low current densities indicated that catalytic dehydrogenation of 2-propanol occurred over the anode catalyst. A rapid voltage drop occurred at high current densities and after operating the cell for extended periods of time at constant current. The rapid voltage drop is an anode phenomenon.

  11. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    SciTech Connect

    Oei, D.; Adams, J.A.; Kinnelly, A.A.

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  12. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    NASA Astrophysics Data System (ADS)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  13. A development of direct hydrazine/hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Lao, Shao Jiang; Qin, Hai Ying; Ye, Li Qiang; Liu, Bin Hong; Li, Zhou Peng

    A direct hydrazine fuel cell using H 2O 2 as the oxidizer has been developed. The N 2H 4/H 2O 2 fuel cell is assembled by using Ni-Pt/C composite catalyst as the anode catalyst, Au/C as the cathode catalyst, and Nafion membrane as the electrolyte. Both anolyte and catholyte show significant influences on cell voltage and cell performance. The open-circuit voltage of the N 2H 4/H 2O 2 fuel cell reaches up to 1.75 V when using alkaline N 2H 4 solution as the anolyte and acidic H 2O 2 solution as the catholyte. A maximum power density of 1.02 W cm -2 has been achieved at operation temperature of 80 °C. The number of electrons exchanged in the H 2O 2 reduction reaction on Au/C catalyst is 2.

  14. A microfluidic direct formate fuel cell on paper.

    PubMed

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC)

    DTIC Science & Technology

    2008-04-09

    Oxide Fuel Cell (LTA- SOFC ) Prepared By CellTech Power , LLC, 131 Flanders Road, MA, 01581 April, 2008 Final Report Contract... REPORT Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA- SOFC ) 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This...logistic fuel only. The aim of this program was to advance LTA- SOFC technology with respect to direct conversion of JP-8. U 1. REPORT DATE (DD-MM-YYYY) 4

  16. Methods for continuous direct carbon fuel cell operation with a circulating electrolyte slurry

    DOEpatents

    Harjes, Daniel I.; Dineen, Jr., D. Andrew; Guo, Liang; Calo, Joseph M.; Bloomfield, Valerie J.

    2017-02-07

    The present invention relates to methods and systems related to fuel cells, and in particular, to direct carbon fuel cells. The methods and systems relate to cleaning and removal of components utilized and produced during operation of the fuel cell, regeneration of components utilized during operation of the fuel cell, and generating power using the fuel cell.

  17. A passive fuel delivery system for portable direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Cao, Y.

    A passive device is utilized for transferring methanol into water through a wick material. The wick material preferentially has a higher wicking capability with respect to methanol than water, and operates in a siphon fashion with the intake end in contact with methanol and the discharge end in contact with water. Due to the difference of wicking capabilities, a net amount of methanol is pumped into water. The device described above is used as a fuel delivery component for a liquid-feed fuel cell system, such as a direct methanol fuel cell (DMFC), which directly utilizes a liquid fuel without an intermediate reforming process. In the present experimental study, methanol and water are stored separately in two containers and a wick is positioned between the containers as a siphon, with the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the water container in situ when the methanol in the water is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC was maintained within a preferred range.

  18. Fuel evaporation rate control system for a direct fuel injection type internal combustion engine

    SciTech Connect

    Sasaki, S.

    1987-05-26

    A fuel evaporation rate control system is described for a direct fuel injection type spark ignition internal combustion engine including a cylinder, a piston reciprocally movable in the cylinder, a concave wall portion located in the top of the piston to define a combustion chamber. The wall portion has a front surface facing the inside of the piston. Means directly inject fuel into the combustion chamber onto the front surface of the combustion chamber wall such that the fuel adhering onto the combustion chamber wall is evaporated by heat from the wall to generate a combustible mixture gas. The system comprises: an oil path for supplying oil to the engine; and a nozzle means connected to the oil path for spraying a cooling oil jet onto the back surface of the combustion chamber wall so as to control the combustion chamber wall temperature for limiting the evaporation rate of the fuel adhering onto the front surface of the combustion chamber wall. The wall has a heat insulating structure and the nozzle means are located below the piston.

  19. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  20. Metal borohydrides and derivatives - synthesis, structure and properties.

    PubMed

    Paskevicius, Mark; Jepsen, Lars H; Schouwink, Pascal; Černý, Radovan; Ravnsbæk, Dorthe B; Filinchuk, Yaroslav; Dornheim, Martin; Besenbacher, Flemming; Jensen, Torben R

    2017-03-06

    A wide variety of metal borohydrides, MBH4, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural flexibility and a wide range of compositions and physical properties. Metal borohydrides receive increasing interest within the energy storage field due to their extremely high hydrogen density and possible uses in batteries as solid state ion conductors. Recently, new types of physical properties have been explored in lanthanide-bearing borohydrides related to solid state phosphors and magnetic refrigeration. Two major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4(-), is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery of new metal borohydrides with tailored properties towards the rational design of novel functional materials. This review also demonstrates that there is still room for discovering new combinations of light elements including boron and hydrogen, leading to complex hydrides with extreme flexibility in composition, structure and properties.

  1. Direct methanol feed fuel cell with reduced catalyst loading

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    1999-01-01

    Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.

  2. Performance of direct methanol polymer electrolyte fuel cell

    SciTech Connect

    Shin, Dong Ryul; Jung, Doo Hwan; Lee, Chang Hyeong; Chun, Young Gab

    1996-12-31

    Direct methanol fuel cells (DMFC) using polymer electrolyte membrane are promising candidate for application of portable power sources and transportation applications because they do not require any fuel processing equipment and can be operated at low temperature of 60{degrees}C - 130{degrees}C. Elimination of the fuel processor results in simpler design, higher operation reliability, lower weight volume, and lower capital and operating cost. However, methanol as a fuel is relatively electrochemical inert, so that kinetics of the methanol oxidation is too slow. Platinum and Pt-based binary alloy electrodes have been extensively studied for methanol electro-oxidation in acid electrolyte at ambient and elevated temperatures. Particularly, unsupported carbon Pt-Ru catalyst was found to be superior to the anode of DMFC using a proton exchange membrane electrolyte (Nafion). The objective of this study is to develop the high performance DNTC. This paper summarizes the results from half cell and single cell tests, which focus on the electrode manufacturing process, catalyst selection, and operating conditions of single cell such as methanol concentration, temperature and pressure.

  3. Studies on an ultrasonic atomization feed direct methanol fuel cell.

    PubMed

    Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao

    2017-01-01

    Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fabric-based alkaline direct formate microfluidic fuel cells.

    PubMed

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-04-01

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm(2) ) and power (4.40 mW/cm(2) ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  6. Direct formic acid microfluidic fuel cell design and performance evolution

    NASA Astrophysics Data System (ADS)

    Moreno-Zuria, A.; Dector, A.; Cuevas-Muñiz, F. M.; Esquivel, J. P.; Sabaté, N.; Ledesma-García, J.; Arriaga, L. G.; Chávez-Ramírez, A. U.

    2014-12-01

    This work reports the evolution of design, fabrication and testing of direct formic acid microfluidic fuel cells (DFAμFFC), the architecture and channel dimensions are miniaturized from a thousand to few cents of micrometers. Three generations of DFAμFFCs are presented, from the initial Y-shape configuration made by a hot pressing technique; evolving into a novel miniaturized fuel cell based on microfabrication technology using SU-8 photoresist as core material; to the last air-breathing μFFC with enhanced performance and built with low cost materials and processes. The three devices were evaluated in acidic media in the presence of formic acid as fuel and oxygen/air as oxidant. Commercial Pt/C (30 wt. % E-TEK) and Pd/C XC-72 (20 wt. %, E-TEK) were used as cathode and anode electrodes respectively. The air-breathing μFFC generation, delivered up to 27.3 mW cm-2 for at least 30 min, which is a competitive power density value at the lowest fuel flow of 200 μL min-1 reported to date.

  7. Analytical performance of direct-hydrogen-fueled polymer electrolyte fuel cell (PEFC) systems for transportation applications.

    SciTech Connect

    Doss, E. D.

    1998-06-02

    The performance of a stand-alone polymer electrolyte fuel cell (PEFC) system directly fueled by hydrogen has been evaluated for transportation vehicles. The study was carried out using a systems analysis code and a vehicle analysis code. The systems code includes models for the various PEFC components and is applicable for steady-state and transient situations. At the design point the system efficiency is above 50% for a 50-kW system. The efficiency improves under partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the V-I polarization curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and eventually the fuel cell. The system performance suffers at lower temperatures, as the V-I characteristic curve for the fuel cell shifts downward because of the increased ohmic losses. The results of the transient analysis indicate that the hydrogen-fueled PEFC system can start rather rapidly, within seconds from ambient conditions. However, the warm-up time constant to reach the design operating temperatures is about 180 s. It is important during this period for the coolant to bypass the system radiator until the coolant temperature approaches the design temperature for the fuel cell. The systems analysis code has been applied to two mid-size vehicles: the near-term Ford AIV Sable and the future P2000 vehicle. The results of this study show that the PEFC system in these vehicles can respond well to the demands of the FUDS and Highway driving cycles, with both warm and cold starting conditions. The results also show that the fuel-cell AIV Sable vehicle has impressive gains in fuel economy over that of the internal combustion engine vehicle. However, this vehicle will not be able to meet the PNGV goal of 80 mpg. On the other hand, the P2000 vehicle approaches this goal with variable efficiency of the compressor and expander. It is expected

  8. Analytical performance of direct-hydrogen fueled polymer electrolyte fuel cell (PEFC) systems for transportation applications

    SciTech Connect

    Doss, E.D.; Ahluwalia, R.; Kumar, R.

    1998-07-01

    The performance of a stand-alone polymer electrolyte fuel cell (PEFC) system directly fueled by hydrogen has been evaluated for transportation vehicles. The study was carried out using a systems analysis code and a vehicle analysis code. The systems code includes models for the various PEFC components and is applicable for steady-state and transient situations. At the design point, the system efficiency is above 50% for a 50-kW system. The efficiency improves under partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the V-I polarization curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and eventually the fuel cell. The system performance suffers at lower temperatures, as the V-I characteristic curve for the fuel cell shifts downward because of the increased ohmic losses. The results of the transient analysis indicate that the hydrogen-fueled PEFC system can start rather rapidly, within seconds from ambient conditions. However, the warm-up time constant to reach the design operating temperatures is about 180 s. It is important during this period for the coolant to bypass the system radiator until the coolant temperature approaches the design temperature for the fuel cell. The systems analysis code has been applied to two mid-size vehicles: the near-term Ford AIV Sable and the future P2000 vehicle. The results of this study show that the PEFC system in these vehicles can respond well to the demands of the FUDS and Highway driving cycles, with both warm and cold starting conditions. The results also show that the fuel-cell AIV Sable vehicle has impressive gains in fuel economy over that of the internal combustion engine vehicle. However, this vehicle will not be able to meet the PNGV goal of 80 mpg. On the other hand, the P2000 vehicle approaches this goal with variable efficiency of the compressor and expander. It is

  9. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect

    Carlstrom, Charles, M., Jr.

    2009-07-07

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have

  10. Performance evaluation of direct methanol fuel cells for portable applications

    NASA Astrophysics Data System (ADS)

    Rashidi, R.; Dincer, I.; Naterer, G. F.; Berg, P.

    This study examines the feasibility of powering a range of portable devices with a direct methanol fuel cell (DMFC). The analysis includes a comparison between a Li-ion battery and DMFC to supply the power for a laptop, camcorder and a cell phone. A parametric study of the systems for an operational period of 4 years is performed. Under the assumptions made for both the Li-ion battery and DMFC system, the battery cost is lower than the DMFC during the first year of operation. However, by the end of 4 years of operational time, the DMFC system would cost less. The weight and cost comparisons show that the fuel cell system occupies less space than the battery to store a higher amount of energy. The weight of both systems is almost identical. Finally, the CO 2 emissions can be decreased by a higher exergetic efficiency of the DMFC, which leads to improved sustainability.

  11. Deposition of Poly(diphenylamine-co-3-aminobenzonitrile)/Palladium Nanocomposite Film and Evaluation of Electrocatalytic Activity Toward Borohydride Oxidation.

    PubMed

    Philips, M Francklin; Lee, Kwang-Pill; Gopalan, Anantha Iyengar

    2015-09-01

    New nanocomposites, poly(diphenylamine-co-3-aminobenzonitrile)/palladium (P(DPA-co-3ABN)/Pd) and poly(diphenylamine)/palladium (PDPA/Pd), have been prepared by pulse potentiostatic method and used as electrocatalysts for borohydride oxidation. Linear sweep voltammogram of P(DPA-co-3ABN)/Pd-ME exhibited the oxidation wave between -0.8 V and 0.4 V that corresponds to the direct, potentially four-electron, oxidation of borohydride ions. The peak current for borohydride oxidation is much higher at P(DPA-co-3ABN)/Pd-ME electrode as compared to PDPA/Pd-ME. The incorporation of 3ABN units augments electrocatalytic behavior and thermal stability for the P(DPA-co-3ABN)/Pd catalyst.

  12. Quaternary ammonium borohydride adsorption in mesoporous silicate MCM-48

    SciTech Connect

    Wolverton, Michael J; Daemen, Luke L; Hartl, Monika A

    2010-01-01

    Inorganic borohydrides have a high gravimetric hydrogen density but release H2 only under energetically unfavorable conditions. Surface chemistry may help in lowering thermodynamic barriers, but inclusion of inorganic borohydrides in porous silica materials has proved hitherto difficult or impossible. We show that borohydrides with a large organic cation are readily adsorbed inside mesoporous silicates, particularly after surface treatment. Thermal analysis reveals that the decomposition thermodynamics of tetraalkylammonium borohydrides are substantially affected by inclusion in MCM-48. Inelastic neutron scattering (INS) data show that the compounds adsorb on the silica surface. Evidence of pore loading is supplemented by DSC/TGA, XRD, FTIR, and BET isotherm measurements. Mass spectrometry shows significant hydrogen release at lower temperature from adsorbed borohydrides in comparison with the bulk borohydrides. INS data measured for partially decomposed samples indicates that the decomposition of the cation and anion is likely simultaneous. Additionally, these data confirm the formation of Si-H bonds on the silica surface upon decomposition of adsorbed tetramethylammonium borohydride.

  13. THE STABILITY AND REVERSIBILITY OF METALLIC BOROHYDRIDES

    SciTech Connect

    Au, M

    2007-07-27

    In effort to develop reversible metallic borohydrides with high hydrogen storage capacity and low dehydriding temperature, several new materials have been synthesized by modifying LiBH{sub 4} with various metal halides and hydrides. The investigation shows that the halide modification effectively reduced the dehydriding temperature through ion exchange interaction. The effective halides are TiCl{sub 3}, TiF{sub 3}, ZnF{sub 2} and AlF{sub 3}. The material LiBH{sub 4}+0.1TiF{sub 3} desorbs 3.5wt% and 8.5wt% hydrogen at 150 C and 450 C respectively. It re-absorbed 6wt% hydrogen at 500 C and 70 bar after dehydrogenation. The XRD of the rehydrided samples confirmed the formation of LiBH{sub 4}. It indicates that the materials are reversible at the conditions given. However, a number of other halides: MgF{sub 2}, MgCl{sub 2}, CaCl{sub 2}, SrCl{sub 2} and FeCl{sub 3}, did not reduce dehydriding temperature of LiBH{sub 4} significantly. TGA-RGA analysis indicated that some halide modified lithium borohydrides such as LiBH{sub 4}+0.1ZnF{sub 2} evolved diborane during dehydrogenation, but some did not such as LiBH{sub 4}+0.1TiCl{sub 3}. The formation of diborane caused unrecoverable capacity loss resulting in irreversibility. It is suggested that the lithium borohydrides modified by the halides containing the metals that can not form metal borides with boron are likely to evolve diborane during dehydriding. It was discovered that halide modification reduces sensitivity of LiBH{sub 4}. The materials such as LiBH{sub 4}+0.1TiCl{sub 3} and LiBH{sub 4}+0.5TiCl{sub 3} can be handled in open air without visible reaction.

  14. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect

    Murph, S.

    2012-09-12

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  15. A Direct Carbon Fuel Cell with a Molten Antimony Anode

    SciTech Connect

    Jayakumar, Abhimanyu; Kungas, Rainer; Roy, Sounak; Javadekar, Ashay; Buttrey, Douglas J.; Vohs, John M.; Gorte, Raymond J.

    2011-01-01

    The direct utilization of carbonaceous fuels is examined in a solid oxide fuel cell (SOFC) with a molten Sb anode at 973 K. It is demonstrated that the anode operates by oxidation of metallic Sb at the electrolyte interface, with the resulting Sb₂O₃ being reduced by the fuel in a separate step. Although the Nernst Potential for the Sb-Sb₂O₃ mixture is only 0.75 V, the electrode resistance associated with molten Sb is very low, approximately 0.06 Ωcm², so that power densities greater than 350 mW cm⁻² were achieved with an electrolyte-supported cell made from Sc-stabilized zirconia (ScSZ). Temperature programmed reaction measurements of Sb₂O₃ with sugar char, rice starch, carbon black, and graphite showed that the Sb₂O₃ is readily reduced by a range of carbonaceous solids at typical SOFC operating conditions. Finally, stable operation with a power density of 300 mW cm⁻² at a potential of 0.5 V is demonstrated for operation on sugar char.

  16. Direct disposal of spent fuel: developing solutions tailored to Japan

    SciTech Connect

    Kawamura, Hideki; McKinley, Ian G

    2013-07-01

    With the past Government policy of 100% reprocessing in Japan now open to discussion, options for direct disposal of spent fuel (SF) are now being considered in Japan. The need to move rapidly ahead in developing spent fuel management concepts is closely related to the ongoing debate on the future of nuclear power in Japan and the desire to understand the true costs of the entire life cycle of different options. Different scenarios for future nuclear power - and associated decisions on extent of reprocessing - will give rise to quite different inventories of SF with different disposal challenges. Although much work has been carried out spent fuel disposal within other national programmes, the potential for mining the international knowledge base is limited by the boundary conditions for disposal in Japan. Indeed, with a volunteer approach to siting, no major salt deposits and few undisturbed sediments, high tectonic activity, relatively corrosive groundwater and no deserts, it is evident that a tailored solution is needed. Nevertheless, valuable lessons can be learned from projects carried out worldwide, if focus is placed on basic principles rather than implementation details. (authors)

  17. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  18. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator.

  19. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect

    Foral, M.J.

    1990-01-01

    The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of the various options will be performed as experimental data become available.

  20. Low Fuel Convergence Path to Direct-Drive Fusion Ignition.

    PubMed

    Molvig, Kim; Schmitt, Mark J; Albright, B J; Dodd, E S; Hoffman, N M; McCall, G H; Ramsey, S D

    2016-06-24

    A new class of inertial fusion capsules is presented that combines multishell targets with laser direct drive at low intensity (2.8×10^{14}  W/cm^{2}) to achieve robust ignition. The targets consist of three concentric, heavy, metal shells, enclosing a volume of tens of μg of liquid deuterium-tritium fuel. Ignition is designed to occur well "upstream" from stagnation, with minimal pusher deceleration to mitigate interface Rayleigh-Taylor growth. Laser intensities below thresholds for laser plasma instability and cross beam energy transfer facilitate high hydrodynamic efficiency (∼10%).

  1. Low Fuel Convergence Path to Direct-Drive Fusion Ignition

    NASA Astrophysics Data System (ADS)

    Molvig, Kim; Schmitt, Mark J.; Albright, B. J.; Dodd, E. S.; Hoffman, N. M.; McCall, G. H.; Ramsey, S. D.

    2016-06-01

    A new class of inertial fusion capsules is presented that combines multishell targets with laser direct drive at low intensity (2.8 ×1014 W /cm2 ) to achieve robust ignition. The targets consist of three concentric, heavy, metal shells, enclosing a volume of tens of μ g of liquid deuterium-tritium fuel. Ignition is designed to occur well "upstream" from stagnation, with minimal pusher deceleration to mitigate interface Rayleigh-Taylor growth. Laser intensities below thresholds for laser plasma instability and cross beam energy transfer facilitate high hydrodynamic efficiency (˜10 %).

  2. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect

    Foral, M.J.

    1991-01-01

    The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

  3. Bifunctional activation of a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kulikovsky, A. A.; Schmitz, H.; Wippermann, K.; Mergel, J.; Fricke, B.; Sanders, T.; Sauer, D. U.

    We report a novel method for performance recovery of direct methanol fuel cells. Lowering of air flow rate below a critical value turns the cell into bifunctional regime, when the oxygen-rich part of the cell generates current while the rest part works in electrolysis mode (electrolytic domain). Upon restoring the normal (super-critical) air flow rate, the galvanic performance of the electrolytic domain increases. This recovery effect is presumably attributed to Pt surface cleaning on the cathode with the simultaneous increase in catalyst utilization on the anode.

  4. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    SciTech Connect

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  5. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect

    Kaplan, R.D.; Foral, M.J.

    1992-05-16

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  6. Directly converting CO2 into a gasoline fuel

    NASA Astrophysics Data System (ADS)

    Wei, Jian; Ge, Qingjie; Yao, Ruwei; Wen, Zhiyong; Fang, Chuanyan; Guo, Lisheng; Xu, Hengyong; Sun, Jian

    2017-05-01

    The direct production of liquid fuels from CO2 hydrogenation has attracted enormous interest for its significant roles in mitigating CO2 emissions and reducing dependence on petrochemicals. Here we report a highly efficient, stable and multifunctional Na-Fe3O4/HZSM-5 catalyst, which can directly convert CO2 to gasoline-range (C5-C11) hydrocarbons with selectivity up to 78% of all hydrocarbons while only 4% methane at a CO2 conversion of 22% under industrial relevant conditions. It is achieved by a multifunctional catalyst providing three types of active sites (Fe3O4, Fe5C2 and acid sites), which cooperatively catalyse a tandem reaction. More significantly, the appropriate proximity of three types of active sites plays a crucial role in the successive and synergetic catalytic conversion of CO2 to gasoline. The multifunctional catalyst, exhibiting a remarkable stability for 1,000 h on stream, definitely has the potential to be a promising industrial catalyst for CO2 utilization to liquid fuels.

  7. Directly converting CO2 into a gasoline fuel.

    PubMed

    Wei, Jian; Ge, Qingjie; Yao, Ruwei; Wen, Zhiyong; Fang, Chuanyan; Guo, Lisheng; Xu, Hengyong; Sun, Jian

    2017-05-02

    The direct production of liquid fuels from CO2 hydrogenation has attracted enormous interest for its significant roles in mitigating CO2 emissions and reducing dependence on petrochemicals. Here we report a highly efficient, stable and multifunctional Na-Fe3O4/HZSM-5 catalyst, which can directly convert CO2 to gasoline-range (C5-C11) hydrocarbons with selectivity up to 78% of all hydrocarbons while only 4% methane at a CO2 conversion of 22% under industrial relevant conditions. It is achieved by a multifunctional catalyst providing three types of active sites (Fe3O4, Fe5C2 and acid sites), which cooperatively catalyse a tandem reaction. More significantly, the appropriate proximity of three types of active sites plays a crucial role in the successive and synergetic catalytic conversion of CO2 to gasoline. The multifunctional catalyst, exhibiting a remarkable stability for 1,000 h on stream, definitely has the potential to be a promising industrial catalyst for CO2 utilization to liquid fuels.

  8. Direct fuel cell power plants: the final steps to commercialization

    NASA Astrophysics Data System (ADS)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  9. Rotating disk electrode study of borohydride oxidation in a molten eutectic electrolyte and advancements in the intermediate temperature borohydride battery

    NASA Astrophysics Data System (ADS)

    Wang, Andrew; Gyenge, Előd L.

    2017-08-01

    The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.

  10. Textbook Errors, 136: The Reducing Action of Sodium Borohydride.

    ERIC Educational Resources Information Center

    Todd, David

    1979-01-01

    This column generally relates errors which have been discovered in textbooks. The error discussed in this issue is the prevalence of erroneous ideas in organic chemistry textbooks, related to the chemistry of sodium borohydride. (Author/SA)

  11. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  12. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  13. TOPICAL REVIEW: Micromachined polymer electrolyte membrane and direct methanol fuel cells—a review

    NASA Astrophysics Data System (ADS)

    Nguyen, Nam-Trung; Chan, Siew Hwa

    2006-04-01

    This review reports recent progress of the development of micromachined membrane-based fuel cells. The review first discusses the scaling law applied to this type of fuel cell. Impacts of miniaturization on the performance of membrane-based fuel cells are highlighted. This review includes only the two most common micro fuel cell types: proton exchange membrane micro fuel cells (PEMµFC) and direct methanol micro fuel cells (DMµFC). Furthermore, we only consider fuel cells with the active area of a single cell less than 1 square inch. Since the working principles of these fuel cell types are well known, the review only focuses on the choice of material and the design consideration of the components in the miniature fuel cell. Next, we compare and discuss the performance of different micro fuel cells published recently in the literature. Finally, this review gives an outlook on possible future development of micro fuel cell research.

  14. Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)

    1999-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.

  15. High-temperature passive direct methanol fuel cells operating with concentrated fuels

    NASA Astrophysics Data System (ADS)

    Zhao, Xuxin; Yuan, Wenxiang; Wu, Qixing; Sun, Hongyuan; Luo, Zhongkuan; Fu, Huide

    2015-01-01

    Conventionally, passive direct methanol fuel cells (DMFC) are fed with diluted methanol solutions and can hardly be operated at elevated temperatures (>120 °C) because the ionic conductivity of Nafion-type proton exchange membranes depends strongly on water content. Such a system design would limit its energy density and power density in mobile applications. In this communication, a passive vapor feed DMFC capable of operating with concentrated fuels at high temperatures is reported. The passive DMFC proposed in this work consists of a fuel reservoir, a perforated silicone sheet, a vapor chamber, two current collectors and a membrane electrode assembly (MEA) based on a phosphoric acid doped polybenzimidazole (PBI) membrane. The experimental results reveal that the methanol crossover through a PBI membrane is substantially low when compared with the Nafion membranes and the PBI-based passive DMFC can yield a peak power density of 37.2 mW cm-2 and 22.1 mW cm-2 at 180 °C when 16 M methanol solutions and neat methanol are used respectively. In addition, the 132 h discharge test indicates that the performance of this new DMFC is quite stable and no obvious performance degradation is observed after activation, showing its promising applications in portable power sources.

  16. Developing Low-Intermediate Temperature Fuel Cells for Direct Conversion of Methane to Methanol Fuel

    SciTech Connect

    Torabi, A.; Barton, J.; Willman, C.; Ghezel-Ayagh, H.; Li, N.; Poozhikunnath, A.; Maric, R.; Marina, O. A.

    2016-04-26

    The objective of this project is development of a durable, low-cost, and high performance Low Temperature Solid Oxide Fuel Cell (LT-SOFC) for direct conversion of methane to methanol and other liquids, characterized by: a) operating temperature < 500oC, b) current density of > 100 mA/cm2 in liquid hydrocarbon production mode, c) continuous operation of > 100 h, d) cell area >100 cm2, e) cell cost per rate of product output < 100,000/bpd, f) process intensity of > 0.1 bpd/ft3, g) product yield and carbon efficiency > 50%, and h) volumetric output per cell > 30 L/day.

  17. Direct internal reforming of hydrocarbon fuels in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang

    2005-07-01

    The direct operation of solid oxide fuel cells (SOFCs) on hydrocarbon fuels is desired since it could reduce power plant size, weight and complexity. The primary challenge is to find effective means through which anode-coking could be suppressed or avoided. Throughout the research, conventional Ni-anode supported SOFCs were employed because they provide high power densities and are being actively developed for commercial applications. Various strategies were used to reduce or avoid anode-coking during the SOFC operation. Firstly, air or CO2/H2O was added to hydrocarbon fuels, such that coking was less thermodynamically favorable, and the resulting internal partial oxidation or dry/steam reforming reactions provided H 2 and CO to the fuel cell. For example, for low hydrocarbons like propane, coke-free operation was achieved on 8% yttrium-stabilized zirconia (YSZ) electrolyte SOFCs via internal partial oxidation, yielding stable and high power densities, e.g. 0.7 W·cm-2 at 790°C. Secondly, a novel design for hydrocarbon fueled SOFCs was proposed, i.e. a separate supported catalyst (Ru-CeO2) layer was placed against the anode side. The catalyst layer provided good catalytic activity for the hydrocarbon reforming reactions, while the nickel-based anode was retained to provide excellent electrochemical activity for the oxidation of the hydrogen and carbon monoxide reforming products. For heavy hydrocarbons like iso-octane, the catalyst layer was crucial far allowing stable cell operation without coking. The lack of coking at the Ni-YSZ anode can be explained by reforming at the Ru-Ceria catalyst layer, which eliminated most of the hydrocarbon species before the fuel reached the anode. A key element of this strategy was the choice of a catalyst metal, Ru, that promotes hydrocarbon reforming but does not itself cause coking. Thirdly, reduced-temperature SOFCs with thin samarium-doped Ceria (SDC) electrolytes were developed; these devices have potentially improved

  18. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  19. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-10-01

    Alkaline direct ethylene glycol fuel cells are one of the most promising power sources for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a sustainable fuel and the key materials that constitute the fuel cell are relatively inexpensive. This review article summarizes and discusses the past investigations on the development of alkaline direct ethylene glycol fuel cells, including the physical and chemical processes through the fuel cell structure, the electrocatalytic oxidation and electrocatalysts of ethylene glycol, the singe-cell performance, and innovative system designs.

  20. Ultrasonic radiation to enable improvement of direct methanol fuel cell.

    PubMed

    Wu, Chaoqun; Wu, Jiang; Luo, Hao; Wang, Sanwu; Chen, Tao

    2016-03-01

    To improve DMFC (direct methanol fuel cell) performance, a new method using ultrasonic radiation is proposed and a novel DMFC structure is designed and fabricated in the present paper. Three ultrasonic transducers (piezoelectric transducer, PZT) are integrated in the flow field plate to form the ultrasonic field in the liquid fuel. Ultrasonic frequency, acoustic power, and methanol concentration have been considered as variables in the experiments. With the help of ultrasonic radiation, the maximum output power and limiting current of cell can be independently increased by 30.73% and 40.54%, respectively. The best performance of DMFC is obtained at the condition of ultrasonic radiation (30 kHz and 4 W) fed with 2M methanol solution, because both its limiting current and output power reach their maximum value simultaneously (222 mA and 33.6 mW, respectively) under this condition. These results conclude that ultrasonic can be an alternative choice for improving the cell performance, and can facilitate a guideline for the optimization of DMFC. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Wire mesh current collectors for passive direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Shrivastava, Naveen K.; Thombre, Shashikant B.; Motghare, Ramani V.

    2014-12-01

    This paper examines the feasibility of the stainless steel wire mesh as current collector in the passive direct methanol fuel cell (DMFCs-W). A novel single cell fixture is designed and fabricated. The cell performance is evaluated and compared with five different wire mesh current collectors. The supporting plates are optimized for every mesh. The performance of DMFCs-W is compared with the conventional passive DMFC which uses perforated metal plate as current collector (DMFC-P). The polarization tests and electrochemical impedance spectroscopy are performed to investigate the different aspects of the cell performance. The results reveal that the DMFCs-W yield better performance than the DMFC-P. Also, more uniform fuel distribution at catalyst layer and higher cell temperature is achieved with wire mesh current collectors. It is found that the wire mesh geometry has significant effect on the cell performance and the mesh made of relatively thick wires gives better cell performance. This study identifies the stainless steel wire mesh as promising material to be used as current collector and potential substitute to the perforated plate current collectors in the passive DMFC.

  2. Direct Reacting Anolyte-Catholyte Fuel Cell for Hybrid Energy Sources

    DTIC Science & Technology

    2005-07-11

    401-832-5293. 20050719 026 Attorney Docket No. 82872 Customer No. 23523 DIRECT REACTING ANOLYTE -CATHOLYTE FUEL CELL FOR HYBRID ENERGY SOURCES TO ALL...PAUL A. NASSER, Esq. Reg. No. 53372 1 Attorney Docket No. 82872 2 3 DIRECT REACTING ANOLYTE -CATHOLYTE FUEL CELL 4 FOR HYBRID ENERGY SOURCES 5 6...14 The present invention relates generally to a fuel cell, and 15 more particularly to a fuel cell wherein both the anolyte and 16 the catholyte are

  3. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching.

    PubMed

    Doll, Charles G; Wright, Cherylyn W; Morley, Shannon M; Wright, Bob W

    2017-04-01

    A modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  4. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  5. Impact of direct butane microtubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sumi, Hirofumi; Yamaguchi, Toshiaki; Hamamoto, Koichi; Suzuki, Toshio; Fujishiro, Yoshinobu

    2012-12-01

    We investigated direct butane power generation for microtubular solid oxide fuel cells with a diameter of less than 2 mm. Conventional Ni-stabilized zirconia anodes deteriorated rapidly over a period of 3-4 h at 610 °C and a low steam/carbon (S/C) ratio of 0.044 in butane due to a large amount of carbon deposition. For the Ni-Gd doped ceria (Ni-GDC) anode, the power could be generated continuously for more than 24 h at 610 °C and S/C = 0.044 in butane. The rate of carbon deposition for the Ni-GDC was slower than that for the Ni-stabilized zirconia at 610 °C. Ceria can be reduced from Ce4+ to Ce3+, which causes the suppression of carbon deposition on the Ni-GDC anode in butane at low humidity.

  6. Thermodynamic properties of direct methanol polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Seong, Ji Yun; Bae, Young Chan; Sun, Yang Kook

    A new semi-empirical model is established to describe the cell voltage of a direct methanol fuel cell (DMFC) as a function of current density. The model equation is validated experimental data over a wide range of a methanol concentration and temperatures. A number of existing models are semi-empirical. They, however, have a serious mathematical defect. When the current density, j, becomes zero, the equation should reduce to the open circuit voltage, E0. These models, however, do not meet the mathematical boundary condition. The proposed model focuses on very unfavorable conditions for the cell operation, i.e. low methanol solution concentrations and relatively low cell temperatures. A newly developed semi-empirical equation with reasonable boundary conditions includes the methanol crossover effect that plays a major role in determining the cell voltage of DMFC. Also, it contains methanol activity based on thermodynamic functions to represent methanol crossover effect.

  7. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  8. Bi-directional electrical characterisation of microbial fuel cell.

    PubMed

    Degrenne, N; Ledezma, P; Bevilacqua, P; Buret, F; Allard, B; Greenman, J; Ieropoulos, I A

    2013-01-01

    The electrical performance of microbial fuel cells in steady-state is usually investigated by standard characterisation methods that reveal many important parameters e.g. maximum power. This paper introduces a novel "bi-directional" method to study how the acquisition parameters (i.e. sweep rate and sweep regime) can influence measurements and consequently performance estimations. The investigation exhibited considerable differences (hysteresis) between the forward and backward characterisation regimes, indicating a difficulty to reach steady-state under certain conditions. Moreover, it is found that fast sweep rates (time-step of 2 min) can lead to an overestimation of the short-circuit currents, while prolonged operation with high external loads leads to maximum power overestimation and extended conditioning at high currents can result in its underestimation.

  9. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    SciTech Connect

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  10. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect

    Foral, M.J.

    1990-01-01

    Amoco Oil Company is investigating the direct conversion of light hydrocarbon gases to liquid fuels via partial oxidation. This report describes work completed in the first quarter of the two-year project (first quarter FY 1990). Task 1 of the work, preparation of the Project Management Plan, has been completed. Work was started and progress made on three other tasks during this quarter: Task 2. Modification of an existing Amoco pilot plant to handle the conditions of this project. Minor modifications were made to increase the maximum operating pressure to 1500 psig. Other more extensive modifications are being designed, including addition of an oxygen compressor and recycle system. Task 3.1. Evaluation of a Los Alamos National Laboratory methane oxidation kinetic model for suitability in guiding the experimental portions of this project. Task 3.2. Process variable (e.g. temperature, pressure, residence time) studies to determine optimal partial oxidation conditions. 1 fig.

  11. A novel membrane-less direct alcohol fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Qingfeng; Chen, Qinghua; Yang, Zheng

    2015-12-01

    Membrane-less fuel cell possesses such advantages as simplified design and lower cost. In this paper, a membrane-less direct alcohol fuel cell is constructed by using multi-walled carbon nanotubes (MWCNT) supported Pd and ternary PdSnNi composites as the anode catalysts and Fe/C-PANI composite, produced by direct pyrolysis of Fe-doped polyaniline precursor, as the oxygen reduction reaction (ORR) catalyst. The alcohols investigated in the present study are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol and sec-butanol. The cathode catalyst Fe/C-PANI is electrochemically inactive to oxidation of the alcohols. The performance of the cell with various alcohols in 1 mol L-1 NaOH solution on either Pd/MWCNT or PdSnNi/MWCNT catalyst has been evaluated. In any case, the performance of the cell using the anode catalyst PdSnNi/MWCNT is considerably better than Pd/MWCNT. For the PdSnNi/MWCNT, the maximum power densities of the cell using methanol (0.5 mol L-1), ethanol (0.5 mol L-1), n-propanol (0.5 mol L-1), iso-propanol (0.5 mol L-1), n-butanol (0.2 mol L-1), iso-butanol (0.2 mol L-1) and sec-butanol (0.2 mol L-1) are 0.34, 1.03, 1.07, 0.44, 0.50, 0.31 and 0.15 mW cm-2, respectively.

  12. CERDEC Fuel Cell Team: Military Transitions for Soldier Fuel Cells

    DTIC Science & Technology

    2008-10-27

    Fuel Cell (DMFC) (PEO Soldier) Samsung: 20W DMFC (CRADA) General Atomics & Jadoo: 50W Ammonia Borane Fueled PEMFC Current Fuel Cell Team Efforts...Continued Ardica: 20W Wearable PEMFC operating on Chemical Hydrides Spectrum Brands w/ Rayovac: Hydrogen Generators and Alkaline Fuel Cells for AA...100W Ammonia Borane fueled PEMFC Ultralife: 150W sodium borohydride fueled PEMFC Protonex: 250W RMFC and Power Manager (ARO) NanoDynamics: 250W SOFC

  13. Direct and Collisional Excitation of Automotive Fuel Components)

    NASA Astrophysics Data System (ADS)

    White, Allen R.; Wilson, Kyle; Sakai, Stephen; Devasher, Rebecca B.

    2010-06-01

    Adding energy directly into the vibrational modes of automotive fuel may reduce the threshold energy required for combustion, without raising the combustion charge temperature. This energy can be supplied either directly via incident laser radiation or indirectly through collision with directly excited molecules. The most common chemical in commercial gasoline, isooctane, does not absorb infrared radiation sufficiently at any wavelength for which an infrared laser is readily available. However, CO2 lasers are relatively cheap, and are available at wavelengths which are absorbed by isopropanol as well as ethanol, which is also a component of commercial gasoline. In this study, the infrared absorption of isopropanol and ethanol in balance isooctane were measured at three wavelengths (10.6 m, 10.2 m, and 9.3 m) of incident CO2 laser radiation. Additional time-resolved emission measurements were performed for these mixtures. The data support the existence of the proposed collisional pathway for energy transfer from ethanol and isopropanol to isooctane.

  14. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the

  15. Process for production of a borohydride compound

    DOEpatents

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  16. Fullerene mediated hydrogen release in lithium borohydride

    NASA Astrophysics Data System (ADS)

    Scheicher, Ralph; Li, Sa; Jena, Puru

    2010-03-01

    Complex metal hydrides possess many properties which make them attractive as a storage medium for hydrogen, but typically, catalysts are required to lower the hydrogen desorption temperature and to facilitate hydrogen uptake in the form of a reversible reaction. The overwhelming focus in the search for catalyzing agents has been on compounds containing titanium, but the precise mechanism of their actions remains somewhat obscure. A recent experiment has now shown that fullerene (C60) can also act as catalysts for the hydrogen uptake and release in lithium borohydride (LiBH4). In an effort to understand the involved mechanism, we have employed density functional theory to carry out a detailed study of the interaction between this complex metal hydride and the carbon nanomaterial. Considering a step-wise reduction of the hydrogen content in LiBH4, we find that the presence of C60 can lead to a substantial reduction of the involved H-removal energies. This catalyzing effect is explained by us as a consequence of the interaction between the BHx^- part and the C60 entity.

  17. Direct methane solid oxide fuel cells and their related applications

    NASA Astrophysics Data System (ADS)

    Lin, Yuanbo

    Solid oxide fuel cells (SOFCs), renowned for their high electrical generation efficiency with low pollutant production, are promising for reducing global energy and environmental concerns. However, there are major barriers for SOFC commercialization. A primary challenge is reducing the capital cost of SOFC power plants to levels that can compete with other generation methods. While the focus of this thesis research was on operation of SOFCs directly with methane fuel, the underlying motivation was to make SOFCs more competitive by reducing their cost. This can be achieved by making SOFCs that reduce the size and complexity of the required "balance of plant". Firstly, direct operation of SOFCs on methane is desirable since it can eliminate the external reformer. However, effective means must be found to suppress deleterious anode coking in methane. In this thesis, the operating conditions under which SOFCs can operate stably and without anode coking were investigated in detail, and the underlying mechanisms of coking and degradation were determined. Furthermore, a novel design utilizing an inert anode barrier layer was developed and shown to substantially improve stability against coking. Secondly, the direct methane SOFCs were investigated for use as electrochemical partial oxidation (EPOx) reactors that can co-generate electricity and synthesis gas (CO+H2) from methane. The results indicated that conventional SOFCs work quite well as methane partial oxidation reactors, producing syngas at relatively high rates. While this approach would not decrease the cost of SOFC power plant, it would improve prospects for commercialization by increasing the value of the power plant, because two products, electricity and syngas, can be sold. Thirdly, SOFCs utilizing thin (La,Sr)(Ga,Mg)O3 electrolytes were demonstrated. This highly conductive material allows lower SOFC operation temperature, leading to the use of lower-cost materials for sealing, interconnection, and balance of

  18. Compatibility of Direct Sugar to Hydrocarbon (DSH-76) with Combined Contaminated Fuel Detector

    DTIC Science & Technology

    2013-05-31

    produced from the direct sugar to hydrocarbon (DSH) production process. Petroleum sourced F-76, alternative fuel source DSH-76 and 70/30 & 50/50...of the CCFD with the renewable aviation and marine diesel fuels. The Direct Sugar to Hydrocarbon (DSH) production pathway produces fuels made...from direct fermentation of sugar into olefinic hydrocarbons. The olefinic hydrocarbons are hydroprocessed to produce an iso-paraffinic hydrocarbon

  19. Premixed direct injection nozzle for highly reactive fuels

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  20. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  1. Computational modeling of a direct propane fuel cell

    NASA Astrophysics Data System (ADS)

    Khakdaman, H.; Bourgault, Y.; Ternan, M.

    2011-03-01

    The first two dimensional mathematical model of a complete direct propane fuel cell (DPFC) is described. The governing equations were solved using FreeFem software that uses finite element methods. Robin boundary conditions were used to couple the anode, membrane, and cathode sub-domains successfully. The model showed that a polytetrafluoroethylene membrane having its pores filled with zirconium phosphate (ZrP-PTFE), in a DPFC at 150 °C performed much the same as other electrolytes; Nafion, aqueous H3PO4, and H2SO4 doped polybenzimidazole, when they were used in DPFCs. One advantage of a ZrP-PTFE at 150 °C is that it operates without liquid phase water. As a result corrosion will be much less severe and it may be possible for non-precious metal catalysts to be used. Computational results showed that the thickness of the catalyst layer could be increased sufficiently so that the pressure drop between the reactant and product channels of the interdigitated flow fields is small. By increasing the width of the land and therefore the reactant's contact time with the catalyst it was possible to approach 100% propane conversion. Therefore fuel cell operation with a minimum concentration of propane in the product stream should be possible. Finally computations of the electrical potential in the ZrP phase, the electron flux in the Pt/C phase, and the overpotential in both the anode and cathode catalyst layers showed that serious errors in the model occurred because proton diffusion, caused by the proton concentration gradient, was neglected in the equation for the conservation of protons.

  2. 76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... airworthiness directive (AD) that applies to certain fuel injected reciprocating engines manufactured by Lycoming Engines. The existing AD currently requires inspection, replacement if necessary, and proper clamping of externally mounted fuel injector fuel lines. That AD also exempts engines that have...

  3. US Spent (Used) Fuel Status, Management and Likely Directions- 12522

    SciTech Connect

    Jardine, Leslie J.

    2012-07-01

    As of 2010, the US has accumulated 65,200 MTU (42,300 MTU of PWR's; 23,000 MTU of BWR's) of spent (irradiated or used) fuel from 104 operating commercial nuclear power plants situated at 65 sites in 31 States and from previously shutdown commercial nuclear power plants. Further, the Department of Energy (DOE) has responsibility for an additional 2458 MTU of DOE-owned defense and non defense spent fuel from naval nuclear power reactors, various non-commercial test reactors and reactor demonstrations. The US has no centralized large spent fuel storage facility for either commercial spent fuel or DOE-owned spent fuel. The 65,200 MTU of US spent fuel is being safely stored by US utilities at numerous reactor sites in (wet) pools or (dry) metal or concrete casks. As of November 2010, the US had 63 'independent spent fuel storage installations' (or ISFSI's) licensed by the US Nuclear Regulatory Commission located at 57 sites in 33 states. Over 1400 casks loaded with spent fuel for dry storage are at these licensed ISFSI's; 47 sites are located at commercial reactor sites and 10 are located 'away' from a reactor (AFR's) site. DOE's small fraction of a 2458 MTU spent fuel inventory, which is not commercial spent fuel, is with the exception of 2 MTU, being stored at 4 sites in 4 States. The decades old US policy of a 'once through' fuel cycle with no recycle of spent fuel was set into a state of 'mass confusion or disruption' when the new US President Obama's administration started in early 2010 stopping the only US geologic disposal repository at the Yucca Mountain site in the State of Nevada from being developed and licensed. The practical result is that US nuclear power plant operators will have to continue to be responsible for managing and storing their own spent fuel for an indefinite period of time at many different sites in order to continue to generate electricity because there is no current US government plan, schedule or policy for taking possession of

  4. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  5. Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems

    SciTech Connect

    Wolk, R

    2004-04-23

    Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power

  6. Materials and Manufacturing Challenges of Direct Methanol Fuel Cells

    DTIC Science & Technology

    2009-04-27

    conditions. The oxygen reduction reaction is a common process for both DMFCs and proton exchange membrane fuel cells ( PEMFCs ) operating with hydrogen fuel...However, the much slower oxidation of methanol in DMFCs, compared to that of hydrogen in PEMFCs , together with a poisoning of the cathode Pt...electrocatalyst† results in a low operating voltage for a DMFC compared to that of a PEMFC . Although Pt is used for the oxidation of hydrogen fuel in a PEMFC

  7. Novel anode catalyst for direct methanol fuel cells.

    PubMed

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  8. Novel Anode Catalyst for Direct Methanol Fuel Cells

    PubMed Central

    Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406

  9. New Catalysts for Direct Methanol Oxidation Fuel Cells

    SciTech Connect

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  10. Modified SPEEK membranes for direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Maab, Husnul; Nunes, Suzana Pereira

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 × 10 -10 kg m s -1 m -2 and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 × 10 -10 kg m s -1 m -2 respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 × 10 -10 kg m s -1 m -2). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 ® membranes in DEFC tests at 60 °C and 90 °C.

  11. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  12. Study of the Direct Oxidation of Methane in Solid Oxide Fuel Cells

    SciTech Connect

    Pham, A Q

    2002-02-08

    Solid oxide fuel cells (SOFCs) are electrochemical devices that have received great interest recently because of their promise for clean and efficient power generation. Since SOFCs generate electricity directly through electrochemical processes that do not involve combustion, fuel cells are not limited by the Carnot cycle and thus, very high efficiency can be achieved. For instance, current state-of-the-art fuel cells can reach 50% efficiency while that of conventional power generation devices are generally below 30%. The high efficiency is a key mean that will enable the use of fossil fuels at reduced carbon emissions. The ideal fuel for fuel cells is hydrogen. However, hydrogen is not available directly in nature but must be made using another fossil fuel and/or energy sources. For the immediate future, except for a few niche markets, fuel cells will have to use hydrocarbons as fuel. The ideal hydrocarbon fuel would be natural gas since a natural gas infrastructure readily exists. Natural gas has indeed been used to run various fuel cells. However, natural gas cannot be used directly as a fuel for fuel cells because of its low reactivity. Natural gas must be converted to more reactive components, typically to carbon monoxide and hydrogen via the steam reforming or partial oxidation processes, before being injected in the fuel cell. The extra conversion step consumes extra energy and requires an additional reactor, thus making the overall system complex and reducing the overall efficiency. The situation is even worst if Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are used since these fuel cells cannot tolerate any presence of CO and additional reactors are thus needed to convert CO to H{sub 2} and to remove residual CO from the gas stream. High temperature fuel cells, especially solid oxide fuel cells (SOFCs), due to their high operating temperatures, have the potential to operate directly on natural gas. The direct operation on natural gas represents a

  13. Destabilized and catalyzed borohydride for reversible hydrogen storage

    DOEpatents

    Mohtadi, Rana F [Northville, MI; Zidan, Ragaiy [Aiken, SC; Gray, Joshua [Aiken, SC; Stowe, Ashley C [Knoxville, TN; Sivasubramanian, Premkumar [Aiken, SC

    2012-02-28

    A process of forming a hydrogen storage material, including the steps of: providing a borohydride material of the formula: M(BH.sub.4).sub.x where M is an alkali metal or an alkaline earth metal and 1.ltoreq.x.ltoreq.2; providing an alanate material of the formula: M.sub.1(AlH.sub.4).sub.x where M.sub.1 is an alkali metal or an alkaline earth metal and 1.ltoreq.x.ltoreq.2; providing a halide material of the formula: M.sub.2Hal.sub.x where M.sub.2 is an alkali metal, an alkaline earth metal or transition metal and Hal is a halide and 1.ltoreq.x.ltoreq.4; combining the borohydride, alanate and halide materials such that 5 to 50 molar percent from the borohydride material is present forming a reaction product material having a lower hydrogen release temperature than the alanate material.

  14. Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.

    PubMed

    Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu

    2009-01-01

    Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.

  15. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    NASA Astrophysics Data System (ADS)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  16. 78 FR 70240 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Directives; Lycoming Engines, Fuel Injected Reciprocating Engines AGENCY: Federal Aviation Administration... airworthiness directive (AD) 2011-26- 04 that applies to certain Lycoming Engines fuel injected reciprocating engines. AD 2011-26-04 requires inspection, replacement if necessary, and proper clamping of externally...

  17. Minimum Fuel Trajectory Design in Multiple Dynamical Environments Utilizing Direct Transcription Methods and Particle Swarm Optimization

    DTIC Science & Technology

    2016-03-01

    MINIMUM-FUEL TRAJECTORY DESIGN IN MULTIPLE DYNAMICAL ENVIRONMENTS UTILIZING DIRECT TRANSCRIPTION METHODS AND PARTICLE SWARM OPTIMIZATION THESIS...250 MINIMUM-FUEL TRAJECTORY DESIGN IN MULTIPLE DYNAMICAL ENVIRONMENTS UTILIZING DIRECT TRANSCRIPTION METHODS AND PARTICLE SWARM OPTIMIZATION THESIS... Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Astronautical Engineering Alfredo G

  18. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  19. Anionic-cationic bi-cell design for direct methanol fuel cell stack

    NASA Astrophysics Data System (ADS)

    Kim, Hyea; Ünlü, Murat; Zhou, Junfeng; Anestis-Richard, Irene; Kohl, Paul A.

    A new fuel cell stack design is described using an anion exchange membrane (AEM) fuel cell and a proton exchange membrane (PEM) fuel cell in series with a single fuel tank servicing both anodes in a passive direct methanol fuel cell configuration. The anionic-cationic bi-cell stack has alkaline and acid fuel cells in series (twice the voltage), one fuel tank, and simplified water management. The series connection between the two cells involves shorting the cathode of the anionic cell to the anode of the acidic cell. It is shown that these two electrodes are at essentially the same potential which avoids an undesired potential difference and resulting loss in current between the two electrodes. Further, the complimentary direction of water transport in the two kinds of fuel cells simplifies water management at both the anodes and cathodes. The effect of ionomer content on the AEM electrode potential and the activity of methanol oxidation were investigated. The individual performance of AEM and PEM fuel cells were evaluated. The effect of ion-exchange capacity in the alkaline electrodes was studied. A fuel wicking material in the methanol fuel tank was used to provide orientation-independent operation. The open circuit potential of the bi-cell was 1.36 V with 2.0 M methanol fuel and air at room temperature.

  20. Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kazunari; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2017-10-01

    In this study, the availability of Ni-Ba(Zr,Y)O3-δ (BZY) cermet for the anode of direct ammonia-fueled solid oxide fuel cells (SOFCs) is evaluated. In this device, the anodes need to be active for the catalytic ammonia decomposition as well as the electrochemical hydrogen oxidation. In the catalytic activity test, ammonia decomposes completely over Ni-BZY at ca. 600 °C, while higher temperature is required to accomplish the complete decomposition over the conventional SOFC anode of Ni-yttria-stabilized zirconia cermet. The high activity of Ni-BZY is attributed to the high basicity of BZY and the high resistance to hydrogen poisoning effect. The electrochemical property of Ni-BZY anode is also evaluated with the anode-supported cell of Ni-BZY|BZY|Pt at 600-700 °C with feeding ammonia or hydrogen as a fuel. Since the residence time of ammonia fuel in the thick Ni-BZY anode is long, the difference in the cell performance between two fuels is relatively small. Furthermore, it is proved that the steam concentration in the fuel strongly affects the cell performance. We find that this factor is important to satisfy the above mentioned requirements for the anode of direct ammonia-fueled SOFCs. Throughout this study, it is concluded that Ni-BZY cermet will be a promising anode.

  1. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching

    DOE PAGES

    Doll, Charles G.; Wright, Cherylyn W.; Morley, Shannon M.; ...

    2017-02-01

    In this paper, a modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Finally, analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  2. Facts and issues of direct disposal of spent fuel; Revision 1

    SciTech Connect

    Parks, P.B.

    1993-10-01

    This report reviews those facts and issues that affect the direct disposal of spent reactor fuels. It is intended as a resource document for those impacted by the current Department of Energy (DOE) guidance that calls for the cessation of fuel reprocessing. It is not intended as a study of the specific impacts (schedules and costs) to the Savannah River Site (SRS) alone. Commercial fuels, other low enriched fuels, highly enriched defense-production, research, and naval reactor fuels are included in this survey, except as prevented by rules on classification.

  3. Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator

    DOE PAGES

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian; ...

    2017-01-04

    Here, anion-exchange membrane-based direct glycerol fuel cells (AEM-DGFCs) can yield high power density, however challenges exist in developing chemically stable AEMs. Here, we demonstrate a porous PTFE thin film, a well-known chemical, electro-chemical, and thermal robust material that can serve as a separator between anode and cathode, thus achieving high DGFC’s performance. A simple aqueous-phase reduction method was used to prepare carbon nanotube supported PdAg nanoparticles (PdAg/CNT) with an average particle size of 2.9 nm. A DGFC using a PTFE thin film without any further modification with PdAg/CNT anode catalyst exhibits a peak power density of 214.7 mW cm–2 atmore » 80 °C, about 22.6% lower than a DGFC using a state-of-the-art AEM. We report a 5.8% decrease and 11.1% decrease in cell voltage for a PTFE thin film and AEM; similarly, the cell voltage degradation rate decreases from 1.2 to 0.8 mV h–1 for PTFE thin film, while for AEM, it decreases from 9.6 to 3.0 mV h–1 over an 80 h durability test period. Transmission electron microscopy results indicate that the average particle size of PdAg/CNT increases from 2.9 to 3.7 nm after 80 h discharge; this suggests that PdAg particle growth may be the main reason for the performance drop.« less

  4. Design and fabrication of a magnetic fluid micropump for applications in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Shi-Min; Kuan, Yean-Der; Sung, Min-Feng

    Direct methanol fuel cells (DMFCs) are widely considered to have great potential for portable electric applications, and the power requirements for many of them are only a few watts. Therefore, a low power liquid pump is especially desirable for driving the methanol solution fuel for an active direct methanol fuel. The main objective of this paper is to design and fabricate a magnetic fluid micropump that has characteristics of low operation voltage and current and is suitable for use in DMFCs. Two prototypes were developed and tested. The magnetic fluid micropumps are successfully applied to drive the fuel to a DMFC, and measurements of the cell performance are also conducted.

  5. Detailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells

    PubMed Central

    Tseronis, K.; Fragkopoulos, I.S.; Bonis, I.

    2016-01-01

    Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials. PMID:27570502

  6. Recent advances on Zeolite modification for direct alcohol fuel cells (DAFCs)

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-03-01

    The increase of energy demand and global warming issues has driven studies of alternative energy sources. The polymer electrolyte membrane fuel cell (PEMFC) can be an alternative energy source by (partially) replacing the use of fossil fuel which is in line with the green technology concept. However, the usage of hydrogen as a fuel has several disadvantages mainly transportation and storage related to its safety aspects. Recently, alcohol has gained attention as an energy source for fuel cell application, namely direct alcohol fuel cell (DAFC). Among alcohols, high-mass energy density methanol and ethanol are widely used as direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC), respectively. Currently, the performance of DMFC is still rudimentary. Furthermore, the use of ethanol gives some additional privileges such as non-toxic property, renewable, ease of production in great quantity by the fermentation of sugar-containing raw materials. Direct alcohol fuel cell (DAFC) still has weakness in the low proton conductivity and high alcohol crossover. Therefore, to increase the performance of DAFC, modification using zeolite has been performed to improve proton conductivity and decrease alcohol crossover. Zeolite also has high thermal resistance properties, thereby increasing DAFC performance. This paper will discuss briefly about modification of catalyst and membrane for DAFC using zeolite. Zeolite modification effect on fuel cell performance especially proton conductivity and alcohol crossover will be presented in detail.

  7. Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells.

    PubMed

    Tseronis, K; Fragkopoulos, I S; Bonis, I; Theodoropoulos, C

    2016-06-01

    Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan-Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty-Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically-active anode catalyst layer, although not always substantially, due to the counter-balancing behavior of the activation and ohmic overpotentials.

  8. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    NASA Astrophysics Data System (ADS)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  9. Engineering microbial fuels cells: recent patents and new directions.

    PubMed

    Biffinger, Justin C; Ringeisen, Bradley R

    2008-01-01

    Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.

  10. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  11. Population exposure from the fuel cycle: Review and future direction

    SciTech Connect

    Richmond, C.R.

    1987-01-01

    The legacy of radiation exposures confronting man arises from two historical sources of energy, the sun and radioactive decay. Contemporary man continues to be dependent on these two energy sources, which include the nuclear fuel cycle. Radiation exposures from all energy sources should be examined, with particular emphasis on the nuclear fuel cycle, incidents such as Chernobyl and Three Mile Island. In addition to risk estimation, concepts such as de minimis, life shortening as a measure of risk, and competing risks as projected into the future must be considered in placing radiation exposures in perspective. The utility of these concepts is in characterizing population exposures for decision makers in a manner that the public may judge acceptable. All these viewpoints are essential in the evaluation of population exposure from the nuclear fuel cycle.

  12. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  13. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  14. Barium borohydride chlorides: synthesis, crystal structures and thermal properties.

    PubMed

    Grube, Elisabeth; Olesen, Cathrine H; Ravnsbæk, Dorthe B; Jensen, Torben R

    2016-05-10

    Here we report the synthesis, mechanism of formation, characterization and thermal decomposition of new barium borohydride chlorides prepared by mechanochemistry and thermal treatment of MBH4-BaCl2, M = Li, Na or K in ratios 1 : 1 and 1 : 2. Initially, orthorhombic barium chloride, o-BaCl2 transforms into o-Ba(BH4)xCl2-x, x ∼ 0.15. Excess LiBH4 leads to continued anion substitution and a phase transformation into hexagonal barium borohydride chloride h-Ba(BH4)xCl2-x, which accommodates higher amounts of borohydride, possibly x ∼ 0.85 and resembles h-BaCl2. Thus, two solid solutions are in equilibrium during mechano-chemical treatment of LiBH4-BaCl2 (1 : 1) whereas LiBH4-BaCl2 (2 : 1) converts to h-Ba(BH4)0.85Cl1.15. Upon thermal treatment at T > ∼200 °C, h-Ba(BH4)0.85Cl1.15 transforms into another orthorhombic barium borohydride chloride compound, o-Ba(BH4)0.85Cl1.15, which is structurally similar to o-BaBr2. The samples with M = Na and K have lower reactivity and form o-Ba(BH4)xCl2-x, x ∼ 0.1 and a solid solution of sodium chloride dissolved in solid sodium borohydride, Na(BH4)1-xClx, x = 0.07. The new compounds and reaction mechanisms are investigated by in situ synchrotron radiation powder X-ray diffraction (SR-PXD), Fourier transform infrared spectroscopy (FT-IR) and simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mass spectroscopy (MS) and temperature programmed photographic analysis (TPPA).

  15. Direct oxidation of hydrocarbons in a solid-oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Seungdoo; Vohs, John M.; Gorte, Raymond J.

    2000-03-01

    The direct electrochemical oxidation of dry hydrocarbon fuels to generate electrical power has the potential to accelerate substantially the use of fuel cells in transportation and distributed-power applications. Most fuel-cell research has involved the use of hydrogen as the fuel, although the practical generation and storage of hydrogen remains an important technological hurdle. Methane has been successfully oxidized electrochemically, but the susceptibility to carbon formation from other hydrocarbons that may be present or poor power densities have prevented the application of this simple fuel in practical applications. Here we report the direct, electrochemical oxidation of various hydrocarbons (methane, ethane, 1-butene, n-butane and toluene) using a solid-oxide fuel cell at 973 and 1,073 K with a composite anode of copper and ceria (or samaria-doped ceria). We demonstrate that the final products of the oxidation are CO2 and water, and that reasonable power densities can be achieved. The observation that a solid-oxide fuel cell can be operated on dry hydrocarbons, including liquid fuels, without reforming, suggests that this type of fuel cell could provide an alternative to hydrogen-based fuel-cell technologies.

  16. Direct oxidation of hydrocarbons in a solid-oxide fuel cell

    PubMed

    Park; Vohs; Gorte

    2000-03-16

    The direct electrochemical oxidation of dry hydrocarbon fuels to generate electrical power has the potential to accelerate substantially the use of fuel cells in transportation and distributed-power applications. Most fuel-cell research has involved the use of hydrogen as the fuel, although the practical generation and storage of hydrogen remains an important technological hurdle. Methane has been successfully oxidized electrochemically, but the susceptibility to carbon formation from other hydrocarbons that may be present or poor power densities have prevented the application of this simple fuel in practical applications. Here we report the direct, electrochemical oxidation of various hydrocarbons (methane, ethane, 1-butene, n-butane and toluene) using a solid-oxide fuel cell at 973 and 1,073 K with a composite anode of copper and ceria (or samaria-doped ceria). We demonstrate that the final products of the oxidation are CO2 and water, and that reasonable power densities can be achieved. The observation that a solid-oxide fuel cell can be operated on dry hydrocarbons, including liquid fuels, without reforming, suggests that this type of fuel cell could provide an alternative to hydrogen-based fuel-cell technologies.

  17. Forest fuel characterization using direct sampling in forest plantations

    Treesearch

    Eva Reyna Esmeralda Díaz García; Marco Aurelio González Tagle; Javier Jiménez Pérez; Eduardo JavierTreviño Garza; Diana Yemilet Ávila Flores

    2013-01-01

    One of the essential elements for a fire to occur is the flammable material. This is defined as the total biomass that has the ability to ignite and burn when exposed to a heat source. Fuel characterization in Mexican forest ecosystems is very scarce. However, this information is very important for estimating flammability and forest fire risk, fire behavior,...

  18. Development and Fielding of a Direct Methanol Fuel Cell

    DTIC Science & Technology

    2010-03-01

    unit. This project is still in its study phase. There are plans to do the field testing with vehicles like the wheeled vehicle, Dingo 2, shown in...under test to provide uninterrupted power for operational test instrumentation. The units Figure 2. Dingo 2 vehicle. Figure 3. Fuel cell system FC-250

  19. Direct power generation from waste coffee grounds in a biomass fuel cell

    NASA Astrophysics Data System (ADS)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung

    2015-11-01

    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  20. Development of direct hydrocarbon solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    McIntosh, Steven

    The focus of this dissertation is the development of a Solid Oxide Fuel Cell (SOFC) that can operate with hydrocarbon fuels without the need for pre-reforming. The design of an active SOFC anode requires the consideration of a number of factors including the catalytic activity of the electrode towards fuel oxidation and electronic conductivity. This work focuses on a novel system for anode fabrication that allows the catalytically active and electronically conducting components of the anode to be easily varied. The catalytic properties of the SOFC anode were examined and a strong link between SOFC performance and oxidation activity demonstrated. Of the rare-earth catalysts investigated ceria was found to have the highest activity leading to the highest fuel cell power density. This activity was further improved, especially for methane fuel, by doping with a precious metal. Furthermore, it was shown that the catalyst not only increased the rate of reaction but increased the cell Open-Circuit Voltage (OCV) suggesting a change in mechanism that increased the cell efficiency. The necessity for high electronic conductivity and connectivity in the electrode was elucidated by studying the impact of anode copper content on cell performance. Low copper loading led to reduced cell performance due to a lack of conductive pathways from the active electrode region to the external circuit. It was observed that additional conductivity was provided by a thermally deposited carbonaceous phase formed upon exposure to hydrocarbon fuels. The electrochemical characterization of SOFC electrodes is a non-trivial problem. Literature reports on the properties of similar electrodes are inconsistent and often contradictory. Using a combined experimental and theoretical approach, significant problems were found with common experimental procedures used to separate the losses associated the cell cathode from those of the anode. By calculating the effect of test geometry on this separation, it

  1. Feasibility study of repowering the USCGC vindicator (WMEC-3) with modular diesel fueled direct fuel cells. Final report

    SciTech Connect

    Kumm, W.H.; Lisie, H.L.

    1997-05-01

    In 1988, AEL was awarded a Small Business Innovation Research (SBIR) Phase I contract on Navy Topic N88-94 by the NAVSEA RD Officer, Code 03R. In 1990, this topic moved to Phase II with a contract involving the lab demonstration of the use of diesel type fuel in high temperature molten carbonate or Direct Fuel Cells (DFCs). The Phase II work was successfully completed in 1992. In 1995, Navy Code 03R agreed to transfer Topic N88-94 to the USCG RD Office, G-SIR. The Phase III Feasibility Study was awarded to AEL in 1996 to perform the work described in this report. The USCGC VINDICATOR (WMEC-3) has been evaluated as the candidate ship for fuel cell repowering at 2.58 MW. It is a former T-AGOS ship with diesel-electric propulsion and ship`s service. The four 600 kW diesel generators (2.4 MW) would be replaced with twelve 215 kW DFC one-sided-fit fuel cell modules embodying a `no-maintenance` rapid changeout approach. The repowered ship would be faster, consume half of the fuel for the equivalent range, be super-quiet, be air pollution-free, cut the crew complement and produce potable water onboard as a byproduct. The study evaluated technical aspects of fuel cells, naval architectural removals and additions, maintenance, risk and cost-effectiveness issues. The use of electric utility type DFCs, with the cost reduction and mass production advantages of this on-land marketplace will make possible early introduction of marine-derivative fuel cell power plants for ship applications. It is concluded that repowering ships with fuel cells is feasible and that the next step is a Preliminary Design.

  2. Preliminary study on direct recycling of spent BWR fuel in BWR system

    NASA Astrophysics Data System (ADS)

    Waris, A.; Sumbono, Prayudhatama, Dythia; Novitrian, Su'ud, Zaki

    2012-06-01

    Spent fuel management is considered to be one of the main problems in energy nuclear utilization. Recycling after reprocessing is one of the options for dealing with nuclear reactor spent fuel. Reprocessing is very costly and needs remote handling since spent fuel is very hazard high level waste. On top of that, only a small number of countries can manage a reprocessing plant. If country likes Indonesia decide to "go nuclear", it should find another way to deal with the nuclear spent fuel. Korea has proposed the DUPIC (Direct Utilization of Spent PWR fuel In CANDU) concept. Nevertheless, DUPIC concept requires two types of nuclear power plants, i.e., pressurized water reactor (PWR) and CANadian Deuterium Uranium reactor (CANDU). In this study, we evaluate a scheme of direct recycling of spent BWR fuel in BWR system, under the concept that we have called as a SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario. Several spent BWR fuel compositions in loaded BWR fuel has been evaluated to achieve the criticality of reactor.

  3. ``Clean`` fuels: Does the new direction make environmental sense?

    SciTech Connect

    Saricks, C.L.; Wang, M.Q.

    1996-05-01

    This paper examines the ramifications of this a three-pronged energy philosophy, with special reference to its expected environmental impact if it is fully implemented as policy. To recapitulate, the three prongs are to rely on a free energy market to determine winners and losers, which could certainly include Reformulated Gasoline (RFG) if it remains relatively cheap and clean; refocus the bulk of government-sponsored transportation energy research toward a ``great leap ahead`` to fully renewable and essentially pollution-free fuels such as hydrogen and fuel cells; and discontinue AFV pump priming. Of special interest is a premise that appears common to all prongs--that none of these measures represents a retreat from environmental goals or accomplishments on record since the National Environmental Policy Act of 1969 was passed.

  4. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOEpatents

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  5. Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei

    The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.

  6. Direct conversion of solid hydrocarbons in a molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Predtechensky, M. R.; Varlamov, Yu. D.; Ul'Yankin, S. N.; Dubov, Yu. D.

    2009-12-01

    Electrical characteristics of a molten carbonate fuel cell allowing direct electrochemical oxidation of dispersed hydrocarbons have been examined. As the fuel, graphite, anthracite, and cannel coal samples were used. Data illustrating the effect of electrolyte temperature, fuel type and dispersion, and also reactant gas mixture composition on the performance characteristics of the fuel cell, were obtained. Correlation between the specific characteristics of the fuel cell and the hydrogen content of fuel material was established. The maximum current-density values were achieved with hydrogen-rich cannel coal. For dispersed fuel samples, interparticle contact losses were found to have influence on the cell-generated voltage. The maximum cell opencircuit voltage was reached with stoichiometric oxygen-carbon dioxide mixture blown into the cathode. Yet, the largest current-density values were obtained when carbon dioxide lean mixtures were used. Even at zero carbon dioxide concentration the range of cathode polarizations was less than that observed with stoichiometric mixture. The processes proceeding in the cathode and anode packs of the fuel cell are believed to be interrelated processes. In a model fuel cell fueled with dispersed coal, current densities up to 140 mA/cm2 and specific powers up to 70 mW/cm2 were achieved.

  7. Novel Coordination Chemistry of Aluminum Borohydride

    DTIC Science & Technology

    2014-08-01

    rocket propulsion . Due to its highly pyrophoric nature ABH poses extreme handling hazards. This reactivity can be significantly tamed through the...toxicity can limit transportation options Hydrazine – A state of the art rocket fuel Distribution A: Public Release, Distribution unlimited As of...today, most of our in-space propulsion systems are powered by the MMH and NTO bi-propellant system, known to be hypergolic and severely toxic.  In the

  8. Rapid evaluation of the electrooxidation of fuel compounds with a multiple-electrode setup for direct polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoko; Siroma, Zyun; Ioroi, Tsutomu; Yasuda, Kazuaki

    Electrochemical oxidation of fuel compounds in acidic media was examined on eight electrodes (Pt, Ru, PtRu, Rh, Ir, Pd, Au, and glassy carbon) simultaneously by multiple cyclic voltammetry (CV) with an electrochemical cell equipped with an eight-electrode configuration. Direct-type polymer electrolyte fuel cells (PEFCs), in which aqueous solutions of the fuel compounds are directly supplied to the anode, were also evaluated. The performances of direct PEFCs with various anode catalysts could be roughly estimated from the results obtained with multiple CV. This multiple evaluation may be useful for identifying novel fuels or electrocatalysts. Methanol, ethanol, ethylene glycol, 2-propanol, and D-glucose were oxidized selectively on Pt or PtRu, as reported previously. However, several compounds that are often used as reducing agents show electrochemical oxidation with unique characteristics. Large current was obtained for the oxidation of formic acid, hypophosphorous acid, and phosphorous acid on a Pd electrode. L-Ascorbic acid and sulfurous acid were oxidized on all of the electrodes used in the present study.

  9. Direct methanol fuel cells for transportation applications. Quarterly technical report, April--June 1997

    SciTech Connect

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1997-11-01

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in Phase 2 of the program. Progress in these areas is described.

  10. Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996

    SciTech Connect

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1996-11-01

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

  11. The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys.

    PubMed

    Paschoalino, Waldemir J; Thompson, Stephen J; Russell, Andrea E; Ticianelli, Edson A

    2014-07-21

    This work provides insights into the processes involved in the borohydride oxidation reaction (BOR) in alkaline media on metal hydride alloys formed by LaNi(4.7)Sn(0.2)Cu(0.1) and LaNi(4.78)Al(0.22) with and without deposited Pt, Pd, and Au. The results confirm the occurrence of hydrolysis of the borohydride ions when the materials are exposed to BH(4)(-) and a continuous hydriding of the alloys during BH(4)(-) oxidation measurements at low current densities. The activity for the direct BOR is low in both bare metal hydride alloys, but the rate of the BH(4)(-) hydrolysis and the hydrogen-storage capacity are higher, while the rate of H diffusion is slower for bare LaNi(4.78) Al(0.22). The addition of Pt and Pd to both alloys results in an increase of the BH(4)(-) hydrolysis, but the H(2) formed is rapidly oxidized at the Pt-modified catalysts. In the case of Au modification, a small increase in the BH(4)(-) hydrolysis is observed as compared to the bare alloys. The presence of Au and Pd also leads to a reduction of the rates of alloy hydriding/de-hydriding.

  12. Direct methanol fuel cells: A database-driven design procedure

    NASA Astrophysics Data System (ADS)

    Flipsen, S. F. J.; Spitas, C.

    2011-10-01

    To test the feasibility of DMFC systems in preliminary stages of the design process the design engineer can make use of heuristic models identifying the opportunity of DMFC systems in a specific application. In general these models are to generic and have a low accuracy. To improve the accuracy a second-order model is proposed in this paper. The second-order model consists of an evolutionary algorithm written in Mathematica, which selects a component-set satisfying the fuel-cell systems' performance requirements, places the components in 3D space and optimizes for volume. The results are presented as a 3D draft proposal together with a feasibility metric. To test the algorithm the design of DMFC system applied in the MP3 player is evaluated. The results show that volume and costs are an issue for the feasibility of the fuel-cell power-system applied in the MP3 player. The generated designs and the algorithm are evaluated and recommendations are given.

  13. Magnesium borohydride: from hydrogen storage to magnesium battery.

    PubMed

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metal borohydride formation from aluminium boride and metal hydrides.

    PubMed

    Møller, Kasper T; Fogh, Alexander S; Paskevicius, Mark; Skibsted, Jørgen; Jensen, Torben R

    2016-10-05

    Metal borides are often decomposition products from metal borohydrides and thus play a role in the reverse reaction where hydrogen is absorbed. In this work, aluminium boride, AlB2, has been investigated as a boron source for the formation of borohydrides under hydrogen pressures of p(H2) = 100 or 600 bar at elevated temperatures (350 or 400 °C). The systems AlB2-MHx (M = Li, Na, Mg, Ca) have been investigated, producing LiBH4, NaBH4 and Ca(BH4)2, whereas the formation of Mg(BH4)2 was not observed at T = 400 °C and p(H2) = 600 bar. The formation of the metal borohydrides is confirmed by powder X-ray diffraction and infrared spectroscopy and the fraction of boron in AlB2 and M(BH4)x is determined quantitatively by (11)B MAS NMR. Hydrogenation for 12 h at T = 350-400 °C and p(H2) = 600 bar leads to the formation of substantial amounts of LiBH4 (38.6 mol%), NaBH4 (83.0 mol%) and Ca(BH4)2 (43.6 mol%).

  15. Ammine Calcium and Strontium Borohydrides: Syntheses, Structures, and Properties.

    PubMed

    Jepsen, Lars H; Lee, Young-Su; Černý, Radovan; Sarusie, Ram S; Cho, Young Whan; Besenbacher, Flemming; Jensen, Torben R

    2015-10-26

    A new series of solvent- and halide-free ammine strontium metal borohydrides Sr(NH3 )n (BH4 )2 (n=1, 2, and 4) and further investigations of Ca(NH3 )n (BH4 )2 (n=1, 2, 4, and 6) are presented. Crystal structures have been determined by powder XRD and optimized by DFT calculations to evaluate the strength of the dihydrogen bonds. Sr(NH3 )(BH4 )2 (Pbcn) and Sr(NH3 )2 (BH4 )2 (Pnc2) are layered structures, whereas M(NH3 )4 (BH4 )2 (M=Ca and Sr; P21 /c) are molecular structures connected by dihydrogen bonds. Both series of compounds release NH3 gas upon thermal treatment if the partial pressure of ammonia is low. Therefore, the strength of the dihydrogen bonds, the structure of the compounds, and the NH3 /BH4 (-) ratio for M(NH3 )n (BH4 )m have little influence on the composition of the released gasses. The composition of the released gas depends mainly on the thermal stability of the ammine metal borohydride and the corresponding metal borohydride.

  16. Characterization of Lithium Borohydride using Neutron Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Hartman, Michael; Rush, Jack; Udovic, Terry

    2006-03-01

    Lithium borohydride, LiBH4, is a complex metal hydride that shows great promise as a hydrogen storage medium with a volumetric hydrogen density of 122 kg H/m^3 and a gravimetric hydrogen density of 18.5 wt. %. While numerous NMR, Raman, and infrared investigations have been reported in the literature, neutron scattering investigations of LiBH4 have been limited due to the large neutron absorption cross-section of naturally occurring lithium and boron. We have recently synthesized an isotopically-enriched lithium borohydride, containing ^7Li and ^11B, which eliminates the large neutron absorption cross-section that arises from the presence of ^6Li and ^10B. The results of powder neutron diffraction, inelastic neutron scattering, and quasi-elastic neutron scattering investigations on the ^7Li^11BH4 material are presented. These measurements provide a fundamental understanding of the behavior of hydrogen within lithium borohydride, and they provide a basis to understand changes concomitant with the introduction of catalytic or destabilizing compounds.

  17. Kinetics of Ru-catalyzed sodium borohydride hydrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Delgass, W. N.; Fisher, T. S.; Gore, J. P.

    Chemical hydrides have been identified as a potential medium for on-board hydrogen storage, one of the most challenging technical barriers to the prospective transition from gasoline to hydrogen-powered vehicles. Systematic study of the feasibility of the sodium borohydride systems, and chemical-hydride systems more generally, requires detailed kinetic studies of the reaction for use in reactor modeling and system-level experiments. This work reports an experimental study of the kinetics of sodium borohydride hydrolysis with a Ru-on-carbon catalyst and a Langmuir-Hinshelwood kinetic model developed based on experimental data. The model assumes that the reaction consists of two important steps: the equilibrated adsorption of sodium borohydride on the surface of the catalyst and the reaction of the adsorbed species. The model successfully captures both the reaction's zero-order behavior at low temperatures and the first-order behavior at higher temperatures. Reaction rate constants at different temperatures are determined from the experimental data, and the activation energy is found to be 66.9 kJ mol -1 from an Arrhenius plot.

  18. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Mu, Wei; Liu, Mengjie; Zhang, Xiaodan; Cai, Hongli; Deng, Yulin

    2014-02-01

    The current polymer-exchange membrane fuel cell technology cannot directly use biomass as fuel. Here we present a solar-induced hybrid fuel cell that is directly powered with natural polymeric biomasses, such as starch, cellulose, lignin, and even switchgrass and wood powders. The fuel cell uses polyoxometalates as the photocatalyst and charge carrier to generate electricity at low temperature. This solar-induced hybrid fuel cell combines some features of solar cells, fuel cells and redox flow batteries. The power density of the solar-induced hybrid fuel cell powered by cellulose reaches 0.72 mW cm-2, which is almost 100 times higher than cellulose-based microbial fuel cells and is close to that of the best microbial fuel cells reported in literature. Unlike most cell technologies that are sensitive to impurities, the cell reported in this study is inert to most organic and inorganic contaminants present in the fuels.

  19. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier.

    PubMed

    Liu, Wei; Mu, Wei; Liu, Mengjie; Zhang, Xiaodan; Cai, Hongli; Deng, Yulin

    2014-01-01

    The current polymer-exchange membrane fuel cell technology cannot directly use biomass as fuel. Here we present a solar-induced hybrid fuel cell that is directly powered with natural polymeric biomasses, such as starch, cellulose, lignin, and even switchgrass and wood powders. The fuel cell uses polyoxometalates as the photocatalyst and charge carrier to generate electricity at low temperature. This solar-induced hybrid fuel cell combines some features of solar cells, fuel cells and redox flow batteries. The power density of the solar-induced hybrid fuel cell powered by cellulose reaches 0.72 mW cm(-2), which is almost 100 times higher than cellulose-based microbial fuel cells and is close to that of the best microbial fuel cells reported in literature. Unlike most cell technologies that are sensitive to impurities, the cell reported in this study is inert to most organic and inorganic contaminants present in the fuels.

  20. Performance and modelling of a direct methanol solid polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Scott, K.; Taama, W.; Cruickshank, J.

    The performance and modelling of a direct methanol fuel cell based on a solid polymer electrolyte membrane (SPE) is reported. Two sizes of cell are used: a small cell with an area of 9 cm 2 and a large single cell with an area of 250 cm 2. The fuel cell utilises a vapourised methanol fuel at a porous carbon/Pt-Ru catalyst electrode. The performance of the fuel cell is affected by the cross-over of methanol from the anode to the cathode through the polymer membrane and this behaviour is modelled. To evaluate cell performance, mathematical models are constructed which describe mass transport in the porous electrode structures and the potential and concentration distributions in the electrode regions. These models are used to predict the cell voltage and current density response of the fuel cell.

  1. A composite of borohydride and super absorbent polymer for hydrogen generation

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Liu, B. H.; Liu, F. F.; Xu, D.

    To develop a hydrogen source for underwater applications, a composite of sodium borohydride and super absorbent polymer (SAP) is prepared by ball milling sodium borohydride powder with SAP powder, and by dehydrating an alkaline borohydride gel. When sodium polyacrylate (NaPAA) is used as the SAP, the resulting composite exhibits a high rate of borohydride hydrolysis for hydrogen generation. A mechanism of hydrogen evolution from the NaBH 4-NaPAA composite is suggested based on structure analysis by X-ray diffraction and scanning electron microscopy. The effects of water and NiCl 2 content in the precursor solution on the hydrogen evolution behavior are investigated and discussed.

  2. Direct high-resolution alpha spectrometry from nuclear fuel particles in an outdoor air sample.

    PubMed

    Pöllänen, R; Siiskonen, T

    2008-01-01

    The potential use of direct high-resolution alpha spectrometry to identify the presence of transactinium elements in air samples is illustrated in the case when alpha-particle-emitting radionuclides are incorporated in nuclear fuel particles. Alpha particle energy spectra are generated through Monte Carlo simulations assuming a nuclide composition similar to RBMK (Chernobyl) nuclear fuel. The major alpha-particle-emitting radionuclides, in terms of activity, are 242Cm, 239Pu and 240Pu. The characteristics of the alpha peaks are determined by fuel particle properties as well as the type of the air filter. It is shown that direct alpha spectrometry can be readily applied to membrane filter samples containing nuclear fuel particles when rapid nuclide identification is of relevance. However, the development of a novel spectrum analysis code is a prerequisite for unfolding complex alpha spectra.

  3. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    SciTech Connect

    Celik, Ismail B.

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that

  4. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE PAGES

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; ...

    2017-07-18

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  5. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  6. Self-Activated Micro Direct-Methanol Fuel Cell (muDMFC) at Near Room Temperature

    DTIC Science & Technology

    2007-11-02

    control of multiphase flows at the microscale is crucial to micro-DMFC development. Through micro channel experiments we showed that wettability ...channel experiments study the effects of wettability (hydrophilic/hydrophobic) as well as the presence of impurities in the fuel on the operating...and gas are flowing into square cross-sectional microchannels. The optimal wettability properties for Micro-Direct Methanol Fuel Cells are hydrophilic

  7. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  8. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  9. Dithionite/air direct ion liquid fuel cell

    NASA Astrophysics Data System (ADS)

    Noack, Jens; Tübke, Jens; Pinkwart, Karsten

    2015-07-01

    The feasibility of an alkaline S2O42-/air-fuel cell was evaluated at room temperature, using a cell with an anion exchange membrane and a platinum oxygen reduction reaction catalyst. The tests performed were open circuit voltage analysis, linear sweep voltammetry, discharge analysis and electrochemical impedance spectroscopy (EIS) with registration of anode half-cell potential. With 0.85 M Na2S2O4 in 2 M KOH, the cell achieved a maximum power density of 2 mW cm-2, and the open circuit cell voltage was about 0.9 V. In a potentiostatic discharging at 0.2 V cell voltage, an energy efficiency of 12.3% was achieved at an energy density of 8.6 Wh L-1. The low power density was mainly due to the low reaction kinetics of dithionite oxidation at graphite electrodes. The low energy efficiency was mainly caused by a low cathode potential, which probably resulted from mixed potential formation and the low anode kinetics.

  10. Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels

    SciTech Connect

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2013-05-24

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (© pilot ¼ 0.2-0.6 and © overall ¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant © pilot (> 0.5), increasing © overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing © overall (at constant © pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  11. Modelling of solid polymer and direct methanol fuel cells: Phenomenological equations and analytical solutions

    NASA Astrophysics Data System (ADS)

    Kauranen, P. S.

    1993-04-01

    In the solid state concept of a direct methanol fuel cell (DMFC), methanol is directly oxidized at the anode of a solid polymer electrolyte fuel cell (SPEFC). Mathematical modelling of the transport and reaction phenomena within the electrodes and the electrolyte membrane is needed in order to get a closer insight into the operation of the fuel cell. In the work, macro-homogenous porous electrode and dilute solution theories are used to derive the phenomenological equations describing the transport and reaction mechanisms in a SPEFC single cell. The equations are first derived for a conventional H2/air SPEFC, and then extended for a DMFC. The basic model is derived in a one dimensional form in which it is assumed that species transport take place only in the direction crossing the cell sandwich. In addition, two dimensional descriptions of the catalyst layer are reviewed.

  12. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    PubMed

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm(-2) , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH(-) ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    PubMed

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  14. Direct brain recordings fuel advances in cognitive electrophysiology.

    PubMed

    Jacobs, Joshua; Kahana, Michael J

    2010-04-01

    Electrocorticographic brain recordings in patients with surgically implanted electrodes have recently emerged as a powerful tool for examining the neural basis of human cognition. These recordings measure the electrical activity of the brain directly, and thus provide data with higher temporal and spatial resolution than other human neuroimaging techniques. Here we review recent research in this area and in particular we explain how electrocorticographic recordings have provided insight into the neural basis of human working memory, episodic memory, language, and spatial cognition. In some cases this research has identified patterns of human brain activity that were unexpected on the basis of studies in animals.

  15. Direct brain recordings fuel advances in cognitive electrophysiology

    PubMed Central

    Jacobs, Joshua; Kahana, Michael J.

    2010-01-01

    Electrocorticographic brain recordings from patients with surgically implanted electrodes have recently emerged as a powerful tool for examining the neural basis of human cognition. These recordings measure the brain's electrical activity directly, and thus provide data with a higher temporal and spatial resolution than other human neuroimaging techniques. Here, we review recent research in this area and, in particular, we explain how electrocorticographic recordings have informed the neural basis of human working memory, episodic memory, language, and spatial cognition. In some cases this research has identified patterns of human brain activity that were unexpected on the basis of studies in animals. PMID:20189441

  16. Coal fueled ported kiln direct reduction process in Norway

    SciTech Connect

    Rierson, D.W.

    1994-12-31

    Allis Mineral Systems (AMS), formerly the minerals processing group at Allis-Chalmers Corporation, developed a ported kiln process in the 1960`s specifically for the direct reduction of iron ore. The process is called ACCAR. This ported kiln technology has more recently been coupled with AMS` GRATE-KILN System for iron oxide pelletizing into the GRATE-CAR Process, for minerals reduction. The GRATE-CAR Process can handle a fine grained ore concentrate through the steps of agglomeration, induration and reduction in a single production line.

  17. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  18. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  19. Direct measurement of 235U in spent fuel rods with Gamma-ray mirrors

    NASA Astrophysics Data System (ADS)

    Ruz, J.; Brejnholt, N. F.; Alameda, J. B.; Decker, T. A.; Descalle, M. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, R. A.; Melin, A. M.; Patton, B. W.; Soufli, R.; Ziock, K.; Pivovaroff, M. J.

    2015-03-01

    Direct measurement of plutonium and uranium X-rays and gamma-rays is a highly desirable non-destructive analysis method for the use in reprocessing fuel environments. The high background and intense radiation from spent fuel make direct measurements difficult to implement since the relatively low activity of uranium and plutonium is masked by the high activity from fission products. To overcome this problem, we make use of a grazing incidence optic to selectively reflect Kα and Kβ fluorescence of Special Nuclear Materials (SNM) into a high-purity position-sensitive germanium detector and obtain their relative ratios.

  20. High-areal-density fuel assembly in direct-drive cryogenic implosions.

    PubMed

    Sangster, T C; Goncharov, V N; Radha, P B; Smalyuk, V A; Betti, R; Craxton, R S; Delettrez, J A; Edgell, D H; Glebov, V Yu; Harding, D R; Jacobs-Perkins, D; Knauer, J P; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Regan, S P; Seka, W; Short, R W; Skupsky, S; Soures, J M; Stoeckl, C; Yaakobi, B; Shvarts, D; Frenje, J A; Li, C K; Petrasso, R D; Séguin, F H

    2008-05-09

    The first observation of ignition-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition-relevant adiabats is reported. The experiments were performed on the 60-beam, 30-kJUV OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2]. Neutron-averaged areal densities of 202+/-7 mg/cm2 and 182+/-7 mg/cm2 (corresponding to estimated peak fuel densities in excess of 100 g/cm3) were inferred using an 18-kJ direct-drive pulse designed to put the converging fuel on an adiabat of 2.5. These areal densities are in good agreement with the predictions of hydrodynamic simulations indicating that the fuel adiabat can be accurately controlled under ignition-relevant conditions.

  1. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    SciTech Connect

    Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

    2003-07-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

  2. Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine

    NASA Astrophysics Data System (ADS)

    Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan

    2012-06-01

    A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.

  3. Direct reduction of hydrogen peroxides into hydroxyl ions in peroxide-based fuel cell

    NASA Astrophysics Data System (ADS)

    Luo, Nie; Miley, George H.; Noid, D. W.

    2004-03-01

    We study the catalytic electrochemical reduction of hydrogen peroxide (H_2O2 + 2 e = 2 OH^-) at the electrolyte/cathode interface of peroxide fuel cells. This is the desired reaction for high efficiency fuel cell operation, but is nevertheless in competition with wasteful processes such as the direct decomposition of H_2O2 to water and oxygen gas. The reaction kinetics of these competing processes is calculated with thermodynamic and electrochemical data of relevant materials, resulting in a qualitative guide on the selection of effective catalyst and cathode compositions. The experimental research includes cyclic voltammetry, used to probe the surface electrochemistry of the catalytic process, and shed light on how proper theories are restricted experimentally. The fuel cell based on direct hydrogen peroxide cathode has the following distinct advantages: i) Very high volumetric power density (several times higher than ordinary H_2O2 fuel cells) through direct utilization of a liquid phase oxidant at the cathode; (ii) The potential for high efficiency (over 60%): use of H_2O2 eliminates the oxygen over-potential problem inherent to ordinary H_2O2 fuel cell designs, which require transfer of four electrons simultaneously; (iii) Safe, and stable storage of the energetic materials.

  4. Direct reduction of hydrogen peroxides into hydroxyl ions in peroxide-based fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Nie; Miley, George; Noid, Don; Chubb, Scott

    2004-03-01

    The physics of catalytic electrochemical reduction of hydrogen peroxide (H2O2 + 2 e = 2 OH-) at the electrolyte/cathode interface of peroxide fuel cells is under study. This reaction is ideally suited for high efficiency fuel cell operation, but is nevertheless in competition with wasteful processes such as the direct decomposition of H2O2 to water and oxygen gas. The reaction kinetics of these competing processes are calculated with thermodynamic and electrochemical data of relevant materials, resulting in a qualitative guide to the selection of effective catalyst and cathode compositions. The experimental research includes cyclic voltammetry, used to probe the surface electrochemistry of the catalytic process, and to shed light on how a correct theoretical understanding is restricted experimentally. A fuel cell based on direct hydrogen peroxide cathode has the following distinct advantages: i) Very high volumetric power density (several times higher than conventional H2/O2 fuel cells) due to direct utilization of a liquid phase oxidant at the cathode; (ii) The potential for a very high efficiency (over 60%) because the use of H2O2 overcomes the oxygen over-potential problem (slow O2 reduction kinetics) inherent to a H2/O2 fuel cell designs, which require simultaneous transfer of four electrons; (iii) Safe, and long time stable storage of the energetic materials for fuel cells in special environment (space, underwater, etc.). The measurement on open cell voltage, short-circuit current density shows an improved performance compared to a typical H2/O2 fuel cell, indicating a higher efficiency at similar discharge conditions.

  5. Combustion of Various Highly Reactive Fuels in a 3.84- by 10-inch Mach 2 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Allen, Harrison, Jr.; Fletcher, Edward A.

    1959-01-01

    The following fuels and fuel combinations injected from the top wall of a Mach 2 wind tunnel were successfully burned and gave associated pressure rises: aluminum borohydride, pentaborane, mixtures containing up to 41 percent JP-4 fuel in aluminum borohydride, tandem injections of aluminum borohydride, tandem injections of JP-4 fuel and aluminum borohydride, trimethyl aluminum with water injections, and diethyl aluminum hydride with water injections. The following fuels could not be ignited at the tunnel conditions (static pressure, 5.6 in. Hg; static temperature, -148 F): trimethylborane, triethylborane, propylpentaborane, ethyl- decaborane, and vinylsilane. Studies in which the heated region was probed by water injections indicated that the flow downstream of the flame front is subsonic and recirculating.

  6. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell

    PubMed Central

    Xu, Wei; Zhang, Huimin; Li, Gang; Wu, Zucheng

    2014-01-01

    Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm−2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm−2 with an open circuit voltage of 0.38 V at 60°C. PMID:25168632

  7. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  8. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  9. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell.

    PubMed

    Xu, Wei; Zhang, Huimin; Li, Gang; Wu, Zucheng

    2014-08-29

    Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm(-2) when 0.33 M urea was used as fuel, O2 as oxidant at 60 °C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm(-2) with an open circuit voltage of 0.38 V at 60 °C.

  10. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect

    2010-07-12

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  11. Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell

    SciTech Connect

    Cherepy, N J; Fiet, K J; Krueger, R; Jankowski, A F; Cooper, J F

    2004-01-28

    Anodes of elemental carbon may be discharged in a galvanic cell using a molten carbonate electrolyte, a nickel-foam anode-current collector, and a porous nickel air cathode to achieve power densities of 40-100 mW/cm{sup 2}. We report cell and anode polarization, surface area, primary particle size and a crystallization index for nine particulate carbon samples derived from fuel oil, methane, coal, charred biological material and petroleum coke. At 800 C, current densities of 50-125 mA/cm{sup 2} were measured at a representative cell voltage of 0.8 V. Power densities for cells with two carbon-anode materials were found to be nearly the same on scales of 2.8- and 60 cm{sup 2} active area. Constant current operation of a small cell was accompanied by constant voltage during multiple tests of 10-30 hour duration. Cell voltage fell off after the carbon inventory was consumed. Three different cathode structures are compared, indicating that an LLNL fabricated porous nickel electrode with <10 {micro}m pores provides improved rates compared with nickel foam with 100-300 {micro}m pores. Petroleum coke containing substantial sulfur and ash discharges at a slightly lower rate than purified petroleum coke. The sulfur leads to degradation of the anode current collector over time. A conceptual model for electrochemical reactivity of carbon is presented which indicates the importance of (1) bulk lattice disorder, which continually provides surface reactive sites during anodic dissolution and (2) electrical conductivity, which lowers the ohmic component of anode polarization.

  12. 76 FR 79051 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ...-AD; Amendment 39-16894; AD 2011-26-04] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... reciprocating engines manufactured by Lycoming Engines. That AD currently requires inspection, replacement if...

  13. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cells Stacks

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.

  14. Direct Conversion of Chemically De-Ashed Coal in Fuel Cells (II)

    SciTech Connect

    Cooper, J F

    2005-07-25

    We review the technical challenges associated with the production and use of various coal chars in a direct carbon conversion fuel cell. Existing chemical and physical deashing processes remove material below levels impacting performance at minimal cost. At equilibrium, sulfur entrained is rejected from the melt as COS in the offgas.

  15. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cells Stacks

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.

  16. Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells.

    PubMed

    Sharma, Tushar; Hu, Ye; Stoller, Meryl; Feldman, Marc; Ruoff, Rodney S; Ferrari, Mauro; Zhang, Xiaojing

    2011-07-21

    The design, fabrication and characterization of an inorganic catalyst based direct glucose fuel cell using mesoporous silica coating as a functional membrane is reported. The desired use of mesoporous silica based direct glucose fuel cell is for a blood vessel implantable device. Blood vessel implantable direct glucose fuel cells have access to higher continuous glucose concentrations. However, reduction in the implant thickness is required for application in the venous system as part of a stent. We report development of an implantable device with a platinum thin-film (thickness: 25 nm) deposited on silicon substrate (500 μm) to serve as the anode, and graphene pressed on a stainless steel mesh (175 μm) to serve as the cathode. Control experiments involved the use of a surfactant-coated polypropylene membrane (50 μm) with activated carbon (198 μm) electrodes. We demonstrate that a mesoporous silica thin film (270 nm) is capable of replacing the conventional polymer based membranes with an improvement in the power generated over conventional direct glucose fuel cells.

  17. The effect of operation and design parameters on the performance of the direct methanol fuel cell

    SciTech Connect

    Simpson, S.F.; Cisar, A.; Franaszczuk, K.

    1996-12-31

    Fuel cell technology continues to receive considerable attention as a potential replacement for fossil fuels as a primary source of terrestrial power. Ideally, such power systems would operate at relatively low temperatures (< 100{degrees}C) which suggests strongly the use of cell technology based upon the proton exchange membrane (PEM). Without question, hydrogen is a very desirable fuel choice for these types of systems, because of its high energy density. However, the difficulties associated with the production and routine handling of hydrogen limit severely its commercial use at present. The direct methanol fuel cell (DMFC) is a particularly attractive alternative to the use of the hydrogen/oxygen cell. Although not as high as hydrogen, the energy density of methanol is the highest among the organic fuels. Furthermore, because of the similarity in liquid handling requirements between methanol and gasoline, a significant portion of the infrastructure necessary for the marketing and distribution of the fuel is already in place. Other inherent attributes of the DMFC which include rapid start-up and operation with little or no emission or noise signature have led to an intense DMFC research effort over the past twenty years and, indeed, the DMFC has even been referred to as {open_quotes}the electrochemist`s dream{close_quotes}.

  18. Assessment of methanol electro-oxidation for direct methanol-air fuel cells

    SciTech Connect

    Fritts, S.D.; Sen, R.K.

    1988-07-01

    The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

  19. Direct NaBH 4/H 2O 2 fuel cells

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Luo, Nie; Mather, Joseph; Burton, Rodney; Hawkins, Glenn; Gu, Lifeng; Byrd, Ethan; Gimlin, Richard; Shrestha, Prajakti Joshi; Benavides, Gabriel; Laystrom, Julia; Carroll, David

    A fuel cell (FC) using liquid fuel and oxidizer is under investigation. H 2O 2 is used in this FC directly at the cathode. Either of two types of reactant, namely a gas-phase hydrogen or an aqueous NaBH 4 solution, are utilized as fuel at the anode. Experiments demonstrate that the direct utilization of H 2O 2 and NaBH 4 at the electrodes results in >30% higher voltage output compared to the ordinary H 2/O 2 FC. Further, the use of this combination of all liquid fuels, provides numerous advantages (ease of storage, reduced pumping requirements, simplified heat removal, etc.) from an operational point of view. This design is inherently compact compared to other cells that use gas phase reactants. Further, regeneration is possible using an electrical input, e.g. from power lines or a solar panel. While the peroxide-based FC is ideally suited for applications such as space power where air is not available and a high energy density fuel is essential, other distributed and mobile power uses are of interest.

  20. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  1. Implementation of direct LSC method for diesel samples on the fuel market.

    PubMed

    Krištof, Romana; Hirsch, Marko; Kožar Logar, Jasmina

    2014-11-01

    The European Union develops common EU policy and strategy on biofuels and sustainable bio-economy through several documents. The encouragement of biofuel's consumption is therefore the obligation of each EU member state. The situation in Slovenian fuel market is presented and compared with other EU countries in the frame of prescribed values from EU directives. Diesel is the most common fuel for transportation needs in Slovenia. The study was therefore performed on diesel. The sampling net was determined in accordance with the fuel consumption statistics of the country. 75 Sampling points were located on different types of roads. The quantity of bio-component in diesel samples was determined by direct LSC method through measurement of C-14 content. The measured values were in the range from 0 up to nearly 6 mass percentage of bio-component in fuel. The method has proved to be appropriate, suitable and effective for studies on the real fuel market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. High efficiency direct fuel cell hybrid power cycle for near term application

    SciTech Connect

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-12-31

    Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

  3. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    PubMed

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    PubMed

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Promising Fuel Cycle Options for R&D – Results, Insights, and Future Directions

    SciTech Connect

    Wigeland, Roald Arnold

    2015-05-01

    The Fuel Cycle Options (FCO) campaign in the U.S. DOE Fuel Cycle Research & Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. The process for this study was described at the 2014 ICAPP meeting. This paper reports on detailed insights and questions from the results of the study. The comprehensive study identified continuous recycle in fast reactors as the most promising option, using either U/Pu or U/TRU recycle, and potentially in combination with thermal reactors, as reported at the ICAPP 2014 meeting. This paper describes the examination of the results in detail that indicated that there was essentially no difference in benefit between U/Pu and U/TRU recycle, prompting questions about the desirability of pursuing the more complex U/TRU approach given that the estimated greater challenges for development and deployment. The results will be reported from the current effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. The study also identified continuous recycle using thorium-based fuel cycles as potentially promising, in either fast or thermal systems, but with lesser benefit. Detailed examination of these results indicated that the lesser benefit was confined to only a few of the evaluation metrics, identifying the conditions under which thorium-based fuel cycles would be promising to pursue. For the most promising fuel cycles, the FCO is also conducting analyses on the potential transition to such fuel cycles to identify the issues, challenges, and the timing for critical decisions that would need to be made to avoid unnecessary delay in deployment, including investigation of issues such as the effects of a temporary lack of plutonium fuel resources or supporting infrastructure. These studies are placed in the context of an overall analysis approach designed to provide comprehensive information to

  6. Isotopic Exchange in Porous and Dense Magnesium Borohydride.

    PubMed

    Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C

    2015-09-01

    Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2.

  7. First-Principles Structure Prediction of Dual Cation Ammine Borohydrides: LiMg(BH4)3(NH3)x

    NASA Astrophysics Data System (ADS)

    Kışlak, Yusuf; Tekin, Adem

    On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. In addition, hydrogen storage is also required for off-board purposes such as stationary power generation and hydrogen delivery and refueling infrastructure. After decades of extensive exploration, research into hydrogen storage materials based on metal borohydrides has become a highly active and exciting area owing to the high theoretical hydrogen capacities of these materials. However, they are thermodynamically too stable and therefore a very high temperature is required for their decomposition. This temperature can be lowered to the tolerable levels by the addition of ammonia and the resulting material is called as Ammine Metal Borohydrides (AMBs). In this study, we aim to search the ground state crystal structures of LiMg(BH4)3(NH3)x [1] with x = 2, 3, 4 using CrystAl Structure Prediction via Simulated Annealing (CASPESA) method. This approach was successfully located the experimentally determined structure of LiMg(BH4)3(NH3)2 [1] and other interesting local minima. For x = 3 and 4 cases, our methodology also resulted new crystal phases.

  8. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  9. Methanol-tolerant cathode catalyst composite for direct methanol fuel cells

    DOEpatents

    Zhu, Yimin; Zelenay, Piotr

    2006-09-05

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  10. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    SciTech Connect

    Srivastava, R.D.; McIlvried, H.G.; Gray, D.

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  11. Polymer electrolyte direct methanol fuel cells: an option for transportation applications

    SciTech Connect

    Gottesfeld, S.; Cleghorn, S.J.C.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, T.A.

    1996-10-01

    PEFCs most frequently considered for electric vehicles have been based on either hydrogen carried aboard, or steam-reforming of methanol on board to produce H2 + CO2. Direct methanol fuel cells (DMFCs), which use a liquid methanol fuel feed, completely avoid the complexity and weight penalties of the reformer, but have not been considered a serious option until recently, because of much lower power densities. Recent advances in DMFCs have been dramatic, however, with the DMFC reaching power densities which are significant fractions of those provided by reformate/air fuel cells. Use of established Pt-Ru anode electrocatalysts and Pt cathode electrocatalysts in polymer electrolyte DMFCs has resulted in enhanced DMFC performance, particularly when operated above 100 C and when catalyst layer composition and structure are optimized. The higher DMFC power densities recently achieved provide a new basis for considering DMFCs for transportation applications.

  12. A review of polymer electrolyte membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Neburchilov, Vladimir; Martin, Jonathan; Wang, Haijiang; Zhang, Jiujun

    This review describes the polymer electrolyte membranes (PEM) that are both under development and commercialized for direct methanol fuel cells (DMFC). Unlike the membranes for hydrogen fuelled PEM fuel cells, among which perfluorosulfonic acid based membranes show complete domination, the membranes for DMFC have numerous variations, each has its advantages and disadvantages. No single membrane is emerging as absolutely superior to others. This review outlines the prospects of the currently known membranes for DMFC. The membranes are evaluated according to various properties, including: methanol crossover, proton conductivity, durability, thermal stability and maximum power density. Hydrocarbon and composite fluorinated membranes currently show the most potential for low cost membranes with low methanol permeability and high durability. Some of these membranes are already beginning to impact the portable fuel cell market.

  13. Effects of NaOH addition on performance of the direct hydrazine fuel cell

    NASA Astrophysics Data System (ADS)

    Yin, Wen Xia; Li, Zhou Peng; Zhu, Jing Ke; Qin, Hai Ying

    In this work, we suggested a figuration of the direct hydrazine fuel cell (DHFC) using non-precious metals as the anode catalyst, ion exchange membranes as the electrolyte and alkaline hydrazine solutions as the fuel. NaOH addition in the anolyte effectively improved the open circuit voltage and the performance of the DHFC. A power density of 84 mW cm -2 has been achieved when operating the cell at room temperature. It was found that the cell performance was mainly influenced by anode polarization when using alkaline N 2H 4 solutions with low NaOH concentrations. However, when using alkaline N 2H 4 solutions with high NaOH concentrations as the fuel, the cell performance was mainly influenced by cathode polarization.

  14. Direct fuel injection: An opportunity for two-stroke SI engines in road vehicle use

    SciTech Connect

    Nuti, M.

    1986-01-01

    Following the state of the art analysis of typical applications of two-stroke SI engines in road vehicles, new solutions for this type of engine are examined. The two-stroke engine appears as an extremely attractive one during part-throttle operations especially from the point of view of fuel consumption, when the problems caused by fresh mixture short-circuiting are overcome. This fact is well confirmed by the renewed interest in the two-stroke cycle SI Engine. A new solution, with direct fuel injection and separate scavenging pump, that show very low fuel consumption data down to very low B.M.E.P. levels while maintining a high specific power output and acceptable HC emissions, is then presented.

  15. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  16. Thermally stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Wu, Jung-Fen; Lo, Chieh-Fang; Li, Long-Yun; Li, Hsieh-Yu; Chang, Chia-Ming; Liao, Kuo-Sung; Hu, Chien-Chieh; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2014-01-01

    Nanocomposites of thermally stable polybenzimidazole (PBI) containing small amounts (<1%) of functionalized multi-walled carbon nano-tubes (CNT) are prepared using solution casting methods. These PBI and PBI/CNT composites are doped with potassium hydroxide (KOH) solution to prepare hydroxide-conducting electrolytes for alkaline direct methanol fuel cell (ADMFC) applications. The CNT-containing composites exhibit higher fractional free volumes and higher water diffusivities. CNT also promotes ionic conductivity of electrolytes and improves the fuel cell performance. Gas diffusion electrodes (GDEs) without polytetrafluoroethene (PTFE) treatment give superior cell power density compared to commercial E-tek GDEs, which contain hydrophobic PTFE layers. When the fuel cell is fed with 2 M methanol in 6 M KOH (as the anode fuel) and humidified oxygen (as the cathode oxidant), the system achieves a maximum power density of 104.7 mW cm-2 at 90 °C. These KOH-doped PBI/CNT composites have the potential to be used in high temperature alkaline fuel cell applications.

  17. A membraneless alkaline direct liquid fuel cell (DLFC) platform developed with a catalyst-selective strategy

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Pascual, Emilio J.; Wauson, Joshua C.; Manthiram, Arumugam

    2016-11-01

    With a logical management of the catalyst selectivity, we present a scalable, membraneless alkaline direct liquid fuel cell (DLFC) platform. The uniqueness of this innovation is that the inexpensive (non-platinum) cathode catalysts, based on strongly coupled transition-metal-oxide nanocrystals and nano-structured carbon materials (e. g., NiCo2O4 nano-particles on a nitrogen-doped graphene and MnNiCoO4 nano-particles on a nitrogen-doped multi-wall carbon nanotube), exhibit high activity for the oxygen reduction reaction (ORR) but without activity for the anode fuel oxidation reaction (FOR). Therefore, operation of the DLFCs allows the anode fuel to freely enter the cathode. This strategy avoids the reliance on expensive or difficult-to-develop cation- or anion-exchange membranes and circumvents the scalability concerns of the conventional membraneless DLFCs that are operated under a laminar-flow principle. With proper catalyst selectivity, a variety of organic liquids can be used as anode fuels. The high power density delivered by the membraneless DLFCs with inexpensive components and safe fuels can enable the development of not only small-scale portable power sources but also large-scale energy generation systems for transportation and stationary storage.

  18. Synthesis of Borohydride and Catalytic Dehydrogenation by Hydrogel Based Catalyst

    NASA Astrophysics Data System (ADS)

    Boynuegri, Tugba Akkas; Karabulut, Ahmet F.; Guru, Metin

    2016-08-01

    This paper deals with the synthesis of calcium borohydride (Ca(BH4)2) as hydrogen storage material. Calcium chloride salt (CaCl2), magnesium hydride (MgH2), and boron oxide (B2O3) were used as reactants in the mechanochemical synthesis of Ca(BH4)2. The mechanochemical reaction was carried out by means of Spex type ball milling without applying high pressure and temperature. Parametric studies have been established at different reaction times and for different amounts of reactants at a constant ball to powder ratio (BPR) 4:1. The best combination was determined by Fourier Transform Infrared (FT-IR) analysis. According to the FT-IR analysis, reaction time, the first reaction parameter, was found as 1600 min. After the reaction time was fixed at 1600 min, the difference of the B-H peak areas was dependent on the amount of reactant MgH2 that was investigated. The amount of the reactant (MgH2), the second reaction parameter, was measured to be 2.85 times more than the stoichiometric amount of MgH2. According to our previous studies, BPR was selected as 4:1 for all experiments. Samples were prepared in a glove box under argon atmosphere but the time that elapsed for FT-IR analysis highly affected B-H bonds. B-H peak areas clearly decreased with time because of negative effect of ambient atmosphere. A catalyst was prepared by absorbing cobalt fluoride (CoF2) in poly (acrylamide-co-acrylic acid) hydrogel matrices type and its catalytic dehydrogenation performance that has been characterized by the catalytic reaction of sodium borohydride's known hydrogen capacity in an alkaline medium. The metal amount of hydrogel catalyst was determined as 135.82 mg Co by Atomic Absorption Spectroscopy (AAS). The specific dehydrogenation capacity of the Co active compound in the catalyst thanks to catalytic dehydrogenation of commercial sodium borohydride was measured as 1.66 mL H2/mg Co.

  19. Proton electrolyte membrane properties and direct methanol fuel cell performance. II. Fuel cell performance and membrane properties effects

    NASA Astrophysics Data System (ADS)

    Silva, V. S.; Schirmer, J.; Reissner, R.; Ruffmann, B.; Silva, H.; Mendes, A.; Madeira, L. M.; Nunes, S. P.

    In order to study the relationship between the properties of proton electrolyte membranes (PEMs), obtained through standard characterization methods, and the direct methanol fuel cell (DMFC) performance, inorganic-organic hybrid membranes, modified via in situ hydrolysis, were used in a membrane electrolyte assembly (MEA) for DMFC application. The membranes, the characterization of which was performed in the previous paper of this series, were based on sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree (SD) of 87% and were loaded with different amounts of zirconium oxide (5.0, 7.5, 10.0, 12.5 wt.%). The standard characterization methods applied were impedance spectroscopy (proton conductivity), water uptake, and pervaporation (permeability to methanol). The MEAs were characterized investigating the DMFC current-voltage polarization curves, constant voltage current (CV, 35 mV), and open-circuit voltage (OCV). The fuel cell ohmic resistance (null phase angle impedance, NPAI) and CO 2 concentration in the cathode outlet were also measured. The characterization results show that the incorporation of the inorganic oxide in the polymer network decreases the DMFC current density for CV experiments, CO 2 concentration in the cathode outlet for both OCV and CV experiments and, finally, the maximum power density output. The opposite effect was verified in terms of the NPAI (ohmic resistance) for both OCV and CV experiments. A good agreement was found between the studied DMFC performance parameters and the characterization results evaluated by impedance spectroscopy, water uptake and pervaporation experiments.

  20. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    PubMed

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid

    SciTech Connect

    Kim, Hongjun; Lee, Sunghwan; Kim, Suran; Oh, Chungik; Ryu, Jeongjae; Kim, Jaegyu; Park, Eugene; Hong, Seungbum; No, Kwangsoo

    2016-11-01

    Interest has been growing in direct ethanol fuel cells (DEFCs) due to their non-toxicity, low cost and potential contribution to energy issues in third world countries. A reduction in fuel cross-over is of key importance to enhance the performance of DEFCs that operate at low temperatures (<100 °C). We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on the ethanol-crossover for DEFC application. A set of PWANafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns and permeability were systematically characterized. The significant reduction in ethanol-crossover was observed with increasing PWA concentration in PWA-Nafion membranes, which was mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. These PWA-Nafion composites were implemented in proto-type DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.

  2. Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid

    DOE PAGES

    Kim, Hongjun; Lee, Sunghwan; Kim, Suran; ...

    2016-11-01

    Interest has been growing in direct ethanol fuel cells (DEFCs) due to their non-toxicity, low cost and potential contribution to energy issues in third world countries. A reduction in fuel cross-over is of key importance to enhance the performance of DEFCs that operate at low temperatures (<100 °C). We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on the ethanol-crossover for DEFC application. A set of PWANafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns and permeability were systematically characterized. The significant reductionmore » in ethanol-crossover was observed with increasing PWA concentration in PWA-Nafion membranes, which was mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. These PWA-Nafion composites were implemented in proto-type DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.« less

  3. The effect of the parasitic current on the Direct Ethanol PEM Fuel Cell Operation

    NASA Astrophysics Data System (ADS)

    Andreadis, G. M.; Podias, A. K. M.; Tsiakaras, P. E.

    In the present work the effect of the parasitic or leakage current, I p, which is the result of the ethanol crossover through the polymer electrolyte membrane (PEM) from the anode to the cathode side of the cell, on both the cathode activation overpotential and the fuel cell operation is investigated. A one-dimensional (1-D), isothermal mathematical model is developed in order to describe the operation of a Direct Ethanol PEM Fuel Cell (DE-PEMFC) in steady state. The equations used describe the mass transport of both ethanol and humidified oxygen at the anode and the cathode compartment of the cell respectively. The mathematical model is validated against experimental data and a relatively good agreement between the model predictions and the experimental results is found. The direct correlation that exists between the ethanol crossover rate and the parasitic current formation is graphically depicted. Moreover, when the parasitic current is enabled and disabled, the calculation of the cathode activation overpotential shows that the mixed overpotential for a DE-PEMFC poses a serious problem hindering the fuel cell operation. According to the model results, the parasitic current is greater at low current density values due to the greater amounts of the crossovered ethanol. Finally, the effect of both the oxygen feed concentration and the parasitic current formation on the fuel cell operation is also presented and discussed.

  4. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  5. Deactivation of carbon supported palladium catalyst in direct formic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Mikołajczuk, A.; Borodzinski, A.; Kedzierzawski, P.; Stobinski, L.; Mierzwa, B.; Dziura, R.

    2011-07-01

    A new carbon black supported palladium catalyst for direct formic acid fuel cell applications has been prepared and characterized by X-ray diffraction. Bi-modal distribution of Pd crystallite sizes was observed. The average Pd size for crystallites in small size and large size ranges were about 2.7 nm and 11.2 nm, respectively. The initial activity of the catalyst in the oxidation of formic acid tested in a fuel cell was similar to a commercial well dispersed 20 wt.% Pd/Vulcan. The rates of the fuel cell power decay were measured for formic acid of two purities for various current loadings. The results showed that various mechanisms contribute to the decrease of cell power with time. In direct formic acid fuel cell (DFAFC) fed with a very pure HCOOH accumulation of CO 2 gas bubbles in anode catalyst layer is responsible for observed power decay. In DFAFC fed with a pure for analysis (p.a.) grade formic acid the formation of CO ads poison from the formic acid impurities is the main deactivation reason.

  6. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  7. Development and demonstration of direct carbonate fuel cell systems at Energy Research Corporation

    SciTech Connect

    Leo, A.J.; Kush, A.K.; Farooque, M.

    1996-12-31

    Energy Research Corporation (ERC) has been pursuing the development of the direct carbonate fuel cell (DFC) for commercialization near the end of this decade. The DFC produces power directly from hydrocarbon fuels electrochemically, without the need for external reforming or intermediate mechanical conversion steps. As a result, the DFC has the potential to achieve very high efficiency with very low levels of environmental emissions. Modular DFC power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed generation, industrial, cogeneration, and defense applications. ERC has selected a 2.85 MW power plant unit for initial market entry. Significant advances have been made at ERC in the areas of cell and stack technology and system optimization. Development activities have progressed to the point where 130 kW stacks have been tested in ERC`s subscale power plant, and subscale stacks have been tested in utility and industrial sites around the world. In addition, the world`s first multi-megawatt scale DFC power plant was recently started. Two ERC subsidiaries have been formed to advance the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufacturers carbonate stacks and multi-stack modules, currently from its manufacturing facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. This paper describes the results of ERC`s ongoing development and commercialization efforts.

  8. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  9. A simple borohydride/GC method for measuring sparteine metabolites in man.

    PubMed Central

    Inaba, T; Vinks, A; Otton, S V

    1986-01-01

    A simple borohydride/GC method was developed for phenotyping sparteine oxidation in man. The major metabolites of sparteine found in human urine, 2- and 5-dehydrosparteine, were converted quantitatively back to sparteine by sodium borohydride reduction. The amount of sparteine metabolites can be estimated from the difference of sparteine concentrations between the borohydride-treated and untreated urine samples. The coefficient of variation of this assay was estimated from repeated analyses to be +/- 3% within a day (intra-assay) and +/- 8% between days (inter-assay). PMID:3718806

  10. Modified lithium borohydrides for reversible hydrogen storage (2).

    PubMed

    Au, Ming; Jurgensen, Arthur; Zeigler, Kristine

    2006-12-28

    This paper reports the results of the effort to destabilize lithium borohydride for reversible hydrogen storage. Various metals, metal hydrides, and metal chlorides were selected and evaluated as destabilization agents for reducing dehydriding temperatures and improving dehydriding/rehydriding reversibility. The most effective material was LiBH4 + 0.2MgCl2 + 0.1TiCl3 which starts desorbing 5 wt % of hydrogen at 60 degrees C and can be rehydrogenated to 4.5 wt % at 600 degrees C and 70 bar. X-ray diffraction and Raman spectroscopic analysis show the interaction of LiBH4 with additives and the unusual change of B-H stretching.

  11. A monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yan, X. H.; Wu, Ruizhe; Xu, J. B.; Luo, Zhengtang; Zhao, T. S.

    2016-04-01

    Methanol crossover due to the low selectivity of proton exchange membranes is a long-standing issue in direct methanol fuel cell technology. Here we attempt to address this issue by designing a composite membrane fabricated by sandwiching a monolayer graphene between two thin Nafion membranes to take advantage of monolayer graphene's selective permeability to only protons. The methanol permeability of the present membrane is demonstrated to have a 68.6% decrease in comparison to that of the pristine Nafion membrane. The test in a passive direct methanol fuel cell (DMFC) shows that the designed membrane retains high proton conductivity while substantially suppressing methanol crossover. As a result, the present membrane enables the passive DMFC to exhibit a decent performance even at a methanol concentration as high as 10.0 M.

  12. Direct electrochemical conversion of carbon anode fuels in molton salt media

    SciTech Connect

    Cherepy, N; Krueger, R; Cooper, J F

    2001-01-17

    We are conducting research into the direct electrochemical conversion of reactive carbons into electricity--with experimental evidence of total efficiencies exceeding 80% of the heat of combustion of carbon. Together with technologies for extraction of reactive carbons from broad based fossil fuels, direct carbon conversion addresses the objectives of DOE's ''21st Century Fuel Cell'' with exceptionally high efficiency (>70% based on standard heat of reaction, {Delta}H{sub std}), as well as broader objectives of managing CO{sub 2} emissions. We are exploring the reactivity of a wide range of carbons derived from diverse sources, including pyrolyzed hydrocarbons, petroleum cokes, purified coals and biochars, and relating their electrochemical reactivity to nano/microstructural characteristics.

  13. A Direct Alcohol Fuel Cell Driven by an Outer Sphere Positive Electrode.

    PubMed

    Bhat, Zahid Manzoor; Thimmappa, Ravikumar; Devendrachari, Mruthunjayachari Chattanahalli; Shafi, Shahid Pottachola; Aralekallu, Shambulinga; Kottaichamy, Alagar Raja; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2017-08-03

    Molecular oxygen, the conventional electron acceptor in fuel cells poses challenges specific to direct alcohol fuel cells (DAFCs). Due to the coupling of alcohol dehydrogenation with the scission of oxygen on the positive electrode during the alcohol crossover, the benchmark Pt-based air cathode experiences severe competition and depolarization losses. The necessity of heavy precious metal loading with domains for alcohol tolerance in the state of the art DAFC cathode is a direct consequence of this. Although efforts are dedicated to selectively cleave oxygen, the root of the problem being the inner sphere nature of either half-cell chemistry is often overlooked. Using an outer sphere electron acceptor that does not form a bond with the cathode during redox energy transformation, we effectively decoupled the interfacial chemistry from parasitic chemistry leading to a DAFC driven by alcohol passive carbon nanoparticles, with performance metrics ∼8 times higher than Pt-based DAFC-O2.

  14. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  15. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    SciTech Connect

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  16. Progress on High Energy Delayed Gamma Spectroscopy for Direct Assay of Pu in Spent Fuel

    SciTech Connect

    Campbell, Luke W.; Smith, Leon E.

    2010-08-11

    The direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel is not yet possible. Current methods which infer plutonium content through proxy measurements and confirmatory burnup calculations have relatively large uncertainty and do not satisfy the desire for a measurement that is independent of operator declarations. We are currently exploring the High Energy Delayed Gamma Spectroscopy (HEDGS) technique for direct, independent Pu measurement in light-water reactor fuels. HEDGS exploits the unique distribution of fission-product nuclei from each of the fissile isotopes. Fission is stimulated in the sample with a source of interrogating neutrons, and delayed gamma rays from the decay of the short-lived fission-product nuclei are measured. The measured gamma spectrum from the unknown sample is then fit with a linear combination of gamma spectra from pure U-235, Pu-239, and Pu-241, as deduced from the known fission-product yield curves and decay properties of the fission-product nuclei, to determine the original proportions of these fissile isotopes. In previous work, we performed preliminary modeling studies of HEDGS on idealized single fuel pins of various burnups. Here, we report progress on extending our GEANT-based modeling tools to efficiently model full pressurized water reactor (PWR) fuel assemblies using variance reduction techniques specific to the background emissions and induced signal, as appropriate. Predicted performance for a nominal HEDGS instrument design, is reported for the assay of U-235, Pu-239 and Pu-241 in spent fuel assemblies ranging from fresh to 60 GWd/MTU in burnup.

  17. Synthesis, structure and gas-phase reactivity of the mixed silver hydride borohydride nanocluster [Ag3(μ3-H)(μ3-BH4)LPh3]BF4 (LPh = bis(diphenylphosphino)methane)

    NASA Astrophysics Data System (ADS)

    Zavras, Athanasios; Ariafard, Alireza; Khairallah, George N.; White, Jonathan M.; Mulder, Roger J.; Canty, Allan J.; O'Hair, Richard A. J.

    2015-10-01

    Borohydrides react with silver salts to give products that span multiple scales ranging from discrete mononuclear compounds through to silver nanoparticles and colloids. The cluster cations [Ag3(H)(BH4)L3]+ are observed upon electrospray ionization mass spectrometry of solutions containing sodium borohydride, silver(i) tetrafluoroborate and bis(dimethylphosphino)methane (LMe) or bis(diphenylphosphino)methane (LPh). By adding NaBH4 to an acetonitrile solution of AgBF4 and LPh, cooled to ca. -10 °C, we have been able to isolate the first mixed silver hydride borohydride nanocluster, [Ag3(μ3-H)(μ3-BH4)LPh3]BF4, and structurally characterise it via X-ray crystallography. Combined gas-phase experiments (LMe and LPh) and DFT calculations (LMe) reveal how loss of a ligand from the cationic complexes [Ag3(H)(BH4)L3]+ provides a change in geometry that facilitates subsequent loss of BH3 to produce the dihydride clusters, [Ag3(H)2Ln]+ (n = 1 and 2). Together with the results of previous studies (Girod et al., Chem. - Eur. J., 2014, 20, 16626), this provides a direct link between mixed silver hydride/borohydride nanoclusters, silver hydride nanoclusters, and silver nanoclusters.Borohydrides react with silver salts to give products that span multiple scales ranging from discrete mononuclear compounds through to silver nanoparticles and colloids. The cluster cations [Ag3(H)(BH4)L3]+ are observed upon electrospray ionization mass spectrometry of solutions containing sodium borohydride, silver(i) tetrafluoroborate and bis(dimethylphosphino)methane (LMe) or bis(diphenylphosphino)methane (LPh). By adding NaBH4 to an acetonitrile solution of AgBF4 and LPh, cooled to ca. -10 °C, we have been able to isolate the first mixed silver hydride borohydride nanocluster, [Ag3(μ3-H)(μ3-BH4)LPh3]BF4, and structurally characterise it via X-ray crystallography. Combined gas-phase experiments (LMe and LPh) and DFT calculations (LMe) reveal how loss of a ligand from the cationic complexes [Ag

  18. Direct PEM fuel cell using "organic chemical hydrides" with zero-CO2 emission and low-crossover.

    PubMed

    Kariya, Nobuko; Fukuoka, Atsushi; Ichikawa, Masaru

    2006-04-14

    A series of "organic chemical hydrides" such as cyclohexane, methylcyclohexane, cyclohexene, 2-propanol, and cyclohexanol were applied to the direct PEM fuel cell. High performances of the PEM fuel cell were achieved by using cyclohexane (OCV = 920 mV, PD(max) = 15 mW cm(-2)) and 2-propanol (OCV = 790 mV, PD(max) = 78 mW cm(-2)) as fuels without CO(2) emissions. The rates of fuel crossover for cyclohexane, 2-propanol, and methanol were estimated, and the rates of fuel permeation of cyclohexane and 2-propanol were lower than that of methanol. Water electrolysis and electro-reductive hydrogenation of acetone mediated by PEM were carried out and formation of 2-propanol in cathode side was observed. This system is the first example of a "rechargeable" direct fuel cell.

  19. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  20. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  1. Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.

    SciTech Connect

    Allendorf, Mark D.; Ambrosini, Andrea; Diver, Richard B., Jr.; Siegel, Nathan Phillip; Miller, James Edward; Gelbard, Fred; Evans, Lindsey R.

    2009-01-01

    The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is

  2. Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2013-12-01

    The Direct Methanol Fuel Cell (DMFC) is a promising portable power source for mobile electronic devices because of its advantages including easy fuel storage, high energy density, low temperature operation and compact structure. In DMFC, methanol is used as a fuel source where it can be fed in liquid or vapor phase. However, the vapor feed DMFC has an advantage over the liquid feed system as it has the potential to have a higher operating temperature to increase the reaction rates and power outputs, to enhance the mass transfers, to reduce methanol crossover, reliable for high methanol concentration and it can increase the fuel cell performance. Methanol vapor can be delivered to the anode by using a pervaporation membrane, heating the liquid methanol or another method that compatible. Therefore, this paper is a review on vapor feed DMFC as a better energy source than liquid feed DMFC, the pervaporation membrane used to vaporize methanol feed from the reservoir and its applications in vapor feed DMFC.

  3. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  4. Quantitative study of ruthenium cross-over in direct methanol fuel cells during early operation hours

    NASA Astrophysics Data System (ADS)

    Schoekel, A.; Melke, J.; Bruns, M.; Wippermann, K.; Kuppler, F.; Roth, C.

    2016-01-01

    In direct methanol fuel cells (DMFC), ruthenium cross-over is an important degradation phenomenon. The loss of ruthenium from the anode, its transport through the membrane and its deposition onto the cathode are detrimental to the fuel cell performance and limit the fuel cell's lifetime. Here we present a quantitative study on the fraction of ruthenium being transferred from the anode to the cathode during early operation hours (0-100 h) of a DMFC. Already during fabrication of the MEA ruthenium is transferred to the cathode. In our pristine MEAs about 0.024 wt% Ru could be found in the cathode catalyst. The cell potential during operation seems to have only a minor influence on the dissolution process. In contrast, the operation time appears to be much more important. Our data hint at two dissolution processes: a fast process dominating the first hours of operation and a slower process, which is responsible for the ongoing ruthenium transfer during the fuel cell lifetime. After 2 h held at open circuit conditions the Ru content of the cathode side was 10 times higher than in the pristine MEA. In contrast, the slower process increased that amount only by a factor of two over the course of another 100 h.

  5. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  6. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    PubMed

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  7. The reasons for the high power density of fuel cells fabricated with directly deposited membranes

    NASA Astrophysics Data System (ADS)

    Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon

    2016-09-01

    In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.

  8. Catalysis and oxidation of carbon in a hybrid direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Jiang, Cairong; Irvine, John T. S.

    The hybrid direct carbon fuel cell (HDCFC), combining molten carbonate fuel cell and solid oxide fuel cell technology, is capable of converting solid carbon directly into electrical energy without intermediate reforming. Here, we report the investigation of the HDCFC with yttria stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode and lanthanum strontium manganite (LSM) cathode using the eutectic mixture of 62 mol% Li 2CO 3 and 38 mol% K 2CO 3. An open circuit voltage (OCV) of 0.71 V at 800 °C is recorded without the carbonate which increases to 1.15-1.23 V in the presence of the carbonate at the same temperature. In addition, the cell's OCV is enhanced not only by the thermal history but also by the carbonate, which is in excess of 1.57 V after the high temperature treatment. Electrochemical performance analysis indicates a suitable amount of the carbonate enhanced the carbon oxidation. With 1 mm robust thick electrolyte and commercial carbon, the cell (1.13 cm 2 active area) generates the peak density of 50 mW cm -2 at 800 °C. There are significant losses from electrolyte resistance, which would be overcome by the application of a thinner electrolyte.

  9. Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Yubo; Su, Chao; Zheng, Tao; Shao, Zongping

    2012-12-01

    Formic acid is investigated as a fuel for Solid Oxide Fuel Cells (SOFCs) for the first time. Thermodynamic calculations demonstrate that carbon deposition is avoidable above 600 °C. The carbon deposition properties are also investigated experimentally by first treating a nickel plus yttria-stabilized zirconia (Ni-YSZ) anode material in particle form under a formic acid-containing atmosphere for a limited time at 500-800 °C and then analyzing the particles by O2-TPO. This analysis confirms that carbon deposition on Ni-YSZ is weak above 600 °C. We further treat half-cells composed of YSZ electrolyte and Ni-YSZ anode under formic acid-containing atmosphere at 600, 700 and 800 °C; the anodes maintain their original geometric shape and microstructure and show no obvious weight gain. It suggests that formic acid can be directly fed into SOFCs constructed with conventional nickel-based cermet anodes. I-V tests show that the cell delivers a promising peak power density of 571 mW cm-2 at 800 °C. In addition, the cells also show good performance stability. The results indicate that formic acid is highly promising as a direct fuel for SOFCs without the need for cell material modifications.

  10. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    PubMed

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  11. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  12. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  13. Autonomous electrochemical biosensors: A new vision to direct methanol fuel cells.

    PubMed

    Sales, M Goreti F; Brandão, Lúcia

    2017-12-15

    A new approach to biosensing devices is demonstrated aiming an easier and simpler application in routine health care systems. Our methodology considered a new concept for the biosensor transducing event that allows to obtain, simultaneously, an equipment-free, user-friendly, cheap electrical biosensor. The use of the anode triple-phase boundary (TPB) layer of a passive direct methanol fuel cell (DMFC) as biosensor transducer is herein proposed. For that, the ionomer present in the anode catalytic layer of the DMFC is partially replaced by an ionomer with molecular recognition capability working as the biorecognition element of the biosensor. In this approach, fuel cell anode catalysts are modified with a molecularly imprinted polymer (plastic antibody) capable of protein recognition (ferritin is used as model protein), inserted in a suitable membrane electrode assembly (MEA) and tested, as initial proof-of-concept, in a non-passive fuel cell operation environment. The anchoring of the ionomer-based plastic antibody on the catalyst surface follows a simple one-step grafting from approach through radical polymerization. Such modification increases fuel cell performance due to the proton conductivity and macroporosity characteristics of the polymer on the TPB. Finally, the response and selectivity of the bioreceptor inside the fuel cell showed a clear and selective signal from the biosensor. Moreover, such pioneering transducing approach allowed amplification of the electrochemical response and increased biosensor sensitivity by 2 orders of magnitude when compared to a 3-electrodes configuration system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell

    SciTech Connect

    Wang, J.T.; Wasmus, S.; Savinell, R.F.

    1996-04-01

    The products of methanol crossover through the acid-doped polybenzimidazole polymer electrolyte membrane (PBI PEM) to the cathode of a prototype direct methanol fuel cell (DMFC) were analyzed using multipurpose electrochemical mass spectrometry (MPEMS) coupled to the cathode exhaust gas outlet. It was found that the methanol crossing over reacts almost quantitatively to CO{sub 2} at the cathode with the platinum of the cathode acting as a heterogeneous catalyst. The cathode open-circuit potential is inversely proportional to the amount of CO{sub 2} formed. A poisoning effect on the oxygen reduction also was found. Methods for the estimation of the methanol crossover rate at operating fuel cells are suggested.

  15. A direct methanol fuel cell system to power a humanoid robot

    NASA Astrophysics Data System (ADS)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  16. Polybenzimidazole membranes for direct methanol fuel cell: Acid-doped or alkali-doped?

    NASA Astrophysics Data System (ADS)

    Li, Long-Yun; Yu, Bor-Chern; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2015-08-01

    Polybenzimidazole (PBI) films immersed in 2 M phosphoric acid (H3PO4) or 6 M potassium hydroxide (KOH) solution form electrolytes for conducting proton or hydroxide, respectively. A direct methanol fuel cell (DMFC) with the alkali-KOH doped PBI gives 117.9 mW cm-2 of power output which is more than 2 times greater than the power density of 46.5 mW cm-2 with the H3PO4-doped PBI (vs.) when both of the DMFCs use a micro porous layer (MPL) in a gas-fed cathode and a MPL-free anode and are operated at 90 °C. When the MPL-free anode and cathode are used and the fuel flow rate is tripled, the peak power density of alkaline DMFC reaches 158.9 mW cm-2.

  17. Three-dimensional anode engineering for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  18. A small mono-polar direct methanol fuel cell stack with passive operation

    NASA Astrophysics Data System (ADS)

    Chan, Y. H.; Zhao, T. S.; Chen, R.; Xu, C.

    A passive direct methanol fuel cell (DMFC) stack that consists of six unit cells was designed, fabricated, and tested. The stack was tested with different methanol concentrations under ambient conditions. It was found that the stack performance increased when the methanol concentration inside the fuel tank was increased from 2.0 to 6.0 M. The improved performance is primarily due to the increased cell temperature as a result of the exothermic reaction between the permeated methanol and oxygen on the cathode. Moreover, the increased cell temperature enhanced the water evaporation rate on the air-breathing cathode, which significantly reduced water flooding on the cathode and further improved the stack performance. This passive DMFC stack, providing 350 mW at 1.8 V, was successfully applied to power a seagull display kit. The seagull display kit can continuously run for about 4 h on a single charge of 25 cm 3 4.0-M methanol solution.

  19. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  20. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    SciTech Connect

    Hossein Ghezel-Ayagh

    2006-03-01

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation

  1. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    PubMed Central

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike

    2015-01-01

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232

  2. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    PubMed

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  3. Fuel Surrogate Physical Property Effects on Direct Injection Spray and Ignition Behavior

    DTIC Science & Technology

    2015-09-01

    emissions, and spray characteristics to the properties of alternative diesel fuels, such as dimethyl ether ( DME ), biodiesel, and jet fuel, which are... kinetic energy flow rate from the fuel injection (Ėkinetic,injection) as follows: fuel fuelU ρ 1 ∝ (Eq. 5) fuelfuelm ρ∝ (Eq. 6) ( ) fuel...fuelfuelinjectionkinetic UmE ρ 12 , ∝∝  (Eq. 7) 15 UNCLASSIFIED UNCLASSIFIED As indicated by Equation 7, the kinetic energy introduced by the fuel

  4. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.

    PubMed

    Bi, Peiyan; Wang, Jicong; Zhang, Yajing; Jiang, Peiwen; Wu, Xiaoping; Liu, Junxu; Xue, He; Wang, Tiejun; Li, Quanxin

    2015-05-01

    The continual growth in commercial aviation fuels and more strict environmental legislations have led to immense interest in developing green aviation fuels from biomass. This paper demonstrated a controllable transformation of lignin into jet and diesel fuel range hydrocarbons, involving directional production of C8-C15 aromatics by the catalytic depolymerization of lignin into C6-C8 low carbon aromatic monomers coupled with the alkylation of aromatics, and the directional production of C8-C15 cycloparaffins by the hydrogenation of aromatics. The key step, the production of the desired C8-C15 aromatics with the selectivity up to 94.3%, was achieved by the low temperature alkylation reactions of the lignin-derived monomers using ionic liquid. The synthetic biofuels basically met the main technical requirements of conventional jet fuels. The transformation potentially provides a useful way for the development of cycloparaffinic and aromatic components in jet fuels using renewable lignocellulose biomass.

  5. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    PubMed Central

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  6. Anode modeling of a molten-carbonate based direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chin; Selman, J. Robert

    2017-06-01

    The Direct Carbon Fuel Cell (DCFC) is a type of fuel cell using solid carbon as fuel and molten carbonate as electrolyte. Although the primary anodic reaction is believed to be a 4-electron carbon oxidation reaction, to explain the performance of the DCFC in practice it is necessary to consider the 2-electron CO oxidation reaction as well as the reverse Boudouard reaction. Taking these multiple reactions into account, this work develops a 1-D macrohomogeneous model, and investigates the current and concentration distribution in the DCFC anode. The result shows that the active zone is mostly located on the portion of the anode bed nearest the electrolyte matrix. The dimensionless analysis of the electrode's resistance ratios suggests that the DCFC anode performance is mainly limited by ohmic losses and the relatively slow kinetics of the anodic reactions. To improve the performance of the DCFC, increasing effective electrical conductivity of the carbon particle bed by an order of magnitude, for example by a small fraction of inert metallic additives, can increase the cell efficiency appreciably. Besides causing the anode bed to be fully used, the rise in effective electrical conductivity of the anode bed appreciably improves the power density of DCFC.

  7. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    PubMed

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm(-2) at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  8. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    NASA Astrophysics Data System (ADS)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  9. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  10. Polarization modeling and performance optimization of a molten sodium hydroxide direct carbon fuel cell (MHDCFC)

    NASA Astrophysics Data System (ADS)

    Xing, Li; Hao, Jiamao; Li, Xiaofeng; Zhang, Yao; Hu, Zhiguang; Gao, Yanfang

    2017-09-01

    An electrochemical model for a molten sodium hydroxide direct carbon fuel cell (MHDCFC) is developed based on electrochemical reaction dynamics, mass transfer, and electrode processes in the cell. Activated carbon and graphite are considered the main fuels, and static and dynamic parameters describing polarizations are taken into account for valuation and optimization of cell performance. Asymmetric reaction compartments are used in the MHDCFC, and the effect of the anodic compartment height on polarization is described first. The cell performance mainly depends on temperature (T), the pressures in the anodic (Pan) and cathodic compartments (Pcat), the anodic compartment height (H1), and the fuel type. Besides, cell performance is affected by ohmic polarization, anode activation polarization, cathode concentration polarization, and cathode activation polarization, in order of precedence. At Pan of 1.8 atm, Pcat of 1.7 atm, H1 of 0.06 m, and T of 773-973 K, the efficiencies (e) of the cells with activated carbon and graphite are higher than 50% at current densities of 0-500 A m-2 and 0-700 A m-2, respectively. The maximum power densities (e > 50%) are achieved for activated carbon and graphite and reach 367.6626 W m-2 and 498.9687 W m-2, respectively.

  11. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    NASA Astrophysics Data System (ADS)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  12. In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for direct methanol fuel cells.

    PubMed

    Rao, Siyuan; Xiu, Ruijie; Si, Jiangju; Lu, Shanfu; Yang, Meng; Xiang, Yan

    2014-03-01

    In situ synthesis is a powerful approach to control nanoparticle formation and consequently confers extraordinary properties upon composite membranes relative to conventional doping methods. Herein, uniform nanoparticles of cesium hydrogen salts of phosphotungstic acid (CsPW) are controllably synthesized in situ in Nafion to form CsPW–Nafion nanocomposite membranes with both improved proton conductivity and methanol-crossover suppression. A 101.3% increase of maximum power density has been achieved relative to pristine Nafion in a direct methanol fuel cell (DMFC), indicating a potential pathway for large-scale fabrication of DMFC alternative membranes.

  13. Direct conversion of light hydrocarbon gases to liquid fuel. Final report No. 33

    SciTech Connect

    Kaplan, R.D.; Foral, M.J.

    1992-05-16

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  14. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    SciTech Connect

    Skok, A.J.; Leo, A.J.; O`Shea, T.P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  16. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    NASA Technical Reports Server (NTRS)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  17. Direct disposal of spent fuel in rock salt: Geomechanical effects and gas release

    SciTech Connect

    Gommlich, G.; Jockwer, N.; Schneefuss, J.; Heusermann, S.

    1995-12-31

    At the Asse salt mine in Germany a test field has been operating since September 1990 for the purpose of demonstrating the practicability of the direct disposal of spent fuel elements in drifts. According to the concept for direct disposal of spent fuel, disposal casks called Pollux will be emplaced on the floor of the drifts backfilled with salt afterwards. The main objectives of this test are studies on the thermal and thermomechanical effects in the backfilled drifts and in the surrounding rock due to the power output of the spent fuel in the casks. The temperatures at the surface of the electrically heated mock-ups of the Pollux-casks increased up to 210 C after five months and then gradually decrease. Determinations of the initial stress state in the test field were carried out by overcoming and slot cutting techniques before the test drifts were opened. After the beginning of heating the casks, the rock stresses increased rapidly related to the temperature at the specific location and later on decreased slowly. Deformation measurements are performed in the host rock using multi-point extensometers and closure gauges for measuring the closure of the test drifts in the heated as well as in the unheated areas. Specially designed equipment was used to observe the settling of the backfill. In the period of about 4 years, the convergence of the backfilled drifts accelerated enormously and caused backfill pressures up to 1.8 MPa. The concentrations of the main components carbon dioxide, hydrogen, and methane in the pore volume of the backfill were analyzed.

  18. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOEpatents

    Cornelius, Christopher J.

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  19. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    PubMed

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells.

  20. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  1. Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lufrano, F.; Baglio, V.; Staiti, P.; Arico', A. S.; Antonucci, V.

    This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30-40 °C) and high temperatures (100-120 °C). DMFC power densities were about 140 mW cm -2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm -2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm -2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.

  2. Optical properties of humic substances and CDOM: effects of borohydride reduction.

    PubMed

    Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V

    2010-07-15

    Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.

  3. Basic laws of the processes and the principle of minimum energy consumption during pneumatic transport and distribution of pulverized fuel in direct pulverized fuel preparation systems

    NASA Astrophysics Data System (ADS)

    Leykin, V. Z.

    2015-08-01

    The paper presents analysis of the basic laws and a calculation-based investigation of processes related to the low-concentration pneumatic transport and the distribution of finely dispersed pulverized fuel in direct pulverized fuel preparation systems of boiler units. Based on the principle of the minimum energy consumption, it is shown that, at high (standard) velocities of the turbulent gas flow—of 25-30 m/s, which is by 1.5-2 times higher than the critical speeds—the finely dispersed pulverized fuel can be transported simultaneously in the form of a low-concentration flow in pipelines and a concentrated, to 30% of the flow rate, thin layer on the pipeline walls with the height of the layer equal to 0.02-0.04 of the pipe radius. Consideration of this phenomenon is of great significance in terms of securing the efficient operation of pulverized fuel distribution units. The basic characteristics of the process have been determined and validated by test bench investigations using both model systems and pulverized fuel distribution systems of a number of power-generating units. The obtained results underlie a methodological approach to developing high-efficiency adjustable pulverized fuel distribution units. Also, results of industrial testing are presented that confirm the results of the analysis and of experimental studies.

  4. Sulfonated polyphosphazene-based membranes for use in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Carter, Roy Lee

    Novel crosslinked and sulfonated poly[bis(3-methylphenoxy)phosphazene] blended proton exchange membranes were fabricated for use as the solid polymer electrolyte in a direct methanol fuel cell. Three polymers, polybenzimidazole, polyacrylonitrile and polyvinylidene fluoride-co-polyhexafluoropropylene were found to be compatible for blending with sulfonated polyphosphazene. A combination of blending and crosslinking was shown to be an effective method of producing durable, low water swelling films with acceptable proton conductivity. A novel tracer-diffusion 1H NMR method was developed and used to measure the mutual diffusion of methanol in non-crosslinked and crosslinked membranes composed of sulfonated polyphosphazene. The technique measures the growth of a solute NMR signal in the bulk (external) solution as it diffuses out of a thin film membrane. The transient increase in methanol peak height during analyte (methanol) desorption was fitted to a simple theoretical diffusion model using the methanol diffusion coefficient as an adjustable parameter. This method was found to be fast, reproducible, and accurate to within about +/-20%. Diffusion coefficients at 25°C were in the range of 1.0 x 10-8 cm2/s to 4.0 x 10-7 cm2/s for methanol concentrations of 1.0--5.0 M and were significantly smaller than those reported for a NafionRTM perfluorosulfonic acid membrane. Direct liquid methanol fuel cell tests were performed with membrane electrode assemblies (MEAs) fabricated with polyphosphazene-based proton-exchange membranes. MEAs worked best when high ion-exchange capacity (high conductivity) polyphosphazene membrane contacted the electrodes, in which case the fuel cell power output was nearly the same as that with Nafion 117 (for current densities ≤0.15 A/cm2), but the methanol crossover was three times lower than that of Nafion. The electrochemical performance of single-membrane MEAs with low conductivity S-POP/PAN films was poor, although the methanol crossover was

  5. Direct electrochemical conversion of carbon: systems for efficient conversion of fossil fuels to electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Krueger, R

    2000-08-10

    The direct electrochemical conversion of carbon involves discharge of suspensions of reactive carbon particles in a molten salt electrolyte against an oxygen (air) cathode. (Figure 1). The free energy and the enthalpy of the oxidation reaction are nearly identical. This allows theoretical efficiencies ({Delta}G(T)/{Delta}H) to approach 100% at temperatures from 500 to 800 C. Entropy heat losses are therefore negligible. The activities of the elemental carbon and of the carbon dioxide product are uniform throughout the fuel cell and constant over discharge time. This stabilizes cell EMF and allows full utilization of the carbon fuel in a single pass. Finally, the energy cost for pyrolysis of hydrocarbons is generally very low compared with that of steam reforming or water gas reactions. Direct electrochemical conversion of carbon might be compared with molten carbonate fuel cell using carbon rather than hydrogen. However, there are important differences. There is no hydrogen involved (except from trace water contamination). The mixture of molten carbonate and carbon is not highly flammable. The carbon is introduced in as a particulate, rather than as a high volume flow of hydrogen. At the relatively low rates of discharge (about 1 kA/m{sup 2}), the stoichiometric requirements for carbon dioxide by the cathodic reaction may be met by diffusion across the thin electrolyte gap. We report recent experimental work at LLNL using melt slurries of reactive carbons produced by the thermal decomposition of hydrocarbons. We have found that anodic reactivity of carbon in mixed carbonate melts depends strongly on form, structure and nano-scale disorder of the materials, which are fixed by the hydrocarbon starting material and the conditions of pyrolysis. Thus otherwise chemically pure carbons made by hydrocarbon pyrolysis show rates at fixed potentials that span an order of magnitude, while this range lies 1-2 orders of magnitude higher than the current density of graphite plate

  6. Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode

    NASA Astrophysics Data System (ADS)

    Guo, Fen; Cao, Dianxue; Du, Mengmeng; Ye, Ke; Wang, Guiling; Zhang, Wenping; Gao, Yinyi; Cheng, Kui

    2016-03-01

    A novel three-dimensional (3D) porous nickel-cobalt (Ni-Co) film on nickel foam is successfully prepared and further used as an efficient anode for direct urea-hydrogen peroxide fuel cell (DUHPFC). By varying the cobalt/nickel mole ratios into 0%, 20%, 50%, 80% and 100%, the optimized Ni-Co/Ni foam anode with a ratio of 80% is obtained in terms of the best cell performance among five anodes. Effects of the KOH and urea concentrations, the flow rate and operation temperature on the fuel cell performance are investigated. Results show DUHPFC with the 3D Ni-Co/Ni foam anode exhibits a higher performance than those reported direct urea fuel cells. The cell gives an open circuit voltage of 0.83 V and a peak power density as high as 17.4 and 31.5 mW cm-2 at 20 °C and 70 °C, respectively, when operating on 7.0 mol L-1 KOH and 0.5 mol L-1 urea as the fuel at a flow rate of 15 mL min-1. Besides, when the human urine is directly fed as the fuel, direct urine-hydrogen peroxide fuel cell reaches a maximum power density of 7.5 mW cm-2 with an open circuit voltage of 0.80 V at 20 °C, showing a good application prospect in wastewater treatment.

  7. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    SciTech Connect

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-02-09

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the

  8. Near-frictionless carbon coatings for spark-ignited direct-injected fuel systems. Final report, January 2002.

    SciTech Connect

    Hershberger, J.; Ozturk, O.; Ajayi, O. O.; Woodford, J. B.; Erdemir, A.; Fenske, G. R.

    2002-04-05

    This report describes an investigation by the Tribology Section of Argonne National Laboratory (ANL) into the use of near-frictionless carbon (NFC) coatings for spark-ignited, direct-injected (SIDI) engine fuel systems. Direct injection is being pursued in order to improve fuel efficiency and enhance control over, and flexibility of, spark-ignited engines. SIDI technology is being investigated by the Partnership for a New Generation of Vehicles (PNGV) as one route towards meeting both efficiency goals and more stringent emissions standards. Friction and wear of fuel injector and pump parts were identified as issues impeding adoption of SIDI by the OTT workshop on ''Research Needs Related to CIDI and SIDI Fuel Systems'' and the resulting report, Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines. The following conclusions were reached: (1) Argonne's NFC coatings consistently reduced friction and wear in existing and reformulated gasolines. (2) Compared to three commercial DLC coatings, NFC provided the best friction reduction and protection from wear in gasoline and alternative fuels. (3) NFC was successfully deposited on production fuel injectors. (4) Customized wear tests were performed to simulate the operating environment of fuel injectors. (5) Industry standard lubricity test results were consistent with customized wear tests in showing the friction and wear reduction of NFC and the lubricity of fuels. (6) Failure of NFC coatings by tensile crack opening or spallation did not occur, and issues with adhesion to steel substrates were eliminated. (7) This work addressed several of the current research needs of the OAAT SIDI program, as defined by the OTT report Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines.

  9. Modeling the effect of membrane conductivity on the performance of alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Raya, Isaac P.; Ellis, Michael W.; Hernandez-Guerrero, Abel; Elizalde-Blancas, Francisco

    2016-03-01

    The present work proposes and demonstrates a methodology to capture the effect of operating conditions on ionic conductivity of membranes immersed in alkaline media. Based on reported experimental results for an anion exchange membrane (A-201 by Tokuyama) and a cation exchange membrane (Nafion 211), two novel expressions are developed for the ionic conductivity by incorporating the effects of solution concentration and temperature. The expression for the cationic conductivity is applied in a cell-level model to predict the performance of an alkaline direct borohydride fuel cell; it is found that the membrane ionic conductivity significantly affects the cell performance and capturing its functionality is essential to accurately predict the fuel cell performance.

  10. Effects of Nafion loading in anode catalyst inks on the miniature direct formic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Morgan, Robert D.; Haan, John L.; Masel, Richard I.

    Nafion, within the anode and cathode catalyst layers, plays a large role in the performance of fuel cells, especially during the operation of the direct formic acid fuel cell (DFAFC). Nafion affects the proton transfer in the catalyst layers of the fuel cell, and studies presented here show the effects of three different Nafion loadings, 10 wt.%, 30 wt.% and 50 wt.%. Short term voltage-current measurements using the three different loadings show that 30 wt.% Nafion loading in the anode shows the best performance in the miniature, passive DFAFC. Nafion also serves as a binder to help hold the catalyst nanoparticles onto the proton exchange membrane (PEM). The DFAFC anode temporarily needs to be regenerated by raising the anode potential to around 0.8 V vs. RHE to oxidize CO bound to the surface, but the Pourbaix diagram predicts that Pd will corrode at these potentials. We found that an anode loading of 30 wt.% Nafion showed the best stability, of the three Nafion loadings chosen, for reducing the amount of loss of electrochemically active area due to high regeneration potentials. Only 58% of the area was lost after 600 potential cycles in formic acid compared to 96 and 99% for 10 wt.% and 50 wt.% loadings, respectively. Lastly we present cyclic voltammetry data that suggest that the Nafion adds to the production of CO during oxidation of formic acid for 12 h at 0.3 V vs. RHE. The resulting data showed that an increase in CO coverage was observed with increasing Nafion content in the anode catalyst layer.

  11. Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique

    SciTech Connect

    Pontillon, Y.; Noirot, J.; Caillot, L.

    2007-07-01

    Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

  12. Update on Establishing the Feasibility of Lead Slowing Down Spectroscopy for Direct Measurement of Plutonium in Used Fuel

    SciTech Connect

    Kulisek, Jonathan A.; Anderson, Kevin K.; Casella, Andrew M.; Warren, Glen A.; Gavron, Victor A.; Danon, Yaron; Weltz, Adam; Harris, Jason; Imel, G. R.; Stewart, T.

    2013-08-30

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) of next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to address the feasibility of Lead Slowing Down Spectroscopy (LSDS) as an active, nondestructive assay method. LSDS has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than today’s confirmatory assay methods, for which typical uncertainties are approximately 10%. LSDS techniques are sensitive to the fission resonances in the energy range of ~0.1-1000 eV, enabling their use to determine the mass content of the fissile isotopes in used fuel. This paper will present an update with regard to applying LSDS for used fuel assay and the development of algorithms to extract fissile isotopic masses from the used fuel.

  13. The liquid biodiesel extracted from pranajiwa (Sterculia Foetida) seeds as fuel for direct biofuel-solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Rahmawati, Fitria; Syahputra, Rahmat J. E.; Yuniastuti, Endang; Prameswari, Arum P.; Nurcahyo, I. F.

    2017-03-01

    This research applied the liquid biodiesel extracted from Pranajiwa seeds (biodiesel-p) as fuel in Intermediate Temperature-Solid Oxide Fuel Cell, IT-SOFC, with an operational temperature of 400 - 600°C. FTIR analysis of the liquid biodiesel found that the liquid consist of some functional groups. By comparing the spectrum with the commercial biosolar as produced by Pertamina, Indonesia, it is found that there are differenet peaks at a wavenumber of 3472.98; 1872.00; and 724.30 cm-1. It indicates the presence of alcoholo molecules. Composite of Samarium doped-Ceria, SDC, with sodium carbonate, NaCO3, was used as the electrolyte, and it is named as NSDC. Meanwhile, the composite of NSDC with catalyst powder of LNC, producing NSDC-L was used as a cathode and as an anode. The liquid fuel vapourized at 150 °C before come into the fuel cell, and it was reformed inside the fuel cell tube which was set up at 400, 500, and 600 °C. The measurement found that the highest Open Circuite Voltage is 0.57 volt and the power density of 1.7 mW.cm-2 at 500 °C.

  14. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Oncel, S.; Vardar-Sukan, F.

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm -2 for about 50 h with 10 Ω load and 0.23 mA cm -2 for about 80 h with 100 Ω load.

  15. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    SciTech Connect

    James, Brian David; Huya-Kouadio, Jennie Moton; Houchins, Cassidy; DeSantis, Daniel Allen

    2016-09-01

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  16. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Xie, Yongmin; Cai, Weizi; Xiao, Jie; Tang, Yubao; Liu, Jiang; Liu, Meilin

    2015-03-01

    Solid oxide fuel cells (SOFCs), with yttrium stabilized zirconia (YSZ) as electrolyte, composite of strontium-doped lanthanum manganate (LSM) and YSZ as cathode, and cermet of silver and gadolinium-doped ceria (GDC) as anode, are prepared and tested with 5wt% Fe-loaded activated carbon as fuel and ambient air as oxidant. It is found that electricity and CO gas can be cogenerated in the direct carbon SOFCs through the electrochemical oxidation of CO and the Boudouard reaction. The gas-electricity cogeneration performances are investigated by taking the operating time of the DC-SOFCs as a measure of rate decrease of the Boudouard reaction. Three single cells and a two-cell-stack are tested and characterized in terms of electrical power output, CO production rate, electrical conversion efficiency, and overall conversion efficiency. It turns out that a rapid rate of the Boudouard reaction is necessary for getting high electrical power and CO production. Taking the emitted CO as part of the power output, an overall efficiency of 76.5% for the single cell, and of 72.5% for the stack, is obtained.

  17. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.

    PubMed

    Chaudhuri, Swades K; Lovley, Derek R

    2003-10-01

    Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.

  18. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

    PubMed Central

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-01

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode. PMID:24448514

  19. Sol-gel based silica electrodes for inorganic membrane direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyea; Kohl, Paul A.

    Inorganic glass electrodes are of interest for use with inorganic proton exchange membranes for direct methanol fuel cells. Platinum-ruthenium glass electrodes (PtRu/C-SiO 2) have been prepared by incorporating the PtRu/C nanoparticles into a silica-based matrix. The SiO 2 matrix was synthesized through the sol-gel reaction of 3-(trihydroxysilyl)-1-propanesulfonic acid (3TPS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The distribution of the PtRu/C particles can be controlled by changing the properties of the gel matrix. The effect of gelation time, mole fraction of reactants within the sol, curing temperature, and glass ionomer content were investigated. The adhesion of the catalyst layer on the membrane, catalytic activity for methanol oxidation, and inhibition of methanol permeation through the membrane have been characterized and optimized. The electroless deposition of PtRu onto the PtRu/C nanoparticles was performed to increase the sheet conductivity of the electrode. It was found that the electrolessly deposited metal improved the catalytic activity for methanol oxidation and decreased the methanol cross-over. The methanol fuel cell performance using the inorganic membrane electrode assembly was 236 μA cm -2 at 0.4 V and was stable for more than 10 days.

  20. Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut

    2016-04-01

    Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.

  1. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido

    2015-05-01

    Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.

  2. On the actual cathode mixed potential in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A.

    2016-09-01

    Methanol crossover is one of the most critical issues hindering commercialization of direct methanol fuel cells since it leads to waste of fuel and significantly affects cathode potential, forming a so-called mixed potential. Unfortunately, due to the sluggish anode kinetics, it is not possible to obtain a reliable estimation of cathode potential by simply measuring the cell voltage. In this work we address this limitation, quantifying the mixed potential by means of innovative open circuit voltage (OCV) tests with a methanol-hydrogen mixture fed to the anode. Over a wide range of operating conditions, the resulting cathode overpotential is between 250 and 430 mV and is strongly influenced by methanol crossover. We show using combined experimental and modelling analysis of cathode impedance that the methanol oxidation at the cathode mainly follows an electrochemical pathway. Finally, reference electrode measurements at both cathode inlet and outlet provide a local measurement of cathode potential, confirming the reliability of the innovative OCV tests and permitting the evaluation of cathode potential up to typical operating current. At 0.25 A cm-2 the operating cathode potential is around 0.85 V and the Ohmic drop through the catalyst layer is almost 50 mV, which is comparable to that in the membrane.

  3. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell.

    PubMed

    Chang, Ho; Kao, Mu-Jung; Chen, Chih-Hao; Kuo, Chin-Guo; Lee, Kuang-Ying

    2014-10-01

    The paper uses technology of lithography process to etch flow fields on single side of a printed circuit board (PCB), and combines flow field plate with collector plate to make innovative anode flow field plates and cathode flow field plates required in direct methanol fuel cell (DMFC), and meanwhile makes membrane electrode assembly (MEA) and methanol fuel plate. The flow field plates are designed to be in the form of serpentine flow field. The paper measured the assembled DMFC to achieve the overall efficiency of DMFC under the conditions of different screw torques and different concentration, flow rate and temperature of methanol. Experimental results show that when the flow field width of flow field plate is 1 mm, the screw torque is 16 kgf/cm, and the concentration, flow rate and temperature of methanol-water are 1 M, 180 ml/h and 50 degrees C respectively, the prepared DMFC can have better power density of 5.5 mW/cm2, 5.4 mW/cm2, 11.2 mW/cm2 and 11.8 mW/cm2. Besides, the volume of the DMFC designed and assembled by the study is smaller than the generally existing DMFC by 40%.

  4. The Mechanism of Direct Formic Acid Fuel Cell Using Pd, Pt and Pt-Ru

    NASA Astrophysics Data System (ADS)

    Kamiya, Nobuyuki; Liu, Yan; Mitsushima, Shigenori; Ota, Ken-Ichiro; Tsutsumi, Yasuyuki; Ogawa, Naoya; Kon, Norihiro; Eguchi, Mika

    The electro-oxidation of formic acid, 2-propanol and methanol on Pd black, Pd/C, Pt-Ru/C and Pt/C has been investigated to clear the reaction mechanism. It was suggested that the formic acid is dehydrogenated on Pd surface and the hydrogen is occluded in the Pd lattice. Thus obtained hydrogen acts like pure hydrogen supplied from the outside and the cell performance of the direct formic acid fuel cell showed as high as that of a hydrogen-oxygen fuel cell. 2-propanol did not show such dehydrogenation reaction on Pd catalyst. Platinum and Pt-Ru accelerated the oxidation of C-OH of 2-propanol and methanol. Slow scan voltammogram (SSV) and chronoamperometry measurements showed that the activity of formic acid oxidation increased in the following order: Pd black > Pd 30wt.%/C > Pt50wt.%/C > 27wt.%Pt-13wt.%Ru/C. A large oxidation current for formic acid was found at a low overpotential on the palladium electrocatalysts. These results indicate that formic acid is mainly oxidized through a dehydrogenation reaction. For the oxidation of 2-propanol and methanol, palladium was not effective, and 27wt.%Pt-13wt.%Ru/C showed the best oxidation activity.

  5. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells

    NASA Astrophysics Data System (ADS)

    Demirci, Umit B.

    The present paper reviews the best anode electrocatalysts, mainly the alloys, which have been tested in direct liquid-feed fuel cells fed with methanol, ethanol or formic acid. It attempts to interpret the alloys catalytic behaviours by using the Nørskov and co-workers' theoretical work [A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nørskov, J. Mol. Catal. A 115 (1997) 421; B. Hammer, J.K. Nørskov, Adv. Catal. 45 (2000) 71; J. Greeley, J.K. Nørskov, M. Maurikakis, Annu. Rev. Phys. Chem. 53 (2002) 319], who proposed surface theories and databases about the metals d-band centre shift and the segregation. It also attempts to suggest new alloys combinations. For example, for the methanol oxidation, the best catalyst is Pt-Ru and the following features make this catalyst stand out: the d-band centre of Pt shifts down what supposes weaker molecules adsorption and Pt strongly segregates. From this analysis, it is suggested that the Pd-Ni alloy may be a potentially good catalyst. Similar interpretations are given for the three fuel cell systems regarded in the present paper.

  6. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Liu, C.; Liang, J. S.; Wu, C. B.; Xu, Z.

    2006-10-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC.

  8. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  9. Stable operation of air-blowing direct methanol fuel cells with high performance

    NASA Astrophysics Data System (ADS)

    Park, Jun-Young; Lee, Jin-Hwa; Kim, Jirae; Han, Sangil; Song, Inseob

    A membrane electrode assembly (MEA) that is a combination of a catalyst-coated membrane (CCM) for the anode and a catalyst-coated substrate (CCS) for the cathode is studied under air-blower conditions for direct methanol fuel cells (DMFCs). Compared with MEAs prepared by only the CCS method, the performance of DMFC MEAs employing the combination method is significantly improved by 30% with less methanol crossover. This feature can be attributed to an enhanced electrode|membrane interface in the anode side and significantly higher catalyst efficiency. Furthermore, DMFC MEAs designed by the combination method retain high power density without any degradation, while the CCM-type cell shows a downward tendency in electrochemical performance under air-blower conditions. This may be due to MEAs with CCM have a much more difficult structure of catalytic active sites in the cathode to eliminate the water produced by electrochemical reaction. In addition, DMFCs produced via combination methods exhibit a lower water crossover flux than CCS alternatives, due to the comparatively dense structure of the CCM anode. Hence, DMFCs with a combination MEA structure demonstrate the feasibility of a small fuel cell system employing the low noise of a fan, instead of a noisy and large capacity air pump, for portable electronic devices.

  10. Radiation-grafted membranes based on polyethylene for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sherazi, Tauqir A.; Guiver, Michael D.; Kingston, David; Ahmad, Shujaat; Kashmiri, M. Akram; Xue, Xinzhong

    Styrene was grafted onto ultrahigh molecular weight polyethylene powder (UHMWPE) by gamma irradiation using a 60Co source. Compression moulded films of selected pre-irradiated styrene-grafted ultrahigh molecular weight polyethylene (UHMWPE-g-PS) were post-sulfonated to the sulfonic acid derivative (UHMWPE-g-PSSA) for use as proton exchange membranes (PEMs). The sulfonation was confirmed by X-ray photoelectron spectroscopy (XPS). The melting and flow properties of UHMWPE and UHMWPE-g-PS are conducive to forming homogeneous pore-free membranes. Both the ion conductivity and methanol permeability coefficient increased with degree of grafting, but the grafted membranes showed comparable or higher ion conductivity and lower methanol permeability than Nafion ® 117 membrane. One UHMWPE-g-PS membrane was fabricated into a membrane-electrode assembly (MEA) and tested as a single cell direct methanol fuel cell (DMFC). Low membrane cost and acceptable fuel cell performance indicate that UHMWPE-g-PSSA membranes could offer an alternative approach to perfluorosulfonic acid-type membranes for DMFC.

  11. Direct Measurement of U235 and Pu239 in Spent Fuel Rods with Gamma-Ray Mirrors

    SciTech Connect

    Ziock, Klaus-Peter; Alameda, J. B.; Brejnholt, N. F.; Decker, T. A.; Descalle, M. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, R. A.; Melin, A. M.; Patton, B. W.; Ruz, J.; Soufli, R.

    2013-09-30

    The amounts of fissile Pu and U in spent nuclear fuel are of primary concern to the safeguards community. In particular, there are issues when safeguards transitions from an item accountancy basis (such as fuel bundles) to a fissile material mass basis as occurs when spent fuel enters a reprocessing plant. Discrepancies occur because item accountancy requires estimating the content of fissile material using indirect techniques such as the fuel burn-up and item-level measurements of radiation emissions from fission by-products. Direct measurement of the fissile content by monitoring line emissions from fissile species themselves is impossible because the lines are much weaker than those emitted by shorter-lived isotopes in the fuel. The goal of this project is to develop a technique to directly measure these weaker lines despite the presence of overwhelming radiation from other isotopes. This is achieved by using gamma-ray mirrors as a narrow band-pass filter. The mirrors reflect only energies of interest toward a HPGe detector that is shielded from direct view of the spent fuel and its fierce emissions. This can significantly improve the reliability with which the mass of fissile material is tracked.

  12. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  13. Methane-free biogas for direct feeding of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.

    This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it

  14. 3D anodes for direct methanol fuel cells: Science and synthesis

    NASA Astrophysics Data System (ADS)

    Takmeel, Qanit

    The high specific energy density of methanol in direct methanol fuel cells (DMFCs) makes them particularly suitable for portable applications. However, a typical DMFC membrane electrode assembly (MEA) delivers an order of magnitude less power density compared to a hydrogen fuel cell MEA. Conventional DMFCs are operated at dilute methanol concentrations to counter problems arising from the methanol crossover issue. A breakthrough in power density can be achieved if the MEA structure is fundamentally altered to enable supply of more concentrated methanol than in current DMFCs. It has been shown that the current anode designs are limited by mass transport resulting in low current density. [1] An anode, with manifold increase in surface area, for catalysis would increase the limiting current density (jL), as a result of which the power density of the fuel cell would increase. In this work, the role of layering of Pt on Ru was studied and this lay the foundation towards understanding catalytic behavior in the fuel cell anode. Cyclic voltammetry (CV), in conjunction with copper underpotential deposition (Cu-UPD) and 15 kelvin probe force microscopy (KPFM), showed that by adjusting the thickness of Pt on a Ru substrate, the Fermi energy (EF) of the surface can be tailored to yield more efficient methanol electro-oxidizing catalysts. In order to increase the effective catalysis surface area, three-dimensional (3D) carbon based hierarchical structures were fabricated on which Pt-Ru catalyst was grown using atomic layer deposition (ALD). Scanning electron microscopy (SEM), with image processing, was used to determine the surface coverage of the carbon surfaces. CV showed that as much as hundred times the current density (j) can be achieved with such a structure as compared to a flat surface. Subsequently, mass transport limitations were studied via chronoamperometry (CA) performed in different methanol concentrations. The studies were also used to extract the rate order of

  15. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Branco, Carolina Musse; Sharma, Surbhi; de Camargo Forte, Maria Madalena; Steinberger-Wilckens, Robert

    2016-06-01

    This review analyses the current and existing literature on novel composite and multilayer membranes for Polymer Electrolyte Fuel Cell applications, including intermediate temperature polymer electrolyte fuel cell (IT-PEFC) and direct methanol fuel cell (DMFC) systems. It provides a concise scrutiny of the vast body of literature available on organic and inorganic filler based polymer membranes and links it to the new emerging trend towards novel combinations of multilayered polymer membranes for applications in DMFC and IT-PEFC. The paper carefully explores the advantages and disadvantages of the most common preparation techniques reported for multilayered membranes such as hot-pressing, casting and dip-coating and also summarises various other fresh and unique techniques employed for multilayer membrane preparation.

  16. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.

    PubMed

    Capodaglio, A G; Molognoni, D; Dallago, E; Liberale, A; Cella, R; Longoni, P; Pantaleoni, L

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m(3), with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.

  17. A monolithic integrated micro direct methanol fuel cell based on sulfo functionalized porous silicon

    NASA Astrophysics Data System (ADS)

    Wang, M.; Lu, Y. X.; Liu, L. T.; Wang, X. H.

    2016-11-01

    In this paper, we demonstrate a monolithic integrated micro direct methanol fuel cell (μDMFC) for the first time. The monolithic integrated μDMFC combines proton exchange membrane (PEM) and Pt nanocatalysts, in which PEM is achieved by the functionalized porous silicon membrane and 3D Pt nanoflowers being synthesized in situ on it as catalysts. Sulfo groups functionalized porous silicon membrane serves as a PEM and a catalyst support simultaneously. The μDMFC prototype achieves an open circuit voltage of 0.3 V, a maximum power density of 5.5 mW/cm2. The monolithic integrated μDMFC offers several desirable features such as compatibility with micro fabrication techniques, an undeformable solid PEM and the convenience of assembly.

  18. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  19. A study of the direct dimethyl ether fuel cell using alkaline anolyte

    NASA Astrophysics Data System (ADS)

    Xu, Kan; Lao, Shao Jiang; Qin, Hai Ying; Liu, Bin Hong; Li, Zhou Peng

    The electrooxidation behavior of dimethyl ether (DME) dissolved in acidic, neutral or alkaline anolyte has been studied. The cyclic voltammetry measurements reveal that DME in alkaline anolyte demonstrates higher electrooxidation reactivity than that in acidic or neutral anolyte. With increasing the NaOH concentration in the anolyte, the electrooxidation reactivity of DME can be further improved. Direct dimethyl ether fuel cells (DDFCs) are assembled by using Nafion membrane as the electrolyte, Pt/C as the cathode catalyst, and Pt-Ru/C as the anode catalyst. It is found that the use of alkaline anolyte can significantly improve the performance of DDFCs. A maximum power density of 60 mW cm -2 has been achieved when operating the DDFC at 80 °C under ambient pressure.

  20. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    SciTech Connect

    Murph, S.

    2010-06-16

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  1. Electrocatalytic activity of ZnS nanoparticles in direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Bredol, Michael; Kaczmarek, Michał; Wiemhöfer, Hans-Dieter

    2014-06-01

    Low temperature fuel cells consuming ethanol without reformation would be a major step toward the use of renewable energy sources from biomass. However, the necessary electrodes and electrocatalysts still are far from being perfect and suffer from various poisoning and deactivation processes. This work describes investigations on systems using carbon/ZnS-based electrocatalysts for ethanol oxidation in complete membrane electrode assemblies (MEAs). MEAs were built on Nafion membranes with active masses prepared from ZnS nanoparticles and Vulcan carbon support. Under operation, acetic acid and acetaldehyde were identified and quantified as soluble oxidation products, whereas the amount of CO2 generated could not be quantified directly. Overall conversion efficiencies of up to 25% were estimated from cells operated over prolonged time. From polarization curves, interrupt experiments and analysis of reaction products, mass transport problems (concentration polarization) and breakthrough losses were found to be the main deficiencies of the ethanol oxidation electrodes fabricated so far.

  2. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho

    2016-01-01

    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  3. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    NASA Astrophysics Data System (ADS)

    Li, Guangchun; Pickup, Peter G.

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO 2 and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol.

  4. The performance analysis of direct methanol fuel cells with different hydrophobic anode channels

    NASA Astrophysics Data System (ADS)

    Yeh, Hung-Chun; Yang, Ruey-Jen; Luo, Win-Jet; Jiang, Jia-You; Kuan, Yean-Der; Lin, Xin-Quan

    In order to enhance the performance of the direct methanol fuel cell (DMFC), the product of CO 2 bubble has to be efficiently removed from the anode channel during the electrochemical reaction. In this study, the materials of Polymethyl Methacrylate (PMMA) with hydrophilic property and polydimethylsiloxane (PDMS) with hydrophobic property are used to form the anode cannel. The channel is fabricated through a microelectromechanical system (MEMS) manufacture process of the DMFCs. In addition, some particles with high hydrophobic properties are added into the PDMS materials in order to further reduce the hydro-resistance in the anode channel. The performance of the DMFCs is investigated under the influence of operation conditions, including operation temperature, flow rate, and methanol concentration. It is found that the performance of the DMFC, which is made of PDMS with high hydrophobic particles, can be greatly enhanced and the hydrophobic property of the particles can be unaffected by different operation conditions.

  5. X-ray absorption and electrochemical studies of direct methanol fuel cell catalysts

    SciTech Connect

    Zurawski, D.J.; Aldykiewicz, A.J. Jr.; Baxter, S.F.; Krumpelt, M.

    1996-12-31

    In order for polymer electrolyte fuel cells to operate directly on methanol instead of hydrogen, a distinct advantage for portable applications, methanol oxidation must be catalyzed effectively in the acidic environment of the cell. Platinum-ruthenium and platinum-ruthenium oxide are generally considered to be the most active catalysts for this purpose. The presence of ruthenium significantly enhances the activity of platinum in these catalysts, for reasons not yet fully understood. We are using X-ray absorption spectroscopy (XAS) and electrochemical techniques to evaluate the mechanisms proposed to account for this enhancement in order to further improve the catalyst`s activity. We are considering three enhancement mechanisms. An intermediate in the oxidation of methanol on platinum is carbon monoxide and its oxidation is the rate-determining step in the overall oxidation mechanism. It has been proposed that ruthenium facilitates the removal of carbon monoxide from the platinum surface. First, it has been proposed that ruthenium decreases the strength of the platinum-carbon monoxide bond. Carbon monoxide bonds to the catalyst by interacting with the d-band of platinum, therefore a change in the d-band occupancy of platinum as a result of alloying may influence the bond strength of carbon monoxide. Another proposed enhancement mechanism involves lowering of the potential for the formation of the CO-oxidizing species. Finally, the binary catalysts may have a structure which is more conducive to the methanol dehydrogenation and carbon monoxide reactions. Based on these three proposed enhancement mechanisms, a goal of this study is to correlate catalyst electronic properties, structure, and oxidation state with the performance of proton-exchange membrane (Nafion) direct methanol fuel cells.

  6. Exploratory fuel-cell research: I. Direct-hydrocarbon polymer-electrolyte fuel cell. II. Mathematical modeling of fuel-cell cathodes

    SciTech Connect

    Perry, Michael L.

    1996-12-01

    A strong need exists today for more efficient energy-conversion systems. Our reliance on limited fuel resources, such as petroleum for the majority of our energy needs makes it imperative that we utilize these resources as efficiently as possible. Higher-efficiency energy conversion also means less pollution, since less fuel is consumed and less exhaust created for the same energy output. Additionally, for many industrialized nations, such as the United States which must rely on petroleum imports, it is also imperative from a national-security standpoint to reduce the consumption of these precious resources. A substantial reduction of U.S. oil imports would result in a significant reduction of our trade deficit, as well as costly military spending to protect overseas petroleum resources. Therefore, energy-conversion devices which may utilize alternative fuels are also in strong demand. This paper describes research on fuel cells for transportation.

  7. Ternary PtRuPd/C catalyst for high-performance, low-temperature direct dimethyl ether fuel cells

    SciTech Connect

    Dumont, Joseph Henry; Martinez, Ulises; Chung, Hoon T.; Zelenay, Piotr

    2016-08-19

    Here, dimethyl ether (DME) is a promising alternative fuel option for direct-feed low-temperature fuel cells. Until recently, DME had not received the same attention as alcohol fuels, such as methanol or ethanol, despite its notable advantages. These advantages include a high theoretical open-cell voltage (1.18 V at 25 °C) that is similar to that of methanol (1.21 V), much lower toxicity than methanol, and no need for the carbon–carbon bond scission that is needed in ethanol oxidation. DME is biodegradable, has a higher energy content than methanol (8.2 vs. 6.1 kWh kg–1), and, like methanol, can be synthesized from recycled carbon dioxide. Although the performance of direct DME fuel cells (DDMEFCs) has progressed over the past few years, DDMEFCs have not been viewed as fully viable. In this work, we report much improved performance from the ternary Pt55Ru35Pd10/C anode catalyst, allowing DDMEFCs to compete directly with direct methanol fuel cells (DMFCs). We also report results involving binary Pt alloys as reference catalysts and an in situ infrared electrochemical study to better understand the mechanism of DME electro-oxidation on ternary PtRuPd/C catalysts.

  8. Ternary PtRuPd/C catalyst for high-performance, low-temperature direct dimethyl ether fuel cells

    DOE PAGES

    Dumont, Joseph Henry; Martinez, Ulises; Chung, Hoon T.; ...

    2016-08-19

    Here, dimethyl ether (DME) is a promising alternative fuel option for direct-feed low-temperature fuel cells. Until recently, DME had not received the same attention as alcohol fuels, such as methanol or ethanol, despite its notable advantages. These advantages include a high theoretical open-cell voltage (1.18 V at 25 °C) that is similar to that of methanol (1.21 V), much lower toxicity than methanol, and no need for the carbon–carbon bond scission that is needed in ethanol oxidation. DME is biodegradable, has a higher energy content than methanol (8.2 vs. 6.1 kWh kg–1), and, like methanol, can be synthesized from recycledmore » carbon dioxide. Although the performance of direct DME fuel cells (DDMEFCs) has progressed over the past few years, DDMEFCs have not been viewed as fully viable. In this work, we report much improved performance from the ternary Pt55Ru35Pd10/C anode catalyst, allowing DDMEFCs to compete directly with direct methanol fuel cells (DMFCs). We also report results involving binary Pt alloys as reference catalysts and an in situ infrared electrochemical study to better understand the mechanism of DME electro-oxidation on ternary PtRuPd/C catalysts.« less

  9. The incentives and feasibility for direct measurement of spent nuclear fuel characteristics in the Federal Waste Management System

    SciTech Connect

    Not Available

    1989-08-01

    The purpose of this work is to assess the nature and extent of the need for direct measurements of spent fuel characteristics within the utility and federal portions of the waste management system, and to evaluate the capability and limitations of various measurement devices for meeting those needs. The need for direct measurement is evaluated relative to the alternative sources of the spent fuel characteristics data required for the safe and effective operation of the system. The results of this work are intended to support Federal Waste Management System (FWMS) planners by identifying the probable and potential requirements for direct measurements and for making related programmatic decisions based on the adequacy or development requirements for appropriate measurement technologies to support the needs of facility and equipment designers and operators. The designers and operators of the FWMS need to know the characteristics of the spent nuclear fuel (SNF) and related wastes that will be handled, processed, stored, transported and ultimately emplaced underground for final disposal. There are typically two basic sources of this needed information: (1) historical records of measurements made when the fuel was being fabricated or was producing energy; and (2) direct measurements made during handling prior to disposal. Historical records would include the design and fabrication records of the nuclear fuel assemblies and the subsequent utility records of reactor and core operations. 21 refs., 3 figs., 5 tabs.

  10. Ternary PtRuPd/C catalyst for high-performance, low-temperature direct dimethyl ether fuel cells

    SciTech Connect

    Dumont, Joseph Henry; Martinez, Ulises; Chung, Hoon T.; Zelenay, Piotr

    2016-08-19

    Here, dimethyl ether (DME) is a promising alternative fuel option for direct-feed low-temperature fuel cells. Until recently, DME had not received the same attention as alcohol fuels, such as methanol or ethanol, despite its notable advantages. These advantages include a high theoretical open-cell voltage (1.18 V at 25 °C) that is similar to that of methanol (1.21 V), much lower toxicity than methanol, and no need for the carbon–carbon bond scission that is needed in ethanol oxidation. DME is biodegradable, has a higher energy content than methanol (8.2 vs. 6.1 kWh kg–1), and, like methanol, can be synthesized from recycled carbon dioxide. Although the performance of direct DME fuel cells (DDMEFCs) has progressed over the past few years, DDMEFCs have not been viewed as fully viable. In this work, we report much improved performance from the ternary Pt55Ru35Pd10/C anode catalyst, allowing DDMEFCs to compete directly with direct methanol fuel cells (DMFCs). We also report results involving binary Pt alloys as reference catalysts and an in situ infrared electrochemical study to better understand the mechanism of DME electro-oxidation on ternary PtRuPd/C catalysts.

  11. Laboratory endurance test of sunflower methyl esters for direct injected diesel engine fuel

    SciTech Connect

    Kaufman, K.; Ziejewski, M.

    1983-12-01

    A methyl ester of sunflower oil was durability tested using the test cycle recommended by the Alternate Fuels Committee of the Engine Manufacturer's Association. The results are compared to a baseline test using diesel fuel. Based on the results, the methyl ester fuel successfully completed the 200-hour durability test.

  12. Direct measurement of 235U in spent fuel rods with Gamma-ray mirrors

    SciTech Connect

    Ruz, J.; Brejnholt, N. F.; Alameda, J. B.; Decker, T. A.; Descalle, M. A.; Fernandez-Perea, M.; Hill, R. M.; Kisner, R. A.; Melin, A. M.; Patton, B. W.; Soufli, R.; Ziock, K.; Pivovaroff, M. J.

    2015-12-22

    We report here that direct measurement of plutonium and uranium X-rays and gamma-rays is a highly desirable nondestructive analysis method for the use in reprocessing fuel environments. The high background and intense radiation from spent fuel make direct measurements difficult to implement since the relatively low activity of uranium and plutonium is masked by the high activity from fission products. To overcome this problem, we make use of a grazing incidence optic to selectively reflect Kα and Kβ fluorescence of Special Nuclear Materials (SNM) into a high-purity position-sensitive germanium detector and obtain their relative ratios.

  13. Temperature effect on electrochemical promotion of syngas cogeneration in direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Ta-Jen; Huang, Meng-Chin

    Syngas cogeneration in direct-methane solid oxide fuel cells with Ni-yttria-stabilized zirconia (YSZ) anodes was studied with temperature varying from 700 to 900 °C. A phenomenon of electrochemical promotion of bulk lattice-oxygen extraction from the YSZ electrolyte was observed. With increasing temperature, this promotion effect increases while both the rate enhancement ratios of CO and CO 2 formations decrease. The activation energy of CO and CO 2 formation under close circuit is lower than that under open circuit. The activation energy for the lattice-oxygen extraction from the YSZ bulk is higher than that for the oxygen transport through the YSZ bulk. The process of lattice-oxygen extraction from YSZ is rate determining in direct-methane oxidation under the condition of either close circuit or open circuit. The dependence of CO formation rate on the oxygen supply rate is stronger than that of CO 2 formation rate. Electrochemical promotion of bulk lattice-oxygen extraction enhances syngas cogeneration.

  14. Improvement of water management in a vapor feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Masdar, M. Shahbudin; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi

    Water transport in a vapor feed direct methanol fuel cell was improved by fixing a hydrophobic air filter (HAF) at the cathode. Effects of the HAF properties and the fixed positions, i.e., just on the cathode surface or by providing a certain space from the surface, of the HAF on the water transport as well as the power generation performance were investigated. The water transport was evaluated by measuring the partial pressure of water, PH2O , and methanol, PCH3OH , at the anode gas layer using in situ mass spectrometry with a capillary probe and also the water and methanol fluxes across the electrode structure using a conventional method. The HAF with the highest hydrophobicity and the highest flow resistance had the strongest effect on increasing the water back diffusion from the cathode to the anode through the membrane and increasing the current density. It was noted that the HAF fixation by providing a space from the cathode surface was more effective in increasing JWCO and the current density than that of the direct placement on the cathode surface. There was an optimum distance for the HAF placement depending on the humidity of the outside air.

  15. Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process

    SciTech Connect

    Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

    2012-01-01

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  16. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    NASA Astrophysics Data System (ADS)

    Hackett, Gregory A.; Gerdes, Kirk; Song, Xueyan; Chen, Yun; Shutthanandan, Vaithiyalingam; Engelhard, Mark; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-01

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm-2 degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm-2 degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  17. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tang, Yawen; Gao, Ying; Lu, Tianhong

    It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode. This is attributed to that Ir can promote the oxidation of formic acid at Pd through the direct pathway because Ir can decrease the adsorption strength of CO on Pd. However, when the content of Ir in the Pd-Ir/C catalyst is too high the electrocatalytic activity of the Pd-Ir/C catalyst would be decreased because Ir has no electrocatalytic activity for the oxidation of formic acid.

  18. Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact

    SciTech Connect

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

  19. SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS

    SciTech Connect

    J.M. Calo

    2004-12-01

    This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence times on anode surfaces, and can be

  20. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; da Silva, Dionisio Furtunato; e Silva, Leonardo Gondim de Andrade; Spinacé, Estevam Vitório; Neto, Almir Oliveira; dos Santos, Mauro Coelho

    2015-10-01

    Pd/C, PdAu/C 50:50, PdSn/C 50:50, PdAuSn/C 50:40:10 and PdAuSn/C 50:10:40 electrocatalysts are prepared using an electron beam irradiation reduction method and tested for glycerol electro-oxidation in alkaline medium. X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV) are used to characterize the resulting materials. The activity for glycerol electro-oxidation is tested in alkaline medium at room temperature using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct glycerol fuel cell (ADGFC) at temperature range of 60-90 °C. EDX analysis demonstrate that Pd:Au:Sn atomic ratios are very similar to the nominal ones. X-ray diffractograms of PdAuSn/C electrocatalysts evidence the presence of Pd (fcc), Au (fcc) and SnO2 phases. TEM analysis demonstrates a good dispersion of the nanoparticles on the carbon support with some agglomerates. Cyclic Voltammetry experiments suggest that PdAuSn/C electrocatalysts demonstrate better results. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 glycerol in 2.0 mol L-1 KOH solutions, the electrocatalyst PdAuSn/C 50:40:10 demonstrate highest power density (51 mW cm-2) and the 120 h durability tests demonstrate a 210 μV h-1 degradation rate.

  1. A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride

    ERIC Educational Resources Information Center

    White, Lori L.; Kittredge, Kevin W.

    2005-01-01

    The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…

  2. A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride

    ERIC Educational Resources Information Center

    White, Lori L.; Kittredge, Kevin W.

    2005-01-01

    The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…

  3. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage

    PubMed Central

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-01-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a ‘pen’ for writing, which is accomplished by exfoliating GNs with the ‘printed’ borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications. PMID:27484735

  4. Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage.

    PubMed

    Jepsen, Lars H; Ley, Morten B; Filinchuk, Yaroslav; Besenbacher, Flemming; Jensen, Torben R

    2015-04-24

    A series of halide-free ammine manganese borohydrides, Mn(BH4 )2 ⋅nNH3 , n=1, 2, 3, and 6, a new bimetallic compound Li2 Mn(BH4 )4 ⋅6NH3 , and the first ammine metal borohydride solid solution Mg1-x Mnx (BH4 )2 ⋅6NH3 are presented. Four new crystal structures have been determined by synchrotron radiation powder X-ray diffraction and the thermal decomposition is systematically investigated for all the new compounds. The solid-gas reaction between Mn(BH4 )2 and NH3 provides Mn(BH4 )2 ⋅6NH3 . The number of NH3 per Mn has been varied by mechanochemical treatment of Mn(BH4 )2 ⋅6NH3 -Mn(BH4 )2 mixtures giving rise to increased hydrogen purity for n/m≤1 for M(BH4 )m ⋅nNH3 . The structures of Mg(BH4 )2 ⋅3NH3 and Li2 Mg(BH4 )4 ⋅6NH3 have been revisited and new structural models are presented. Finally, we demonstrate that ammonia destabilizes metal borohydrides with low electronegativity of the metal (χp <∼1.6), while metal borohydrides with high electronegativity (χp >∼1.6) are generally stabilized.

  5. By-Product Carrying Humidified Hydrogen: An Underestimated Issue in the Hydrolysis of Sodium Borohydride.

    PubMed

    Petit, Eddy; Miele, Philippe; Demirci, Umit B

    2016-07-21

    Catalyzed hydrolysis of sodium borohydride generates up to four molecules of hydrogen, but contrary to what has been reported so far, the humidified evolved gas is not pure hydrogen. Elemental and spectroscopic analyses show, for the first time, that borate by-products pollute the stream as well as the vessel.

  6. Borohydride Reduction of Estrone: Demonstration of Diastereoselectivity in the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Aditya, Animesh; Nichols, David E.; Loudon, G. Marc

    2008-01-01

    This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity in an undergraduate organic chemistry laboratory. Chiral hindered ketones such as estrone, undergo facile reduction with sodium borohydride in a highly diastereoselective manner. The diastereomeric estradiols produced in the reaction can be analyzed and…

  7. Borohydride Reduction of Estrone: Demonstration of Diastereoselectivity in the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Aditya, Animesh; Nichols, David E.; Loudon, G. Marc

    2008-01-01

    This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity in an undergraduate organic chemistry laboratory. Chiral hindered ketones such as estrone, undergo facile reduction with sodium borohydride in a highly diastereoselective manner. The diastereomeric estradiols produced in the reaction can be analyzed and…

  8. A Guided-Inquiry Approach to the Sodium Borohydride Reduction and Grignard Reaction of Carbonyl Compounds

    ERIC Educational Resources Information Center

    Rosenberg, Robert E.

    2007-01-01

    The guided-inquiry approach is applied to the reactions of sodium borohydride and phenyl magnesium bromide with benzaldehyde, benzophenone, benzoic anhydride, and ethyl benzoate. Each team of four students receives four unknowns. Students identify the unknowns and their reaction products by using the physical state of the unknown, an…

  9. A Guided-Inquiry Approach to the Sodium Borohydride Reduction and Grignard Reaction of Carbonyl Compounds

    ERIC Educational Resources Information Center

    Rosenberg, Robert E.

    2007-01-01

    The guided-inquiry approach is applied to the reactions of sodium borohydride and phenyl magnesium bromide with benzaldehyde, benzophenone, benzoic anhydride, and ethyl benzoate. Each team of four students receives four unknowns. Students identify the unknowns and their reaction products by using the physical state of the unknown, an…

  10. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride

    ERIC Educational Resources Information Center

    Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.

    In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…

  11. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-08-01

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a ‘pen’ for writing, which is accomplished by exfoliating GNs with the ‘printed’ borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications.

  12. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage.

    PubMed

    Li, Yongtao; Ding, Xiaoli; Zhang, Qingan

    2016-08-03

    Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a 'pen' for writing, which is accomplished by exfoliating GNs with the 'printed' borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications.

  13. Optimizing membrane electrode assembly of direct methanol fuel cells for portable power

    NASA Astrophysics Data System (ADS)

    Liu, Fuqiang

    Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of high methanol oxidation and oxygen reduction kinetics, as well as low methanol and water crossover. In this thesis a novel membrane electrode assembly (MEA) for direct methanol fuel cells has been developed, aiming to improve these fundamental properties. Firstly, methanol oxidation kinetics has been enhanced and methanol crossover has been minimized by proper control of ionomer crystallinity and its swelling in the anode catalyst layer through heat-treatment. Heat-treatment has a major impact on anode characteristics. The short-cured anode has low ionomer crystallinity, and thus swells easily when in contact with methanol solution to create a much denser anode structure, giving rise to higher methanol transport resistance than the long-cured anode. Variations in interfacial properties in the anode catalyst layer (CL) during cell conditioning were also characterized, and enhanced kinetics of methanol oxidation and severe limiting current phenomenon were found to be caused by a combination of interfacial property variations and swelling of ionomer over time. Secondly, much effort has been expended to develop a cathode CL suitable for operation under low air stoichiometry. The effects of fabrication procedure, ionomer content, and porosity distribution on the microstructure and cathode performance under low air stoichiometry are investigated using electrochemical and surface morphology characterizations to reveal the correlation between microstructure and electrochemical behavior. At the same time, computational fluid dynamics (CFD) models of DMFC cathodes have been developed to theoretically interpret the experimental results, to investigate two-phase transport, and to elucidate mechanism of cathode mixed potential due to methanol crossover. Thirdly, a MEA with low

  14. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis

    SciTech Connect

    Niemeyer, Kyle E.; Sung, Chih-Jen; Raju, Mandhapati P.

    2010-09-15

    A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this article

  15. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  16. An experimental study of flame stability in a directly-fueled wall cavity with a supersonic free stream

    NASA Astrophysics Data System (ADS)

    Rasmussen, Chadwick Clifford

    An extensive study of flame stability in a cavity-based fuel injector/flameholder has been performed. Flames were stabilized in cavities with two different aft wall configurations and length to depth ratios of 3 and 4. Fuel was injected directly into the cavity using two injector configurations. Fuel injected from the aft wall of the cavity entered directly into the recirculation zone and provided desirable performance near the lean blowout limit. At high fuel flowrates, the cavity became flooded with fuel and rich blowout occurred. When fuel was injected from the floor of the cavity, excess fuel was directed out of the cavity which allowed for flame stabilization at extremely high fuel flowrates; however, this phenomenon also resulted in suboptimal performance near the lean limit where the blowout point was less predictable. Images of planar laser-induced fluorescence (PLIF) of CH, OH, and formaldehyde give insight into the flameholding mechanisms. CH layers in the cavity are thin and continuous and show structure that is comparable to lifted jet flames, while broad CH zones are sometimes observed in the shear layer. OH PLIF images show that hot recirculated products are always present at the location of flame stabilization, whereas images of formaldehyde indicate that partial premixing takes place in the shear layer portion of the flame. Nonreacting measurements of the boundary layer and the free stream velocity profiles were obtained to provide necessary boundary conditions for computational modeling. Mean and instantaneous velocity profiles were determined for the nonreacting flow using particle image velocimetry (PIV). A correlation of the blowout points for a directly-fueled cavity in a supersonic flow was accomplished using a Damkohler number and an equivalence ratio based upon an effective air mass flowrate. The chemical time was formulated using a generic measure of the reaction rate, tauc ˜ alpha/ S2L , which was found to be adequate for correlating lean

  17. Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction

    SciTech Connect

    Andile B. Mzinyati

    2007-09-15

    The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

  18. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    PubMed

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  19. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    SciTech Connect

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  20. Energy Conversion Efficiency Potential for Forward-Deployed Generation Using Direct Carbon Fuel Cells

    DTIC Science & Technology

    2012-05-01

    fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid Molten car- bonate salt Ceramic Fused KNO3 Operating...air O2/air CO2/O2/air O2/air Humidified air Efficiency (Higher Heating Value [HHV]) 30–35% 40–50% 50–60% 45–55% 80% PEMFC : Proton Exchange... PEMFC proton-exchange membrane fuel cell SOFC solid oxide fuel cell SRI Statistical Research, Inc. TR technical report TRL technology readiness level

  1. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    DOEpatents

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  2. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  3. On-demand supply of slurry fuels to a porous anode of a direct carbon fuel cell: Attempts to increase fuel-anode contact and realize long-term operation

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Yi, Hakgyu; Lee, Donggeun

    2016-03-01

    In this paper, we propose a novel idea that might allow resolution of the two biggest challenges that hinder practical use of direct carbon fuel cells (DCFC). This work involved 1) the use of three types of porous Ni anode with different pore sizes, 2) size matching between the anode pores and solid fuel particles in a molten-carbonate (MC) slurry, and 3) provision of a continuous supply of fuel-MC slurry through the porous Ni anode. As a result, larger numbers of smaller pores in the anode were preferred for extending the triple phase boundary (TPB), as long as the fuel particles were sufficiently small to have full access to the inner pore spaces of the anode. For example, the maximal power density achieved in the case of optimal size matching, reached 645 mW cm-2, which is 14-times greater than that for the case of poorest size-matching and 64-times larger than that for a non-porous anode, and lasted for more than 20 h. After 20 h of steady operation at a fixed current density (700 mA cm-2), the electric potential slightly decreased due to partial consumption of the fuel. The cell performance readily recovered after restarting the supply of MC-fuel slurry.

  4. Optical Characterization of a Multipoint Lean Direct Injector for Gas Turbine Combustors: Velocity and Fuel Drop Size Measurements

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Locke, Randy J.; Hicks, Yolanda R.

    2010-01-01

    Performance of a multipoint, lean direct injection (MP-LDI) strategy for low emission aero-propulsion systems has been tested in a Jet-A fueled, lean flame tube combustion rig. Operating conditions for the series of tests included inlet air temperatures between 672 and 828 K, pressures between 1034 and 1379 kPa and total equivalence ratios between 0.41 and 0.45, resulting in equilibrium flame temperatures approaching 1800 K. Ranges of operation were selected to represent the spectrum of subsonic and supersonic flight conditions projected for the next-generation of commercial aircraft. This document reports laser-based measurements of in situ fuel velocities and fuel drop sizes for the NASA 9-point LDI hardware arranged in a 3 3 square grid configuration. Data obtained represent a region of the flame tube combustor with optical access that extends 38.1-mm downstream of the fuel injection site. All data were obtained within reacting flows, without particle seeding. Two diagnostic methods were employed to evaluate the resulting flow path. Three-component velocity fields have been captured using phase Doppler interferometry (PDI), and two-component velocity distributions using planar particle image velocimetry (PIV). Data from these techniques have also offered insight into fuel drop size and distribution, fuel injector spray angle and pattern, turbulence intensity, degree of vaporization and extent of reaction. This research serves to characterize operation of the baseline NASA 9- point LDI strategy for potential use in future gas-turbine combustor applications. An additional motive is the compilation of a comprehensive database to facilitate understanding of combustor fuel injector aerodynamics and fuel vaporization processes, which in turn may be used to validate computational fluid dynamics codes, such as the National Combustor Code (NCC), among others.

  5. High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Deshpande, Kishori; Mukasyan, Alexander; Varma, Arvind

    Liquid feed direct methanol fuel cells (DMFC) are promising candidates for portable power applications. However, owing to the problems associated with expensive Pt-based catalysts, viz., CO poisoning, a promising approach is to use complex oxides of the type ABO 3 (A = Sr, Ce, La, etc. and B = Co, Fe, Ni, Pt, Ru, etc.). In the current work, a variety of ABO 3 and A 2BO 4 type non-noble and partially substituted noble metal high surface area compounds were synthesized by an effective and rapid aqueous combustion synthesis (CS). Their catalytic activity was evaluated by using "High Throughput Screening Unit"-NuVant System, which compares up to 25 compositions simultaneously under DMFC conditions. It was found that the Sr-based perovskites showed performance comparable with the standard Pt-Ru catalyst. Further, it was observed that the method of doping SrRuO 3 with Pt influenced the activity. Specifically, platinum added during aqueous CS yielded better catalyst than when added externally at the ink preparation stage. Finally, it was also demonstrated that the presence of SrRuO 3 significantly enhanced the catalytic properties of Pt, leading to superior performance even at lower noble metal loadings.

  6. Model-based analysis of water management in alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Weinzierl, C.; Krewer, U.

    2014-12-01

    Mathematical modelling is used to analyse water management in Alkaline Direct Methanol Fuel Cells (ADMFCs) with an anion exchange membrane as electrolyte. Cathodic water supply is identified as one of the main challenges and investigated at different operation conditions. Two extreme case scenarios are modelled to study the feasible conditions for sufficient water supply. Scenario 1 reveals that water supply by cathodic inlet is insufficient and, thus, water transport through membrane is essential for ADMFC operation. The second scenario is used to analyse requirements on water transport through the membrane for different operation conditions. These requirements are influenced by current density, evaporation rate, methanol cross-over and electro-osmotic drag of water. Simulations indicate that water supply is mainly challenging for high current densities and demands on high water diffusion are intensified by water drag. Thus, current density might be limited by water transport through membrane. The presented results help to identify important effects and processes in ADMFCs with a polymer electrolyte membrane and to understand these processes. Furthermore, the requirements identified by modelling show the importance of considering water transport through membrane besides conductivity and methanol cross-over especially for designing new membrane materials.

  7. Microbial Fuel Cells for Direct Electrical Energy Recovery from Urban Wastewaters

    PubMed Central

    Capodaglio, A. G.; Molognoni, D.; Dallago, E.; Liberale, A.; Cella, R.; Longoni, P.; Pantaleoni, L.

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m3, with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production. PMID:24453885

  8. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    NASA Astrophysics Data System (ADS)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  9. New clean fuel from coal -- Direct dimethyl ether synthesis from hydrogen and carbon monoxide

    SciTech Connect

    Ogawa, T.; Ono, M.; Mizuguchi, M.; Tomura, K.; Shikada, T.; Ohono, Y.; Fujimoto, K.

    1997-12-31

    Dimethyl ether (DME), which has similar physical properties to propane and is easily liquefied at low pressure, has a significant possibility as a clean and non-toxic fuel from coal or coal bed methane. Equilibrium calculation also shows a big advantage of high carbon monoxide conversion of DME synthesis compared to methanol synthesis. By using a 50 kg/day DME bench scale test plant, direct synthesis of DME from hydrogen and carbon monoxide has been studied with newly developed catalysts which are very fine particles. This test plant features a high pressure three-phase slurry reactor and low temperature DME separator. DME is synthesized at temperatures around 533--553 K and at pressures around 3--5 MPa. According to the reaction stoichiometry, the same amount of hydrogen and carbon monoxide react to DME and carbon dioxide. Carbon conversion to DME is one third and the rest of carbon is converted to carbon dioxide. As a result of the experiments, make-up CO conversion is 35--50% on an once-through basis, which is extremely high compared to that of methanol synthesis from hydrogen and carbon monoxide. DME selectivity is around 60 c-mol %. Most of the by-product is CO{sub 2} with a small amount of methanol and water. No heavy by-products have been recognized. Effluent from the reactor is finally cooled to 233--253 K in a DME separator and liquid DME is recovered as a product.

  10. Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell

    PubMed Central

    Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian

    2016-01-01

    Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm−2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm−2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg−1, about 4.5 times higher than that of commercial Pt/C. PMID:27966629

  11. Novel mesoporous carbon ceramics composites as electrodes for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Gallo, Jean Marcel R.; Gatti, Giorgio; Graizzaro, Alessandro; Marchese, Leonardo; Pastore, Heloise O.

    2011-10-01

    In this work, a new family of materials for electrodes of direct methanol fuel cell (DMFC) is presented. Mesoporous carbon ceramics (MCCs) are obtained by the addition of commercial graphite into the synthesis gel of SBA-15 mesoporous silica with SiO2/C weight ratios of 1/1 and 1/3. X-ray diffraction confirms both the formation of organized silica and the presence of graphite, and nitrogen physisorption measurements show that the presence of a graphitic phase does not interfere in the silica pore diameter although it diminishes the surface area. The MCCs modified with Pt or PtRu are tested as DMFC electrodes and compared with the commercial support Vulcan XC-72R. When used as cathode, the system using MCC-SBA-15 with SiO2/C weight ratios of 1/1 presents a negligible performance, while the MCC-SBA-15 with SiO2/C weight ratios of 1/3 is 2.9 times less active than the commercial support. On the other side, when used as anode, the MCC-SBA-15 with SiO2/C weight ratios of 1/3 displays performances comparable to Vulcan XC-72R.

  12. Direct conversion of methane to C sub 2 's and liquid fuels

    SciTech Connect

    Warren, B.K.; Campbell, K.D.

    1989-11-22

    Objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. Promoted metal oxide catalysts were tested. Several of these exhibited similar high ethylene to ethane ratios and low carbon dioxide to carbon monoxide ratios observed for the NaCl/{alpha}-alumina catalyst system reported earlier. Research on catalysts containing potentially activated metals began with testing of metal molecular sieves. Silver catalysts were shown to be promising as low temperature catalysts. Perovskites were tested as potential methane coupling catalysts. A layered perovskite (K{sub 2}La{sub 2}Ti{sub 3}O{sub 10}) gave the highest C{sub 2} yield. Work continued on the economic evaluation of a hypothetical process converting methane to ethylene. An engineering model of the methane coupling system has been prepared. 47 refs., 17 figs., 57 tabs.

  13. Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Zhong, Shuangling; Cui, Xuejun; Cai, Hongli; Fu, Tiezhu; Zhao, Chengji; Na, Hui

    In the present study, a series of the crosslinked sulfonated poly(ether ether ketone) (SPEEK) proton exchange membranes were prepared. The photochemical crosslinking of the SPEEK membranes was carried out by dissolving benzophenone and triethylamine photo-initiator system in the membrane casting solution and then exposing the resulting membranes after solvent evaporation to UV light. The physical and transport properties of crosslinked membranes were investigated. The membrane performance can be controlled by adjusting the photoirradiation time. The experimental results showed that the crosslinked SPEEK membranes with photoirradiation 10 min had the optimum performance for proton exchange membranes (PEMs). Compared with the non-crosslinked SPEEK membranes, the crosslinked SPEEK membranes with photoirradiation 10 min markedly improved thermal stabilities and mechanical properties as well as hydrolytic and oxidative stabilities, greatly reduced water uptake and methanol diffusion coefficients with only slight sacrifice in proton conductivities. Therefore, the crosslinked SPEEK membranes with photoirradiation 10 min were particularly promising as proton exchange membranes for direct methanol fuel cell (DMFC) applications.

  14. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    SciTech Connect

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  15. New anodic diffusive layer for passive micro-direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Yuan, Ting; Zou, Zhiqing; Chen, Mei; Li, Zhilin; Xia, Baojia; Yang, Hui

    The addition of carbon nanotubes (CNTs) into anodic micro-porous layer (MPL) of the membrane electrode assembly significantly improves the performance of the passive micro-direct methanol fuel cells (DMFCs). The maximum power density of ca. 32.2 mW cm -2 at a temperature of ca. 25 °C and under air-breathing mode is achieved with pure CNTs as anode MPL material. Impedance analysis and cyclic voltammetric measurements of the anodes indicate that the increased performance of the passive DMFC with the addition of CNTs into anodic MPLs could be attributed to the decrease in charge transfer resistance of the anode reaction and to the improvement in catalyst utilization. Scanning electron microscopy measurements show the network formation within the MPL due to the one-dimensional structure of CNTs, which could be beneficial to the methanol mass transfer and to the improvement in catalyst utilization. Furthermore, the durability test of a passive DMFC after 300 h operation demonstrates that the passive DMFC with CNTs as anode MPL materials exhibits very good stability.

  16. Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell.

    PubMed

    Bensebaa, Farid; Farah, Abdiaziz A; Wang, Dashan; Bock, Christina; Du, Xiaomei; Kung, Judy; Le Page, Yvon

    2005-08-18

    Platinum-ruthenium nanoparticles stabilized within a conductive polymer matrix are prepared using microwave heating. Polypyrrole di(2-ethylhexyl) sulfosuccinate, or PPyDEHS, has been chosen for its known electrical conductivity, thermal stability, and solubility in polar organic solvents. A scalable and quick two-step process is proposed to fabricate alloyed nanoparticles dispersed in PPyDEHS. First a mixture of PPyDEHS and metallic precursors is heated in a microwave under reflux conditions. Then the nanoparticles are extracted by centrifugation. Physical characterization by TEM shows that crystalline and monodisperse alloyed nanoparticles with an average size of 2.8 nm are obtained. Diffraction data show that crystallite size is around 2.0 nm. Methanol electro-oxidation data allow us to propose these novel materials as potential candidates for direct methanol fuel cells (DMFC) application. The observed decrease in sulfur content in the polymer upon incorporation of PtRu nanoparticles may have adversely affected the measured catalytic activity by decreasing the conductivity of PPyDEHS. Higher concentration of polymer leads to lower catalyst activity. Design and synthesis of novel conductive polymers is needed at this point to enhance the catalytic properties of these hybrid materials.

  17. A spontaneous and passive waste-management device (PWMD) for a micro direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Chuang, Yun-Ju; Chieng, Ching-Chang; Pan, Chin; Luo, Shih-Jin; Tseng, Fan-Gang

    2007-05-01

    This paper introduces a passive waste-management device (PWMD) for a micro direct methanol fuel cell to exhale CO2 gas and to gather and transport water and methanol residue during operation. It passively employs condensation, temperature gradient, surface tension gradient and droplet coalescence to accumulate liquid, separate liquid and gas, and transport droplets without the need of external power. CO2 gas can be breathed out through hydrophobic micro holes with the assistance of buoyancy force while water/methanol vapor is condensing into droplets, coalescing with smaller droplets and is transported toward a cooler and more hydrophilic waste tank through wettability gradient. The wettability gradient is prepared by diffusion-controlled silanization with a gradient from 117° to 28° and is radial toward the outer boundary, which can drive droplets down to 1 µl with a speed of up to 20 mm s-1. With the assistance of coalescence along with the wettability gradient, the condensed water droplets can reach a double speed of 40 mm s-1. The maximum water removal rate of the PWMD can approach 6.134 µl s-1 cm-2, which is at least one order of magnitude higher than the demand of a standard µDMFC with power generation ability of 100 mW cm-2.

  18. Anode reaction mechanism and crossover in direct dimethyl ether fuel cell

    NASA Astrophysics Data System (ADS)

    Mizutani, Itsuko; Liu, Yan; Mitsushima, Shigenori; Ota, Ken-ichiro; Kamiya, Nobuyuki

    The anode reaction mechanism and the crossover of a direct dimethyl ether fuel cell (DDMEFC) have been investigated. This was done by considering the anode products of the half-cell and DDMEFC experiments. It was found that the CO 2 current efficiency of the DDMEFC was almost 1 at 30-80 °C and that this value was higher than that of a DMFC. The main by-products of the DDMEFC were methyl formate and methanol whose amounts are negligibly small compared to CO 2. With respect to crossover, the influence of DME on the oxygen reduction reaction (ORR) was examined with a half-cell, and the amount of crossover of DME was measured while operating an actually constructed DDMEFC. From these experiments, it was found that DME does not influence the ORR as much as methanol under similar conditions. Furthermore, the amount of crossover of DME decreased with an increase in temperature and current density and it was one-half that of methanol on open circuit and at 80 °C. The CO 2 current efficiency of the DDMEFC is higher than that of a DMFC, and the influence of crossover in the DDMEFC is less than that in the DMFC. Since the temperature dependence of the reactivity of DME is larger than that of methanol, the higher output is expected for the DDMEFC at the elevated temperature. Therefore, the DDMEFC has a promising potential as a portable power source in the future.

  19. Behavioral pattern of a monopolar passive direct methanol fuel cell stack

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jin; Bae, Byungchan; Scibioh, M. Aulice; Cho, EunAe; Ha, Heung Yong

    A passive, air-breathing, monopolar, liquid feed direct methanol fuel cell (DMFC) stack consisting of six unit cells with no external pump, fan or auxiliary devices to feed the reactants has been designed and fabricated for its possible employment as a portable power source. The configurations of the stack of monopolar passive feed DMFCs are different from those of bipolar active feed DMFCs and therefore its operational characteristics completely vary from the active ones. Our present investigation primarily focuses on understanding the unique behavioral patterns of monopolar stack under the influence of certain operating conditions, such as temperature, methanol concentration and reactants feeding methods. With passive reactants supply, the temperature of the stack and open circuit voltage (OCV) undergo changes over time due to a decrease in concentration of methanol in the reservoir as the reaction proceeds. Variations in performance and temperature of the stack are mainly influenced by the concentration of methanol. Continuous operation of the passive stack is influenced by the supply of methanol rather than air supply or water accumulation at the cathode. The monopolar stack made up of six unit cells exhibits a total power of 1000 mW (37 mW cm -2) with 4 M methanol under ambient conditions.

  20. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.