Science.gov

Sample records for direct brain communication

  1. Brain-Computer Interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?

    PubMed Central

    Kübler, A.; Birbaumer, N.

    2008-01-01

    Objective To investigate the relationship between physical impairment and brain-computer interface (BCI) performance. Method We present a meta-analysis of 29 patients with amyotrophic lateral sclerosis and 6 with other severe neurological diseases in different stages of physical impairment who were trained with a BCI. In most cases voluntary regulation of slow cortical potentials has been used as input signal for BCI control. More recently sensorimotor rhythms and the P300 event-related brain potential were recorded. Results A strong correlation has been found between physical impairment and BCI performance, indicating that performance worsens as impairment increases. Seven patients were in the complete locked-in state (CLIS) with no communication possible. After removal of these patients from the analysis, the relationship between physical impairment and BCI performance disappeared. The lack of a relation between physical impairment and BCI performance was confirmed when adding BCI data of patients from other BCI research groups. Conclusions Basic communication (yes/no) was not restored in any of the CLIS patients with a BCI. Whether locked-in patients can transfer learned brain control to the CLIS remains an open empirical question. Significance Voluntary brain regulation for communication is possible in all stages of paralysis except the CLIS. PMID:18824406

  2. A Direct Brain-to-Brain Interface in Humans

    PubMed Central

    Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

  3. Wireless communication links for brain-machine interface applications

    NASA Astrophysics Data System (ADS)

    Larson, L.

    2016-05-01

    Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.

  4. Multiparty-controlled quantum secure direct communication

    SciTech Connect

    Xiu, X.-M. Dong, L.; Gao, Y.-J.; Chi, F.

    2007-12-15

    A theoretical scheme of a multiparty-controlled quantum secure direct communication is proposed. The supervisor prepares a communication network with Einstein-Podolsky-Rosen pairs and auxiliary particles. After passing a security test of the communication network, a supervisor tells the users the network is secure and they can communicate. If the controllers allow the communicators to communicate, the controllers should perform measurements and inform the communicators of the outcomes. The communicators then begin to communicate after they perform a security test of the quantum channel and verify that it is secure. The recipient can decrypt the secret message in a classical message from the sender depending on the protocol. Any two users in the network can communicate through the above processes under the control of the supervisor and the controllers.

  5. Brain-Computer Interfaces for Speech Communication

    PubMed Central

    Brumberg, Jonathan S.; Nieto-Castanon, Alfonso; Kennedy, Philip R.; Guenther, Frank H.

    2010-01-01

    This paper briefly reviews current silent speech methodologies for normal and disabled individuals. Current techniques utilizing electromyographic (EMG) recordings of vocal tract movements are useful for physically healthy individuals but fail for tetraplegic individuals who do not have accurate voluntary control over the speech articulators. Alternative methods utilizing EMG from other body parts (e.g., hand, arm, or facial muscles) or electroencephalography (EEG) can provide capable silent communication to severely paralyzed users, though current interfaces are extremely slow relative to normal conversation rates and require constant attention to a computer screen that provides visual feedback and/or cueing. We present a novel approach to the problem of silent speech via an intracortical microelectrode brain computer interface (BCI) to predict intended speech information directly from the activity of neurons involved in speech production. The predicted speech is synthesized and acoustically fed back to the user with a delay under 50 ms. We demonstrate that the Neurotrophic Electrode used in the BCI is capable of providing useful neural recordings for over 4 years, a necessary property for BCIs that need to remain viable over the lifespan of the user. Other design considerations include neural decoding techniques based on previous research involving BCIs for computer cursor or robotic arm control via prediction of intended movement kinematics from motor cortical signals in monkeys and humans. Initial results from a study of continuous speech production with instantaneous acoustic feedback show the BCI user was able to improve his control over an artificial speech synthesizer both within and across recording sessions. The success of this initial trial validates the potential of the intracortical microelectrode-based approach for providing a speech prosthesis that can allow much more rapid communication rates. PMID:20204164

  6. Brain-Computer Interfaces for Speech Communication.

    PubMed

    Brumberg, Jonathan S; Nieto-Castanon, Alfonso; Kennedy, Philip R; Guenther, Frank H

    2010-04-01

    This paper briefly reviews current silent speech methodologies for normal and disabled individuals. Current techniques utilizing electromyographic (EMG) recordings of vocal tract movements are useful for physically healthy individuals but fail for tetraplegic individuals who do not have accurate voluntary control over the speech articulators. Alternative methods utilizing EMG from other body parts (e.g., hand, arm, or facial muscles) or electroencephalography (EEG) can provide capable silent communication to severely paralyzed users, though current interfaces are extremely slow relative to normal conversation rates and require constant attention to a computer screen that provides visual feedback and/or cueing. We present a novel approach to the problem of silent speech via an intracortical microelectrode brain computer interface (BCI) to predict intended speech information directly from the activity of neurons involved in speech production. The predicted speech is synthesized and acoustically fed back to the user with a delay under 50 ms. We demonstrate that the Neurotrophic Electrode used in the BCI is capable of providing useful neural recordings for over 4 years, a necessary property for BCIs that need to remain viable over the lifespan of the user. Other design considerations include neural decoding techniques based on previous research involving BCIs for computer cursor or robotic arm control via prediction of intended movement kinematics from motor cortical signals in monkeys and humans. Initial results from a study of continuous speech production with instantaneous acoustic feedback show the BCI user was able to improve his control over an artificial speech synthesizer both within and across recording sessions. The success of this initial trial validates the potential of the intracortical microelectrode-based approach for providing a speech prosthesis that can allow much more rapid communication rates.

  7. Brain basis of communicative actions in language.

    PubMed

    Egorova, Natalia; Shtyrov, Yury; Pulvermüller, Friedemann

    2016-01-15

    Although language is a key tool for communication in social interaction, most studies in the neuroscience of language have focused on language structures such as words and sentences. Here, the neural correlates of speech acts, that is, the actions performed by using language, were investigated with functional magnetic resonance imaging (fMRI). Participants were shown videos, in which the same critical utterances were used in different communicative contexts, to Name objects, or to Request them from communication partners. Understanding of critical utterances as Requests was accompanied by activation in bilateral premotor, left inferior frontal and temporo-parietal cortical areas known to support action-related and social interactive knowledge. Naming, however, activated the left angular gyrus implicated in linking information about word forms and related reference objects mentioned in critical utterances. These findings show that understanding of utterances as different communicative actions is reflected in distinct brain activation patterns, and thus suggest different neural substrates for different speech act types.

  8. Guidelines for Better Communication with Brain Impaired Adults

    MedlinePlus

    ... A You are here Home Guidelines for Better Communication with Brain Impaired Adults Printer-friendly version Communicating ... easy solutions, following some basic guidelines should ease communication, and lower levels of stress both for you ...

  9. Brain basis of communicative actions in language

    PubMed Central

    Egorova, Natalia; Shtyrov, Yury; Pulvermüller, Friedemann

    2016-01-01

    Although language is a key tool for communication in social interaction, most studies in the neuroscience of language have focused on language structures such as words and sentences. Here, the neural correlates of speech acts, that is, the actions performed by using language, were investigated with functional magnetic resonance imaging (fMRI). Participants were shown videos, in which the same critical utterances were used in different communicative contexts, to Name objects, or to Request them from communication partners. Understanding of critical utterances as Requests was accompanied by activation in bilateral premotor, left inferior frontal and temporo-parietal cortical areas known to support action-related and social interactive knowledge. Naming, however, activated the left angular gyrus implicated in linking information about word forms and related reference objects mentioned in critical utterances. These findings show that understanding of utterances as different communicative actions is reflected in distinct brain activation patterns, and thus suggest different neural substrates for different speech act types. PMID:26505303

  10. Directional coupling for quantum computing and communication.

    PubMed

    Nikolopoulos, Georgios M

    2008-11-14

    We introduce the concept of directional coupling, i.e., the selective transfer of a state between adjacent quantum wires, in the context of quantum computing and communication. Our analysis rests upon a mathematical analogy between a dual-channel directional coupler and a composite spin system.

  11. Cerebro, lenguaje y comunicacion (Brain, Language, and Communication).

    ERIC Educational Resources Information Center

    Strejilevich, Leonardo

    1978-01-01

    Discusses the relationship between the brain, language, and communication in the following sections: (1) combining words, (2) language as a system, (3) language as a function of the brain, (4) the science of communication, and (5) language as a social institution. (NCR)

  12. Communicating Science Directly to the Public

    NASA Astrophysics Data System (ADS)

    McDonald, K.

    2006-12-01

    Advances in information technology have allowed science PR professionals on campuses to go beyond their traditional roles as intermediaries between scientists and the news media and communicate their institutions' research stories directly to the public. On some campuses, such as UC San Diego, this activity serves a dual role—-educating the local community as well as K-12 students about science. This has not only helped researchers fulfill their outreach obligations, but served as a source of funds to support these efforts in the face of declining budgets for outreach and communications. Kim McDonald is Director of Science Communications at UCSD and teaches an undergraduate course in science and environmental writing.

  13. A dissociation between linguistic and communicative abilities in the human brain.

    PubMed

    Willems, Roel M; de Boer, Miriam; de Ruiter, Jan Peter; Noordzij, Matthijs L; Hagoort, Peter; Toni, Ivan

    2010-01-01

    Although language is an effective vehicle for communication, it is unclear how linguistic and communicative abilities relate to each other. Some researchers have argued that communicative message generation involves perspective taking (mentalizing), and-crucially-that mentalizing depends on language. We employed a verbal communication paradigm to directly test whether the generation of a communicative action relies on mentalizing and whether the cerebral bases of communicative message generation are distinct from parts of cortex sensitive to linguistic variables. We found that dorsomedial prefrontal cortex, a brain area consistently associated with mentalizing, was sensitive to the communicative intent of utterances, irrespective of linguistic difficulty. In contrast, left inferior frontal cortex, an area known to be involved in language, was sensitive to the linguistic demands of utterances, but not to communicative intent. These findings show that communicative and linguistic abilities rely on cerebrally (and computationally) distinct mechanisms.

  14. Direct Communication to Earth from Probes

    NASA Technical Reports Server (NTRS)

    Bolton, Scott J.; Folkner, William M.; Abraham, Douglas S.

    2005-01-01

    A viewgraph presentation on outer planetary probe communications to Earth is shown. The topics include: 1) Science Rational for Atmospheric Probes to the Outer Planets; 2) Controlling the Scientific Appetite; 3) Learning more about Jupiter before we send more probes; 4) Sample Microwave Scan From Juno; 5) Jupiter s Deep Interior; 6) The Square Kilometer Array (SKA): A Breakthrough for Radio Astronomy; 7) Deep Space Array-based Network (DSAN); 8) Probe Direct-to-Earth Data Rate Calculations; 9) Summary; and 10) Enabling Ideas.

  15. Brain Specialization Research and the Teaching of Nonverbal Communication.

    ERIC Educational Resources Information Center

    Jensen, Marvin D.

    1980-01-01

    The connectionist theory of brain functioning, which holds that specialization exists within the brain, has three implications for teachers of nonverbal communication. One implication involves the relative emphasis to be placed on linguistic/linear versus nonlinguistic/nonlinear mental processing. Teachers can shift emphasis to nonlinguistic…

  16. Directional navigation improves opportunistic communication for emergencies.

    PubMed

    Kokuti, Andras; Gelenbe, Erol

    2014-01-01

    We present a novel direction based shortest path search algorithm to guide evacuees during an emergency. It uses opportunistic communications (oppcomms) with low-cost wearable mobile nodes that can exchange packets at close range of a few to some tens of meters without help of an infrastructure. The algorithm seeks the shortest path to exits which are safest with regard to a hazard, and is integrated into an autonomous Emergency Support System (ESS) to guide evacuees in a built environment. The algorithm proposed that ESSs are evaluated with the DBES (Distributed Building Evacuation Simulator) by simulating a shopping centre where fire is spreading. The results show that the directional path finding algorithm can offer significant improvements for the evacuees. PMID:25140633

  17. Directional Navigation Improves Opportunistic Communication for Emergencies

    PubMed Central

    Kokuti, Andras.; Gelenbe, Erol.

    2014-01-01

    We present a novel direction based shortest path search algorithm to guide evacuees during an emergency. It uses opportunistic communications (oppcomms) with low-cost wearable mobile nodes that can exchange packets at close range of a few to some tens of meters without help of an infrastructure. The algorithm seeks the shortest path to exits which are safest with regard to a hazard, and is integrated into an autonomous Emergency Support System (ESS) to guide evacuees in a built environment. The algorithm proposed that ESSs are evaluated with the DBES (Distributed Building Evacuation Simulator) by simulating a shopping centre where fire is spreading. The results show that the directional path finding algorithm can offer significant improvements for the evacuees. PMID:25140633

  18. The Directive Communication of Australian Primary School Principals

    ERIC Educational Resources Information Center

    De Nobile, John

    2015-01-01

    Directive communication is a key leadership practise in schools. However, very little direct attention has been given to this important feature of the school communication system. The purpose of the research reported here was to produce a richer description of directive communication in the context of Australian primary schools, and in so doing,…

  19. Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy.

    PubMed

    Mahan, Margaret Y; Georgopoulos, Apostolos P

    2013-01-01

    Motor directional tuning (Georgopoulos et al., 1982) has been found in every brain area in which it has been sought for during the past 30-odd years. It is typically broad, with widely distributed preferred directions and a population signal that predicts accurately the direction of an upcoming reaching movement or isometric force pulse (Georgopoulos et al., 1992). What is the basis for such ubiquitous directional tuning? How does the tuning come about? What are the implications of directional tuning for understanding the brain mechanisms of movement in space? This review addresses these questions in the light of accumulated knowledge in various sub-fields of neuroscience and motor behavior. It is argued (a) that direction in space encompasses many aspects, from vision to muscles, (b) that there is a directional congruence among the central representations of these distributed "directions" arising from rough but orderly topographic connectivities among brain areas, (c) that broad directional tuning is the result of broad excitation limited by recurrent and non-recurrent (i.e., direct) inhibition within the preferred direction loci in brain areas, and (d) that the width of the directional tuning curve, modulated by local inhibitory mechanisms, is a parameter that determines the accuracy of the directional command. PMID:23720612

  20. Efficient Controlled Quantum Secure Direct Communication Protocols

    NASA Astrophysics Data System (ADS)

    Patwardhan, Siddharth; Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-07-01

    We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete message. We argue both protocols to be unconditionally secure and analyze the efficiency of the protocols to show it to outperform the existing schemes while maintaining the same security specifications.

  1. Communicative versus Strategic Rationality: Habermas Theory of Communicative Action and the Social Brain

    PubMed Central

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael; Denke, Claudia

    2013-01-01

    In the philosophical theory of communicative action, rationality refers to interpersonal communication rather than to a knowing subject. Thus, a social view of rationality is suggested. The theory differentiates between two kinds of rationality, the emancipative communicative and the strategic or instrumental reasoning. Using experimental designs in an fMRI setting, recent studies explored similar questions of reasoning in the social world and linked them with a neural network including prefrontal and parietal brain regions. Here, we employed an fMRI approach to highlight brain areas associated with strategic and communicative reasoning according to the theory of communicative action. Participants were asked to assess different social scenarios with respect to communicative or strategic rationality. We found a network of brain areas including temporal pole, precuneus, and STS more activated when participants performed communicative reasoning compared with strategic thinking and a control condition. These brain regions have been previously linked to moral sensitivity. In contrast, strategic rationality compared with communicative reasoning and control was associated with less activation in areas known to be related to moral sensitivity, emotional processing, and language control. The results suggest that strategic reasoning is associated with reduced social and emotional cognitions and may use different language related networks. Thus, the results demonstrate experimental support for the assumptions of the theory of communicative action. PMID:23734238

  2. Communicative versus strategic rationality: Habermas theory of communicative action and the social brain.

    PubMed

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael; Denke, Claudia

    2013-01-01

    In the philosophical theory of communicative action, rationality refers to interpersonal communication rather than to a knowing subject. Thus, a social view of rationality is suggested. The theory differentiates between two kinds of rationality, the emancipative communicative and the strategic or instrumental reasoning. Using experimental designs in an fMRI setting, recent studies explored similar questions of reasoning in the social world and linked them with a neural network including prefrontal and parietal brain regions. Here, we employed an fMRI approach to highlight brain areas associated with strategic and communicative reasoning according to the theory of communicative action. Participants were asked to assess different social scenarios with respect to communicative or strategic rationality. We found a network of brain areas including temporal pole, precuneus, and STS more activated when participants performed communicative reasoning compared with strategic thinking and a control condition. These brain regions have been previously linked to moral sensitivity. In contrast, strategic rationality compared with communicative reasoning and control was associated with less activation in areas known to be related to moral sensitivity, emotional processing, and language control. The results suggest that strategic reasoning is associated with reduced social and emotional cognitions and may use different language related networks. Thus, the results demonstrate experimental support for the assumptions of the theory of communicative action.

  3. Smart plants: Memory and communication without brains

    PubMed Central

    Leopold, A Carl

    2014-01-01

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these 3 needs will logically necessitate some ability for plant communication – at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection – beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness. PMID:25482811

  4. Smart plants: memory and communication without brains.

    PubMed

    Leopold, A Carl

    2014-01-01

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these 3 needs will logically necessitate some ability for plant communication - at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection - beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness. PMID:25482811

  5. Smart plants: memory and communication without brains.

    PubMed

    Leopold, A Carl

    2014-01-01

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these 3 needs will logically necessitate some ability for plant communication - at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection - beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness.

  6. Smart Plants: Memory and Communication without Brains.

    PubMed

    Carl Leopold, A

    2014-08-01

    The immobility of plants is consistent with their principal function: collecting light to provide photosynthetic substrate for the biological system. Their immobility does impose limitations on some basic requirements, such as the need for pollination, for seed dispersal, and for protection against herbivores. Meeting these three needs will logically necessitate some ability for plant communication - at least a capability for beneficial adaptive behavior. Three types of plant behavior provide evidence of memory and communication abilities: a capability for memory, a capability for measuring time, and extensive evidence of chemical signaling systems. These may provide benefits for genetic outcrossing, seed dispersal and protection - beneficial adaptive behaviors. The chemical signaling system constitutes a wireless communication network that draws mobile animals into assisting plant functions that require mobility. Plants share their chemical signaling systems most frequently with insects and birds. These beneficial adaptable behaviors may be interpreted as some type of consciousness.

  7. Communication in Mind, Brain, and Education: Making Disciplinary Differences Explicit

    ERIC Educational Resources Information Center

    Kalra, Priya; O'Keeffe, Jamie K.

    2011-01-01

    Difficulties in communication within Mind, Brain, and Education (MBE) can arise from several sources. One source is differences in orientation among the areas of research, policy, and practice. Another source is lack of understanding of the entrenched and unspoken differences across research disciplines in MBE--that is, recognition that research…

  8. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  9. Brain-computer interfaces for communication with nonresponsive patients.

    PubMed

    Naci, Lorina; Monti, Martin M; Cruse, Damian; Kübler, Andrea; Sorger, Bettina; Goebel, Rainer; Kotchoubey, Boris; Owen, Adrian M

    2012-09-01

    A substantial number of patients who survive severe brain injury progress to a nonresponsive state of wakeful unawareness, referred to as a vegetative state (VS). They appear to be awake, but show no signs of awareness of themselves, or of their environment in repeated clinical examinations. However, recent neuroimaging research demonstrates that some VS patients can respond to commands by willfully modulating their brain activity according to instruction. Brain-computer interfaces (BCIs) may allow such patients to circumvent the barriers imposed by their behavioral limitations and communicate with the outside world. However, although such devices would undoubtedly improve the quality of life for some patients and their families, developing BCI systems for behaviorally nonresponsive patients presents substantial technical and clinical challenges. Here we review the state of the art of BCI research across noninvasive neuroimaging technologies, and propose how such systems should be developed further to provide fully fledged communication systems for behaviorally nonresponsive populations.

  10. Communication after mild traumatic brain injury--a spouse's perspective.

    PubMed

    Crewe-Brown, Samantha Jayne; Stipinovich, Alexandra Maria; Zsilavecz, Ursula

    2011-10-01

    Individuals with mild traumatic brain injury (MTBI) often perform within normal limits on linguistic and cognitive assessments. However, they may present with debilitating communicative difficulties in daily life. A multifaceted approach to MTBI with a focus on everyday communication in natural settings is required. Significant others who interact with the individual with MTBI in a variety of settings may be sensitive to communicative difficulties experienced by the individual with MTBI. This article examines communication after MTBI from the perspective of the spouse. A case study design was implemented. The spouses of two individuals with MTBI served as the participants for this study. Semi-structured interviews were held, during which each participant was requested to describe the communication of their spouse with MTBI. The content obtained from the interviews was subjected to a discourse analysis. The results show that both participants perceived changes in the communication of their spouse following the MTBI. The results further show that MTBI affected communication of the two individuals in different ways. The value of a 'significant other' in providing information regarding communication in natural settings is highlighted. The implications of these findings for the assessment and management of the communication difficulties associated with MTBI are discussed. PMID:22216558

  11. Molecular mapping of brain areas involved in parrot vocal communication.

    PubMed

    Jarvis, E D; Mello, C V

    2000-03-27

    Auditory and vocal regulation of gene expression occurs in separate discrete regions of the songbird brain. Here we demonstrate that regulated gene expression also occurs during vocal communication in a parrot, belonging to an order whose ability to learn vocalizations is thought to have evolved independently of songbirds. Adult male budgerigars (Melopsittacus undulatus) were stimulated to vocalize with playbacks of conspecific vocalizations (warbles), and their brains were analyzed for expression of the transcriptional regulator ZENK. The results showed that there was distinct separation of brain areas that had hearing- or vocalizing-induced ZENK expression. Hearing warbles resulted in ZENK induction in large parts of the caudal medial forebrain and in 1 midbrain region, with a pattern highly reminiscent of that observed in songbirds. Vocalizing resulted in ZENK induction in nine brain structures, seven restricted to the lateral and anterior telencephalon, one in the thalamus, and one in the midbrain, with a pattern partially reminiscent of that observed in songbirds. Five of the telencephalic structures had been previously described as part of the budgerigar vocal control pathway. However, functional boundaries defined by the gene expression patterns for some of these structures were much larger and different in shape than previously reported anatomical boundaries. Our results provide the first functional demonstration of brain areas involved in vocalizing and auditory processing of conspecific sounds in budgerigars. They also indicate that, whether or not vocal learning evolved independently, some of the gene regulatory mechanisms that accompany learned vocal communication are similar in songbirds and parrots.

  12. Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate

    MedlinePlus

    ... Current Issue Past Issues Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate Past ... this page please turn Javascript on. A brain-computer interface (BCI) system This brain-computer interface (BCI) ...

  13. Language, Communication, and Culture: Current Directions.

    ERIC Educational Resources Information Center

    Ting-Toomey, Stella, Ed.; Korzenny, Felipe, Ed.

    1989-01-01

    Dealing with the relationships among language, communication, and culture, the 12 papers in this collection are divided into three parts. The first part deals with the critical issues related to language acquisition, context, and cognition. The second part presents an array of perspectives in analyzing the role of language in comparative…

  14. Quantum Secure Direct Communication with Authentication Expansion Using Single Photons

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Chuan; Zhang, Ru

    2010-11-01

    In this paper we propose two quantum secure direct communication (QSDC) protocols with authentication. The authentication key expansion method is introduced to improve the life of the keys with security. In the first scheme, the third party, called Trent is introduced to authenticate the users that participate in the communication. He sends the polarized photons in blocks to authenticate communication parties Alice and Bob using the authentication keys. In the communication process, polarized single photons are used to serve as the carriers, which transmit the secret messages directly. The second QSDC process with authentication between two parties is also discussed.

  15. Self-portraits of the brain: cognitive science, data visualization, and communicating brain structure and function.

    PubMed

    Goldstone, Robert L; Pestilli, Franco; Börner, Katy

    2015-08-01

    With several large-scale human brain projects currently underway and a range of neuroimaging techniques growing in availability to researchers, the amount and diversity of data relevant for understanding the human brain is increasing rapidly. A complete understanding of the brain must incorporate information about 3D neural location, activity, timing, and task. Data mining, high-performance computing, and visualization can serve as tools that augment human intellect; however, the resulting visualizations must take into account human abilities and limitations to be effective tools for exploration and communication. In this feature review, we discuss key challenges and opportunities that arise when leveraging the sophisticated perceptual and conceptual processing of the human brain to help researchers understand brain structure, function, and behavior.

  16. Controlled bidirectional quantum secure direct communication.

    PubMed

    Chou, Yao-Hsin; Lin, Yu-Ting; Zeng, Guo-Jyun; Lin, Fang-Jhu; Chen, Chi-Yuan

    2014-01-01

    We propose a novel protocol for controlled bidirectional quantum secure communication based on a nonlocal swap gate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on the nonlocal swap gate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages.

  17. Controlled Bidirectional Quantum Secure Direct Communication

    PubMed Central

    Chou, Yao-Hsin; Lin, Yu-Ting; Zeng, Guo-Jyun; Lin, Fang-Jhu; Chen, Chi-Yuan

    2014-01-01

    We propose a novel protocol for controlled bidirectional quantum secure communication based on a nonlocal swap gate scheme. Our proposed protocol would be applied to a system in which a controller (supervisor/Charlie) controls the bidirectional communication with quantum information or secret messages between legitimate users (Alice and Bob). In this system, the legitimate users must obtain permission from the controller in order to exchange their respective quantum information or secret messages simultaneously; the controller is unable to obtain any quantum information or secret messages from the decoding process. Moreover, the presence of the controller also avoids the problem of one legitimate user receiving the quantum information or secret message before the other, and then refusing to help the other user decode the quantum information or secret message. Our proposed protocol is aimed at protecting against external and participant attacks on such a system, and the cost of transmitting quantum bits using our protocol is less than that achieved in other studies. Based on the nonlocal swap gate scheme, the legitimate users exchange their quantum information or secret messages without transmission in a public channel, thus protecting against eavesdroppers stealing the secret messages. PMID:25006596

  18. Brain communication in the locked-in state.

    PubMed

    De Massari, Daniele; Ruf, Carolin A; Furdea, Adrian; Matuz, Tamara; van der Heiden, Linda; Halder, Sebastian; Silvoni, Stefano; Birbaumer, Niels

    2013-06-01

    Patients in the completely locked-in state have no means of communication and they represent the target population for brain-computer interface research in the last 15 years. Although different paradigms have been tested and different physiological signals used, to date no sufficiently documented completely locked-in state patient was able to control a brain-computer interface over an extended time period. We introduce Pavlovian semantic conditioning to enable basic communication in completely locked-in state. This novel paradigm is based on semantic conditioning for online classification of neuroelectric or any other physiological signals to discriminate between covert (cognitive) 'yes' and 'no' responses. The paradigm comprised the presentation of affirmative and negative statements used as conditioned stimuli, while the unconditioned stimulus consisted of electrical stimulation of the skin paired with affirmative statements. Three patients with advanced amyotrophic lateral sclerosis participated over an extended time period, one of which was in a completely locked-in state, the other two in the locked-in state. The patients' level of vigilance was assessed through auditory oddball procedures to study the correlation between vigilance level and the classifier's performance. The average online classification accuracies of slow cortical components of electroencephalographic signals were around chance level for all the patients. The use of a non-linear classifier in the offline classification procedure resulted in a substantial improvement of the accuracy in one locked-in state patient achieving 70% correct classification. A reliable level of performance in the completely locked-in state patient was not achieved uniformly throughout the 37 sessions despite intact cognitive processing capacity, but in some sessions communication accuracies up to 70% were achieved. Paradigm modifications are proposed. Rapid drop of vigilance was detected suggesting attentional

  19. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication

    NASA Astrophysics Data System (ADS)

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.

  20. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication.

    PubMed

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.

  1. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication.

    PubMed

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability. PMID:27636460

  2. Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants

    NASA Astrophysics Data System (ADS)

    Hwang, Tzonelih; Luo, Yi-Ping; Yang, Chun-Wei; Lin, Tzu-Han

    2014-04-01

    This work proposes a new direction in quantum cryptography called quantum authencryption. Quantum authencryption (QA), a new term to distinguish from authenticated quantum secure direct communications, is used to describe the technique of combining quantum encryption and quantum authentication into one process for off-line communicants. QA provides a new way of quantum communications without the presence of a receiver on line, and thus makes many applications depending on secure one-way quantum communications, such as quantum E-mail systems, possible. An example protocol using single photons and one-way hash functions is presented to realize the requirements on QA.

  3. Noninvasive brain-computer interface enables communication after brainstem stroke.

    PubMed

    Sellers, Eric W; Ryan, David B; Hauser, Christopher K

    2014-10-01

    Brain-computer interfaces (BCIs) provide communication that is independent of muscle control, and can be especially important for individuals with severe neuromuscular disease who cannot use standard communication pathways or other assistive technology. It has previously been shown that people with amyotrophic lateral sclerosis (ALS) can successfully use BCI after all other means of independent communication have failed. The BCI literature has asserted that brainstem stroke survivors can also benefit from BCI use. This study used a P300-based event-related potential spelling system. This case study demonstrates that an individual locked-in owing to brainstem stroke was able to use a noninvasive BCI to communicate volitional messages. Over a period of 13 months, the participant was able to successfully operate the system during 40 of 62 recording sessions. He was able to accurately spell words provided by the experimenter and to initiate dialogues with his family. The results broadly suggest that, regardless of the precipitating event, BCI use may be of benefit to those with locked-in syndrome.

  4. Plasticity of the aging brain: new directions in cognitive neuroscience.

    PubMed

    Gutchess, Angela

    2014-10-31

    Cognitive neuroscience has revealed aging of the human brain to be rich in reorganization and change. Neuroimaging results have recast our framework around cognitive aging from one of decline to one emphasizing plasticity. Current methods use neurostimulation approaches to manipulate brain function, providing a direct test of the ways that the brain differently contributes to task performance for younger and older adults. Emerging research into emotional, social, and motivational domains provides some evidence for preservation with age, suggesting potential avenues of plasticity, alongside additional evidence for reorganization. Thus, we begin to see that aging of the brain, amidst interrelated behavioral and biological changes, is as complex and idiosyncratic as the brain itself, qualitatively changing over the life span.

  5. Directional information flows between brain hemispheres during presleep wake and early sleep stages.

    PubMed

    Bertini, Mario; Ferrara, Michele; De Gennaro, Luigi; Curcio, Giuseppe; Moroni, Fabio; Vecchio, Fabrizio; De Gasperis, Marco; Rossini, Paolo Maria; Babiloni, Claudio

    2007-08-01

    Neuroscientists' efforts to better understand the underlying processes of human consciousness are growing in a variety of multidisciplinary approaches. Relevant within these are the studies aimed at exploring the physiological substratum of the propagation and reduction of cerebral-namely, corticocortical-communication flows. However, the preferential direction of the information flow between brain hemispheres is as yet largely unknown. It is the aim of the present research to study the communication flows between brain hemispheres, their directionality, and their regional variations across wake-sleep states. A second aim is to investigate the possibility of an association between different brain rhythms and different preferred directions of the information flow. Scalp electroencephalograms (EEGs) were recorded in 10 normal volunteers from wakefulness to early sleep stages (viz., resting wakefulness, sleep stages 2 and 4, and rapid eye movement [REM] of the first sleep cycle). EEG rhythms of interest were delta (1-4 Hz), theta (5-7 Hz), alpha (8-11 Hz), sigma (12-15 Hz), and beta (16-30 Hz). The direction of the interhemispheric information flow was evaluated by computing directed transformation function from these EEG rhythms. Interhemispheric directional flows varied as a function of the state of consciousness (wake and early sleep stages) and in relation to different cerebral areas. Across wake to sleep states, we found that delta and beta rhythms convey interhemispheric signals with opposite directions: preferred right to left hemisphere direction for delta and left to right for beta rhythms. A log correlation confirmed that the trend of low to high EEG frequencies-traditionally associated with an increasing state of vigilance-was significantly related to the direction of the communication flow from the left to right hemisphere. This evidence might open the way for a variety of research lines on different psychophysiological and pathological conditions. PMID

  6. Brain-computer interfaces for communication and rehabilitation.

    PubMed

    Chaudhary, Ujwal; Birbaumer, Niels; Ramos-Murguialday, Ander

    2016-09-01

    Brain-computer interfaces (BCIs) use brain activity to control external devices, thereby enabling severely disabled patients to interact with the environment. A variety of invasive and noninvasive techniques for controlling BCIs have been explored, most notably EEG, and more recently, near-infrared spectroscopy. Assistive BCIs are designed to enable paralyzed patients to communicate or control external robotic devices, such as prosthetics; rehabilitative BCIs are designed to facilitate recovery of neural function. In this Review, we provide an overview of the development of BCIs and the current technology available before discussing experimental and clinical studies of BCIs. We first consider the use of BCIs for communication in patients who are paralyzed, particularly those with locked-in syndrome or complete locked-in syndrome as a result of amyotrophic lateral sclerosis. We then discuss the use of BCIs for motor rehabilitation after severe stroke and spinal cord injury. We also describe the possible neurophysiological and learning mechanisms that underlie the clinical efficacy of BCIs. PMID:27539560

  7. Brain-computer interfaces for communication and rehabilitation.

    PubMed

    Chaudhary, Ujwal; Birbaumer, Niels; Ramos-Murguialday, Ander

    2016-09-01

    Brain-computer interfaces (BCIs) use brain activity to control external devices, thereby enabling severely disabled patients to interact with the environment. A variety of invasive and noninvasive techniques for controlling BCIs have been explored, most notably EEG, and more recently, near-infrared spectroscopy. Assistive BCIs are designed to enable paralyzed patients to communicate or control external robotic devices, such as prosthetics; rehabilitative BCIs are designed to facilitate recovery of neural function. In this Review, we provide an overview of the development of BCIs and the current technology available before discussing experimental and clinical studies of BCIs. We first consider the use of BCIs for communication in patients who are paralyzed, particularly those with locked-in syndrome or complete locked-in syndrome as a result of amyotrophic lateral sclerosis. We then discuss the use of BCIs for motor rehabilitation after severe stroke and spinal cord injury. We also describe the possible neurophysiological and learning mechanisms that underlie the clinical efficacy of BCIs.

  8. Brain-gut-microbe communication in health and disease.

    PubMed

    Grenham, Sue; Clarke, Gerard; Cryan, John F; Dinan, Timothy G

    2011-01-01

    Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal, and immunological levels. This construct is known as the brain-gut axis and is vital for maintaining homeostasis. Bacterial colonization of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signaling. Recent research advances have seen a tremendous improvement in our understanding of the scale, diversity, and importance of the gut microbiome. This has been reflected in the form of a revised nomenclature to the more inclusive brain-gut-enteric microbiota axis and a sustained research effort to establish how communication along this axis contributes to both normal and pathological conditions. In this review, we will briefly discuss the critical components of this axis and the methodological challenges that have been presented in attempts to define what constitutes a normal microbiota and chart its temporal development. Emphasis is placed on the new research narrative that confirms the critical influence of the microbiota on mood and behavior. Mechanistic insights are provided with examples of both neural and humoral routes through which these effects can be mediated. The evidence supporting a role for the enteric flora in brain-gut axis disorders is explored with the spotlight on the clinical relevance for irritable bowel syndrome, a stress-related functional gastrointestinal disorder. We also critically evaluate the therapeutic opportunities arising from this research and consider in particular whether targeting the microbiome might represent a valid strategy for the management of CNS disorders and ponder the pitfalls inherent in such an approach. Despite the considerable challenges that lie ahead, this is an exciting area of research and one that is destined to remain the center of focus for some time to come.

  9. Future Directions in Distance Learning and Communication Technologies

    ERIC Educational Resources Information Center

    Shih, Timothy; Hung, Jason

    2007-01-01

    Future Directions in Distance Learning and Communication Technologies presents theoretical studies and practical solutions for engineers, educational professionals, and graduate students in the research areas of e-learning, distance education, and instructional design. This book provides readers with cutting-edge solutions and research directions…

  10. Channel simulation for direct-detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.

  11. Channel simulation for direct detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.

  12. Brain dynamics in the genesis of trust as the basis for communication by representations

    SciTech Connect

    Freeman, W.J.

    1996-12-31

    A theory of brain dynamics is proposed according to which brains construct external representations by actions into the world for communication. The prior brain patterns constitute meanings, not representations of meanings. The representations have no meaning in themselves. They are shaped in accordance with meaning inside transmitting brains, and they can elicit the construction of meaning inside receiving brains, provided that trust has been established between the transmitters and the receivers through appropriate neurochemical changes.

  13. Noninvasive brain-computer interfaces for augmentative and alternative communication.

    PubMed

    Akcakaya, Murat; Peters, Betts; Moghadamfalahi, Mohammad; Mooney, Aimee R; Orhan, Umut; Oken, Barry; Erdogmus, Deniz; Fried-Oken, Melanie

    2014-01-01

    Brain-computer interfaces (BCIs) promise to provide a novel access channel for assistive technologies, including augmentative and alternative communication (AAC) systems, to people with severe speech and physical impairments (SSPI). Research on the subject has been accelerating significantly in the last decade and the research community took great strides toward making BCI-AAC a practical reality to individuals with SSPI. Nevertheless, the end goal has still not been reached and there is much work to be done to produce real-world-worthy systems that can be comfortably, conveniently, and reliably used by individuals with SSPI with help from their families and care givers who will need to maintain, setup, and debug the systems at home. This paper reviews reports in the BCI field that aim at AAC as the application domain with a consideration on both technical and clinical aspects.

  14. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication.

    PubMed

    El Aidy, Sahar; Stilling, Roman; Dinan, Timothy G; Cryan, John F

    2016-01-01

    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.

  15. Interfacing brain with computer to improve communication and rehabilitation after brain damage.

    PubMed

    Riccio, A; Pichiorri, F; Schettini, F; Toppi, J; Risetti, M; Formisano, R; Molinari, M; Astolfi, L; Cincotti, F; Mattia, D

    2016-01-01

    Communication and control of the external environment can be provided via brain-computer interfaces (BCIs) to replace a lost function in persons with severe diseases and little or no chance of recovery of motor abilities (ie, amyotrophic lateral sclerosis, brainstem stroke). BCIs allow to intentionally modulate brain activity, to train specific brain functions, and to control prosthetic devices, and thus, this technology can also improve the outcome of rehabilitation programs in persons who have suffered from a central nervous system injury (ie, stroke leading to motor or cognitive impairment). Overall, the BCI researcher is challenged to interact with people with severe disabilities and professionals in the field of neurorehabilitation. This implies a deep understanding of the disabled condition on the one hand, and it requires extensive knowledge on the physiology and function of the human brain on the other. For these reasons, a multidisciplinary approach and the continuous involvement of BCI users in the design, development, and testing of new systems are desirable. In this chapter, we will focus on noninvasive EEG-based systems and their clinical applications, highlighting crucial issues to foster BCI translation outside laboratories to eventually become a technology usable in real-life realm. PMID:27590975

  16. Brain-immune communication psychoneuroimmunology of multiple sclerosis.

    PubMed

    Kern, S; Ziemssen, T

    2008-01-01

    The central nervous system (CNS) and the immune system are two extremely complex and highly adaptive systems. In the face of a real or anticipated threat, be it physical (eg, infection) or psychological (eg, psychosocial stress) in nature, the two systems act in concert to provide optimal adaptation to the demanding internal or environmental conditions. During instances of well being, the communication between these two systems is well tuned and balanced. However, a disturbed crosstalk between the CNS and the immune system is thought to play a major role in a wide series of disorders characterized by a hyporesponsive or hyperresponsive immune system. In multiple sclerosis (MS), a chronic inflammatory and neurodegenerative disease, an excess of inflammatory processes seems to be a hallmark and there is growing evidence for a disturbed communication between the CNS and the immune system as a crucial pathogenic factor. While the exact mechanisms for these phenomena are still poorly understood, the young discipline of psychoneuroimmunology (PNI), which focuses on the mechanism underlying the brain to immune crosstalk, might offer some insights into the existing pathogenic mechanisms. Findings from the field of PNI might also help to gain a better understanding regarding the origin and course of MS clinical symptoms such as fatigue and depression.

  17. Authenticated semi-quantum direct communication protocols using Bell states

    NASA Astrophysics Data System (ADS)

    Luo, Yi-Ping; Hwang, Tzonelih

    2016-02-01

    This study presents the first two authenticated semi-quantum direct communication protocols without using any classical channel. By pre-sharing a master secret key between two communicants, a sender with advanced quantum devices can transmit a secret message to a receiver who can only perform classical operations without any information leakage. The receiver is then capable of verifying the message up to the single-qubit level, i.e., a one-qubit modification of the transmitted quantum sequence can be detected with a probability close to 1. Moreover, the proposed protocols are resistant to several well-known attacks.

  18. Variable mode bi-directional and uni-directional computer communication system

    DOEpatents

    Cornett, Frank N.; Jenkins, Philip N.; Bowman, Terrance L.; Placek, Joseph M.; Thorson, Gregory M.

    2004-12-14

    A variable communication systems comprising a plurality of transceivers and a control circuit connected to the transceivers to configure the transceivers to operate in a bi-directional mode and a uni-directional mode at different times using different transfer methods to transfer data.

  19. Direct communication between right pulmonary artery and left atrium.

    PubMed

    Alva, C; Jiménez Arteaga, S; Gómez, F D; Sánchez Soberanes, A; Ortegón, J; Campos, M; Ledesma, M; Argüero, R

    2000-01-01

    A case of direct communication between right pulmonary artery and left atrium is reported. The diagnosis was made before surgical correction. A surgical ligation of the fistula resolved the cyanosis of the patient. Selective angiocardiogram of the right pulmonary artery 4 months after surgery revealed no residual shunt. This very rare malformation should be considered in the clinical setting of unexplained cyanosis. This is the number 50 case reported in the literature.

  20. Quantum Secure Direct Communication Based on Chaos with Authentication

    NASA Astrophysics Data System (ADS)

    Huang, Dazu; Chen, Zhigang; Guo, Ying; Lee, Moon Ho

    2007-12-01

    A quantum secure direct communication protocol based on chaos is proposed with authentication. It has an advantage over distributing the secret message directly and verifying the communicators’ identities with the assistance of a trusted center. To ensure the security of the secret message and the process of verification, the initial order of the travel particles is disturbed according to a chaotic sequence generated secretly via the general Arnold map. Security analysis demonstrates that the present scheme is secure against several attack strategies, such as the man-in-the-middle attack and Trojan horse attack.

  1. Movement: How the Brain Communicates with the World.

    PubMed

    Schwartz, Andrew B

    2016-03-10

    Voluntary movement is a result of signals transmitted through a communication channel that links the internal world in our minds to the physical world around us. Intention can be considered the desire to effect change on our environment, and this is contained in the signals from the brain, passed through the nervous system to converge on muscles that generate displacements and forces on our surroundings. The resulting changes in the world act to generate sensations that feed back to the nervous system, closing the control loop. This Perspective discusses the experimental and theoretical underpinnings of current models of movement generation and the way they are modulated by external information. Movement systems embody intentionality and prediction, two factors that are propelling a revolution in engineering. Development of movement models that include the complexities of the external world may allow a better understanding of the neuronal populations regulating these processes, as well as the development of solutions for autonomous vehicles and robots, and neural prostheses for those who are motor impaired. PMID:26967280

  2. 77 FR 6000 - Airworthiness Directives; Aviation Communication & Surveillance Systems (ACSS) Traffic Alert and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... Communication & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance System (TCAS) Units AGENCY... airworthiness directive (AD): 2012-02-08 Aviation Communication & Surveillance Systems, LLC: Amendment 39-16931.... ADDRESSES: For service information identified in this AD, contact Aviation Communication &...

  3. Fostering science communication via direct outreach by scientists

    NASA Astrophysics Data System (ADS)

    Viñas, M.; Weiss, P. L.; O'Neil, K.; Richardson, R. M.

    2010-12-01

    While the bread-and-butter of the press operation at the American Geophysical Union remains issuing press releases and organizing press conferences for mainstream media, the implosion of specialized science coverage in print media, TV, and radio, and the heated public debates on science issues require us to find other ways to get science and scientists into the public eye. This means getting volunteers--small armies of scientists interested in and able to communicate with the public. At AGU, we have three programs to foster direct communication between scientists and the public: (1) A suite of blogs launched in Fall 2010, written by external Earth and space science bloggers for an audience of scientists and lay public. We will report on whom the bloggers are, their motivations, who makes up their audiences, what incentives AGU uses to encourage them to participate in this project, blog network traffic, and resources needed to support them. (2) "The Plainspoken Scientist", a science communication-oriented blog for an audience of scientists, was launched in spring 2010 and is a mixture of guest posts and in-house articles. We will report on the response to and effects of the science communication blog, how we obtain and use guest posts from volunteers, and traffic. (3) We began professional development workshops at scientific meetings in spring 2009 to help scientists brush up on how to communicate with the media and the public. We will report on the motivations and interests of the participants in the professional development workshops, impacts, and the lessons we have learned about how to provide useful workshops.

  4. Effectiveness of direct and non-direct auditory stimulation on coma arousal after traumatic brain injury.

    PubMed

    Park, Soohyun; Davis, Alice E

    2016-08-01

    The aim of this study was to evaluate the effect of direct and non-direct auditory stimulation on arousal in coma patients with severe traumatic brain injury and to compare the effects of direct vs. non-direct auditory stimulation. A crossover intervention study design was used. Nine participants who were comatose after a severe traumatic brain injury underwent direct and non-direct auditory stimulation. Direct auditory stimulation requires a higher level of interpersonal interaction between the patient and stimuli such as voices of family members, orientation by a nurse or family member and familiar music. In contrast, non-direct auditory stimuli were characterized as more general, less familiar, less interactive, indirect and not lively such as general music and TV sounds. Participants received both direct and non-direct auditory stimulation in randomized order for 15 minutes. Recovery of consciousness was measured with the Glasgow Coma Scale (GCS) and Sensory Stimulation Assessment Measure (SSAM). The Friedman test with post hoc analysis by Wilcoxon's signed-rank test comparisons was used for data analysis. Patients who received both direct and non-direct auditory stimulation exhibited significantly increased GCS (p = 0.008) and SSAM scores (p = 0.008) over baseline. The improvement in SSAM scores after direct auditory stimulation was significantly greater than that after non-direct auditory stimulation (p = 0.021), but there was no statistically significant difference in GCS scores (p = 0.139). Auditory stimulation, in particular direct auditory stimulation, might be useful for improving the recovery of consciousness and increasing the arousal of comatose patients. The SSAM is more useful for detecting subtle changes from stimulation intervention than the GCS. PMID:27241789

  5. A chronic generalized bi-directional brain-machine interface

    NASA Astrophysics Data System (ADS)

    Rouse, A. G.; Stanslaski, S. R.; Cong, P.; Jensen, R. M.; Afshar, P.; Ullestad, D.; Gupta, R.; Molnar, G. F.; Moran, D. W.; Denison, T. J.

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  6. A chronic generalized bi-directional brain-machine interface.

    PubMed

    Rouse, A G; Stanslaski, S R; Cong, P; Jensen, R M; Afshar, P; Ullestad, D; Gupta, R; Molnar, G F; Moran, D W; Denison, T J

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy. PMID:21543839

  7. Sentence translation in proficient bilinguals: a direct electrostimulation brain mapping.

    PubMed

    Borius, Pierre-Yves; Giussani, Carlo; Draper, Louisa; Roux, Franck-Emmanuel

    2012-05-01

    Direct cortical electrostimulation was used to study cortical areas hypothetically involved in translation in bilinguals during brain tumour resections, with a view to sparing these functional areas. A series of seven proficient bilingual patients was studied: two left-handed and five right-handed individuals with no pre-existing language deficit. Hemispheric cortex (on the side contralateral to the patient's hand-dominance) was directly stimulated whilst the patient performed naming and reading tasks in both languages and a translation task (of a written text from their second 'learned' language to their first or 'native' language). Of the 147 different cortical sites studied, 26 'language functional sites' were detected, where electrostimulation affected reading and/or naming in the patient's native and/or second learned language. Of these, 8 sites (in 4 patients) were "task-specific" and "language-specific" i.e., affecting only naming or reading in only one of the patient's languages. Of the 26 "language sites", only 3 produced any interferences in translation. All of these were located in frontal regions. Electrostimulation at these sites caused the patient to stop translating abruptly, but no language switching or other translation-related phenomenon was observed. No site was found that was involved only in translation and not other language tasks. Overall, in contrast to other language tasks, cortical structures of the convexity were rarely involved in translation. We suggest that translation interference could be more readily detected by subcortical stimulations. This spatial dissociation within the brain of translation function versus other language functions could explain the cases of dissociated language impairments observed in some bilingual patients with brain lesions. On a practical level, because the cortical sites found by translation tasks are few and related with other cortical language sites, we think that translation tasks provide little

  8. Is non-directive communication in genetic counseling possible?

    PubMed

    Pennacchini, M; Pensieri, C

    2011-01-01

    In 2007, over 560,000 genetic tests were performed in Italy. However, only 70,154 genetic counseling sessions were conducted. Some say that non-directive counseling is necessary so that the patient understands the test results and the different options available and that the physician should not influence the patient's free choice. We need to clarify the meaning of non-directive consultation and if it is in fact possible. Each doctor has his own values and, in order to achieve the intended purpose, he will give information that, with his verbal, para-verbal and body language will guide the patient to one decision or another. Taking into account the axiom of effective communication "You can't NOT communicate", non-directive counseling is very difficult or even impossible. In genetic counseling, the knowledge that the patient receives of the correct diagnosis and related medical facts and of the applicable genetic considerations is basic to the entire process. Nonetheless, such knowledge in itself is not sufficient if it cannot be appropriately imparted to the interested person or persons. We think "persuasion" is not the right method, but instead "convince" meaning "co-win", "win together" may be the best approach to a problem of such great importance. The counselor will have achieved the desired goal with his patient if he is able to channel the emotion towards a mutually beneficial objective. The primary goal is not to persuade but to win-together (convince) with the patient and the unborn child.

  9. Intention processing in communication: a common brain network for language and gestures.

    PubMed

    Enrici, Ivan; Adenzato, Mauro; Cappa, Stefano; Bara, Bruno G; Tettamanti, Marco

    2011-09-01

    Human communicative competence is based on the ability to process a specific class of mental states, namely, communicative intention. The present fMRI study aims to analyze whether intention processing in communication is affected by the expressive means through which a communicative intention is conveyed, that is, the linguistic or extralinguistic gestural means. Combined factorial and conjunction analyses were used to test two sets of predictions: first, that a common brain network is recruited for the comprehension of communicative intentions independently of the modality through which they are conveyed; second, that additional brain areas are specifically recruited depending on the communicative modality used, reflecting distinct sensorimotor gateways. Our results clearly showed that a common neural network is engaged in communicative intention processing independently of the modality used. This network includes the precuneus, the left and right posterior STS and TPJ, and the medial pFC. Additional brain areas outside those involved in intention processing are specifically engaged by the particular communicative modality, that is, a peri-sylvian language network for the linguistic modality and a sensorimotor network for the extralinguistic modality. Thus, common representation of communicative intention may be accessed by modality-specific gateways, which are distinct for linguistic versus extralinguistic expressive means. Taken together, our results indicate that the information acquired by different communicative modalities is equivalent from a mental processing standpoint, in particular, at the point at which the actor's communicative intention has to be reconstructed.

  10. Perceptions of communicative competence after traumatic brain injury: implications for ecologically-driven intervention targets.

    PubMed

    Cannizzaro, Michael; Allen, Elizabeth M; Prelock, Patricia

    2011-12-01

    The present study investigated the relationship between non-verbal behaviours and perceptions of the communication abilities of an individual with anomia secondary to traumatic brain injury (TBI). Thirty-four university students studying Communication Sciences and Disorders were randomly assigned to watch or listen to six short clips of an individual with TBI engaged in conversation. Participants rated the individual on communication parameters from a modified version of the Pragmatic Protocol and four other dependent measures of communicative competence. A significant positive correlation was identified between perceptions of gestures and ratings of overall communicative competence, and between perceptions of hand and arm movements and ratings of overall communicative competence. Participant raters who viewed the individual's movements as inappropriate also rated her overall communication abilities less favourably. This finding highlights individuality in perception of communication competence and the importance of assessing communication partners' perceptions in a client's environment to determine socially relevant treatment goals.

  11. Pseudohypoxic brain swelling after elective clipping of an unruptured anterior communicating artery aneurysm.

    PubMed

    Yokota, Hiroshi; Yokoyama, Kazuhiro; Miyamoto, Kazunori; Nishioka, Toshikazu

    2009-12-01

    A case of pseudohypoxic brain swelling, a newly defined entity, is described. The patient experienced generalized seizures and did not awake initially after a seemingly uneventful elective craniotomy for clipping of an unruptured anterior communicating artery aneurysm. Neuroimaging findings demonstrated diffuse brain swelling, especially in the bilateral basal ganglia and thalami. The rarity of this postoperative complication is addressed and the pathogenesis discussed.

  12. Eye-gaze independent EEG-based brain-computer interfaces for communication

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F.

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users’ requirements in a real-life scenario.

  13. Eye-gaze independent EEG-based brain-computer interfaces for communication.

    PubMed

    Riccio, A; Mattia, D; Simione, L; Olivetti, M; Cincotti, F

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users' requirements in a real-life scenario.

  14. Tumor Directed, Scalp Sparing Intensity Modulated Whole Brain Radiotherapy for Brain Metastases.

    PubMed

    Kao, Johnny; Darakchiev, Boramir; Conboy, Linda; Ogurek, Sara; Sharma, Neha; Ren, Xuemin; Pettit, Jeffrey

    2015-10-01

    Despite significant technical advances in radiation delivery, conventional whole brain radiation therapy (WBRT) has not materially changed in the past 50 years. We hypothesized that IMRT can selectively spare uninvolved brain and scalp with the goal of reducing acute and late toxicity. MRI/CT simulation image registration was performed. We performed IMRT planning to simultaneously treat the brain tumor(s) on MRI + 5 mm margin to 37.5 Gy in 15 fractions while limiting the uninvolved brain + 2 mm margin to 30 Gy in 15 fractions and the mean scalp dose to #18 Gy. Three field IMRT plans were compared to conventional WBRT plans. Symptomatic patients were started on conventional WBRT for 2 to 3 fractions while IMRT planning was performed. Seventeen consecutive patients with brain metastases with RPA class I and II disease with no leptomeningeal spread were treated with IMRT WBRT. Compared to conventional WBRT, IMRT reduced the mean scalp dose (26.2 Gy vs. 16.4 Gy, p < 0.001) and the mean PTV30 dose (38.4 Gy vs. 32.0 Gy, p < 0.001) while achieving similar mean PTV37.5 doses (38.3 Gy vs. 38.0 Gy, p = 0.26). Using Olsen hair loss score criteria, 4 of 15 assessable patients preserved at least 50% of hair coverage at 1 to 3 months after treatment while 6 patients preserved between 25 and 50% hair coverage. At a median follow-up of 6.8 months (range: 5 to 15 months), the median overall survival was 5.4 months. Four patients relapsed within the brain, one within the PTV37.5 and three outside the PTV37.5. Tumor directed, scalp sparing IMRT is feasible, achieves rational dose distributions and preserves partial hair coverage in the majority of patients. Further studies are warranted to determine whether the increased utilization of resources needed for IMRT are appropriate in this setting.

  15. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  16. An Evidence-Based Systematic Review on Communication Treatments for Individuals with Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman; Frymark, Tobi; Venedictov, Rebecca

    2013-01-01

    Purpose: The purpose of this review is to evaluate and summarize the research evidence related to the treatment of individuals with right hemisphere communication disorders. Method: A comprehensive search of the literature using key words related to right hemisphere brain damage and communication treatment was conducted in 27 databases (e.g.,…

  17. Return to Work and Social Communication Ability Following Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Douglas, Jacinta M.; Bracy, Christine A.; Snow, Pamela C.

    2016-01-01

    Purpose: Return to competitive employment presents a major challenge to adults who survive traumatic brain injury (TBI). This study was undertaken to better understand factors that shape employment outcome by comparing the communication profiles and self-awareness of communication deficits of adults who return to and maintain employment with those…

  18. Explaining Pragmatic Performance in Traumatic Brain Injury: A Process Perspective on Communicative Errors

    ERIC Educational Resources Information Center

    Bosco, Francesca M.; Angeleri, Romina; Sacco, Katiuscia; Bara, Bruno G.

    2015-01-01

    Background: The purpose of this study is to investigate the pragmatic abilities of individuals with traumatic brain injury (TBI). Several studies in the literature have previously reported communicative deficits in individuals with TBI, however such research has focused principally on communicative deficits in general, without providing an…

  19. Is non-directive communication in genetic counseling possible?

    PubMed

    Pennacchini, M; Pensieri, C

    2011-01-01

    In 2007, over 560,000 genetic tests were performed in Italy. However, only 70,154 genetic counseling sessions were conducted. Some say that non-directive counseling is necessary so that the patient understands the test results and the different options available and that the physician should not influence the patient's free choice. We need to clarify the meaning of non-directive consultation and if it is in fact possible. Each doctor has his own values and, in order to achieve the intended purpose, he will give information that, with his verbal, para-verbal and body language will guide the patient to one decision or another. Taking into account the axiom of effective communication "You can't NOT communicate", non-directive counseling is very difficult or even impossible. In genetic counseling, the knowledge that the patient receives of the correct diagnosis and related medical facts and of the applicable genetic considerations is basic to the entire process. Nonetheless, such knowledge in itself is not sufficient if it cannot be appropriately imparted to the interested person or persons. We think "persuasion" is not the right method, but instead "convince" meaning "co-win", "win together" may be the best approach to a problem of such great importance. The counselor will have achieved the desired goal with his patient if he is able to channel the emotion towards a mutually beneficial objective. The primary goal is not to persuade but to win-together (convince) with the patient and the unborn child. PMID:22041812

  20. Trends and Challenges in Neuroengineering: Toward “Intelligent” Neuroprostheses through Brain-“Brain Inspired Systems” Communication

    PubMed Central

    Vassanelli, Stefano; Mahmud, Mufti

    2016-01-01

    Future technologies aiming at restoring and enhancing organs function will intimately rely on near-physiological and energy-efficient communication between living and artificial biomimetic systems. Interfacing brain-inspired devices with the real brain is at the forefront of such emerging field, with the term “neurobiohybrids” indicating all those systems where such interaction is established. We argue that achieving a “high-level” communication and functional synergy between natural and artificial neuronal networks in vivo, will allow the development of a heterogeneous world of neurobiohybrids, which will include “living robots” but will also embrace “intelligent” neuroprostheses for augmentation of brain function. The societal and economical impact of intelligent neuroprostheses is likely to be potentially strong, as they will offer novel therapeutic perspectives for a number of diseases, and going beyond classical pharmaceutical schemes. However, they will unavoidably raise fundamental ethical questions on the intermingling between man and machine and more specifically, on how deeply it should be allowed that brain processing is affected by implanted “intelligent” artificial systems. Following this perspective, we provide the reader with insights on ongoing developments and trends in the field of neurobiohybrids. We address the topic also from a “community building” perspective, showing through a quantitative bibliographic analysis, how scientists working on the engineering of brain-inspired devices and brain-machine interfaces are increasing their interactions. We foresee that such trend preludes to a formidable technological and scientific revolution in brain-machine communication and to the opening of new avenues for restoring or even augmenting brain function for therapeutic purposes. PMID:27721741

  1. Topological computation based on direct magnetic logic communication

    PubMed Central

    Zhang, Shilei; Baker, Alexander A.; Komineas, Stavros; Hesjedal, Thorsten

    2015-01-01

    Non-uniform magnetic domains with non-trivial topology, such as vortices and skyrmions, are proposed as superior state variables for nonvolatile information storage. So far, the possibility of logic operations using topological objects has not been considered. Here, we demonstrate numerically that the topology of the system plays a significant role for its dynamics, using the example of vortex-antivortex pairs in a planar ferromagnetic film. Utilising the dynamical properties and geometrical confinement, direct logic communication between the topological memory carriers is realised. This way, no additional magnetic-to-electrical conversion is required. More importantly, the information carriers can spontaneously travel up to ~300 nm, for which no spin-polarised current is required. The derived logic scheme enables topological spintronics, which can be integrated into large-scale memory and logic networks capable of complex computations. PMID:26508375

  2. Direct and indirect cellular effects of aspartame on the brain.

    PubMed

    Humphries, P; Pretorius, E; Naudé, H

    2008-04-01

    The use of the artificial sweetener, aspartame, has long been contemplated and studied by various researchers, and people are concerned about its negative effects. Aspartame is composed of phenylalanine (50%), aspartic acid (40%) and methanol (10%). Phenylalanine plays an important role in neurotransmitter regulation, whereas aspartic acid is also thought to play a role as an excitatory neurotransmitter in the central nervous system. Glutamate, asparagines and glutamine are formed from their precursor, aspartic acid. Methanol, which forms 10% of the broken down product, is converted in the body to formate, which can either be excreted or can give rise to formaldehyde, diketopiperazine (a carcinogen) and a number of other highly toxic derivatives. Previously, it has been reported that consumption of aspartame could cause neurological and behavioural disturbances in sensitive individuals. Headaches, insomnia and seizures are also some of the neurological effects that have been encountered, and these may be accredited to changes in regional brain concentrations of catecholamines, which include norepinephrine, epinephrine and dopamine. The aim of this study was to discuss the direct and indirect cellular effects of aspartame on the brain, and we propose that excessive aspartame ingestion might be involved in the pathogenesis of certain mental disorders (DSM-IV-TR 2000) and also in compromised learning and emotional functioning.

  3. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions.

    PubMed

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In

  4. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions.

    PubMed

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In

  5. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions

    PubMed Central

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600–700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In

  6. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    PubMed

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.

  7. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    PubMed

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication. PMID:24415931

  8. Implications of immune-to-brain communication for sickness and pain

    PubMed Central

    Watkins, Linda R.; Maier, Steven F.

    1999-01-01

    This review presents a view of hyperalgesia and allodynia not typical of the field as a whole. That is, exaggerated pain is presented as one of many natural consequences of peripheral infection and injury. The constellation of changes that results from such immune challenges is called the sickness response. This sickness response results from immune-to-brain communication initiated by proinflammatory cytokines released by activated immune cells. In response to signals it receives from the immune system, the brain orchestrates the broad array of physiological, behavioral, and hormonal changes that comprise the sickness response. The neurocircuitry and neurochemistry of sickness-induced hyperalgesia are described. One focus of this discussion is on the evidence that spinal cord microglia and astrocytes are key mediators of sickness-induced hyperalgesia. Last, evidence is presented that hyperalgesia and allodynia also result from direct immune activation, rather than neural activation, of these same spinal cord glia. Such glial activation is induced by viruses such as HIV-1 that are known to invade the central nervous system. Implications of exaggerated pain states created by peripheral and central immune activation are discussed. PMID:10393885

  9. Rehabilitation for cognitive-communication disorders in right hemisphere brain damage.

    PubMed

    Tompkins, Connie A

    2012-01-01

    Although the left hemisphere of the brain has long been linked with language, the right cerebral hemisphere also contributes importantly to cognitive operations that underlie language processing and communicative performance. Adults with right hemisphere damage (RHD) typically do not have aphasia, but they often have communication disorders that may have a substantial impact on their social functioning. After a brief summary of communicative and cognitive characteristics of RHD in adults and of extant theoretical accounts of common communicative difficulties, this article discusses rehabilitation issues, approaches, evidence, and needs.

  10. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects.

    PubMed

    Rendeiro, Catarina; Rhodes, Justin S; Spencer, Jeremy P E

    2015-10-01

    The projected increase in the incidence of dementia in the population highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular exercise and diet, may affect neural function and consequent cognitive performance throughout the life course. In this regard, flavonoids, found in a variety of fruits, vegetables and derived beverages, have been identified as a group of promising bioactive compounds capable of influencing different aspects of brain function, including cerebrovascular blood flow and synaptic plasticity, both resulting in improvements in learning and memory in mammalian species. However, the precise mechanisms by which flavonoids exert these actions are yet to be fully established, although accumulating data indicate an ability to interact with neuronal receptors and kinase signaling pathways which are key to neuronal activation and communication and synaptic strengthening. Alternatively or concurrently, there is also compelling evidence derived from human clinical studies suggesting that flavonoids can positively affect peripheral and cerebrovascular blood flow, which may be an indirect effective mechanism by which dietary flavonoids can impact on brain health and cognition. The current review examines the beneficial effects of flavonoids on both human and animal brain function and attempts to address and link direct and indirect actions of flavonoids and their derivatives within the central nervous system (CNS).

  11. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers. PMID:26701054

  12. Single-chip microprocessor that communicates directly using light.

    PubMed

    Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M

    2015-12-24

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  13. Single-chip microprocessor that communicates directly using light

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.

    2015-12-01

    Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

  14. Communication and the primate brain: Insights from neuroimaging studies in humans, chimpanzees and macaques

    PubMed Central

    Wilson, Benjamin; Petkov, Christopher I.

    2012-01-01

    Considerable knowledge is available on the neural substrates for speech and language from brain imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and non-linguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language. PMID:21615285

  15. New Directions in the Study of Organizational Communication.

    ERIC Educational Resources Information Center

    MacDonald, Donald; Farace, Richard V.

    For knowledge of organizational communication to increase, new concepts must be developed and correlative or even causal relationships between communication concepts and other organizational variables must be established. Here, meanings of "organization,""information,""communication," and "other organizational variables" are explicated, and three…

  16. A Heuristic Approach to Intra-Brain Communications Using Chaos in a Recurrent Neural Network Model

    NASA Astrophysics Data System (ADS)

    Soma, Ken-ichiro; Mori, Ryota; Sato, Ryuichi; Nara, Shigetoshi

    2011-09-01

    To approach functional roles of chaos in brain, a heuristic model to consider mechanisms of intra-brain communications is proposed. The key idea is to use chaos in firing pattern dynamics of a recurrent neural network consisting of birary state neurons, as propagation medium of pulse signals. Computer experiments and numerical methods are introduced to evaluate signal transport characteristics by calculating correlation functions between sending neurons and receiving neurons of pulse signals.

  17. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication.

    PubMed

    Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas

    2012-01-01

    Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.

  18. Minority Brain Drain in Human Communication Sciences and Disorders.

    ERIC Educational Resources Information Center

    Cole, Lorraine

    In the last decade there has been a noticeable decrease in the number of minorities recruited and retained in graduate professional education programs for human communication sciences and disorders and in the number of minority members of the American Speech-Language-Hearing Association (ASHA). A number of causes have contributed to the decline,…

  19. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 17 2013-04-01 2013-04-01 false Expenditures for direct and/or grass roots....4911-3 Expenditures for direct and/or grass roots lobbying communications. (a) Definition of term... lobbying communication's costs is a direct lobbying expenditure, what portion is a grass roots...

  20. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Expenditures for direct and/or grass roots....4911-3 Expenditures for direct and/or grass roots lobbying communications. (a) Definition of term... lobbying communication's costs is a direct lobbying expenditure, what portion is a grass roots...

  1. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 17 2012-04-01 2012-04-01 false Expenditures for direct and/or grass roots....4911-3 Expenditures for direct and/or grass roots lobbying communications. (a) Definition of term... lobbying communication's costs is a direct lobbying expenditure, what portion is a grass roots...

  2. 26 CFR 56.4911-3 - Expenditures for direct and/or grass roots lobbying communications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 17 2014-04-01 2014-04-01 false Expenditures for direct and/or grass roots....4911-3 Expenditures for direct and/or grass roots lobbying communications. (a) Definition of term... lobbying communication's costs is a direct lobbying expenditure, what portion is a grass roots...

  3. How networks communicate: propagation patterns in spontaneous brain activity.

    PubMed

    Mitra, Anish; Raichle, Marcus E

    2016-10-01

    Initially regarded as 'noise', spontaneous (intrinsic) activity accounts for a large portion of the brain's metabolic cost. Moreover, it is now widely known that infra-slow (less than 0.1 Hz) spontaneous activity, measured using resting state functional magnetic resonance imaging of the blood oxygen level-dependent (BOLD) signal, is correlated within functionally defined resting state networks (RSNs). However, despite these advances, the temporal organization of spontaneous BOLD fluctuations has remained elusive. By studying temporal lags in the resting state BOLD signal, we have recently shown that spontaneous BOLD fluctuations consist of remarkably reproducible patterns of whole brain propagation. Embedded in these propagation patterns are unidirectional 'motifs' which, in turn, give rise to RSNs. Additionally, propagation patterns are markedly altered as a function of state, whether physiological or pathological. Understanding such propagation patterns will likely yield deeper insights into the role of spontaneous activity in brain function in health and disease.This article is part of the themed issue 'Interpreting blood oxygen level-dependent: a dialogue between cognitive and cellular neuroscience'. PMID:27574315

  4. It's Time to Set New Directions in Communication Education.

    ERIC Educational Resources Information Center

    Budd, Richard W.

    1985-01-01

    Observes the resistance to change that permeates communication education, and some of the critical issues arising from this attitude. Describes the changes in journalism education implemented at Rutgers, specifically the combining of communication, library science, and journalism into one school, and how this change addresses the need for…

  5. Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila.

    PubMed

    Dus, Monica; Lai, Jason Sih-Yu; Gunapala, Keith M; Min, Soohong; Tayler, Timothy D; Hergarden, Anne C; Geraud, Eliot; Joseph, Christina M; Suh, Greg S B

    2015-07-01

    Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. PMID:26074004

  6. Word pair classification during imagined speech using direct brain recordings

    PubMed Central

    Martin, Stephanie; Brunner, Peter; Iturrate, Iñaki; Millán, José del R.; Schalk, Gerwin; Knight, Robert T.; Pasley, Brian N.

    2016-01-01

    People that cannot communicate due to neurological disorders would benefit from an internal speech decoder. Here, we showed the ability to classify individual words during imagined speech from electrocorticographic signals. In a word imagery task, we used high gamma (70–150 Hz) time features with a support vector machine model to classify individual words from a pair of words. To account for temporal irregularities during speech production, we introduced a non-linear time alignment into the SVM kernel. Classification accuracy reached 88% in a two-class classification framework (50% chance level), and average classification accuracy across fifteen word-pairs was significant across five subjects (mean = 58%; p < 0.05). We also compared classification accuracy between imagined speech, overt speech and listening. As predicted, higher classification accuracy was obtained in the listening and overt speech conditions (mean = 89% and 86%, respectively; p < 0.0001), where speech stimuli were directly presented. The results provide evidence for a neural representation for imagined words in the temporal lobe, frontal lobe and sensorimotor cortex, consistent with previous findings in speech perception and production. These data represent a proof of concept study for basic decoding of speech imagery, and delineate a number of key challenges to usage of speech imagery neural representations for clinical applications. PMID:27165452

  7. Breast cancer brain metastases: new directions in systemic therapy

    PubMed Central

    Lin, Nancy U

    2013-01-01

    The management of patients with brain metastases from breast cancer continues to be a major clinical challenge. The standard initial therapeutic approach depends upon the size, location, and number of metastatic lesions and includes consideration of surgical resection, whole-brain radiotherapy, and stereotactic radiosurgery. As systemic therapies for control of extracranial disease improve, patients are surviving long enough to experience subsequent progression events in the brain. Therefore, there is an increasing need to identify both more effective initial treatments as well as to develop multiple lines of salvage treatments for patients with breast cancer brain metastases. This review summarises the clinical experience to date with respect to cytotoxic and targeted systemic therapies for the treatment of brain metastases, highlights ongoing and planned trials of novel approaches and identifies potential targets for future investigation. PMID:23662165

  8. An Exploratory Analysis of Communication in Peer-Directed Educational Discourse

    ERIC Educational Resources Information Center

    Gibbs, William J.

    2009-01-01

    This exploratory analysis examined the nature of asynchronous, text-based communication in peer-directed educational discussions. The nature of communication changed over time and women exhibited greater tendency for epistolary communication than men. Initial posts, which were expository in nature, focused on disseminating information whereas…

  9. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    ERIC Educational Resources Information Center

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  10. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  11. Expressive Electronic Journal Writing: Freedom of Communication for Survivors of Acquired Brain Injury

    ERIC Educational Resources Information Center

    Fraas, Michael; Balz, Magdalen A.

    2008-01-01

    In addition to the impaired ability to effectively communicate, adults with acquired brain injury (ABI) also experience high incidences of depression, social isolation, and decreased quality of life. Expressive writing programs have been shown to be effective in alleviating these concomitant impairments in other populations including incarcerated…

  12. Training everyday communication partners for individuals with traumatic brain injury: the influence of Mark Ylvisaker.

    PubMed

    Togher, Leanne

    2010-08-01

    This lead article outlines some of the seminal concepts introduced by Mark Ylvisaker in collaboration with his colleague Tim Feeney and describes the influence of this work on the development of an everyday communication partner-training program for families and social networks of people with traumatic brain injury. PMID:20683803

  13. The development, past achievements, and future directions of brain PET

    PubMed Central

    Jones, Terry; Rabiner, Eugenii A

    2012-01-01

    The early developments of brain positron emission tomography (PET), including the methodological advances that have driven progress, are outlined. The considerable past achievements of brain PET have been summarized in collaboration with contributing experts in specific clinical applications including cerebrovascular disease, movement disorders, dementia, epilepsy, schizophrenia, addiction, depression and anxiety, brain tumors, drug development, and the normal healthy brain. Despite a history of improving methodology and considerable achievements, brain PET research activity is not growing and appears to have diminished. Assessments of the reasons for decline are presented and strategies proposed for reinvigorating brain PET research. Central to this is widening the access to advanced PET procedures through the introduction of lower cost cyclotron and radiochemistry technologies. The support and expertize of the existing major PET centers, and the recruitment of new biologists, bio-mathematicians and chemists to the field would be important for such a revival. New future applications need to be identified, the scope of targets imaged broadened, and the developed expertize exploited in other areas of medical research. Such reinvigoration of the field would enable PET to continue making significant contributions to advance the understanding of the normal and diseased brain and support the development of advanced treatments. PMID:22434067

  14. New Directions in the Study of Organizational Communication

    ERIC Educational Resources Information Center

    Farace, Richard V.; MacDonald, Donald

    1974-01-01

    The purpose of this paper is to describe important concepts for analyzing communication processes in organizations, and to point out some of the methodological developments related to these concepts. (Author)

  15. Adaptation of the communicative brain to post-lingual deafness. Evidence from functional imaging.

    PubMed

    Lazard, Diane S; Innes-Brown, Hamish; Barone, Pascal

    2014-01-01

    Not having access to one sense profoundly modifies our interactions with the environment, in turn producing changes in brain organization. Deafness and its rehabilitation by cochlear implantation offer a unique model of brain adaptation during sensory deprivation and recovery. Functional imaging allows the study of brain plasticity as a function of the times of deafness and implantation. Even long after the end of the sensitive period for auditory brain physiological maturation, some plasticity may be observed. In this way the mature brain that becomes deaf after language acquisition can adapt to its modified sensory inputs. Oral communication difficulties induced by post-lingual deafness shape cortical reorganization of brain networks already specialized for processing oral language. Left hemisphere language specialization tends to be more preserved than functions of the right hemisphere. We hypothesize that the right hemisphere offers cognitive resources re-purposed to palliate difficulties in left hemisphere speech processing due to sensory and auditory memory degradation. If cochlear implantation is considered, this reorganization during deafness may influence speech understanding outcomes positively or negatively. Understanding brain plasticity during post-lingual deafness should thus inform the development of cognitive rehabilitation, which promotes positive reorganization of the brain networks that process oral language before surgery. This article is part of a Special Issue entitled Human Auditory Neuroimaging. PMID:23973562

  16. Adaptation of the communicative brain to post-lingual deafness. Evidence from functional imaging.

    PubMed

    Lazard, Diane S; Innes-Brown, Hamish; Barone, Pascal

    2014-01-01

    Not having access to one sense profoundly modifies our interactions with the environment, in turn producing changes in brain organization. Deafness and its rehabilitation by cochlear implantation offer a unique model of brain adaptation during sensory deprivation and recovery. Functional imaging allows the study of brain plasticity as a function of the times of deafness and implantation. Even long after the end of the sensitive period for auditory brain physiological maturation, some plasticity may be observed. In this way the mature brain that becomes deaf after language acquisition can adapt to its modified sensory inputs. Oral communication difficulties induced by post-lingual deafness shape cortical reorganization of brain networks already specialized for processing oral language. Left hemisphere language specialization tends to be more preserved than functions of the right hemisphere. We hypothesize that the right hemisphere offers cognitive resources re-purposed to palliate difficulties in left hemisphere speech processing due to sensory and auditory memory degradation. If cochlear implantation is considered, this reorganization during deafness may influence speech understanding outcomes positively or negatively. Understanding brain plasticity during post-lingual deafness should thus inform the development of cognitive rehabilitation, which promotes positive reorganization of the brain networks that process oral language before surgery. This article is part of a Special Issue entitled Human Auditory Neuroimaging.

  17. Active microelectronic neurosensor arrays for implantable brain communication interfaces.

    PubMed

    Song, Y-K; Borton, D A; Park, S; Patterson, W R; Bull, C W; Laiwalla, F; Mislow, J; Simeral, J D; Donoghue, J P; Nurmikko, A V

    2009-08-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a cortical microelectrode array to an external computer for neural control applications. Our implantable microsystem enables 16-channel broadband neural recording in a nonhuman primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including radio frequency by induction, or infrared light via photovoltaic conversion. As of the time of this report, the implant has been tested as a subchronic unit in nonhuman primates ( approximately 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  18. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  19. Direct measurement of brain glucose concentrations in humans by sup 13 C NMR spectroscopy

    SciTech Connect

    Gruetter, R.; Novotny, E.J.; Boulware, S.D.; Rothman, D.L.; Mason, G.F.; Shulman, G.I.; Shulan, R.G.; Tamborlane, W.V. )

    1992-02-01

    Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, the authors used {sup 13}C NMR spectroscopy after infusing enriched D-(1-{sup 13}C)glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia in six healthy children. Brain glucose concentrations averaged 1.0 {plus minus} 0.1 {mu}mol/ml at euglycemia and 1.8-2.7 {mu}mol/ml at hyperglycemia. Michaelis-Menten parameters of transport were calculated from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels >3 mM.

  20. Towards a Communication Brain Computer Interface Based on Semantic Relations

    PubMed Central

    Geuze, Jeroen; Farquhar, Jason; Desain, Peter

    2014-01-01

    This article investigates a possible Brain Computer Interface (BCI) based on semantic relations. The BCI determines which prime word a subject has in mind by presenting probe words using an intelligent algorithm. Subjects indicate when a presented probe word is related to the prime word by a single finger tap. The detection of the neural signal associated with this movement is used by the BCI to decode the prime word. The movement detector combined both the evoked (ERP) and induced (ERD) responses elicited with the movement. Single trial movement detection had an average accuracy of 67%. The decoding of the prime word had an average accuracy of 38% when using 100 probes and 150 possible targets, and 41% after applying a dynamic stopping criterium, reducing the average number of probes to 47. The article shows that the intelligent algorithm used to present the probe words has a significantly higher performance than a random selection of probes. Simulations demonstrate that the BCI also works with larger vocabulary sizes, and the performance scales logarithmically with vocabulary size. PMID:24516552

  1. Multilingual Communication and Language Acquisition: New Research Directions

    ERIC Educational Resources Information Center

    Canagarajah, A. Suresh; Wurr, Adrian J.

    2011-01-01

    In this article, we outline the differences between a monolingual and multilingual orientation to language and language acquisition. The increasing contact between languages in the context of globalization motivates such a shift of paradigms. Multilingual communicative practices have remained vibrant in non-western communities for a long time. We…

  2. Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila

    PubMed Central

    Dus, Monica; Sih-Yu Lai, Jason; Gunapala, Keith M.; Min, Soohong; Tayler, Timothy D.; Hergarden, Anne C.; Geraud, Eliot; Joseph, Christina M.; Suh, Greg S. B.

    2015-01-01

    Summary Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homologue of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions, and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop. PMID:26074004

  3. Perspectives on Individual Differences Affecting Therapeutic Change in Communication Disorders. New Directions in Communication Disorders Research

    ERIC Educational Resources Information Center

    Weiss, Amy L., Ed.

    2009-01-01

    This volume examines the ramifications of individual differences in therapy outcomes for a wide variety of communication disorders. In an era where evidence-based practice is the clinical profession's watchword, each chapter attacks this highly relevant issue from a somewhat different perspective. In some areas of communication disorders,…

  4. 26 CFR 56.4911-2 - Lobbying expenditures, direct lobbying communications, and grass roots lobbying communications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... public in the State or locality where the vote will take place constitutes the legislative body, and.... Accordingly, if such a communication is made to one or more members of the general public in that state or..., encouraging a recipient to take action with respect to legislation means that the communication: (A)...

  5. 26 CFR 56.4911-2 - Lobbying expenditures, direct lobbying communications, and grass roots lobbying communications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... public in the State or locality where the vote will take place constitutes the legislative body, and.... Accordingly, if such a communication is made to one or more members of the general public in that state or..., encouraging a recipient to take action with respect to legislation means that the communication: (A)...

  6. Oscillatory multiplexing of population codes for selective communication in the mammalian brain

    PubMed Central

    Akam, Thomas; Kullmann, Dimitri M

    2016-01-01

    Mammalian brains exhibit population oscillations whose structures vary in time and space according to behavioural state. A proposed function of these oscillations is to control the flow of signals among anatomically connected networks. However, the nature of neural coding that may support oscillatory selective communication has received relatively little attention. Here we consider the role of multiplexing, whereby multiple information streams share a common neural substrate. We suggest that multiplexing implemented through periodic modulation of firing rate population codes enables flexible reconfiguration of effective connectivity among brain areas. PMID:24434912

  7. Directions for Mind, Brain, and Education: Methods, Models, and Morality

    ERIC Educational Resources Information Center

    Stein, Zachary; Fischer, Kurt W.

    2011-01-01

    In this article we frame a set of important issues in the emerging field of Mind, Brain, and Education in terms of three broad headings: methods, models, and morality. Under the heading of methods we suggest that the need for synthesis across scientific and practical disciplines entails the pursuit of usable knowledge via a catalytic symbiosis…

  8. Brain-computer interface and semantic classical conditioning of communication in paralysis.

    PubMed

    De Massari, Daniele; Matuz, Tamara; Furdea, Adrian; Ruf, Carolin A; Halder, Sebastian; Birbaumer, Niels

    2013-02-01

    We propose a classical semantic conditioning procedure to allow basic yes-no communication in the completely locked-in state as an alternative to instrumental-operant learning of brain responses, which is the common approach in brain-computer interface research. More precisely, it was intended to establish cortical responses to the trueness of a statement irrespective of the particular constituent words and letters or sounds of the words. As unconditioned stimulus short aversive stimuli consisting of 1-ms electrical pulses were used. True and false statements were presented acoustically and only the true statements were immediately followed by electrical stimuli. 15 healthy participants and one locked-in ALS patient underwent the experiment. Three different classifiers were employed in order to differentiate between the two cortical responses by means of electroencephalographic recordings. The offline analysis revealed that semantic classical conditioning can be applied successfully to enable basic communication using a non-muscular channel.

  9. Bottlenecks to clinical translation of direct brain-computer interfaces

    PubMed Central

    Serruya, Mijail D.

    2014-01-01

    Despite several decades of research into novel brain-implantable devices to treat a range of diseases, only two—cochlear implants for sensorineural hearing loss and deep brain stimulation for movement disorders—have yielded any appreciable clinical benefit. Obstacles to translation include technical factors (e.g., signal loss due to gliosis or micromotion), lack of awareness of current clinical options for patients that the new therapy must outperform, traversing between federal and corporate funding needed to support clinical trials, and insufficient management expertise. This commentary reviews these obstacles preventing the translation of promising new neurotechnologies into clinical application and suggests some principles that interdisciplinary teams in academia and industry could adopt to enhance their chances of success. PMID:25520632

  10. Bottlenecks to clinical translation of direct brain-computer interfaces.

    PubMed

    Serruya, Mijail D

    2014-01-01

    Despite several decades of research into novel brain-implantable devices to treat a range of diseases, only two-cochlear implants for sensorineural hearing loss and deep brain stimulation for movement disorders-have yielded any appreciable clinical benefit. Obstacles to translation include technical factors (e.g., signal loss due to gliosis or micromotion), lack of awareness of current clinical options for patients that the new therapy must outperform, traversing between federal and corporate funding needed to support clinical trials, and insufficient management expertise. This commentary reviews these obstacles preventing the translation of promising new neurotechnologies into clinical application and suggests some principles that interdisciplinary teams in academia and industry could adopt to enhance their chances of success.

  11. Resting-brain functional connectivity predicted by analytic measures of network communication

    PubMed Central

    Goñi, Joaquín; van den Heuvel, Martijn P.; Avena-Koenigsberger, Andrea; Velez de Mendizabal, Nieves; Betzel, Richard F.; Griffa, Alessandra; Hagmann, Patric; Corominas-Murtra, Bernat; Thiran, Jean-Philippe; Sporns, Olaf

    2014-01-01

    The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures—search information and path transitivity—which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways. PMID:24379387

  12. Inquiry, Investigation, and Communication in the Student-Directed Laboratory.

    ERIC Educational Resources Information Center

    Janners, Martha Y.

    1988-01-01

    Describes how to organize a student-directed laboratory investigation which is based on amphibian metamorphosis, lasts for nearly a term, and involves extensive group effort. Explains the assignment, student response and opinion, formal paper, and instructor responsibilities. (RT)

  13. Using brain-computer interfaces to overcome the extinction of goal-directed thinking in minimally conscious state patients.

    PubMed

    Liberati, Giulia; Birbaumer, Niels

    2012-08-01

    Minimally conscious state (MCS) is a condition of severely altered consciousness, in which patients appear to be wakeful and exhibit fluctuating but reproducible signs of awareness. MCS patients do not respond and are therefore dependent on others. In agreement with the embodied cognition assumption that motor actions influence our cognition, the absence of movement and the decrease in consequences for any type of covert or overt response may cause an extinction of goal-directed thinking. Brain-computer interfaces, which allow a direct output without muscular involvement, may be used to promote goal-directed thinking by allowing the performance of spatial and motor imagery tasks and could facilitate the interaction of MCS patients with their environment, possibly regaining some degree of communication and autonomy.

  14. Destination directed packet switch architecture for a geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, W. D.; Shalkhauser, M. J.; Bobinsky, E. A.; Soni, N. J.; Quintana, J. A.; Kim, H.; Wagner, P.; Vanderaar, M.

    1992-01-01

    A major effort at NASA/Lewis is to identify and develop critical digital technologies and components that enable new commercial missions or significantly improve the performance, cost efficiency, and/or reliability of existing and planned space comunications systems. NASA envisions the need for low data rate, direct to the user communications services, for data, facsimile, voice, and video conferencing. A report that focuses on destination directed packet switching architectures for geostationary communication satellites is presented.

  15. Quantum secure direct communication of digital and analog signals using continuum coherent states

    NASA Astrophysics Data System (ADS)

    Guerra, Antônio Geovan de Araújo Holanda; Rios, Francisco Franklin Sousa; Ramos, Rubens Viana

    2016-08-01

    In this work, we present optical schemes for secure direct quantum communication of digital and analog signals using continuum coherent states and frequency-dependent phase modulation. The main advantages of the proposed schemes are that they do not use entangled states and they can be implemented with today technology. The theory of quantum interference of continuum coherent state is described, and the optical setups for secure direct communication are presented and their securities are discussed.

  16. A novel EPON architecture for supporting direct communication between ONUs

    NASA Astrophysics Data System (ADS)

    Wang, Liqian; Chen, Xue; Wang, Zhen

    2008-11-01

    In the traditional EPON network, optical signal from one ONU can not reach other ONUs. So ONUs can not directly transmit packets to other ONUs .The packets must be transferred by the OLT and it consumes both upstream bandwidth and downstream bandwidth. The bandwidth utilization is low and becomes lower when there are more packets among ONUs. When the EPON network carries P2P (Peer-to-Peer) applications and VPN applications, there would be a great lot of packets among ONUs and the traditional EPON network meets the problem of low bandwidth utilization. In the worst situation the bandwidth utilization of traditional EPON only is 50 percent. This paper proposed a novel EPON architecture and a novel medium access control protocol to realize direct packets transmission between ONUs. In the proposed EPON we adopt a novel circled architecture in the splitter. Due to the circled-splitter, optical signals from an ONU can reach the other ONUs and packets could be directly transmitted between two ONUs. The traffic between two ONUs only consumes upstream bandwidth and the bandwidth cost is reduced by 50 percent. Moreover, this kind of directly transmission reduces the packet's latency.

  17. 26 CFR 56.4911-2 - Lobbying expenditures, direct lobbying communications, and grass roots lobbying communications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... bill enacted by State X. One week after enactment of the bill, organization C sends a letter to Agency... the state's general circulation daily newspapers, as well as frequent coverage of the bill by the.... Accordingly, if such a communication is made to one or more members of the general public in that state...

  18. 26 CFR 56.4911-2 - Lobbying expenditures, direct lobbying communications, and grass roots lobbying communications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... bill enacted by State X. One week after enactment of the bill, organization C sends a letter to Agency... the state's general circulation daily newspapers, as well as frequent coverage of the bill by the.... Accordingly, if such a communication is made to one or more members of the general public in that state...

  19. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission.

    PubMed

    Fuxe, Kjell; Dahlström, Annica; Höistad, Malin; Marcellino, Daniel; Jansson, Anders; Rivera, Alicia; Diaz-Cabiale, Zaida; Jacobsen, Kirsten; Tinner-Staines, Barbro; Hagman, Beth; Leo, Giuseppina; Staines, William; Guidolin, Diego; Kehr, Jan; Genedani, Susanna; Belluardo, Natale; Agnati, Luigi F

    2007-08-01

    After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrain with few synapses, and where deficits in serotonergic function appeared to play a major role in depression. We propose that serotonin reuptake inhibitors may produce antidepressant effects through increasing serotonergic neurotrophism in serotonin nerve cells and their targets by transactivation of receptor tyrosine kinases (RTK), involving direct or indirect receptor/RTK interactions. Early chemical neuroanatomical work on the monoamine neurons, involving primitive nervous systems and analysis of peptide neurons, indicated the existence of alternative modes of communication apart from synaptic transmission. In 1986, Agnati and Fuxe introduced the theory of two main types of intercellular communication in the brain: wiring and volume transmission (WT and VT). Synchronization of phasic activity in the monoamine cell clusters through electrotonic coupling and synaptic transmission (WT) enables optimal VT of monoamines in the target regions. Experimental work suggests an integration of WT and VT signals via receptor-receptor interactions, and a new theory of receptor-connexin interactions in electrical and mixed synapses is introduced. Consequently, a new model of brain function must be built, in which communication includes both WT and VT and receptor-receptor interactions in the

  20. Non-verbal emotion communication training induces specific changes in brain function and structure

    PubMed Central

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

  1. Do You Know What I Mean? Brain Oscillations and the Understanding of Communicative Intentions

    PubMed Central

    Brunetti, Marcella; Zappasodi, Filippo; Marzetti, Laura; Perrucci, Mauro Gianni; Cirillo, Simona; Romani, Gian Luca; Pizzella, Vittorio; Aureli, Tiziana

    2014-01-01

    Pointing gesture allows children to communicate their intentions before the acquisition of language. In particular, two main purposes seem to underlie the gesture: to request a desired object (imperative pointing) or to share attention on that object (declarative pointing). Since the imperative pointing has an instrumental goal and the declarative has an interpersonal one, only the latter gesture is thought to signal the infant’s awareness of the communicative partner as a mental agent. The present study examined the neural responses of adult subjects with the aim to test the hypothesis that declarative rather than imperative pointing reflects mentalizing skills. Fourteen subjects were measured in a magnetoencephalographic environment including four conditions, based on the goal of the pointing – imperative or declarative – and the role of the subject – sender or receiver of pointing. Time–frequency modulations of brain activity in each condition (declarative production and comprehension, imperative production and comprehension) were analyzed. Both low beta and high beta power were stronger during declarative than imperative condition in anterior cingulated cortex and right posterior superior temporal sulcus, respectively. Furthermore, high gamma activity was higher in right temporo-parietal junction during the sender than receiving condition. This suggests that communicative pointing modulated brain regions previously described in neuroimaging research as linked to social cognitive skills and that declarative pointing is more capable of eliciting that activation than imperative. Our results contribute to the understanding of the roles of brain rhythm dynamics in social cognition, thus supporting neural research on that topic during developmental both in typical and atypical conditions, such as autism spectrum disorder. In particular, the identification of relevant regions in a mature brain may stimulate a future work on the developmental changes of

  2. Structural differences between open and direct communication in an online community

    NASA Astrophysics Data System (ADS)

    Karimi, Fariba; Ramenzoni, Verónica C.; Holme, Petter

    2014-11-01

    Most research of online communication focuses on modes of communication that are either open (like forums, bulletin boards, Twitter, etc.) or direct (like e-mails). In this work, we study a dataset that has both types of communication channels. We relate our findings to theories of social organization and human dynamics. The data comprises 36,492 users of a movie discussion community. Our results show that there are differences in the way users communicate in the two channels that are reflected in the shape of degree- and interevent time distributions. The open communication that is designed to facilitate conversations with any member shows a broader degree distribution and more of the triangles in the network are primarily formed in this mode of communication. The direct channel is presumably preferred by closer communication and the response time in dialogs is shorter. On a more coarse-grained level, there are common patterns in the two networks. The differences and overlaps between communication networks, thus, provide a unique window into how social and structural aspects of communication establish and evolve.

  3. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer

    PubMed Central

    Dzeja, Petras P.; Bortolon, Ryan; Perez-Terzic, Carmen; Holmuhamedov, Ekshon L.; Terzic, Andre

    2002-01-01

    Exchange of information between the nucleus and cytosol depends on the metabolic state of the cell, yet the energy-supply pathways to the nuclear compartment are unknown. Here, the energetics of nucleocytoplasmic communication was determined by imaging import of a constitutive nuclear protein histone H1. Translocation of H1 through nuclear pores in cardiac cells relied on ATP supplied by mitochondrial oxidative phosphorylation, but not by glycolysis. Although mitochondria clustered around the nucleus, reducing the distance for energy transfer, simple nucleotide diffusion was insufficient to meet the energetic demands of nuclear transport. Rather, the integrated phosphotransfer network was required for delivery of high-energy phosphoryls from mitochondria to the nucleus. In neonatal cardiomyocytes with low creatine kinase activity, inhibition of adenylate kinase-catalyzed phosphotransfer abolished nuclear import. With deficient adenylate kinase, nucleoside diphosphate kinase, which secures phosphoryl exchange between ATP and GTP, was unable to sustain nuclear import. Up-regulation of creatine kinase phosphotransfer, to mimic metabolic conditions of adult cardiac cells, rescued H1 import, suggesting a developmental plasticity of the cellular energetic system. Thus, mitochondrial oxidative phosphorylation coupled with phosphotransfer relays provides an efficient energetic unit in support of nuclear transport. PMID:12119406

  4. Directional antenna array (DAA) for communications, control, and data link protection

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-06-01

    A next generation of Smart antennas with point-to-point communication and jam, spoof protection capability by verification of spatial position is offered. A directional antenna array (DAA) with narrow irradiation beam provides counter terrorism protection for communications, data link, control and GPS. Communications are "invisible" to guided missiles because of 20 dB smaller irradiation outside the beam and spatial separation. This solution can be implemented with current technology. Directional antennas have higher gain and can be multi-frequency or have wide frequency band in contrast to phase antenna arrays. This multi-directional antenna array provides a multi-functional communication network and simultaneously can be used for command control, data link and GPS.

  5. Infant-directed communication in lowland gorillas (Gorilla gorilla): do older animals scaffold communicative competence in infants?

    PubMed

    Luef, Eva Maria; Liebal, Katja

    2012-09-01

    Infant-directed speech is a linguistic phenomenon in which adults adapt their language when addressing infants in order to provide them with more salient linguistic information and aid them in language acquisition. Adult-directed language differs from infant-directed language in various aspects, including speech acoustics, syntax, and semantics. The existence of a "gestural motherese" in interaction with infants, demonstrates that not only spoken language but also nonvocal modes of communication can become adapted when infants are recipients. Rhesus macaques are so far the only nonhuman primates where a similar phenomenon to "motherese" has been discovered: the acoustic spectrum of a particular vocalization of adult females may be altered when the addressees are infants. The present paper describes how gorillas adjust their communicative strategies when directing intentional, nonvocal play signals at infants in the sense of a "nonvocal motherese." Animals of ages above infancy use a higher rate of repetitions and sequences of the tactile sensory modality when negotiating play with infants. This indicates that gorillas employ a strategy of infant-specific communication.

  6. Sociosexual and Communication Deficits after Traumatic Injury to the Developing Murine Brain

    PubMed Central

    Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Jun Kwon, Yong; Sam, Pingdewinde N.; Gibson, A. Matt; Grissom, Sarah; Brown, Sienna; Adahman, Zahra; Hollingsworth, Christopher A.; Kwakye, Alexander; Gimlin, Kayleen; Wilde, Elisabeth A.; Hanten, Gerri; Levin, Harvey S.; Schenk, A. Katrin

    2014-01-01

    Despite the life-long implications of social and communication dysfunction after pediatric traumatic brain injury, there is a poor understanding of these deficits in terms of their developmental trajectory and underlying mechanisms. In a well-characterized murine model of pediatric brain injury, we recently demonstrated that pronounced deficits in social interactions emerge across maturation to adulthood after injury at postnatal day (p) 21, approximating a toddler-aged child. Extending these findings, we here hypothesized that these social deficits are dependent upon brain maturation at the time of injury, and coincide with abnormal sociosexual behaviors and communication. Age-dependent vulnerability of the developing brain to social deficits was addressed by comparing behavioral and neuroanatomical outcomes in mice injured at either a pediatric age (p21) or during adolescence (p35). Sociosexual behaviors including social investigation and mounting were evaluated in a resident-intruder paradigm at adulthood. These outcomes were complemented by assays of urine scent marking and ultrasonic vocalizations as indices of social communication. We provide evidence of sociosexual deficits after brain injury at p21, which manifest as reduced mounting behavior and scent marking towards an unfamiliar female at adulthood. In contrast, with the exception of the loss of social recognition in a three-chamber social approach task, mice that received TBI at adolescence were remarkably resilient to social deficits at adulthood. Increased emission of ultrasonic vocalizations (USVs) as well as preferential emission of high frequency USVs after injury was dependent upon both the stimulus and prior social experience. Contrary to the hypothesis that changes in white matter volume may underlie social dysfunction, injury at both p21 and p35 resulted in a similar degree of atrophy of the corpus callosum by adulthood. However, loss of hippocampal tissue was greater after p21 compared to p35

  7. Sociosexual and communication deficits after traumatic injury to the developing murine brain.

    PubMed

    Semple, Bridgette D; Noble-Haeusslein, Linda J; Jun Kwon, Yong; Sam, Pingdewinde N; Gibson, A Matt; Grissom, Sarah; Brown, Sienna; Adahman, Zahra; Hollingsworth, Christopher A; Kwakye, Alexander; Gimlin, Kayleen; Wilde, Elisabeth A; Hanten, Gerri; Levin, Harvey S; Schenk, A Katrin

    2014-01-01

    Despite the life-long implications of social and communication dysfunction after pediatric traumatic brain injury, there is a poor understanding of these deficits in terms of their developmental trajectory and underlying mechanisms. In a well-characterized murine model of pediatric brain injury, we recently demonstrated that pronounced deficits in social interactions emerge across maturation to adulthood after injury at postnatal day (p) 21, approximating a toddler-aged child. Extending these findings, we here hypothesized that these social deficits are dependent upon brain maturation at the time of injury, and coincide with abnormal sociosexual behaviors and communication. Age-dependent vulnerability of the developing brain to social deficits was addressed by comparing behavioral and neuroanatomical outcomes in mice injured at either a pediatric age (p21) or during adolescence (p35). Sociosexual behaviors including social investigation and mounting were evaluated in a resident-intruder paradigm at adulthood. These outcomes were complemented by assays of urine scent marking and ultrasonic vocalizations as indices of social communication. We provide evidence of sociosexual deficits after brain injury at p21, which manifest as reduced mounting behavior and scent marking towards an unfamiliar female at adulthood. In contrast, with the exception of the loss of social recognition in a three-chamber social approach task, mice that received TBI at adolescence were remarkably resilient to social deficits at adulthood. Increased emission of ultrasonic vocalizations (USVs) as well as preferential emission of high frequency USVs after injury was dependent upon both the stimulus and prior social experience. Contrary to the hypothesis that changes in white matter volume may underlie social dysfunction, injury at both p21 and p35 resulted in a similar degree of atrophy of the corpus callosum by adulthood. However, loss of hippocampal tissue was greater after p21 compared to p35

  8. Adaptive array antenna for satellite cellular and direct broadcast communications

    NASA Technical Reports Server (NTRS)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  9. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band

    PubMed Central

    Horschig, Jörn M.; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P. Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex. PMID:26394404

  10. Cognitive Impairment by Antibiotic-Induced Gut Dysbiosis: Analysis of Gut Microbiota-Brain Communication

    PubMed Central

    Fröhlich, Esther E.; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-01-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-D-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  11. Mother-Child Communication about Location: Giving and Following Directions for Finding Hidden Objects

    ERIC Educational Resources Information Center

    Plumert, Jodie M.; Haggerty, Kathryn A.; Mickunas, Andrew; Herzog, Lauren; Shadrick, Courtney

    2012-01-01

    We conducted 2 experiments to examine how mothers structure directions to young children for finding hidden objects and how young children use these directions to guide their searches. In Experiment 1, we examined the reference frames mothers use to communicate with their 2.5-, 3-, and 3.5-year-old children about location by asking mothers to…

  12. Direction of CRT waste glass processing: electronics recycling industry communication.

    PubMed

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  13. Impact of cognitive function on communication in patients with primary or secondary brain tumours.

    PubMed

    Naehrig, Diana N; Koh, Eng-Siew; Vogiatzis, Monica; Yanagisawa, Waka; Kwong, Carol; Shepherd, Heather L; Milross, Chris; Dhillon, Haryana M

    2016-01-01

    Communication support tools (CST) improve patient outcomes in oncology including: knowledge, satisfaction, self-management, and adherence to planned treatment. Little is known about communication support tools use in patients with primary or secondary brain tumours. We aimed to explore cognitive function and communication support tool use in this population. This prospective survey involved patients, caregivers and health professionals. Questionnaires were completed after initial brain radiotherapy consultation and 1-2 weeks later. Patients completed the Montreal Cognitive Assessment (MoCA). Descriptive statistics are reported. Fifty-three patients participated, median age 62 years, ECOG status 0-2 (90 %), with 75 % having secondary brain metastasis. 21/53 (40 %) patients reported needing help reading medical information. Only 28 % patients had normal cognition (MoCA score ≥ 26/30). Initially, 82 % of patients and 87 % of caregivers reported the consultation was 'extremely/quite clear, and 69 % of their health professionals thought consultation 'extremely/quite clear' to patient. At follow-up, fewer patients (75 %) reported health professionals' explanation as 'extremely/quite clear'. Although patients recalled discussed illness and treatment details, 82 % recalled treatment-related side effects and management thereof by 46 %. CST use was reported by 22 % patients, 19 % caregivers, and 27 %health professionals. When used, tools improved understanding according to 92 % patients, 100 % caregivers, and 91 % health professionals. The majority of patients have some level of cognitive impairment. Information discussed appears clear to most patients, but this is not sustained, and recall of treatment toxicity management is poor. Few CSTs are used in consultations, but when used, are reported as helpful by all. PMID:26498590

  14. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source

  15. Critical issues using brain-computer interfaces for augmentative and alternative communication.

    PubMed

    Hill, Katya; Kovacs, Thomas; Shin, Sangeun

    2015-03-01

    Brain-computer interfaces (BCIs) may potentially be of significant practical value to patients in advanced stages of amyotrophic lateral sclerosis and locked-in syndrome for whom conventional augmentative and alternative communication (AAC) systems, which require some measure of consistent voluntary muscle control, are not satisfactory options. However, BCIs have primarily been used for communication in laboratory research settings. This article discusses 4 critical issues that should be addressed as BCIs are translated out of laboratory settings to become fully functional BCI/AAC systems that may be implemented clinically. These issues include (1) identification of primary, secondary, and tertiary system features; (2) integrating BCI/AAC systems in the World Health Organization's International Classification of Functioning, Disability and Health framework; (3) implementing language-based assessment and intervention; and (4) performance measurement. A clinical demonstration project is presented as an example of research beginning to address these critical issues.

  16. Social communication features in children following moderate to severe acquired brain injury: a cross-sectional pilot study.

    PubMed

    Breau, Lynn M; Clark, Brenda; Scott, Ori; Wilkes, Courtney; Reynolds, Shawn; Ricci, Florencia; Sonnenberg, Lyn; Zwaigenbaum, Lonnie; Rashid, Marghalara; Goez, Helly R

    2015-04-01

    We compared the social communication deficits of children with moderate to severe acquired brain injury or autism spectrum disorder, while accounting for the role of attention-deficit hyperactivity disorder (ADHD) symptoms. Parents of 20 children aged 6 to 10 years (10 acquired brain injury; 10 autism spectrum disorder) completed the Social Communication Questionnaire, and Conners 3 Parent Short. A multivariate analysis of covariance revealed significant differences between groups in Social Communication Questionnaire restricted repetitive behavior scores, but not reciprocal social interaction or social communication. Multiple linear regressions indicated diagnosis did not predict reciprocal social interaction or social communication scores and that Conners 3 Parent Short Form hyperactivity scores were the strongest predictor of Social Communication Questionnaire reciprocal social interaction scores after accounting for age and Intelligence Quotient. The lack of difference in social communication deficits between groups may help in understanding the pathophysiology underlying the behavioral consequences of acquired brain injury. The link between hyperactivity and reciprocal interaction suggests that targeting hyperactivity may improve social outcomes in children following acquired brain injury.

  17. Reduced electrical bandwidth receivers for direct detection 4-ary PPM optical communication intersatellite links

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1993-01-01

    One of the major sources of noise in a direct detection optical communication receiver is the shot noise due to the quantum nature of the photodetector. The shot noise is signal dependent and is neither Gaussian nor wide sense stationary. When a photomultiplier tube (PMT) or an avalanche photodiode (APD) is used, there is also a multiplicative excess noise due to the randomness of the internal photodetector gain. Generally speaking, the radio frequency (RF) communication theory cannot be applied to direct detection optical communication systems because noise in RF communication systems is usually additive and Gaussian. A receiver structure which is mathematically optimal for signal dependent shot noise is derived. Several suboptimal receiver structures are discussed and compared with the optimal receiver. The objective is to find a receiver structure which is easy to implement and gives close to optimal performance.

  18. Better Glasgow outcome score, cerebral perfusion pressure and focal brain oxygenation in severely traumatized brain following direct regional brain hypothermia therapy: A prospective randomized study

    PubMed Central

    Idris, Zamzuri; Zenian, Mohd Sofan; Muzaimi, Mustapha; Hamid, Wan Zuraida Wan Abdul

    2014-01-01

    Background: Induced hypothermia for treatment of traumatic brain injury is controversial. Since many pathways involved in the pathophysiology of secondary brain injury are temperature dependent, regional brain hypothermia is thought capable to mitigate those processes. The objectives of this study are to assess the therapeutic effects and complications of regional brain cooling in severe head injury with Glasgow coma scale (GCS) 6-7. Materials and Methods: A prospective randomized controlled pilot study involving patients with severe traumatic brain injury with GCS 6 and 7 who required decompressive craniectomy. Patients were randomized into two groups: Cooling and no cooling. For the cooling group, analysis was made by dividing the group into mild and deep cooling. Brain was cooled by irrigating the brain continuously with cold Hartmann solution for 24-48 h. Main outcome assessments were a dichotomized Glasgow outcome score (GOS) at 6 months posttrauma. Results: A total of 32 patients were recruited. The cooling-treated patients did better than no cooling. There were 63.2% of patients in cooling group attained good GOS at 6 months compared to only 15.4% in noncooling group (P = 0.007). Interestingly, the analysis at 6 months post-trauma disclosed mild-cooling-treated patients did better than no cooling (70% vs. 15.4% attained good GOS, P = 0.013) and apparently, the deep-cooling-treated patients failed to be better than either no cooling (P = 0.074) or mild cooling group (P = 0.650). Conclusion: Data from this pilot study imply direct regional brain hypothermia appears safe, feasible and maybe beneficial in treating severely head-injured patients. PMID:25685201

  19. A Multiparty Controlled Bidirectional Quantum Secure Direct Communication and Authentication Protocol Based on EPR Pairs

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Sheng, Zhi-Wei

    2013-06-01

    A multiparty controlled bidirectional quantum secure direct communication and authentication protocol is proposed based on EPR pair and entanglement swapping. The legitimate identities of communicating parties are encoded to Bell states which act as a detection sequence. Secret messages are transmitted by using the classical XOR operation, which serves as a one-time-pad. No photon with secret information transmits in the quantum channel. Compared with the protocols proposed by Wang et al. [Acta Phys. Sin. 56 (2007) 673; Opt. Commun. 266 (2006) 732], the protocol in this study implements bidirectional communication and authentication, which defends most attacks including the ‘man-in-the-middle’ attack efficiently.

  20. Quantum Secure Direct Communication in a noisy environment: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Long, Gui Lu

    Quantum communication holds promise for absolutely security in secret message transmission. Quantum secure direct communication (QSDC) is an important branch of the quantum communication in which secret messages are sent directly over a quantum channel with security[Phys. Rev. A 65 , 032302 (2002)]. QSDC offers higher security and is instantaneous in communication, and is a great improvement to the classical communication mode. It is also a powerful basic quantum communication primitive for constructing many other quantum communication tasks such as quantum bidding, quantum signature and quantum dialogue and so on. Since the first QSDC protocol proposed in 2000, it has become one of the extensive research focuses. In this talk, the basic ideas of QSDC will be reviewed, and major QSDC protocols will be described, such as the efficient-QSDC protocol, the two-step QSDC protocol, the one-time-pad QSDC protocol, the high-dimensional QSDC protocol and so on. Experimental progress is also developing steadily, and will also be reviewed. In particular, the quantum one-time-pad QSDC protocol has recently been successfully demonstrated experimentally[arXiv:1503.00451]. Work supported by China National Natural Science Foundation, the Ministry of Science and Technology of China.

  1. 26 CFR 56.4911-2 - Lobbying expenditures, direct lobbying communications, and grass roots lobbying communications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... under paragraph (b)(2)(v)(C) shall apply only to expenditures paid less than six months before the first... first used with a direct encouragement to action on August 1. Six months prior to August 1 is February 1... into proposed legislation. The initiative is popularly known as “the President's World Peace Plan,”...

  2. Lipid Peroxidation-Derived Reactive Aldehydes Directly and Differentially Impair Spinal Cord and Brain Mitochondrial Function

    PubMed Central

    Vaishnav, Radhika A.; Singh, Indrapal N.; Miller, Darren M.

    2010-01-01

    Abstract Mitochondrial bioenergetic dysfunction in traumatic spinal cord and brain injury is associated with post-traumatic free radical–mediated oxidative damage to proteins and lipids. Lipid peroxidation by-products, such as 4-hydroxy-2-nonenal and acrolein, can form adducts with proteins and exacerbate the effects of direct free radical–induced protein oxidation. The aim of the present investigation was to determine and compare the direct contribution of 4-hydroxy-2-nonenal and acrolein to spinal cord and brain mitochondrial dysfunction. Ficoll gradient–isolated mitochondria from normal rat spinal cords and brains were treated with carefully selected doses of 4-hydroxy-2-nonenal or acrolein, followed by measurement of complex I– and complex II–driven respiratory rates. Both compounds were potent inhibitors of mitochondrial respiration in a dose-dependent manner. 4-Hydroxy-2-nonenal significantly compromised spinal cord mitochondrial respiration at a 0.1-μM concentration, whereas 10-fold greater concentrations produced a similar effect in brain. Acrolein was more potent than 4-hydroxy-2-nonenal, significantly decreasing spinal cord and brain mitochondrial respiration at 0.01 μM and 0.1 μM concentrations, respectively. The results of this study show that 4-hydroxy-2-nonenal and acrolein can directly and differentially impair spinal cord and brain mitochondrial function, and that the targets for the toxic effects of aldehydes appear to include pyruvate dehydrogenase and complex I–associated proteins. Furthermore, they suggest that protein modification by these lipid peroxidation products may directly contribute to post-traumatic mitochondrial damage, with spinal cord mitochondria showing a greater sensitivity than those in brain. PMID:20392143

  3. Heterotopic mucosal engrafting procedure for direct drug delivery to the brain in mice.

    PubMed

    Kohman, Richie E; Han, Xue; Bleier, Benjamin S

    2014-07-16

    Delivery of therapeutics into the brain is impeded by the presence of the blood-brain barrier (BBB) which restricts the passage of polar and high molecular weight compounds from the bloodstream and into brain tissue. Some direct delivery success in humans has been achieved via implantation of transcranial catheters; however this method is highly invasive and associated with numerous complications. A less invasive alternative would be to dose the brain through a surgically implanted, semipermeable membrane such as the nasal mucosa that is used to repair skull base defects following endoscopic transnasal tumor removal surgery in humans. Drug transfer though this membrane would effectively bypass the BBB and diffuse directly into the brain and cerebrospinal fluid. Inspired by this approach, a surgical approach in mice was developed that uses a donor septal mucosal membrane engrafted over an extracranial surgical BBB defect. This model has been shown to effectively allow the passage of high molecular weight compounds into the brain. Since numerous drug candidates are incapable of crossing the BBB, this model is valuable for performing preclinical testing of novel therapies for neurological and psychiatric diseases.

  4. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.

    PubMed

    Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H

    2012-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis. PMID:23366434

  5. The Unlock Project: A Python-based framework for practical brain-computer interface communication “app” development

    PubMed Central

    Brumberg, Jonathan S.; Lorenz, Sean D.; Galbraith, Byron V.; Guenther, Frank H.

    2013-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software “app” development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50–60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis. PMID:23366434

  6. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.

    PubMed

    Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H

    2012-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis.

  7. Vagal and hormonal gut-brain communication: from satiation to satisfaction.

    PubMed

    Berthoud, H-R

    2008-05-01

    Studying communication between the gut and the brain is as relevant and exciting as it has been since Pavlov's discoveries a century ago. Although the efferent limb of this communication has witnessed significant advances, it is the afferent, or sensory, limb that has recently made for exciting news. It is now clear that signals from the gut are crucial for the control of appetite and the regulation of energy balance, glucose homeostasis, and more. Ghrelin, discovered just a few years ago, is the first gut hormone that increases appetite, and it may be involved in eating disorders. The stable analogue of glucagon-like peptide-1 has rapidly advanced to one of the most promising treatment options for type-2 diabetes. Changes in the signalling patterns of these and other gut hormones best explain the remarkable capacity of gastric bypass surgery to lower food intake and excess body weight. Given the enormous societal implications of the obesity epidemic, these are no small feats. Together with the older gut hormone cholecystokinin and abundant vagal mechanosensors, the gut continuously sends information to the brain regarding the quality and quantity of ingested nutrients, not only important for satiation and meal termination, but also for the appetitive phase of ingestive behaviour and the patterning of meals within given environmental constraints. By acting not only on brainstem and hypothalamus, this stream of sensory information from the gut to the brain is in a position to generate a feeling of satisfaction and happiness as observed after a satiating meal and exploited in vagal afferent stimulation for depression. PMID:18402643

  8. Vagal and hormonal gut-brain communication: from satiation to satisfaction.

    PubMed

    Berthoud, H-R

    2008-05-01

    Studying communication between the gut and the brain is as relevant and exciting as it has been since Pavlov's discoveries a century ago. Although the efferent limb of this communication has witnessed significant advances, it is the afferent, or sensory, limb that has recently made for exciting news. It is now clear that signals from the gut are crucial for the control of appetite and the regulation of energy balance, glucose homeostasis, and more. Ghrelin, discovered just a few years ago, is the first gut hormone that increases appetite, and it may be involved in eating disorders. The stable analogue of glucagon-like peptide-1 has rapidly advanced to one of the most promising treatment options for type-2 diabetes. Changes in the signalling patterns of these and other gut hormones best explain the remarkable capacity of gastric bypass surgery to lower food intake and excess body weight. Given the enormous societal implications of the obesity epidemic, these are no small feats. Together with the older gut hormone cholecystokinin and abundant vagal mechanosensors, the gut continuously sends information to the brain regarding the quality and quantity of ingested nutrients, not only important for satiation and meal termination, but also for the appetitive phase of ingestive behaviour and the patterning of meals within given environmental constraints. By acting not only on brainstem and hypothalamus, this stream of sensory information from the gut to the brain is in a position to generate a feeling of satisfaction and happiness as observed after a satiating meal and exploited in vagal afferent stimulation for depression.

  9. Weighted and directed interactions in evolving large-scale epileptic brain networks

    NASA Astrophysics Data System (ADS)

    Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus

    2016-10-01

    Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only – in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control.

  10. Weighted and directed interactions in evolving large-scale epileptic brain networks

    PubMed Central

    Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus

    2016-01-01

    Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only – in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control. PMID:27708381

  11. Review of language organisation in bilingual patients: what can we learn from direct brain mapping?

    PubMed

    Giussani, C; Roux, F-E; Lubrano, V; Gaini, S M; Bello, L

    2007-11-01

    Although the majority of people worldwide are bilingual, the brain representation of language in bilingual persons is still a matter of debate. Since the beginning of the studies conducted on bilinguals, most authors denied that learning a new language requires a new semantic processing or the involvement of new cortical areas. In this paper, we review neurosurgical studies using direct electrocortical or subcortical stimulation techniques for brain mapping in bilingual subjects and compare this data with that obtained from other brain mapping methods. The authors focused on the most controversial issue whether multiple languages are represented in common or distinct cerebral areas. Seven direct brain mapping studies from different teams focused on bilingualism and multilingualism. All these studies showed that even if cerebral representation of language in multilingual patients could be grossly located in the same cortical region, it was possible to individualise distinct language-specific areas by direct cortical stimulation in the dominant frontal and temporo-parietal regions. Task- and language-specific sites were also described, demonstrating an important specialisation of some cortical areas. Using subcortical stimulation, some authors were able to find specific white matter tracts for different languages. Finally, all authors recommend in bilingual patients who need brain mapping for neurosurgical purpose to test all languages in which the subjects are fluent.

  12. Communication.

    ERIC Educational Resources Information Center

    Strauss, Andre

    The following essays on communication are presented: communication as a condition of survival, communication for special purposes, the means of transmission of communication, communication within social and economic structures, the teaching of communication through the press, the teaching of modern languages, communication as a point of departure,…

  13. Affective-Motivational Brain Responses to Direct Gaze in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kylliainen, Anneli; Wallace, Simon; Coutanche, Marc N.; Leppanen, Jukka M.; Cusack, James; Bailey, Anthony J.; Hietanen, Jari K.

    2012-01-01

    Background: It is unclear why children with autism spectrum disorders (ASD) tend to be inattentive to, or even avoid eye contact. The goal of this study was to investigate affective-motivational brain responses to direct gaze in children with ASD. To this end, we combined two measurements: skin conductance responses (SCR), a robust arousal…

  14. Single-Word Reading: Behavioral and Biological Perspectives. New Directions in Communication Disorders Research

    ERIC Educational Resources Information Center

    Grigorenko, Elena L., Ed.; Naples, Adam J., Ed.

    2007-01-01

    As the first title in the new series, "New Directions in Communication Disorders Research: Integrative Approaches", this volume discusses a unique phenomenon in cognitive science, single-word reading, which is an essential element in successful reading competence. Single-word reading is an interdisciplinary area of research that incorporates…

  15. Health Care Professionals' Death Attitudes, Experiences, and Advance Directive Communication Behavior

    ERIC Educational Resources Information Center

    Black, Kathy

    2007-01-01

    The study surveyed 135 health care professionals (74 nurses, 32 physicians, and 29 social workers) to examine their personal death attitudes and experiences in relation to their reported advance directive communication practice behavior. Negative correlations were found between collaborating with other health care professionals regarding the…

  16. Brain-Generated Estradiol Drives Long-Term Optimization of Auditory Coding to Enhance the Discrimination of Communication Signals

    PubMed Central

    Tremere, Liisa A.; Pinaud, Raphael

    2011-01-01

    Auditory processing and hearing-related pathologies are heavily influenced by steroid hormones in a variety of vertebrate species including humans. The hormone estradiol has been recently shown to directly modulate the gain of central auditory neurons, in real-time, by controlling the strength of inhibitory transmission via a non-genomic mechanism. The functional relevance of this modulation, however, remains unknown. Here we show that estradiol generated in the songbird homologue of the mammalian auditory association cortex, rapidly enhances the effectiveness of the neural coding of complex, learned acoustic signals in awake zebra finches. Specifically, estradiol increases mutual information rates, coding efficiency and the neural discrimination of songs. These effects are mediated by estradiol’s modulation of both rate and temporal coding of auditory signals. Interference with the local action or production of estradiol in the auditory forebrain of freely-behaving animals disrupts behavioral responses to songs, but not to other behaviorally-relevant communication signals. Our findings directly show that estradiol is a key regulator of auditory function in the adult vertebrate brain. PMID:21368039

  17. Destination-directed, packet-switched architecture for a geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO; Bobinsky, Eric A.; Soni, Nitin J.; Quintana, Jorge A.; Kim, Heechul; Wager, Paul; Vanderaar, Mark

    1993-01-01

    A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed.

  18. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.

    PubMed

    Merolla, Paul A; Arthur, John V; Alvarez-Icaza, Rodrigo; Cassidy, Andrew S; Sawada, Jun; Akopyan, Filipp; Jackson, Bryan L; Imam, Nabil; Guo, Chen; Nakamura, Yutaka; Brezzo, Bernard; Vo, Ivan; Esser, Steven K; Appuswamy, Rathinakumar; Taba, Brian; Amir, Arnon; Flickner, Myron D; Risk, William P; Manohar, Rajit; Modha, Dharmendra S

    2014-08-01

    Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.

  19. Glia: A Neglected Player in Non-invasive Direct Current Brain Stimulation

    PubMed Central

    Gellner, Anne-Kathrin; Reis, Janine; Fritsch, Brita

    2016-01-01

    Non-invasive electrical brain stimulation by application of direct current (DCS) promotes plasticity in neuronal networks in vitro and in in vivo. This effect has been mainly attributed to the direct modulation of neurons. Glia represents approximately 50% of cells in the brain. Glial cells are electrically active and participate in synaptic plasticity. Despite of that, effects of DCS on glial structures and on interaction with neurons are only sparsely investigated. In this perspectives article we review the current literature, present own dose response data and provide a framework for future research from two points of view: first, the direct effects of DCS on glia and second, the contribution of glia to DCS related neuronal plasticity. PMID:27551261

  20. Parents' child-directed communication and child language development: a longitudinal study with Italian toddlers.

    PubMed

    Majorano, Marinella; Rainieri, Chiara; Corsano, Paola

    2013-09-01

    The present study focuses on the characteristics of parental child-directed communication and its relationship with child language development. For this purpose, thirty-six toddlers (18 males and 18 females) and their parents were observed in a laboratory during triadic free play at ages 1 ; 3 and 1 ; 9. The characteristics of the maternal and paternal child-directed language (characteristics of communicative functions and lexicon as reported in psycholinguistic norms for Italian language) were coded during free play. Child language development was assessed during free play and at ages 2 ; 6 and 3 ; 0 using the Italian version of the MacArthur-Bates Communicative Development Inventory (2 ; 6) and the revised Peabody Picture Vocabulary Test (PPVT-R) (3 ; 0). Data analysis indicated differences between mothers and fathers in the quantitative characteristics of communicative functions and language, such as the mean length of utterances (MLU), and the number of tokens and types. Mothers also produced the more frequent nouns in the child lexicon. There emerged a relation between the characteristics of parental child-directed language and child language development.

  1. A generalized architecture of quantum secure direct communication for N disjointed users with authentication.

    PubMed

    Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A

    2015-01-01

    In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N - 1 disjointed users u1, u2, …, uN-1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N - 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N - 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement.

  2. A generalized architecture of quantum secure direct communication for N disjointed users with authentication

    PubMed Central

    Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A.

    2015-01-01

    In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N − 1 disjointed users u1, u2, …, uN−1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N − 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N − 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement. PMID:26577473

  3. A generalized architecture of quantum secure direct communication for N disjointed users with authentication

    NASA Astrophysics Data System (ADS)

    Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A.

    2015-11-01

    In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N - 1 disjointed users u1, u2, …, uN-1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N - 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N - 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement.

  4. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  5. Novel Multiparty Controlled Bidirectional Quantum Secure Direct Communication Based on Continuous-variable States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Wen, Ru-Hong

    2016-03-01

    A novel multiparty controlled bidirectional quantum secure direct communication protocol combining continuous-variable states with qubit block transmission is proposed. Two legitimate communication parties encode their own secret information into entangled optical modes with translation operations, and the secret information of each counterpart can only be recovered under the permission of all controllers. Due to continuous-variable states and block transmission strategy, the proposed protocol is easy to realize with perfect qubit efficiency. Security analyses show that the proposed protocol is free from common attacks, including the man-in-the-middle attack.

  6. Endogenous DNA-directed DNA synthesising system in a microsomal fraction of embryonic chick brain.

    PubMed Central

    Smith, J; Soriano, L

    1977-01-01

    A DNA polymerising complex directed by endogenous DNA has been partially purified from 11-day-old embryonic chick brain microsomes by DEAE-cellulose and phosphocellulose column chromatography. The active fractions are eluted together with an exogenous DNA-directed DNA polymerase; after Sephadex gel filtration, the endogenous activity remains associated with a high molecular weight DNA-directed DNA polymerase. The endogenous activity of the complex has been shown to be RNase-resistant and actinomycin-sensitive. It requires potassium, an ATP-regenerating system and all four deoxyribonucleoside triphosphates for full activity. The significance of this activity with regard to the protovirus hypothesis is discussed. PMID:866184

  7. Performance assessment in brain-computer interface-based augmentative and alternative communication

    PubMed Central

    2013-01-01

    A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems. PMID:23680020

  8. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients

    PubMed Central

    Vanhaudenhuyse, Audrey; Noirhomme, Quentin; Tshibanda, Luaba J.-F.; Bruno, Marie-Aurelie; Boveroux, Pierre; Schnakers, Caroline; Soddu, Andrea; Perlbarg, Vincent; Ledoux, Didier; Brichant, Jean-François; Moonen, Gustave; Maquet, Pierre; Greicius, Michael D.

    2010-01-01

    The ‘default network’ is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient’s default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology. PMID:20034928

  9. Leader-following control of multiple nonholonomic systems over directed communication graphs

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Djapic, Vladimir

    2016-06-01

    This paper considers the leader-following control problem of multiple nonlinear systems with directed communication topology and a leader. If the state of each system is measurable, distributed state feedback controllers are proposed using neighbours' state information with the aid of Lyapunov techniques and properties of Laplacian matrix for time-invariant communication graph and time-varying communication graph. It is shown that the state of each system exponentially converges to the state of a leader. If the state of each system is not measurable, distributed observer-based output feedback control laws are proposed. As an application of the proposed results, formation control of wheeled mobile robots is studied. The simulation results show the effectiveness of the proposed results.

  10. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface

    PubMed Central

    Khan, M. Jawad; Hong, Melissa Jiyoun; Hong, Keum-Shik

    2014-01-01

    The hybrid brain-computer interface (BCI)'s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG) technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, “forward,” “backward,” “left,” and “right.” The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology. PMID:24808844

  11. MIF Maintains the Tumorigenic Capacity of Brain Tumor-Initiating Cells by Directly Inhibiting p53.

    PubMed

    Fukaya, Raita; Ohta, Shigeki; Yaguchi, Tomonori; Matsuzaki, Yumi; Sugihara, Eiji; Okano, Hideyuki; Saya, Hideyuki; Kawakami, Yutaka; Kawase, Takeshi; Yoshida, Kazunari; Toda, Masahiro

    2016-05-01

    Tumor-initiating cells thought to drive brain cancer are embedded in a complex heterogeneous histology. In this study, we isolated primary cells from 21 human brain tumor specimens to establish cell lines with high tumorigenic potential and to identify the molecules enabling this capability. The morphology, sphere-forming ability upon expansion, and differentiation potential of all cell lines were indistinguishable in vitro However, testing for tumorigenicity revealed two distinct cell types, brain tumor-initiating cells (BTIC) and non-BTIC. We found that macrophage migration inhibitory factor (MIF) was highly expressed in BTIC compared with non-BTIC. MIF bound directly to both wild-type and mutant p53 but regulated p53-dependent cell growth by different mechanisms, depending on glioma cell line and p53 status. MIF physically interacted with wild-type p53 in the nucleus and inhibited its transcription-dependent functions. In contrast, MIF bound to mutant p53 in the cytoplasm and abrogated transcription-independent induction of apoptosis. Furthermore, MIF knockdown inhibited BTIC-induced tumor formation in a mouse xenograft model, leading to increased overall survival. Collectively, our findings suggest that MIF regulates BTIC function through direct, intracellular inhibition of p53, shedding light on the molecular mechanisms underlying the tumorigenicity of certain malignant brain cells. Cancer Res; 76(9); 2813-23. ©2016 AACR. PMID:26980763

  12. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  13. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    NASA Astrophysics Data System (ADS)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  14. A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties

    NASA Astrophysics Data System (ADS)

    Gao, Ting; Yan, Feng-Li; Wang, Zhi-Xi

    2005-10-01

    We propose a simultaneous quantum secure direct communication scheme between one party and other three parties via four-particle GHZ states and swapping quantum entanglement. In the scheme, three spatially separated senders, Alice, Bob and Charlie, transmit their secret messages to a remote receiver Diana by performing a series of local operations on their respective particles according to the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell measurement results, Diana can infer the secret messages. If a perfect quantum channel is used, the secret messages are faithfully transmitted from Alice, Bob and Charlie to Diana via initially shared pairs of four-particle GHZ states without revealing any information to a potential eavesdropper. As there is no transmission of the qubits carrying the secret message in the public channel, it is completely secure for the direct secret communication. This scheme can be considered as a network of communication parties where each party wants to communicate secretly with a central party or server.

  15. Current directions in non-invasive low intensity electric brain stimulation for depressive disorder.

    PubMed

    Schutter, Dennis J L G; Sack, Alexander T

    2014-01-01

    Non-invasive stimulation of the human brain to improve depressive symptoms is increasingly finding its way in clinical settings as a viable form of somatic treatment. Following successful modulation of neural excitability with subsequent antidepressant effects, neural polarization by administrating weak direct currents to the scalp has gained renewed interest. A new wave of basic and clinical studies seems to underscore the potential therapeutic value of direct current stimulation in the treatment of depression. Issues concerning the lack of mechanistic insights into the workings of modifying brain function through neural polarization and how this process translates to its antidepressant properties calls for additional research. The range of its clinical applicability has yet to be established.

  16. Environmental Impact on Direct Neuronal Reprogramming In Vivo in the Adult Brain

    PubMed Central

    López-Juárez, Alejandro; Howard, Jennifer; Sakthivel, Bhuvaneswari; Aronow, Bruce; Campbell, Kenneth; Nakafuku, Masato

    2013-01-01

    Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of newly generated neurons in the adult rodent brain. A combination of local exposure to growth factors and retrovirus-mediated overexpression of the neurogenic transcription factor Neurogenin2 (Neurog2) can induce new neurons from non-neuronal cells in the adult neocortex and striatum where neuronal turnover is otherwise very limited. These two regions respond to growth factors and Neurog2 differently and instruct new neurons to exhibit distinct molecular phenotypes. Moreover, ischemic insult differentially affects differentiation of new neurons in these regions. These results demonstrate strong environmental impact on direct neuronal reprogramming in vivo. PMID:23974433

  17. Environmental impact on direct neuronal reprogramming in vivo in the adult brain.

    PubMed

    Grande, Andrew; Sumiyoshi, Kyoko; López-Juárez, Alejandro; Howard, Jennifer; Sakthivel, Bhuvaneswari; Aronow, Bruce; Campbell, Kenneth; Nakafuku, Masato

    2013-01-01

    Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of the newly generated neurons in the adult rodent brain. A combination of local exposure to growth factors and retrovirus-mediated overexpression of the neurogenic transcription factor Neurogenin2 can induce new neurons from non-neuronal cells in the adult neocortex and striatum where neuronal turnover is otherwise very limited. These two regions respond to growth factors and Neurogenin2 differently and instruct new neurons to exhibit distinct molecular phenotypes. Moreover, ischaemic insult differentially affects differentiation of new neurons in these regions. These results demonstrate strong environmental impact on direct neuronal reprogramming in vivo.

  18. ConnectX-2 CORE-Direct Enabled Asynchronous Broadcast Collective Communications

    SciTech Connect

    Gorentla Venkata, Manjunath; Graham, Richard L; Ladd, Joshua S; Shamis, Pavel; Rabinovitz, Ishai; Filipov, Vasily; Shainer, Gilad

    2011-01-01

    This paper describes the design and implementation of InfiniBand (IB) CORE-Direct based blocking and nonblocking broadcast operations within the Cheetah collective operation framework. It describes a novel approach that fully ofFLoads collective operations and employs only user-supplied buffers. For a 64 rank communicator, the latency of CORE-Direct based hierarchical algorithm is better than production-grade Message Passing Interface (MPI) implementations, 150% better than the default Open MPI algorithm and 115% better than the shared memory optimized MVAPICH implementation for a one kilobyte (KB) message, and for eight mega-bytes (MB) it is 48% and 64% better, respectively. Flat-topology broadcast achieves 99.9% overlap in a polling based communication-computation test, and 95.1% overlap for a wait based test, compared with 92.4% and 17.0%, respectively, for a similar Central Processing Unit (CPU) based implementation.

  19. Quantum secure direct communication network with superdense coding and decoy photons

    NASA Astrophysics Data System (ADS)

    Deng, Fu-Guo; Li, Xi-Han; Li, Chun-Yan; Zhou, Ping; Zhou, Hong-Yu

    2007-07-01

    A quantum secure direct communication network scheme is proposed with quantum superdense coding and decoy photons. The servers on a passive optical network prepare and measure the quantum signal, i.e. a sequence of the d-dimensional Bell states. After confirming the security of the photons received from the receiver, the sender codes his secret message on them directly. For preventing a dishonest server from eavesdropping, some decoy photons prepared by measuring one photon in the Bell states are used to replace some original photons. One of the users on the network can communicate to any other one. This scheme has the advantage of high capacity, and it is more convenient than others as only a sequence of photons is transmitted in quantum line.

  20. Comment on "Quantum Secure Direct Communication with Authentication Expansion Using Single Photons"

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Jia, Xin; Xia, Juan; Shi, Lei; Zhang, Hua

    2012-12-01

    The security of the quantum secure direct communication protocol with authentication expansion using single photons is analyzed. It is shown that an eavesdropper can obtain or even modify the transmitted secret without introducing any error by implementing a simple man-in-the-middle attack after the authentication is successfully carried out. Furthermore, a denial-of-service attack is also discussed. The particular attack strategy is demonstrated and an improved protocol is presented.

  1. Cryptanalysis of Quantum Secure Direct Communication and Authentication Scheme via Bell States

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Qin, Su-Juan; Guo, Fen-Zhuo; Wen, Qiao-Yan

    2011-02-01

    The security of the quantum secure direct communication (QSDC) and authentication protocol based on Bell states is analyzed. It is shown that an eavesdropper can invalidate the authentication function, and implement a successful man-in-the-middle attack, where he/she can obtain or even modify the transmitted secret without introducing any error. The particular attack strategy is demonstrated and an improved protocol is presented.

  2. Abnormal brain activation during directed forgetting of negative memory in depressed patients.

    PubMed

    Yang, Wenjing; Chen, Qunlin; Liu, Peiduo; Cheng, Hongsheng; Cui, Qian; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang

    2016-01-15

    The frequent occurrence of uncontrollable negative thoughts and memories is a troubling aspect of depression. Thus, knowledge on the mechanism underlying intentional forgetting of these thoughts and memories is crucial to develop an effective emotion regulation strategy for depressed individuals. Behavioral studies have demonstrated that depressed participants cannot intentionally forget negative memories. However, the neural mechanism underlying this process remains unclear. In this study, participants completed the directed forgetting task in which they were instructed to remember or forget neutral or negative words. Standard univariate analysis based on the General Linear Model showed that the depressed participants have higher activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), superior parietal gyrus (SPG), and inferior temporal gyrus (ITG) than the healthy individuals. The results indicated that depressed participants recruited more frontal and parietal inhibitory control resources to inhibit the TBF items, but the attempt still failed because of negative bias. We also used the Support Vector Machine to perform multivariate pattern classification based on the brain activation during directed forgetting. The pattern of brain activity in directed forgetting of negative words allowed correct group classification with an overall accuracy of 75% (P=0.012). The brain regions which are critical for this discrimination showed abnormal activation when depressed participants were attempting to forget negative words. These results indicated that the abnormal neural circuitry when depressed individuals tried to forget the negative words might provide neurobiological markers for depression.

  3. Non-Invasive Brain Stimulation for Treatment of Focal Hand Dystonia: Update and Future Direction

    PubMed Central

    Cho, Hyun Joo; Hallett, Mark

    2016-01-01

    Focal hand dystonia (FHD) is characterized by excessive and unwanted muscle activation in both the hand and arm resulting in impaired performance in particular tasks. Understanding the pathophysiology of FHD has progressed significantly for several decades and this has led to consideration of other potential therapies such as non-invasive brain stimulation (NIBS). A number of studies have been conducted to develop new therapy for FHD using transcranial magnetic stimulation and transcranial direct current stimulation. In this paper, we review previous studies and describe the potential therapeutic use of NIBS for FHD. We also discuss the future direction of NIBS to treat FHD. PMID:27240806

  4. Brain mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective.

    PubMed

    Ackermann, Hermann; Hage, Steffen R; Ziegler, Wolfram

    2014-12-01

    Any account of "what is special about the human brain" (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a "phylogenetic trend" associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a "nonverbal matrix" (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the "first word" (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the "renaissance" of an ancient organizational principle and, hence, may represent an example of "evolutionary tinkering" (Jacob 1977).

  5. Mechanisms of Human Sensorimotor-Learning and Their Implications for Brain Communication

    NASA Astrophysics Data System (ADS)

    Imamizu, Hiroshi

    Humans have a remarkable ability to flexibly control various objects such as tools. Much evidence suggests that the internal models acquired in the central nervous system (CNS) support flexible control. Internal models are neural mechanisms that mimic the input-output properties of controlled objects. In a series of functional magnetic resonance imaging (fMRI) studies, we demonstrate how the CNS acquires and switches internal models for dexterous use of many tools. In the first study, we investigated human cerebellar activity when human subjects learned how to use a novel tool (a rotated computer mouse, where the cursor appears in a rotated position) and found that activity reflecting an internal model of the novel tool increases in the lateral cerebellum after learning how to use the tool. In the second study, we investigated the internal-model activity after sufficient training in the use of two types of novel tools (the rotated mouse and a velocity mouse, where the cursor's velocity is proportional to mouse's position) and found that the cerebellar activities for the two tools were spatially segregated. In the third study, we investigated brain activity associated with the flexible switching of tools. We found that the activity related to switching internal models was in the prefrontal lobe (area 46 and the insula), the parietal lobe, and the cerebellum. These results suggest that internal models in the cerebellum represent input-output properties of the tools as modulators of continuous signals. The cerebellar abilities in adaptive modulation of signals can be used to enhance the control signals in communications between the brain and computers.

  6. Communication of brain network core connections altered in behavioral variant frontotemporal dementia but possibly preserved in early-onset Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Daianu, Madelaine; Jahanshad, Neda; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Thompson, Paul M.

    2015-03-01

    Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.5-Tesla wholebrain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal dementia (bvFTD), 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls. Using whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We evaluated the brain's networks focusing on the most highly central and connected regions, also known as hubs, in each diagnostic group - specifically the "high-cost" structural backbone used in global and regional communication. The high-cost backbone of the brain, predicted by fiber density and minimally short pathways between brain regions, accounted for 81-92% of the overall brain communication metric in all diagnostic groups. Furthermore, we found that the set of pathways interconnecting high-cost and high-capacity regions of the brain's communication network are globally and regionally altered in bvFTD, compared to healthy participants; however, the overall organization of the high-cost and high-capacity networks were relatively preserved in EOAD participants, relative to controls. Disruption of the major central hubs that transfer information between brain regions may impair neural communication and functional integrity in characteristic ways typical of each subtype of dementia.

  7. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar

    2013-01-01

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  8. Asymmetric Directional Multicast for Capillary Machine-to-Machine Using mmWave Communications.

    PubMed

    Kwon, Jung-Hyok; Kim, Eui-Jik

    2016-04-11

    The huge demand for high data rate machine-to-machine (M2M) services has led to the use of millimeter Wave (mmWave) band communications with support for a multi-Gbps data rate through the use of directional antennas. However, unnecessary sector switching in multicast transmissions with directional antennas results in a long delay, and consequently a low throughput. We propose asymmetric directional multicast (ADM) for capillary M2M to address this problem in mmWave communications. ADM provides asymmetric sectorization that is optimized for the irregular deployment pattern of mulicast group members. In ADM, an M2M gateway builds up asymmetric sectors with a beamwidth of a different size to cover all multicast group members with the minimum number of directional transmissions. The performance of ADM under various simulation environments is evaluated through a comparison with legacy mmWave multicast. The results of the simulation indicate that ADM achieves a better performance in terms of the transmission sectors, the transmission time, and the aggregate throughput when compared with the legacy multicast method.

  9. Asymmetric Directional Multicast for Capillary Machine-to-Machine Using mmWave Communications

    PubMed Central

    Kwon, Jung-Hyok; Kim, Eui-Jik

    2016-01-01

    The huge demand for high data rate machine-to-machine (M2M) services has led to the use of millimeter Wave (mmWave) band communications with support for a multi-Gbps data rate through the use of directional antennas. However, unnecessary sector switching in multicast transmissions with directional antennas results in a long delay, and consequently a low throughput. We propose asymmetric directional multicast (ADM) for capillary M2M to address this problem in mmWave communications. ADM provides asymmetric sectorization that is optimized for the irregular deployment pattern of mulicast group members. In ADM, an M2M gateway builds up asymmetric sectors with a beamwidth of a different size to cover all multicast group members with the minimum number of directional transmissions. The performance of ADM under various simulation environments is evaluated through a comparison with legacy mmWave multicast. The results of the simulation indicate that ADM achieves a better performance in terms of the transmission sectors, the transmission time, and the aggregate throughput when compared with the legacy multicast method. PMID:27077859

  10. Asymmetric Directional Multicast for Capillary Machine-to-Machine Using mmWave Communications.

    PubMed

    Kwon, Jung-Hyok; Kim, Eui-Jik

    2016-01-01

    The huge demand for high data rate machine-to-machine (M2M) services has led to the use of millimeter Wave (mmWave) band communications with support for a multi-Gbps data rate through the use of directional antennas. However, unnecessary sector switching in multicast transmissions with directional antennas results in a long delay, and consequently a low throughput. We propose asymmetric directional multicast (ADM) for capillary M2M to address this problem in mmWave communications. ADM provides asymmetric sectorization that is optimized for the irregular deployment pattern of mulicast group members. In ADM, an M2M gateway builds up asymmetric sectors with a beamwidth of a different size to cover all multicast group members with the minimum number of directional transmissions. The performance of ADM under various simulation environments is evaluated through a comparison with legacy mmWave multicast. The results of the simulation indicate that ADM achieves a better performance in terms of the transmission sectors, the transmission time, and the aggregate throughput when compared with the legacy multicast method. PMID:27077859

  11. Reactive actuators and sensors integrated in one device: mimicking brain-muscles feedback communication

    NASA Astrophysics Data System (ADS)

    Otero, Toribio F.; Martinez, Jose G.

    2013-04-01

    Artificial muscles based on carbon derivative molecular structures are chemical (electro-chemo-mechanical) actuators. The electrochemical reaction drives the film volume variation and the actuation. The applied current controls the movement rate and the charge controls the amplitude of the displacement (Faraday' motors). Any working or surrounding variable influencing the reaction rate will be sensed by the muscle potential, or by the consumed electrical energy, evolution during actuation. Experimental results and full theoretical description of the basic reactive material and of any dual electrochemical sensing-actuator will be presented. During current flow the muscle potential and the consumed electrical energy evolution are influenced by the working variables: temperature, electrolyte concentration, driving current, film volume variation (external pressure, applied strain, hanged masses, obstacles in its way). The working muscle becomes an electrochemical sensor. Only two connecting wires contain actuating (current) and sensing (potential) signals read and controlled, at any time from the computer-generator. One device integrates several sensing and actuating tools working simultaneously mimicking muscles/brain feedback communication.

  12. A power-efficient communication system between brain-implantable devices and external computers.

    PubMed

    Yao, Ning; Lee, Heung-No; Chang, Cheng-Chun; Sclabassi, Robert J; Sun, Mingui

    2007-01-01

    In this paper, we propose a power efficient communication system for linking a brain-implantable device to an external system. For battery powered implantable devices, the processor and the transmitter power should be reduced in order to both conserve battery power and reduce the health risks associated with transmission. To accomplish this, a joint source-channel coding/decoding system is devised. Low-density generator matrix (LDGM) codes are used in our system due to their low encoding complexity. The power cost for signal processing within the implantable device is greatly reduced by avoiding explicit source encoding. Raw data which is highly correlated is transmitted. At the receiver, a Markov chain source correlation model is utilized to approximate and capture the correlation of raw data. A turbo iterative receiver algorithm is designed which connects the Markov chain source model to the LDGM decoder in a turbo-iterative way. Simulation results show that the proposed system can save up to 1 to 2.5 dB on transmission power.

  13. Immunotherapy of Brain Cancers: The Past, the Present, and Future Directions

    PubMed Central

    Ge, Lisheng; Hoa, Neil; Bota, Daniela A.; Natividad, Josephine; Howat, Andrew; Jadus, Martin R.

    2010-01-01

    Treatment of brain cancers, especially high grade gliomas (WHO stage III and IV) is slowly making progress, but not as fast as medical researchers and the patients would like. Immunotherapy offers the opportunity to allow the patient's own immune system a chance to help eliminate the cancer. Immunotherapy's strength is that it efficiently treats relatively small tumors in experimental animal models. For some patients, immunotherapy has worked for them while not showing long-term toxicity. In this paper, we will trace the history of immunotherapy for brain cancers. We will also highlight some of the possible directions that this field may be taking in the immediate future for improving this therapeutic option. PMID:21437175

  14. Combining Partial Directed Coherence and Graph Theory to Analyse Effective Brain Networks of Different Mental Tasks

    PubMed Central

    Huang, Dengfeng; Ren, Aifeng; Shang, Jing; Lei, Qiao; Zhang, Yun; Yin, Zhongliang; Li, Jun; von Deneen, Karen M.; Huang, Liyu

    2016-01-01

    Purpose: The aim of this study is to qualify the network properties of the brain networks between two different mental tasks (play task or rest task) in a healthy population. Methods and Materials: EEG signals were recorded from 19 healthy subjects when performing different mental tasks. Partial directed coherence (PDC) analysis, based on Granger causality (GC), was used to assess the effective brain networks during the different mental tasks. Moreover, the network measures, including degree, degree distribution, local and global efficiency in delta, theta, alpha, and beta rhythms were calculated and analyzed. Results: The local efficiency is higher in the beta frequency and lower in the theta frequency during play task whereas the global efficiency is higher in the theta frequency and lower in the beta frequency in the rest task. Significance: This study reveals the network measures during different mental states and efficiency measures may be used as characteristic quantities for improvement in attentional performance. PMID:27242495

  15. High speed QPPM direct detection optical communication receivers for FSDD intersatellite links

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1993-01-01

    This final report consists of four separate reports, one for each project involved in this contract. The first report is entitled '325 Mbps QPPM (quaternary pulse position modulation) Direct Detection Free Space Optical Communication Encoder and Receiver,' which was our primary work. The second report is entitled 'Test Results of the 325 Mbps QPPM High Speed Data Transmission GaAs ASICs,' which describes our work in connection with Galaxy Microsystems, Inc. who produced these ASICs for NASA. The third report, 'Receiver Performance Analysis of BPPM Optical Communication Systems Using 1.3 micron Wavelength Transmitter and InGaAs PIN Photodiodes,' was prepared at the request of the NASA/Photonics Branch for their efforts in upgrading the 1773 optical fiber data bus. The fourth report, 'Photomultiplier Tubes for Use at 1.064 micron Wavelength,' was also prepared at the request of the NASA/Photonics Branch as a research project.

  16. NASA/GSFC program in direct detection optical communications for intersatellite links

    NASA Technical Reports Server (NTRS)

    Fitzmaurice, M.; Bruno, R.

    1989-01-01

    NASA-Goddard has undertaken the development of direct-detection optical communications for space applications at the Gbps data rate channel capability level. The primary challenges to optical communications designers lie in the development of reliable optical power sources, as well as of high performance pointing/acquisition/tracking systems required by the narrow widths of the transmitted optical beams. GaAlAs diodes and their arrays are currently the most attractive technology for optical transmitters; pioneering work has also been conducted on dichroic and grating techniques for combining the power of several laser diodes. Attention is given to the performance obtained for an optical link acquisition and submicroradian tracking/pointing system.

  17. [Brain structures and functional pecularities in children with mental disorders and transcranial direct current stimulation].

    PubMed

    Kozhushko, N Iu; Kropotov, Iu D; Matveev, Iu K; Semivolos, V I; Tereshchenko, E P; Holiavin, A I

    2014-01-01

    This research represents MRI and EEG-investigation in children with mental disorders perinatal genesis during tDCS. In 70% cases brain structures damages don't found or were minimal. On the contrary, in 77% cases α-rhythm of EEG in parietal-occipital areas was non-regular. Functional insufficiency can as a basis of high efficiency tDCS by children. In cases with autism spectrum disorders the Subscales of Woodcock-Jonson were used for the quantitative estimation of efficiency of the course of treatment with tDCS. Positive changes after the course of tDCS were revealed in psychic state, speech comprehension, communication, practical and speech experience, fine motor skills and social integration.

  18. Brain mechanisms associated with internally directed attention and self-generated thought.

    PubMed

    Benedek, Mathias; Jauk, Emanuel; Beaty, Roger E; Fink, Andreas; Koschutnig, Karl; Neubauer, Aljoscha C

    2016-01-01

    Internal cognition like imagination and prospection require sustained internally directed attention and involve self-generated thought. This fMRI study aimed to disentangle the brain mechanisms associated with attention-specific and task-specific processes during internally directed cognition. The direction of attention was manipulated by either keeping a relevant stimulus visible throughout the task, or by masking it, so that the task had to be performed "in the mind's eye". The level of self-directed thought was additionally varied between a convergent and a divergent thinking task. Internally directed attention was associated with increased activation in the right anterior inferior parietal lobe (aIPL), bilateral lingual gyrus and the cuneus, as well as with extended deactivations of superior parietal and occipital regions representing parts of the dorsal attention network. The right aIPL further showed increased connectivity with occipital regions suggesting an active top-down mechanism for shielding ongoing internal processes from potentially distracting sensory stimulation in terms of perceptual decoupling. Activation of the default network was not related to internally directed attention per se, but rather to a higher level of self-generated thought. The findings hence shed further light on the roles of inferior and superior parietal cortex for internally directed cognition. PMID:26960259

  19. Brain mechanisms associated with internally directed attention and self-generated thought

    PubMed Central

    Benedek, Mathias; Jauk, Emanuel; Beaty, Roger E.; Fink, Andreas; Koschutnig, Karl; Neubauer, Aljoscha C.

    2016-01-01

    Internal cognition like imagination and prospection require sustained internally directed attention and involve self-generated thought. This fMRI study aimed to disentangle the brain mechanisms associated with attention-specific and task-specific processes during internally directed cognition. The direction of attention was manipulated by either keeping a relevant stimulus visible throughout the task, or by masking it, so that the task had to be performed “in the mind’s eye”. The level of self-directed thought was additionally varied between a convergent and a divergent thinking task. Internally directed attention was associated with increased activation in the right anterior inferior parietal lobe (aIPL), bilateral lingual gyrus and the cuneus, as well as with extended deactivations of superior parietal and occipital regions representing parts of the dorsal attention network. The right aIPL further showed increased connectivity with occipital regions suggesting an active top-down mechanism for shielding ongoing internal processes from potentially distracting sensory stimulation in terms of perceptual decoupling. Activation of the default network was not related to internally directed attention per se, but rather to a higher level of self-generated thought. The findings hence shed further light on the roles of inferior and superior parietal cortex for internally directed cognition. PMID:26960259

  20. Advance Directives and Communication Skills of Prehospital Physicians Involved in the Care of Cardiovascular Patients.

    PubMed

    Gigon, Fabienne; Merlani, Paolo; Ricou, Bara

    2015-12-01

    Advance directives (AD) were developed to respect patient autonomy. However, very few patients have AD, even in cases when major cardiovascular surgery is to follow. To understand the reasons behind the low prevalence of AD and to help decision making when patients are incompetent, it is necessary to focus on the impact of prehospital practitioners, who may contribute to an increase in AD by discussing them with patients. The purpose of this study was to investigate self-rated communication skills and the attitudes of physicians potentially involved in the care of cardiovascular patients toward AD.Self-administered questionnaires were sent to general practitioners, cardiologists, internists, and intensivists, including the Quality of Communication Score, divided into a General Communication score (QOCgen 6 items) and an End-of-life Communication score (QOCeol 7 items), as well as questions regarding opinions and practices in terms of AD.One hundred sixty-four responses were received. QOCgen (mean (±SD)): 9.0/10 (1.0); QOCeol: 7.2/10 (1.7). General practitioners most frequently start discussions about AD (74/149 [47%]) and are more prone to designate their own specialty (30/49 [61%], P < 0.0001). Overall, only 57/159 (36%) physicians designated their own specialty; 130/158 (82%) physicians ask potential cardiovascular patients if they have AD and 61/118 (52%) physicians who care for cardiovascular patients talk about AD with some of them.The characteristics of physicians who do not talk about AD with patients were those who did not personally have AD and those who work in private practices.One hundred thirty-three (83%) physicians rated the systematic mention of patients' AD in the correspondence between physicians as good, while 114 (71%) at the patients' first registration in the private practice.Prehospital physicians rated their communication skills as good, whereas end-of-life communication was rated much lower. Only half of those surveyed speak about AD

  1. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    PubMed Central

    Fuxe, Kjell; Borroto-Escuela, Dasiel O.

    2016-01-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses. PMID:27651759

  2. [Critical review of instruments to assess pain in the non communicative brain injured persons in intensive care].

    PubMed

    Roulin, Marie-José; Goulet, Céline; Ramelet, Anne-Sylvie

    2011-03-01

    The purpose of this review is to critically appraise the pain assessment tools for non communicative persons in intensive care available in the literature and to determine their relevance for those with brain injury. Nursing and medical electronic databases were searched to identify pain tools, with a description of psychometric proprieties, in English and French. Seven of the ten tools were considered relevant and systematically evaluated according to the criteria and the indicators in the following five areas: conceptualisation, target population, feasibility and clinical utility, reliability and validity. Results indicate a number of well designed pain tools, but additional work is necessary to establish their accuracy and adequacy for the brain injured non communicative person in intensive care. Recommendations are made to choose the best tool for clinical practice and for research.

  3. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

    PubMed Central

    Fuxe, Kjell; Borroto-Escuela, Dasiel O.

    2016-01-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  4. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication.

    PubMed

    Fuxe, Kjell; Borroto-Escuela, Dasiel O

    2016-08-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.

  5. Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication.

    PubMed

    Fuxe, Kjell; Borroto-Escuela, Dasiel O

    2016-08-01

    The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules, like neurotransmitters and extracellular vesicles. The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes. These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function. In fact, we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses. PMID:27651759

  6. Functional connections between optic flow areas and navigationally responsive brain regions during goal-directed navigation.

    PubMed

    Sherrill, Katherine R; Chrastil, Elizabeth R; Ross, Robert S; Erdem, Uğur M; Hasselmo, Michael E; Stern, Chantal E

    2015-09-01

    Recent computational models suggest that visual input from optic flow provides information about egocentric (navigator-centered) motion and influences firing patterns in spatially tuned cells during navigation. Computationally, self-motion cues can be extracted from optic flow during navigation. Despite the importance of optic flow to navigation, a functional link between brain regions sensitive to optic flow and brain regions important for navigation has not been established in either humans or animals. Here, we used a beta-series correlation methodology coupled with two fMRI tasks to establish this functional link during goal-directed navigation in humans. Functionally defined optic flow sensitive cortical areas V3A, V6, and hMT+ were used as seed regions. fMRI data was collected during a navigation task in which participants updated position and orientation based on self-motion cues to successfully navigate to an encoded goal location. The results demonstrate that goal-directed navigation requiring updating of position and orientation in the first person perspective involves a cooperative interaction between optic flow sensitive regions V3A, V6, and hMT+ and the hippocampus, retrosplenial cortex, posterior parietal cortex, and medial prefrontal cortex. These functional connections suggest a dynamic interaction between these systems to support goal-directed navigation.

  7. Bi-directional communication interface for microprocessor-to-system/370

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1981-01-01

    The design and operation of a bi-directional communication interface between a microcomputer and the IBM System/370 is documented. The hardware unit interconnects a modem to interface to the S/370, the microcomputer with an EIA I/O port, and a terminal for sending and receiving data from either the microcomputer or the S/370. Also described is the software necessary for the two-way interface. This interface is designed so that no modifications need to be made to the terminal, modem, or microcomputer.

  8. Reexamining the Security of Controlled Quantum Secure Direct Communication by Using Four Particle Cluster States

    NASA Astrophysics Data System (ADS)

    Qin, Su-Juan

    2012-09-01

    A controlled quantum secure direct communication protocol (Zhang et al. in Int. J. Theor. Phys. 48:2971-2976, 2009) by using four particle cluster states was proposed recently. Yang et al. presented an attack with fake entangled particles (FEP attack) and gave an improvement (Yang et al. in Int. J. Theor. Phys. 50:395-400, 2010). In this paper, we reexamine the protocol's security and discover that, Bob can also take a different attack, disentanglement attack, to obtain Alice's secret message without controller's permission. Moreover, our attack strategy also works for Yang's improvement.

  9. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications.

    PubMed

    Weyrauch, Thomas; Vorontsov, Mikhail A

    2005-10-20

    Wavefront control experiments in strong scintillation conditions (scintillation index, approximately equal to 1) over a 2.33 km, near-horizontal, atmospheric propagation path are presented. The adaptive-optics system used comprises a tracking and a fast-beam-steering mirror as well as a 132-actuator, microelectromechanical-system, piston-type deformable mirror with a VLSI controller that implements stochastic parallel gradient descent control optimization of a system performance metric. The experiments demonstrate mitigation of atmospheric distortions with a speckle beacon typical for directed energy and free-space laser communication applications.

  10. Poverty, Stress, and Brain Development: New Directions for Prevention and Intervention.

    PubMed

    Blair, Clancy; Raver, C Cybele

    2016-04-01

    We review some of the growing evidence of the costs of poverty to children's neuroendocrine function, early brain development, and cognitive ability. We underscore the importance of addressing the negative consequences of poverty-related adversity early in children's lives, given evidence supporting the plasticity of executive functions and associated physiologic processes in response to early intervention and the importance of higher order cognitive functions for success in school and in life. Finally, we highlight some new directions for prevention and intervention that are rapidly emerging at the intersection of developmental science, pediatrics, child psychology and psychiatry, and public policy. PMID:27044699

  11. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    NASA Astrophysics Data System (ADS)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  12. Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy.

    PubMed

    Kochanek, Patrick M; Bramlett, Helen M; Shear, Deborah A; Dixon, C Edward; Mondello, Stefania; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Poloyac, Samuel M; Empey, Philip E; Povlishock, John T; Mountney, Andrea; Browning, Megan; Deng-Bryant, Ying; Yan, Hong Q; Jackson, Travis C; Catania, Michael; Glushakova, Olena; Richieri, Steven P; Tortella, Frank C

    2016-03-15

    Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition. PMID:26671284

  13. Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy.

    PubMed

    Kochanek, Patrick M; Bramlett, Helen M; Shear, Deborah A; Dixon, C Edward; Mondello, Stefania; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Poloyac, Samuel M; Empey, Philip E; Povlishock, John T; Mountney, Andrea; Browning, Megan; Deng-Bryant, Ying; Yan, Hong Q; Jackson, Travis C; Catania, Michael; Glushakova, Olena; Richieri, Steven P; Tortella, Frank C

    2016-03-15

    Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition.

  14. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    PubMed Central

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  15. Rapid P300 brain-computer interface communication with a head-mounted display

    PubMed Central

    Käthner, Ivo; Kübler, Andrea; Halder, Sebastian

    2015-01-01

    Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient's bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5 × 5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A), the same 5 × 5 matrix filled the field of view of the user. In the second (glasses B), single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on three different occasions (glasses A condition only). For healthy participants, average online spelling accuracies were 94% (15.5 bits/min) using three flash sequences for spelling with the monitor and glasses A and 96% (16.2 bits/min) with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100% (10 bits/min) using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100% accuracy). We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely

  16. Rapid P300 brain-computer interface communication with a head-mounted display.

    PubMed

    Käthner, Ivo; Kübler, Andrea; Halder, Sebastian

    2015-01-01

    Visual ERP (P300) based brain-computer interfaces (BCIs) allow for fast and reliable spelling and are intended as a muscle-independent communication channel for people with severe paralysis. However, they require the presentation of visual stimuli in the field of view of the user. A head-mounted display could allow convenient presentation of visual stimuli in situations, where mounting a conventional monitor might be difficult or not feasible (e.g., at a patient's bedside). To explore if similar accuracies can be achieved with a virtual reality (VR) headset compared to a conventional flat screen monitor, we conducted an experiment with 18 healthy participants. We also evaluated it with a person in the locked-in state (LIS) to verify that usage of the headset is possible for a severely paralyzed person. Healthy participants performed online spelling with three different display methods. In one condition a 5 × 5 letter matrix was presented on a conventional 22 inch TFT monitor. Two configurations of the VR headset were tested. In the first (glasses A), the same 5 × 5 matrix filled the field of view of the user. In the second (glasses B), single letters of the matrix filled the field of view of the user. The participant in the LIS tested the VR headset on three different occasions (glasses A condition only). For healthy participants, average online spelling accuracies were 94% (15.5 bits/min) using three flash sequences for spelling with the monitor and glasses A and 96% (16.2 bits/min) with glasses B. In one session, the participant in the LIS reached an online spelling accuracy of 100% (10 bits/min) using the glasses A condition. We also demonstrated that spelling with one flash sequence is possible with the VR headset for healthy users (mean: 32.1 bits/min, maximum reached by one user: 71.89 bits/min at 100% accuracy). We conclude that the VR headset allows for rapid P300 BCI communication in healthy users and may be a suitable display option for severely

  17. Star on the horizon: The emergence of the direct broadcast satellite in American mass communications

    NASA Astrophysics Data System (ADS)

    Thomas, J. H.

    1984-12-01

    The purpose of this thesis is to describe the concept of broadcasting from satellites directly to the viewer equipped with a small, inexpensive receiving antenna, and the evolution of this technology as a means of commercial broadcast. Emphasis is placed on the problems of developing a regulatory framework for DBS by the Federal Communications Commission. The opposition of the existing broadcasters to the unregulated development of direct broadcast satellite (DBS) is explored in light of the possible effect that DBS may have on the economic base, audience, and advertising revenue of existing broadcasters. The information for this study was obtained from government documents, legal journals, books and the popular press. Two basic conclusions are drawn from this study: First, that the existing broadcasters have opposed the marketplace development of DBS, and second, that DBS does not pose as great a threat, at least in the near term, as the broadcasters fear.

  18. Design and implementation of omni-directional light source and receiving system used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Chen, Nannan

    2013-08-01

    Underwater wireless optical communication is a communication mode which uses light as an information carrier and water as transmission medium. As a result of the inherent characteristics of the light waves, underwater wireless optical communication has the advantages of high transmission rate, good security, and strong anti-interference ability. It is suitable for high-speed, short-range communication between underwater mobile vehicles. Underwater optical wireless communication system designed in this paper is composed of the omni-directional communication light source and the receiving system. In the omni-directional communication light source, the laser beams with small divergence angle of 532nm wavelength produced by modulated laser are expanded through a combination refraction-reflection solid and then obtain more than 2π space divergence angle. The paper use TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and test in the air and underwater, the result shows that the effect is fine. Unlike in the air, light attenuation is heavy in the water and a large range of variations in light intensity at different distances appear during underwater optical communication. In order to overcome this problem, the paper use a small photomultiplier as the detection device, design the receiving system using the automatic gain control technique. Underwater wireless optical communication system designed in this paper has the characteristics of small size, low power dissipation and the omni-directional communication function, it is suitable for application in the UUV, AUV, Swimmer Delivery Vehicle (SDV) and other underwater mobile platform, it realizes point-to-point communications and point-to-multipoint communications.

  19. The effect of gaze direction on three-dimensional face recognition in infant brain activity.

    PubMed

    Yamashita, Wakayo; Kanazawa, So; Yamaguchi, Masami K; Kakigi, Ryusuke

    2012-09-12

    In three-dimensional face recognition studies, it is well known that viewing rotating faces enhance face recognition. For infants, our previous study indicated that 8-month-old infants showed recognition of three-dimensional rotating faces with a direct gaze, and they did not learn with an averted gaze. This suggests that gaze direction may affect three-dimensional face recognition in infants. In this experiment, we used near-infrared spectroscopy to measure infants' hemodynamic responses to averted gaze and direct gaze. We hypothesized that infants would show different neural activity for averted and direct gazes. The responses were compared with the baseline activation during the presentation of non-face objects. We found that the concentration of oxyhemoglobin increased in the temporal cortex on both sides only during the presentation of averted gaze compared with that of the baseline period. This is the first study to show that infants' brain activity in three-dimensional face processing is different between averted gaze and direct gaze.

  20. Investigation of the best model to characterize diffuse correlation spectroscopy measurements acquired directly on the brain

    NASA Astrophysics Data System (ADS)

    Verdecchia, K.; Diop, M.; St. Lawrence, K.

    2015-03-01

    Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique capable of monitoring tissue perfusion changes, particularly in the brain. The normalized temporal intensity autocorrelation function generated by DCS is typically characterized by assuming that the movement of erythrocytes can be modeled as a Brownian diffusion-like process instead of the expected random flow model. Carp et al. [Biomedical Optics Express, 2011] proposed a hybrid model, referred to as the hydrodynamic diffusion model, to capture both the random ballistic and diffusive nature of erythrocyte motion. The purpose of this study was to compare how well the Brownian diffusion and the hydrodynamic diffusion models characterized DCS data acquired directly on the brain, avoiding the confounding effects of scalp and skull. Data were acquired from seven pigs during normocapnia (39.9 +/- 0.7 mmHg) and hypocapnia (22.1 +/- 1.6 mmHg) with the DCS fibers placed 7 mm apart, directly on the cerebral cortex. The hydrodynamic diffusion model was found to provide a consistently better fit to the autocorrelation functions compared to the Brownian diffusion model and was less sensitive to the chosen start and end time points used in the fitting. However, the decrease in cerebral blood flow from normocapnia to hypocapnia determined was similar for the two models (-42.6 +/- 8.6 % for the Brownian model and -42.2 +/- 10.2 % for the hydrodynamic model), suggesting that the latter is reasonable for monitoring flow changes.

  1. An Actor-Critic architecture and simulator for goal-directed Brain-Machine Interfaces.

    PubMed

    Mahmoudi, Babak; Principe, Jose C; Sanchez, Justin C

    2009-01-01

    The Perception-Action Cycle (PAC) is a central component of goal-directed behavior because it links internal percepts with external outcomes in the environment. Using inspiration from the PAC, we are developing a Brain-Machine Interface control architecture that utilizes both motor commands and goal information directly from the brain to navigate to novel targets in an environment. An Actor-Critic algorithm was selected for decoding the neural motor commands because it is a PAC-based computational framework where the perception component is implemented in the critic structure and the actor is responsible for taking actions. We develop in this work a biologically realistic simulator to analyze the performance of the decoder in terms of convergence and target acquisition. Experience from the simulator will guide parameter selection and assist in understanding the architecture before animal experiments. By varying the signal to noise ratio of the neural input and error signal, we were able to demonstrate how the learning rate and initial conditions affect a motor control target selection task. In this framework, the naïve decoder was able to reach targets in the presence of noise in the error signal and neural motor command with 98% accuracy. PMID:19963795

  2. The internal carotid artery does not directly supply the brain in the Monodontidae (order Cetacea).

    PubMed

    Vogl, A W; Fisher, H D

    1981-11-01

    In this paper we describe the gross and microscopic anatomy of the internal carotid artery and demonstrate that this vessel does not directly supply blood to the brain, in the Monodontidae (order Cetacea). Our account is based on gross dissections and perfusion casts of the arterial vasculature in Delphinapterus leucas and Monodon monoceros and on histological material from the latter species. The internal carotid artery originates low in the neck and extends to the carotid rete at the base of the brain. The vessel tapers dramatically along its cervical course and changes from an artery elastic in nature to one more muscular. A single large cervical branch occurs in D. leucas and supplies cerebrally related retia in this region and prevertebral muscles. No cervical branches occur in M. monoceros. In otic regions, the internal carotid artery is small and muscular. A lumen is present; however, a split internal and external elastic lamella and a thickened subendothelial layer are evident. Though patent in the neck and ear, the vessel appears occluded within the carotid canal. At this level, the vessel is characterized by absence of a lumen and by fragmented elastic lamellae. We conclude that the internal carotid artery is anatomically closed at a level just proximal to the carotid rete and hence has no direct involvement with cerebral blood supply in the Monodontidae. Our results confirm other investigators' work on smaller cetacean species. PMID:7299829

  3. 75 FR 81512 - Airworthiness Directives; Various Aviation Communication & Surveillance Systems (ACSS) Traffic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Communication & Surveillance Systems (ACSS) Traffic Alert and Collision Avoidance System (TCAS) Units AGENCY... identified in this proposed AD, contact Aviation Communication & Surveillance Systems, LLC, 19810 North 7th... received reports of anomalies with the Aviation Communication & Surveillance Systems (ACSS) Traffic...

  4. "Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca(2+) fluoroimaging".

    PubMed

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-01-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca(2+) indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca(2+) dynamics of neural cells were visualized simultaneously by fluorescence imaging.

  5. Two-Person Neuroscience and Naturalistic Social Communication: The Role of Language and Linguistic Variables in Brain-Coupling Research

    PubMed Central

    García, Adolfo M.; Ibáñez, Agustín

    2014-01-01

    Social cognitive neuroscience (SCN) seeks to understand the brain mechanisms through which we comprehend others’ emotions and intentions in order to react accordingly. For decades, SCN has explored relevant domains by exposing individual participants to predesigned stimuli and asking them to judge their social (e.g., emotional) content. Subjects are thus reduced to detached observers of situations that they play no active role in. However, the core of our social experience is construed through real-time interactions requiring the active negotiation of information with other people. To gain more relevant insights into the workings of the social brain, the incipient field of two-person neuroscience (2PN) advocates the study of brain-to-brain coupling through multi-participant experiments. In this paper, we argue that the study of online language-based communication constitutes a cornerstone of 2PN. First, we review preliminary evidence illustrating how verbal interaction may shed light on the social brain. Second, we advance methodological recommendations to design experiments within language-based 2PN. Finally, we formulate outstanding questions for future research. PMID:25249986

  6. Two-person neuroscience and naturalistic social communication: the role of language and linguistic variables in brain-coupling research.

    PubMed

    García, Adolfo M; Ibáñez, Agustín

    2014-01-01

    Social cognitive neuroscience (SCN) seeks to understand the brain mechanisms through which we comprehend others' emotions and intentions in order to react accordingly. For decades, SCN has explored relevant domains by exposing individual participants to predesigned stimuli and asking them to judge their social (e.g., emotional) content. Subjects are thus reduced to detached observers of situations that they play no active role in. However, the core of our social experience is construed through real-time interactions requiring the active negotiation of information with other people. To gain more relevant insights into the workings of the social brain, the incipient field of two-person neuroscience (2PN) advocates the study of brain-to-brain coupling through multi-participant experiments. In this paper, we argue that the study of online language-based communication constitutes a cornerstone of 2PN. First, we review preliminary evidence illustrating how verbal interaction may shed light on the social brain. Second, we advance methodological recommendations to design experiments within language-based 2PN. Finally, we formulate outstanding questions for future research.

  7. Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia.

    PubMed

    Joukal, Marek; Klusáková, Ilona; Dubový, Petr

    2016-05-01

    The anatomical position of the subarachnoid space (SAS) in relation to dorsal root ganglia (DRG) and penetration of tracer from the SAS into DRG were investigated. We used intrathecal injection of methylene blue to visualize the anatomical position of the SAS in relation to DRG and immunostaining of dipeptidyl peptidase IV (DPP-IV) for detecting arachnoid limiting the SAS. Intrathecal administration of fluorescent-conjugated dextran (fluoro-emerald; FE) was used to demonstrate direct communication between the SAS and DRG. Intrathecal injection of methylene blue and DPP-IV immunostaining revealed that SAS delimited by the arachnoid was extended up to the capsule of DRG in a fold-like recess that may reach approximately half of the DRG length. The arachnoid was found in direct contact to the neuronal body-rich area in the angle between dorsal root and DRG as well as between spinal nerve roots at DRG. Particles of FE were found in the cells of DRG capsule, satellite glial cells, interstitial space, as well as in small and medium-sized neurons after intrathecal injection. Penetration of FE from the SAS into the DRG induced an immune reaction expressed by colocalization of FE and immunofluorescence indicating antigen-presenting cells (MHC-II+), activated (ED1+) and resident (ED2+) macrophages, and activation of satellite glial cells (GFAP+). Penetration of lumbar-injected FE into the cervical DRG was greater than that into the lumbar DRG after intrathecal injection of FE into the cisterna magna. Our results demonstrate direct communication between DRG and cerebrospinal fluid in the SAS that can create another pathway for possible propagation of inflammatory and signaling molecules from DRG primary affected by peripheral nerve injury into DRG of remote spinal segments. PMID:26844624

  8. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    PubMed

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  9. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    PubMed Central

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed. PMID:25264675

  10. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network

    NASA Astrophysics Data System (ADS)

    Fan, Denggui; Wang, Zhihui; Wang, Qingyun

    2016-07-01

    The effect of conventional deep brain stimulation (DBS) on debilitating symptoms of Parkinson's disease can be limited because it can only yield the spherical field. And, some side effects are clearly induced with influencing their adjacent ganglia. Recent experimental evidence for patients with Parkinson's disease has shown that a novel DBS electrode with 32 independent stimulation source contacts can effectively optimize the clinical therapy by enlarging the therapeutic windows, when it is applied on the subthalamic nucleus (STN). This is due to the selective activation in clusters of various stimulation contacts which can be steered directionally and accurately on the targeted regions of interest. In addition, because of the serious damage to the neural tissues, the charge-unbalanced stimulation is not typically indicated and the real DBS utilizes charge-balanced bi-phasic (CBBP) pulses. Inspired by this, we computationally investigate the optimal control of directional CBBP-DBS from the proposed parkinsonian neuronal network of basal ganglia-thalamocortical circuit. By appropriately tuning stimulation for different neuronal populations, it can be found that directional steering CBBP-DBS paradigms are superior to the spherical case in improving parkinsonian dynamical properties including the synchronization of neuronal populations and the reliability of thalamus relaying the information from cortex, which is in a good agreement with the physiological experiments. Furthermore, it can be found that directional steering stimulations can increase the optimal stimulation intensity of desynchronization by more than 1 mA compared to the spherical case. This is consistent with the experimental result with showing that there exists at least one steering direction that can allow increasing the threshold of side effects by 1 mA. In addition, we also simulate the local field potential (LFP) and dominant frequency (DF) of the STN neuronal population induced by the activation

  11. Transport of thyroxine across the blood-brain barrier is directed primarily from brain to blood in the mouse

    SciTech Connect

    Banks, W.A.; Kastin, A.J.; Michals, E.A.

    1985-12-23

    The role of the blood-brain barrier (BBB) in the transport of thyroxine was examined in mice. Radioiodinated (hot thyroxine (hT/sub 4/) administered icv had a half-time disappearance from the brain of 30 min. This increased to 60 min (p < 0.001) when administered with 211 pmole/mouse of unlabeled (cold) thyroxine (cT/sub 4/). The Km for this inhibition of hT/sub 4/ transport out of the brain by cT/sub 4/ was 9.66 pmole/brain. Unlabeled 3,3',5 triiodothyronine (cT/sub 3/) was unable to inhibit transport of hT/sub 4/ out of the brain, although both cT/sub 3/ (p < 0.05) and cT/sub 4/ (p < 0.05) did inhibit transport of radioiodinated 3,3',5 triiodothyronine (hT/sub 3/) to a small degree. Entry of hT/sub 4/ into the brain after peripheral administration was negligible and was not affected by either cT/sub 4/ nor cT/sub 3/. By contrast, the entry of hT/sub 3/ into the brain after peripheral administration was inhibited by cT/sub 3/ (p < 0.001) and was increased by cT/sub 4/ (p < 0.01). The levels of the unlabeled thyroid hormones administered centrally in these studies did not affect bulk flow, as assessed by labeled red blood cells (/sup 99m/Tc-RBC), or the carrier mediated transport of iodide out of the brain. Likewise, the vascular space of the brain and body, as assessed by /sup 99m/Tc-RBC, was unchanged by the levels of peripherally administered unlabeled thyroid hormones. Therefore, the results of these studies are not due to generalized effects of thyroid hormones on BBB transport. The results indicate that in the mouse the major carrier-mediated system for thyroxine in the BBB transports thyroxine out of the brain, while the major system for triiodothyronine transports hormone into the brain. 14 references, 3 figures, 2 tables.

  12. Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects.

    PubMed

    Marcus, Kendra; Mattos, Carla

    2015-04-15

    The crystal structure of RAS was first solved 25 years ago. In spite of tremendous and sustained efforts, there are still no drugs in the clinic that directly target this major driver of human cancers. Recent success in the discovery of compounds that bind RAS and inhibit signaling has fueled renewed enthusiasm, and in-depth understanding of the structure and function of RAS has opened new avenues for direct targeting. To succeed, we must focus on the molecular details of the RAS structure and understand at a high-resolution level how the oncogenic mutants impair function. Structural networks of intramolecular communication between the RAS active site and membrane-interacting regions on the G-domain are disrupted in oncogenic mutants. Although conserved across the isoforms, these networks are near hot spots of protein-ligand interactions with amino acid composition that varies among RAS proteins. These differences could have an effect on stabilization of conformational states of interest in attenuating signaling through RAS. The development of strategies to target these novel sites will add a fresh direction in the quest to conquer RAS-driven cancers. Clin Cancer Res; 21(8); 1810-8. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878362

  13. Influencing feelings of cancer risk: direct and moderator effects of affectively laden phrases in risk communication.

    PubMed

    Janssen, Eva; van Osch, Liesbeth; Lechner, Lilian; de Vries, Hein

    2015-01-01

    Evidence is accumulating for the importance of feelings of risk in explaining cancer preventive behaviors, but best practices for influencing these feelings are limited. This study investigated the direct and moderational influence of affectively laden phrases in cancer risk messages. Two experimental studies were conducted in relation to different cancer-related behaviors--sunbed use (n = 112) and red meat consumption (n = 447)--among student and nonstudent samples. Participants were randomly assigned to one of two conditions: (a) a cognitive message using cognitively laden phrases or (b) an affective message using affectively laden phrases. The results revealed that affective phrases did not directly influence feelings of risk in both studies. Evidence for a moderational influence was found in Study 2, suggesting that affective information strengthened the relation between feelings of risk and intention (i.e., participants relied more on their feelings in the decision-making process after exposure to affective information). These findings suggest that solely using affective phrases in risk communication may not be sufficient to directly influence feelings of risk and other methods need to be explored in future research. Moreover, research is needed to replicate our preliminary indications for a moderational influence of affective phrases to advance theory and practice. PMID:25569710

  14. Performance Evaluation and Optimization of Receivers for Direct Detection Optical Communication.

    NASA Astrophysics Data System (ADS)

    Schumacher, Klaus

    Available from UMI in association with The British Library. This thesis is concerned with performance evaluation and optimization of direct detection optical communication systems. It is based on a comprehensive model of a fibre -optic receiver which accounts for the stochastic nature of the signals in a mathematically rigorous manner. Special emphasis is placed on the inclusion of jitter into the receiver description since this impairment is of increasing importance in very high speed communication systems. A tight upper bound on the error probability, the modified Chernoff bound, is employed for performance assessment. Its formulation incorporates timing imperfections either of the received signal or of the extracted clock. A distribution-free bound is derived which is based on jitter range and variance only. Using variational calculus techniques receiver filters are identified which minimize the bound on the error probability, taking into account simultaneously all impairments including jitter and arbitrarily coloured additive noise. The optimum filter impulse responses are obtained as solutions of a differential equation. This approach does not address the problem of filter realizability. However, realizable, low-order filters can be obtained--again on the basis of the modified Chernoff bound --by means of numerical optimization. This approach is particularly attractive because it results in considerable performance advantages over conventionally used filters of the same complexity. The performance of these practical filters is further found to be only marginally inferior to that of the theoretical optimum filter.

  15. Overlapping Computation and Communication: Barrier Algorithms and ConnectX-2 CORE-Direct Capabilities

    SciTech Connect

    Graham, Richard L; Poole, Stephen W; Shamis, Pavel; Bloch, Gil; Bloch, Noam; Kagan, Michael; Rabinovitz, Ishai; Shainer, Gilad

    2010-01-01

    This paper explores the computation and communication overlap capabilities enabled by the new CORE-Direct hardware capabilities introduced in the InfiniBand (IB) Host Channel Adapter (HCA) ConnectX-2. These capabilities enable the progression and completion of data-dependent communications sequences to progress and complete at the network level without any Central Processing Unit (CPU) involvement. We use the latency dominated nonblocking barrier algorithm in this study, and find that at 64 process count, a contiguous time slot of about 80 percent of the nonblocking barrier time is available for computation. This time slot increases as the number of processes participating increases. In contrast, CPU based implementations provide a time slot of up to 30 percent of the nonblocking barrier time. This bodes well for the scalability of simulations employing offloaded collective operations. These capabilities can be used to reduce the effects of system noise, and when using nonblocking collective operations have the potential to hide the effects of application load imbalance.

  16. Overlapping Computation and Communication: Barrier Algorithms and ConnectX-2 CORE-Direct Capabilities

    SciTech Connect

    Graham, Richard L; Poole, Stephen W; Shamis, Pavel; Bloch, Gil; Bloch, Noam; Shainer, Gilad

    2010-01-01

    This paper explores the computation and communication overlap capabilities enabled by the new CORE-Direct hardware capabilities introduced in the InfiniBand (IB) Host Channel Adapter (HCA) ConnectX-2. These capabilities enable the progression and completion of data-dependent communications sequences to progress and complete at the network level without any Central Processing Unit (CPU) involvement. We use the latency dominated nonblocking barrier algorithm in this study, and find that at 64 process count, a contiguous time slot of about 80 percent of the nonblocking barrier time is available for computation. This time slot increases as the number of processes participating increases. In contrast, CPU based implementations provide a time slot of up to 30 percent of the nonblocking barrier time. This bodes well for the scalability of simulations employing offloaded collective operations These capabilities can be used to reduce the effects of system noise, and when using nonblocking collective operations have the potential to hide the effects of application load imbalance.

  17. Duplex communicable implanted antenna for magnetic direct feeding method: Functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro; Matsuki, Hidetoshi; Sato, Fumihiro; Satoh, Tadakuni; Handa, Nobuyasu

    2009-04-01

    Functional electrical stimulation (FES) is the therapy used for the rehabilitation of lost movement function by applying electrical stimulation (ES) to paralyzed extremities. To realize ES, we adapted the implanted direct feeding method (DFM). In this method, small implanted stimulators are placed under the skin at a depth of 10-20 mm and stimulus energy and signals for controlling devices are applied to them by a mounted system using magnetic coupling. This method has the merits of having no percutaneous points and high-precision stimulation. However, since the mounted system and implanted elements are separated, it is necessary to add feedback information from inside the body to confirm the system operation for safety therapy or to rehabilitate motor function smoothly. Satisfying both restrictions, we propose the magnetic connective dual resonance (MCDR) antenna, which has two resonance circuits. Adding the LC serial circuit to the LC parallel circuit gives the sending function. In this paper, we report the principle of the MCDR antenna and verify its duplex communication ability through communication experiment. This antenna enables DFM of FES to rehabilitate more complex movements.

  18. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  19. Wireless audio and burst communication link with directly modulated THz photoconductive antenna.

    PubMed

    Liu, Tze-An; Lin, Gong-Ru; Chang, Yung-Cheng; Pan, Ci-Ling

    2005-12-12

    We demonstrate transmission of audio and burst signals through a prototype THz analog communication link employing laser-gated low-temperature-grown GaAs dipole antenna as THz emitter and receiver. The transmission distance is about 100 cm. By using a direct voltage modulation format, we successfully demodulated a burst signal with a rising time of 41 micros. The corresponding modulating bandwidth achieved was 23 kHz in this first experiment. Noise analysis reveals a 10% power fluctuation in the received signal with on-off extinction ratio of greater than 1000. The transmission of a six-channel analog and burst audio signal with least distortion is also demonstrated. We further demonstrate the fidelity of the transmission of a melody through the THz link with and without any amplification. PMID:19503256

  20. Wireless audio and burst communication link with directly modulated THz photoconductive antenna

    NASA Astrophysics Data System (ADS)

    Liu, Tze-An; Lin, Gong-Ru; Chang, Yung-Cheng; Pan, Ci-Ling

    2005-12-01

    We demonstrate transmission of audio and burst signals through a prototype THz analog communication link employing laser-gated low-temperature-grown GaAs dipole antenna as THz emitter and receiver. The transmission distance is about 100 cm. By using a direct voltage modulation format, we successfully demodulated a burst signal with a rising time of 41 μs. The corresponding modulating bandwidth achieved was 23 kHz in this first experiment. Noise analysis reveals a 10% power fluctuation in the received signal with on-off extinction ratio of greater than 1000. The transmission of a six-channel analog and burst audio signal with least distortion is also demonstrated. We further demonstrate the fidelity of the transmission of a melody through the THz link with and without any amplification.

  1. 50 Mbps free space direct detection laser diode optical communication system with Q = 4 PPM signaling

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic; Field, Christopher

    1990-01-01

    A 50 Mbps direct detection optical communication system for use in an intersatellite link was constructed with an AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector. The system used a Q = 4 PPM format. The receiver consisted of a maximum likelihood PPM detector and a timing recovery subsystem. The PPM slot clock was recovered at the receiver by using a transition detector followed by a PLL. The PPM word clock was recovered by using a second PLL whose input was derived from the presence of back-to-back PPM pulses contained in the received random PPM pulse sequences. The system achieved a bit error rate of 0.000001 at less than 50 detected signal photons/information bit. The receiver was capable of acquiring and maintaining slot and word synchronization for received signal levels greater than 20 photons/information bit, at which the receiver bit error rate was about 0.01.

  2. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  3. Improving the security of secure direct communication based on the secret transmitting order of particles

    SciTech Connect

    Li Xihan; Deng Fuguo; Zhou Hongyu

    2006-11-15

    We analyzed the security of the secure direct communication protocol based on the secret transmitting order of particles recently proposed by Zhu, Xia, Fan, and Zhang[Phys. Rev. A 73, 022338 (2006)] and found that this scheme is insecure if an eavesdropper, say Eve, wants to steal the secret message with Trojan horse attack strategies. The vital loophole in this scheme is that the two authorized users check the security of their quantum channel only once. Eve can insert another spy photon, an invisible photon, or a delay one in each photon which the sender Alice sends to the receiver Bob, and capture the spy photon when it returns from Bob to Alice. After the authorized users check the security, Eve can obtain the secret message according to the information about the transmitting order published by Bob. Finally, we present a possible improvement of this protocol.

  4. Quantum direct communication protocol strengthening against Pavičić’s attack

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Shi, Wei-Xu; Wang, Jian; Tang, Chao-Jing

    2015-12-01

    A quantum circuit providing an undetectable eavesdropping of information in message mode, which compromises all two-state ψ-ϕ quantum direct communication (QDC) protocols, has been recently proposed by Pavičić [Phys. Rev. A 87 (2013) 042326]. A modification of the protocol’s control mode is proposed, which improves users’ 25% detection probability of Eve to 50% at best, as that in ping-pong protocol. The modification also improves the detection probability of Wójcik’s attack [Phys. Rev. Lett 90 (2003) 157901] to 75% at best. The resistance against man-in-the-middle (MITM) attack as well as the discussion of security for four Bell state protocols is presented. As a result, the protocol security is strengthened both theoretically and practically, and quantum advantage of superdense coding is restored.

  5. Integration of new communications and mast subsystems on an Omni-Directional Inspection Robot (ODIS)

    NASA Astrophysics Data System (ADS)

    Hunt, Shawn; Li, Yung-Sen; Witus, Gary; Walter, Steven; Ellis, R. Darin; Auner, Gregory; Cao, Alex; Pandya, Abhilash

    2007-10-01

    Our research has focused on how to expand the capabilities of an Omni-Directional Inspection Robot (ODIS) to assist in vehicle inspections at traffic control checkpoints with a standoff distance of 450m. We have implemented an mast, extendible to eight feet, capable of carrying a sensor payload that has an RS-232 connection with a simple set of commands to control its operation. We have integrated a communications chain that provides the desired distance and sufficient speed to transmit a live digital feed to the operator control unit (OCU). We have also created a physically-based simulation of ODIS and our mast inside of Webots and have taken data to calibrate a motion response model.

  6. A Bidirectional Quantum Secure Direct Communication Protocol Based on Five-Particle Cluster State

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li

    2013-09-01

    To transmit a message safely, five-particle cluster state particles are used to construct a bidirectional quantum secure direct communication protocol. Five-particle cluster state particles are used for both detecting eavesdroppers and transmitting secret messages. All of the five-particle cluster states' photons for detection are mixed to the sending sequence to detect eavesdroppers. The detection rate approaches 88% per qubit. The five-particle cluster states needed are only one fifth of the photons in the sending sequence. In this protocol, there is no photon carrying secret information transmitting in quantum channel, and the classical XOR operation which serves as a one-time-pad is used to ensure the security of the protocol. Compared with three photons of each five-particle cluster state as detection photons, the five photons in this study will decrease the five-particle cluster states needed for detection greatly.

  7. Output consensus for multiple non-holonomic systems under directed communication topology

    NASA Astrophysics Data System (ADS)

    Xu, Yaojin; Tian, Yu-Ping; Chen, YangQuan

    2015-02-01

    In this paper, the problem of output consensus for multiple non-holonomic systems in chained form has been investigated. First, an output consensus controller under the strongly connected communication topology is devised by two steps, where a time-varying control strategy and the backstepping design technique are employed. Then, the results are extended to the general directed topology case via graph decomposition, in which the input-to-state stability theory plays a critical role. We prove that the proposed controller can achieve the semi-global output consensus among multiple non-holonomic systems, provided that the interaction graph contains a spanning tree. Finally, numerical examples are provided to illustrate the effectiveness of the designed controller.

  8. Plans for a STRV-2 to AMOS High Data Rate Bi-Directional Optical Communications Link

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Kenny, J.; Moynihan, P.

    2000-01-01

    The Ballistic Missile Defense Organization has developed a high-data rate (155 Mbps - 1 Gbps) optical communications terminal that will be flown on the STRV-2 satellite. The satellite is scheduled for launch in November 1999, and NASA/JPL has been asked to investigate the use of the AMOS facility as a backup ground terminal to a small transportable terminal constructed by Astroterra Corporation of San Diego. The ground terminal built by Astroterra is designed to support a links out to 2000 km, and will be located at the Table Mountain Facility in Wrightwood, California. Subject to BMDO approval, the demonstration from AMOS will begin in early 2000. For the demonstration, the beam-director tracker will serve as the uplink transmitter, and the 1.6-m telescope as the downlink receiver. It will support bi-directional links out to the 3500-km maximum slant range of the satellite's pass.

  9. The role of direct broadcasting satellites in the integrated communications environment

    NASA Astrophysics Data System (ADS)

    Rutkowski, A. M.

    The global integration of information sources, telecommunication systems, and user terminals into a computer-controlled distributed communication network, known as the Integrated Services Digital Network (ISDN), will markedly affect the role of direct broadcasting satellites (DBS). DBS facilities will be increasingly used for the dissemination of non-video materials and will become a dominant means of electronic publishing. These facilities will also be used to selectively address information to dynamically definable classes of users, thus altering the very concept and definition of broadcasting. Finally, DBS will transform into multipoint distribution systems emanating from the ISDN. It is pointed out that although some of these developments wil not fully emerge for one or two decades, consideration should be given to the impact of the ISDN on society and its legal systems.

  10. Communication

    NASA Technical Reports Server (NTRS)

    Griner, James

    2010-01-01

    NASA s communication work for the UAS Command and Control area will build upon work currently being conducted under NASA Recovery Act funds. Communication portions of UAS NextGen ConOps, Stateof- the-Art assessment, and Gap Analysis. Preliminary simulations for UAS CNPC link scalability assessment. Surrogate UAS aircraft upgrades. This work will also leverage FY10 in-guide funding for communication link model development. UAS are currently managed through exceptions and are operating using DoD frequencies for line-of-sight (LOS) and satellite-based communications links, low-power LOS links in amateur bands, or unlicensed Instrument/Scientific/Medical (ISM) frequencies. None of these frequency bands are designated for Safety and Regularity of Flight. No radio-frequency (RF) spectrum has been allocated by the International Telecommunications Union (ITU) specifically for UAS command and control links, for either LOS or Beyond LOS (BLOS) communication.

  11. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks

    PubMed Central

    González, J. Antonio; Iordanidou, Panagiota; Strom, Molly; Adamantidis, Antoine; Burdakov, Denis

    2016-01-01

    The lateral hypothalamus (LH) controls energy balance. LH melanin-concentrating-hormone (MCH) and orexin/hypocretin (OH) neurons mediate energy accumulation and expenditure, respectively. MCH cells promote memory and appropriate stimulus-reward associations; their inactivation disrupts energy-optimal behaviour and causes weight loss. However, MCH cell dynamics during wakefulness are unknown, leaving it unclear if they differentially participate in brain activity during sensory processing. By fiberoptic recordings from molecularly defined populations of LH neurons in awake freely moving mice, we show that MCH neurons generate conditional population bursts. This MCH cell activity correlates with novelty exploration, is inhibited by stress and is inversely predicted by OH cell activity. Furthermore, we obtain brain-wide maps of monosynaptic inputs to MCH and OH cells, and demonstrate optogenetically that VGAT neurons in the amygdala and bed nucleus of stria terminalis inhibit MCH cells. These data reveal cell-type-specific LH dynamics during sensory integration, and identify direct neural controllers of MCH neurons. PMID:27102565

  12. Direct and Indirect Effects of Brain Volume, Socioeconomic Status and Family Stress on Child IQ

    PubMed Central

    Marcus Jenkins, Jade V; Woolley, Donald P; Hooper, Stephen R; De Bellis, Michael D

    2013-01-01

    1.1. Background A large literature documents the detrimental effects of socioeconomic disparities on intelligence and neuropsychological development. Researchers typically measure environmental factors such as socioeconomic status (SES), using income, parent's occupation and education. However, SES is more complex, and this complexity may influence neuropsychological outcomes. 1.2. Methods This studyused principal components analysis to reduce 14 SES and 28 family stress indicators into their core dimensions (e.g. community and educational capital, financial resources, marital conflict). Core dimensions were used in path analyses to examine their relationships with parent IQ and cerebral volume (white matter, grey matter and total brain volume), to predict child IQ in a sample of typically developing children. 1.3. Results Parent IQ affected child IQ directly and indirectly through community and educational capital, demonstrating how environmental factors interact with familial factors in neuro-development. There were no intervening effects of cerebral white matter, grey matter, or total brain volume. 1.4. Conclusions Findings may suggest that improving community resources can foster the intellectual development of children. PMID:24533427

  13. MEG source reconstruction based on identification of directed source interactions on whole-brain anatomical networks.

    PubMed

    Fukushima, Makoto; Yamashita, Okito; Knösche, Thomas R; Sato, Masa-aki

    2015-01-15

    We present an MEG source reconstruction method that simultaneously reconstructs source amplitudes and identifies source interactions across the whole brain. In the proposed method, a full multivariate autoregressive (MAR) model formulates directed interactions (i.e., effective connectivity) between sources. The MAR coefficients (the entries of the MAR matrix) are constrained by the prior knowledge of whole-brain anatomical networks inferred from diffusion MRI. Moreover, to increase the accuracy and robustness of our method, we apply an fMRI prior on the spatial activity patterns and a sparse prior on the MAR coefficients. The observation process of MEG data, the source dynamics, and a series of the priors are combined into a Bayesian framework using a state-space representation. The parameters, such as the source amplitudes and the MAR coefficients, are jointly estimated from a variational Bayesian learning algorithm. By formulating the source dynamics in the context of MEG source reconstruction, and unifying the estimations of source amplitudes and interactions, we can identify the effective connectivity without requiring the selection of regions of interest. Our method is quantitatively and qualitatively evaluated on simulated and experimental data, respectively. Compared with non-dynamic methods, in which the interactions are estimated after source reconstruction with no dynamic constraints, the proposed dynamic method improves most of the performance measures in simulations, and provides better physiological interpretation and inter-subject consistency in real data applications. PMID:25290887

  14. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks.

    PubMed

    González, J Antonio; Iordanidou, Panagiota; Strom, Molly; Adamantidis, Antoine; Burdakov, Denis

    2016-01-01

    The lateral hypothalamus (LH) controls energy balance. LH melanin-concentrating-hormone (MCH) and orexin/hypocretin (OH) neurons mediate energy accumulation and expenditure, respectively. MCH cells promote memory and appropriate stimulus-reward associations; their inactivation disrupts energy-optimal behaviour and causes weight loss. However, MCH cell dynamics during wakefulness are unknown, leaving it unclear if they differentially participate in brain activity during sensory processing. By fiberoptic recordings from molecularly defined populations of LH neurons in awake freely moving mice, we show that MCH neurons generate conditional population bursts. This MCH cell activity correlates with novelty exploration, is inhibited by stress and is inversely predicted by OH cell activity. Furthermore, we obtain brain-wide maps of monosynaptic inputs to MCH and OH cells, and demonstrate optogenetically that VGAT neurons in the amygdala and bed nucleus of stria terminalis inhibit MCH cells. These data reveal cell-type-specific LH dynamics during sensory integration, and identify direct neural controllers of MCH neurons.

  15. Blood-tissue barrier of human brain tumors: correlation of scintigraphic and ultrastructural finding: concise communication

    SciTech Connect

    Front, D.; Israel, O.; Kohn, S.; Nir, I.

    1984-04-01

    Through the first 2 hr, uptake of (Tc-99m)pertechnetate and of Co-57 bleomycin were assessed in 29 brain tumors and were correlated with the ultrastructure of the tumor's capillary endothelium. No difference in uptake was found between the two tracers. Permeability of brain tumors to these agents was found to be governed by the same ultrastructural features that determine permeability in experimental brain tumors: the type of junction between contiguous endothelial cells in the capillaries. That uptake of (Tc-99m)pertechnetate and of Co-57 bleomycin depends on tumor capillary ultrastructure (which determines the permeability) suggests the possibility of the use of radiopharmaceuticals as in vivo indicators of tumor permeability. Brain scintigraphy may help to assess brain-tumor availability to non-lipid-soluble chemotherapeutic drugs.

  16. The Representation of Object-Directed Action and Function Knowledge in the Human Brain.

    PubMed

    Chen, Quanjing; Garcea, Frank E; Mahon, Bradford Z

    2016-04-01

    The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. PMID:25595179

  17. The Effects of Ellagic Acid upon Brain Cells: A Mechanistic View and Future Directions.

    PubMed

    de Oliveira, Marcos Roberto

    2016-06-01

    Ellagic acid (EA, 2,3,7,8-tetrahydroxy-chromeno; C14H6O8) is a polyphenol derived from fruits (pomegranates, berries) and nuts. EA exhibits antioxidant capacity and induces anti-inflammatory actions in several mammalian tissues. EA has been characterized as a possible neuroprotective agent, but the number of reports is still limited to conclude whether and how EA exerts neuroprotection in humans. In this regard, performing additional studies considering the potential beneficial and/or toxicological roles for EA on brain cells would be an important step towards fully understanding of when and how EA may be securely utilized by humans as a neuroprotective agent. The aim of the present work is to discuss data related to the neuronal and glial effects of EA and the mechanisms underlying such events. Moreover, future directions are suggested as a potential guide to be utilized by researchers interested in investigating the neuronal and glial actions of EA hereafter. PMID:26846140

  18. The stimulated social brain: effects of transcranial direct current stimulation on social cognition.

    PubMed

    Sellaro, Roberta; Nitsche, Michael A; Colzato, Lorenza S

    2016-04-01

    Transcranial direct current stimulation (tDCS) is an increasingly popular noninvasive neuromodulatory tool in the fields of cognitive and clinical neuroscience and psychiatry. It is an inexpensive, painless, and safe brain-stimulation technique that has proven to be effective in modulating cognitive and sensory-perceptual functioning in healthy individuals and clinical populations. Importantly, recent findings have shown that tDCS may also be an effective and promising tool for probing the neural mechanisms of social cognition. In this review, we present the state-of-the-art of the field of tDCS research in social cognition. By doing so, we aim to gather knowledge of the potential of tDCS to modulate social functioning and social decision making in healthy humans, and to inspire future research investigations. PMID:27206250

  19. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe.

    PubMed

    Berns, Gregory S; Cook, Peter F; Foxley, Sean; Jbabdi, Saad; Miller, Karla L; Marino, Lori

    2015-07-22

    The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of 'associative' regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species

  20. Diffusion tensor imaging of dolphin brains reveals direct auditory pathway to temporal lobe

    PubMed Central

    Berns, Gregory S.; Cook, Peter F.; Foxley, Sean; Jbabdi, Saad; Miller, Karla L.; Marino, Lori

    2015-01-01

    The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of ‘associative′ regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species

  1. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism.

    PubMed

    Kane, Michael J; Angoa-Peréz, Mariana; Briggs, Denise I; Sykes, Catherine E; Francescutti, Dina M; Rosenberg, David R; Kuhn, Donald M

    2012-01-01

    Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/-) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.

  2. Pointing, acquisition, and tracking considerations for mobile directional wireless communications systems

    NASA Astrophysics Data System (ADS)

    Rzasa, John; Ertem, Mehmet Can; Davis, Christopher C.

    2013-09-01

    High capacity directional wireless communications networks are an active research area because of their Gb/s or greater data rates over link lengths of many kilometers, providing fiber-like networks through the air. Their high data rates arise partly from their very high carrier frequencies (<60GHz for RF, and ~1550nm for free-space optical (FSO)) and partly because of their very narrow beamwidths. This second characteristic requires that transceivers be pointed precisely to their counterparts. In almost all cases this means that the transceiver aperture is mechanically pointed by a rotation stage, commonly known as a gimbal. How these platforms initially point at a target, acquire the signal, and then stay locked on the signal is known as pointing, acquisition, and tracking (PAT). Approaches for PAT in both RF and FSO have some similarities, but require overall divergent solutions, especially if the platforms are moving. This paper elaborates on the various considerations required for designing and implementing a successful PAT system for both directional RF and FSO systems. Approaches for GPS or beacon based pointing, types of acquisition scans, and the effects of platform vibration are analyzed. The acquisition time for a spiral scan of a given radius with an initial pointing error has been measured experimentally for a gimbal pointing system.

  3. Quantity, Quality, and Variety of Pupil Responses during an Open-Communication Structured Group Directed Reading-Thinking Activity and a Closed Communication Structured Group Directed Reading Activity.

    ERIC Educational Resources Information Center

    Petre, Richard M.

    The quality, quantity, and variety of pupil responses while using two different group directed reading activities, the Directed Reading Activity (DRA), and the Directed Reading-Thinking Activity (DRTA) were investigated in this study. The subjects, all fourth graders in two nearby communities, were grouped into above-grade-level, at-grade-level,…

  4. A programmable analog subthreshold biomimetic model for bi-directional communication with the brain.

    PubMed

    Ghaderi, Viviane S; Song, Dong; Bouteiller, Jean-Marie C; Choma, John; Berger, Theodore W

    2013-01-01

    In this paper, we present a hardware implementation of a second order Laguerre Expansion of Volterra Kernel (LEV) model with four basis functions. The model is versatile enough to be applied at different abstraction levels (synapse, neuron, or network of neurons) and is implemented with analog building blocks in a modular manner. These analog blocks, realized using low power subthreshold CMOS transistors, can serve as a basis for large-scale hardware systems that emulate multi-input multi-output (MIMO) spike transformations in populations of neurons. The normalized mean square error between the signals produced by the circuit LEV implementation and the ideal LEV model is 8.15%. The total power consumption of the analog circuitry is less than 33nW. PMID:24109805

  5. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.

    PubMed

    Wei, Pengfei; He, Wei; Zhou, Yi; Wang, Liping

    2013-05-01

    Voluntarily modulating neural activity plays a key role in brain-computer interface (BCI). In general, the self-regulated neural activation patterns are used in the current BCI systems involving the repetitive trainings with feedback for an attempt to achieve a high-quality control performance. With the limitation posed by the training procedure in most BCI studies, the present work aims to investigate whether directly modulating the neural activity by using an external method could facilitate the BCI control. We designed an experimental paradigm that combines anodal transcranial direct current stimulation (tDCS) with a motor imagery (MI)-based feedback EEG BCI system. Thirty-two young and healthy human subjects were randomly assigned to the real and sham stimulation groups to evaluate the effect of tDCS-induced EEG pattern changes on BCI classification accuracy. Results showed that the anodal tDCS obviously induces sensorimotor rhythm (SMR)-related event-related desynchronization (ERD) pattern changes in the upper-mu (10-14 Hz) and beta (14-26 Hz) rhythm components. Both the online and offline BCI classification results demonstrate that the enhancing ERD patterns could conditionally improve BCI performance. This pilot study suggests that the tDCS is a promising method to help the users to develop reliable BCI control strategy in a relatively short time.

  6. Dynamic (2, 3) Threshold Quantum Secret Sharing of Secure Direct Communication

    NASA Astrophysics Data System (ADS)

    Lai, Hong; Orgun, A. Mehmet; Xiao, Jing-Hua; Pieprzyk, Josef; Xue, Li-Yin

    2015-04-01

    In this paper, we show that a (2, 3) discrete variable threshold quantum secret sharing scheme of secure direct communication can be achieved based on recurrence using the same devices as in BB84. The scheme is devised by first placing the shares of smaller secret pieces into the shares of the largest secret piece, converting the shares of the largest secret piece into corresponding quantum state sequences, inserting nonorthogonal state particles into the quantum state sequences with the purpose of detecting eavesdropping, and finally sending the new quantum state sequences to the three participants respectively. Consequently, every particle can on average carry up to 1.5-bit messages due to the use of recurrence. The control codes are randomly prepared using the way to generate fountain codes with pre-shared source codes between Alice and Bob, making three participants can detect eavesdropping by themselves without sending classical messages to Alice. Due to the flexible encoding, our scheme is also dynamic, which means that it allows the participants to join and leave freely. Supported in part by an International Macquarie University Research Excellence Scholarship (iMQRES), Australian Research Council Grant DP0987734. This work is also supported by the National Basic Research Program of China (973 Program) under Grant No. 2010CB923200, the National Natural Science Foundation of China under No. 61377067, Fund of State Key Laboratory of Information Photonics and Optical Communications Beijing University of Posts and Telecommunications, China, National Natural Science Foundation of China under Grant Nos. 61202362, 61262057, 61472433, and China Postdoctora Science Foundation under Grant No. 2013M542560

  7. Affirming Commonalities--Curriculum Directions To Support the Study of All Contexts of Communication.

    ERIC Educational Resources Information Center

    McCall, Jeffrey M.

    A number of reasons could no doubt be found for why the study of communication has been so fragmented over the years. R. Blanchard and W. Christ have indicated that when mass communication courses were first developed, those courses were generally located in departments "offering vocationally based instruction." Speech communication and mass media…

  8. Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats.

    PubMed

    Brenes, Juan C; Lackinger, Martin; Höglinger, Günter U; Schratt, Gerhard; Schwarting, Rainer K W; Wöhr, Markus

    2016-06-01

    Environmental enrichment (EE) exerts beneficial effects on brain plasticity, cognition, and anxiety/depression, leading to a brain that can counteract deficits underlying various brain disorders. Because the complexity of the EE commonly used makes it difficult to identify causal aspects, we examined possible factors using a 2 × 2 design with social EE (two vs. six rats) and physical EE (physically enriched vs. nonenriched). For the first time, we demonstrate that social and physical EE have differential effects on brain plasticity, cognition, and ultrasonic communication. Expectedly, physical EE promoted neurogenesis in the dentate gyrus of the hippocampal formation, but not in the subventricular zone, and, as a novel finding, affected microRNA expression levels, with the activity-dependent miR-124 and miR-132 being upregulated. Concomitant improvements in cognition were observed, yet social deficits were seen in the emission of prosocial 50-kHz ultrasonic vocalizations (USV) paralleled by a lack of social approach in response to them, consistent with the intense world syndrome/theory of autism. In contrast, social EE had only minor effects on brain plasticity and cognition, but led to increased prosocial 50-kHz USV emission rates and enhanced social approach behavior. Importantly, social deficits following physical EE were prevented by additional social EE. The finding that social EE has positive whereas physical EE has negative effects on social behavior indicates that preclinical studies focusing on EE as a potential treatment in models for neuropsychiatric disorders characterized by social deficits, such as autism, should include social EE in addition to physical EE, because its lack might worsen social deficits.

  9. Paternal Retrieval Behavior Regulated by Brain Estrogen Synthetase (Aromatase) in Mouse Sires that Engage in Communicative Interactions with Pairmates

    PubMed Central

    Akther, Shirin; Huang, Zhiqi; Liang, Mingkun; Zhong, Jing; Fakhrul, Azam A. K. M.; Yuhi, Teruko; Lopatina, Olga; Salmina, Alla B.; Yokoyama, Shigeru; Higashida, Chiharu; Tsuji, Takahiro; Matsuo, Mie; Higashida, Haruhiro

    2015-01-01

    Parental behaviors involve complex social recognition and memory processes and interactive behavior with children that can greatly facilitate healthy human family life. Fathers play a substantial role in child care in a small but significant number of mammals, including humans. However, the brain mechanism that controls male parental behavior is much less understood than that controlling female parental behavior. Fathers of non-monogamous laboratory ICR mice are an interesting model for examining the factors that influence paternal responsiveness because sires can exhibit maternal-like parental care (retrieval of pups) when separated from their pups along with their pairmates because of olfactory and auditory signals from the dams. Here we tested whether paternal behavior is related to femininity by the aromatization of testosterone. For this purpose, we measured the immunoreactivity of aromatase [cytochrome P450 family 19 (CYP19)], which synthesizes estrogen from androgen, in nine brain regions of the sire. We observed higher levels of aromatase expression in these areas of the sire brain when they engaged in communicative interactions with dams in separate cages. Interestingly, the number of nuclei with aromatase immunoreactivity in sires left together with maternal mates in the home cage after pup-removing was significantly larger than that in sires housed with a whole family. The capacity of sires to retrieve pups was increased following a period of 5 days spent with the pups as a whole family after parturition, whereas the acquisition of this ability was suppressed in sires treated daily with an aromatase inhibitor. The results demonstrate that the dam significantly stimulates aromatase in the male brain and that the presence of the pups has an inhibitory effect on this increase. These results also suggest that brain aromatization regulates the initiation, development, and maintenance of paternal behavior in the ICR male mice. PMID:26696812

  10. Automated segmentation of ventricles from serial brain MRI for the quantification of volumetric changes associated with communicating hydrocephalus in patients with brain tumor

    NASA Astrophysics Data System (ADS)

    Pura, John A.; Hamilton, Allison M.; Vargish, Geoffrey A.; Butman, John A.; Linguraru, Marius George

    2011-03-01

    Accurate ventricle volume estimates could improve the understanding and diagnosis of postoperative communicating hydrocephalus. For this category of patients, associated changes in ventricle volume can be difficult to identify, particularly over short time intervals. We present an automated segmentation algorithm that evaluates ventricle size from serial brain MRI examination. The technique combines serial T1- weighted images to increase SNR and segments the means image to generate a ventricle template. After pre-processing, the segmentation is initiated by a fuzzy c-means clustering algorithm to find the seeds used in a combination of fast marching methods and geodesic active contours. Finally, the ventricle template is propagated onto the serial data via non-linear registration. Serial volume estimates were obtained in an automated robust and accurate manner from difficult data.

  11. Sources of Variation Influencing Concordance between Functional MRI and Direct Cortical Stimulation in Brain Tumor Surgery

    PubMed Central

    Morrison, Melanie A.; Tam, Fred; Garavaglia, Marco M.; Hare, Gregory M. T.; Cusimano, Michael D.; Schweizer, Tom A.; Das, Sunit; Graham, Simon J.

    2016-01-01

    Object: Preoperative functional magnetic resonance imaging (fMRI) remains a promising method to aid in the surgical management of patients diagnosed with brain tumors. For patients that are candidates for awake craniotomies, surgical decisions can potentially be improved by fMRI but this depends on the level of concordance between preoperative brain maps and the maps provided by the gold standard intraoperative method, direct cortical stimulation (DCS). There have been numerous studies of the concordance between fMRI and DCS using sensitivity and specificity measures, however the results are variable across studies and the key factors influencing variability are not well understood. Thus, the present work addresses the influence of technical factors on fMRI and DCS concordance. Methods: Motor and language mapping data were collected for a group of glioma patients (n = 14) who underwent both preoperative fMRI and intraoperative DCS in an awake craniotomy procedure for tumor removal. Normative fMRI data were also acquired in a healthy control group (n = 12). The fMRI and DCS mapping data were co-registered; true positive (TP), true negative (TN), false positive (FP), and false negative (FN) occurrences were tabulated over the exposed brain surface. Sensitivity and specificity were measured for the total group, and for the motor and language sub-groups. The influence of grid placement, fMRI statistical thresholding, and task standardization were assessed. Correlations between proportions of agreement and error were also carefully scrutinized to evaluate concordance in more detail. Results: Concordance was significantly better for motor vs. language mapping. There was an inverse relationship between TP and TN with increasing statistical threshold, and FP dominated the total error. Sensitivity and specificity were reduced when tasks were not standardized across fMRI and DCS. Conclusions: Although the agreement between fMRI and DCS is good, variability is introduced by

  12. Globally conditioned causality in estimating directed brain-heart interactions through joint MRI and RR series analysis.

    PubMed

    Duggento, Andrea; Bianciardi, Marta; Wald, Lawrence L; Passamonti, Luca; Guerrisi, Maria; Barbieri, Riccardo; Toschi, Nicola

    2015-08-01

    We used 7T fMRI with simultaneous physiological signals acquisitions to investigate the causal interactions from resting state brain activity to autonomic nervous system (ANS) outflow as quantified through a probabilistic heartbeat model. Given the highly redundant nature of brain-derived signals, we compare the results of traditional bivariate Granger Causality (GC) to a globally conditioned approach which evaluates the additional influence of each brain region on ANS activity while factoring out effects concomitantly mediated by other brain regions. The bivariate approach results in an unrealistically large number of spurious causal brain-heart links. In contrast, using the globally conditioned approac, we demonstrate the existence of significant selective causal links between cortical/subcortical brain regions and ANS outflow for sympathetic and parasympathetic modulation as well as sympathovagal balance, with a prominent involvement of frontal, parietal, and cerebellar regions and Sensory Motor, Default Mode, Left and Right executive networks. Provided proper conditioning is employed to eliminate spurious causalities, 7T functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain-heart interactions reflecting central modulation of ANS outflow.

  13. Communication is the key. : Part 2 : Direct to consumer genetics in our future daily life ?

    PubMed

    Perbal, Bernard

    2014-12-01

    The considerable advances of genome sequencing over the past decades have had a profound impact on our daily life and opened up new avenues for the public to have access to their genetic information and learn more about their ancestry, genealogy and other traits that make each of us unique individuals. A very large number of individual single nucleotide polymorphisms (SNPs) have been associated to diseases whereas others have no known phenotype. For example, among the SNPs mapped within ccn1(cyr61), ccn2(ctgf), ccn3(nov), ccn4(wisp-1), ccn5(wisp-2) and ccn6 (wisp-3), only mutations within ccn4 were associated to PPD (the autosomal recessive skeletal disorder Progressive Pseudorheumatoid Dysplasia). On the occasion of this JCCS special issue on the roles of hormetic responses in adaptation, and response of living species to the modifications of their environment, it appeared that it was a good time to briefly review a topic that has been the subject of passionate discussions for the past few years, that is Direct to Consumer genetic tests (DTC GT). Based on the use of DNA analysis and identification of polymorphisms, DTC GT have been developed by several companies in the USA and in countries where there was no legal obstacle for customers to have direct access to their genetic information and manage their healthcare. Problems that arose and decisions that have been taken by regulatory agencies are presented and discussed in this editorial. The « freeze » of health-oriented DTC GT in the USA neither implies the end of DNA analysis nor « fun » applications, which are not aimed at providing risks estimates for particular illnesses. As shown in the example which is discussed in this editorial, DTC GT for cosmetic applications might be considered a fun application of great interest for companies such as L'Oréal, who recently developed the Makeup Genius mobile application. Other fun applications of DTC GT are discussed but there is no doubt that nothing will stop

  14. Communication is the key. : Part 2 : Direct to consumer genetics in our future daily life ?

    PubMed

    Perbal, Bernard

    2014-12-01

    The considerable advances of genome sequencing over the past decades have had a profound impact on our daily life and opened up new avenues for the public to have access to their genetic information and learn more about their ancestry, genealogy and other traits that make each of us unique individuals. A very large number of individual single nucleotide polymorphisms (SNPs) have been associated to diseases whereas others have no known phenotype. For example, among the SNPs mapped within ccn1(cyr61), ccn2(ctgf), ccn3(nov), ccn4(wisp-1), ccn5(wisp-2) and ccn6 (wisp-3), only mutations within ccn4 were associated to PPD (the autosomal recessive skeletal disorder Progressive Pseudorheumatoid Dysplasia). On the occasion of this JCCS special issue on the roles of hormetic responses in adaptation, and response of living species to the modifications of their environment, it appeared that it was a good time to briefly review a topic that has been the subject of passionate discussions for the past few years, that is Direct to Consumer genetic tests (DTC GT). Based on the use of DNA analysis and identification of polymorphisms, DTC GT have been developed by several companies in the USA and in countries where there was no legal obstacle for customers to have direct access to their genetic information and manage their healthcare. Problems that arose and decisions that have been taken by regulatory agencies are presented and discussed in this editorial. The « freeze » of health-oriented DTC GT in the USA neither implies the end of DNA analysis nor « fun » applications, which are not aimed at providing risks estimates for particular illnesses. As shown in the example which is discussed in this editorial, DTC GT for cosmetic applications might be considered a fun application of great interest for companies such as L'Oréal, who recently developed the Makeup Genius mobile application. Other fun applications of DTC GT are discussed but there is no doubt that nothing will stop

  15. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    NASA Astrophysics Data System (ADS)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  16. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model.

    PubMed

    Md, Shadab; Khan, Rashid A; Mustafa, Gulam; Chuttani, Krishna; Baboota, Sanjula; Sahni, Jasjeet K; Ali, Javed

    2013-02-14

    The primary aim of this study was to investigate the potential use of chitosan nanoparticles as a delivery system to enhance the brain targeting efficiency of bromocriptine (BRC) following intranasal (i.n.) administration. The BRC loaded chitosan nanoparticles (CS NPs) were prepared by ionic gelation of CS with tripolyphosphate anions. These NPs had a mean size (161.3 ± 4. 7 nm), zeta potential (+40.3 ± 2.7 mV), loading capacity (37.8% ± 1.8%) and entrapment efficiency (84.2% ± 3.5%). The oral administration of haloperidol (2mg/kg) to mice produced typical Parkinson (PD) symptoms. Catalepsy and akinesia outcomes in animals receiving BRC either in solution or within CS NPs showed a reversal in catalepsy and akinesia behavior when compared to haloperidol treated mice, this reversal being specially pronounced in mice receiving BRC loaded CS NPs. Biodistribution of BRC formulations in the brain and blood of mice following i.n. and intravenous (i.v.) administration was performed using optimized technetium labeled (99mTc-labeled) BRC formulations. The brain/blood ratio of 0.47 ± 0.04, 0.69 ± 0.031, and 0.05 ± 0.01 for BRC solution (i.n.), BRC loaded CS NPs (i.n.) and (i.v.) respectively, at 0.5h are suggestive of direct nose to brain transport bypassing the blood-brain barrier. Gamma scintigraphy imaging of mice brain following i.v. and i.n. administrations were performed to determine the localization of drug in brain. The drug targeting index and direct transport percentage for BRC loaded CS NPs following i.n. route were 6.3 ± 0.8 and 84.2% ± 1.9%. These encouraging results confirmed the development of a novel non-invasive nose to brain delivery system of BRC for the treatment of PD.

  17. Insula and inferior frontal triangularis activations distinguish between conditioned brain responses using emotional sounds for basic BCI communication

    PubMed Central

    van der Heiden, Linda; Liberati, Giulia; Sitaram, Ranganatha; Kim, Sunjung; Jaśkowski, Piotr; Raffone, Antonino; Olivetti Belardinelli, Marta; Birbaumer, Niels; Veit, Ralf

    2014-01-01

    In order to enable communication through a brain-computer interface (BCI), it is necessary to discriminate between distinct brain responses. As a first step, we probed the possibility to discriminate between affirmative (“yes”) and negative (“no”) responses using a semantic classical conditioning paradigm, within an fMRI setting. Subjects were presented with congruent and incongruent word-pairs as conditioned stimuli (CS), respectively eliciting affirmative and negative responses. Incongruent word-pairs were associated to an unpleasant unconditioned stimulus (scream, US1) and congruent word-pairs were associated to a pleasant unconditioned stimulus (baby-laughter, US2), in order to elicit emotional conditioned responses (CR). The aim was to discriminate between affirmative and negative responses, enabled by their association with the positive and negative affective stimuli. In the late acquisition phase, when the US were not present anymore, there was a strong significant differential activation for incongruent and congruent word-pairs in a cluster comprising the left insula and the inferior frontal triangularis. This association was not found in the habituation phase. These results suggest that the difference in affirmative and negative brain responses was established as an effect of conditioning, allowing to further investigate the possibility of using this paradigm for a binary choice BCI. PMID:25100958

  18. Labeled choline and phosphorylcholine: body distribution and brain autoradiography: concise communication

    SciTech Connect

    Friedland, R.P.; Mathis, C.A.; Budinger, T.F.; Moyer, B.R.; Rosen, M.

    1983-09-01

    Following intravenous injection of labeled choline or phosphorylcholine in rats and mice, the brain uptake as percent injected dose was less than 0.2% with 6-12% going to kidney and 3-6% to liver. A study of (/sup 14/C)choline autoradiography in a stump-tailed macaque demonstrated a five- to sixfold greater uptake in gray matter than in white matter. Dynamic positron imaging of (/sup 11/C)choline in a rhesus monkey demonstrated rapid brain uptake followed by rapid washout, with heavy late uptake in muscle. The use of labeled choline and choline analogs as imaging agents in human studies is constrained by the low brain uptake relative to extracerebral tissues.

  19. Labeled choline and phosphorylcholine: body distribution and brain autoradiography: concise communication

    SciTech Connect

    Friedland, R.P.; Mathis, C.A.; Budinger, T.F.; Moyer, B.R.; Rosen, M.

    1983-09-01

    Following intravenous injection of labeled choline or phosphorylcholine in rats and mice, the brain uptake as percent injected dose was less than 0.2% with 6 to 12% going to kidney and 3 to 6% to liver. A study of (/sup 14/C)choline autoradiography in a stump-tailed macaque demonstrated a five- to sixfold greater uptake in gray matter than in white matter. Dynamic positron imaging of (/sup 11/C) choline in a rhesus monkey demonstrated rapid brain uptake followed by rapid washout, with heavy late uptake in muscle. The use of labeled choline and choline analogs as imaging agents in human studies is constrained by the low brain uptake relative to extracerebral tissues.

  20. Effects of a psycho-educational intervention on direct care workers' communicative behaviors with residents with dementia.

    PubMed

    Barbosa, Ana; Marques, Alda; Sousa, Liliana; Nolan, Mike; Figueiredo, Daniela

    2016-01-01

    This study assessed the effects of a person-centered care-based psycho-educational intervention on direct care workers' communicative behaviors with people with dementia living in aged-care facilities. An experimental study with a pretest-posttest control-group design was conducted in four aged-care facilities. Two experimental facilities received an 8-week psycho-educational intervention aiming to develop workers' knowledge about dementia, person-centered care competences, and tools for stress management. Control facilities received education only, with no support to deal with stress. In total, 332 morning care sessions, involving 56 direct care workers (female, mean age 44.72 ± 9.02 years), were video-recorded before and 2 weeks after the intervention. The frequency and duration of a list of verbal and nonverbal communicative behaviors were analyzed. Within the experimental group there was a positive change from pre- to posttest on the frequency of all workers' communicative behaviors. Significant treatment effects in favor of the experimental group were obtained for the frequency of inform (p < .01, η(2)partial = 0.09) and laugh (p < .01, η(2)partial = 0.18). Differences between groups emerged mainly in nonverbal communicative behaviors. The findings suggest that a person-centered care-based psycho-educational intervention can positively affect direct care workers' communicative behaviors with residents with dementia. Further research is required to determine the extent of the benefits of this approach.

  1. An analysis of bi-directional use of frequencies for satellite communications

    NASA Technical Reports Server (NTRS)

    Whyte, W. A., Jr.; Miller, E. F.; Sullivan, T.; Miller, J. E.

    1986-01-01

    The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellite systems are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintianed between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances fo less than 10 km at a rain rate of 13.5 mm/hr escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range.

  2. Communications

    ERIC Educational Resources Information Center

    Bailenson, Jeremy; Buzzanell, Patrice; Deetz, Stanley; Tewksbury, David; Thompson, Robert J.; Turow, Joseph; Bichelmeyer, Barbara; Bishop, M. J.; Gayeski, Diane

    2013-01-01

    Scholars representing the field of communications were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Jeremy Bailenson, Patrice Buzzanell, Stanley Deetz, David Tewksbury, Robert J. Thompson, and…

  3. A Modular Framework for EEG Web Based Binary Brain Computer Interfaces to Recover Communication Abilities in Impaired People.

    PubMed

    Placidi, Giuseppe; Petracca, Andrea; Spezialetti, Matteo; Iacoviello, Daniela

    2016-01-01

    A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel.

  4. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis.

    PubMed

    Peters, Heather T; Edwards, Dylan J; Wortman-Jutt, Susan; Page, Stephen J

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity. PMID:27555811

  5. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis.

    PubMed

    Peters, Heather T; Edwards, Dylan J; Wortman-Jutt, Susan; Page, Stephen J

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity.

  6. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis

    PubMed Central

    Peters, Heather T.; Edwards, Dylan J.; Wortman-Jutt, Susan; Page, Stephen J.

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity. PMID:27555811

  7. Transcranial Direct Current Stimulation Modulates Neurogenesis and Microglia Activation in the Mouse Brain

    PubMed Central

    Pikhovych, Anton; Stolberg, Nina Paloma; Jessica Flitsch, Lea; Walter, Helene Luise; Graf, Rudolf; Fink, Gereon Rudolf; Schroeter, Michael

    2016-01-01

    Transcranial direct current stimulation (tDCS) has been suggested as an adjuvant tool to promote recovery of function after stroke, but the mechanisms of its action to date remain poorly understood. Moreover, studies aimed at unraveling those mechanisms have essentially been limited to the rat, where tDCS activates resident microglia as well as endogenous neural stem cells. Here we studied the effects of tDCS on microglia activation and neurogenesis in the mouse brain. Male wild-type mice were subjected to multisession tDCS of either anodal or cathodal polarity; sham-stimulated mice served as control. Activated microglia in the cerebral cortex and neuroblasts generated in the subventricular zone as the major neural stem cell niche were assessed immunohistochemically. Multisession tDCS at a sublesional charge density led to a polarity-dependent downregulation of the constitutive expression of Iba1 by microglia in the mouse cortex. In contrast, both anodal and, to an even greater extent, cathodal tDCS induced neurogenesis from the subventricular zone. Data suggest that tDCS elicits its action through multifacetted mechanisms, including immunomodulation and neurogenesis, and thus support the idea of using tDCS to induce regeneration and to promote recovery of function. Furthermore, data suggest that the effects of tDCS may be animal- and polarity-specific. PMID:27403166

  8. Short Communication: Conformal Therapy for Peri-Ventricular Brain Tumors: Is Target Volume Deformation an Issue?

    SciTech Connect

    Bauman, Glenn Woodford, Curtis; Yartsev, Slav

    2008-04-01

    Physiologic variations in ventricular volumes could have important implications for treating patients with peri-ventricular brain tumors, yet no data exist in the literature addressing this issue. Daily megavoltage computed tomography (CT) scans in a patient with neurocytoma receiving fractionated radiation revealed minimal changes, suggesting that margins accounting for ventricular deformation are not necessary.

  9. Parents' Child-Directed Communication and Child Language Development: A Longitudinal Study with Italian Toddlers

    ERIC Educational Resources Information Center

    Majorano, Marinella; Rainieri, Chiara; Corsano, Paola

    2013-01-01

    The present study focuses on the characteristics of parental child-directed communication and its relationship with child language development. For this purpose, thirty-six toddlers (18 males and 18 females) and their parents were observed in a laboratory during triadic free play at ages 1;3 and 1;9. The characteristics of the maternal and…

  10. Linking Contextual Factors with Rhetorical Pattern Shift: Direct and Indirect Strategies Recommended in English Business Communication Textbooks in China

    ERIC Educational Resources Information Center

    Wang, Junhua; Zhu, Pinfan

    2011-01-01

    Scholars have consistently claimed that rhetorical patterns are culturally bound, and indirectness is a defining characteristic of Chinese writing. Through examining how the rhetorical mechanism of directness and indirectness is presented in 29 English business communication textbooks published in China, we explore how English business…

  11. Behavioral and Physiological Responses to Child-Directed Speech as Predictors of Communication Outcomes in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Watson, Linda R.; Baranek, Grace T.; Roberts, Jane E.; David, Fabian J.; Perryman, Twyla Y.

    2010-01-01

    Purpose: To determine the extent to which behavioral and physiological responses during child-directed speech (CDS) correlate concurrently and predictively with communication skills in young children with autism spectrum disorders (ASD). Method: Twenty-two boys with ASD (initial mean age: 35 months) participated in a longitudinal study. At entry,…

  12. Teaching Children with Autism to Engage in Peer-Directed Mands Using a Picture Exchange Communication System

    ERIC Educational Resources Information Center

    Paden, Amber R.; Kodak, Tiffany; Fisher, Wayne W.; Gawley-Bullington, Elizabeth M.; Bouxsein, Kelly J.

    2012-01-01

    We evaluated differential reinforcement of alternative behavior (DRA) plus prompting to increase peer-directed mands for preferred items using a picture exchange communication system (PECS). Two nonvocal individuals with autism participated. Independent mands with a peer increased with the implementation of DRA plus prompting for both…

  13. Destination directed packet switch architecture for a 30/20 GHz FDMA/TDM geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1991-01-01

    Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  14. Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1992-01-01

    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.

  15. Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hao; Chen, Han-Wu; Wang, Dong; Li, Wen-Qian

    2014-06-01

    The three-particle deterministic secure and high bit-rate direct quantum communication protocol and its improved version are analyzed. It shows that an eavesdropper can steal the sender's secret message by the intercept-resend attack and the entanglement attack. The original version is even fragile under denial-of-service attack. As a result, some suggestions to revise them are given.

  16. Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography.

    PubMed

    Anderson, Aaron T; Van Houten, Elijah E W; McGarry, Matthew D J; Paulsen, Keith D; Holtrop, Joseph L; Sutton, Bradley P; Georgiadis, John G; Johnson, Curtis L

    2016-06-01

    Magnetic resonance elastography (MRE) has shown promise in noninvasively capturing changes in mechanical properties of the human brain caused by neurodegenerative conditions. MRE involves vibrating the brain to generate shear waves, imaging those waves with MRI, and solving an inverse problem to determine mechanical properties. Despite the known anisotropic nature of brain tissue, the inverse problem in brain MRE is based on an isotropic mechanical model. In this study, distinct wave patterns are generated in the brain through the use of multiple excitation directions in order to characterize the potential impact of anisotropic tissue mechanics on isotropic inversion methods. Isotropic inversions of two unique displacement fields result in mechanical property maps that vary locally in areas of highly aligned white matter. Investigation of the corpus callosum, corona radiata, and superior longitudinal fasciculus, three highly ordered white matter tracts, revealed differences in estimated properties between excitations of up to 33%. Using diffusion tensor imaging to identify dominant fiber orientation of bundles, relationships between estimated isotropic properties and shear asymmetry are revealed. This study has implications for future isotropic and anisotropic MRE studies of white matter tracts in the human brain. PMID:27032311

  17. Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography.

    PubMed

    Anderson, Aaron T; Van Houten, Elijah E W; McGarry, Matthew D J; Paulsen, Keith D; Holtrop, Joseph L; Sutton, Bradley P; Georgiadis, John G; Johnson, Curtis L

    2016-06-01

    Magnetic resonance elastography (MRE) has shown promise in noninvasively capturing changes in mechanical properties of the human brain caused by neurodegenerative conditions. MRE involves vibrating the brain to generate shear waves, imaging those waves with MRI, and solving an inverse problem to determine mechanical properties. Despite the known anisotropic nature of brain tissue, the inverse problem in brain MRE is based on an isotropic mechanical model. In this study, distinct wave patterns are generated in the brain through the use of multiple excitation directions in order to characterize the potential impact of anisotropic tissue mechanics on isotropic inversion methods. Isotropic inversions of two unique displacement fields result in mechanical property maps that vary locally in areas of highly aligned white matter. Investigation of the corpus callosum, corona radiata, and superior longitudinal fasciculus, three highly ordered white matter tracts, revealed differences in estimated properties between excitations of up to 33%. Using diffusion tensor imaging to identify dominant fiber orientation of bundles, relationships between estimated isotropic properties and shear asymmetry are revealed. This study has implications for future isotropic and anisotropic MRE studies of white matter tracts in the human brain.

  18. New Directions in Mass Communications Policy: Implications for Citizen Education and Participation.

    ERIC Educational Resources Information Center

    Rothstein, Larry

    This paper, the second in a series of five on the current state of citizen education, focuses on mass communication. The following topics are discussed: communications today; the system of freedom of expression; social science research on the media (includes the audience and public information); minorities and the media; public broadcasting;…

  19. College Teacher Misbehaviors: Direct and Indirect Effects on Student Communication Behavior and Traditional Learning Outcomes

    ERIC Educational Resources Information Center

    Goodboy, Alan K.; Bolkan, San

    2009-01-01

    The purpose of this study was to examine a theoretical model of the relationship between teacher misbehaviors and both student communication behavior (i.e., student resistance, student participation) and learning outcomes (i.e., cognitive learning, affective learning, state motivation, communication satisfaction). Participants were 343 students…

  20. Social communication with virtual agents: The effects of body and gaze direction on attention and emotional responding in human observers.

    PubMed

    Marschner, Linda; Pannasch, Sebastian; Schulz, Johannes; Graupner, Sven-Thomas

    2015-08-01

    In social communication, the gaze direction of other persons provides important information to perceive and interpret their emotional response. Previous research investigated the influence of gaze by manipulating mutual eye contact. Therefore, gaze and body direction have been changed as a whole, resulting in only congruent gaze and body directions (averted or directed) of another person. Here, we aimed to disentangle these effects by using short animated sequences of virtual agents posing with either direct or averted body or gaze. Attention allocation by means of eye movements, facial muscle response, and emotional experience to agents of different gender and facial expressions were investigated. Eye movement data revealed longer fixation durations, i.e., a stronger allocation of attention, when gaze and body direction were not congruent with each other or when both were directed towards the observer. This suggests that direct interaction as well as incongruous signals increase the demands of attentional resources in the observer. For the facial muscle response, only the reaction of muscle zygomaticus major revealed an effect of body direction, expressed by stronger activity in response to happy expressions for direct compared to averted gaze when the virtual character's body was directed towards the observer. Finally, body direction also influenced the emotional experience ratings towards happy expressions. While earlier findings suggested that mutual eye contact is the main source for increased emotional responding and attentional allocation, the present results indicate that direction of the virtual agent's body and head also plays a minor but significant role. PMID:26004021

  1. The Analysis of Optical, Direct Detection Communication Systems with Point Process Observations

    NASA Astrophysics Data System (ADS)

    Brady, David Paul

    1990-01-01

    The central theme of this work is the analysis of direct-detection optical communication channels based on point process observations. For example, we consider an optical DPSK receiver which is based on a binary hypothesis test with conditionally Poisson count observations. The error probability is influenced by the transmitting laser phase noise as well as the statistical nature of light, and decreases to the quantum limit as the transmitting laser linewidth vanishes. We bound the bit error rate by bounding the conditional photon arrival rates, and were shown to converge as the laser linewidth decreases. We also derive the exact error rate of a noncoherent, optical, asynchronous, CDMA system. The receiver utilizes fiber optic tap delay lines to create and correlate the signature sequence with the received point process, and compares an electron count to a threshold to decide for the data of the user of interest. The optical intensity on a surface illuminated by several phase-coherent signals is determined, and it is shown that the approximation of noncoherent addition in the fiber optic tap delay line is justified. The bit error rate is found for arbitrary photomultipliers and signature sequence sets, adheres fully to the semi-classical model of light, and does not depend on approximations for large user groups, strong received optical fields, or chip synchronism. The capacity of a direct-detection photon counting channel is addressed in this work. The limiting form of the capacity is found as the signal and noise energies increase proportionally, and it is shown that the capacity grows logarithmically with the signal energy constraint. When the noise energy increases polynomially with the signal energy, the limiting capacity coincides with that of a Gaussian channel with a positivity and variance constraint. Bounds on the capacity are considered for small and moderate energies by restricting attention to binary inputs. These bounds are arbitrarily tight, and are

  2. Bi-directional free space laser communication of gigabit ethernet telemetry data using dual atmospheric effect mitigation approach

    NASA Astrophysics Data System (ADS)

    Chan, Eric; Saint Clair, Jonathan

    2016-05-01

    This paper presents experimental demonstration of optical components applicable in free space laser communication systems for bi-directional transmission of Gigabit Ethernet (GBE) telemetry data and control messages using a dual atmospheric effect mitigation approach. The objective is to address the challenges for optical transmission of telemetry data. (1) Turbulence effects which cause optical beam scintillation, wander and breakup, all of which cause signal degradation at the receiver. (2) An optical signal in free space has a fading effect which is caused by communications terminal equipment`s in-ability to maintain perfect pointing along a line of sight due to vibrations/motions of the mobile platform.

  3. Psychiatric Brain Banking: Three Perspectives on Current Trends and Future Directions

    PubMed Central

    Deep-Soboslay, Amy; Benes, Francine M.; Haroutunian, Vahram; Ellis, Justin K.; Kleinman, Joel E.; Hyde, Thomas M.

    2011-01-01

    Introduction The study of postmortem human brain tissue is central to the advancement of the neurobiological studies of psychiatric illness, particularly for the study of brain-specific isoforms and molecules. Methods The state-of-the-art methods and recommendations for maintaining a successful brain bank for psychiatric disorders are discussed, using the convergence of viewpoints from three brain collections, the National Institute of Mental Health Brain Collection (NIMH), the Harvard Brain Tissue Resource Center (HBTRC), and the Mt. Sinai School of Medicine Brain Bank (MSSM-BB), with diverse research interests and divergent approaches to tissue acquisition. Results While the NIMH obtains donations from medical examiners for its collection, and places particular emphasis on clinical diagnosis, toxicology, and building lifespan control cohorts, the HBTRC is uniquely designed as a repository whose sole purpose is to collect large-volume, high quality brain tissue from community-based donors based on relationships across an expansive nationwide network, and places emphasis on the accessibility of its bank in disseminating tissue and related data to research groups worldwide. The MSSM-BB collection has shown that, with dedication, prospective recruitment is a successful approach to tissue donation, and places particular emphasis on rigorous clinical diagnosis through antemortem contact with donors. The MSSM-BB places great importance on stereological tissue sampling methods for neuroanatomical studies, and frozen tissue sampling approaches that enable multiple assessments (RNA, DNA, protein, enzyme activity, binding, etc.) of the same tissue block. Promising scientific approaches for elucidating the molecular and cellular pathways in brain that may contribute to schizophrenia and/or bipolar disorder, such as cell culture techniques and microarray-based gene expression and genotyping studies are briefly discussed. Conclusions Despite unique perspectives from three

  4. [Non-invasive brain stimulation in neurology : Transcranial direct current stimulation to enhance cognitive functioning].

    PubMed

    Antonenko, D; Flöel, A

    2016-08-01

    Transcranial direct current stimulation (tDCS) has been successfully used in neuroscientific research to modulate cognitive functions. Recent studies suggested that improvement of behavioral performance is associated with tDCS-induced modulation of neuronal activity and connectivity. Thus, tDCS may also represent a promising tool for reconstitution of cognitive functions in the context of memory decline related to Alzheimer's disease or aphasia following stroke; however, evidence from randomized sham-controlled clinical trials is still scarce. Initial results of tDCS-induced behavioral improvement in patients with Alzheimer's dementia and its precursors indicated that an intense memory training combined with tDCS may be effective. Early interventions in the stage of mild cognitive impairment could be crucial but further evidence is needed to substantiate this. In patients with aphasia following stroke tDCS was applied to the left and right hemispheres, with varying results depending on the severity of the symptoms and polarity of the stimulation. Patients with mild aphasia can benefit from tDCS of the language dominant hemisphere while in patients with severe aphasia tDCS of right hemispheric homologous brain language areas may be particularly relevant. Moreover, recent studies suggested that an intervention in the subacute phase of aphasia could be most promising. In summary, tDCS could provide the exciting possibility to reconstitute cognitive functions in patients with neurological disorders. Future studies have to elucidate whether tDCS can be used in the clinical routine to prevent further cognitive decline in neurodegenerative diseases and whether beneficial effects from experimental studies translate into long-term improvement in activities of daily life. PMID:27167887

  5. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor

    NASA Astrophysics Data System (ADS)

    Keane, Maureen; Deyo, Steve; Abosch, Aviva; Bajwa, Jawad A.; Johnson, Matthew D.

    2012-08-01

    Deep brain stimulation (DBS) in the ventral intermediate nucleus of thalamus (Vim) is known to exert a therapeutic effect on postural and kinetic tremor in patients with essential tremor (ET). For DBS leads implanted near the caudal border of Vim, however, there is an increased likelihood that one will also induce paresthesia side-effects by stimulating neurons within the sensory pathway of the ventral caudal (Vc) nucleus of thalamus. The aim of this computational study was to (1) investigate the neuronal pathways modulated by therapeutic, sub-therapeutic and paresthesia-inducing DBS settings in three patients with ET and (2) determine how much better an outcome could have been achieved had these patients been implanted with a DBS lead containing directionally segmented electrodes (dDBS). Multi-compartment neuron models of the thalamocortical, cerebellothalamic and medial lemniscal pathways were first simulated in the context of patient-specific anatomies, lead placements and programming parameters from three ET patients who had been implanted with Medtronic 3389 DBS leads. The models showed that in these patients, complete suppression of tremor was associated most closely with activating an average of 62% of the cerebellothalamic afferent input into Vim (n = 10), while persistent paresthesias were associated with activating 35% of the medial lemniscal tract input into Vc thalamus (n = 12). The dDBS lead design demonstrated superior targeting of the cerebello-thalamo-cortical pathway, especially in cases of misaligned DBS leads. Given the close proximity of Vim to Vc thalamus, the models suggest that dDBS will enable clinicians to more effectively sculpt current through and around thalamus in order to achieve a more consistent therapeutic effect without inducing side-effects.

  6. Learning and generalization deficits in patients with memory impairments due to anterior communicating artery aneurysm rupture or hypoxic brain injury.

    PubMed

    Myers, Catherine E; Hopkins, Ramona O; Hopkins, Romona O; DeLuca, John; Moore, Nancy B; Wolansky, Leo J; Sumner, Jennifer M; Gluck, Mark A

    2008-09-01

    Human anterograde amnesia can result from a variety of etiologies, including hypoxic brain injury and anterior communicating artery (ACoA) aneurysm rupture. Although each etiology can cause a similarly severe disruption in declarative memory for verbal and visual material, there may be differences in incrementally acquired, feedback-based learning, as well as generalization. Here, 6 individuals who survived hypoxic brain injury, 7 individuals who survived ACoA aneurysm rupture, and 13 matched controls were tested on 2 tasks that included a feedback-based learning phase followed by a transfer phase in which familiar information is presented in new ways. In both tasks, the ACoA group was slow on initial learning, but those patients who completed the learning phase went on to transfer as well as controls. In the hypoxic group, 1 patient failed to complete either task; the remaining hypoxic group did not differ from controls during learning of either task, but was impaired on transfer. These results highlight a difference in feedback-based learning in 2 amnesic etiologies, despite similar levels of declarative memory impairment.

  7. Treatment of persistent post-concussion syndrome due to mild traumatic brain injury: current status and future directions.

    PubMed

    Hadanny, Amir; Efrati, Shai

    2016-08-01

    Persistent post-concussion syndrome caused by mild traumatic brain injury has become a major cause of morbidity and poor quality of life. Unlike the acute care of concussion, there is no consensus for treatment of chronic symptoms. Moreover, most of the pharmacologic and non-pharmacologic treatments have failed to demonstrate significant efficacy on both the clinical symptoms as well as the pathophysiologic cascade responsible for the permanent brain injury. This article reviews the pathophysiology of PCS, the diagnostic tools and criteria, the current available treatments including pharmacotherapy and different cognitive rehabilitation programs, and promising new treatment directions. A most promising new direction is the use of hyperbaric oxygen therapy, which targets the basic pathological processes responsible for post-concussion symptoms; it is discussed here in depth.

  8. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  9. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication

    PubMed Central

    Carnevale, Daniela; Perrotta, Marialuisa; Pallante, Fabio; Fardella, Valentina; Iacobucci, Roberta; Fardella, Stefania; Carnevale, Lorenzo; Carnevale, Raimondo; De Lucia, Massimiliano; Cifelli, Giuseppe; Lembo, Giuseppe

    2016-01-01

    The crucial role of the immune system in hypertension is now widely recognized. We previously reported that hypertensive challenges couple the nervous drive with immune system activation, but the physiological and molecular mechanisms of this connection are unknown. Here, we show that hypertensive challenges activate splenic sympathetic nerve discharge to prime immune response. More specifically, a vagus-splenic nerve drive, mediated by nicotinic cholinergic receptors, links the brain and spleen. The sympathetic discharge induced by hypertensive stimuli was absent in both coeliac vagotomized mice and in mice lacking α7nAChR, a receptor typically expressed by peripheral ganglionic neurons. This cholinergic-sympathetic pathway is necessary for T cell activation and egression on hypertensive challenges. In addition, we show that selectively thermoablating the splenic nerve prevents T cell egression and protects against hypertension. This novel experimental procedure for selective splenic denervation suggests new clinical strategies for resistant hypertension. PMID:27676657

  10. Studying the process of clinical communication: issues of context, concepts, and research directions.

    PubMed

    Albrecht, Terrance L; Penner, Louis A; Cline, Rebecca J W; Eggly, Susan S; Ruckdeschel, John C

    2009-01-01

    Much cancer-related health communication research has involved studies of the effects of media campaigns and strategies on secondary prevention. Cancer diagnosis rates, however, continue to affect millions of people. The need exists for communication studies to address the quality of the clinical interaction, the point of actual care delivery in addressing diagnosis, treatment, and survivorship. Using examples from a 6-year communication and behavioral oncology research program established at the Karmanos Cancer Institute (KCI) in Detroit, Michigan, we describe selected empirical issues; models, particularly the "convergence model" (adapted from Rogers & Kincaid, 1981); and associated constructs that are relevant and promising foundations for building future research in cancer clinical settings. Two examples from our empirical research program are described. PMID:19449268

  11. Brain and face: communicating signals of health in the left and right sides of the face.

    PubMed

    Reis, V A; Zaidel, D W

    2001-01-01

    In human communication and mate selection the appearance of health sends signals regarding biological fitness. We compared the appearance of health in the sides of the face to previous results on left-right facial asymmetry in the appearance of beauty (1). The stimuli were created by aligning the left and right sides of the face each with its own mirror image. Here, participants viewed 38 pairs of left-left and right-right faces and judged which member of the pair looked healthier. No significant interaction emerged between decision (health vs attractiveness) and face side. Rather, in women's faces right-right was significantly more healthy and attractive than left-left, while in men's faces there was no significant left-right difference. In biology and evolution, health and beauty are closely linked and the findings here confirm this relationship in human faces.

  12. Evaluation of a 2-Channel NIRS-Based Optical Brain Switch for Motor Disabilities' Communication Tools

    NASA Astrophysics Data System (ADS)

    Sagara, Kazuhiko; Kido, Kunihiko

    We have developed a portable NIRS-based optical BCI system that features a non-invasive, facile probe attachment and does not require muscle movement to control the target devices. The system consists of a 2-channel probe, a signal-processing unit, and an infrared-emission device, which measures the blood volume change in the participant's prefrontal cortex in a real time. We use the threshold logic as a switching technology, which transmits a control signal to a target device when the electrical waveforms exceed the pre-defined threshold. Eight healthy volunteers participated in the experiments and they could change the television channel or control the movement of a toy robot with average switching times of 11.5±5.3s and the hit rate was 83.3%. These trials suggest that this system provides a novel communication aid for people with motor disabilities.

  13. Spectrophotometry in vivo, a technique for local and direct enzymatic assays: application to brain acetylcholinesterase.

    PubMed Central

    Testylier, G; Gourmelon, P

    1987-01-01

    In vivo enzymology is not widely studied due to the lack of a well-adapted technology. We have developed a system that allows local and long-term spectrophotometric assays in brain tissue of live animals. It utilizes a miniaturized optical probe consisting of a multibarrel micropipette for reagent injections and optical fibers for light absorption measurements. We have applied this system to the colorimetric determination of brain acetylcholinesterase activity in rats. The reproducibility of the assay was demonstrated by repetitive assays over 24 hr, its specificity was established through the use of a highly specific organophosphorus inhibitor, and the activities measured in different brain areas agreed with the known distribution of acetylcholinesterase. No electroencephalographic abnormalities and no change in vigilance level were observed in the experimental animals. This methodology should prove to be useful for the colorimetric measurement of different enzymes or metabolites in various organs. PMID:3479782

  14. Changing Direction: Assessing Student Thoughts and Feelings about a New Program in Strategic Communication.

    ERIC Educational Resources Information Center

    Frisby, Cynthia M.; Reber, Bryan H.; Cameron, Glen T.

    A number of recent studies have examined integration of advertising and public relations, but none reports what students think. Over three semesters, students in an introduction to strategic communication course were asked to assess an integrated public relations and advertising curriculum. Students supported integration and viewed a focus on new…

  15. Neural-immune gut-brain communication in the anorexia of disease.

    PubMed

    Schwartz, Gary J

    2002-06-01

    Peripheral administration of toxic bacterial products and cytokines have been used to model the immunological, physiological, and behavioral responses to infection, including the anorexia of disease. The vagus nerve is the major neuroanatomic linkage between gut sites exposed to peripheral endotoxins and cytokines and the central nervous system regions that mediate the control of food intake, and thus has been a major research focus of the neurobiological approach to understanding cytokine-induced anorexia. Molecular biological and neurophysiologic evidence demonstrates that peripheral anorectic doses of cytokines and endotoxins elicit significant increases in neural activation at multiple peripheral and central levels of the gut-brain axis and in some cases may modify the neural processing of meal-related gastrointestinal signals that contribute to the negative feedback control of ingestion. However, behavioral studies of the anorectic effects of peripheral cytokines and endotoxins have shown that neither vagal nor splanchnic visceral afferent fibers supplying the gut are necessary for the reduction of food intake in these models. These data do not rule out 1) the potential contribution of supradiaphragmatic vagal afferents or 2) a modulatory role for immune-stimulated gut vagal afferent signals in the expression of cytokine and endotoxin-induced anorexia in the intact organism.

  16. A cell-phone-based brain-computer interface for communication in daily life.

    PubMed

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs. PMID:21436517

  17. A cell-phone-based brain-computer interface for communication in daily life

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  18. The Berlin Brain-Computer Interface: EEG-based communication without subject training.

    PubMed

    Blankertz, Benjamin; Dornhege, Guido; Krauledat, Matthias; Müller, Klaus-Robert; Kunzmann, Volker; Losch, Florian; Curio, Gabriel

    2006-06-01

    The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems. PMID:16792281

  19. Emotion Regulation in the Brain: Conceptual Issues and Directions for Developmental Research

    ERIC Educational Resources Information Center

    Lewis, Marc D.; Stieben, Jim

    2004-01-01

    Emotion regulation cannot be temporally distinguished from emotion in the brain, but activation patterns in prefrontal cortex appear to mediate cognitive control during emotion episodes. Frontal event-related potentials (ERPs) can tap cognitive control hypothetically mediated by the anterior cingulate cortex, and developmentalists have used these…

  20. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment.

    PubMed

    Shin, Yu-Bin; Woo, Seung-Hyun; Kim, Dong-Hyeon; Kim, Jinseong; Kim, Jae-Jin; Park, Jin Young

    2015-01-01

    This study was performed to explore how direct/indirect lighting affects emotions and brain oscillations compared to the direct lighting when brightness and color temperature are controlled. Twenty-eight subjects (12 females; mean age 22.5) participated. The experimental conditions consisted of two lighting environments: direct/indirect lighting (400 lx downlight, 300 lx uplight) and direct lighting (700 lx downlight). On each trial, a luminance environment was presented for 4 min, followed by participants rated their emotional feelings of the lighting environment. EEG data were recorded during the experiment. Spectral analysis was performed for the range of delta, theta, alpha, beta, and gamma ranges. The participants felt cooler and more pleasant and theta oscillations on the F4, F8, T4, and TP7 electrodes were more enhanced in the direct/indirect lighting environment compared to the direct lighting environment. There was significant correlation between the "cool" rating and the theta power of the F8 electrode. The participants felt more pleasant in the direct/indirect lighting environment, indicating that space with direct/indirect lighting modulated subjective perception. Additionally, our results suggest that theta oscillatory activity can be used as a biological marker that reflects emotional status in different lighting environments.

  1. Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs

    NASA Astrophysics Data System (ADS)

    Lee, Philip J.; Hung, Paul J.; Shaw, Robin; Jan, Lily; Lee, Luke P.

    2005-05-01

    Direct cell-cell communication between adjacent cells is vital for the development and regulation of functional tissues. However, current biological techniques are difficult to scale up for high-throughput screening of cell-cell communication in an array format. In order to provide an effective biophysical tool for the analysis of molecular mechanisms of gap junctions that underlie intercellular communication, we have developed a microfluidic device for selective trapping of cell-pairs and simultaneous optical characterizations. Two different cell populations can be brought into membrane contact using an array of trapping channels with a 2μm by 2μm cross section. Device operation was verified by observation of dye transfer between mouse fibroblasts (NIH3T3) placed in membrane contact. Integration with lab-on-a-chip technologies offers promising applications for cell-based analytical tools such as drug screening, clinical diagnostics, and soft-state biophysical devices for the study of gap junction protein channels in cellular communications. Understanding electrical transport mechanisms via gap junctions in soft membranes will impact quantitative biomedical sciences as well as clinical applications.

  2. When direct health-care professional communications have an impact on inappropriate and unsafe use of medicines.

    PubMed

    Reber, K C; Piening, S; Wieringa, J E; Straus, S M J M; Raine, J M; de Graeff, P A; Haaijer-Ruskamp, F M; Mol, P G M

    2013-04-01

    Serious safety issues relating to drugs are communicated to health-care professionals via Direct Health-Care Professional Communications (DHPCs). We explored which characteristics determined the impact of DHPCs issued in the Netherlands for ambulatory-care drugs (2001-2008). With multiple linear regression, we examined the impact on the relative change in new drug use post-DHPC of the following: time to DHPC, trend in use, degree of innovation, specialist drug, first/repeated DHPC, DHPC template, and type of safety issue. DHPCs have less impact on use of specialist drugs than nonspecialist drugs (P < 0.05). The DHPCs' impact increased after availability of a template emphasizing the main problem (P < 0.05), and for safety issues with a risk of death and/or disability (both P < 0.05) (adjusted R² = 0.392). Risk communication can be effective, specifically in case of well-structured information, and very serious safety issues. Effectiveness may improve by tailoring DHPCs and adding other communication channels, for example for drugs that are increasingly being used. PMID:23443752

  3. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    PubMed

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered.

  4. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions.

    PubMed

    Opitz, Alexander; Zafar, Noman; Bockermann, Volker; Rohde, Veit; Paulus, Walter

    2014-01-01

    The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  5. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    PubMed

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue.

  6. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  7. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions.

    PubMed

    Opitz, Alexander; Zafar, Noman; Bockermann, Volker; Rohde, Veit; Paulus, Walter

    2014-01-01

    The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling. PMID:24818076

  8. Directivity of a Sparse Array in the Presence of Atmospheric-Induced Phase Fluctuations for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Robert J.

    2010-01-01

    Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.

  9. Controlled quantum secure direct communication by entanglement distillation or generalized measurement

    NASA Astrophysics Data System (ADS)

    Tan, Xiaoqing; Zhang, Xiaoqian

    2016-05-01

    We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles θ _4 and θ _3. Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.

  10. Phase error statistics of a phase-locked loop synchronized direct detection optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Natarajan, Suresh; Gardner, C. S.

    1987-01-01

    Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.

  11. The Risk Factors of Symptomatic Communicating Hydrocephalus After Stereotactic Radiosurgery for Unilateral Vestibular Schwannoma: The Implication of Brain Atrophy

    SciTech Connect

    Han, Jung Ho; Kim, Dong Gyu; Chung, Hyun-Tai; Paek, Sun Ha; Park, Chul-Kee; Kim, Chae-Yong; Hwang, Seung-Sik; Park, Jeong-Hoon; Kim, Young-Hoon; Kim, Jin Wook; Kim, Yong Hwy; Song, Sang Woo; Kim, In Kyung; Jung, Hee-Won

    2012-11-15

    Purpose: To identify the effect of brain atrophy on the development of symptomatic communicating hydrocephalus (SCHCP) after stereotactic radiosurgery (SRS) for sporadic unilateral vestibular schwannomas (VS). Methods and Materials: A total of 444 patients with VS were treated with SRS as a primary treatment. One hundred eighty-one patients (40.8%) were male, and the mean age of the patients was 53 {+-} 13 years (range, 11-81 years). The mean follow-up duration was 56.8 {+-} 35.8 months (range, 12-160 months). The mean tumor volume was 2.78 {+-} 3.33 cm{sup 3} (range, 0.03-23.30 cm{sup 3}). The cross-sectional area of the lateral ventricles (CALV), defined as the combined area of the lateral ventricles at the level of the mammillary body, was measured on coronal T1-weighted magnetic resonance images as an indicator of brain atrophy. Results: At distant follow-up, a total of 25 (5.6%) patients had SCHCP. The median time to symptom development was 7 months (range, 1-48 months). The mean CALV was 334.0 {+-} 194.0 mm{sup 2} (range, 44.70-1170 mm{sup 2}). The intraclass correlation coefficient was 0.988 (95% confidence interval [CI], 0.976-0.994; p < 0.001). In multivariate analysis, the CALV had a significant relationship with the development of SCHCP (p < 0.001; odds ration [OR] = 1.005; 95% CI, 1.002-1.007). Tumor volume and female sex also had a significant association (p < 0.001; OR = 1.246; 95% CI, 1.103-1.409; p < 0.009; OR = 7.256; 95% CI, 1.656-31.797, respectively). However, age failed to show any relationship with the development of SCHCP (p = 0.364). Conclusion: Brain atrophy may be related to de novo SCHCP after SRS, especially in female patients with a large VS. Follow-up surveillance should be individualized, considering the risk factors involved for each patient, for prompt diagnosis of SCHCP.

  12. Communication patterns in a psychotherapy following traumatic brain injury: A quantitative case study based on symbolic dynamics

    PubMed Central

    2011-01-01

    Background The role of psychotherapy in the treatment of traumatic brain injury is receiving increased attention. The evaluation of psychotherapy with these patients has been conducted largely in the absence of quantitative data concerning the therapy itself. Quantitative methods for characterizing the sequence-sensitive structure of patient-therapist communication are now being developed with the objective of improving the effectiveness of psychotherapy following traumatic brain injury. Methods The content of three therapy session transcripts (sessions were separated by four months) obtained from a patient with a history of several motor vehicle accidents who was receiving dialectical behavior therapy was scored and analyzed using methods derived from the mathematical theory of symbolic dynamics. Results The analysis of symbol frequencies was largely uninformative. When repeated triples were examined a marked pattern of change in content was observed over the three sessions. The context free grammar complexity and the Lempel-Ziv complexity were calculated for each therapy session. For both measures, the rate of complexity generation, expressed as bits per minute, increased longitudinally during the course of therapy. The between-session increases in complexity generation rates are consistent with calculations of mutual information. Taken together these results indicate that there was a quantifiable increase in the variability of patient-therapist verbal behavior during the course of therapy. Comparison of complexity values against values obtained from equiprobable random surrogates established the presence of a nonrandom structure in patient-therapist dialog (P = .002). Conclusions While recognizing that only limited conclusions can be based on a case history, it can be noted that these quantitative observations are consistent with qualitative clinical observations of increases in the flexibility of discourse during therapy. These procedures can be of particular

  13. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface

    SciTech Connect

    Yamamoto, S.; Seki, C.; Kashikura, K.

    1996-12-31

    We have developed and tested a high resolution beta camera for a direct measurement of positron distribution on brain surface of animals. The beta camera consists of a thin CaF{sub 2}(Eu) scintillator, a tapered fiber optics plate (taper fiber) and a position sensitive photomultiplier tube (PSPMT). The taper fiber is the key component of the camera. We have developed two types of beta cameras. One is 20mm diameter field of view camera for imaging brain surface of cats. The other is 10mm diameter camera for that of rats. Spatial resolutions of beta camera for cats and rats were 0.8mm FWHM and 0.5mm FWHM, respectively. We confirmed that developed beta cameras may overcome the limitation of the spatial resolution of the positron emission tomography (PET).

  14. The level of MnSOD is directly correlated with grade of brain tumours of neuroepithelial origin.

    PubMed Central

    Landriscina, M.; Remiddi, F.; Ria, F.; Palazzotti, B.; De Leo, M. E.; Iacoangeli, M.; Rosselli, R.; Scerrati, M.; Galeotti, T.

    1996-01-01

    The oxy-radical scavenger enzyme manganese superoxide dismutase (MnSOD) may act in the capacity of a tumour-suppressor gene. To address the issue of its role in tumour transformation and progression in vivo, we evaluated the content of this enzyme in 33 brain tumours of neuroepithelial origin with different degrees of differentiation (WHO grade II-IV) by means of Western blot and immunohistology. Our results show that immunoreactive MnSOD increases in a direct relationship with tumour grade and is therefore inversely correlated with differentiation. The increase in induced at a pretranscriptional level and is apparently specific to brain tumours of neuroepithelial origin. Approximately 30% of grade IV tumours display low levels of MnSOD content, and preoperative radiotherapy and brachytherapy result in low amounts of enzyme. Based upon these observations, we suggest that MnSOD cannot be considered a classical tumour-suppressor gene. Images Figure 1 Figure 2 Figure 5 PMID:8980385

  15. Gender on the Brain: A Case Study of Science Communication in the New Media Environment

    PubMed Central

    O’Connor, Cliodhna; Joffe, Helene

    2014-01-01

    Neuroscience research on sex difference is currently a controversial field, frequently accused of purveying a ‘neurosexism’ that functions to naturalise gender inequalities. However, there has been little empirical investigation of how information about neurobiological sex difference is interpreted within wider society. This paper presents a case study that tracks the journey of one high-profile study of neurobiological sex differences from its scientific publication through various layers of the public domain. A content analysis was performed to ascertain how the study was represented in five domains of communication: the original scientific article, a press release, the traditional news media, online reader comments and blog entries. Analysis suggested that scientific research on sex difference offers an opportunity to rehearse abiding cultural understandings of gender. In both scientific and popular contexts, traditional gender stereotypes were projected onto the novel scientific information, which was harnessed to demonstrate the factual truth and normative legitimacy of these beliefs. Though strains of misogyny were evident within the readers’ comments, most discussion of the study took pains to portray the sexes’ unique abilities as equal and ‘complementary’. However, this content often resembled a form of benevolent sexism, in which praise of women’s social-emotional skills compensated for their relegation from more esteemed trait-domains, such as rationality and productivity. The paper suggests that embedding these stereotype patterns in neuroscience may intensify their rhetorical potency by lending them the epistemic authority of science. It argues that the neuroscience of sex difference does not merely reflect, but can actively shape the gender norms of contemporary society. PMID:25354280

  16. Introducing the tactile speller: an ERP-based brain-computer interface for communication

    NASA Astrophysics Data System (ADS)

    van der Waal, Marjolein; Severens, Marianne; Geuze, Jeroen; Desain, Peter

    2012-08-01

    In this study, a tactile speller was developed and compared with existing visual speller paradigms in terms of classification performance and elicited event-related potentials (ERPs). The fingertips of healthy participants were stimulated with short mechanical taps while electroencephalographic activity was measured. The letters of the alphabet were allocated to different fingers and subjects could select one of the fingers by silently counting the number of taps on that finger. The offline and online performance of the tactile speller was compared to the overt and covert attention visual matrix speller and the covert attention Hex-o-Spell speller. For the tactile speller, binary target versus non-target classification accuracy was 67% on average. Classification and decoding accuracies of the tactile speller were lower than the overt matrix speller, but higher than the covert matrix speller, and similar to Hex-o-Spell. The average maximum information transfer rate of the tactile speller was 7.8 bits min-1 (1.51 char min-1), with the best subject reaching a bit-rate of 27 bits min-1 (5.22 char min-1). An increased amplitude of the P300 ERP component was found in response to attended stimuli versus unattended stimuli in all speller types. In addition, the tactile and overt matrix spellers also used the N2 component for discriminating between targets and non-targets. Overall, this study shows that it is possible to use a tactile speller for communication. The tactile speller provides a useful alternative to the visual speller, especially for people whose eye gaze is impaired.

  17. Gender on the brain: a case study of science communication in the new media environment.

    PubMed

    O'Connor, Cliodhna; Joffe, Helene

    2014-01-01

    Neuroscience research on sex difference is currently a controversial field, frequently accused of purveying a 'neurosexism' that functions to naturalise gender inequalities. However, there has been little empirical investigation of how information about neurobiological sex difference is interpreted within wider society. This paper presents a case study that tracks the journey of one high-profile study of neurobiological sex differences from its scientific publication through various layers of the public domain. A content analysis was performed to ascertain how the study was represented in five domains of communication: the original scientific article, a press release, the traditional news media, online reader comments and blog entries. Analysis suggested that scientific research on sex difference offers an opportunity to rehearse abiding cultural understandings of gender. In both scientific and popular contexts, traditional gender stereotypes were projected onto the novel scientific information, which was harnessed to demonstrate the factual truth and normative legitimacy of these beliefs. Though strains of misogyny were evident within the readers' comments, most discussion of the study took pains to portray the sexes' unique abilities as equal and 'complementary'. However, this content often resembled a form of benevolent sexism, in which praise of women's social-emotional skills compensated for their relegation from more esteemed trait-domains, such as rationality and productivity. The paper suggests that embedding these stereotype patterns in neuroscience may intensify their rhetorical potency by lending them the epistemic authority of science. It argues that the neuroscience of sex difference does not merely reflect, but can actively shape the gender norms of contemporary society.

  18. Gender on the brain: a case study of science communication in the new media environment.

    PubMed

    O'Connor, Cliodhna; Joffe, Helene

    2014-01-01

    Neuroscience research on sex difference is currently a controversial field, frequently accused of purveying a 'neurosexism' that functions to naturalise gender inequalities. However, there has been little empirical investigation of how information about neurobiological sex difference is interpreted within wider society. This paper presents a case study that tracks the journey of one high-profile study of neurobiological sex differences from its scientific publication through various layers of the public domain. A content analysis was performed to ascertain how the study was represented in five domains of communication: the original scientific article, a press release, the traditional news media, online reader comments and blog entries. Analysis suggested that scientific research on sex difference offers an opportunity to rehearse abiding cultural understandings of gender. In both scientific and popular contexts, traditional gender stereotypes were projected onto the novel scientific information, which was harnessed to demonstrate the factual truth and normative legitimacy of these beliefs. Though strains of misogyny were evident within the readers' comments, most discussion of the study took pains to portray the sexes' unique abilities as equal and 'complementary'. However, this content often resembled a form of benevolent sexism, in which praise of women's social-emotional skills compensated for their relegation from more esteemed trait-domains, such as rationality and productivity. The paper suggests that embedding these stereotype patterns in neuroscience may intensify their rhetorical potency by lending them the epistemic authority of science. It argues that the neuroscience of sex difference does not merely reflect, but can actively shape the gender norms of contemporary society. PMID:25354280

  19. Introducing the tactile speller: an ERP-based brain-computer interface for communication.

    PubMed

    van der Waal, Marjolein; Severens, Marianne; Geuze, Jeroen; Desain, Peter

    2012-08-01

    In this study, a tactile speller was developed and compared with existing visual speller paradigms in terms of classification performance and elicited event-related potentials (ERPs). The fingertips of healthy participants were stimulated with short mechanical taps while electroencephalographic activity was measured. The letters of the alphabet were allocated to different fingers and subjects could select one of the fingers by silently counting the number of taps on that finger. The offline and online performance of the tactile speller was compared to the overt and covert attention visual matrix speller and the covert attention Hex-o-Spell speller. For the tactile speller, binary target versus non-target classification accuracy was 67% on average. Classification and decoding accuracies of the tactile speller were lower than the overt matrix speller, but higher than the covert matrix speller, and similar to Hex-o-Spell. The average maximum information transfer rate of the tactile speller was 7.8 bits min(-1) (1.51 char min(-1)), with the best subject reaching a bit-rate of 27 bits min(-1) (5.22 char min(-1)). An increased amplitude of the P300 ERP component was found in response to attended stimuli versus unattended stimuli in all speller types. In addition, the tactile and overt matrix spellers also used the N2 component for discriminating between targets and non-targets. Overall, this study shows that it is possible to use a tactile speller for communication. The tactile speller provides a useful alternative to the visual speller, especially for people whose eye gaze is impaired.

  20. Communication Strategies in Direct-to-Consumer Prescription Drug Advertising (DTCA): Application of the Six Segment Message Strategy Wheel.

    PubMed

    Ju, Ilwoo; Park, Jin Seong

    2015-01-01

    This study addresses a void in the literature on direct-to-consumer prescription drug advertising (DTCA) with a theory-based content analysis. The findings indicate that Taylor's communication strategy wheel provides insight into what and how pharmaceutical marketers communicate with consumers by means of DTCA. Major findings are summarized as follows: (a) In most DTC ads, informational and transformational message themes and creative approaches were simultaneously used, indicating a combination strategy; (b) DTCA message themes were associated with creative strategies in alignment with Taylor's framework; and (c) message themes and creative strategies varied across therapeutic categories and DTCA categories with different levels of ad spending. Theoretical and practical implications of the findings are discussed. PMID:25794304

  1. Communication Strategies in Direct-to-Consumer Prescription Drug Advertising (DTCA): Application of the Six Segment Message Strategy Wheel.

    PubMed

    Ju, Ilwoo; Park, Jin Seong

    2015-01-01

    This study addresses a void in the literature on direct-to-consumer prescription drug advertising (DTCA) with a theory-based content analysis. The findings indicate that Taylor's communication strategy wheel provides insight into what and how pharmaceutical marketers communicate with consumers by means of DTCA. Major findings are summarized as follows: (a) In most DTC ads, informational and transformational message themes and creative approaches were simultaneously used, indicating a combination strategy; (b) DTCA message themes were associated with creative strategies in alignment with Taylor's framework; and (c) message themes and creative strategies varied across therapeutic categories and DTCA categories with different levels of ad spending. Theoretical and practical implications of the findings are discussed.

  2. Non-invasive brain stimulation in children: applications and future directions

    PubMed Central

    Rajapakse, Thilinie; Kirton, Adam

    2013-01-01

    Transcranial magnetic stimulation (TMS) is a neurostimulation and neuromodulation technique that has provided over two decades of data in focal, non-invasive brain stimulation based on the principles of electromagnetic induction. Its minimal risk, excellent tolerability and increasingly sophisticated ability to interrogate neurophysiology and plasticity make it an enviable technology for use in pediatric research with future extension into therapeutic trials. While adult trials show promise in using TMS as a novel, non-invasive, non-pharmacologic diagnostic and therapeutic tool in a variety of nervous system disorders, its use in children is only just emerging. TMS represents an exciting advancement to better understand and improve outcomes from disorders of the developing brain. PMID:24163755

  3. Barriers to Real-Time Medical Direction via Cellular Communication for Prehospital Emergency Care Providers in Gujarat, India

    PubMed Central

    Strehlow, Matthew C; Rao, G.V. Ramana; Newberry, Jennifer A

    2016-01-01

    Background: Many low- and middle-income countries depend on emergency medical technicians (EMTs), nurses, midwives, and layperson community health workers with limited training to provide a majority of emergency medical, trauma, and obstetric care in the prehospital setting. To improve timely patient care and expand provider scope of practice, nations leverage cellular phones and call centers for real-time online medical direction. However, there exist several barriers to adequate communication that impact the provision of emergency care. We sought to identify obstacles in the cellular communication process among GVK Emergency Management and Research Institute (GVK EMRI) EMTs in Gujarat, India. Methods: A convenience sample of practicing EMTs in Gujarat, India were surveyed regarding the barriers to call initiation and completion. Results: 108 EMTs completed the survey. Overall, ninety-seven (89.8%) EMTs responded that the most common reason they did not initiate a call with the call center physician was insufficient time. Forty-six (42%) EMTs reported that they were unable to call the physician one or more times during a typical workweek (approximately 5-6 twelve-hour shifts/week) due to their hands being occupied performing direct patient care. Fifty-eight (54%) EMTs reported that they were unable to reach the call center physician, despite attempts, at least once a week. Conclusion: This study identified multiple barriers to communication, including insufficient time to call for advice and inability to reach call center physicians. Identification of simple interventions and best practices may improve communication and ensure timely and appropriate prehospital care.  PMID:27551654

  4. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication

    PubMed Central

    Liu, Ning; Mok, Charis; Witt, Emily E.; Pradhan, Anjali H.; Chen, Jingyuan E.; Reiss, Allan L.

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research. PMID:27014019

  5. Conceptual representations in mind and brain: theoretical developments, current evidence and future directions.

    PubMed

    Kiefer, Markus; Pulvermüller, Friedemann

    2012-07-01

    Conceptual representations in long-term memory crucially contribute to perception and action, language and thought. However, the precise nature of these conceptual memory traces is discussed controversially. In particular, the grounding of concepts in the sensory and motor brain systems is the focus of a current debate. Here, we review theoretical accounts of the structure and neural basis of conceptual memory and evaluate them in light of recent empirical evidence. Models of conceptual processing can be distinguished along four dimensions: (i) amodal versus modality-specific, (ii) localist versus distributed, (iii) innate versus experience-dependent, and (iv) stable versus flexible. A systematic review of behavioral and neuroimaging studies in healthy participants along with brain-damaged patients will then be used to evaluate the competing theoretical approaches to conceptual representations. These findings indicate that concepts are flexible, distributed representations comprised of modality-specific conceptual features. Conceptual features are stored in distinct sensory and motor brain areas depending on specific sensory and motor experiences during concept acquisition. Three important controversial issues are highlighted, which require further clarification in future research: the existence of an amodal conceptual representation in the anterior temporal lobe, the causal role of sensory and motor activation for conceptual processing and the grounding of abstract concepts in perception and action. We argue that an embodiment view of conceptual representations realized as distributed sensory and motor cell assemblies that are complemented by supramodal integration brain circuits may serve as a theoretical framework to guide future research on concrete and abstract concepts. PMID:21621764

  6. Diffusion MRI: Pitfalls, literature review and future directions of research in mild traumatic brain injury.

    PubMed

    Delouche, Aurélie; Attyé, Arnaud; Heck, Olivier; Grand, Sylvie; Kastler, Adrian; Lamalle, Laurent; Renard, Felix; Krainik, Alexandre

    2016-01-01

    Mild traumatic brain injury (mTBI) is a leading cause of disability in adults, many of whom report a distressing combination of physical, emotional and cognitive symptoms, collectively known as post-concussion syndrome, that persist after the injury. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of fractional anisotropy or mean diffusivity, have enhanced our knowledge on the different stages of mTBI pathophysiology. Other diffusion imaging-derived techniques, including diffusion kurtosis imaging with multi-shell diffusion and high-order tractography models, have recently demonstrated their usefulness in mTBI. Our review starts by briefly outlining the physical basis of diffusion tensor imaging including the pitfalls for use in brain trauma, before discussing findings from diagnostic trials testing its usefulness in assessing brain structural changes in patients with mTBI. Use of different post-processing techniques for the diffusion imaging data, identified the corpus callosum as the most frequently injured structure in mTBI, particularly at sub-acute and chronic stages, and a crucial location for evaluating functional outcome. However, structural changes appear too subtle for identification using traditional diffusion biomarkers, thus disallowing expansion of these techniques into clinical practice. In this regard, more advanced diffusion techniques are promising in the assessment of this complex disease.

  7. Direct-to-Earth Communications and Signal Processing for Mars Exploration Rover Entry, Descent, and Landing

    NASA Astrophysics Data System (ADS)

    Satorius, E.; Estabrook, P.; Wilson, J.; Fort, D.

    2003-01-01

    For planetary lander missions, the most challenging phase of the spacecraft-to-ground communications is during the entry, descent, and landing (EDL). As each 2003 Mars Exploration Rover (MER) enters the Martian atmosphere, it slows dramatically. The extreme acceleration and jerk cause extreme Doppler dynamics on the 8.4-GHz (X-band) signal received on Earth. When the vehicle slows sufficiently, the parachute is deployed, causing almost a step in deceleration. After parachute deployment, the lander is lowered beneath the parachute on a bridle. The swinging motion of the lander imparts high Doppler dynamics on the signal and causes the received signal strength to vary widely due to changing antenna pointing angles. All this time, the vehicle transmits important health and status information that is especially critical if the landing is not successful. Even using the largest Deep Space Network antennas, the weak signal and high dynamics render it impossible to conduct reliable phase-coherent communications. Therefore, a specialized form of frequency-shift keying will be used. This article describes the EDL scenario, the signal conditions, the methods used to detect and frequency track the carrier and to detect the data modulation, and the resulting performance estimates.

  8. Teaching children with autism to engage in peer-directed mands using a picture exchange communication system.

    PubMed

    Paden, Amber R; Kodak, Tiffany; Fisher, Wayne W; Gawley-Bullington, Elizabeth M; Bouxsein, Kelly J

    2012-01-01

    We evaluated differential reinforcement of alternative behavior (DRA) plus prompting to increase peer-directed mands for preferred items using a picture exchange communication system (PECS). Two nonvocal individuals with autism participated. Independent mands with a peer increased with the implementation of DRA plus prompting for both participants. In addition, peers engaged in brief social interactions following the majority of mands for leisure items. These results suggest that teaching children to use PECS with peers may be one way to increase manding and social interactions in individuals with limited or no vocal repertoire.

  9. [Direct cell-cell communications and social behavior of cells in mammals, protists, and bacteria. Possible causes of multicellularity].

    PubMed

    Brodskiĭ, V Ia

    2009-01-01

    Comparison of current data on direct cell-cell communications in mammals, protists, and bacteria suggests that the emergence of the signaling systems of self-organization underlay the emergence of multicellular organisms. Biogenic amines, regulators of coordinated behavior and aggregation in bacteria, have been found in protists and multicellular organisms. In metazoans, biogenic amines have become specific neurotransmitters. At the same time, the studies on synchronization of protein synthesis rhythm in mammalian cell cultures demonstrated that noradrenaline and serotonin have conserved their ancient function of cell-cell cooperation in mammals, which is manifested as coordinated social behavior of cells in population in the case of bacteria and multicellular organisms.

  10. Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study.

    PubMed

    Kunze, Tim; Hunold, Alexander; Haueisen, Jens; Jirsa, Viktor; Spiegler, Andreas

    2016-10-15

    Transcranial direct current stimulation (tDCS) is a noninvasive technique for affecting brain dynamics with promising application in the clinical therapy of neurological and psychiatric disorders such as Parkinson's disease, Alzheimer's disease, depression, and schizophrenia. Resting state dynamics increasingly play a role in the assessment of connectivity-based pathologies such as Alzheimer's and schizophrenia. We systematically applied tDCS in a large-scale network model of 74 cerebral areas, investigating the spatiotemporal changes in dynamic states as a function of structural connectivity changes. Structural connectivity was defined by the human connectome. The main findings of this study are fourfold: Firstly, we found a tDCS-induced increase in functional connectivity among cerebral areas and among EEG sensors, where the latter reproduced empirical findings of other researchers. Secondly, the analysis of the network dynamics suggested synchronization to be the main mechanism of the observed effects. Thirdly, we found that tDCS sharpens and shifts the frequency distribution of scalp EEG sensors slightly towards higher frequencies. Fourthly, new dynamic states emerged through interacting areas in the network compared to the dynamics of an isolated area. The findings propose synchronization as a key mechanism underlying the changes in the spatiotemporal pattern formation due to tDCS. Our work supports the notion that noninvasive brain stimulation is able to bias brain dynamics by affecting the competitive interplay of functional subnetworks.

  11. Digital Game Playing and Direct and Indirect Aggression in Early Adolescence: The Roles of Age, Social Intelligence, and Parent-Child Communication

    ERIC Educational Resources Information Center

    Wallenius, Marjut; Punamaki, Raija-Leena; Rimpela, Arja

    2007-01-01

    The roles of age, social intelligence and parent-child communication in moderating the association between digital game playing and direct and indirect aggression were examined in 478 Finnish 10- and 13-year-old schoolchildren based on self-reports. The results confirmed that digital game violence was directly associated with direct aggression,…

  12. Information Leakage Problem in Efficient Bidirectional Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hao; Chen, Han-Wu; Liu, Wen-Jie

    2016-06-01

    The information leakage problem in the efficient bidirectional quantum secure direct communication protocol with single photons in both polarization and spatial-mode degrees of freedom is pointed out. Next, a way to revise this protocol to a truly secure one is given. We hope people pay more attention to the information leakage problem in order to design truly secure quantum communication protocols.

  13. Increased Brain Activity to Infant-Directed Speech in 6- and 13-Month-Old Infants

    ERIC Educational Resources Information Center

    Zangl, Renate; Mills, Debra L.

    2007-01-01

    This study explored the impact of infant-directed speech (IDS) versus adult-directed speech (ADS) on neural activity to familiar and unfamiliar words in 6- and 13-month-old infants. Event-related potentials were recorded while infants listened to familiar words in IDS, familiar words in ADS, unfamiliar words in IDS, and unfamiliar words in ADS.…

  14. Eavesdropping on quantum secure direct communication in quantum channels with arbitrarily low loss rate

    NASA Astrophysics Data System (ADS)

    Zawadzki, Piotr

    2016-04-01

    Quantum attacks that provide an undetectable eavesdropping of the ping-pong protocol operating over lossy quantum channels have already been demonstrated by Wójcik (Phys Rev Lett 90(15):157901, 2003) and Zhang et al. (Phys Lett A 333(12):46-50, 2004). These attacks provide a maximum information gain of 0.311 bits per protocol cycle as long as the induced loss rate remains acceptable. Otherwise, the skipping of some protocol cycles is advised to stay within an accepted loss limit. Such policy leads to a reduction in information gain proportional to the number of skipped cycles. The attack transformation parametrized by the induced loss ratio is proposed. It provides smaller reduction in information gain when the losses accepted by the communicating parties are too low to mount the most effective attack. Other properties of the attack remain the same.

  15. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.

  16. Beyond advance directives: importance of communication skills at the end of life.

    PubMed

    Tulsky, James A

    2005-07-20

    Patients and their families struggle with myriad choices concerning medical treatments that frequently precede death. Advance directives have been proposed as a tool to facilitate end-of-life decision making, yet frequently fail to achieve this goal. In the context of the case of a man with metastatic cancer for whom an advance directive was unable to prevent a traumatic death, I review the challenges in creating and implementing advance directives, discuss factors that can affect clear decision making; including trust, uncertainty, emotion, hope, and the presence of multiple medical providers; and offer practical suggestions for physicians. Advance care planning remains a useful tool for approaching conversations with patients about the end of life. However, such planning should occur within a framework that emphasizes responding to patient and family emotions and focuses more on goals for care and less on specific treatments.

  17. Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ceuppens, Ruben; Dumont, Debora; van Brussel, Leen; van de Plas, Babs; Daniels, Ruth; Noben, Jean-Paul; Verhaert, Peter; van der Gucht, Estel; Robben, Johan; Clerens, Stefan; Arckens, Lutgarde

    2007-02-01

    One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.

  18. The effects of direct instruction on the single-word reading skills of children who require augmentative and alternative communication.

    PubMed

    Fallon, Karen A; Light, Janice; McNaughton, David; Drager, Kathryn; Hammer, Carol

    2004-12-01

    Current literature suggests a lack of empirically validated strategies for teaching reading skills to children who use augmentative and alternative communication (AAC). The current study implemented a single-subject, multiple-probe-across-subjects design to investigate the effects of direct instruction in single-word reading on the performance of students who use AAC. The instructional program targeted the reading skills of 5 participants who had severe speech impairments and ranged in age from 9 to 14 years old. All 5 participants reached criterion for matching targeted written words to corresponding pictures. Three of the 5 participants demonstrated generalization of reading skills to novel-word reading, and 4 of the 5 generalized reading skills to book contexts. Implications and directions for future research are discussed.

  19. Impulsive consensus seeking in directed networks of multi-agent systems with communication time delays

    NASA Astrophysics Data System (ADS)

    Wu, Quanjun; Zhou, Jin; Xiang, Lan

    2012-08-01

    In this article, we consider average consensus problem in directed delayed networked multi-agent systems having impulsive effects with fixed topology and stochastic switching topology. A simple impulsive consensus protocol for such networks is proposed, and some generic criteria for solving the average consensus problem are analytically derived. It is shown that a directed delayed networked multi-agent system can achieve average consensus globally exponentially with suitable impulsive gain and impulsive interval. Subsequently, two typical illustrative examples, along with computer simulation results, are provided to visualise the effectiveness and feasibility of our theoretical results.

  20. Brain-Computer Symbiosis

    PubMed Central

    Schalk, Gerwin

    2009-01-01

    The theoretical groundwork of the 1930’s and 1940’s and the technical advance of computers in the following decades provided the basis for dramatic increases in human efficiency. While computers continue to evolve, and we can still expect increasing benefits from their use, the interface between humans and computers has begun to present a serious impediment to full realization of the potential payoff. This article is about the theoretical and practical possibility that direct communication between the brain and the computer can be used to overcome this impediment by improving or augmenting conventional forms of human communication. It is about the opportunity that the limitations of our body’s input and output capacities can be overcome using direct interaction with the brain, and it discusses the assumptions, possible limitations, and implications of a technology that I anticipate will be a major source of pervasive changes in the coming decades. PMID:18310804

  1. Social communication mediates the relationship between emotion perception and externalizing behaviors in young adult survivors of pediatric traumatic brain injury (TBI).

    PubMed

    Ryan, Nicholas P; Anderson, Vicki; Godfrey, Celia; Eren, Senem; Rosema, Stefanie; Taylor, Kaitlyn; Catroppa, Cathy

    2013-12-01

    Traumatic brain injury (TBI) is a common cause of childhood disability, and is associated with elevated risk for long-term social impairment. Though social (pragmatic) communication deficits may be among the most debilitating consequences of childhood TBI, few studies have examined very long-term communication outcomes as children with TBI make the transition to young adulthood. In addition, the extent to which reduced social function contributes to externalizing behaviors in survivors of childhood TBI remains poorly understood. The present study aimed to evaluate the extent of social communication difficulty among young adult survivors of childhood TBI (n=34, injury age: 1.0-7.0 years; M time since injury: 16.55 years) and examine relations among aspects of social function including emotion perception, social communication and externalizing behaviors rated by close-other proxies. Compared to controls the TBI group had significantly greater social communication difficulty, which was associated with more frequent externalizing behaviors and poorer emotion perception. Analyses demonstrated that reduced social communication mediated the association between poorer emotion perception and more frequent externalizing behaviors. Our findings indicate that socio-cognitive impairments may indirectly increase the risk for externalizing behaviors among young adult survivors of childhood TBI, and underscore the need for targeted social skills interventions delivered soon after injury, and into the very long-term.

  2. EXTENDING THE ASSESSMENT OF TECHNOLOGY-AIDED PROGRAMS TO SUPPORT LEISURE AND COMMUNICATION IN PEOPLE WITH ACQUIRED BRAIN INJURY AND EXTENSIVE MULTIPLE DISABILITIES.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'reilly, Mark F; Sigafoos, Jeff; Buonocunto, Francesca; D'amico, Fiora; Quaranta, Sara; Navarro, Jorge; Lanzilotti, Crocifissa; Colonna, Fabio

    2015-10-01

    Intervention programs for people with acquired brain injury and extensive motor and communication impairment need to be diversified according to their characteristics and environment. These two studies assessed two technology-aided programs for supporting leisure (i.e., access to songs and videos) and communication (i.e., expressing needs and feelings and making requests) in six of those people. The three people participating in Study 1 did not possess speech but were able to understand spoken and written sentences. Their program presented leisure and communication options through written phrases appearing on the computer screen. The three people participating in Study 2 did not possess any speech and were unable to understand spoken or written language. Their program presented leisure and communication options through pictorial images. All participants relied on a simple microswitch response to enter the options and activate songs, videos, and communication messages. The data showed that the participants of both studies learned to use the program available to them and to engage in leisure and communication independently. The importance of using programs adapted to the participants and their environment was discussed. PMID:26445152

  3. EXTENDING THE ASSESSMENT OF TECHNOLOGY-AIDED PROGRAMS TO SUPPORT LEISURE AND COMMUNICATION IN PEOPLE WITH ACQUIRED BRAIN INJURY AND EXTENSIVE MULTIPLE DISABILITIES.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'reilly, Mark F; Sigafoos, Jeff; Buonocunto, Francesca; D'amico, Fiora; Quaranta, Sara; Navarro, Jorge; Lanzilotti, Crocifissa; Colonna, Fabio

    2015-10-01

    Intervention programs for people with acquired brain injury and extensive motor and communication impairment need to be diversified according to their characteristics and environment. These two studies assessed two technology-aided programs for supporting leisure (i.e., access to songs and videos) and communication (i.e., expressing needs and feelings and making requests) in six of those people. The three people participating in Study 1 did not possess speech but were able to understand spoken and written sentences. Their program presented leisure and communication options through written phrases appearing on the computer screen. The three people participating in Study 2 did not possess any speech and were unable to understand spoken or written language. Their program presented leisure and communication options through pictorial images. All participants relied on a simple microswitch response to enter the options and activate songs, videos, and communication messages. The data showed that the participants of both studies learned to use the program available to them and to engage in leisure and communication independently. The importance of using programs adapted to the participants and their environment was discussed.

  4. A Practical, Intuitive Brain-Computer Interface for Communicating “Yes” or “No” by Listening

    PubMed Central

    Hill, N. Jeremy; Ricci, Erin; Haider, Sameah; McCane, Lynn M.; Heckman, Susan; Wolpaw, Jonathan R.; Vaughan, Theresa M.

    2014-01-01

    Objective Previous work has shown that it is possible to build an EEG-based binary brain-computer interface system (BCI) driven purely by shifts of attention to auditory stimuli. However, previous studies used abrupt, abstract stimuli that are often perceived as harsh and unpleasant, and whose lack of inherent meaning may make the interface unintuitive and difficult for beginners. We aimed to establish whether we could transition to a system based on more natural, intuitive stimuli (spoken words “yes” and “no”) without loss of performance, and whether the system could be used by people in the locked-in state. Methodology We performed a counterbalanced, interleaved within-subject comparison between an auditory streaming BCI that used beep stimuli, and one that used word stimuli. Fourteen healthy volunteers performed two sessions each, on separate days. We also collected preliminary data from two subjects with advanced ALS, who used the word-based system to answer a set of simple yes-no questions. Main Results The N1, N2 and P3 event-related potentials elicited by words varied more between subjects than those elicited by beeps. However, the difference between responses to attended and unattended stimuli was more consistent with words than beeps. Healthy subjects’ performance with word stimuli (mean 77% ± 3.3 s.e.) was slightly but not significantly better than their performance with beep stimuli (mean 73% ± 2.8 s.e.). The two subjects with ALS used the word-based BCI to answer questions with a level of accuracy similar to that of the healthy subjects. Significance Since performance using word stimuli was at least as good as performance using beeps, we recommend that auditory streaming BCI systems be built with word stimuli to make the system more pleasant and intuitive. Our preliminary data show that word-based streaming BCI is a promising tool for communication by people who are locked in. PMID:24838278

  5. A practical, intuitive brain-computer interface for communicating ‘yes’ or ‘no’ by listening

    NASA Astrophysics Data System (ADS)

    Hill, N. Jeremy; Ricci, Erin; Haider, Sameah; McCane, Lynn M.; Heckman, Susan; Wolpaw, Jonathan R.; Vaughan, Theresa M.

    2014-06-01

    Objective. Previous work has shown that it is possible to build an EEG-based binary brain-computer interface system (BCI) driven purely by shifts of attention to auditory stimuli. However, previous studies used abrupt, abstract stimuli that are often perceived as harsh and unpleasant, and whose lack of inherent meaning may make the interface unintuitive and difficult for beginners. We aimed to establish whether we could transition to a system based on more natural, intuitive stimuli (spoken words ‘yes’ and ‘no’) without loss of performance, and whether the system could be used by people in the locked-in state. Approach. We performed a counterbalanced, interleaved within-subject comparison between an auditory streaming BCI that used beep stimuli, and one that used word stimuli. Fourteen healthy volunteers performed two sessions each, on separate days. We also collected preliminary data from two subjects with advanced amyotrophic lateral sclerosis (ALS), who used the word-based system to answer a set of simple yes-no questions. Main results. The N1, N2 and P3 event-related potentials elicited by words varied more between subjects than those elicited by beeps. However, the difference between responses to attended and unattended stimuli was more consistent with words than beeps. Healthy subjects’ performance with word stimuli (mean 77% ± 3.3 s.e.) was slightly but not significantly better than their performance with beep stimuli (mean 73% ± 2.8 s.e.). The two subjects with ALS used the word-based BCI to answer questions with a level of accuracy similar to that of the healthy subjects. Significance. Since performance using word stimuli was at least as good as performance using beeps, we recommend that auditory streaming BCI systems be built with word stimuli to make the system more pleasant and intuitive. Our preliminary data show that word-based streaming BCI is a promising tool for communication by people who are locked in.

  6. Direct patterning of rhodamine 6G molecules on mica by dip-pen nanolithography [rapid communication

    NASA Astrophysics Data System (ADS)

    Zhou, Hualan; Li, Zhuang; Wu, Aiguo; Wei, Gang; Liu, Zhiguo

    2004-09-01

    Dip-pen nanolithography (DPN) has been developed to pattern monolayer film of various molecules on suitable substrate through the controlled movement of ink-coated atomic force microscopy (AFM) tip, which makes DPN a potentially powerful tool for making the functional nanoscale devices. In this paper, the direct patterning of rhodamine 6G on mica by dip-pen nanolithography was demonstrated. R6G features patterned on the mica was successfully achieved with different tip movement which can be programmed by Nanoscript™ language. From the AFM image of R6G patterns, we know that R6G molecule is flatly binding to the mica surface through electrostatic interaction, thus stable R6G nanostructures could be formed on mica. The influence of translation speed and contact time on DPN was discussed. The method can be extended to direct patterning of many other organic molecules, and should open many opportunities for miniaturized optical device and site-specific biological staining.

  7. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    PubMed Central

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-01-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging. PMID:26878910

  8. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-02-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.

  9. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain

  10. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior.

    PubMed

    Wohleb, Eric S; McKim, Daniel B; Sheridan, John F; Godbout, Jonathan P

    2014-01-01

    HIGHLIGHTSPsychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and

  11. FAST TRACK COMMUNICATION: Placing direct limits on the mass of earth-bound dark matter

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2008-10-01

    We point out that by comparing the total mass (in gravitational units) of the earth moon system, as determined by lunar laser ranging, with the sum of the lunar mass as independently determined by its gravitational action on satellites or asteroids, and the earth mass, as determined by the LAGEOS geodetic survey satellite, one can get a direct measure of the mass of earth-bound dark matter lying between the radius of the moon's orbit and the geodetic satellite orbit. Current data show that the mass of such earth-bound dark matter must be less than 4 × 10-9 of the earth's mass.

  12. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis.

    PubMed

    Li, Xiaokang; Zhao, Hui; Qi, Chunxiao; Zeng, Yang; Xu, Feng; Du, Yanan

    2015-10-01

    The onset of cardiac fibrosis post myocardial infarction greatly impairs the function of heart. Recent advances of cell transplantation showed great benefits to restore myocardial function, among which the mesenchymal stem cells (MSCs) has gained much attention. However, the underlying cellular mechanisms of MSC therapy are still not fully understood. Although paracrine effects of MSCs on residual cardiomyocytes have been discussed, the amelioration of fibrosis was rarely studied as the hostile environment cannot support the survival of most cell populations and impairs the diffusion of soluble factors. Here in order to decipher the potential mechanism of MSC therapy for cardiac fibrosis, we investigated the interplay between MSCs and cardiac myofibroblasts (mFBs) using interactive co-culture method, with comparison to paracrine approaches, namely treatment by MSC conditioned medium and gap co-culture method. Various fibrotic features of mFBs were analyzed and the most prominent anti-fibrosis effects were always obtained using direct co-culture that allowed cell-to-cell contacts. Hepatocyte growth factor (HGF), a well-known anti-fibrosis factor, was demonstrated to be a major contributor for MSCs' anti-fibrosis function. Moreover, physical contacts and tube-like structures between MSCs and mFBs were observed by live cell imaging and TEM which demonstrate the direct cellular interactions.

  13. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis.

    PubMed

    Li, Xiaokang; Zhao, Hui; Qi, Chunxiao; Zeng, Yang; Xu, Feng; Du, Yanan

    2015-10-01

    The onset of cardiac fibrosis post myocardial infarction greatly impairs the function of heart. Recent advances of cell transplantation showed great benefits to restore myocardial function, among which the mesenchymal stem cells (MSCs) has gained much attention. However, the underlying cellular mechanisms of MSC therapy are still not fully understood. Although paracrine effects of MSCs on residual cardiomyocytes have been discussed, the amelioration of fibrosis was rarely studied as the hostile environment cannot support the survival of most cell populations and impairs the diffusion of soluble factors. Here in order to decipher the potential mechanism of MSC therapy for cardiac fibrosis, we investigated the interplay between MSCs and cardiac myofibroblasts (mFBs) using interactive co-culture method, with comparison to paracrine approaches, namely treatment by MSC conditioned medium and gap co-culture method. Various fibrotic features of mFBs were analyzed and the most prominent anti-fibrosis effects were always obtained using direct co-culture that allowed cell-to-cell contacts. Hepatocyte growth factor (HGF), a well-known anti-fibrosis factor, was demonstrated to be a major contributor for MSCs' anti-fibrosis function. Moreover, physical contacts and tube-like structures between MSCs and mFBs were observed by live cell imaging and TEM which demonstrate the direct cellular interactions. PMID:26271509

  14. Non-invasive Brain Stimulation and Auditory Verbal Hallucinations: New Techniques and Future Directions

    PubMed Central

    Moseley, Peter; Alderson-Day, Ben; Ellison, Amanda; Jardri, Renaud; Fernyhough, Charles

    2016-01-01

    Auditory verbal hallucinations (AVHs) are the experience of hearing a voice in the absence of any speaker. Results from recent attempts to treat AVHs with neurostimulation (rTMS or tDCS) to the left temporoparietal junction have not been conclusive, but suggest that it may be a promising treatment option for some individuals. Some evidence suggests that the therapeutic effect of neurostimulation on AVHs may result from modulation of cortical areas involved in the ability to monitor the source of self-generated information. Here, we provide a brief overview of cognitive models and neurostimulation paradigms associated with treatment of AVHs, and discuss techniques that could be explored in the future to improve the efficacy of treatment, including alternating current and random noise stimulation. Technical issues surrounding the use of neurostimulation as a treatment option are discussed (including methods to localize the targeted cortical area, and the state-dependent effects of brain stimulation), as are issues surrounding the acceptability of neurostimulation for adolescent populations and individuals who experience qualitatively different types of AVH. PMID:26834541

  15. Per-survivor processing for underwater acoustic communications with direct-sequence spread spectrum.

    PubMed

    Xu, Xiaoka; Zhou, Shengli; Morozov, Andrey K; Preisig, James C

    2013-05-01

    This paper proposes a receiver for direct-sequence spread spectrum transmissions in underwater acoustic channels, which combines a per-survivor processing (PSP) structure with sparse channel estimation. Specifically, the PSP structure establishes the trellis on the symbol level to render a small to moderate number of states, thus reducing the computational complexity. Meanwhile, the sparse channel estimation is performed on the chip level, where the orthogonal matching pursuit algorithm is used and a two-dimensional grid of path delay and Doppler scaling factor is incorporated in the dictionary construction. The effective combination of the PSP detection and sparse channel estimation achieves a good tradeoff between performance and complexity. Simulation and experiment results show that the proposed receiver outperforms the conventional RAKE receiver considerably, and most importantly, the proposed PSP receiver with an exact wideband dictionary maintains an excellent performance even for challenging underwater acoustic channels with large Doppler disparities on different paths. PMID:23654382

  16. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    NASA Astrophysics Data System (ADS)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-10-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  17. Direct-current Stimulation and Multi-electrode Array Recording of Seizure-like Activity in Mice Brain Slice Preparation.

    PubMed

    Lu, Hsiang-Chin; Chang, Wei-Jen; Chang, Wei-Pang; Shyu, Bai-Chuang

    2016-01-01

    Cathodal transcranial direct-current stimulation (tDCS) induces suppressive effects on drug-resistant seizures. To perform effective actions, the stimulation parameters (e.g., orientation, field strength, and stimulation duration) need to be examined in mice brain slice preparations. Testing and arranging the orientation of the electrode relative to the position of the mice brain slice are feasible. The present method preserves the thalamocingulate pathway to evaluate the effect of DCS on anterior cingulate cortex seizure-like activities. The results of the multichannel array recordings indicated that cathodal DCS significantly decreased the amplitude of the stimulation-evoked responses and duration of 4-aminopyridine and bicuculline-induced seizure-like activity. This study also found that cathodal DCS applications at 15 min caused long-term depression in the thalamocingulate pathway. The present study investigates the effects of DCS on thalamocingulate synaptic plasticity and acute seizure-like activities. The current procedure can test the optimal stimulation parameters including orientation, field strength, and stimulation duration in an in vitro mouse model. Also, the method can evaluate the effects of DCS on cortical seizure-like activities at both the cellular and network levels. PMID:27341682

  18. Deep Brain Stimulation for Parkinson’s Disease: Recent Trends and Future Direction

    PubMed Central

    FUKAYA, Chikashi; YAMAMOTO, Takamitsu

    2015-01-01

    To date, deep brain stimulation (DBS) has already been performed on more than 120,000 patients worldwide and in more than 7,000 patients in Japan. However, fundamental understanding of DBS effects on the pathological neural circuitry remains insufficient. Recent studies have specifically shown the importance of cortico-striato-thalamo-cortical (CSTC) loops, which were identified as functionally and anatomically discrete units. Three main circuits exist in the CSTC loops, namely, the motor, associative, and limbic circuits. From these theoretical backgrounds, it is determined that DBS sometimes influences not only motor functions but also the cognitive and affective functions of Parkinson’s disease (PD) patients. The main targets of DBS for PD are subthalamic nucleus (STN) and globus pallidus interna (GPi). Ventralis intermedius (Vim)-DBS was found to be effective in improving tremor. However, Vim-DBS cannot sufficiently improve akinesia and rigidity. Therefore, Vim-DBS is seldom carried out for the treatment of PD. In this article, we review the present state of DBS, mainly STN-DBS and GPi-DBS, for PD. In the first part of the article, appropriate indications and practical effects established in previous studies are discussed. The findings of previous investigations on the complications caused by the surgical procedure and on the adverse events induced by DBS itself are reviewed. In the second part, we discuss target selection (GPi vs. STN) and the effect of DBS on nonmotor symptoms. In the final part, as issues that should be resolved, the suitable timing of surgery, symptoms unresponsive to DBS such as on-period axial symptoms, and the related postoperative programing of stimulation parameters, are discussed. PMID:25925761

  19. A Comparison of Students' Outcomes in Two Classes: Business Administration Students vs Communication Arts Students Based on Self-Directed Learning Activities

    ERIC Educational Resources Information Center

    Orawiwatnakul, Wiwat; Wichadee, Saovapa

    2011-01-01

    With research showing the benefits of self-directed learning, more activities are needed to provide learners opportunities for self-directed practice (Khomson, 1997; Lee, 1998; Phongnapharuk, 2007). A 12-week experimental study was performed with 80 EFL learners; one group contained 40 Communication Arts students and the other one consisted of 40…

  20. Acoustic communication in the Greater Sage-Grouse (Centrocercus urophasianus) an examination into vocal sacs, sound propagation, and signal directionality

    NASA Astrophysics Data System (ADS)

    Dantzker, Marc Steven

    The thesis is an inquiry into the acoustic communication of a very unusual avian species, the Greater Sage-Grouse, Centrocercus urophasianus. One of the most outstanding features of this animal's dynamic mating display is its use of paired air sacs that emerge explosively from an esophageal pouch. My first line of inquiry into this system is a review of the form and function of similar vocal apparatuses, collectively called vocal sacs, in birds. Next, with a combination of mathematical models and field measurements, My collaborator and I investigate the acoustic environment where the Greater Sage-Grouse display. The complexities of this acoustic environment are relevant both to the birds and to the subsequent examinations of the display's properties. Finally, my collaborators and I examine a cryptic component of the acoustic display --- directionality --- which we measured simultaneously from multiple locations around free moving grouse on their mating grounds.

  1. Extensive Direct Subcortical Cerebellum-Basal Ganglia Connections in Human Brain as Revealed by Constrained Spherical Deconvolution Tractography

    PubMed Central

    Milardi, Demetrio; Arrigo, Alessandro; Anastasi, Giuseppe; Cacciola, Alberto; Marino, Silvia; Mormina, Enricomaria; Calamuneri, Alessandro; Bruschetta, Daniele; Cutroneo, Giuseppina; Trimarchi, Fabio; Quartarone, Angelo

    2016-01-01

    The connections between the cerebellum and basal ganglia were assumed to occur at the level of neocortex. However evidences from animal data have challenged this old perspective showing extensive subcortical pathways linking the cerebellum with the basal ganglia. Here we tested the hypothesis if these connections also exist between the cerebellum and basal ganglia in the human brain by using diffusion magnetic resonance imaging and tractography. Fifteen healthy subjects were analyzed by using constrained spherical deconvolution technique obtained with a 3T magnetic resonance imaging scanner. We found extensive connections running between the subthalamic nucleus and cerebellar cortex and, as novel result, we demonstrated a direct route linking the dentate nucleus to the internal globus pallidus as well as to the substantia nigra. These findings may open a new scenario on the interpretation of basal ganglia disorders. PMID:27047348

  2. Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain

    PubMed Central

    Verdecchia, Kyle; Diop, Mamadou; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith

    2015-01-01

    Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique capable of monitoring tissue perfusion. The normalized temporal intensity autocorrelation function generated by DCS is typically characterized by assuming that the movement of erythrocytes can be modeled as a Brownian diffusion-like process instead of by the expected random flow model. Recently, a hybrid model, referred to as the hydrodynamic diffusion model, was proposed, which combines the random and Brownian flow models. The purpose of this study was to investigate the best model to describe autocorrelation functions acquired directly on the brain in order to avoid confounding effects of extracerebral tissues. Data were acquired from 11 pigs during normocapnia and hypocapnia, and flow changes were verified by computed tomography perfusion (CTP). The hydrodynamic diffusion model was found to provide the best fit to the autocorrelation functions; however, no significant difference for relative flow changes measured by the Brownian and hydrodynamic diffusion models was observed. PMID:26600995

  3. Interference suppression to aid acquisition in direct-sequence spread-spectrum communications

    NASA Astrophysics Data System (ADS)

    Milstein, Laurence B.

    1988-11-01

    The acquisition and tracking systems of a spread-spectrum receiver are probably the most critical components of the receiver, since if they fail to function properly, it is doubtful that the desired signal can be successfully detected. This means that the effect of interference (such as jamming) on the receiver while it is attempting to learn the correct phase position of the incoming code might be especially harmful, since the interference might not allow the receiver to acquire the signal. To address this problem, a narrow-band interference suppression filter is used to enhance the performance of a serial search acquisition scheme for a direct-sequence spread-spectrum receiver. Analytical expressions for the probabilities of error in both the search and lock modes are derived, and numerical results are used to illustrate the sensitivity of the receiver to various system parameters. It is shown that the presence of the rejection filter can significantly improve the performance of the acquisition system.

  4. Short communication: Genetic relationships between functional longevity and direct health traits in Austrian Fleckvieh cattle.

    PubMed

    Pfeiffer, C; Fuerst, C; Ducrocq, V; Fuerst-Waltl, B

    2015-10-01

    The aim of this study was to conduct a multitrait 2-step approach applied to yield deviations and deregressed breeding values to get genetic parameters of functional longevity, clinical mastitis, early fertility disorders, cystic ovaries, and milk fever of Austrian Fleckvieh cattle. An approximate multitrait approach allows the combination of information from pseudo-phenotypes derived from different statistical models in routine genetic evaluation, which cannot be estimated easily in a full multitrait model. A total of 66,890 Fleckvieh cows were included in this study. For estimating genetic parameters, a simple linear animal model with year of birth as a fixed effect and animal as a random genetic effect was fitted. The joint analysis of yield deviations and deregressed breeding values was feasible. As expected, heritabilities were low, ranging from 0.03 (early fertility disorders) to 0.15 (functional longevity). Genetic correlations between functional longevity and clinical mastitis, early fertility disorders, cystic ovaries, and milk fever were 0.63, 0.29, 0.20, and 0.20, respectively. Within direct health traits genetic correlations were between 0.14 and 0.45. Results suggest that selecting for more robust disease-resistant cows would imply an improvement of functional longevity.

  5. Communication: The phoretic drift of a charged particle animated by a direct ionic current

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud

    2010-09-01

    A charged colloidal particle which is suspended in an electrolyte solution drifts due to an external voltage application. For direct currents, particle motion is affected by two separate mechanisms: electro-osmotic slip associated with the electric field and chemi-osmotic slip associated with the inherent salt concentration gradient in the solution. These two mechanisms are interrelated and are of comparable magnitude. Their combined effect is demonstrated for cation-exchange electrodes using a weak-current approximation. The linkage between the two mechanisms results in an effectively modified mobility, whose dependence on the particle zeta potential is nonlinear. At small potentials, the electro-osmotic mechanism dominates and the particle migrates according to the familiar Smoluchowski mobility, linear in the electric field. At large zeta potentials, chemiosmosis becomes dominant: for positively charged particles, it tends to arrest motion, leading to mobility saturation; for negatively charged particles, it enhances the drift, effectively leading to a shifted linear dependence of the mobility on the zeta potential, with twice the Smoluchowski slope.

  6. Communicating advance directives from long-term care facilities to emergency departments.

    PubMed

    Pauls, M A; Singer, P A; Dubinsky, I

    2001-07-01

    Many residents of long-term care (LTC) facilities are transferred to Emergency Departments without advance directives (AD). The goal of this study was to describe an ideal model for the transfer of AD from LTC facilities to Emergency Departments. Health care providers were asked to describe their ideal model for the completion and transfer of the ADs of LTC residents. A grounded theory methodology was used to identify significant themes. The model we present as a result of this analysis acknowledges the importance of simplifying and standardizing ADs, but focuses more attention on the process of completing and transferring the AD. A key feature of this model is an emphasis on the education of LTC residents and their relatives about ADs and advance-care planning. This education should involve a variety of resources used in creative ways; it should begin as soon as LTC placement is being considered, and the emphasis should be on providing information and discussing options rather than pressuring residents to make a decision.

  7. Effects of Stimulus-Driven and Goal-Directed Attention on Prepulse Inhibition of Brain Oscillations

    PubMed Central

    Annic, Agnès; Bourriez, Jean-Louis; Delval, Arnaud; Bocquillon, Perrine; Trubert, Claire; Derambure, Philippe; Dujardin, Kathy

    2016-01-01

    Objective: Prepulse inhibition (PPI) is an operational measure of sensory gating. PPI of cortical response to a startling pulse is known to be modulated by attention. With a time-frequency analysis, we sought to determine whether goal-directed and stimulus-driven attention differentially modulate inhibition of cortical oscillations elicited by a startling pulse. Methods: An electroencephalogram (EEG) was recorded in 26 healthy controls performing an active acoustic PPI paradigm. Startling stimuli were presented alone or either 400 or 1000 ms after one of three types of visual prepulse: to-be-attended (goal-directed attention), unexpected (stimulus-driven attention) or to-be-ignored (non-focused attention). We calculated the percentage PPI for the auditory event-related spectral perturbation (ERSP) of theta (4–7 Hz), alpha (8–12 Hz), beta1 (13–20 Hz) and beta2 (20–30 Hz) oscillations and changes in inter-trial coherence (ITC), a measure of phase synchronization of electroencephalographic activity. Results: At 400 ms: (i) PPI of the ERSP of alpha, theta and beta1 oscillation was greater after an unexpected and a to-be-attended prepulse than after a to-be-ignored prepulse; and (ii) PPI of beta2 oscillations was greater after a to-be-attended than a to-be-ignored prepulse. At 1000 ms: (i) PPI of alpha oscillations was greater after an unexpected and a to-be-attended prepulse than after a to-be-ignored prepulse; and (ii) PPI of beta1 oscillations was greater after a to-be-attended than a to-be-ignored prepulse. The ITC values did not vary according to the type of prepulse. Conclusions: In an active PPI paradigm, stimulus-driven and goal-directed attention each have differential effects on the modulation of cortical oscillations. PMID:27524966

  8. Brain network dynamics characterization in epileptic seizures. Joint directed graph and pairwise synchronization measures

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.

    2014-12-01

    Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.

  9. Teach It, Don’t Preach It: The Differential Effects of Directly-communicated and Self-generated Utility Value Information

    PubMed Central

    Canning, Elizabeth A.; Harackiewicz, Judith M.

    2015-01-01

    Social-psychological interventions in education have used a variety of “self-persuasion” or “saying-is-believing” techniques to encourage students to articulate key intervention messages. These techniques are used in combination with more overt strategies, such as the direct communication of messages in order to promote attitude change. However, these different strategies have rarely been systematically compared, particularly in controlled laboratory settings. We focus on one intervention based in expectancy-value theory designed to promote perceptions of utility value in the classroom and test different intervention techniques to promote interest and performance. Across three laboratory studies, we used a mental math learning paradigm in which we varied whether students wrote about utility value for themselves or received different forms of directly-communicated information about the utility value of a novel mental math technique. In Study 1, we examined the difference between directly-communicated and self-generated utility-value information and found that directly-communicated utility-value information undermined performance and interest for individuals who lacked confidence, but that self-generated utility had positive effects. However, Study 2 suggests that these negative effects of directly-communicated utility value can be ameliorated when participants are also given the chance to generate their own examples of utility value, revealing a synergistic effect of directly-communicated and self-generated utility value. In Study 3, we found that individuals who lacked confidence benefited more when everyday examples of utility value were communicated, rather than career and school examples. PMID:26495326

  10. Cocaine and mitochondria-related signaling in the brain: A mechanistic view and future directions.

    PubMed

    de Oliveira, Marcos Roberto; Jardim, Fernanda Rafaela

    2016-01-01

    Cocaine is extensively used as a psychostimulant among subjects at different ages worldwide. Cocaine causes neuronal dysfunction and, consequently, negatively affects human behavior and decreases life quality severely. Cocaine acts through diverse mechanisms, including mitochondrial impairment and activation of cell signaling pathways associated to stress response. There is some controversy regarding the effect of cocaine in inducing cell death through apoptosis in different experimental models. The aim of the present work is to discuss data associated to the mitochondrial consequences of cocaine exposure of mammalian cells in several experimental models from in vitro to in vivo, including postmortem human tissue analyses. Furthermore, future directions are proposed in order to serve as a suggestive guide in relation to the next steps towards the complete elucidation of the mechanisms of toxicity elicited by cocaine upon mitochondria of neuronal cells.

  11. Cocaine and mitochondria-related signaling in the brain: A mechanistic view and future directions.

    PubMed

    de Oliveira, Marcos Roberto; Jardim, Fernanda Rafaela

    2016-01-01

    Cocaine is extensively used as a psychostimulant among subjects at different ages worldwide. Cocaine causes neuronal dysfunction and, consequently, negatively affects human behavior and decreases life quality severely. Cocaine acts through diverse mechanisms, including mitochondrial impairment and activation of cell signaling pathways associated to stress response. There is some controversy regarding the effect of cocaine in inducing cell death through apoptosis in different experimental models. The aim of the present work is to discuss data associated to the mitochondrial consequences of cocaine exposure of mammalian cells in several experimental models from in vitro to in vivo, including postmortem human tissue analyses. Furthermore, future directions are proposed in order to serve as a suggestive guide in relation to the next steps towards the complete elucidation of the mechanisms of toxicity elicited by cocaine upon mitochondria of neuronal cells. PMID:26707813

  12. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain

    PubMed Central

    Monai, Hiromu; Ohkura, Masamichi; Tanaka, Mika; Oe, Yuki; Konno, Ayumu; Hirai, Hirokazu; Mikoshiba, Katsuhiko; Itohara, Shigeyoshi; Nakai, Junichi; Iwai, Youichi; Hirase, Hajime

    2016-01-01

    Transcranical direct current stimulation (tDCS) is a treatment known to ameliorate various neurological conditions and enhance memory and cognition in humans. tDCS has gained traction for its potential therapeutic value; however, little is known about its mechanism of action. Using a transgenic mouse expressing G-CaMP7 in astrocytes and a subpopulation of excitatory neurons, we find that tDCS induces large-amplitude astrocytic Ca2+ surges across the entire cortex with no obvious changes in the local field potential. Moreover, sensory evoked cortical responses are enhanced after tDCS. These enhancements are dependent on the alpha-1 adrenergic receptor and are not observed in IP3R2 (inositol trisphosphate receptor type 2) knockout mice, in which astrocytic Ca2+ surges are absent. Together, we propose that tDCS changes the metaplasticity of the cortex through astrocytic Ca2+/IP3 signalling. PMID:27000523

  13. Frontal Brain Electrical Activity (EEG) and Heart Rate in Response to Affective Infant-Directed (ID) Speech in 9-Month-Old Infants

    ERIC Educational Resources Information Center

    Santesso, Diane L.; Schmidt, Louis A.; Trainor, Laurel J.

    2007-01-01

    Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective…

  14. Using Visual Scene Displays as Communication Support Options for People with Chronic, Severe Aphasia: A Summary of AAC Research and Future Research Directions.

    PubMed

    Beukelman, David R; Hux, Karen; Dietz, Aimee; McKelvey, Miechelle; Weissling, Kristy

    2015-01-01

    Research about the effectiveness of communicative supports and advances in photographic technology has prompted changes in the way speech-language pathologists design and implement interventions for people with aphasia. The purpose of this paper is to describe the use of photographic images as a basis for developing communication supports for people with chronic aphasia secondary to sudden-onset events due to cerebrovascular accidents (strokes). Topics include the evolution of AAC-based supports as they relate to people with aphasia, the development and key features of visual scene displays (VSDs), and future directions concerning the incorporation of photographs into communication supports for people with chronic and severe aphasia.

  15. Analysis of Direct Recordings from the Surface of the Human Brain

    NASA Astrophysics Data System (ADS)

    Towle, Vernon L.

    2006-03-01

    Recording electrophysiologic signals directly from the cortex of patients with chronically implanted subdural electrodes provides an opportunity to map the functional organization of human cortex. In addition to using direct cortical stimulation, sensory evoked potentials, and electrocorticography (ECoG) can also be used. The analysis of ECoG power spectrums and inter-electrode lateral coherence patterns may be helpful in identifying important eloquent cortical areas and epileptogenic regions in cortical multifocal epilepsy. Analysis of interictal ECoG coherence can reveal pathological cortical areas that are functionally distinct from patent cortex. Subdural ECoGs have been analyzed from 50 medically refractive pediatric epileptic patients as part of their routine surgical work-up. Recording arrays were implanted over the frontal, parietal, occipital or temporal lobes for 4-10 days, depending on the patient's seizure semiology and imaging studies. Segments of interictal ECoG ranging in duration from 5 sec to 45 min were examined to identify areas of increased local coherence. Ictal records were examined to identify the stages and spread of the seizures. Immediately before a seizure began, lateral coherence values decreased, reorganized, and then increased during the late ictal and post-ictal periods. When computed over relatively long interictal periods (45 min) coherence patterns were found to be highly stable (r = 0.97, p < .001), and only changed gradually over days. On the other hand, when calculated over short periods of time (5 sec) coherence patterns were highly dynamic. Coherence patterns revealed a rich topography, with reduced coherence across sulci and major fissures. Areas that participate in receptive and expressive speech can be mapped through event-related potentials and analysis of task-specific changes in power spectrums. Information processing is associated with local increases in high frequency activity, with concomitant changes in coherence

  16. Safety and Efficacy of Cerebrolysin in Infants with Communication Defects due to Severe Perinatal Brain Insult: A Randomized Controlled Clinical Trial

    PubMed Central

    Deifalla, Shaymaa M.; El-Houssinie, Moustafa; Mokbel, Somaia A.

    2016-01-01

    Background and Purpose The neuroregenerative drug Cerebrolysin has demonstrated efficacy in improving cognition in adults with stroke and Alzheimer's disease. The aim of this study was to determine the efficacy and safety of Cerebrolysin in the treatment of communication defects in infants with severe perinatal brain insult. Methods A randomized placebo-controlled clinical trial was conducted in which 158 infants (age 6-21 months) with communication defects due to severe perinatal brain insult were enrolled; 120 infants completed the study. The Cerebrolysin group (n=60) received twice-weekly Cerebrolysin injections of 0.1 mL/kg body weight for 5 weeks (total of ten injections). The placebo group (n=60) received the same amount and number of normal saline injections. Results The baseline Communication and Symbolic-Behavior-Scale-Developmental Profile scores were comparable between the two groups. After 3 months, the placebo group exhibited improvements in the social (p<0.01) and speech composite (p=0.02) scores, with 10% and 1.5% increases from baseline, respectively. The scores of the Cerebrolysin group changed from concern to no concern, with increases of 65.44%, 45.54%, 358.06%, and 96.00% from baseline in the social (p<0.001), speech (p<0.001), symbolic (p<0.001), and total (p<0.001) scores. Conclusions Cerebrolysin dramatically improved infants' communication especially symbolic behavior which positively affected social interaction. These findings suggest that cerebrolysin may be an effective and feasible way equivalent to stem cell therapy. PMID:26365023

  17. The communication of forensic science in the criminal justice system: A review of theory and proposed directions for research.

    PubMed

    Howes, Loene M

    2015-03-01

    Clear communication about forensic science is essential to the effectiveness and perceived trustworthiness of the criminal justice system. Communication can be seen as a meaning-making process that involves different components such as the sender of a message, the message itself, the channel in which a message is sent, and the receiver of the message. Research conducted to date on the communication between forensic scientists and non-scientists in the criminal justice system has focused on different components of the communication process as objects of study. The purpose of this paper is to bring together communication theory and past research on the communication of forensic science to contribute to a deeper understanding of it, and to provide a coherent view of it overall. The paper first outlines the broader context of communication theory and science communication as a backdrop to forensic science communication. Then it presents a conceptual framework as a way to organise past research and, using the framework, reviews recent examples of empirical research and commentary on the communication of forensic science. Finally the paper identifies aspects of the communication of forensic science that may be addressed by future research to enhance the effectiveness of communication between scientists and non-scientists in this multidisciplinary arena. PMID:25754001

  18. The communication of forensic science in the criminal justice system: A review of theory and proposed directions for research.

    PubMed

    Howes, Loene M

    2015-03-01

    Clear communication about forensic science is essential to the effectiveness and perceived trustworthiness of the criminal justice system. Communication can be seen as a meaning-making process that involves different components such as the sender of a message, the message itself, the channel in which a message is sent, and the receiver of the message. Research conducted to date on the communication between forensic scientists and non-scientists in the criminal justice system has focused on different components of the communication process as objects of study. The purpose of this paper is to bring together communication theory and past research on the communication of forensic science to contribute to a deeper understanding of it, and to provide a coherent view of it overall. The paper first outlines the broader context of communication theory and science communication as a backdrop to forensic science communication. Then it presents a conceptual framework as a way to organise past research and, using the framework, reviews recent examples of empirical research and commentary on the communication of forensic science. Finally the paper identifies aspects of the communication of forensic science that may be addressed by future research to enhance the effectiveness of communication between scientists and non-scientists in this multidisciplinary arena.

  19. Couples Counseling Directive Technique: A (Mis)communication Model to Promote Insight, Catharsis, Disclosure, and Problem Resolution

    ERIC Educational Resources Information Center

    Mahaffey, Barbara A.

    2010-01-01

    A psychoeducational model for improving couple communication is proposed. An important goal in couples counseling is to assist couples in resolving communication conflicts. The proposed communication model helps to establish a therapeutic environment that encourages insight, therapeutic alliance formation, catharsis, self-disclosure, symptom…

  20. Direct or Directed: Orchestrating a More Harmonious Approach to Teaching Technology within an Art & Design Higher Education Curriculum with Special Reference to Visual Communications Courses

    ERIC Educational Resources Information Center

    Marshall, Lindsey; Meachem, Lester

    2007-01-01

    In this scoping study we have investigated the integration of subject-specific software into the structure of visual communications courses. There is a view that the response within visual communications courses to the rapid developments in technology has been linked to necessity rather than by design. Through perceptions of staff with day-to-day…

  1. Methotrexate administration directly into the fourth ventricle in children with malignant fourth ventricular brain tumors: a pilot clinical trial.

    PubMed

    Sandberg, David I; Rytting, Michael; Zaky, Wafik; Kerr, Marcia; Ketonen, Leena; Kundu, Uma; Moore, Bartlett D; Yang, Grace; Hou, Ping; Sitton, Clark; Cooper, Laurence J; Gopalakrishnan, Vidya; Lee, Dean A; Thall, Peter F; Khatua, Soumen

    2015-10-01

    We hypothesize that chemotherapy can be safely administered directly into the fourth ventricle to treat recurrent malignant brain tumors in children. For the first time in humans, methotrexate was infused into the fourth ventricle in children with recurrent, malignant brain tumors. A catheter was surgically placed into the fourth ventricle and attached to a ventricular access device. Cerebrospinal fluid (CSF) flow was confirmed by CINE MRI postoperatively. Each cycle consisted of 4 consecutive daily methotrexate infusions (2 milligrams). Disease response was monitored with serial MRI scans and CSF cytologic analysis. Trough CSF methotrexate levels were sampled. Five patients (3 with medulloblastoma and 2 with ependymoma) received 18, 18, 12, 9, and 3 cycles, respectively. There were no serious adverse events or new neurological deficits attributed to methotrexate. Two additional enrolled patients were withdrawn prior to planned infusions due to rapid disease progression. Median serum methotrexate level 4 h after infusion was 0.04 µmol/L. Range was 0.02-0.13 µmol/L. Median trough CSF methotrexate level 24 h after infusion was 3.18 µmol/L (range 0.53-212.36 µmol/L). All three patients with medulloblastoma had partial response or stable disease until one patient had progressive disease after cycle 18. Both patients with ependymoma had progressive disease after 9 and 3 cycles, respectively. Low-dose methotrexate can be infused into the fourth ventricle without causing neurological toxicity. Some patients with recurrent medulloblastoma experience a beneficial anti-tumor effect both within the fourth ventricle and at distant sites. PMID:26255071

  2. Methotrexate administration directly into the fourth ventricle in children with malignant fourth ventricular brain tumors: a pilot clinical trial.

    PubMed

    Sandberg, David I; Rytting, Michael; Zaky, Wafik; Kerr, Marcia; Ketonen, Leena; Kundu, Uma; Moore, Bartlett D; Yang, Grace; Hou, Ping; Sitton, Clark; Cooper, Laurence J; Gopalakrishnan, Vidya; Lee, Dean A; Thall, Peter F; Khatua, Soumen

    2015-10-01

    We hypothesize that chemotherapy can be safely administered directly into the fourth ventricle to treat recurrent malignant brain tumors in children. For the first time in humans, methotrexate was infused into the fourth ventricle in children with recurrent, malignant brain tumors. A catheter was surgically placed into the fourth ventricle and attached to a ventricular access device. Cerebrospinal fluid (CSF) flow was confirmed by CINE MRI postoperatively. Each cycle consisted of 4 consecutive daily methotrexate infusions (2 milligrams). Disease response was monitored with serial MRI scans and CSF cytologic analysis. Trough CSF methotrexate levels were sampled. Five patients (3 with medulloblastoma and 2 with ependymoma) received 18, 18, 12, 9, and 3 cycles, respectively. There were no serious adverse events or new neurological deficits attributed to methotrexate. Two additional enrolled patients were withdrawn prior to planned infusions due to rapid disease progression. Median serum methotrexate level 4 h after infusion was 0.04 µmol/L. Range was 0.02-0.13 µmol/L. Median trough CSF methotrexate level 24 h after infusion was 3.18 µmol/L (range 0.53-212.36 µmol/L). All three patients with medulloblastoma had partial response or stable disease until one patient had progressive disease after cycle 18. Both patients with ependymoma had progressive disease after 9 and 3 cycles, respectively. Low-dose methotrexate can be infused into the fourth ventricle without causing neurological toxicity. Some patients with recurrent medulloblastoma experience a beneficial anti-tumor effect both within the fourth ventricle and at distant sites.

  3. Simple solution for preventing cerebrospinal fluid loss and brain shift during multitrack deep brain stimulation surgery in the semisupine position: polyethylene glycol hydrogel dural sealant capping: rapid communication.

    PubMed

    Takumi, Ichiro; Mishina, Masahiro; Hironaka, Kohei; Oyama, Kenichi; Yamada, Akira; Adachi, Koji; Hamamoto, Makoto; Kitamura, Shin; Yoshida, Daizo; Teramoto, Akira

    2013-01-01

    This study evaluated preliminary findings on the efficacy of polyethylene glycol (PEG) hydrogel dural sealant capping for the prevention of cerebrospinal fluid (CSF) leakage and pneumocephalus during deep brain stimulation (DBS) surgery in the semisupine position. Group A consisted of 5 patients who underwent bilateral subthalamic nucleus (STN)-DBS surgery without PEG hydrogel dural sealant capping. Group B consisted of 5 patients who underwent bilateral STN-DBS surgery with PEG hydrogel dural sealant capping. The immediate postoperative intracranial air volume was measured in all patients and compared between the 2 groups using the Welch test. Adverse effects were also examined in both groups. The intracranial air volume in Group A was 32.3 ± 12.3 ml (range 19.1-42.5 ml), whereas that in Group B was 1.3 ± 1.5 ml (range 0.0-3.5 ml), showing a significant difference (p < 0.005). No hemorrhage or venous air embolisms were observed in either group. The effect of brain shift was discriminated by STN recordings in Group B. These preliminary findings indicate that PEG hydrogel dural sealant capping may reduce adverse effects related to CSF leakage and brain shift during DBS surgery. PMID:23358161

  4. Evaluation of Physician and Nurse Dyad Training Procedures to Deliver a Palliative and End-of-Life Communication Intervention to Parents of Children with a Brain Tumor.

    PubMed

    Hendricks-Ferguson, Verna L; Kane, Javier R; Pradhan, Kamnesh R; Shih, Chie-Schin; Gauvain, Karen M; Baker, Justin N; Haase, Joan E

    2015-01-01

    When a child's prognosis is poor, physicians and nurses (MDs/RNs) often struggle with initiating discussions about palliative and end-of-life care (PC/EOL) early in the course of illness trajectory. We describe evaluation of training procedures used to prepare MD/RN dyads to deliver an intervention entitled: Communication Plan: Early Through End of Life (COMPLETE) intervention. Our training was delivered to 5 pediatric neuro-oncologists and 8 pediatric nurses by a team of expert consultants (i.e., in medical ethics, communication, and PC/EOL) and parent advisors. Although half of the group received training in a 1-day program and half in a 2-day program, content for all participants included 4 modules: family assessment, goal-directed treatment planning, anticipatory guidance, and staff communication and follow-up. Evaluations included dichotomous ratings and qualitative comments on content, reflection, and skills practice for each module. Positive aspects of our training included parent advisers' insights, emphasis on hope and non-abandonment messages, written materials to facilitate PC/EOL communication, and an MD/RN dyad approach. Lessons learned and challenges related to our training procedures will be described. Overall, the MDs and RNs reported that our PC/EOL communication-training procedures were helpful and useful. Future investigators should carefully plan training procedures for PC/EOL communication interventions.

  5. Communication skills.

    PubMed

    Ellison, Deborah

    2015-03-01

    The front-line nurse is responsible for providing direct patient care, patient satisfaction, care coordination, policy, safety, and communication during a 12-hour shift. Every nurse has the opportunity to make a positive impact on patient outcomes through day-to-day advocacy for patients, nurses, and the nursing profession. Communication is a means of advocacy that provides the avenue to which a positive impact can be made. There are multiple barriers to effective communication in the day-to-day communication of the front-line nurse. Interprofessional communication and shared governance models offer ways to improve communication within nursing and within a systems approach. PMID:25680486

  6. Communication skills.

    PubMed

    Ellison, Deborah

    2015-03-01

    The front-line nurse is responsible for providing direct patient care, patient satisfaction, care coordination, policy, safety, and communication during a 12-hour shift. Every nurse has the opportunity to make a positive impact on patient outcomes through day-to-day advocacy for patients, nurses, and the nursing profession. Communication is a means of advocacy that provides the avenue to which a positive impact can be made. There are multiple barriers to effective communication in the day-to-day communication of the front-line nurse. Interprofessional communication and shared governance models offer ways to improve communication within nursing and within a systems approach.

  7. INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support): summary and future directions.

    PubMed

    Kumanyika, S

    2013-10-01

    This supplement presents the foundational elements for INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support). As explained in the overview article by Swinburn and colleagues, INFORMAS has a compelling rationale and has set forth clear objectives, outcomes, principles and frameworks for monitoring and benchmarking key aspects of food environments and the policies and actions that influence the healthiness of food environments. This summary highlights the proposed monitoring approaches for the 10 interrelated INFORMAS modules: public and private sector policies and actions; key aspects of food environments (food composition, labelling, promotion, provision, retail, prices, and trade and investment) and population outcomes (diet quality). This ambitious effort should be feasible when approached in a step-wise manner, taking into account existing monitoring efforts, data sources, country contexts and capacity, and when adequately resourced. After protocol development and pilot testing of the modules, INFORMAS aims to be a sustainable, low-cost monitoring framework. Future directions relate to institutionalization, implementation and, ultimately, to leveraging INFORMAS data in ways that will bring key drivers of food environments into alignment with public health goals.

  8. Comparison between direct-sequence and multicarrier spread-spectrum acoustic communications in time-varying channels.

    PubMed

    van Walree, P A

    2010-12-01

    Underwater communication experiments have been conducted in the Norwegian Oslofjord. Two modulation schemes are compared in a 7-kHz frequency band on a 14-kHz center frequency. The first scheme is direct-sequence spread spectrum (DSSS), using a 7-chip spreading code to achieve a raw data rate of 1000 bps on a single carrier. The second scheme is multicarrier spread spectrum (MCSS) and accomplishes spreading by using seven subbands. The DSSS receiver equalizes on the chips prior to explicit symbol despreading, whereas MCSS features joint multiband equalization and despreading. Four channels are examined, from nearly static to overspread. In slowly varying channels, MCSS offers the best performance. DSSS has the best tracking potential for rapidly varying channels, where the challenge is to obtain reliable chip decisions before symbol despreading. The tracking potential can be realized to some extent by hypothesis-feedback equalization. It is further shown that adaptive equalizers are capable of code conversion, i.e., the DSSS receiver can demodulate the MCSS waveform, and vice versa. Neither receiver requires knowledge of the spreading code in order to despread the data.

  9. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-05-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0‧⟩ state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0‧⟩. By using the |0‧⟩ state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping-pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province of China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).

  10. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling

    NASA Astrophysics Data System (ADS)

    Cepeda-Gomez, Rudy; Olgac, Nejat

    2016-01-01

    We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol. In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively within this domain. The creation of these loci is done in a new surrogate coordinate system, called the 'spectral delay space (SDS)'. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads to a paradoxical control design concept, called the 'delay scheduling', which highlights the fact that the group behaviour may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.

  11. Enhancement of couples' communication and dyadic coping by a self-directed approach: a randomized controlled trial.

    PubMed

    Bodenmann, Guy; Hilpert, Peter; Nussbeck, Fridtjof W; Bradbury, Thomas N

    2014-08-01

    Although prevention of relationship distress and dissolution has potential to strengthen the well-being of partners and any children they are raising, dissemination of prevention programs can be limited because couples face many barriers to in-person participation. An alternative strategy, providing couples with an instructional DVD, is tested in the present study, in which 330 Caucasian couples (N = 660 participants; mean age: men 41.4 years, women 40.0 years) were randomly assigned to a DVD group without any further support, a DVD group with technical telephone coaching, or a wait-list control group. Couples completed questionnaires at pretest, posttest, and 3 and 6 months after completion of the intervention. Self-report measures of dyadic coping, communication quality, ineffective arguing, and relationship satisfaction were used to test whether the intervention groups improved in comparison with the control group. Women in both intervention groups increased in dyadic coping, reduced conflict behavior, and were more satisfied with their relationship 6 months after the intervention. Effects for men were mixed. Participants with poorer skills reported stronger improvement. Intimate relationships can, within limits, be positively influenced by a self-directed approach. Effective dissemination of principles underlying successful relationships can be facilitated through the use of emerging low-cost tools and technologies. PMID:24660673

  12. Word timing recovery in direct detection optical PPM communication systems with avalanche photodiodes using a phase lock loop

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.

  13. Three-party Quantum Secure Direct Communication with Single Photons in both Polarization and Spatial-mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Wang, LiLi; Ma, WenPing; Wang, MeiLing; Shen, DongSu

    2016-05-01

    We present an efficient three-party quantum secure direct communication (QSDC) protocol with single photos in both polarization and spatial-mode degrees of freedom. The three legal parties' messages can be encoded on the polarization and the spatial-mode states of single photons independently with desired unitary operations. A party can obtain the other two parties' messages simultaneously through a quantum channel. Because no extra public information is transmitted in the classical channels, the drawback of information leakage or classical correlation does not exist in the proposed scheme. Moreover, the comprehensive security analysis shows that the presented QSDC network protocol can defend the outsider eavesdropper's several sorts of attacks. Compared with the single photons with only one degree of freedom, our protocol based on the single photons in two degrees of freedom has higher capacity. Since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques, the proposed protocol is practical.

  14. Enhancement of couples' communication and dyadic coping by a self-directed approach: a randomized controlled trial.

    PubMed

    Bodenmann, Guy; Hilpert, Peter; Nussbeck, Fridtjof W; Bradbury, Thomas N

    2014-08-01

    Although prevention of relationship distress and dissolution has potential to strengthen the well-being of partners and any children they are raising, dissemination of prevention programs can be limited because couples face many barriers to in-person participation. An alternative strategy, providing couples with an instructional DVD, is tested in the present study, in which 330 Caucasian couples (N = 660 participants; mean age: men 41.4 years, women 40.0 years) were randomly assigned to a DVD group without any further support, a DVD group with technical telephone coaching, or a wait-list control group. Couples completed questionnaires at pretest, posttest, and 3 and 6 months after completion of the intervention. Self-report measures of dyadic coping, communication quality, ineffective arguing, and relationship satisfaction were used to test whether the intervention groups improved in comparison with the control group. Women in both intervention groups increased in dyadic coping, reduced conflict behavior, and were more satisfied with their relationship 6 months after the intervention. Effects for men were mixed. Participants with poorer skills reported stronger improvement. Intimate relationships can, within limits, be positively influenced by a self-directed approach. Effective dissemination of principles underlying successful relationships can be facilitated through the use of emerging low-cost tools and technologies.

  15. Digital Game Playing and Direct and Indirect Aggression in Early Adolescence: The Roles of Age, Social Intelligence, and Parent-Child Communication.

    PubMed

    Wallenius, Marjut; Punamäki, Raija-Leena; Rimpelä, Arja

    2007-04-01

    The roles of age, social intelligence and parent-child communication in moderating the association between digital game playing and direct and indirect aggression were examined in 478 Finnish 10- and 13-year-old schoolchildren based on self-reports. The results confirmed that digital game violence was directly associated with direct aggression, especially at age 10, but only among boys. The moderating role of social intelligence was substantiated among older boys: game violence was associated with indirect aggression among those with high level of social intelligence. Further, as hypothesized, digital game playing was associated with direct aggression especially when parent-child communication was poor, but only among boys. Our findings emphasize the importance of individual and situational factors as moderators of the link between game violence and aggression.

  16. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces.

    PubMed

    Abbott, W W; Faisal, A A

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s(-1), more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark--the control of the video arcade game 'Pong'.

  17. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis.

    PubMed

    Summers, Jeffery J; Kang, Nyeonju; Cauraugh, James H

    2016-01-01

    The use of transcranial direct current stimulation (tDCS) to enhance cognitive and motor functions has enjoyed a massive increase in popularity. Modifying neuroplasticity via non-invasive cortical stimulation has enormous potential to slow or even reverse declines in functions associated with ageing. The current meta-analysis evaluated the effects of tDCS on cognitive and motor performance in healthy older adults. Of the 81 studies identified, 25 qualified for inclusion. A random effects model meta-analysis revealed a significant overall standardized mean difference equal to 0.53 (SE=0.09; medium heterogeneity: I(2)=57.08%; and high fail-safe: N=448). Five analyses on moderator variables indicated significant tDCS beneficial effects: (a) on both cognitive and motor task performances, (b) across a wide-range of cognitive tasks, (c) on specific brain areas, (d) stimulation offline (before) or online (during) the cognitive and motor tasks. Although the meta-analysis revealed robust support for enhancing both cognitive and motor performance, we outline a number of caveats on the use of tDCS.

  18. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice

    PubMed Central

    Chupin, Stéphanie; Baron, Stéphanie; Nivet-Antoine, Valérie; Vessières, Emilie; Ayer, Audrey; Henrion, Daniel; Lenaers, Guy; Reynier, Pascal; Procaccio, Vincent

    2015-01-01

    Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed. PMID:26684010

  19. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  20. Teach It, Don't Preach It: The Differential Effects of Directly Communicated and Self-Generated Utility-Value Information

    ERIC Educational Resources Information Center

    Canning, Elizabeth A.; Harackiewicz, Judith M.

    2015-01-01

    Social-psychological interventions in education have used a variety of "self-persuasion" or "saying-is-believing" techniques to encourage students to articulate key intervention messages. These techniques are used in combination with more overt strategies, such as the direct communication of messages in order to promote…

  1. Digital Game Violence and Direct Aggression in Adolescence: A Longitudinal Study of the Roles of Sex, Age, and Parent-Child Communication

    ERIC Educational Resources Information Center

    Wallenius, Marjut; Punamaki, Raija-Leena

    2008-01-01

    This study investigated the roles of sex, age, and parent-child communication in moderating the association between digital game violence and direct aggression in a two-year longitudinal study. Finnish 12- and 15-year-old adolescents (N = 316) participated in the follow-up survey. As hypothesized, digital game violence was linked to direct…

  2. Disorganization of Equilibrium Directional Interactions in the Brain Motor Network of Parkinson's disease: New Insight of Resting State Analysis Using Granger Causality and Graphical Approach

    PubMed Central

    Ghasemi, Mahdieh; Mahloojifar, Ali

    2013-01-01

    Parkinson's disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movements. Particular changes related to various pathological attacks in PD could result in causal interactions of the brain network from resting state functional magnetic resonance imaging (rs-fMRI) data. In this paper, we aimed to disclose the network structure of the directed influences over the brain using multivariate Granger causality analysis and graph theory in patients with PD as compared with control group. rs-fMRI at rest from 10 PD patients and 10 controls were analyzed. Topological properties of the networks showed that information flow in PD is smaller than that in healthy individuals. We found that there is a balanced local network in healthy control group, including positive pair-wise cross connections between caudate and cerebellum and reciprocal connections between motor cortex and caudate in the left and right hemispheres. The results showed that this local network is disrupted in PD due to disturbance of the interactions in the motor networks. These findings suggested alteration of the functional organization of the brain in the resting state that affects the information transmission from and to other brain regions related to both primary dysfunctions and higher-level cognition impairments in PD. Furthermore, we showed that regions with high degree values could be detected as betweenness centrality nodes. Our results demonstrate that properties of small-world connectivity could also recognize and quantify the characteristics of directed influence brain networks in PD. PMID:24098860

  3. COMMUNICATION TRAINING IN CHILDHOOD BRAIN DAMAGE, A MONOGRAPH IN THE BANNERSTONE DIVISION OF AMERICAN LECTURES IN SPEECH AND HEARING.

    ERIC Educational Resources Information Center

    MECHAM, MERLIN J.; AND OTHERS

    INTENDED AS A TEXT SOURCE BOOK, OR PRACTICAL REFERENCE, THE BOOK DISCUSSES SPEECH AND HEARING PROBLEMS, PSYCHOLOGICAL AND LINGUISTIC IMPLICATIONS, AND SPECIAL EDUCATION FOR CEREBRAL PALSIED AND BRAIN DAMAGED CHILDREN. NUMBER AND COMPLEXITY OF SPEECH AND HEARING PROBLEMS ARE EMPHASIZED, I.E., NEUROMUSCULAR INVOLVEMENT, ARTICULATION, RHYTHM, VOICE…

  4. Promoting Adaptive Behavior in Persons with Acquired Brain Injury, Extensive Motor and Communication Disabilities, and Consciousness Disorders

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Belardinelli, Marta Olivetti; Buonocunto, Francesca; Sacco, Valentina; Navarro, Jorge; Lanzilotti, Crocifissa; De Tommaso, Marina; Megna, Marisa; Badagliacca, Francesco

    2012-01-01

    These two studies extended the evidence on the use of technology-based intervention packages to promote adaptive behavior in persons with acquired brain injury and multiple disabilities. Study I involved five participants in a minimally conscious state who were provided with intervention packages based on specific arrangements of optic, tilt, or…

  5. Teachers' Awareness of the Learner-Teacher Interaction: Preliminary Communication of a Study Investigating the Teaching Brain

    ERIC Educational Resources Information Center

    Rodriguez, Vanessa; Solis, S. Lynneth

    2013-01-01

    A new phase of research on teaching is under way that seeks to understand the teaching brain. In this vein, this study investigated the cognitive processes employed by master teachers. Using an interview protocol influenced by microgenetic techniques, 23 master teachers used the Self-in-Relation-to-Teaching (SiR2T) tool to answer "What are…

  6. Increasing Left and Right Brain Communication to Improve Learning for Tenth Grade Students in a Public School

    ERIC Educational Resources Information Center

    Richardson, Jennifer J.

    2011-01-01

    The purpose of this exploratory correlation research study was to determine if students who engaged in exercises designed to increase left and right brain hemisphere connections would score higher on identical tests than those who did not perform the exercises. Because the 2001 No Child Left Behind Act requires students to reach benchmarks of…

  7. Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models

    PubMed Central

    Lee, Giljae; Matsunaga, Andréa; Dura-Bernal, Salvador; Zhang, Wenjie; Lytton, William W; Francis, Joseph T; Fortes, José AB

    2015-01-01

    Development of more sophisticated implantable brain-machine interface (BMI) will require both interpretation of the neurophysiological data being measured and subsequent determination of signals to be delivered back to the brain. Computational models are the heart of the machine of BMI and therefore an essential tool in both of these processes. One approach is to utilize brain biomimetic models (BMMs) to develop and instantiate these algorithms. These then must be connected as hybrid systems in order to interface the BMM with in vivo data acquisition devices and prosthetic devices. The combined system then provides a test bed for neuroprosthetic rehabilitative solutions and medical devices for the repair and enhancement of damaged brain. We propose here a computer network-based design for this purpose, detailing its internal modules and data flows. We describe a prototype implementation of the design, enabling interaction between the Plexon Multichannel Acquisition Processor (MAP) server, a commercial tool to collect signals from microelectrodes implanted in a live subject and a BMM, a NEURON-based model of sensorimotor cortex capable of controlling a virtual arm. The prototype implementation supports an online mode for real-time simulations, as well as an offline mode for data analysis and simulations without real-time constraints, and provides binning operations to discretize continuous input to the BMM and filtering operations for dealing with noise. Evaluation demonstrated that the implementation successfully delivered monkey spiking activity to the BMM through LAN environments, respecting real-time constraints. PMID:26702394

  8. Cellular connections, microenvironment and brain angiogenesis in diabetes: Lost communication signals in the post-stroke period.

    PubMed

    Ergul, Adviye; Valenzuela, John Paul; Fouda, Abdelrahman Y; Fagan, Susan C

    2015-10-14

    Diabetes not only increases the risk but also worsens the motor and cognitive recovery after stroke, which is the leading cause of disability worldwide. Repair after stroke requires coordinated communication among various cell types in the central nervous system as well as circulating cells. Vascular restoration is critical for the enhancement of neurogenesis and neuroplasticity. Given that vascular disease is a major component of all complications associated with diabetes including stroke, this review will focus on cellular communications that are important for vascular restoration in the context of diabetes. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.

  9. Cellular Connections, Microenvironment and Brain Angiogenesis in Diabetes: Lost Communication Signals in the Post-stroke Period

    PubMed Central

    Ergul, Adviye; Valenzuela, John Paul; Fouda, Abdelrahman Y.; Fagan, Susan C

    2016-01-01

    Diabetes not only increases the risk but also worsens the motor and cognitive recovery after stroke, which is the leading cause of disability worldwide. Repair after stroke requires coordinated communication among various cell types in the central nervous system as well as circulating cells. Vascular restoration is critical for the enhancement of neurogenesis and neuroplasticity. Given that vascular disease is a major component of all complications associated with diabetes including stroke, this review will focus on cellular communications that are important for vascular restoration in the context of diabetes. PMID:25749094

  10. Elucidation of causal relationships for multi-sourced activities in the human brain by directed transinformation between time series of equivalent dipoles

    NASA Astrophysics Data System (ADS)

    Take, Noriyuki; Kosugi, Yukio

    2004-03-01

    Visualizing the causal relationships among multi-sourced activities in the human brain non-invasively is important for the elucidation of the processing mechanism and for clinical application of the diagnosis of disease. We will show our preliminary results of estimating equivalent dipoles to show the multi-sourced brain activities and analyse directed transinformation through time series of dipoles with three-dimensional display. First, we estimated the equivalent dipoles from evoked potentials via a three-layered concentric spherical model and two-dipole estimation. Second, we analysed the directed transinformation between two time series of the first and second dipole moments by use of the derived two dipole positions and moments as the loci and magnitude of brain activities. Therefore, we obtained bi-directional information flow between the neuronal activities localized in three-dimensional space of the brain with respect to 21-ch somatosensory evoked potentials (SEPs). Our preliminary results can be interpreted as showing that the information, calculated based on our method, flows from the first dipole cluster located in the thalamus, to the second dipole cluster located in the somatosensory area. This does not go against the neurophysiological knowledge of SEPs that the activities move from the thalamus to the somatosensory area. With the above, we show the potential possibility of realizing the elucidation of causal relationships.

  11. Direct nose-to-brain transfer of a growth hormone releasing neuropeptide, hexarelin after intranasal administration to rabbits.

    PubMed

    Yu, Hui; Kim, Kwonho

    2009-08-13

    The purpose of this study was to investigate the olfactory transfer of a growth hormone releasing neuropeptide, hexarelin to the brain tissues by comparing brain uptake levels after intranasal administration with those after intravenous administration. The hexarelin nasal formulation was prepared using an aqueous cosolvent vehicle consisting of ethanol, propylene glycol, and n-tridecyl-beta-D-maltoside as a permeation enhancer. Hexarelin was administered intravenously or intranasally to male rabbits at a dose of 1 mg/kg. Drug concentrations in the plasma, cerebrospinal fluid and six different regions of the brain, i.e., olfactory bulb (OB), olfactory tract (OT), anterior (CB1), middle (CB2), posterior (CB3) cerebrum, and cerebellum (CL) were analyzed by LC/MS method after solid phase extraction. The brain and cerebrospinal fluid levels achieved following intranasal administration were approximately 1.6 times greater than those attained after intravenous administration despite the intranasal plasma levels being significantly lower than the intravenous plasma levels. Intranasal administration resulted in significantly different spatial distribution patterns in various regions of brain with the rank order of C(OB)>C(OT)>C(CB1, CB2, CB3)>C(CL) at 10, 20, and 40 min post-dosing, whereas intravenous administration yielded nearly similar distribution patterns in the brain. The intranasal administration into one nostril (left or right) exhibited markedly greater hexarelin concentrations in olfactory bulb and olfactory tract on the treated-side of brain tissues than those on the non-treated-side of the brain hemisphere. It was demonstrated that the hydrophilic neuropeptide hexarelin was transferred via olfactory pathway to the brain hemispheres and the drug transfer via this route significantly contributed to high brain concentrations after nasal administration to rabbits.

  12. End-of-life communication in Korean older adults: With focus on advance care planning and advance directives.

    PubMed

    Shin, Dong Wook; Lee, Ji Eun; Cho, BeLong; Yoo, Sang Ho; Kim, SangYun; Yoo, Jun-Hyun

    2016-04-01

    The present article aimed to provide a comprehensive review of current status of end-of-life (EOL) care and sociocultural considerations in Korea, with focus on the EOL communication and use of advance directives (AD) in elderly Koreans. Through literature review, we discuss the current status of EOL care and sociocultural considerations in Korea, and provide a look-ahead. In Korea, patients often receive life-sustaining treatment until the very end of life. Advance care planning is rare, and most do-not-resuscitate decisions are made between the family and physician at the very end of patient's life. Koreans, influenced mainly by Confucian tradition, prefer a natural death and discontinuation of life-sustaining treatment. Although Koreans generally believe that death is natural and unavoidable, they tend not to think about or discuss death, and regard preparation for death as unnecessary. As a result, AD are completed by just 4.7% of the general adult population. This situation can be explained by several sociocultural characteristics including opting for natural death, wish not to burden others, preference for family involvement and trust in doctor, avoidance of talking about death, and filial piety. Patients often receive life-sustaining treatment until the very EOL, advance care planning and the use of AD is not common in Korea. This was related to unique sociocultural characteristics of Korea. A more active role of physicians, development of a more deliberate EOL discussion process, development of culturally appropriate AD and promotion of advance care planning might be required to provide good EOL care in Korea.

  13. Gut Microbiota-brain Axis

    PubMed Central

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  14. The first step into the brain: uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation.

    PubMed

    Weiss, Clemens K; Kohnle, Maria-Verena; Landfester, Katharina; Hauk, Thomas; Fischer, Dietmar; Schmitz-Wienke, Julia; Mailänder, Volker

    2008-09-01

    By using fluorescent polysorbate 80 coated poly(n-butylcyanoacrylate) (PBCA) nanoparticles in an in vivo study, direct evidence was found for the presence of nanoparticles entering the brain and retina of rats. The nanoparticles, prepared with a miniemulsion process, were labeled in situ with a fluorescent dye and coated with polysorbate 80. After preparation the particle size, zeta potential, and the molecular weight distribution were determined. BMEC cells were used as an in vitro model for the BBB. The cells showed significant uptake of the particles, but no transcytosis could be observed in vitro. After applying the particles to the animals at two concentrations, cryosections of the brains and retinas were prepared. Regarding the sections of the rats that received the lower dose, co-localization of the applied fluorescent particles and the stained endothelial cells could be detected in the brain and retina, indicating particle internalization in the endothelial cells. Applied at higher doses, the particles could be detected within the brain and retina with few co-localized signals, suggesting passage through the blood-brain and blood-retina barriers.

  15. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  16. Two possible driving forces supporting the evolution of animal communication. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Moulin-Frier, Clément; Verschure, Paul F. M. J.

    2016-03-01

    In the target paper [1], M.A. Arbib proposes a quite exhaustive review of the (often computational) models developed during the last decades that support his detailed scenario on language evolution (the Mirror System Hypothesis, MSH). The approach considers that language evolved from a mirror system for grasping already present in LCA-m (the last common ancestor of macaques and humans), to a simple imitation system for grasping present in LCA-c (the last common ancestor of chimpanzees and humans), to a complex imitation system for grasping that developed in the hominid line since that ancestor. MSH considers that this complex imitation system is a key evolutionary step for a language-ready brain, providing all the required elements for an open-ended gestural communication system. The transition from the gestural (bracchio-manual and visual) to the vocal (articulatory and auditory) domain is supposed to be a less important evolutionary step.

  17. Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: a multivariate FMRI study.

    PubMed

    McNamee, Daniel; Liljeholm, Mimi; Zika, Ondrej; O'Doherty, John P

    2015-03-01

    While there is accumulating evidence for the existence of distinct neural systems supporting goal-directed and habitual action selection in the mammalian brain, much less is known about the nature of the information being processed in these different brain regions. Associative learning theory predicts that brain systems involved in habitual control, such as the dorsolateral striatum, should contain stimulus and response information only, but not outcome information, while regions involved in goal-directed action, such as ventromedial and dorsolateral prefrontal cortex and dorsomedial striatum, should be involved in processing information about outcomes as well as stimuli and responses. To test this prediction, human participants underwent fMRI while engaging in a binary choice task designed to enable the separate identification of these different representations with a multivariate classification analysis approach. Consistent with our predictions, the dorsolateral striatum contained information about responses but not outcomes at the time of an initial stimulus, while the regions implicated in goal-directed action selection contained information about both responses and outcomes. These findings suggest that differential contributions of these regions to habitual and goal-directed behavioral control may depend in part on basic differences in the type of information that these regions have access to at the time of decision making. PMID:25740507

  18. Direct communication between the left circumflex and the right coronary arteries: a very rare coronary anomaly circulation.

    PubMed

    Oliveira, Marcos Danillo Peixoto; Cavalcanti, Rafael R César; Kajita, Alexandre H; Miranda, Thais; Kajita, Luiz J; Horta, Pedro E; Ribeiro, Expedito E; Lemos, Pedro Alves

    2016-02-01

    Coronary artery anomalies (CAA) are congenital changes in their origin, course, and/or structure. Intercoronary communication (ICC) is a very rare subset with uni- or bidirectional blood flow between two or more coronary arteries. We present the case of a 58-year-old man with an acute coronary syndrome whose coronary angiography incidentally showed a surprising and very rare communication between the right coronary and left circumflex arteries.

  19. Direct communication between the left circumflex and the right coronary arteries: a very rare coronary anomaly circulation

    PubMed Central

    Oliveira, Marcos Danillo Peixoto; Cavalcanti, Rafael R. César; Kajita, Alexandre H.; Miranda, Thais; Kajita, Luiz J.; Horta, Pedro E.; Ribeiro, Expedito E.

    2016-01-01

    Coronary artery anomalies (CAA) are congenital changes in their origin, course, and/or structure. Intercoronary communication (ICC) is a very rare subset with uni- or bidirectional blood flow between two or more coronary arteries. We present the case of a 58-year-old man with an acute coronary syndrome whose coronary angiography incidentally showed a surprising and very rare communication between the right coronary and left circumflex arteries. PMID:26885496

  20. Brain controlled robots

    PubMed Central

    Kawato, Mitsuo

    2008-01-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey’s motor cortex in Miguel Nicolelis’s lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the “Computational Brain Project.” CB-i’s locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey’s voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot. PMID:19404467

  1. A multimenu system based on the P300 component as a time saving procedure for communication with a brain-computer interface.

    PubMed

    Jarmolowska, Joanna; Turconi, Marcello M; Busan, Pierpaolo; Mei, Jie; Battaglini, Piero P

    2013-01-01

    The present study investigates a Brain-Computer Interface (BCI) spelling procedure based on the P300 evoked potential. It uses a small matrix of words arranged in a tree-shaped organization ("multimenu"), and allows the user to build phrases one word at a time, instead of letter by letter. Experiments were performed in two sessions on a group of seven healthy volunteers. In the former, the "multimenu" was tested with a total of 60 choices: 30 "externally-imposed" selections and 30 "free-choice" selections. In the latter, 3 × 3 matrices were compared with 6 × 6 matrices. Each matrix was composed of letters or words, for a total of four matrices. Differences in classifier accuracy, bit rate and amplitude of the evoked P300 were evaluated. Average accuracy in all subjects was 87% with no differences between the selection methods. The 3 × 3 "multimenu" obtained the same level of classifier accuracy as the 6 × 6 matrices, even with a significantly lower amplitude of the P300. Bit rate was increased when using the 3 × 3 matrices compared to the 6 × 6 ones. The "multimenu" system was equally effective, but faster than conventional, letter-based matrices. By improving the speed of communication, this method can be of help to patients with severe difficulties in communication.

  2. A multimenu system based on the P300 component as a time saving procedure for communication with a brain-computer interface

    PubMed Central

    Jarmolowska, Joanna; Turconi, Marcello M.; Busan, Pierpaolo; Mei, Jie; Battaglini, Piero P.

    2013-01-01

    The present study investigates a Brain-Computer Interface (BCI) spelling procedure based on the P300 evoked potential. It uses a small matrix of words arranged in a tree-shaped organization (“multimenu”), and allows the user to build phrases one word at a time, instead of letter by letter. Experiments were performed in two sessions on a group of seven healthy volunteers. In the former, the “multimenu” was tested with a total of 60 choices: 30 “externally-imposed” selections and 30 “free-choice” selections. In the latter, 3 × 3 matrices were compared with 6 × 6 matrices. Each matrix was composed of letters or words, for a total of four matrices. Differences in classifier accuracy, bit rate and amplitude of the evoked P300 were evaluated. Average accuracy in all subjects was 87% with no differences between the selection methods. The 3 × 3 “multimenu” obtained the same level of classifier accuracy as the 6 × 6 matrices, even with a significantly lower amplitude of the P300. Bit rate was increased when using the 3 × 3 matrices compared to the 6 × 6 ones. The “multimenu” system was equally effective, but faster than conventional, letter-based matrices. By improving the speed of communication, this method can be of help to patients with severe difficulties in communication. PMID:23531548

  3. White matter tract oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities

    PubMed Central

    Sullivan, Sarah; Eucker, Stephanie A.; Gabrieli, David; Bradfield, Connor; Coats, Brittany; Maltese, Matthew R.; Lee, Jongho; Smith, Colin; Margulies, Susan S.

    2015-01-01

    A systematic correlation between finite element models (FEMs) and histopathology is needed to define deformation thresholds associated with traumatic brain injury (TBI). In this study, a FEM of a transected piglet brain was used to reverse engineer the range of optimal shear moduli for infant (5-day-old, 553-658 Pa) and 4-week old toddler piglet brain, (692-811 Pa) from comparisons with measured in situ tissue strains. The more mature brain modulus was found to have significant strain and strain rate dependencies not observed with the infant brain. Age-appropriate FEMs were then used to simulate experimental TBI in infant (n=36) and pre-adolescent (n=17) piglets undergoing a range of rotational head loads. The experimental animals were evaluated for the presence of clinically significant traumatic axonal injury (TAI), which was then correlated with FEM-calculated measures of overall and white matter tract-oriented tissue deformations, and used to identify the metric with the highest sensitivity and specificity for detecting TAI. The best predictors of TAI were the tract-oriented strain (6–7%), strain rate (38–40 s−1), and strain times strain rate (1.3–1.8 s−1) values exceeded by 90% of the brain. These tract-oriented strain and strain rate thresholds for TAI were comparable to those found in isolated axonal stretch studies. Furthermore, we proposed that the higher degree of agreement between tissue distortion aligned with white matter tracts and TAI may be the underlying mechanism responsible for more severe TAI after horizontal and sagittal head rotations in our porcine model of nonimpact TAI than coronal plane rotations. PMID:25547650

  4. [The dynamics of the direct current potentials of the brain during sustained attention in 10-11-year-old children].

    PubMed

    Shimko, I A; Andreev, O A; Ponomareva, N V; Fokin, V F

    2005-01-01

    The dynamics of direct current potentials of the brain was studied in 10-11-year-old children during sustained attention to successive presentation of series of Shulte tables. Children were examined twice: before and after the series of training to fast reading. A gradual increase in the level of direct current potentials during sustained attention was observed. The increase was more pronounced in children with excessive than in children with moderate reactions to the loading. After the series of training to fast reading, the increase in the level of direct current potentials was reduced in both groups. This aftertraining neurophysiological phenomenon was combined with a transformation of psychophysiological characteristics: a decrease in the time of viewing of Shulte tables and increase in the speed of reading. It is suggested that the shifts of direct current potentials reflects the dynamics of intensity of the cerebral energy metabolism.

  5. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery.

    PubMed

    Hao, Jifu; Zhao, Jing; Zhang, Shupeng; Tong, Tiantian; Zhuang, Qiannan; Jin, Kai; Chen, Wei; Tang, Hua

    2016-11-01

    The objective of this study was to fabricate a composite in situ gelling formulation combining nanoparticulates and an ionic-triggered deacetylated gellan gum (DGG) matrix for challenging intranasal drug delivery. The prepared resveratrol nanosuspensions (Res-NSs) were distributed in DGG solutions. Parameters such as the in situ gelation capability, particle size, rheological properties, and texture profiles were used to describe the properties of the in situ gel. Pharmacokinetic and brain-targeting efficiency studies were performed after intranasal and intravenous administration, respectively. Biodistribution and localization using in vivo imaging systems and fluorescence microscopy are also described. The formulation containing 0.6% w/v DGG displayed a favorable gelling ability and the desired viscosity. The rheology results established that the DGG in situ gel possesses the characteristics of shear thinning, thixotropy and yield stress. The results of the textural profile revealed an increase in adhesiveness and viscosity for the in situ gel compared to the DGG solution. In vitro penetration studies followed a Higuchi mathematic model. Pharmacokinetics revealed a 2.88-times increase of bioavailability in the brain by intranasal Res-NSs in situ gel formulation. The drug targeting efficiency (458.2%) and direct transport percentages (78.18%) demonstrated direct delivery via the nose-brain pathway. The distribution and localization further illustrated the existence of direct nose-to-brain transport, bypassing the BBB. In sum, this hybrid in situ gel system is a promising approach for intranasal application in terms of the enhancement of nasal mucosal permeability and increased nasal cavity residence time by a nanotechnology delivery system and in situ gelling technology.

  6. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery.

    PubMed

    Hao, Jifu; Zhao, Jing; Zhang, Shupeng; Tong, Tiantian; Zhuang, Qiannan; Jin, Kai; Chen, Wei; Tang, Hua

    2016-11-01

    The objective of this study was to fabricate a composite in situ gelling formulation combining nanoparticulates and an ionic-triggered deacetylated gellan gum (DGG) matrix for challenging intranasal drug delivery. The prepared resveratrol nanosuspensions (Res-NSs) were distributed in DGG solutions. Parameters such as the in situ gelation capability, particle size, rheological properties, and texture profiles were used to describe the properties of the in situ gel. Pharmacokinetic and brain-targeting efficiency studies were performed after intranasal and intravenous administration, respectively. Biodistribution and localization using in vivo imaging systems and fluorescence microscopy are also described. The formulation containing 0.6% w/v DGG displayed a favorable gelling ability and the desired viscosity. The rheology results established that the DGG in situ gel possesses the characteristics of shear thinning, thixotropy and yield stress. The results of the textural profile revealed an increase in adhesiveness and viscosity for the in situ gel compared to the DGG solution. In vitro penetration studies followed a Higuchi mathematic model. Pharmacokinetics revealed a 2.88-times increase of bioavailability in the brain by intranasal Res-NSs in situ gel formulation. The drug targeting efficiency (458.2%) and direct transport percentages (78.18%) demonstrated direct delivery via the nose-brain pathway. The distribution and localization further illustrated the existence of direct nose-to-brain transport, bypassing the BBB. In sum, this hybrid in situ gel system is a promising approach for intranasal application in terms of the enhancement of nasal mucosal permeability and increased nasal cavity residence time by a nanotechnology delivery system and in situ gelling technology. PMID:27566226

  7. Communication, concepts and grounding.

    PubMed

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved.

  8. Teaching a Child with Autism and Severe Language Delays to Reject: Direct and Indirect Effects of Functional Communication Training

    ERIC Educational Resources Information Center

    Martin, Christian A.; Drasgow, Erik; Halle, James W.; Brucker, Jennifer M.

    2005-01-01

    We used functional communication training to teach Bob, a 10-year-old student with autism and severe language delays, to reject items by touching an icon. Our initial assessment revealed that Bob's behaviours serving a rejecting function consisted of pushing away, yelling, bear hugging-grabbing, and leaving. We used prompting, differential…

  9. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.

    PubMed

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P

    2015-06-15

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

  10. The effect of direction of force to the craniofacial skeleton on the severity of brain injury in patients with a fronto-basal fracture.

    PubMed

    Stephens, J R; Holmes, S; Bulters, D; Evans, B T

    2016-07-01

    The skull base is uniquely positioned to absorb force imparted to the craniofacial skeleton, thereby reducing brain injury. Less well understood is the effect of the direction of force imparted to the craniofacial skeleton on the severity of brain injury. Eighty-one patients from two UK major trauma centres who sustained a fronto-basal fracture were divided into two groups: those struck with predominantly anterior force and those by predominantly lateral force. The first recorded Glasgow Coma Score (GCS), requirement for intubation, and requirement for decompressive craniectomy were used as markers of the severity of brain injury. An average GCS of 5 was found in the lateral group and 14 in the anterior group; this difference was statistically significant (P<0.001). There was an increased need for both intubation and decompressive craniectomy in the lateral group compared to the anterior group (absolute risk difference 46.6% and 15.8%, respectively). These results suggest that the skeletal anatomy of the fronto-basal region influences the severity of head injury. The delicate lattice-like structure in the central anterior cranial fossa can act as a crumple zone, absorbing force. Conversely in the lateral aspect of the anterior cranial fossa, there is a lack of collapsible interface, resulting in an increased energy transfer to the brain.

  11. Increased Pain Communication following Multiple Group Memberships Salience Leads to a Relative Reduction in Pain-Related Brain Activity

    PubMed Central

    Jetten, Jolanda; Molenberghs, Pascal; Bastian, Brock; Karnadewi, Fika

    2016-01-01

    Pain is a fundamental human experience that triggers a range of social and psychological responses. In this study, we present behavioral and fMRI data to examine the effect of multiple group memberships salience on reported and neural indices of pain. We found that participants expressed higher levels of pain when more social group memberships were salient. This is consistent with the notion that pain itself motivates people to communicate their pain, and more so when multiple psychological resources are salient. In addition, fMRI results reveal an interesting twist: when participants increased their pain reporting as group memberships increased (from one group to four), there was a corresponding relative reduction in dorsal anterior cingulate cortex and anterior insula activation. These results provide evidence for an adaptive response to pain: the more people make use of the social resources at their disposal when experiencing pain, the less pain areas are activated. PMID:27657917

  12. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    PubMed

    Kobayashi, Katsuya; Matsumoto, Riki; Matsuhashi, Masao; Usami, Kiyohide; Shimotake, Akihiro; Kunieda, Takeharu; Kikuchi, Takayuki; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2015-01-01

    Physiological high frequency activities (HFA) are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections), or different terminal layers (layer IV vs. layer II/III) affect its frequency, we, in the primary somatosensory cortex (SI), compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response) and N80 (late response) of somatosensory evoked potentials (HFA(SEP(N20)) and HFA(SEP(N80))) and compared those overriding N1 and N2 (first and second responses) of cortico-cortical evoked potentials (HFA(CCEP(N1)) and HFA(CCEP(N2))). HFA(SEP(N20)) showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1)) had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1)) and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions. PMID:26087042

  13. Time-dependent co-relation of BDNF and CREB mRNAs in adult rat brains following acute psychological stress in the communication box paradigm.

    PubMed

    Li, Gongying; Wang, Yanmei; Yan, Min; Ma, Hongxia; Gao, Yanjie; Li, Zexuan; Li, Changqi; Tian, Hongjun; Zhuo, Chuanjun

    2016-06-15

    Psychological stress affects human health, and chronic stress leads to life-threatening diseases, such as depression and post-traumatic stress disorder. Psychological stress coping mechanisms involve the brain-derived neurotrophic factor (BDNF) and downstream cAMP response element binding protein (CREB), which are targets of the adverse effects of stress paradigms. Fourty-seven adult male Sprague-Dawley rats were divided into control, physical stress and six psychological stress groups which were assayed at 0h, 0.5h, 1h, 2h, 6h and 24h after communication box (CB) stress induction. Behavioral assessment using open field and elevated plus maze tests determined that CB stress significantly increased anxiety. After CB stress, the alternation of mRNA levels of BDNF and CREB were assessed at different time points by in situ hybridization. The mRNA levels of BDNF and CREB were significantly decreased, then gradually recovered over 24h to maximum levels in the hippocampus (CA1 region), prefrontal cortex (PFC), central amygdaloid nuclei (AG), shell of accumbens nucleus (NAC), periaqueductal gray (PAG) and ventral tegmental area, except for the ventral tegmental area (VTA). Moreover, mRNA levels of BDNF and CREB were positively correlated in all examined brain regions, except for the VTA region at 0 and 24h after CB stress induction. These findings suggest that BDNF and CREB may belong to the same pathway and be involved in psychological stress response mechanisms, and protect the organism from stress induced, aversive processes leading to disease. PMID:27132084

  14. Time-dependent co-relation of BDNF and CREB mRNAs in adult rat brains following acute psychological stress in the communication box paradigm.

    PubMed

    Li, Gongying; Wang, Yanmei; Yan, Min; Ma, Hongxia; Gao, Yanjie; Li, Zexuan; Li, Changqi; Tian, Hongjun; Zhuo, Chuanjun

    2016-06-15

    Psychological stress affects human health, and chronic stress leads to life-threatening diseases, such as depression and post-traumatic stress disorder. Psychological stress coping mechanisms involve the brain-derived neurotrophic factor (BDNF) and downstream cAMP response element binding protein (CREB), which are targets of the adverse effects of stress paradigms. Fourty-seven adult male Sprague-Dawley rats were divided into control, physical stress and six psychological stress groups which were assayed at 0h, 0.5h, 1h, 2h, 6h and 24h after communication box (CB) stress induction. Behavioral assessment using open field and elevated plus maze tests determined that CB stress significantly increased anxiety. After CB stress, the alternation of mRNA levels of BDNF and CREB were assessed at different time points by in situ hybridization. The mRNA levels of BDNF and CREB were significantly decreased, then gradually recovered over 24h to maximum levels in the hippocampus (CA1 region), prefrontal cortex (PFC), central amygdaloid nuclei (AG), shell of accumbens nucleus (NAC), periaqueductal gray (PAG) and ventral tegmental area, except for the ventral tegmental area (VTA). Moreover, mRNA levels of BDNF and CREB were positively correlated in all examined brain regions, except for the VTA region at 0 and 24h after CB stress induction. These findings suggest that BDNF and CREB may belong to the same pathway and be involved in psychological stress response mechanisms, and protect the organism from stress induced, aversive processes leading to disease.

  15. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode.

    PubMed

    Oubei, Hassan Makine; Li, Changping; Park, Ki-Hong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S

    2015-08-10

    We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed 520 nm laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. At 2.3 Gbit/s transmission, the measured bit error rate of the received data is 2.23×10(-4), well below the forward error correction (FEC) threshold of 2×10(-3) required for error-free operation. The high bandwidth of the LD coupled with high sensitivity APD and optimized operating conditions is the key enabling factor in obtaining high bit rate transmission in our proposed system. To the best of our knowledge, this result presents the highest data rate ever achieved in UWOC systems thus far.

  16. The Architecture of Cross-Hemispheric Communication in the Aging Brain: Linking Behavior to Functional and Structural Connectivity

    PubMed Central

    Kragel, James E.; Madden, David J.; Cabeza, Roberto

    2012-01-01

    Contralateral recruitment remains a controversial phenomenon in both the clinical and normative populations. To investigate the neural correlates of this phenomenon, we explored the tendency for older adults to recruit prefrontal cortex (PFC) regions contralateral to those most active in younger adults. Participants were scanned with diffusion tensor imaging and functional magnetic rresonance imaging during a lateralized word matching task (unilateral vs. bilateral). Cross-hemispheric communication was measured behaviorally as greater accuracy for bilateral than unilateral trials (bilateral processing advantage [BPA]) and at the neural level by functional and structural connectivity between contralateral PFC. Compared with the young, older adults exhibited 1) greater BPAs in the behavioral task, 2) greater compensatory activity in contralateral PFC during the bilateral condition, 3) greater functional connectivity between contralateral PFC during bilateral trials, and 4) a positive correlation between fractional anisotropy in the corpus callosum and both the BPA and the functional connectivity between contralateral PFC, indicating that older adults' ability to distribute processing across hemispheres is constrained by white matter integrity. These results clarify how older adults’ ability to recruit extra regions in response to the demands of aging is mediated by existing structural architecture, and how this architecture engenders corresponding functional changes that allow subjects to meet those task demands. PMID:21653286

  17. Intuitive Development: Communication in the Nineties.

    ERIC Educational Resources Information Center

    Johnson, Pamela R.; Daumer, Claudia Rawlins

    1993-01-01

    Communication is both cognitive and intuitive, although schooling stresses left-brain skills. Ways to develop intuitive (right-brain) skills include mandalas, Jung's technique for concentrating the right brain; writing with the nondominant hand; and positive affirmations. (SK)

  18. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses

    PubMed Central

    Bonifazi, Paolo; Difato, Francesco; Massobrio, Paolo; Breschi, Gian L.; Pasquale, Valentina; Levi, Timothée; Goldin, Miri; Bornat, Yannick; Tedesco, Mariateresa; Bisio, Marta; Kanner, Sivan; Galron, Ronit; Tessadori, Jacopo; Taverna, Stefano; Chiappalone, Michela

    2013-01-01

    Brain-machine interfaces (BMI) were born to control “actions from thoughts” in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI—a neuromorphic chip for brain repair—to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary “bottom-up” approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of “finite size networks” which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented. PMID:23503997

  19. Implementation of Certified EHR, Patient Portal, and "Direct" Messaging Technology in a Radiology Environment Enhances Communication of Radiology Results to Both Referring Physicians and Patients.

    PubMed

    Reicher, Joshua Jay; Reicher, Murray Aaron

    2016-06-01

    Since 2009, the Federal government distributed over $29 billion to providers who were adopting compliant electronic health record (EHR) technology. With a focus on radiology, we explore how EHR technology impacts interoperability with referring clinicians' EHRs and patient engagement. We also discuss the high-level details of contributing supporting frameworks, specifically Direct messaging and health information service provider (HISP) technology. We characterized Direct messaging, a secure e-mail-like protocol built to allow exchange of encrypted health information online, and the new supporting HISP infrastructure. Statistics related to both the testing and active use of this framework were obtained from DirectTrust.org, an organization whose framework supports Direct messaging use by healthcare organizations. To evaluate patient engagement, we obtained usage data from a radiology-centric patient portal between 2014 and 2015, which in some cases included access to radiology reports. Statistics from 2013 to 2015 showed a rise in issued secure Direct addresses from 8724 to 752,496; a rise in the number of participating healthcare organizations from 667 to 39,751; and a rise in the secure messages sent from 122,842 to 27,316,438. Regarding patient engagement, an average of 234,679 patients per month were provided portal access, with 86,400 patients per month given access to radiology reports. Availability of radiology reports online was strongly associated with increased system usage, with a likelihood ratio of 2.63. The use of certified EHR technology and Direct messaging in the practice of radiology allows for the communication of patient information and radiology results with referring clinicians and increases patient use of patient portal technology, supporting bidirectional radiologist-patient communication. PMID:26588906

  20. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage

    PubMed Central

    Srivenugopal, Kalkunte S.

    2014-01-01

    The alcohol aversion drug disulfiram (DSF) reacts and conjugates with the protein-bound nucleophilic cysteines and is known to elicit anticancer effects alone or improve the efficacy of many cancer drugs. We investigated the effects of DSF on human O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein and chemotherapy target that removes the mutagenic O6-akyl groups from guanines, and thus confers resistance to alkylating agents in brain tumors. We used DSF, copper-chelated DSF or CuCl2–DSF combination and found that all treatments inhibited the MGMT activity in two brain tumor cell lines in a rapid and dose-dependent manner. The drug treatments resulted in the loss of MGMT protein from tumor cells through the ubiquitin-proteasome pathway. Evidence showed that Cys145, a reactive cysteine, critical for DNA repair was the sole site of DSF modification in the MGMT protein. DSF was a weaker inhibitor of MGMT, compared with the established O6-benzylguanine; nevertheless, the 24–36h suppression of MGMT activity in cell cultures vastly increased the alkylation-induced DNA interstrand cross-linking, G2/M cell cycle blockade, cytotoxicity and the levels of apoptotic markers. Normal mice treated with DSF showed significantly attenuated levels of MGMT activity and protein in the liver and brain tissues. In nude mice bearing T98 glioblastoma xenografts, there was a preferential inhibition of tumor MGMT. Our studies demonstrate a strong and direct inhibition of MGMT by DSF and support the repurposing of this brain penetrating drug for glioma therapy. The findings also imply an increased risk for alkylation damage in alcoholic patients taking DSF. PMID:24193513

  1. Do you mean me? Communicative intentions recruit the mirror and the mentalizing system.

    PubMed

    Ciaramidaro, Angela; Becchio, Cristina; Colle, Livia; Bara, Bruno G; Walter, Henrik

    2014-07-01

    Being able to comprehend communicative intentions and to recognize whether such intentions are directed toward us or not is extremely important in social interaction. Two brain systems, the mentalizing and the mirror neuron system, have been proposed to underlie intention recognition. However, little is still known about how the systems cooperate within the process of communicative intention understanding and to what degree they respond to self-directed and other-directed stimuli. To investigate the role of the mentalizing and the mirror neuron system, we used functional magnetic resonance imaging with four types of action sequence: communicative and private intentions as well as other-directed and self-directed intentions. Categorical and functional connectivity analyses showed that both systems contribute to the encoding of communicative intentions and that both systems are significantly stronger activated and more strongly coupled in self-directed communicative actions.

  2. Language Development of Individuals Who Require Aided Communication: Reflections on State of the Science and Future Research Directions.

    PubMed

    Smith, Martine M

    2015-01-01

    Language acquisition theories differ in the importance they assign to production as a learning mechanism. This review summarizes some of the theoretical issues linked to this debate and considers their implications for children with severe speech and physical impairments. The unique aspects of the language-learning contexts of these children are explored. Drawing largely on papers published within the journal Augmentative and Alternative Communication, this review summarizes features of language development that have been described over the past 3 decades and considers how these findings might illuminate our understanding of language development across both spoken and aided modalities. Implications for assessment, intervention and for further research are suggested.

  3. Brain-computer interfaces for neurorehabilitation.

    PubMed

    Sreedharan, Sujesh; Sitaram, Ranganatha; Paul, Joseph S; Kesavadas, C

    2013-01-01

    Brain-computer interfaces (BCIs) enable control of computers and other assistive devices, such as neuro-prostheses, which are used for communication, movement restoration, neuro-modulation, and muscle stimulation, by using only signals measured directly from the brain. A BCI creates a new output channel for the brain to a computer or a device. This requires retrieval of signals of interest from the brain, and its use for neuro-rehabilitation by means of interfacing the signals to a computerized device. Brain signals such as action potentials from single neurons or nerve fibers, extracellular local field potentials (LFPs), electrocorticograms, electroencephalogram and its components such as the event-related brain potentials, real-time functional magnetic resonance imaging, near-infrared spectroscopy, and magneto-encephalogram have been used. BCIs are envisaged to be useful for communication, control and self-regulation of brain function. BCIs employ neurofeedback to enable operant conditioning to allow the user to learn using it. Paralytic conditions arising from stroke or other diseases are being targeted for BCI application. Neurofeedback strategies ranging from sensory feedback to direct brain stimulation are being employed. Existing BCIs are limited in their throughput in terms of letters per minute or commands per minute, and need extensive training to use the BCI. Further, they can cause rapid fatigue due to use and have limited adaptability to changes in the patient's brain state. The challenge before BCI technology for neuro-rehabilitation today is to enable effective clinical use of BCIs with minimal effort to set up and operate.

  4. Information Leakage in Efficient Bidirectional Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen

    2016-06-01

    Recently, Wang et al. presented a bidirectional quantum secure direct communication protocol with single photons in both polarization and spatial-mode degrees of freedom (Int. J. Theor. Phys. 54(10): 3443-3453, 2015). They claimed that their protocol was efficient and removed the drawback of information leakage. However, we found that the information leakage actually exists in their protocol. In this paper, we analyze Wang et al.'s protocol in detail. In addition, we propose an improvement to avoid the information leakage. The security of the improved protocol has also been discussed.

  5. Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems.

    PubMed

    Kikuchi, Kazuro

    2014-01-27

    We propose a novel configuration of optical receivers for intensity-modulation direct-detection (IM · DD) systems, which can cope with dual-polarization (DP) optical signals electrically. Using a Stokes analyzer and a newly-developed digital signal-processing (DSP) algorithm, we can achieve polarization tracking and demultiplexing in the digital domain after direct detection. Simulation results show that the power penalty stemming from digital polarization manipulations is negligibly small.

  6. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS

    PubMed Central

    Dutta, Anirban

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG). Respective neural activity (energy demand) has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF) that supplies glucose (energy supply) via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS), which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU) that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU for brain-state dependent tDCS. In principal accordance, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations during tDCS. PMID:26321925

  7. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS.

    PubMed

    Dutta, Anirban

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG). Respective neural activity (energy demand) has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF) that supplies glucose (energy supply) via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS), which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU) that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU for brain-state dependent tDCS. In principal accordance, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations during tDCS.

  8. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  9. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS.

    PubMed

    Dutta, Anirban

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG). Respective neural activity (energy demand) has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF) that supplies glucose (energy supply) via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS), which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU) that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU for brain-state dependent tDCS. In principal accordance, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations during tDCS. PMID:26321925

  10. Controlling feeding behavior by chemical or gene-directed targeting in the brain: what's so spatial about our methods?

    PubMed Central

    Khan, Arshad M.

    2013-01-01

    Intracranial chemical injection (ICI) methods have been used to identify the locations in the brain where feeding behavior can be controlled acutely. Scientists conducting ICI studies often document their injection site locations, thereby leaving kernels of valuable location data for others to use to further characterize feeding control circuits. Unfortunately, this rich dataset has not yet been formally contextualized with other published neuroanatomical data. In particular, axonal tracing studies have delineated several neural circuits originating in the same areas where ICI injection feeding-control sites have been documented, but it remains unclear whether these circuits participate in feeding control. Comparing injection sites with other types of location data would require careful anatomical registration between the datasets. Here, a conceptual framework is presented for how such anatomical registration efforts can be performed. For example, by using a simple atlas alignment tool, a hypothalamic locus sensitive to the orexigenic effects of neuropeptide Y (NPY) can be aligned accurately with the locations of neurons labeled by anterograde tracers or those known to express NPY receptors or feeding-related peptides. This approach can also be applied to those intracranial “gene-directed” injection (IGI) methods (e.g., site-specific recombinase methods, RNA expression or interference, optogenetics, and pharmacosynthetics) that involve viral injections to targeted neuronal populations. Spatial alignment efforts can be accelerated if location data from ICI/IGI methods are mapped to stereotaxic brain atlases to allow powerful neuroinformatics tools to overlay different types of data in the same reference space. Atlas-based mapping will be critical for community-based sharing of location data for feeding control circuits, and will accelerate our understanding of structure-function relationships in the brain for mammalian models of obesity and metabolic disorders

  11. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.

  12. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces.

    PubMed

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs.

  13. Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces.

    PubMed

    Daly, John; Liu, Jianbo; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-12-01

    Brain-machine interfaces (BMIs) aim to restore lost sensorimotor and cognitive function in subjects with severe neurological deficits. In particular, lost somatosensory function may be restored by artificially evoking patterns of neural activity through microstimulation to induce perception of tactile and proprioceptive feedback to the brain about the state of the limb. Despite an early proof of concept that subjects could learn to discriminate a limited vocabulary of intracortical microstimulation (ICMS) patterns that instruct the subject about the state of the limb, the dynamics of a moving limb are unlikely to be perceived by an arbitrarily-selected, discrete set of static microstimulation patterns, raising questions about the generalization and the scalability of this approach. In this work, we propose a microstimulation protocol intended to activate optimally the ascending somatosensory pathway. The optimization is achieved through a space-time precoder that maximizes the mutual information between the sensory feedback indicating the limb state and the cortical neural response evoked by thalamic microstimulation. Using a simplified multi-input multi-output model of the thalamocortical pathway, we show that this optimal precoder can deliver information more efficiently in the presence of noise compared to suboptimal precoders that do not account for the afferent pathway structure and/or cortical states. These results are expected to enhance the way microstimulation is used to induce somatosensory perception during sensorimotor control of artificial devices or paralyzed limbs. PMID:23187009

  14. Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance.

    PubMed

    Coste, Clio P; Sadaghiani, Sepideh; Friston, Karl J; Kleinschmidt, Andreas

    2011-11-01

    Recent studies have established a relation between ongoing brain activity fluctuations and intertrial variability in evoked neural responses, perception, and motor performance. Here, we extended these investigations into the domain of cognitive control. Using functional neuroimaging and a sparse event-related design (with long and unpredictable intervals), we measured ongoing activity fluctuations and evoked responses in volunteers performing a Stroop task with color-word interference. Across trials, prestimulus activity of several regions predicted subsequent response speed and across subjects this effect scaled with the Stroop effect size, being significant only in subjects manifesting behavioral interference. These effects occurred only in task relevant as the dorsal anterior cingulate and dorsolateral prefrontal cortex as well as ventral visual areas sensitive to color and visual words. Crucially, in subjects showing a Stroop effect, reaction times were faster when prestimulus activity was higher in task-relevant (color) regions and slower when activity was higher in irrelevant (word form) regions. These findings suggest that intrinsic brain activity fluctuations modulate neural mechanisms underpinning selective voluntary attention and cognitive control. Rephrased in terms of predictive coding models, ongoing activity can hence be considered a proxy of the precision (gain) with which prediction error signals are transmitted upon sensory stimulation.

  15. A model for emergency department end-of-life communications after acute devastating events--part I: decision-making capacity, surrogates, and advance directives.

    PubMed

    Limehouse, Walter E; Feeser, V Ramana; Bookman, Kelly J; Derse, Arthur

    2012-09-01

    Making decisions for a patient affected by sudden devastating illness or injury traumatizes a patient's family and loved ones. Even in the absence of an emergency, surrogates making end-of-life treatment decisions may experience negative emotional effects. Helping surrogates with these end-of-life decisions under emergent conditions requires the emergency physician (EP) to be clear, making medical recommendations with sensitivity. This model for emergency department (ED) end-of-life communications after acute devastating events comprises the following steps: 1) determine the patient's decision-making capacity; 2) identify the legal surrogate; 3) elicit patient values as expressed in completed advance directives; 4) determine patient/surrogate understanding of the life-limiting event and expectant treatment goals; 5) convey physician understanding of the event, including prognosis, treatment options, and recommendation; 6) share decisions regarding withdrawing or withholding of resuscitative efforts, using available resources and considering options for organ donation; and 7) revise treatment goals as needed. Emergency physicians should break bad news compassionately, yet sufficiently, so that surrogate and family understand both the gravity of the situation and the lack of long-term benefit of continued life-sustaining interventions. EPs should also help the surrogate and family understand that palliative care addresses comfort needs of the patient including adequate treatment for pain, dyspnea, or anxiety. Part I of this communications model reviews determination of decision-making capacity, surrogacy laws, and advance directives, including legal definitions and application of these steps; Part II (which will appear in a future issue of AEM) covers communication moving from resuscitative to end-of-life and palliative treatment. EPs should recognize acute devastating illness or injuries, when appropriate, as opportunities to initiate end-of-life discussions and to

  16. A model for emergency department end-of-life communications after acute devastating events--part I: decision-making capacity, surrogates, and advance directives.

    PubMed

    Limehouse, Walter E; Feeser, V Ramana; Bookman, Kelly J; Derse, Arthur

    2012-09-01

    Making decisions for a patient affected by sudden devastating illness or injury traumatizes a patient's family and loved ones. Even in the absence of an emergency, surrogates making end-of-life treatment decisions may experience negative emotional effects. Helping surrogates with these end-of-life decisions under emergent conditions requires the emergency physician (EP) to be clear, making medical recommendations with sensitivity. This model for emergency department (ED) end-of-life communications after acute devastating events comprises the following steps: 1) determine the patient's decision-making capacity; 2) identify the legal surrogate; 3) elicit patient values as expressed in completed advance directives; 4) determine patient/surrogate understanding of the life-limiting event and expectant treatment goals; 5) convey physician understanding of the event, including prognosis, treatment options, and recommendation; 6) share decisions regarding withdrawing or withholding of resuscitative efforts, using available resources and considering options for organ donation; and 7) revise treatment goals as needed. Emergency physicians should break bad news compassionately, yet sufficiently, so that surrogate and family understand both the gravity of the situation and the lack of long-term benefit of continued life-sustaining interventions. EPs should also help the surrogate and family understand that palliative care addresses comfort needs of the patient including adequate treatment for pain, dyspnea, or anxiety. Part I of this communications model reviews determination of decision-making capacity, surrogacy laws, and advance directives, including legal definitions and application of these steps; Part II (which will appear in a future issue of AEM) covers communication moving from resuscitative to end-of-life and palliative treatment. EPs should recognize acute devastating illness or injuries, when appropriate, as opportunities to initiate end-of-life discussions and to

  17. Group-Item and Directed Scanning: Examining Preschoolers' Accuracy and Efficiency in Two Augmentative Communication Symbol Selection Methods

    ERIC Educational Resources Information Center

    White, Aubrey Randall; Carney, Edward; Reichle, Joe

    2010-01-01

    Purpose: The current investigation compared directed scanning and group-item scanning among typically developing 4-year-old children. Of specific interest were their accuracy, selection speed, and efficiency of cursor movement in selecting colored line drawn symbols representing object vocabulary. Method: Twelve 4-year-olds made selections in both…

  18. Habit learning and brain-machine interfaces (BMI): a tribute to Valentino Braitenberg's "Vehicles".

    PubMed

    Birbaumer, Niels; Hummel, Friedhelm C

    2014-10-01

    Brain-Machine Interfaces (BMI) allow manipulation of external devices and computers directly with brain activity without involvement of overt motor actions. The neurophysiological principles of such robotic brain devices and BMIs follow Hebbian learning rules as described and realized by Valentino Braitenberg in his book "Vehicles," in the concept of a "thought pump" residing in subcortical basal ganglia structures. We describe here the application of BMIs for brain communication in totally locked-in patients and argue that the thought pump may extinguish-at least partially-in those people because of extinction of instrumentally learned cognitive responses and brain responses. We show that Pavlovian semantic conditioning may allow brain communication even in the completely paralyzed who does not show response-effect contingencies. Principles of skill learning and habit acquisition as formulated by Braitenberg are the building blocks of BMIs and neuroprostheses.

  19. Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study.

    PubMed

    Fiorini, Ada; Sultana, Rukhsana; Förster, Sarah; Perluigi, Marzia; Cenini, Giovanna; Cini, Chiara; Cai, Jian; Klein, Jon B; Farr, Susan A; Niehoff, Michael L; Morley, John E; Kumar, Vijaya B; Allan Butterfield, D

    2013-12-01

    Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease.

  20. Changes in Diffusion Kurtosis Imaging and Magnetic Resonance Spectroscopy in a Direct Cranial Blast Traumatic Brain Injury (dc-bTBI) Model.

    PubMed

    Zhuo, Jiachen; Keledjian, Kaspar; Xu, Su; Pampori, Adam; Gerzanich, Volodymyr; Simard, J Marc; Gullapalli, Rao P

    2015-01-01

    Explosive blast-related injuries are one of the hallmark injuries of veterans returning from recent wars, but the effects of a blast overpressure on the brain are poorly understood. In this study, we used in vivo diffusion kurtosis imaging (DKI) and proton magnetic resonance spectroscopy (MRS) to investigate tissue microstructure and metabolic changes in a novel, direct cranial blast traumatic brain injury (dc-bTBI) rat model. Imaging was performed on rats before injury and 1, 7, 14 and 28 days after blast exposure (~517 kPa peak overpressure to the dorsum of the head). No brain parenchyma abnormalities were visible on conventional T2-weighted MRI, but microstructural and metabolic changes were observed with DKI and proton MRS, respectively. Increased mean kurtosis, which peaked at 21 days post injury, was observed in the hippocampus and the internal capsule. Concomitant increases in myo-Inositol (Ins) and Taurine (Tau) were also observed in the hippocampus, while early changes at 1 day in the Glutamine (Gln) were observed in the internal capsule, all indicating glial abnormality in these regions. Neurofunctional testing on a separate but similarly treated group of rats showed early disturbances in vestibulomotor functions (days 1-14), which were associated with imaging changes in the internal capsule. Delayed impairments in spatial memory and in rapid learning, as assessed by Morris Water Maze paradigms (days 14-19), were associated with delayed changes in the hippocampus. Significant microglial activation and neurodegeneration were observed at 28 days in the hippocampus. Overall, our findings indicate delayed neurofunctional and pathological abnormalities following dc-bTBI that are silent on conventional T2-weighted imaging, but are detectable using DKI and proton MRS. PMID:26301778