Volumetric calibration of a plenoptic camera.
Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S
2018-02-01
The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.
Volumetric calibration of a plenoptic camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert
Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less
Volumetric calibration of a plenoptic camera
Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert; ...
2018-02-01
Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor)
2003-01-01
A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.
Li, Zhengqiang; Li, Kaitao; Li, Donghui; Yang, Jiuchun; Xu, Hua; Goloub, Philippe; Victori, Stephane
2016-09-20
The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V0,Sun, to the lunar irradiance calibration coefficient, CMoon. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since CMoon can be obtained directly once V0,Sun is known. Error analysis suggests that the average uncertainty of CMoon over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V0,Sun approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.
Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong
2015-10-15
A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.
Passively damped vibration welding system and method
Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao
2013-04-02
A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.
A proposed standard method for polarimetric calibration and calibration verification
NASA Astrophysics Data System (ADS)
Persons, Christopher M.; Jones, Michael W.; Farlow, Craig A.; Morell, L. Denise; Gulley, Michael G.; Spradley, Kevin D.
2007-09-01
Accurate calibration of polarimetric sensors is critical to reducing and analyzing phenomenology data, producing uniform polarimetric imagery for deployable sensors, and ensuring predictable performance of polarimetric algorithms. It is desirable to develop a standard calibration method, including verification reporting, in order to increase credibility with customers and foster communication and understanding within the polarimetric community. This paper seeks to facilitate discussions within the community on arriving at such standards. Both the calibration and verification methods presented here are performed easily with common polarimetric equipment, and are applicable to visible and infrared systems with either partial Stokes or full Stokes sensitivity. The calibration procedure has been used on infrared and visible polarimetric imagers over a six year period, and resulting imagery has been presented previously at conferences and workshops. The proposed calibration method involves the familiar calculation of the polarimetric data reduction matrix by measuring the polarimeter's response to a set of input Stokes vectors. With this method, however, linear combinations of Stokes vectors are used to generate highly accurate input states. This allows the direct measurement of all system effects, in contrast with fitting modeled calibration parameters to measured data. This direct measurement of the data reduction matrix allows higher order effects that are difficult to model to be discovered and corrected for in calibration. This paper begins with a detailed tutorial on the proposed calibration and verification reporting methods. Example results are then presented for a LWIR rotating half-wave retarder polarimeter.
Calibrated tree priors for relaxed phylogenetics and divergence time estimation.
Heled, Joseph; Drummond, Alexei J
2012-01-01
The use of fossil evidence to calibrate divergence time estimation has a long history. More recently, Bayesian Markov chain Monte Carlo has become the dominant method of divergence time estimation, and fossil evidence has been reinterpreted as the specification of prior distributions on the divergence times of calibration nodes. These so-called "soft calibrations" have become widely used but the statistical properties of calibrated tree priors in a Bayesian setting hashave not been carefully investigated. Here, we clarify that calibration densities, such as those defined in BEAST 1.5, do not represent the marginal prior distribution of the calibration node. We illustrate this with a number of analytical results on small trees. We also describe an alternative construction for a calibrated Yule prior on trees that allows direct specification of the marginal prior distribution of the calibrated divergence time, with or without the restriction of monophyly. This method requires the computation of the Yule prior conditional on the height of the divergence being calibrated. Unfortunately, a practical solution for multiple calibrations remains elusive. Our results suggest that direct estimation of the prior induced by specifying multiple calibration densities should be a prerequisite of any divergence time dating analysis.
Finding trap stiffness of optical tweezers using digital filters.
Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G
2018-02-01
Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.
Application of composite small calibration objects in traffic accident scene photogrammetry.
Chen, Qiang; Xu, Hongguo; Tan, Lidong
2015-01-01
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies.
Balance Calibration – A Method for Assigning a Direct-Reading Uncertainty to an Electronic Balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Stears
2010-07-01
Paper Title: Balance Calibration – A method for assigning a direct-reading uncertainty to an electronic balance. Intended Audience: Those who calibrate or use electronic balances. Abstract: As a calibration facility, we provide on-site (at the customer’s location) calibrations of electronic balances for customers within our company. In our experience, most of our customers are not using their balance as a comparator, but simply putting an unknown quantity on the balance and reading the displayed mass value. Manufacturer’s specifications for balances typically include specifications such as readability, repeatability, linearity, and sensitivity temperature drift, but what does this all mean when themore » balance user simply reads the displayed mass value and accepts the reading as the true value? This paper discusses a method for assigning a direct-reading uncertainty to a balance based upon the observed calibration data and the environment where the balance is being used. The method requires input from the customer regarding the environment where the balance is used and encourages discussion with the customer regarding sources of uncertainty and possible means for improvement; the calibration process becomes an educational opportunity for the balance user as well as calibration personnel. This paper will cover the uncertainty analysis applied to the calibration weights used for the field calibration of balances; the uncertainty is calculated over the range of environmental conditions typically encountered in the field and the resulting range of air density. The temperature stability in the area of the balance is discussed with the customer and the temperature range over which the balance calibration is valid is decided upon; the decision is based upon the uncertainty needs of the customer and the desired rigor in monitoring by the customer. Once the environmental limitations are decided, the calibration is performed and the measurement data is entered into a custom spreadsheet. The spreadsheet uses measurement results, along with the manufacturer’s specifications, to assign a direct-read measurement uncertainty to the balance. The fact that the assigned uncertainty is a best-case uncertainty is discussed with the customer; the assigned uncertainty contains no allowance for contributions associated with the unknown weighing sample, such as density, static charges, magnetism, etc. The attendee will learn uncertainty considerations associated with balance calibrations along with one method for assigning an uncertainty to a balance used for non-comparison measurements.« less
An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
NASA Astrophysics Data System (ADS)
Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie
2016-06-01
For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10-4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).
Optimized star sensors laboratory calibration method using a regularization neural network.
Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen
2018-02-10
High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.
Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; ...
2017-01-13
Shortwave radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus reference, maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, and measures the extended broadband spectrum of the terrestrial direct solar beam irradiance, unlike shortwave radiometers that cover a limited range of the spectrum. The difference between the two spectral ranges may lead to calibration bias that can exceed 1%. This paper describes a method to reduce the calibration bias resulting from using broadband ACRs to calibrate shortwave radiometers, by using an ACR with Schott glass window to measuremore » the reference broadband shortwave irradiance in the terrestrial direct solar beam from 0.3 um to 3 um.« less
Application of Composite Small Calibration Objects in Traffic Accident Scene Photogrammetry
Chen, Qiang; Xu, Hongguo; Tan, Lidong
2015-01-01
In order to address the difficulty of arranging large calibration objects and the low measurement accuracy of small calibration objects in traffic accident scene photogrammetry, a photogrammetric method based on a composite of small calibration objects is proposed. Several small calibration objects are placed around the traffic accident scene, and the coordinate system of the composite calibration object is given based on one of them. By maintaining the relative position and coplanar relationship of the small calibration objects, the local coordinate system of each small calibration object is transformed into the coordinate system of the composite calibration object. The two-dimensional direct linear transformation method is improved based on minimizing the reprojection error of the calibration points of all objects. A rectified image is obtained using the nonlinear optimization method. The increased accuracy of traffic accident scene photogrammetry using a composite small calibration object is demonstrated through the analysis of field experiments and case studies. PMID:26011052
In, Myung-Ho; Posnansky, Oleg; Speck, Oliver
2016-05-01
To accurately correct diffusion-encoding direction-dependent eddy-current-induced geometric distortions in diffusion-weighted echo-planar imaging (DW-EPI) and to minimize the calibration time at 7 Tesla (T). A point spread function (PSF) mapping based eddy-current calibration method is newly presented to determine eddy-current-induced geometric distortions even including nonlinear eddy-current effects within the readout acquisition window. To evaluate the temporal stability of eddy-current maps, calibration was performed four times within 3 months. Furthermore, spatial variations of measured eddy-current maps versus their linear superposition were investigated to enable correction in DW-EPIs with arbitrary diffusion directions without direct calibration. For comparison, an image-based eddy-current correction method was additionally applied. Finally, this method was combined with a PSF-based susceptibility-induced distortion correction approach proposed previously to correct both susceptibility and eddy-current-induced distortions in DW-EPIs. Very fast eddy-current calibration in a three-dimensional volume is possible with the proposed method. The measured eddy-current maps are very stable over time and very similar maps can be obtained by linear superposition of principal-axes eddy-current maps. High resolution in vivo brain results demonstrate that the proposed method allows more efficient eddy-current correction than the image-based method. The combination of both PSF-based approaches allows distortion-free images, which permit reliable analysis in diffusion tensor imaging applications at 7T. © 2015 Wiley Periodicals, Inc.
Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.
Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M
2017-11-01
In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Jordana R.; Gill, Gary A.; Kuo, Li-Jung
2016-04-20
Trace element determinations in seawater by inductively coupled plasma mass spectrometry are analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. In this study, we did a comparison for uranium analysis using inductively coupled plasma mass spectrometry (ICP-MS) of Sequim Bay seawater samples and three seawater certified reference materials (SLEW-3, CASS-5 and NASS-6) using seven different analytical approaches. The methods evaluated include: direct analysis, Fe/Pd reductive precipitation, standard addition calibration, online automated dilution using an external calibration with and without matrix matching, and online automated pre-concentration. The methodmore » which produced the most accurate results was the method of standard addition calibration, recovering uranium from a Sequim Bay seawater sample at 101 ± 1.2%. The on-line preconcentration method and the automated dilution with matrix-matched calibration method also performed well. The two least effective methods were the direct analysis and the Fe/Pd reductive precipitation using sodium borohydride« less
A novel dual-camera calibration method for 3D optical measurement
NASA Astrophysics Data System (ADS)
Gai, Shaoyan; Da, Feipeng; Dai, Xianqiang
2018-05-01
A novel dual-camera calibration method is presented. In the classic methods, the camera parameters are usually calculated and optimized by the reprojection error. However, for a system designed for 3D optical measurement, this error does not denote the result of 3D reconstruction. In the presented method, a planar calibration plate is used. In the beginning, images of calibration plate are snapped from several orientations in the measurement range. The initial parameters of the two cameras are obtained by the images. Then, the rotation and translation matrix that link the frames of two cameras are calculated by using method of Centroid Distance Increment Matrix. The degree of coupling between the parameters is reduced. Then, 3D coordinates of the calibration points are reconstructed by space intersection method. At last, the reconstruction error is calculated. It is minimized to optimize the calibration parameters. This error directly indicates the efficiency of 3D reconstruction, thus it is more suitable for assessing the quality of dual-camera calibration. In the experiments, it can be seen that the proposed method is convenient and accurate. There is no strict requirement on the calibration plate position in the calibration process. The accuracy is improved significantly by the proposed method.
Model Calibration with Censored Data
Cao, Fang; Ba, Shan; Brenneman, William A.; ...
2017-06-28
Here, the purpose of model calibration is to make the model predictions closer to reality. The classical Kennedy-O'Hagan approach is widely used for model calibration, which can account for the inadequacy of the computer model while simultaneously estimating the unknown calibration parameters. In many applications, the phenomenon of censoring occurs when the exact outcome of the physical experiment is not observed, but is only known to fall within a certain region. In such cases, the Kennedy-O'Hagan approach cannot be used directly, and we propose a method to incorporate the censoring information when performing model calibration. The method is applied tomore » study the compression phenomenon of liquid inside a bottle. The results show significant improvement over the traditional calibration methods, especially when the number of censored observations is large.« less
Detection of Bi-Directionality in Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert
2012-01-01
An indicator variable was developed for both visualization and detection of bi-directionality in wind tunnel strain-gage balance calibration data. First, the calculation of the indicator variable is explained in detail. Then, a criterion is discussed that may be used to decide which gage outputs of a balance have bi- directional behavior. The result of this analysis could be used, for example, to justify the selection of certain absolute value or other even function terms in the regression model of gage outputs whenever the Iterative Method is chosen for the balance calibration data analysis. Calibration data of NASA s MK40 Task balance is analyzed to illustrate both the calculation of the indicator variable and the application of the proposed criterion. Finally, bi directionality characteristics of typical multi piece, hybrid, single piece, and semispan balances are determined and discussed.
An Accurate Projector Calibration Method Based on Polynomial Distortion Representation
Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua
2015-01-01
In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247
Calibration of the Tip of the Red Giant Branch Distance Method in IR
NASA Astrophysics Data System (ADS)
Sakai, Shoko
1999-02-01
We propose to investigate the feasibility of the tip of the red giant branch (TRGB) as a distance indicator in IR wavelength. The TRGB has been shown both observationally and theoretically to be an excellent distance indicator in I-band, mainly because of its insensitivity to both metallicity and age. Its accuracy is comparable to that of the Cepheid variable stars. The TRGB method in I-band is currently calibrated by Galactic globular clusters whose distances have been measured with RR Lyrae variables. The main objective of this proposal is to calibrate this method in IR by obtaining JHK photometry for a number of Galactic globular clusters. This is motivated by two related scientific goals: (1) It will be possible in the future to obtain direct distances to galaxies even in Coma cluster using the NGST, but only if the TRGB method has been calibrated accurately in IR filters. If the method is proven reliable, then it can be a powerful tool to map out the density and velocity fields of the local Universe in three dimensions. (2) A considerable amount of effort has been spent on obtaining accurate, direct distances to nearby galaxies. However, this has been difficult for a number of galaxies, including IC 342, because they are located at very low Galactic latitude. These galaxies could potentially have a tremendous effect on the dynamics of the Local Group, depending on their distances. Using the calibrated IR TRGB method, we could solve this uncertainty by measuring their distances directly.
A calibration method based on virtual large planar target for cameras with large FOV
NASA Astrophysics Data System (ADS)
Yu, Lei; Han, Yangyang; Nie, Hong; Ou, Qiaofeng; Xiong, Bangshu
2018-02-01
In order to obtain high precision in camera calibration, a target should be large enough to cover the whole field of view (FOV). For cameras with large FOV, using a small target will seriously reduce the precision of calibration. However, using a large target causes many difficulties in making, carrying and employing the large target. In order to solve this problem, a calibration method based on the virtual large planar target (VLPT), which is virtually constructed with multiple small targets (STs), is proposed for cameras with large FOV. In the VLPT-based calibration method, first, the positions and directions of STs are changed several times to obtain a number of calibration images. Secondly, the VLPT of each calibration image is created by finding the virtual point corresponding to the feature points of the STs. Finally, intrinsic and extrinsic parameters of the camera are calculated by using the VLPTs. Experiment results show that the proposed method can not only achieve the similar calibration precision as those employing a large target, but also have good stability in the whole measurement area. Thus, the difficulties to accurately calibrate cameras with large FOV can be perfectly tackled by the proposed method with good operability.
Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm
NASA Astrophysics Data System (ADS)
Gao, X.; Li, M.; Xing, L.; Liu, Y.
2018-04-01
Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, Steven D.
1996-06-11
A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.
Simultaneous calibration phantom commission and geometry calibration in cone beam CT
NASA Astrophysics Data System (ADS)
Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong
2017-09-01
Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.
Optimal Test Design with Rule-Based Item Generation
ERIC Educational Resources Information Center
Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.
2013-01-01
Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…
Wind Tunnel Force Balance Calibration Study - Interim Results
NASA Technical Reports Server (NTRS)
Rhew, Ray D.
2012-01-01
Wind tunnel force balance calibration is preformed utilizing a variety of different methods and does not have a direct traceable standard such as standards used for most calibration practices (weights, and voltmeters). These different calibration methods and practices include, but are not limited to, the loading schedule, the load application hardware, manual and automatic systems, re-leveling and non-re-leveling. A study of the balance calibration techniques used by NASA was undertaken to develop metrics for reviewing and comparing results using sample calibrations. The study also includes balances of different designs, single and multi-piece. The calibration systems include, the manual, and the automatic that are provided by NASA and its vendors. The results to date will be presented along with the techniques for comparing the results. In addition, future planned calibrations and investigations based on the results will be provided.
Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.
Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J
2003-12-15
A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.
Möltgen, C-V; Herdling, T; Reich, G
2013-11-01
This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration. Copyright © 2013 Elsevier B.V. All rights reserved.
Integrated calibration of multiview phase-measuring profilometry
NASA Astrophysics Data System (ADS)
Lee, Yeong Beum; Kim, Min H.
2017-11-01
Phase-measuring profilometry (PMP) measures per-pixel height information of a surface with high accuracy. Height information captured by a camera in PMP relies on its screen coordinates. Therefore, a PMP measurement from a view cannot be integrated directly to other measurements from different views due to the intrinsic difference of the screen coordinates. In order to integrate multiple PMP scans, an auxiliary calibration of each camera's intrinsic and extrinsic properties is required, in addition to principal PMP calibration. This is cumbersome and often requires physical constraints in the system setup, and multiview PMP is consequently rarely practiced. In this work, we present a novel multiview PMP method that yields three-dimensional global coordinates directly so that three-dimensional measurements can be integrated easily. Our PMP calibration parameterizes intrinsic and extrinsic properties of the configuration of both a camera and a projector simultaneously. It also does not require any geometric constraints on the setup. In addition, we propose a novel calibration target that can remain static without requiring any mechanical operation while conducting multiview calibrations, whereas existing calibration methods require manually changing the target's position and orientation. Our results validate the accuracy of measurements and demonstrate the advantages on our multiview PMP.
Calibration of a high harmonic spectrometer by laser induced plasma emission.
Farrell, J P; McFarland, B K; Bucksbaum, P H; Gühr, M
2009-08-17
We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra. (c) 2009 Optical Society of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarząbek, D. M., E-mail: djarz@ippt.pan.pl
2015-01-15
A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal tomore » approximately 1%. Furthermore, a simple method for calibration of the photodetector’s lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.« less
Stepwise Regression Analysis of MDOE Balance Calibration Data Acquired at DNW
NASA Technical Reports Server (NTRS)
DeLoach, RIchard; Philipsen, Iwan
2007-01-01
This paper reports a comparison of two experiment design methods applied in the calibration of a strain-gage balance. One features a 734-point test matrix in which loads are varied systematically according to a method commonly applied in aerospace research and known in the literature of experiment design as One Factor At a Time (OFAT) testing. Two variations of an alternative experiment design were also executed on the same balance, each with different features of an MDOE experiment design. The Modern Design of Experiments (MDOE) is an integrated process of experiment design, execution, and analysis applied at NASA's Langley Research Center to achieve significant reductions in cycle time, direct operating cost, and experimental uncertainty in aerospace research generally and in balance calibration experiments specifically. Personnel in the Instrumentation and Controls Department of the German Dutch Wind Tunnels (DNW) have applied MDOE methods to evaluate them in the calibration of a balance using an automated calibration machine. The data have been sent to Langley Research Center for analysis and comparison. This paper reports key findings from this analysis. The chief result is that a 100-point calibration exploiting MDOE principles delivered quality comparable to a 700+ point OFAT calibration with significantly reduced cycle time and attendant savings in direct and indirect costs. While the DNW test matrices implemented key MDOE principles and produced excellent results, additional MDOE concepts implemented in balance calibrations at Langley Research Center are also identified and described.
Hot-wire calibration in subsonic/transonic flow regimes
NASA Technical Reports Server (NTRS)
Nagabushana, K. A.; Ash, Robert L.
1995-01-01
A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented in an appendix.
Comparison of infusion pumps calibration methods
NASA Astrophysics Data System (ADS)
Batista, Elsa; Godinho, Isabel; do Céu Ferreira, Maria; Furtado, Andreia; Lucas, Peter; Silva, Claudia
2017-12-01
Nowadays, several types of infusion pump are commonly used for drug delivery, such as syringe pumps and peristaltic pumps. These instruments present different measuring features and capacities according to their use and therapeutic application. In order to ensure the metrological traceability of these flow and volume measuring equipment, it is necessary to use suitable calibration methods and standards. Two different calibration methods can be used to determine the flow error of infusion pumps. One is the gravimetric method, considered as a primary method, commonly used by National Metrology Institutes. The other calibration method, a secondary method, relies on an infusion device analyser (IDA) and is typically used by hospital maintenance offices. The suitability of the IDA calibration method was assessed by testing several infusion instruments at different flow rates using the gravimetric method. In addition, a measurement comparison between Portuguese Accredited Laboratories and hospital maintenance offices was performed under the coordination of the Portuguese Institute for Quality, the National Metrology Institute. The obtained results were directly related to the used calibration method and are presented in this paper. This work has been developed in the framework of the EURAMET projects EMRP MeDD and EMPIR 15SIP03.
Comparison of TLD calibration methods for 192Ir dosimetry
Butler, Duncan J.; Wilfert, Lisa; Ebert, Martin A.; Todd, Stephen P.; Hayton, Anna J.M.; Kron, Tomas
2013-01-01
For the purpose of dose measurement using a high‐dose rate 192Ir source, four methods of thermoluminescent dosimeter (TLD) calibration were investigated. Three of the four calibration methods used the 192Ir source. Dwell times were calculated to deliver 1 Gy to the TLDs irradiated either in air or water. Dwell time calculations were confirmed by direct measurement using an ionization chamber. The fourth method of calibration used 6 MV photons from a medical linear accelerator, and an energy correction factor was applied to account for the difference in sensitivity of the TLDs in 192Ir and 6 M V. The results of the four TLD calibration methods are presented in terms of the results of a brachytherapy audit where seven Australian centers irradiated three sets of TLDs in a water phantom. The results were in agreement within estimated uncertainties when the TLDs were calibrated with the 192Ir source. Calibrating TLDs in a phantom similar to that used for the audit proved to be the most practical method and provided the greatest confidence in measured dose. When calibrated using 6 MV photons, the TLD results were consistently higher than the 192Ir−calibrated TLDs, suggesting this method does not fully correct for the response of the TLDs when irradiated in the audit phantom. PACS number: 87 PMID:23318392
A Consistency Evaluation and Calibration Method for Piezoelectric Transmitters.
Zhang, Kai; Tan, Baohai; Liu, Xianping
2017-04-28
Array transducer and transducer combination technologies are evolving rapidly. While adapting transmitter combination technologies, the parameter consistencies between each transmitter are extremely important because they can determine a combined effort directly. This study presents a consistency evaluation and calibration method for piezoelectric transmitters by using impedance analyzers. Firstly, electronic parameters of transmitters that can be measured by impedance analyzers are introduced. A variety of transmitter acoustic energies that are caused by these parameter differences are then analyzed and certified and, thereafter, transmitter consistency is evaluated. Lastly, based on the evaluations, consistency can be calibrated by changing the corresponding excitation voltage. Acoustic experiments show that this method accurately evaluates and calibrates transducer consistencies, and is easy to realize.
NASA Technical Reports Server (NTRS)
Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.
2012-01-01
When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient) depended on the amplitude of the calibration errors. For an accuracy of 3 for the maximum gradient direction, the calibration errors could be as large as 3% of reconnection magnetic field, while for the same accuracy for the minimum gradient direction, the calibration errors could only be as large as 0.03% of the reconnection magnetic field. These results suggest that the maximum gradient direction can normally be determined by the unmodified Shi et al. method, while the modified method or some other method must be used to accurately determine the minimum gradient direction. The structure velocity was found with magnitude accurate to 2% and direction accurate to within 5%.
Flux-gate magnetometer spin axis offset calibration using the electron drift instrument
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Nakamura, Rumi; Leinweber, Hannes K.; Chutter, Mark; Vaith, Hans; Baumjohann, Wolfgang; Steller, Manfred; Magnes, Werner
2014-10-01
Spin-stabilization of spacecraft immensely supports the in-flight calibration of on-board flux-gate magnetometers (FGMs). From 12 calibration parameters in total, 8 can be easily obtained by spectral analysis. From the remaining 4, the spin axis offset is known to be particularly variable. It is usually determined by analysis of Alfvénic fluctuations that are embedded in the solar wind. In the absence of solar wind observations, the spin axis offset may be obtained by comparison of FGM and electron drift instrument (EDI) measurements. The aim of our study is to develop methods that are readily usable for routine FGM spin axis offset calibration with EDI. This paper represents a major step forward in this direction. We improve an existing method to determine FGM spin axis offsets from EDI time-of-flight measurements by providing it with a comprehensive error analysis. In addition, we introduce a new, complementary method that uses EDI beam direction data instead of time-of-flight data. Using Cluster data, we show that both methods yield similarly accurate results, which are comparable yet more stable than those from a commonly used solar wind-based method.
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, S.D.
1996-06-11
A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.
Extrinsic Calibration of Camera Networks Based on Pedestrians
Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; Van Haerenborgh, Dirk; Van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried
2016-01-01
In this paper, we propose a novel extrinsic calibration method for camera networks by analyzing tracks of pedestrians. First of all, we extract the center lines of walking persons by detecting their heads and feet in the camera images. We propose an easy and accurate method to estimate the 3D positions of the head and feet w.r.t. a local camera coordinate system from these center lines. We also propose a RANSAC-based orthogonal Procrustes approach to compute relative extrinsic parameters connecting the coordinate systems of cameras in a pairwise fashion. Finally, we refine the extrinsic calibration matrices using a method that minimizes the reprojection error. While existing state-of-the-art calibration methods explore epipolar geometry and use image positions directly, the proposed method first computes 3D positions per camera and then fuses the data. This results in simpler computations and a more flexible and accurate calibration method. Another advantage of our method is that it can also handle the case of persons walking along straight lines, which cannot be handled by most of the existing state-of-the-art calibration methods since all head and feet positions are co-planar. This situation often happens in real life. PMID:27171080
Han, Seokmin; Kang, Dong-Goo
2014-01-01
An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.
Interferometric Imaging Directly with Closure Phases and Closure Amplitudes
NASA Astrophysics Data System (ADS)
Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh
2018-04-01
Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.
NASA Technical Reports Server (NTRS)
Hardman, J. M.; Havens, W. F.; Ohtakay, H.
1975-01-01
The methods used to in-flight calibrate the pointing direction of the Mariner Venus-Mercury 1973 spacecraft high gain antenna and the achieved antenna pointing accuracy are described. The overall pointing calibration was accomplished by performing calibration sequences at a number of points along the spacecraft trajectory. Each of these consisted of articulating the antenna about the expected spacecraft-earth vector to determine systematic pointing errors. The high gain antenna pointing system, the error model used in the calibration, and the calibration and pointing strategy and results are discussed.
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
Spectral irradiance measurement and actinic radiometer calibration for UV water disinfection
NASA Astrophysics Data System (ADS)
Sperfeld, Peter; Barton, Bettina; Pape, Sven; Towara, Anna-Lena; Eggers, Jutta; Hopfenmüller, Gabriel
2014-12-01
In a joint project, sglux and PTB investigated and developed methods and equipment to measure the spectral and weighted irradiance of high-efficiency UV-C emitters used in water disinfection plants. A calibration facility was set up to calibrate the microbicidal irradiance responsivity of actinic radiometers with respect to the weighted spectral irradiance of specially selected low-pressure mercury and medium-pressure mercury UV lamps. To verify the calibration method and to perform on-site tests, spectral measurements were carried out directly at water disinfection plants in operation. The weighted microbicidal irradiance of the plants was calculated and compared to the measurements of various actinic radiometers.
A Consistency Evaluation and Calibration Method for Piezoelectric Transmitters
Zhang, Kai; Tan, Baohai; Liu, Xianping
2017-01-01
Array transducer and transducer combination technologies are evolving rapidly. While adapting transmitter combination technologies, the parameter consistencies between each transmitter are extremely important because they can determine a combined effort directly. This study presents a consistency evaluation and calibration method for piezoelectric transmitters by using impedance analyzers. Firstly, electronic parameters of transmitters that can be measured by impedance analyzers are introduced. A variety of transmitter acoustic energies that are caused by these parameter differences are then analyzed and certified and, thereafter, transmitter consistency is evaluated. Lastly, based on the evaluations, consistency can be calibrated by changing the corresponding excitation voltage. Acoustic experiments show that this method accurately evaluates and calibrates transducer consistencies, and is easy to realize. PMID:28452947
Calibrating ion density profile measurements in ion thruster beam plasma
NASA Astrophysics Data System (ADS)
Zhang, Zun; Tang, Haibin; Ren, Junxue; Zhang, Zhe; Wang, Joseph
2016-11-01
The ion thruster beam plasma is characterized by high directed ion velocity (104 m/s) and low plasma density (1015 m-3). Interpretation of measurements of such a plasma based on classical Langmuir probe theory can yield a large experimental error. This paper presents an indirect method to calibrate ion density determination in an ion thruster beam plasma using a Faraday probe, a retarding potential analyzer, and a Langmuir probe. This new method is applied to determine the plasma emitted from a 20-cm-diameter Kaufman ion thruster. The results show that the ion density calibrated by the new method can be as much as 40% less than that without any ion current density and ion velocity calibration.
DEM Calibration Approach: design of experiment
NASA Astrophysics Data System (ADS)
Boikov, A. V.; Savelev, R. V.; Payor, V. A.
2018-05-01
The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.
Experience with novel technologies for direct measurement of atmospheric NO2
NASA Astrophysics Data System (ADS)
Hueglin, Christoph; Hundt, Morten; Mueller, Michael; Schwarzenbach, Beat; Tuzson, Bela; Emmenegger, Lukas
2017-04-01
Nitrogen dioxide (NO2) is an air pollutant that has a large impact on human health and ecosystems, and it plays a key role in the formation of ozone and secondary particulate matter. Consequently, legal limit values for NO2 are set in the EU and elsewhere, and atmospheric observation networks typically include NO2 in their measurement programmes. Atmospheric NO2 is principally measured by chemiluminescence detection, an indirect measurement technique that requires conversion of NO2 into nitrogen monoxide (NO) and finally calculation of NO2 from the difference between total nitrogen oxides (NOx) and NO. Consequently, NO2 measurements with the chemiluminescence method have a relatively high measurement uncertainty and can be biased depending on the selectivity of the applied NO2 conversion method. In the past years, technologies for direct and selective measurement of NO2 have become available, e.g. cavity attenuated phase shift spectroscopy (CAPS), cavity enhanced laser absorption spectroscopy and quantum cascade laser absorption spectrometry (QCLAS). These technologies offer clear advantages over the indirect chemiluminescence method. We tested the above mentioned direct measurement techniques for NO2 over extended time periods at atmospheric measurement stations and report on our experience including comparisons with co-located chemiluminescence instruments equipped with molybdenum as well as photolytic NO2 converters. A still open issue related to the direct measurement of NO2 is instrument calibration. Accurate and traceable reference standards and NO2 calibration gases are needed. We present results from the application of different calibration strategies based on the use of static NO2 calibration gases as well as dynamic NO2 calibration gases produced by permeation and by gas-phase titration (GPT).
Coupling HYDRUS-1D Code with PA-DDS Algorithms for Inverse Calibration
NASA Astrophysics Data System (ADS)
Wang, Xiang; Asadzadeh, Masoud; Holländer, Hartmut
2017-04-01
Numerical modelling requires calibration to predict future stages. A standard method for calibration is inverse calibration where generally multi-objective optimization algorithms are used to find a solution, e.g. to find an optimal solution of the van Genuchten Mualem (VGM) parameters to predict water fluxes in the vadose zone. We coupled HYDRUS-1D with PA-DDS to add a new, robust function for inverse calibration to the model. The PA-DDS method is a recently developed multi-objective optimization algorithm, which combines Dynamically Dimensioned Search (DDS) and Pareto Archived Evolution Strategy (PAES). The results were compared to a standard method (Marquardt-Levenberg method) implemented in HYDRUS-1D. Calibration performance is evaluated using observed and simulated soil moisture at two soil layers in the Southern Abbotsford, British Columbia, Canada in the terms of the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE). Results showed low RMSE values of 0.014 and 0.017 and strong NSE values of 0.961 and 0.939. Compared to the results by the Marquardt-Levenberg method, we received better calibration results for deeper located soil sensors. However, VGM parameters were similar comparing with previous studies. Both methods are equally computational efficient. We claim that a direct implementation of PA-DDS into HYDRUS-1D should reduce the computation effort further. This, the PA-DDS method is efficient for calibrating recharge for complex vadose zone modelling with multiple soil layer and can be a potential tool for calibration of heat and solute transport. Future work should focus on the effectiveness of PA-DDS for calibrating more complex versions of the model with complex vadose zone settings, with more soil layers, and against measured heat and solute transport. Keywords: Recharge, Calibration, HYDRUS-1D, Multi-objective Optimization
Photogrammetry Applied to Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.
2000-01-01
In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.
Multisensory visual servoing by a neural network.
Wei, G Q; Hirzinger, G
1999-01-01
Conventional computer vision methods for determining a robot's end-effector motion based on sensory data needs sensor calibration (e.g., camera calibration) and sensor-to-hand calibration (e.g., hand-eye calibration). This involves many computations and even some difficulties, especially when different kinds of sensors are involved. In this correspondence, we present a neural network approach to the motion determination problem without any calibration. Two kinds of sensory data, namely, camera images and laser range data, are used as the input to a multilayer feedforward network to associate the direct transformation from the sensory data to the required motions. This provides a practical sensor fusion method. Using a recursive motion strategy and in terms of a network correction, we relax the requirement for the exactness of the learned transformation. Another important feature of our work is that the goal position can be changed without having to do network retraining. Experimental results show the effectiveness of our method.
Experimental Demonstration of In-Place Calibration for Time Domain Microwave Imaging System
NASA Astrophysics Data System (ADS)
Kwon, S.; Son, S.; Lee, K.
2018-04-01
In this study, the experimental demonstration of in-place calibration was conducted using the developed time domain measurement system. Experiments were conducted using three calibration methods—in-place calibration and two existing calibrations, that is, array rotation and differential calibration. The in-place calibration uses dual receivers located at an equal distance from the transmitter. The received signals at the dual receivers contain similar unwanted signals, that is, the directly received signal and antenna coupling. In contrast to the simulations, the antennas are not perfectly matched and there might be unexpected environmental errors. Thus, we experimented with the developed experimental system to demonstrate the proposed method. The possible problems with low signal-to-noise ratio and clock jitter, which may exist in time domain systems, were rectified by averaging repeatedly measured signals. The tumor was successfully detected using the three calibration methods according to the experimental results. The cross correlation was calculated using the reconstructed image of the ideal differential calibration for a quantitative comparison between the existing rotation calibration and the proposed in-place calibration. The mean value of cross correlation between the in-place calibration and ideal differential calibration was 0.80, and the mean value of cross correlation of the rotation calibration was 0.55. Furthermore, the results of simulation were compared with the experimental results to verify the in-place calibration method. A quantitative analysis was also performed, and the experimental results show a tendency similar to the simulation.
A new algorithm for five-hole probe calibration, data reduction, and uncertainty analysis
NASA Technical Reports Server (NTRS)
Reichert, Bruce A.; Wendt, Bruce J.
1994-01-01
A new algorithm for five-hole probe calibration and data reduction using a non-nulling method is developed. The significant features of the algorithm are: (1) two components of the unit vector in the flow direction replace pitch and yaw angles as flow direction variables; and (2) symmetry rules are developed that greatly simplify Taylor's series representations of the calibration data. In data reduction, four pressure coefficients allow total pressure, static pressure, and flow direction to be calculated directly. The new algorithm's simplicity permits an analytical treatment of the propagation of uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify uncertainty of five-hole results (e.g., total pressure, static pressure, and flow direction) and determine the dependence of the result uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance to improve measurement technique. The new algorithm is applied to calibrate and reduce data from a rake of five-hole probes. Here, ten individual probes are mounted on a single probe shaft and used simultaneously. Use of this probe is made practical by the simplicity afforded by this algorithm.
A Review on Microdialysis Calibration Methods: the Theory and Current Related Efforts.
Kho, Chun Min; Enche Ab Rahim, Siti Kartini; Ahmad, Zainal Arifin; Abdullah, Norazharuddin Shah
2017-07-01
Microdialysis is a sampling technique first introduced in the late 1950s. Although this technique was originally designed to study endogenous compounds in animal brain, it is later modified to be used in other organs. Additionally, microdialysis is not only able to collect unbound concentration of compounds from tissue sites; this technique can also be used to deliver exogenous compounds to a designated area. Due to its versatility, microdialysis technique is widely employed in a number of areas, including biomedical research. However, for most in vivo studies, the concentration of substance obtained directly from the microdialysis technique does not accurately describe the concentration of the substance on-site. In order to relate the results collected from microdialysis to the actual in vivo condition, a calibration method is required. To date, various microdialysis calibration methods have been reported, with each method being capable to provide valuable insights of the technique itself and its applications. This paper aims to provide a critical review on various calibration methods used in microdialysis applications, inclusive of a detailed description of the microdialysis technique itself to start with. It is expected that this article shall review in detail, the various calibration methods employed, present examples of work related to each calibration method including clinical efforts, plus the advantages and disadvantages of each of the methods.
Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Development
NASA Astrophysics Data System (ADS)
Reda, I.; Andreas, A.; Dooraghi, M.; Habte, A.; Sengupta, M.; Kutchenreiter, M.
2016-12-01
Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus Reference, which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, and developed to measure extended broadband spectrum of the terrestrial direct solar beam irradiance, extends beyond the ultraviolet and infrared bands; i.e. below 0.2 µm and above 50 µm, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 µm to 3 µm, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 µm to 1 µm. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus Reference, yet they are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 µm to 50 µm, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80° to 16°, respectively.
Radiometric Calibration Techniques for Signal-of-Opportunity Reflectometers
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Shah, Rashmi; Deshpande, Manohar; Johnson, Carey
2014-01-01
Bi-static reflection measurements utilizing global navigation satellite service (GNSS) or other signals of opportunity (SoOp) can be used to sense ocean and terrestrial surface properties. End-to-end calibration of GNSS-R has been performed using well-characterized reflection surface (e.g., water), direct path antenna, and receiver gain characterization. We propose an augmented approach using on-board receiver electronics for radiometric calibration of SoOp reflectometers utilizing direct and reflected signal receiving antennas. The method calibrates receiver and correlator gains and offsets utilizing a reference switch and common noise source. On-board electronic calibration sources, such as reference switches, noise diodes and loop-back circuits, have shown great utility in stabilizing total power and correlation microwave radiometer and scatterometer receiver electronics in L-band spaceborne instruments. Application to SoOp instruments is likely to bring several benefits. For example, application to provide short and long time scale calibration stability of the direct path channel, especially in low signal-to-noise ratio configurations, is directly analogous to the microwave radiometer problem. The direct path channel is analogous to the loopback path in a scatterometer to provide a reference of the transmitted power, although the receiver is independent from the reflected path channel. Thus, a common noise source can be used to measure the gain ratio of the two paths. Using these techniques long-term (days to weeks) calibration stability of spaceborne L-band scatterometer and radiometer has been achieved better than 0.1. Similar long-term stability would likely be needed for a spaceborne reflectometer mission to measure terrestrial properties such as soil moisture.
Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps
NASA Astrophysics Data System (ADS)
Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.
2018-04-01
Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.
Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System
NASA Astrophysics Data System (ADS)
Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.
2016-06-01
A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.
Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel
2017-01-01
Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607
Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, I.; Konings, J.; Xie, Y.
Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versusmore » such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.« less
NASA Technical Reports Server (NTRS)
Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben;
2011-01-01
We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and mapmaking procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < I < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yidong, E-mail: yidongyang@med.miami.edu; Wang, Ken Kang-Hsin; Wong, John W.
2015-04-15
Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is tomore » develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.« less
Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.
2015-01-01
Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems. PMID:25832060
Direct Measurement of Intracellular Pressure
Petrie, Ryan J.; Koo, Hyun
2014-01-01
A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836
Traceable calibration of photovoltaic reference cells using natural sunlight
NASA Astrophysics Data System (ADS)
Müllejans, H.; Zaaiman, W.; Pavanello, D.; Dunlop, E. D.
2018-02-01
At the European Solar Test Installation (ESTI) photovoltaic (PV) reference cells are calibrated traceably to SI units via the World Radiometric Reference (WRR) using natural sunlight. The Direct Sunlight Method (DSM) is described in detail and the latest measurement results and an updated uncertainty budget are reported. These PV reference cells then provide a practical means for measuring the irradiance of natural or simulated sunlight during the calibration of other PV devices.
NASA Technical Reports Server (NTRS)
McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald
2012-01-01
An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.
Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C
2015-05-01
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.
Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; ...
2015-05-27
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.
2015-05-15
Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less
Application of a laser scanner to three dimensional visual sensing tasks
NASA Technical Reports Server (NTRS)
Ryan, Arthur M.
1992-01-01
The issues are described which are associated with using a laser scanner for visual sensing and the methods developed by the author to address them. A laser scanner is a device that controls the direction of a laser beam by deflecting it through a pair of orthogonal mirrors, the orientations of which are specified by a computer. If a calibrated laser scanner is combined with a calibrated camera, it is possible to perform three dimensional sensing by directing the laser at objects within the field of view of the camera. There are several issues associated with using a laser scanner for three dimensional visual sensing that must be addressed in order to use the laser scanner effectively. First, methods are needed to calibrate the laser scanner and estimate three dimensional points. Second, methods to estimate three dimensional points using a calibrated camera and laser scanner are required. Third, methods are required for locating the laser spot in a cluttered image. Fourth, mathematical models that predict the laser scanner's performance and provide structure for three dimensional data points are necessary. Several methods were developed to address each of these and has evaluated them to determine how and when they should be applied. The theoretical development, implementation, and results when used in a dual arm eighteen degree of freedom robotic system for space assembly is described.
[A plane-based hand-eye calibration method for surgical robots].
Zeng, Bowei; Meng, Fanle; Ding, Hui; Liu, Wenbo; Wu, Di; Wang, Guangzhi
2017-04-01
In order to calibrate the hand-eye transformation of the surgical robot and laser range finder (LRF), a calibration algorithm based on a planar template was designed. A mathematical model of the planar template had been given and the approach to address the equations had been derived. Aiming at the problems of the measurement error in a practical system, we proposed a new algorithm for selecting coplanar data. This algorithm can effectively eliminate considerable measurement error data to improve the calibration accuracy. Furthermore, three orthogonal planes were used to improve the calibration accuracy, in which a nonlinear optimization for hand-eye calibration was used. With the purpose of verifying the calibration precision, we used the LRF to measure some fixed points in different directions and a cuboid's surfaces. Experimental results indicated that the precision of a single planar template method was (1.37±0.24) mm, and that of the three orthogonal planes method was (0.37±0.05) mm. Moreover, the mean FRE of three-dimensional (3D) points was 0.24 mm and mean TRE was 0.26 mm. The maximum angle measurement error was 0.4 degree. Experimental results show that the method presented in this paper is effective with high accuracy and can meet the requirements of surgical robot precise location.
Cross-calibration of A.M. constellation sensors for long term monitoring of land surface processes
Meyer, D.; Chander, G.
2006-01-01
Data from multiple sensors must be used together to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products derived from different sensors (e.g., vegetation cover, albedo, surface temperature) can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectro-radiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Cross-calibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study extends on a previous study of Terra/MODIS and Landsat/ETM+ cross calibration by including the Terra/ASTER and EO-1/ALI sensors, exploring the impacts of cross-calibrating sensors when conditions described above are met to some degree but not perfectly. Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. Due to problems with direct calibration of ASTER data, linear fits were developed between ASTER and ETM+ to assess the impacts of spectral bandpass differences between the two systems. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc
2004-03-01
Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.
Method for measuring surface shear stress magnitude and direction using liquid crystal coatings
NASA Technical Reports Server (NTRS)
Reda, Daniel C. (Inventor)
1995-01-01
A method is provided for determining surface shear magnitude and direction at every point on a surface. The surface is covered with a shear stress sensitive liquid crystal coating and illuminated by white light from a normal direction. A video camera is positioned at an oblique angle above the surface to observe the color of the liquid crystal at that angle. The shear magnitude and direction are derived from the color information. A method of calibrating the device is also provided.
Hand-eye calibration for rigid laparoscopes using an invariant point.
Thompson, Stephen; Stoyanov, Danail; Schneider, Crispin; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J
2016-06-01
Laparoscopic liver resection has significant advantages over open surgery due to less patient trauma and faster recovery times, yet it can be difficult due to the restricted field of view and lack of haptic feedback. Image guidance provides a potential solution but one current challenge is in accurate "hand-eye" calibration, which determines the position and orientation of the laparoscope camera relative to the tracking markers. In this paper, we propose a simple and clinically feasible calibration method based on a single invariant point. The method requires no additional hardware, can be constructed by theatre staff during surgical setup, requires minimal image processing and can be visualised in real time. Real-time visualisation allows the surgical team to assess the calibration accuracy before use in surgery. In addition, in the laboratory, we have developed a laparoscope with an electromagnetic tracking sensor attached to the camera end and an optical tracking marker attached to the distal end. This enables a comparison of tracking performance. We have evaluated our method in the laboratory and compared it to two widely used methods, "Tsai's method" and "direct" calibration. The new method is of comparable accuracy to existing methods, and we show RMS projected error due to calibration of 1.95 mm for optical tracking and 0.85 mm for EM tracking, versus 4.13 and 1.00 mm respectively, using existing methods. The new method has also been shown to be workable under sterile conditions in the operating room. We have proposed a new method of hand-eye calibration, based on a single invariant point. Initial experience has shown that the method provides visual feedback, satisfactory accuracy and can be performed during surgery. We also show that an EM sensor placed near the camera would provide significantly improved image overlay accuracy.
Advanced fast 3D DSA model development and calibration for design technology co-optimization
NASA Astrophysics Data System (ADS)
Lai, Kafai; Meliorisz, Balint; Muelders, Thomas; Welling, Ulrich; Stock, Hans-Jürgen; Marokkey, Sajan; Demmerle, Wolfgang; Liu, Chi-Chun; Chi, Cheng; Guo, Jing
2017-04-01
Direct Optimization (DO) of a 3D DSA model is a more optimal approach to a DTCO study in terms of accuracy and speed compared to a Cahn Hilliard Equation solver. DO's shorter run time (10X to 100X faster) and linear scaling makes it scalable to the area required for a DTCO study. However, the lack of temporal data output, as opposed to prior art, requires a new calibration method. The new method involves a specific set of calibration patterns. The calibration pattern's design is extremely important when temporal data is absent to obtain robust model parameters. A model calibrated to a Hybrid DSA system with a set of device-relevant constructs indicates the effectiveness of using nontemporal data. Preliminary model prediction using programmed defects on chemo-epitaxy shows encouraging results and agree qualitatively well with theoretical predictions from a strong segregation theory.
Application of coordinate transform on ball plate calibration
NASA Astrophysics Data System (ADS)
Wei, Hengzheng; Wang, Weinong; Ren, Guoying; Pei, Limei
2015-02-01
For the ball plate calibration method with coordinate measurement machine (CMM) equipped with laser interferometer, it is essential to adjust the ball plate parallel to the direction of laser beam. It is very time-consuming. To solve this problem, a method based on coordinate transformation between machine system and object system is presented. With the fixed points' coordinates of the ball plate measured in the object system and machine system, the transformation matrix between the coordinate systems is calculated. The laser interferometer measurement data error due to the placement of ball plate can be corrected with this transformation matrix. Experimental results indicate that this method is consistent with the handy adjustment method. It avoids the complexity of ball plate adjustment. It also can be applied to the ball beam calibration.
Calibrant-Free Analyte Quantitation via a Variable Velocity Flow Cell.
Beck, Jason G; Skuratovsky, Aleksander; Granger, Michael C; Porter, Marc D
2017-01-17
In this paper, we describe a novel method for analyte quantitation that does not rely on calibrants, internal standards, or calibration curves but, rather, leverages the relationship between disparate and predictable surface-directed analyte flux to an array of sensing addresses and a measured resultant signal. To reduce this concept to practice, we fabricated two flow cells such that the mean linear fluid velocity, U, was varied systematically over an array of electrodes positioned along the flow axis. This resulted in a predictable variation of the address-directed flux of a redox analyte, ferrocenedimethanol (FDM). The resultant limiting currents measured at a series of these electrodes, and accurately described by a convective-diffusive transport model, provided a means to calculate an "unknown" concentration without the use of calibrants, internal standards, or a calibration curve. Furthermore, the experiment and concentration calculation only takes minutes to perform. Deviation in calculated FDM concentrations from true values was minimized to less than 0.5% when empirically derived values of U were employed.
NASA Technical Reports Server (NTRS)
Axholt, Magnus; Skoglund, Martin; Peterson, Stephen D.; Cooper, Matthew D.; Schoen, Thomas B.; Gustafsson, Fredrik; Ynnerman, Anders; Ellis, Stephen R.
2010-01-01
Augmented Reality (AR) is a technique by which computer generated signals synthesize impressions that are made to coexist with the surrounding real world as perceived by the user. Human smell, taste, touch and hearing can all be augmented, but most commonly AR refers to the human vision being overlaid with information otherwise not readily available to the user. A correct calibration is important on an application level, ensuring that e.g. data labels are presented at correct locations, but also on a system level to enable display techniques such as stereoscopy to function properly [SOURCE]. Thus, vital to AR, calibration methodology is an important research area. While great achievements already have been made, there are some properties in current calibration methods for augmenting vision which do not translate from its traditional use in automated cameras calibration to its use with a human operator. This paper uses a Monte Carlo simulation of a standard direct linear transformation camera calibration to investigate how user introduced head orientation noise affects the parameter estimation during a calibration procedure of an optical see-through head mounted display.
Melville, Sarah; Teskey, Robert; Philip, Shona; Simpson, Jeremy A; Lutchmedial, Sohrab
2018-01-01
Background Clinical guidelines recommend monitoring of blood pressure at home using an automatic blood pressure device for the management of hypertension. Devices are not often calibrated against direct blood pressure measures, leaving health care providers and patients with less reliable information than is possible with current technology. Rigorous assessments of medical devices are necessary for establishing clinical utility. Objective The purpose of our study was 2-fold: (1) to assess the validity and perform iterative calibration of indirect blood pressure measurements by a noninvasive wrist cuff blood pressure device in direct comparison with simultaneously recorded peripheral and central intra-arterial blood pressure measurements and (2) to assess the validity of the measurements thereafter of the noninvasive wrist cuff blood pressure device in comparison with measurements by a noninvasive upper arm blood pressure device to the Canadian hypertension guidelines. Methods The cloud-based blood pressure algorithms for an oscillometric wrist cuff device were iteratively calibrated to direct pressure measures in 20 consented patient participants. We then assessed measurement validity of the device, using Bland-Altman analysis during routine cardiovascular catheterization. Results The precalibrated absolute mean difference between direct intra-arterial to wrist cuff pressure measurements were 10.8 (SD 9.7) for systolic and 16.1 (SD 6.3) for diastolic. The postcalibrated absolute mean difference was 7.2 (SD 5.1) for systolic and 4.3 (SD 3.3) for diastolic pressures. This is an improvement in accuracy of 33% systolic and 73% diastolic with a 48% reduction in the variability for both measures. Furthermore, the wrist cuff device demonstrated similar sensitivity in measuring high blood pressure compared with the direct intra-arterial method. The device, when calibrated to direct aortic pressures, demonstrated the potential to reduce a treatment gap in high blood pressure measurements. Conclusions The systolic pressure measurements of the wrist cuff have been iteratively calibrated using gold standard central (ascending aortic) pressure. This improves the accuracy of the indirect measures and potentially reduces the treatment gap. Devices that undergo auscultatory (indirect) calibration for licensing can be greatly improved by additional iterative calibration via intra-arterial (direct) measures of blood pressure. Further clinical trials with repeated use of the device over time are needed to assess the reliability of the device in accordance with current and evolving guidelines for informed decision making in the management of hypertension. Trial Registration ClinicalTrials.gov NCT03015363; https://clinicaltrials.gov/ct2/show/NCT03015363 (Archived by WebCite at http://www.webcitation.org/6xPZgseYS) PMID:29695375
Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner
2014-05-01
Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.
Design of transonic airfoil sections using a similarity theory
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
A study of the available methods for transonic airfoil and wing design indicates that the most powerful technique is the numerical optimization procedure. However, the computer time for this method is relatively large because of the amount of computation required in the searches during optimization. The optimization method requires that base and calibration solutions be computed to determine a minimum drag direction. The design space is then computationally searched in this direction; it is these searches that dominate the computation time. A recent similarity theory allows certain transonic flows to be calculated rapidly from the base and calibration solutions. In this paper the application of the similarity theory to design problems is examined with the object of at least partially eliminating the costly searches of the design optimization method. An example of an airfoil design is presented.
Liu, Wanli
2017-03-08
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.
Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike
2016-12-14
Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectralmore » range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.« less
Kurashiki, T
1996-11-01
For resolving the discrepancy of concentrations found among anesthetic gas monitors, the author proposed a new method using a vaporizer as a standard anesthetic gas generator for calibration. In this method, the carrier gas volume is measured by a mass flow meter (SEF-510 + FI-101) installed before the inlet of the vaporizer. The vaporized weight of volatile anesthetic agent is simultaneously measured by an electronic force balance (E12000S), on which the vaporizer is placed directly. The molar percent of the anesthetic is calculated using these data and is transformed into the volume percent. These gases discharging from the vaporizer are utilized for calibrating anesthetic gas monitors. These monitors are normalized by the linear equation describing the relationship between concentrations of calibration gases and readings of the anesthetic gas monitors. By using normalized monitors, flow rate-concentration performance curves of several anesthetic vaporizers were obtained. The author concludes that this method can serve as a standard in evaluating anesthetic vaporizers.
Concerning the Video Drift Method to Measure Double Stars
NASA Astrophysics Data System (ADS)
Nugent, Richard L.; Iverson, Ernest W.
2015-05-01
Classical methods to measure position angles and separations of double stars rely on just a few measurements either from visual observations or photographic means. Visual and photographic CCD observations are subject to errors from the following sources: misalignments from eyepiece/camera/barlow lens/micrometer/focal reducers, systematic errors from uncorrected optical distortions, aberrations from the telescope system, camera tilt, magnitude and color effects. Conventional video methods rely on calibration doubles and graphically calculating the east-west direction plus careful choice of select video frames stacked for measurement. Atmospheric motion is one of the larger sources of error in any exposure/measurement method which is on the order of 0.5-1.5. Ideally, if a data set from a short video can be used to derive position angle and separation, with each data set self-calibrating independent of any calibration doubles or star catalogues, this would provide measurements of high systematic accuracy. These aims are achieved by the video drift method first proposed by the authors in 2011. This self calibrating video method automatically analyzes 1,000's of measurements from a short video clip.
In-depth analysis and discussions of water absorption-typed high power laser calorimeter
NASA Astrophysics Data System (ADS)
Wei, Ji Feng
2017-02-01
In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.
Direct reading of electrocardiograms and respiration rates
NASA Technical Reports Server (NTRS)
Wise, J. P.
1969-01-01
Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.
Radiometric Calibration of the Earth Observing System's Imaging Sensors
NASA Technical Reports Server (NTRS)
Slater, Philip N. (Principal Investigator)
1997-01-01
The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached.
Paulo C. Olivas; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan; Joseph J. O' Brien; Harlyn Ordonez
2013-01-01
Many functional properties of forests depend on the leaf area; however, measuring leaf area is not trivial in tall evergreen vegetation. As a result, leaf area is generally estimated indirectly by light absorption methods. These indirect methods are widely used, but have never been calibrated against direct measurements in tropical rain forests, either at point or...
Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy
NASA Astrophysics Data System (ADS)
Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.
2013-03-01
We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.
NASA Technical Reports Server (NTRS)
Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.
2009-01-01
Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.
Ajtony, Zsolt; Laczai, Nikoletta; Dravecz, Gabriella; Szoboszlai, Norbert; Marosi, Áron; Marlok, Bence; Streli, Christina; Bencs, László
2016-12-15
HR-CS-GFAAS methods were developed for the fast determination of Cu in domestic and commercially available Hungarian distilled alcoholic beverages (called pálinka), in order to decide if their Cu content exceeds the permissible limit, as legislated by the WHO. Some microliters of samples were directly dispensed into the atomizer. Graphite furnace heating programs, effects/amounts of the Pd modifier, alternative wavelengths (e.g., Cu I 249.2146nm), external calibration and internal standardization methods were studied. Applying a fast graphite furnace heating program without any chemical modifier, the Cu content of a sample could be quantitated within 1.5min. The detection limit of the method is 0.03mg/L. Calibration curves are linear up to 10-15mg/L Cu. Spike-recoveries ranged from 89% to 119% with an average of 100.9±8.5%. Internal calibration could be applied with the assistance of Cr, Fe, and/or Rh standards. The accuracy of the GFAAS results was verified by TXRF analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.
2000-01-01
Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.
Calibration of High Frequency MEMS Microphones
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.
2007-01-01
Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone.
Absolute calorimetric calibration of low energy brachytherapy sources
NASA Astrophysics Data System (ADS)
Stump, Kurt E.
In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of the current instrument to direct further work in this field. It has been found that for sources with powers above approximately 2 muW the instrument is able to determine the source power in agreement to within less than 7% of what is expected based upon the current source strength standard. For lower power sources, the agreement is still within the uncertainty of the power measurement, but the calorimeter noise dominates. Thus, to provide absolute calibration of lower power sources additional measures must be taken. The conclusion of this thesis describes these measures and how they will improve the factors that limit the current instrument. The results of the work presented in this thesis establish the methodology of active radiometric calorimetey for the absolute calibration of radioactive sources. The method is an improvement over previous techniques in that there is no reliance upon the thermal properties of the materials used or the heat flow pathways on the source measurements. The initial work presented here will help to shape future refinements of this technique to allow lower power sources to be calibrated with high precision and high accuracy.
Standing on the shoulders of giants: improving medical image segmentation via bias correction.
Wang, Hongzhi; Das, Sandhitsu; Pluta, John; Craige, Caryne; Altinay, Murat; Avants, Brian; Weiner, Michael; Mueller, Susanne; Yushkevich, Paul
2010-01-01
We propose a simple strategy to improve automatic medical image segmentation. The key idea is that without deep understanding of a segmentation method, we can still improve its performance by directly calibrating its results with respect to manual segmentation. We formulate the calibration process as a bias correction problem, which is addressed by machine learning using training data. We apply this methodology on three segmentation problems/methods and show significant improvements for all of them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Ke; Li Yanqiu; Wang Hai
Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less
Metrological activity determination of 133Ba by sum-peak absolute method
NASA Astrophysics Data System (ADS)
da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.
2016-07-01
The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.
In-situ calibration of nonuniformity in infrared staring and modulated systems
NASA Astrophysics Data System (ADS)
Black, Wiley T.
Infrared cameras can directly measure the apparent temperature of objects, providing thermal imaging. However, the raw output from most infrared cameras suffers from a strong, often limiting noise source called nonuniformity. Manufacturing imperfections in infrared focal planes lead to high pixel-to-pixel sensitivity to electronic bias, focal plane temperature, and other effects. The resulting imagery can only provide useful thermal imaging after a nonuniformity calibration has been performed. Traditionally, these calibrations are performed by momentarily blocking the field of view with a at temperature plate or blackbody cavity. However because the pattern is a coupling of manufactured sensitivities with operational variations, periodic recalibration is required, sometimes on the order of tens of seconds. A class of computational methods called Scene-Based Nonuniformity Correction (SBNUC) has been researched for over 20 years where the nonuniformity calibration is estimated in digital processing by analysis of the video stream in the presence of camera motion. The most sophisticated SBNUC methods can completely and robustly eliminate the high-spatial frequency component of nonuniformity with only an initial reference calibration or potentially no physical calibration. I will demonstrate a novel algorithm that advances these SBNUC techniques to support all spatial frequencies of nonuniformity correction. Long-wave infrared microgrid polarimeters are a class of camera that incorporate a microscale per-pixel wire-grid polarizer directly affixed to each pixel of the focal plane. These cameras have the capability of simultaneously measuring thermal imagery and polarization in a robust integrated package with no moving parts. I will describe the necessary adaptations of my SBNUC method to operate on this class of sensor as well as demonstrate SBNUC performance in LWIR polarimetry video collected on the UA mall.
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Mohamed, Heba M.
2016-01-01
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, P.
The majority of general-purpose low-temperature handheld radiation thermometers are severely affected by the size-of-source effect (SSE). Calibration of these instruments is pointless unless the SSE is accounted for in the calibration process. Traditional SSE measurement techniques, however, are costly and time consuming, and because the instruments are direct-reading in temperature, traditional SSE results are not easily interpretable, particularly by the general user. This paper describes a simplified method for measuring the SSE, suitable for second-tier calibration laboratories and requiring no additional equipment, and proposes a means of reporting SSE results on a calibration certificate that should be easily understood bymore » the non-specialist user.« less
Size-of-source Effect in Infrared Thermometers with Direct Reading of Temperature
NASA Astrophysics Data System (ADS)
Manoi, A.; Saunders, P.
2017-07-01
The size-of-source effect (SSE) for six infrared (IR) thermometers with direct reading of temperature was measured in this work. The alternative direct method for SSE determination, where the aperture size is fixed and the measurement distance is varied, was used in this study. The experimental equivalence between the usual and the alternative direct methods is presented. The magnitudes of the SSE for different types of IR thermometers were investigated. The maxima of the SSE were found to be up to 5 %, 8 %, and 28 % for focusable, closed-focus, and open-focus thermometers, respectively. At 275°C, an SSE of 28 % corresponds to 52°C, indicating the severe effect on the accuracy of this type of IR thermometer. A method to realize the calibration conditions used by the manufacturer, in terms of aperture size and measurement distance, is discussed and validated by experimental results. This study would be of benefit to users in choosing the best IR thermometer to match their work and for calibration laboratories in selecting the technique most suitable for determining the SSE.
Andreis, Elisabeth; Küllmer, Kai
2014-01-01
Self-monitoring of blood glucose (BG) by means of handheld BG systems is a cornerstone in diabetes therapy. The aim of this article is to describe a procedure with proven traceability for calibration and evaluation of BG systems to guarantee reliable BG measurements. Isotope dilution gas chromatography mass spectrometry (ID/GC/MS) is a method that fulfills all requirements to be used in a higher-order reference measurement procedure. However, this method is not applicable for routine measurements because of the time-consuming sample preparation. A hexokinase method with perchloric acid (PCA) sample pretreatment is used in a measurement procedure for such purposes. This method is directly linked to the ID/GC/MS method by calibration with a glucose solution that has an ID/GC/MS-determined target value. BG systems are calibrated with whole blood samples. The glucose levels in such samples are analyzed by this ID/GC/MS-linked hexokinase method to establish traceability to higher-order reference material. For method comparison, the glucose concentrations in 577 whole blood samples were measured using the PCA-hexokinase method and the ID/GC/MS method; this resulted in a mean deviation of 0.1%. The mean deviation between BG levels measured in >500 valid whole blood samples with BG systems and the ID/GC/MS was 1.1%. BG systems allow a reliable glucose measurement if a true reference measurement procedure, with a noninterrupted traceability chain using ID/GC/MS linked hexokinase method for calibration of BG systems, is implemented. Systems should be calibrated by means of a traceable and defined measurement procedure to avoid bias. PMID:24876614
Direct determination of geometric alignment parameters for cone-beam scanners
Mennessier, C; Clackdoyle, R; Noo, F
2009-01-01
This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique. PMID:19242049
Non-parametric and least squares Langley plot methods
NASA Astrophysics Data System (ADS)
Kiedron, P. W.; Michalsky, J. J.
2016-01-01
Langley plots are used to calibrate sun radiometers primarily for the measurement of the aerosol component of the atmosphere that attenuates (scatters and absorbs) incoming direct solar radiation. In principle, the calibration of a sun radiometer is a straightforward application of the Bouguer-Lambert-Beer law V = V0e-τ ṡ m, where a plot of ln(V) voltage vs. m air mass yields a straight line with intercept ln(V0). This ln(V0) subsequently can be used to solve for τ for any measurement of V and calculation of m. This calibration works well on some high mountain sites, but the application of the Langley plot calibration technique is more complicated at other, more interesting, locales. This paper is concerned with ferreting out calibrations at difficult sites and examining and comparing a number of conventional and non-conventional methods for obtaining successful Langley plots. The 11 techniques discussed indicate that both least squares and various non-parametric techniques produce satisfactory calibrations with no significant differences among them when the time series of ln(V0)'s are smoothed and interpolated with median and mean moving window filters.
A Method to Solve Interior and Exterior Camera Calibration Parameters for Image Resection
NASA Technical Reports Server (NTRS)
Samtaney, Ravi
1999-01-01
An iterative method is presented to solve the internal and external camera calibration parameters, given model target points and their images from one or more camera locations. The direct linear transform formulation was used to obtain a guess for the iterative method, and herein lies one of the strengths of the present method. In all test cases, the method converged to the correct solution. In general, an overdetermined system of nonlinear equations is solved in the least-squares sense. The iterative method presented is based on Newton-Raphson for solving systems of nonlinear algebraic equations. The Jacobian is analytically derived and the pseudo-inverse of the Jacobian is obtained by singular value decomposition.
Calibration of GRB Luminosity Relations with Cosmography
NASA Astrophysics Data System (ADS)
Gao, He; Liang, Nan; Zhu, Zong-Hong
For the use of gamma-ray bursts (GRBs) to probe cosmology in a cosmology-independent way, a new method has been proposed to obtain luminosity distances of GRBs by interpolating directly from the Hubble diagram of SNe Ia, and then calibrating GRB relations at high redshift. In this paper, following the basic assumption in the interpolation method that objects at the same redshift should have the same luminosity distance, we propose another approach to calibrate GRB luminosity relations with cosmographic fitting directly from SN Ia data. In cosmography, there is a well-known fitting formula which can reflect the Hubble relation between luminosity distance and redshift with cosmographic parameters which can be fitted from observation data. Using the Cosmographic fitting results from the Union set of SNe Ia, we calibrate five GRB relations using GRB sample at z ≤ 1.4 and deduce distance moduli of GRBs at 1.4 < z ≤ 6.6 by generalizing above calibrated relations at high redshift. Finally, we constrain the dark energy parameterization models of the Chevallier-Polarski-Linder (CPL) model, the Jassal-Bagla-Padmanabhan (JBP) model and the Alam model with GRB data at high redshift, as well as with the cosmic microwave background radiation (CMB) and the baryonic acoustic oscillation (BAO) observations, and we find the ΛCDM model is consistent with the current data in 1-σ confidence region.
NASA Astrophysics Data System (ADS)
Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi
2017-07-01
Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2018-04-01
This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.
Liu, Wanli
2017-01-01
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897
Maier, Barbara; Vogeser, Michael
2013-04-01
Isotope dilution LC-MS/MS methods used in the clinical laboratory typically involve multi-point external calibration in each analytical series. Our aim was to test the hypothesis that determination of target analyte concentrations directly derived from the relation of the target analyte peak area to the peak area of a corresponding stable isotope labelled internal standard compound [direct isotope dilution analysis (DIDA)] may be not inferior to conventional external calibration with respect to accuracy and reproducibility. Quality control samples and human serum pools were analysed in a comparative validation protocol for cortisol as an exemplary analyte by LC-MS/MS. Accuracy and reproducibility were compared between quantification either involving a six-point external calibration function, or a result calculation merely based on peak area ratios of unlabelled and labelled analyte. Both quantification approaches resulted in similar accuracy and reproducibility. For specified analytes, reliable analyte quantification directly derived from the ratio of peak areas of labelled and unlabelled analyte without the need for a time consuming multi-point calibration series is possible. This DIDA approach is of considerable practical importance for the application of LC-MS/MS in the clinical laboratory where short turnaround times often have high priority.
Advancing Absolute Calibration for JWST and Other Applications
NASA Astrophysics Data System (ADS)
Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin
2017-10-01
We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.
Results of the first complete static calibration of the RSRA rotor-load-measurement system
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.
1984-01-01
The compound Rotor System Research Aircraft (RSRA) is designed to make high-accuracy, simultaneous measurements of all rotor forces and moments in flight. Physical calibration of the rotor force- and moment-measurement system when installed in the aircraft is required to account for known errors and to ensure that measurement-system accuracy is traceable to the National Bureau of Standards. The first static calibration and associated analysis have been completed with good results. Hysteresis was a potential cause of static calibration errors, but was found to be negligible in flight compared to full-scale loads, and analytical methods have been devised to eliminate hysteresis effects on calibration data. Flight tests confirmed that the calibrated rotor-load-measurement system performs as expected in flight and that it can dependably make direct measurements of fuselage vertical drag in hover.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V.V.; Takacs, P.; Anderson, E.H.
A modulation transfer function (MTF) calibration method based on binary pseudorandom (BPR) gratings and arrays has been proven to be an effective MTF calibration method for interferometric microscopes and a scatterometer. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 in. phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending andmore » filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to the BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Parameter Set Cloning Based on Catchment Similarity for Large-scale Hydrologic Modeling
NASA Astrophysics Data System (ADS)
Liu, Z.; Kaheil, Y.; McCollum, J.
2016-12-01
Parameter calibration is a crucial step to ensure the accuracy of hydrological models. However, streamflow gauges are not available everywhere for calibrating a large-scale hydrologic model globally. Thus, assigning parameters appropriately for regions where the calibration cannot be performed directly has been a challenge for large-scale hydrologic modeling. Here we propose a method to estimate the model parameters in ungauged regions based on the values obtained through calibration in areas where gauge observations are available. This parameter set cloning is performed according to a catchment similarity index, a weighted sum index based on four catchment characteristic attributes. These attributes are IPCC Climate Zone, Soil Texture, Land Cover, and Topographic Index. The catchments with calibrated parameter values are donors, while the uncalibrated catchments are candidates. Catchment characteristic analyses are first conducted for both donors and candidates. For each attribute, we compute a characteristic distance between donors and candidates. Next, for each candidate, weights are assigned to the four attributes such that higher weights are given to properties that are more directly linked to the hydrologic dominant processes. This will ensure that the parameter set cloning emphasizes the dominant hydrologic process in the region where the candidate is located. The catchment similarity index for each donor - candidate couple is then created as the sum of the weighted distance of the four properties. Finally, parameters are assigned to each candidate from the donor that is "most similar" (i.e. with the shortest weighted distance sum). For validation, we applied the proposed method to catchments where gauge observations are available, and compared simulated streamflows using the parameters cloned by other catchments to the results obtained by calibrating the hydrologic model directly using gauge data. The comparison shows good agreement between the two models for different river basins as we show here. This method has been applied globally to the Hillslope River Routing (HRR) model using gauge observations obtained from the Global Runoff Data Center (GRDC). As next step, more catchment properties can be taken into account to further improve the representation of catchment similarity.
Ottaway, Josh; Farrell, Jeremy A; Kalivas, John H
2013-02-05
An essential part to calibration is establishing the analyte calibration reference samples. These samples must characterize the sample matrix and measurement conditions (chemical, physical, instrumental, and environmental) of any sample to be predicted. Calibration usually requires measuring spectra for numerous reference samples in addition to determining the corresponding analyte reference values. Both tasks are typically time-consuming and costly. This paper reports on a method named pure component Tikhonov regularization (PCTR) that does not require laboratory prepared or determined reference values. Instead, an analyte pure component spectrum is used in conjunction with nonanalyte spectra for calibration. Nonanalyte spectra can be from different sources including pure component interference samples, blanks, and constant analyte samples. The approach is also applicable to calibration maintenance when the analyte pure component spectrum is measured in one set of conditions and nonanalyte spectra are measured in new conditions. The PCTR method balances the trade-offs between calibration model shrinkage and the degree of orthogonality to the nonanalyte content (model direction) in order to obtain accurate predictions. Using visible and near-infrared (NIR) spectral data sets, the PCTR results are comparable to those obtained using ridge regression (RR) with reference calibration sets. The flexibility of PCTR also allows including reference samples if such samples are available.
Calibration of an Outdoor Distributed Camera Network with a 3D Point Cloud
Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H.; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan
2014-01-01
Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC). PMID:25076221
Calibration of an outdoor distributed camera network with a 3D point cloud.
Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan
2014-07-29
Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC).
Automated Mounting Bias Calibration for Airborne LIDAR System
NASA Astrophysics Data System (ADS)
Zhang, J.; Jiang, W.; Jiang, S.
2012-07-01
Mounting bias is the major error source of Airborne LIDAR system. In this paper, an automated calibration method for estimating LIDAR system mounting parameters is introduced. LIDAR direct geo-referencing model is used to calculate systematic errors. Due to LIDAR footprints discretely sampled, the real corresponding laser points are hardly existence among different strips. The traditional corresponding point methodology does not seem to apply to LIDAR strip registration. We proposed a Virtual Corresponding Point Model to resolve the corresponding problem among discrete laser points. Each VCPM contains a corresponding point and three real laser footprints. Two rules are defined to calculate tie point coordinate from real laser footprints. The Scale Invariant Feature Transform (SIFT) is used to extract corresponding points in LIDAR strips, and the automatic flow of LIDAR system calibration based on VCPM is detailed described. The practical examples illustrate the feasibility and effectiveness of the proposed calibration method.
Thermal-depth matching in dynamic scene based on affine projection and feature registration
NASA Astrophysics Data System (ADS)
Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang
2018-03-01
This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.
Kwon, Young-Hoo; Casebolt, Jeffrey B
2006-01-01
One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a through review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.
Kwon, Young-Hoo; Casebolt, Jeffrey B
2006-07-01
One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a thorough review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovic, John; Zontek, Tracy L.; Ogle, Burton R.
We examined the calibration records of two direct reading instruments designated as condensation particle counters in order to determine the number of times they were found to be out of tolerance at annual manufacturer's recalibration. For both instruments were found to be out of tolerance more times than within tolerance. And, it was concluded that annual calibration alone was insufficient to provide operational confidence in an instrument's response. Thus, a method based on subsequent agreement with data gathered from a newly calibrated instrument was developed to confirm operational readiness between annual calibrations, hereafter referred to as bump testing. The methodmore » consists of measuring source particles produced by a gas grille spark igniter in a gallon-size jar. Sampling from this chamber with a newly calibrated instrument to determine the calibrated response over the particle concentration range of interest serves as a reference. Agreement between this reference response and subsequent responses at later dates implies that the instrument is performing as it was at the time of calibration. Side-by-side sampling allows the level of agreement between two or more instruments to be determined. This is useful when simultaneously collected data are compared for differences, i.e., background with process aerosol concentrations. A reference set of data was obtained using the spark igniter. The generation system was found to be reproducible and suitable to form the basis of calibration verification. Finally, the bump test is simple enough to be performed periodically throughout the calibration year or prior to field monitoring.« less
Jankovic, John; Zontek, Tracy L.; Ogle, Burton R.; ...
2015-01-27
We examined the calibration records of two direct reading instruments designated as condensation particle counters in order to determine the number of times they were found to be out of tolerance at annual manufacturer's recalibration. For both instruments were found to be out of tolerance more times than within tolerance. And, it was concluded that annual calibration alone was insufficient to provide operational confidence in an instrument's response. Thus, a method based on subsequent agreement with data gathered from a newly calibrated instrument was developed to confirm operational readiness between annual calibrations, hereafter referred to as bump testing. The methodmore » consists of measuring source particles produced by a gas grille spark igniter in a gallon-size jar. Sampling from this chamber with a newly calibrated instrument to determine the calibrated response over the particle concentration range of interest serves as a reference. Agreement between this reference response and subsequent responses at later dates implies that the instrument is performing as it was at the time of calibration. Side-by-side sampling allows the level of agreement between two or more instruments to be determined. This is useful when simultaneously collected data are compared for differences, i.e., background with process aerosol concentrations. A reference set of data was obtained using the spark igniter. The generation system was found to be reproducible and suitable to form the basis of calibration verification. Finally, the bump test is simple enough to be performed periodically throughout the calibration year or prior to field monitoring.« less
Yehia, Ali M; Mohamed, Heba M
2016-01-05
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Webb, Mathew A.; Hall, Andrew; Kidd, Darren; Minansy, Budiman
2016-05-01
Assessment of local spatial climatic variability is important in the planning of planting locations for horticultural crops. This study investigated three regression-based calibration methods (i.e. traditional versus two optimized methods) to relate short-term 12-month data series from 170 temperature loggers and 4 weather station sites with data series from nearby long-term Australian Bureau of Meteorology climate stations. The techniques trialled to interpolate climatic temperature variables, such as frost risk, growing degree days (GDDs) and chill hours, were regression kriging (RK), regression trees (RTs) and random forests (RFs). All three calibration methods produced accurate results, with the RK-based calibration method delivering the most accurate validation measures: coefficients of determination ( R 2) of 0.92, 0.97 and 0.95 and root-mean-square errors of 1.30, 0.80 and 1.31 °C, for daily minimum, daily maximum and hourly temperatures, respectively. Compared with the traditional method of calibration using direct linear regression between short-term and long-term stations, the RK-based calibration method improved R 2 and reduced root-mean-square error (RMSE) by at least 5 % and 0.47 °C for daily minimum temperature, 1 % and 0.23 °C for daily maximum temperature and 3 % and 0.33 °C for hourly temperature. Spatial modelling indicated insignificant differences between the interpolation methods, with the RK technique tending to be the slightly better method due to the high degree of spatial autocorrelation between logger sites.
Calibration of the head direction network: a role for symmetric angular head velocity cells.
Stratton, Peter; Wyeth, Gordon; Wiles, Janet
2010-06-01
Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions.
Calibration of the optical torque wrench.
Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Dekker, Nynke H
2012-02-13
The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN nm) is especially important in the study of biophysical systems at the molecular and cellular level. Quantitative torque measurements rely on an accurate calibration of the instrument. Here we describe and implement a set of calibration approaches for the optical torque wrench, including methods that have direct analogs in linear optical tweezers as well as introducing others that are specifically developed for the angular variables. We compare the different methods, analyze their differences, and make recommendations regarding their implementations.
Zhang, Da; Mihai, Georgeta; Barbaras, Larry G; Brook, Olga R; Palmer, Matthew R
2018-05-10
Water equivalent diameter (Dw) reflects patient's attenuation and is a sound descriptor of patient size, and is used to determine size-specific dose estimator from a CT examination. Calculating Dw from CT localizer radiographs makes it possible to utilize Dw before actual scans and minimizes truncation errors due to limited reconstructed fields of view. One obstacle preventing the user community from implementing this useful tool is the necessity to calibrate localizer pixel values so as to represent water equivalent attenuation. We report a practical method to ease this calibration process. Dw is calculated from water equivalent area (Aw) which is deduced from the average localizer pixel value (LPV) of the line(s) in the localizer radiograph that correspond(s) to the axial image. The calibration process is conducted to establish the relationship between Aw and LPV. Localizer and axial images were acquired from phantoms of different total attenuation. We developed a program that automates the geometrical association between axial images and localizer lines and manages the measurements of Dw and average pixel values. We tested the calibration method on three CT scanners: a GE CT750HD, a Siemens Definition AS, and a Toshiba Acquilion Prime80, for both posterior-anterior (PA) and lateral (LAT) localizer directions (for all CTs) and with different localizer filters (for the Toshiba CT). The computer program was able to correctly perform the geometrical association between corresponding axial images and localizer lines. Linear relationships between Aw and LPV were observed (with R 2 all greater than 0.998) on all tested conditions, regardless of the direction and image filters used on the localizer radiographs. When comparing LAT and PA directions with the same image filter and for the same scanner, the slope values were close (maximum difference of 0.02 mm), and the intercept values showed larger deviations (maximum difference of 2.8 mm). Water equivalent diameter estimation on phantoms and patients demonstrated high accuracy of the calibration: percentage difference between Dw from axial images and localizers was below 2%. With five clinical chest examinations and five abdominal-pelvic examinations of varying patient sizes, the maximum percentage difference was approximately 5%. Our study showed that Aw and LPV are highly correlated, providing enough evidence to allow for the Dw determination once the experimental calibration process is established. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Repetti, Audrey; Birdi, Jasleen; Dabbech, Arwa; Wiaux, Yves
2017-10-01
Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as clean. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the Square Kilometre Array, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, I.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. matlab code is available on GitHub.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.
2011-03-14
A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's datamore » processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Steps towards Improving GNSS Systematic Errors and Biases
NASA Astrophysics Data System (ADS)
Herring, T.; Moore, M.
2017-12-01
Four general areas of analysis method improvements, three related to data analysis models and the fourth to calibration methods, have been recommended at the recent unified analysis workshop (UAW) and we discuss aspects of these areas for improvement. The gravity fields used in the GNSS orbit integrations should be updated to match modern fields to make them consistent with the fields being used by the other IAG services. The update would include the static part of the field and a time variable component. The force models associated with radiation forces are the most uncertain and modeling of these forces can be made more consistent with the exchange of attitude information. The international GNSS service (IGS) will develop an attitude format and make attitude information available so that analysis centers can validate their models. The IGS has noted the appearance of the GPS draconitic period and harmonics of this period in time series of various geodetic products (e.g., positions and Earth orientation parameters). An updated short-period (diurnal and semidiurnal) model is needed and a method to determine the best model developed. The final area, not directly related to analysis models, is the recommendation that site dependent calibration of GNSS antennas are needed since these have a direct effect on the ITRF realization and position offsets when antennas are changed. Evaluation of the effects of the use of antenna specific phase center models will be investigated for those sites where these values are available without disturbing an existing antenna installation. Potential development of an in-situ antenna calibration system is strongly encouraged. In-situ calibration would be deployed at core sites where GNSS sites are tied to other geodetic systems. With recent expansion of the number of GPS satellites transmitting unencrypted codes on the GPS L2 frequency and the availability of software GNSS receivers in-situ calibration between an existing installation and a movable directional antenna is now more likely to generate accurate results than earlier analog switching systems. With all of these improvements, there is the expectation that there will be better agreement between the space geodetic methods thus allowing more definitive assessment and modeling of the Earth's time variable shape and gravity field.
NASA Astrophysics Data System (ADS)
Deng, Xiao; Ma, Tianyu; Lecomte, Roger; Yao, Rutao
2011-10-01
To expand the availability of SPECT for biomedical research, we developed a SPECT imaging system on an existing animal PET detector by adding a slit-slat collimator. As the detector crystals are pixelated, the relative slat-to-crystal position (SCP) in the axial direction affects the photon flux distribution onto the crystals. The accurate knowledge of SCP is important to the axial resolution and sensitivity of the system. This work presents a method for optimizing SCP in system design and for determining SCP in system geometrical calibration. The optimization was achieved by finding the SCP that provides higher spatial resolution in terms of average-root-mean-square (R̅M̅S̅) width of the axial point spread function (PSF) without loss of sensitivity. The calibration was based on the least-square-error method that minimizes the difference between the measured and modeled axial point spread projections. The uniqueness and accuracy of the calibration results were validated through a singular value decomposition (SVD) based approach. Both the optimization and calibration techniques were evaluated with Monte Carlo (MC) simulated data. We showed that the [R̅M̅S̅] was improved about 15% with the optimal SCP as compared to the least-optimal SCP, and system sensitivity was not affected by SCP. The SCP error achieved by the proposed calibration method was less than 0.04 mm. The calibrated SCP value was used in MC simulation to generate the system matrix which was used for image reconstruction. The images of simulated phantoms showed the expected resolution performance and were artifact free. We conclude that the proposed optimization and calibration method is effective for the slit-slat collimator based SPECT systems.
Khrutchinsky, Arkady; Drozdovitch, Vladimir; Kutsen, Semion; Minenko, Victor; Khrouch, Valeri; Luckyanov, Nickolas; Voillequé, Paul; Bouville, André
2012-01-01
This paper presents results of Monte Carlo modeling of the SRP-68-01 survey meter used to measure exposure rates near the thyroid glands of persons exposed to radioactivity following the Chernobyl accident. This device was not designed to measure radioactivity in humans. To estimate the uncertainty associated with the measurement results, a mathematical model of the SRP-68-01 survey meter was developed and verified. A Monte Carlo method of numerical simulation of radiation transport has been used to calculate the calibration factor for the device and evaluate its uncertainty. The SRP-68-01 survey meter scale coefficient, an important characteristic of the device, was also estimated in this study. The calibration factors of the survey meter were calculated for 131I, 132I, 133I, and 135I content in the thyroid gland for six age groups of population: newborns; children aged 1 yr, 5 yr, 10 yr, 15 yr; and adults. A realistic scenario of direct thyroid measurements with an “extended” neck was used to calculate the calibration factors for newborns and one-year-olds. Uncertainties in the device calibration factors due to variability of the device scale coefficient, variability in thyroid mass and statistical uncertainty of Monte Carlo method were evaluated. Relative uncertainties in the calibration factor estimates were found to be from 0.06 for children aged 1 yr to 0.1 for 10-yr and 15-yr children. The positioning errors of the detector during measurements deviate mainly in one direction from the estimated calibration factors. Deviations of the device position from the proper geometry of measurements were found to lead to overestimation of the calibration factor by up to 24 percent for adults and up to 60 percent for 1-yr children. The results of this study improve the estimates of 131I thyroidal content and, consequently, thyroid dose estimates that are derived from direct thyroid measurements performed in Belarus shortly after the Chernobyl accident. PMID:22245289
NASA Technical Reports Server (NTRS)
Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Xiong, Xiaoxiong (Jack); Butler, James J.
2010-01-01
Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance response in a two-step method. In the first step, the spectral response of the instrument is determined using a nearly monochromatic light source, such a lamp-illuminated monochromator. Such sources only provide a relative spectral response (RSR) for the instrument, since they do not act as calibrated sources of light nor do they typically fill the field-of-view of the instrument. In the second step, the instrument views a calibrated source of broadband light, such as lamp-illuminated integrating sphere. In the traditional method, the RSR and the sphere spectral radiance are combined and, with the instrument's response, determine the absolute spectral radiance responsivity of the instrument. More recently, an absolute calibration system using widely tunable monochromatic laser systems has been developed, Using these sources, the absolute spectral responsivity (ASR) of an instrument can be determined on a wavelength-hy-wavelength basis. From these monochromatic ASRs. the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. Here we describe the laser-based calibration and the traditional broad-band source-based calibration of the NPP VIIRS sensor, and compare the derived calibration coefficients for the instrument. Finally, we evaluate the impact of the new calibration approach on the on-orbit performance of the sensor.
NASA Astrophysics Data System (ADS)
Zhang, X.; Liang, S.; Wang, G.
2015-12-01
Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.
Strand, Matthew; Sillau, Stefan; Grunwald, Gary K; Rabinovitch, Nathan
2014-02-10
Regression calibration provides a way to obtain unbiased estimators of fixed effects in regression models when one or more predictors are measured with error. Recent development of measurement error methods has focused on models that include interaction terms between measured-with-error predictors, and separately, methods for estimation in models that account for correlated data. In this work, we derive explicit and novel forms of regression calibration estimators and associated asymptotic variances for longitudinal models that include interaction terms, when data from instrumental and unbiased surrogate variables are available but not the actual predictors of interest. The longitudinal data are fit using linear mixed models that contain random intercepts and account for serial correlation and unequally spaced observations. The motivating application involves a longitudinal study of exposure to two pollutants (predictors) - outdoor fine particulate matter and cigarette smoke - and their association in interactive form with levels of a biomarker of inflammation, leukotriene E4 (LTE 4 , outcome) in asthmatic children. Because the exposure concentrations could not be directly observed, we used measurements from a fixed outdoor monitor and urinary cotinine concentrations as instrumental variables, and we used concentrations of fine ambient particulate matter and cigarette smoke measured with error by personal monitors as unbiased surrogate variables. We applied the derived regression calibration methods to estimate coefficients of the unobserved predictors and their interaction, allowing for direct comparison of toxicity of the different pollutants. We used simulations to verify accuracy of inferential methods based on asymptotic theory. Copyright © 2013 John Wiley & Sons, Ltd.
LEAP: An Innovative Direction Dependent Ionospheric Calibration Scheme for Low Frequency Arrays
NASA Astrophysics Data System (ADS)
Rioja, María J.; Dodson, Richard; Franzen, Thomas M. O.
2018-05-01
The ambitious scientific goals of the SKA require a matching capability for calibration of atmospheric propagation errors, which contaminate the observed signals. We demonstrate a scheme for correcting the direction-dependent ionospheric and instrumental phase effects at the low frequencies and with the wide fields of view planned for SKA-Low. It leverages bandwidth smearing, to filter-out signals from off-axis directions, allowing the measurement of the direction-dependent antenna-based gains in the visibility domain; by doing this towards multiple directions it is possible to calibrate across wide fields of view. This strategy removes the need for a global sky model, therefore all directions are independent. We use MWA results at 88 and 154 MHz under various weather conditions to characterise the performance and applicability of the technique. We conclude that this method is suitable to measure and correct for temporal fluctuations and direction-dependent spatial ionospheric phase distortions on a wide range of scales: both larger and smaller than the array size. The latter are the most intractable and pose a major challenge for future instruments. Moreover this scheme is an embarrassingly parallel process, as multiple directions can be processed independently and simultaneously. This is an important consideration for the SKA, where the current planned architecture is one of compute-islands with limited interconnects. Current implementation of the algorithm and on-going developments are discussed.
Direct Sensor Orientation of a Land-Based Mobile Mapping System
Rau, Jiann-Yeou; Habib, Ayman F.; Kersting, Ana P.; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua
2011-01-01
A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy. PMID:22164015
Brown, KK; Shaw, PB; Mead, KR; Kovein, RJ; Voorhees, RT; Brandes, AR
2016-01-01
The purpose of this project was to research and develop a direct-reading exposure assessment method that combined a real-time location system with a wireless direct-reading personal chemical sensor. The personal chemical sensor was a photoionization device for detecting volatile organic compounds. The combined system was calibrated and tested against the same four standard gas concentrations and calibrated at one standard location and tested at four locations that included the standard locations. Data were wirelessly collected from the chemical sensor every 1.4 seconds, for volatile organic compounds concentration, location, temperature, humidity, and time. Regression analysis of the photo-ionization device voltage response against calibration gases showed the chemical sensor had a limit of detection of 0.2 ppm. The real-time location system was accurate to 13 cm ± 6 cm (standard deviation) in an open area and to 57 cm ± 31 cm in a closed room where the radio frequency has to penetrate drywall-finished walls. The streaming data were collected and graphically displayed as a three-dimensional hazard map for assessment of peak exposure with location. A real-time personal exposure assessment device with indoor positioning was practical and provided new knowledge on direct reading exposure assessment methods. PMID:26786234
Brown, K K; Shaw, P B; Mead, K R; Kovein, R J; Voorhees, R T; Brandes, A R
2016-01-01
The purpose of this article was to research and develop a direct-reading exposure assessment method that combined a real-time location system with a wireless direct-reading personal chemical sensor. The personal chemical sensor was a photoionization device for detecting volatile organic compounds. The combined system was calibrated and tested against the same four standard gas concentrations and calibrated at one standard location and tested at four locations that included the standard locations. Data were wirelessly collected from the chemical sensor every 1.4 sec, for volatile organic compounds concentration, location, temperature, humidity, and time. Regression analysis of the photo-ionization device voltage response against calibration gases showed the chemical sensor had a limit of detection of 0.2 ppm. The real-time location system was accurate to 13 cm ± 6 cm (standard deviation) in an open area and to 57 cm ± 31 cm in a closed room where the radio frequency has to penetrate drywall-finished walls. The streaming data were collected and graphically displayed as a three-dimensional hazard map for assessment of peak exposure with location. A real-time personal exposure assessment device with indoor positioning was practical and provided new knowledge on direct reading exposure assessment methods.
Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Conners, Timothy R.; Sims, Robert L.
1998-01-01
Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.
Phillips, Steven P.; Belitz, Kenneth
1991-01-01
The occurrence of selenium in agricultural drain water from the western San Joaquin Valley, California, has focused concern on the semiconfined ground-water flow system, which is underlain by the Corcoran Clay Member of the Tulare Formation. A two-step procedure is used to calibrate a preliminary model of the system for the purpose of determining the steady-state hydraulic properties. Horizontal and vertical hydraulic conductivities are modeled as functions of the percentage of coarse sediment, hydraulic conductivities of coarse-textured (Kcoarse) and fine-textured (Kfine) end members, and averaging methods used to calculate equivalent hydraulic conductivities. The vertical conductivity of the Corcoran (Kcorc) is an additional parameter to be evaluated. In the first step of the calibration procedure, the model is run by systematically varying the following variables: (1) Kcoarse/Kfine, (2) Kcoarse/Kcorc, and (3) choice of averaging methods in the horizontal and vertical directions. Root mean square error and bias values calculated from the model results are functions of these variables. These measures of error provide a means for evaluating model sensitivity and for selecting values of Kcoarse, Kfine, and Kcorc for use in the second step of the calibration procedure. In the second step, recharge rates are evaluated as functions of Kcoarse, Kcorc, and a combination of averaging methods. The associated Kfine values are selected so that the root mean square error is minimized on the basis of the results from the first step. The results of the two-step procedure indicate that the spatial distribution of hydraulic conductivity that best produces the measured hydraulic head distribution is created through the use of arithmetic averaging in the horizontal direction and either geometric or harmonic averaging in the vertical direction. The equivalent hydraulic conductivities resulting from either combination of averaging methods compare favorably to field- and laboratory-based values.
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.
1993-01-01
A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.
Direct current electrical potential measurement of the growth of small cracks
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Slavik, Donald C.; Piascik, Robert S.; Van Stone, Robert H.
1992-01-01
The analytical and experimental aspects of the direct-current electrical potential difference (dcEPD) method for continuous monitoring of the growth kinetics of short (50 to 500 microns) fatigue cracks are reviewed, and successful applications of the deEPD method to study fatigue crack propagation in a variety of metallic alloys exposed to various environments are described. Particular attention is given to the principle of the dcEPD method, the analytical electrical potential calibration relationships, and the experimental procedures and equipment.
SCALA: In situ calibration for integral field spectrographs
NASA Astrophysics Data System (ADS)
Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory
2017-11-01
Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.
A transmission line method for the measurement of microwave permittivity and permeability
NASA Astrophysics Data System (ADS)
Lederer, P. G.
1990-12-01
A method for determining complex permittivity and permeability at microwave frequencies from two port S parameter measurements of lossy solids in coaxial or waveguide transmission lines is described. The use of the TRL (Through Reflect Line) calibration scheme allows the measuring system to be calibrated right up to the specimen faces thereby eliminating most of the sample cell from the measurement and allowing suitable materials to be molded directly into the specimen cell in order to eliminate air gaps between specimen and transmission line walls. Some illustrative measurements for dielectric and magnetic materials are presented.
Robust calibration of an optical-lattice depth based on a phase shift
NASA Astrophysics Data System (ADS)
Cabrera-Gutiérrez, C.; Michon, E.; Brunaud, V.; Kawalec, T.; Fortun, A.; Arnal, M.; Billy, J.; Guéry-Odelin, D.
2018-04-01
We report on a method to calibrate the depth of an optical lattice. It consists of triggering the intrasite dipole mode of the cloud by a sudden phase shift. The corresponding oscillatory motion is directly related to the interband frequencies on a large range of lattice depths. Remarkably, for a moderate displacement, a single frequency dominates the oscillation of the zeroth and first orders of the interference pattern observed after a sufficiently long time of flight. The method is robust against atom-atom interactions and the exact value of the extra weak external confinement superimposed to the optical lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.
2010-07-26
A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument'smore » data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Research on self-calibration biaxial autocollimator based on ZYNQ
NASA Astrophysics Data System (ADS)
Guo, Pan; Liu, Bingguo; Liu, Guodong; Zhong, Yao; Lu, Binghui
2018-01-01
Autocollimators are mainly based on computers or the electronic devices that can be connected to the internet, and its precision, measurement range and resolution are all defective, and external displays are needed to display images in real time. What's more, there is no real-time calibration for autocollimator in the market. In this paper, we propose a biaxial autocollimator based on the ZYNQ embedded platform to solve the above problems. Firstly, the traditional optical system is improved and a light path is added for real-time calibration. Then, in order to improve measurement speed, the embedded platform based on ZYNQ that combines Linux operating system with autocollimator is designed. In this part, image acquisition, image processing, image display and the man-machine interaction interface based on Qt are achieved. Finally, the system realizes two-dimensional small angle measurement. Experimental results showed that the proposed method can improve the angle measurement accuracy. The standard deviation of the close distance (1.5m) is 0.15" in horizontal direction of image and 0.24"in vertical direction, the repeatability of measurement of the long distance (10m) is improved by 0.12 in horizontal direction of image and 0.3 in vertical direction.
NASA Astrophysics Data System (ADS)
Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben
2015-02-01
The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.
Direct megavoltage photon calibration service in Australia
Ramanathan, G.; Oliver, C.; Cole, A.; Lye, J.; Harty, P. D.; Wright, T.; Webb, D. V.; Followill, D. S.
2014-01-01
The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) maintains the Australian primary standard of absorbed dose. Until recently, the standard was used to calibrate ionisation chambers only in 60Co gamma rays. These chambers are then used by radiotherapy clinics to determine linac output, using a correction factor (kQ) to take into account the different spectra of 60Co and the linac. Over the period 2010–2013, ARPANSA adapted the primary standard to work in megavoltage linac beams, and has developed a calibration service at three photon beams (6, 10 and 18 MV) from an Elekta Synergy linac. We describe the details of the new calibration service, the method validation and the use of the new calibration factors with the International Atomic Energy Agency’s TRS-398 dosimetry Code of Practice. The expected changes in absorbed dose measurements in the clinic when shifting from 60Co to the direct calibration are determined. For a Farmer chamber (model 2571), the measured chamber calibration coefficient is expected to be reduced by 0.4, 1.0 and 1.1 % respectively for these three beams when compared to the factor derived from 60Co. These results are in overall agreement with international absorbed dose standards and calculations by Muir and Rogers in 2010 of kQ factors using Monte Carlo techniques. The reasons for and against moving to the new service are discussed in the light of the requirements of clinical dosimetry. PMID:25146559
Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.; ...
2015-12-09
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Reducing heliostat field costs by direct measurement and control of the mirror orientation
NASA Astrophysics Data System (ADS)
van den Donker, P.; Rosinga, G.; van Voorthuysen, E. du Marchie
2016-05-01
The first commercial CSP Central Receiver System has been in operation since 2007. The technology required for such a central receiver system is quite new. The determining factor of the price of electricity is the capital investment in the heliostat field. The cost level per square meter of the heliostat field is rather high. Sun2point is questioning the market development, which is trying to get the cost level down by aiming at large heliostats. Sun2Point aims at mass manufacturing small heliostats to achieve low prices. Mass manufacturing off-site and transport over long distances is possible for small heliostats only. Calibration on the spot is a labour-intensive activity. Autonomous, factory calibrated and wireless controlled heliostats are the solution to lower installation cost. A new measurement method that directly reports the orientation of the heliostat in relation to the earth and the sun can solve the calibration problem when the heliostats are installed. The application of small heliostats will be much cheaper as a result of this measurement method. In this paper several methods for such a measurement are described briefly. The new Sun2Point method has successfully been tested. In this paper Sun2Point challenges the CSP community to investigate this approach. A brief survey is presented of many aspects that lead to a low price.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, T; Sun, B; Li, H
Purpose: The current standard for calculation of photon and electron dose requires conversion of Hounsfield Units (HU) to Electron Density (ED) by applying a calibration curve specifically constructed for the corresponding CT tube voltage. This practice limits the use of the CT scanner to a single tube voltage and hinders the freedom in the selection of optimal tube voltage for better image quality. The objective of this study is to report a prototype CT reconstruction algorithm that provides direct ED images from the raw CT data independently of tube voltages used during acquisition. Methods: A tissue substitute phantom was scannedmore » for Stoichiometric CT calibrations at tube voltages of 70kV, 80kV, 100kV, 120kV and 140kV respectively. HU images and direct ED images were acquired sequentially on a thoracic anthropomorphic phantom at the same tube voltages. Electron densities converted from the HU images were compared to ED obtained from the direct ED images. A 7-field treatment plan was made on all HU and ED images. Gamma analysis was performed to demonstrate quantitatively dosimetric change from the two schemes in acquiring ED. Results: The average deviation of EDs obtained from the direct ED images was −1.5%±2.1% from the EDs from HU images with the corresponding CT calibration curves applied. Gamma analysis on dose calculated on the direct ED images and the HU images acquired at the same tube voltage indicated negligible difference with lowest passing rate at 99.9%. Conclusion: Direct ED images require no CT calibration while demonstrate equivalent dosimetry compared to that obtained from standard HU images. The ability of acquiring direct ED images simplifies the current practice at a safer level by eliminating CT calibration and HU conversion from commissioning and treatment planning respectively. Furthermore, it unlocks a wider range of tube voltages in CT scanner for better imaging quality while maintaining similar dosimetric accuracy.« less
Multipath interference test method for distributed amplifiers
NASA Astrophysics Data System (ADS)
Okada, Takahiro; Aida, Kazuo
2005-12-01
A method for testing distributed amplifiers is presented; the multipath interference (MPI) is detected as a beat spectrum between the multipath signal and the direct signal using a binary frequency shifted keying (FSK) test signal. The lightwave source is composed of a DFB-LD that is directly modulated by a pulse stream passing through an equalizer, and emits the FSK signal of the frequency deviation of about 430MHz at repetition rate of 80-100 kHz. The receiver consists of a photo-diode and an electrical spectrum analyzer (ESA). The base-band power spectrum peak appeared at the frequency of the FSK frequency deviation can be converted to amount of MPI using a calibration chart. The test method has improved the minimum detectable MPI as low as -70 dB, compared to that of -50 dB of the conventional test method. The detailed design and performance of the proposed method are discussed, including the MPI simulator for calibration procedure, computer simulations for evaluating the error caused by the FSK repetition rate and the fiber length under test and experiments on singlemode fibers and distributed Raman amplifier.
Towards Fast Tracking of the Keyhole Geometry
NASA Astrophysics Data System (ADS)
Brock, C.; Hohenstein, R.; Schmidt, M.
We describe a sensor principle permitting the fast online measurement of the position of the optical process emissions in deep penetration laser welding. Experiments show a strong correlation between the position of the vapour plume and the keyhole geometry, demonstrated here by varying the penetration depth of the weld. In order to achieve an absolute position measurement, the sensor was calibrated using a light source with well defined characteristics. The setup for the calibration measurements and the corresponding data evaluation methods are discussed. The precision of the calibration with a green LED is 6 μm in lateral and 55 μm in axial direction, for a working distance of 200 mm.
Calibration of a time-resolved hard-x-ray detector using radioactive sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeckl, C., E-mail: csto@lle.rochester.edu; Theobald, W.; Regan, S. P.
A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.
Crawford, Charles G.; Martin, Jeffrey D.
2017-07-21
In October 2012, the U.S. Geological Survey (USGS) began measuring the concentration of the pesticide fipronil and three of its degradates (desulfinylfipronil, fipronil sulfide, and fipronil sulfone) by a new laboratory method using direct aqueous-injection liquid chromatography tandem mass spectrometry (DAI LC–MS/MS). This method replaced the previous method—in use since 2002—that used gas chromatography/mass spectrometry (GC/MS). The performance of the two methods is not comparable for fipronil and the three degradates. Concentrations of these four chemical compounds determined by the DAI LC–MS/MS method are substantially lower than the GC/MS method. A method was developed to correct for the difference in concentrations obtained by the two laboratory methods based on a methods comparison field study done in 2012. Environmental and field matrix spike samples to be analyzed by both methods from 48 stream sites from across the United States were sampled approximately three times each for this study. These data were used to develop a relation between the two laboratory methods for each compound using regression analysis. The relations were used to calibrate data obtained by the older method to the new method in order to remove any biases attributable to differences in the methods. The coefficients of the equations obtained from the regressions were used to calibrate over 16,600 observations of fipronil, as well as the three degradates determined by the GC/MS method retrieved from the USGS National Water Information System. The calibrated values were then compared to over 7,800 observations of fipronil and to the three degradates determined by the DAI LC–MS/MS method also retrieved from the National Water Information System. The original and calibrated values from the GC/MS method, along with measures of uncertainty in the calibrated values and the original values from the DAI LC–MS/MS method, are provided in an accompanying data release.
New method for measuring water seepage through salmon spawning gravel.
Richard D. Orchard
1988-01-01
A new method, with heat as a tracer, was developed for measuring rate and direction of intragravel waterflow through salmon spawning gravel. A commercial flowmeter was calibrated in the laboratory under controlled environmental conditions. Flow measurements comparing the flowmeter with a dye-tracer method were made in an artificial stream channel at Young Bay and in...
Means and method for calibrating a photon detector utilizing electron-photon coincidence
NASA Technical Reports Server (NTRS)
Srivastava, S. K. (Inventor)
1984-01-01
An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.
An automated and universal method for measuring mean grain size from a digital image of sediment
Buscombe, Daniel D.; Rubin, David M.; Warrick, Jonathan A.
2010-01-01
Existing methods for estimating mean grain size of sediment in an image require either complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or statistical procedures involving calibration. We present a new approach which uses Fourier methods to calculate grain size directly from the image without requiring calibration. Based on analysis of over 450 images, we found the accuracy to be within approximately 16% across the full range from silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, in conjunction with recent advances in technology for taking appropriate images of sediment in a range of natural environments, promises to revolutionize the logistics and speed at which grain-size data may be obtained from the field.
Construction of monoenergetic neutron calibration fields using 45Sc(p, n)45Ti reaction at JAEA.
Tanimura, Y; Saegusa, J; Shikaze, Y; Tsutsumi, M; Shimizu, S; Yoshizawa, M
2007-01-01
The 8 and 27 keV monoenergetic neutron calibration fields have been developed by using (45)Sc(p, n)(45)Ti reaction. Protons from a 4-MV Pelletron accelerator are used to bombard a thin scandium target evaporated onto a platinum disc. The proton energies are finely adjusted to the resonance to generate the 8 and 27 keV neutrons by applying a high voltage to the target assemblies. The neutron energies were measured using the time-of-flight method with a lithium glass scintillation detector. The neutron fluences at a calibration point located at 50 cm from the target were evaluated using Bonner spheres. A long counter was placed at 2.2 m from the target and at 60 degrees to the direction of the proton beam in order to monitor the fluence at the calibration point. Fluence and dose equivalent rates at the calibration point are sufficient to calibrate many types of the neutron survey metres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojanen, M.; Hahtela, O. M.; Heinonen, M.
MIKES is developing a measurement set-up for calibrating thermocouples in the temperature range 960 °C - 1500 °C. The calibration method is based on direct comparison of thermocouples and radiation thermometers. We have designed a graphite blackbody comparator cell, which is operated in a horizontal single-zone tube furnace. The cell includes two blackbody cavities for radiation temperature measurements. The cavities have openings on opposite sides of the cell, allowing simultaneous measurement with two radiation thermometers. The design of the comparator allows three thermocouples to be calibrated simultaneously. The thermocouples to be calibrated are inserted in thermometer wells around one ofmore » the measurement cavities. We characterize the blackbody comparator in terms of repeatability, temperature distribution and emissivity. Finally, we validate the uncertainty analysis by comparing calibration results obtained for type B and S thermocouples to the calibration results reported by Technical Research Institute of Sweden (SP), and MIKES. The agreement in the temperature range 1000 °C - 1500 °C is within 0.90 °C, the average deviation being 0.17 °C.« less
Application of Temperature Sensitivities During Iterative Strain-Gage Balance Calibration Analysis
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2011-01-01
A new method is discussed that may be used to correct wind tunnel strain-gage balance load predictions for the influence of residual temperature effects at the location of the strain-gages. The method was designed for the iterative analysis technique that is used in the aerospace testing community to predict balance loads from strain-gage outputs during a wind tunnel test. The new method implicitly applies temperature corrections to the gage outputs during the load iteration process. Therefore, it can use uncorrected gage outputs directly as input for the load calculations. The new method is applied in several steps. First, balance calibration data is analyzed in the usual manner assuming that the balance temperature was kept constant during the calibration. Then, the temperature difference relative to the calibration temperature is introduced as a new independent variable for each strain--gage output. Therefore, sensors must exist near the strain--gages so that the required temperature differences can be measured during the wind tunnel test. In addition, the format of the regression coefficient matrix needs to be extended so that it can support the new independent variables. In the next step, the extended regression coefficient matrix of the original calibration data is modified by using the manufacturer specified temperature sensitivity of each strain--gage as the regression coefficient of the corresponding temperature difference variable. Finally, the modified regression coefficient matrix is converted to a data reduction matrix that the iterative analysis technique needs for the calculation of balance loads. Original calibration data and modified check load data of NASA's MC60D balance are used to illustrate the new method.
Dimensional accuracy of aluminium extrusions in mechanical calibration
NASA Astrophysics Data System (ADS)
Raknes, Christian Arne; Welo, Torgeir; Paulsen, Frode
2018-05-01
Reducing dimensional variations in the extrusion process without increasing cost is challenging due to the nature of the process itself. An alternative approach—also from a cost perspective—is using extruded profiles with standard tolerances and utilize downstream processes, and thus calibrate the part within tolerance limits that are not achievable directly from the extrusion process. In this paper, two mechanical calibration strategies for the extruded product are investigated, utilizing the forming lines of the manufacturer. The first calibration strategy is based on global, longitudinal stretching in combination with local bending, while the second strategy utilizes the principle of transversal stretching and local bending of the cross-section. An extruded U-profile is used to make a comparison between the two methods using numerical analyses. To provide response surfaces with the FEA program, ABAQUS is used in combination with Design of Experiment (DOE). DOE is conducted with a two-level fractional factorial design to collect the appropriate data. The aim is to find the main factors affecting the dimension accuracy of the final part obtained by the two calibration methods. The results show that both calibration strategies have proven to reduce cross-sectional variations effectively form standard extrusion tolerances. It is concluded that mechanical calibration is a viable, low-cost alternative for aluminium parts that demand high dimensional accuracy, e.g. due to fit-up or welding requirements.
SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenton, O; Valdes, G; Yin, L
Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. Themore » calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.« less
Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2015-01-01
An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.
Calibrating a tensor magnetic gradiometer using spin data
Bracken, Robert E.; Smith, David V.; Brown, Philip J.
2005-01-01
Scalar magnetic data are often acquired to discern characteristics of geologic source materials and buried objects. It is evident that a great deal can be done with scalar data, but there are significant advantages to direct measurement of the magnetic gradient tensor in applications with nearby sources, such as unexploded ordnance (UXO). To explore these advantages, we adapted a prototype tensor magnetic gradiometer system (TMGS) and successfully implemented a data-reduction procedure. One of several critical reduction issues is the precise determination of a large group of calibration coefficients for the sensors and sensor array. To resolve these coefficients, we devised a spin calibration method, after similar methods of calibrating space-based magnetometers (Snare, 2001). The spin calibration procedure consists of three parts: (1) collecting data by slowly revolving the sensor array in the Earth?s magnetic field, (2) deriving a comprehensive set of coefficients from the spin data, and (3) applying the coefficients to the survey data. To show that the TMGS functions as a tensor gradiometer, we conducted an experimental survey that verified that the reduction procedure was effective (Bracken and Brown, in press). Therefore, because it was an integral part of the reduction, it can be concluded that the spin calibration was correctly formulated with acceptably small errors.
Shi, Jingjin; Chen, Fei’er; Cai, Yunfei; Fan, Shichen; Cai, Jing; Chen, Renjie; Kan, Haidong; Lu, Yihan
2017-01-01
Background Portable direct-reading instruments by light-scattering method are increasingly used in airborne fine particulate matter (PM2.5) monitoring. However, there are limited calibration studies on such instruments by applying the gravimetric method as reference method in field tests. Methods An 8-month sampling was performed and 96 pairs of PM2.5 data by both the gravimetric method and the simultaneous light-scattering real-time monitoring (QT-50) were obtained from July, 2015 to February, 2016 in Shanghai. Temperature and relative humidity (RH) were recorded. Mann-Whitney U nonparametric test and Spearman correlation were used to investigate the differences between the two measurements. Multiple linear regression (MLR) model was applied to set up the calibration model for the light-scattering device. Results The average PM2.5 concentration (median) was 48.1μg/m3 (min-max 10.4–95.8μg/m3) by the gravimetric method and 58.1μg/m3 (19.2–315.9μg/m3) by the light-scattering method, respectively. By time trend analyses, they were significantly correlated with each other (Spearman correlation coefficient 0.889, P<0.01). By MLR, the calibration model for the light-scattering instrument was Y(calibrated) = 57.45 + 0.47 × X(the QT – 50 measurements) – 0.53 × RH – 0.41 × Temp with both RH and temperature adjusted. The 10-fold cross-validation R2 and the root mean squared error of the calibration model were 0.79 and 11.43 μg/m3, respectively. Conclusion Light-scattering measurements of PM2.5 by QT-50 instrument overestimated the concentration levels and were affected by temperature and RH. The calibration model for QT-50 instrument was firstly set up against the gravimetric method with temperature and RH adjusted. PMID:29121101
An absolute photometric system at 10 and 20 microns
NASA Technical Reports Server (NTRS)
Rieke, G. H.; Lebofsky, M. J.; Low, F. J.
1985-01-01
Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.
Calibration of hydrological models using flow-duration curves
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; Guerrero, J.-L.; Younger, P. M.; Beven, K. J.; Seibert, J.; Halldin, S.; Freer, J. E.; Xu, C.-Y.
2011-07-01
The degree of belief we have in predictions from hydrologic models will normally depend on how well they can reproduce observations. Calibrations with traditional performance measures, such as the Nash-Sutcliffe model efficiency, are challenged by problems including: (1) uncertain discharge data, (2) variable sensitivity of different performance measures to different flow magnitudes, (3) influence of unknown input/output errors and (4) inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. This paper explores a calibration method using flow-duration curves (FDCs) to address these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs) on the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested - based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application, e.g. using more/less EPs at high/low flows. While the method appears less sensitive to epistemic input/output errors than previous use of limits of acceptability applied directly to the time series of discharge, it still requires a reasonable representation of the distribution of inputs. Additional constraints might therefore be required in catchments subject to snow and where peak-flow timing at sub-daily time scales is of high importance. The results suggest that the calibration method can be useful when observation time periods for discharge and model input data do not overlap. The method could also be suitable for calibration to regional FDCs while taking uncertainties in the hydrological model and data into account.
Calibration of hydrological models using flow-duration curves
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; Guerrero, J.-L.; Younger, P. M.; Beven, K. J.; Seibert, J.; Halldin, S.; Freer, J. E.; Xu, C.-Y.
2010-12-01
The degree of belief we have in predictions from hydrologic models depends on how well they can reproduce observations. Calibrations with traditional performance measures such as the Nash-Sutcliffe model efficiency are challenged by problems including: (1) uncertain discharge data, (2) variable importance of the performance with flow magnitudes, (3) influence of unknown input/output errors and (4) inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. A new calibration method using flow-duration curves (FDCs) was developed which addresses these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs) of the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested - based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments without resulting in overpredicted simulated uncertainty. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application e.g. using more/less EPs at high/low flows. While the new method is less sensitive to epistemic input/output errors than the normal use of limits of acceptability applied directly to the time series of discharge, it still requires a reasonable representation of the distribution of inputs. Additional constraints might therefore be required in catchments subject to snow. The results suggest that the new calibration method can be useful when observation time periods for discharge and model input data do not overlap. The new method could also be suitable for calibration to regional FDCs while taking uncertainties in the hydrological model and data into account.
Standard-target calibration of an acoustic backscatter system
Foote, Kenneth G.; Martini, Marinna A.
2010-01-01
The standard-target method used to calibrate scientific echo sounders and other scientific sonars by a single, solid elastic sphere is being adapted to acoustic backscatter (ABS) systems. Its first application, to the AQUAscat 1000, is described. The on-axis sensitivity and directional properties of transducer beams at three operating frequencies, nominally 1, 2.5, and 4 MHz, have been determined using a 10-mm-diameter sphere of tungsten carbide with 6% cobalt binder. Preliminary results are reported for the 1-MHz transducer. Their application to measurements of suspended sediment made in situ with the same device is described. This will enable the data to be expressed directly in physical units of volume backscattering.
Direct Estimate of Cocoa Powder Content in Cakes by Colorimetry and Photoacoustic Spectroscopy
NASA Astrophysics Data System (ADS)
Dóka, O.; Bicanic, D.; Kulcsár, R.
2014-12-01
Cocoa is a very important ingredient in the food industry and largely consumed worldwide. In this investigation, colorimetry and photoacoustic spectroscopy were used to directly assess the content of cocoa powder in cakes; both methods provided satisfactory results. The calibration curve was constructed using a series of home-made cakes containing varying amount of cocoa powder. Then, at a later stage, the same calibration curve was used to quantify the cocoa content of several commercially available cakes. For self-made cakes, the relationship between the PAS signal and the content of cocoa powder was linear while a quadratic dependence was obtained for the colorimetric index (brightness) and total color difference ().
Along-track calibration of SWIR push-broom hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2016-05-01
Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.
UNDERFLIGHT CALIBRATION OF SOHO/CDS AND HINODE/EIS WITH EUNIS-07
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Tongjiang; Brosius, Jeffrey W.; Thomas, Roger J.
2011-12-01
Flights of Goddard Space Flight Center's Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket in 2006 and 2007 provided updated radiometric calibrations for Solar and Heliospheric Observatory/Coronal Diagnostic Spectrometer (SOHO/CDS) and Hinode/Extreme Ultraviolet Imaging Spectrometer (Hinode/EIS). EUNIS carried two independent imaging spectrographs covering wavebands of 300-370 A in first order and 170-205 A in second order. After each flight, end-to-end radiometric calibrations of the rocket payload were carried out in the same facility used for pre-launch calibrations of CDS and EIS. During the 2007 flight, EUNIS, SOHO/CDS, and Hinode/EIS observed the same solar locations, allowing the EUNIS calibrations to bemore » directly applied to both CDS and EIS. The measured CDS NIS 1 line intensities calibrated with the standard (version 4) responsivities with the standard long-term corrections are found to be too low by a factor of 1.5 due to the decrease in responsivity. The EIS calibration update is performed in two ways. One uses the direct calibration transfer of the calibrated EUNIS-07 short wavelength (SW) channel. The other uses the insensitive line pairs, in which one member was observed by the EUNIS-07 long wavelength (LW) channel and the other by EIS in either the LW or SW waveband. Measurements from both methods are in good agreement, and confirm (within the measurement uncertainties) the EIS responsivity measured directly before the instrument's launch. The measurements also suggest that the EIS responsivity decreased by a factor of about 1.2 after the first year of operation (although the size of the measurement uncertainties is comparable to this decrease). The shape of the EIS SW response curve obtained by EUNIS-07 is consistent with the one measured in laboratory prior to launch. The absolute value of the quiet-Sun He II 304 A intensity measured by EUNIS-07 is consistent with the radiance measured by CDS NIS in quiet regions near the disk center and the solar minimum irradiance recently obtained by CDS NIS and the Solar Dynamics Observatory/Extreme Ultraviolet Variability Experiment.« less
Exploring the Use of Alfven Waves in Magnetometer Calibration at Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Bentley, John; Sheppard, David; RIch, Frederick; Redmon, Robert; Loto'aniu, Paul; Chu, Donald
2016-01-01
An Alfven wave is a type magnetohydrodynamicwave that travels through a conducting fluid under the influence of a magnetic field. Researchers have successfully calculated offset vectors of magnetometers in interplanetary space by optimizing the offset to maximize certain Alfvenic properties of observed waves (Leinweber, Belcher). If suitable Alfven waves can be found in the magnetosphere at geosynchronous altitude then these techniques could be used to augment the overall calibration plan for magnetometers in this region such as on the GOES spacecraft, possibly increasing the time between regular maneuvers. Calibration maneuvers may be undesirable because they disrupt the activities of other instruments. Various algorithms to calculate an offset using Alfven waves were considered. A new variation of the Davis-Smith method was derived because it can be mathematically shown that the Davis-Smith method tolerates filtered data, which expands potential applications. The variant developed was designed to find only the offset in the plane normal to the main field because the overall direction of Earth's magnetic field rarely changes, and theory suggests the Alfvenic disturbances occur transverse to the main field. Other variations of the Davis-Smith method encounter problems with data containing waves that propagate in mostly the same direction. A searching algorithm was then designed to look for periods of time with potential Alfven waves in GOES 15 data based on parameters requiring that disturbances be normal to the main field and not change field magnitude. Final waves for calculation were hand-selected. These waves produced credible two-dimensional offset vectors when input to the Davis-Smith method. Multiple two-dimensional solutions in different planes can be combined to get a measurement of the complete offset. The resulting three dimensional offset did not show sufficient precision over several years to be used as a primary calibration method, but reflected changes in the offset fairly well, suggesting that the method could be helpful in monitoring trends of the offset vector when maneuvers cannot be used.
Method and apparatus for measuring enrichment of UF6
Hill, Thomas Roy [Santa Fe, NM; Ianakiev, Kiril Dimitrov [Los Alamos, NM
2011-06-07
A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are directed at a container test zone containing a sample of UF6. A detector placed behind the container test zone then detects and counts the X-rays which pass through the container and the UF6. In order to determine the portion of the attenuation due to the UF6 gas alone, this count rate may then be compared to a calibration count rate of X-rays passing through a calibration test zone which contains a vacuum, the test zone having experienced substantially similar environmental conditions as the actual test zone. Alternatively, X-rays of two differing energy levels may be alternately directed at the container, where either the container or the UF6 has a high sensitivity to the difference in the energy levels, and the other having a low sensitivity.
Parameter estimation for groundwater models under uncertain irrigation data
Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen
2015-01-01
The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.
Maximum likelihood estimation in calibrating a stereo camera setup.
Muijtjens, A M; Roos, J M; Arts, T; Hasman, A
1999-02-01
Motion and deformation of the cardiac wall may be measured by following the positions of implanted radiopaque markers in three dimensions, using two x-ray cameras simultaneously. Regularly, calibration of the position measurement system is obtained by registration of the images of a calibration object, containing 10-20 radiopaque markers at known positions. Unfortunately, an accidental change of the position of a camera after calibration requires complete recalibration. Alternatively, redundant information in the measured image positions of stereo pairs can be used for calibration. Thus, a separate calibration procedure can be avoided. In the current study a model is developed that describes the geometry of the camera setup by five dimensionless parameters. Maximum Likelihood (ML) estimates of these parameters were obtained in an error analysis. It is shown that the ML estimates can be found by application of a nonlinear least squares procedure. Compared to the standard unweighted least squares procedure, the ML method resulted in more accurate estimates without noticeable bias. The accuracy of the ML method was investigated in relation to the object aperture. The reconstruction problem appeared well conditioned as long as the object aperture is larger than 0.1 rad. The angle between the two viewing directions appeared to be the parameter that was most likely to cause major inaccuracies in the reconstruction of the 3-D positions of the markers. Hence, attempts to improve the robustness of the method should primarily focus on reduction of the error in this parameter.
Multi-satellites normalization of the FengYun-2s visible detectors by the MVP method
NASA Astrophysics Data System (ADS)
Li, Yuan; Rong, Zhi-guo; Zhang, Li-jun; Sun, Ling; Xu, Na
2013-08-01
After January 13, 2012, FY-2F had successfully launched, the total number of the in orbit operating FengYun-2 geostationary meteorological satellites reached three. For accurate and efficient application of multi-satellite observation data, the study of the multi-satellites normalization of the visible detector was urgent. The method required to be non-rely on the in orbit calibration. So as to validate the calibration results before and after the launch; calculate day updating surface bidirectional reflectance distribution function (BRDF); at the same time track the long-term decay phenomenon of the detector's linearity and responsivity. By research of the typical BRDF model, the normalization method was designed. Which could effectively solute the interference of surface directional reflectance characteristics, non-rely on visible detector in orbit calibration. That was the Median Vertical Plane (MVP) method. The MVP method was based on the symmetry of principal plane, which were the directional reflective properties of the general surface targets. Two geostationary satellites were taken as the endpoint of a segment, targets on the intersecting line of the segment's MVP and the earth surface could be used as a normalization reference target (NRT). Observation on the NRT by two satellites at the moment the sun passing through the MVP brought the same observation zenith, solar zenith, and opposite relative direction angle. At that time, the linear regression coefficients of the satellite output data were the required normalization coefficients. The normalization coefficients between FY-2D, FY-2E and FY-2F were calculated, and the self-test method of the normalized results was designed and realized. The results showed the differences of the responsivity between satellites could up to 10.1%(FY-2E to FY-2F); the differences of the output reflectance calculated by the broadcast calibration look-up table could up to 21.1%(FY-2D to FY-2F); the differences of the output reflectance from FY-2D and FY-2E calculated by the site experiment results reduced to 2.9%(13.6% when using the broadcast table). The normalized relative error was also calculated by the self-test method, which was less than 0.2%.
Hyperspectral Sun Photometer for Atmospheric Characterization and Vicarious Calibrations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert; Holekamp, Kara
2008-01-01
A hyperspectral sun photometer and associated methods have been developed and demonstrated. Accurate sun photometer calibration is critical to properly measure the solar irradiance and characterize the atmosphere. Traditional sun photometer calibration requires solar observations over several hours. In contrast, the procedures for operating this photometer entail less data acquisition time and embody a more direct approach to calibration. The scientific value of the measurement data produced by this instrument is not adversely affected by atmospheric instability. In addition, this instrument yields hyperspectral data covering a large spectral range (350-2,500 nm) not available from most traditional sun photometers. The hyperspectral sun photometer components include (1) a commercially available spectroradiometer that has been laboratory-calibrated and (2) a commercially available reflectance standard panel that exhibits nearly Lambertian 99% reflectance. The spectroradiometer is positioned above, and aimed downward at, the panel. The procedure for operating this instrument calls for a series of measurements: one in which the panel is fully illuminated by the sun, one in which a shade is positioned between the panel and the sun, and two in which the shade is positioned to cast a shadow to either side of the panel. The total sequence of measurements can be performed in less than a minute. From these measurements, the total radiance, the diffuse radiance, and the direct solar radiance are calculated. The direct solar irradiance is calculated from the direct solar radiance and the known reflectance factor of the panel as a function of the solar zenith angle. Atmospheric characteristics are estimated from the optical depth at various wavelengths calculated from (1) the direct solar irradiance obtained as described above, (2) the air mass along a column from the measurement position to the Sun, and (3) the top-of-atmosphere solar irradiance. The instrumentation used to implement the sun photometer is the same as that used to characterize targets used in radiometric vicarious calibrations. Utilizing this type of sun photometer thus reduces the amount of instrumentation and labor required to perform these studies.
NASA Astrophysics Data System (ADS)
Kang, Pilsang; Koo, Changhoi; Roh, Hokyu
2017-11-01
Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.
An improved error assessment for the GEM-T1 gravitational model
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Marsh, J. G.; Klosko, S. M.; Pavlis, E. C.; Patel, G. B.; Chinn, D. S.; Wagner, C. A.
1988-01-01
Several tests were designed to determine the correct error variances for the Goddard Earth Model (GEM)-T1 gravitational solution which was derived exclusively from satellite tracking data. The basic method employs both wholly independent and dependent subset data solutions and produces a full field coefficient estimate of the model uncertainties. The GEM-T1 errors were further analyzed using a method based upon eigenvalue-eigenvector analysis which calibrates the entire covariance matrix. Dependent satellite and independent altimetric and surface gravity data sets, as well as independent satellite deep resonance information, confirm essentially the same error assessment. These calibrations (utilizing each of the major data subsets within the solution) yield very stable calibration factors which vary by approximately 10 percent over the range of tests employed. Measurements of gravity anomalies obtained from altimetry were also used directly as observations to show that GEM-T1 is calibrated. The mathematical representation of the covariance error in the presence of unmodeled systematic error effects in the data is analyzed and an optimum weighting technique is developed for these conditions. This technique yields an internal self-calibration of the error model, a process which GEM-T1 is shown to approximate.
Precision alignment and calibration of optical systems using computer generated holograms
NASA Astrophysics Data System (ADS)
Coyle, Laura Elizabeth
As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the calibration is a function of the interferometer error and the aspheric departure of the desired test surface. This calibration is most effective at reducing coma and trefoil from figure error or misalignments of the interferometer components. The enhanced calibration can reduce overall measurement uncertainty or allow the budgeted error contribution from another source to be increased. A single set of sphere measurements can be used to calculate calibration maps for closely related aspheres, including segmented primary mirrors for telescopes. A parametric model is developed and compared to the simulated calibration of a case study interferometer.
Meyer, D.; Chander, G.
2006-01-01
Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
Calibration method helps in seismic velocity interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzman, C.E.; Davenport, H.A.; Wilhelm, R.
1997-11-03
Acoustic velocities derived from seismic reflection data, when properly calibrated to subsurface measurements, help interpreters make pure velocity predictions. A method of calibrating seismic to measured velocities has improved interpretation of subsurface features in the Gulf of Mexico. In this method, the interpreter in essence creates a kind of gauge. Properly calibrated, the gauge enables the interpreter to match predicted velocities to velocities measured at wells. Slow-velocity zones are of special interest because they sometimes appear near hydrocarbon accumulations. Changes in velocity vary in strength with location; the structural picture is hidden unless the variations are accounted for by mappingmore » in depth instead of time. Preliminary observations suggest that the presence of hydrocarbons alters the lithology in the neighborhood of the trap; this hydrocarbon effect may be reflected in the rock velocity. The effect indicates a direct use of seismic velocity in exploration. This article uses the terms seismic velocity and seismic stacking velocity interchangeably. It uses ground velocity, checkshot average velocity, and well velocity interchangeably. Interval velocities are derived from seismic stacking velocities or well average velocities; they refer to velocities of subsurface intervals or zones. Interval travel time (ITT) is the reciprocal of interval velocity in microseconds per foot.« less
A New Calibration Method Using Low Cost MEM IMUs to Verify the Performance of UAV-Borne MMS Payloads
Chiang, Kai-Wei; Tsai, Meng-Lun; Naser, El-Sheimy; Habib, Ayman; Chu, Chien-Hsun
2015-01-01
Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems’ (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m. PMID:25808764
New calibration method using low cost MEM IMUs to verify the performance of UAV-borne MMS payloads.
Chiang, Kai-Wei; Tsai, Meng-Lun; Naser, El-Sheimy; Habib, Ayman; Chu, Chien-Hsun
2015-03-19
Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems' (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m.
NASA Technical Reports Server (NTRS)
Scheid, J. A.
1985-01-01
When both S-band and X-band data are recorded for a signal which has passed through the ionosphere, it is possible to calculate the ionospheric contribution to signal delay. In Very Long Baseline Interferometry (VLBI) this method is used to calibrate the ionosphere. In the absence of dual frequency data, the ionospheric content measured by Faraday rotation, using a signal from a geostationary satellite, is mapped to the VLBI observing direction. The purpose here is to compare the ionospheric delay obtained by these two methods. The principal conclusions are: (1) the correlation between delays obtained by these two methods is weak; (2) in mapping Faraday rotation measurements to the VLBI observing direction, a simple mapping algorithm which accounts only for changes in hour angle and elevation angle is better than a more elaborate algorithm which includes solar and geomagnetic effects; (3) fluctuations in the difference in total electron content as seen by two antennas defining a baseline limit the application of Faraday rotation data to VLBI.
Shi, Jingjin; Chen, Fei'er; Cai, Yunfei; Fan, Shichen; Cai, Jing; Chen, Renjie; Kan, Haidong; Lu, Yihan; Zhao, Zhuohui
2017-01-01
Portable direct-reading instruments by light-scattering method are increasingly used in airborne fine particulate matter (PM2.5) monitoring. However, there are limited calibration studies on such instruments by applying the gravimetric method as reference method in field tests. An 8-month sampling was performed and 96 pairs of PM2.5 data by both the gravimetric method and the simultaneous light-scattering real-time monitoring (QT-50) were obtained from July, 2015 to February, 2016 in Shanghai. Temperature and relative humidity (RH) were recorded. Mann-Whitney U nonparametric test and Spearman correlation were used to investigate the differences between the two measurements. Multiple linear regression (MLR) model was applied to set up the calibration model for the light-scattering device. The average PM2.5 concentration (median) was 48.1μg/m3 (min-max 10.4-95.8μg/m3) by the gravimetric method and 58.1μg/m3 (19.2-315.9μg/m3) by the light-scattering method, respectively. By time trend analyses, they were significantly correlated with each other (Spearman correlation coefficient 0.889, P<0.01). By MLR, the calibration model for the light-scattering instrument was Y(calibrated) = 57.45 + 0.47 × X(the QT - 50 measurements) - 0.53 × RH - 0.41 × Temp with both RH and temperature adjusted. The 10-fold cross-validation R2 and the root mean squared error of the calibration model were 0.79 and 11.43 μg/m3, respectively. Light-scattering measurements of PM2.5 by QT-50 instrument overestimated the concentration levels and were affected by temperature and RH. The calibration model for QT-50 instrument was firstly set up against the gravimetric method with temperature and RH adjusted.
NASA Astrophysics Data System (ADS)
Yulia, M.; Suhandy, D.
2018-03-01
NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.
Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C
2015-11-01
The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.
Calibrating Laser Gas Measurements by Use of Natural CO2
NASA Technical Reports Server (NTRS)
Webster, Chris
2003-01-01
An improved method of calibration has been devised for instruments that utilize tunable lasers to measure the absorption spectra of atmospheric gases in order to determine the relative abundances of the gases. In this method, CO2 in the atmosphere is used as a natural calibration standard. Unlike in one prior calibration method, it is not necessary to perform calibration measurements in advance of use of the instrument and to risk deterioration of accuracy with time during use. Unlike in another prior calibration method, it is not necessary to include a calibration gas standard (and the attendant additional hardware) in the instrument and to interrupt the acquisition of atmospheric data to perform calibration measurements. In the operation of an instrument of this type, the beam from a tunable diode laser or a tunable quantum-cascade laser is directed along a path through the atmosphere, the laser is made to scan in wavelength over an infrared spectral region that contains one or two absorption spectral lines of a gas of interest, and the transmission (and, thereby, the absorption) of the beam is measured. The concentration of the gas of interest can then be calculated from the observed depth of the absorption line(s), given the temperature, pressure, and path length. CO2 is nearly ideal as a natural calibration gas for the following reasons: CO2 has numerous rotation/vibration infrared spectral lines, many of which are near absorption lines of other gases. The concentration of CO2 relative to the concentrations of the major constituents of the atmosphere is well known and varies slowly and by a small enough amount to be considered constant for calibration in the present context. Hence, absorption-spectral measurements of the concentrations of gases of interest can be normalized to the concentrations of CO2. Because at least one CO2 calibration line is present in every spectral scan of the laser during absorption measurements, the atmospheric CO2 serves continuously as a calibration standard for every measurement point. Figure 1 depicts simulated spectral transmission measurements in a wavenumber range that contains two absorption lines of N2O and one of CO2. The simulations were performed for two different upper-atmospheric pressures for an airborne instrument that has a path length of 80 m. The relative abundance of CO2 in air was assumed to be 360 parts per million by volume (approximately its natural level in terrestrial air). In applying the present method to measurements like these, one could average the signals from the two N2O absorption lines and normalize their magnitudes to that of the CO2 absorption line. Other gases with which this calibration method can be used include H2O, CH4, CO, NO, NO2, HOCl, C2H2, NH3, O3, and HCN. One can also take advantage of this method to eliminate an atmospheric-pressure gauge and thereby reduce the mass of the instrument: The atmospheric pressure can be calculated from the temperature, the known relative abundance of CO2, and the concentration of CO2 as measured by spectral absorption. Natural CO2 levels on Mars provide an ideal calibration standard. Figure 2 shows a second example of the application of this method to Mars atmospheric gas measurements. For sticky gases like H2O, the method is particularly powerful, since water is notoriously difficult to handle at low concentrations in pre-flight calibration procedures.
Wang, Gang; Briskot, Till; Hahn, Tobias; Baumann, Pascal; Hubbuch, Jürgen
2017-03-03
Mechanistic modeling has been repeatedly successfully applied in process development and control of protein chromatography. For each combination of adsorbate and adsorbent, the mechanistic models have to be calibrated. Some of the model parameters, such as system characteristics, can be determined reliably by applying well-established experimental methods, whereas others cannot be measured directly. In common practice of protein chromatography modeling, these parameters are identified by applying time-consuming methods such as frontal analysis combined with gradient experiments, curve-fitting, or combined Yamamoto approach. For new components in the chromatographic system, these traditional calibration approaches require to be conducted repeatedly. In the presented work, a novel method for the calibration of mechanistic models based on artificial neural network (ANN) modeling was applied. An in silico screening of possible model parameter combinations was performed to generate learning material for the ANN model. Once the ANN model was trained to recognize chromatograms and to respond with the corresponding model parameter set, it was used to calibrate the mechanistic model from measured chromatograms. The ANN model's capability of parameter estimation was tested by predicting gradient elution chromatograms. The time-consuming model parameter estimation process itself could be reduced down to milliseconds. The functionality of the method was successfully demonstrated in a study with the calibration of the transport-dispersive model (TDM) and the stoichiometric displacement model (SDM) for a protein mixture. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Ambardekar, Shubha; Shochet, Tara; Bracken, Hillary; Coyaji, Kurus; Winikoff, Beverly
2014-08-15
Trials of interventions for PPH prevention and treatment rely on different measurement methods for the quantification of blood loss and identification of PPH. This study's objective was to compare measures of blood loss obtained from two different measurement protocols frequently used in studies. Nine hundred women presenting for vaginal delivery were randomized to a direct method (a calibrated delivery drape) or an indirect method (a shallow bedpan placed below the buttocks and weighing the collected blood and blood-soaked gauze/pads). Blood loss was measured from immediately after delivery for at least one hour or until active bleeding stopped. Significantly greater mean blood loss was recorded by the direct than by the indirect measurement technique (253.9 mL and 195.3 mL, respectively; difference = 58.6 mL (95% CI: 31-86); p < 0.001). Almost twice as many women in the direct than in the indirect group measured blood loss > 500 mL (8.7% vs. 4.7%, p = 0.02). The study suggests a real and significant difference in blood loss measurement between these methods. Research using blood loss measurement as an endpoint needs to be interpreted taking measurement technique into consideration. This study has been registered at clinicaltrials.gov as NCT01885845.
NASA Technical Reports Server (NTRS)
Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.
2003-01-01
The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.
Recommended Practices in Thrust Measurements
NASA Technical Reports Server (NTRS)
Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John
2013-01-01
Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2017-09-01
Calibration transfer of partial least squares (PLS) quantification models is established between two Raman spectrometers located at two liquid detergent production plants. As full recalibration of existing calibration models is time-consuming, labour-intensive and costly, it is investigated whether the use of mathematical correction methods requiring only a handful of standardization samples can overcome the dissimilarities in spectral response observed between both measurement systems. Univariate and multivariate standardization approaches are investigated, ranging from simple slope/bias correction (SBC), local centring (LC) and single wavelength standardization (SWS) to more complex direct standardization (DS) and piecewise direct standardization (PDS). The results of these five calibration transfer methods are compared reciprocally, as well as with regard to a full recalibration. Four PLS quantification models, each predicting the concentration of one of the four main ingredients in the studied liquid detergent composition, are aimed at transferring. Accuracy profiles are established from the original and transferred quantification models for validation purposes. A reliable representation of the calibration models performance before and after transfer is thus established, based on β-expectation tolerance intervals. For each transferred model, it is investigated whether every future measurement that will be performed in routine will be close enough to the unknown true value of the sample. From this validation, it is concluded that instrument standardization is successful for three out of four investigated calibration models using multivariate (DS and PDS) transfer approaches. The fourth transferred PLS model could not be validated over the investigated concentration range, due to a lack of precision of the slave instrument. Comparing these transfer results to a full recalibration on the slave instrument allows comparison of the predictive power of both Raman systems and leads to the formulation of guidelines for further standardization projects. It is concluded that it is essential to evaluate the performance of the slave instrument prior to transfer, even when it is theoretically identical to the master apparatus. Copyright © 2017 Elsevier B.V. All rights reserved.
Invasive and non-invasive measurement in medicine and biology: calibration issues
NASA Astrophysics Data System (ADS)
Rolfe, P.; Zhang, Yan; Sun, Jinwei; Scopesi, F.; Serra, G.; Yamakoshi, K.; Tanaka, S.; Yamakoshi, T.; Yamakoshi, Y.; Ogawa, M.
2010-08-01
Invasive and non-invasive measurement sensors and systems perform vital roles in medical care. Devices are based on various principles, including optics, photonics, and plasmonics, electro-analysis, magnetics, acoustics, bio-recognition, etc. Sensors are used for the direct insertion into the human body, for example to be in contact with blood, which constitutes Invasive Measurement. This approach is very challenging technically, as sensor performance (sensitivity, response time, linearity) can deteriorate due to interactions between the sensor materials and the biological environment, such as blood or interstitial fluid. Invasive techniques may also be potentially hazardous. Alternatively, sensors or devices may be positioned external to the body surface, for example to analyse respired breath, thereby allowing safer Non-Invasive Measurement. However, such methods, which are inherently less direct, often requiring more complex calibration algorithms, perhaps using chemometric principles. This paper considers and reviews the issue of calibration in both invasive and non-invasive biomedical measurement systems. Systems in current use usually rely upon periodic calibration checks being performed by clinical staff against a variety of laboratory instruments and QC samples. These procedures require careful planning and overall management if reliable data are to be assured.
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo
2017-04-01
In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.
Saint-Maurice, Pedro F; Welk, Gregory J
2014-12-01
This paper describes the design and methods involved in calibrating a Web-based self-report instrument to estimate physical activity behavior. The limitations of self-report measures are well known, but calibration methods enable the reported information to be equated to estimates obtained from objective data. This paper summarizes design considerations for effective development and calibration of physical activity self-report measures. Each of the design considerations is put into context and followed by a practical application based on our ongoing calibration research with a promising online self-report tool called the Youth Activity Profile (YAP). We first describe the overall concept of calibration and how this influences the selection of appropriate self-report tools for this population. We point out the advantages and disadvantages of different monitoring devices since the choice of the criterion measure and the strategies used to minimize error in the measure can dramatically improve the quality of the data. We summarize strategies to ensure quality control in data collection and discuss analytical considerations involved in group- vs individual-level inference. For cross-validation procedures, we describe the advantages of equivalence testing procedures that directly test and quantify agreement. Lastly, we introduce the unique challenges encountered when transitioning from paper to a Web-based tool. The Web offers considerable potential for broad adoption but an iterative calibration approach focused on continued refinement is needed to ensure that estimates are generalizable across individuals, regions, seasons and countries.
CubiCal: Suite for fast radio interferometric calibration
NASA Astrophysics Data System (ADS)
Kenyon, J. S.; Smirnov, O. M.; Grobler, T. L.; Perkins, S. J.
2018-05-01
CubiCal implements several accelerated gain solvers which exploit complex optimization for fast radio interferometric gain calibration. The code can be used for both direction-independent and direction-dependent self-calibration. CubiCal is implemented in Python and Cython, and multiprocessing is fully supported.
Li, Huailiang; Tuo, Xianguo; Shen, Tong; Wang, Ruili; Courtois, Jérémie; Yan, Minhao
2017-01-01
A new first break picking for three-component (3C) vertical seismic profiling (VSP) data is proposed to improve the estimation accuracy of first arrivals, which adopts gesture detection calibration and polarization analysis based on the eigenvalue of the covariance matrix. This study aims at addressing the problem that calibration is required for VSP data using the azimuth and dip angle of geophones, due to the direction of geophones being random when applied in a borehole, which will further lead to the first break picking possibly being unreliable. Initially, a gesture-measuring module is integrated in the seismometer to rapidly obtain high-precision gesture data (including azimuth and dip angle information). Using re-rotating and re-projecting using earlier gesture data, the seismic dataset of each component will be calibrated to the direction that is consistent with the vibrator shot orientation. It will promote the reliability of the original data when making each component waveform calibrated to the same virtual reference component, and the corresponding first break will also be properly adjusted. After achieving 3C data calibration, an automatic first break picking algorithm based on the autoregressive-Akaike information criterion (AR-AIC) is adopted to evaluate the first break. Furthermore, in order to enhance the accuracy of the first break picking, the polarization attributes of 3C VSP recordings is applied to constrain the scanning segment of AR-AIC picker, which uses the maximum eigenvalue calculation of the covariance matrix. The contrast results between pre-calibration and post-calibration using field data show that it can further improve the quality of the 3C VSP waveform, which is favorable to subsequent picking. Compared to the obtained short-term average to long-term average (STA/LTA) and the AR-AIC algorithm, the proposed method, combined with polarization analysis, can significantly reduce the picking error. Applications of actual field experiments have also confirmed that the proposed method may be more suitable for the first break picking of 3C VSP. Test using synthesized 3C seismic data with low SNR indicates that the first break is picked with an error between 0.75 ms and 1.5 ms. Accordingly, the proposed method can reduce the picking error for 3C VSP data. PMID:28925981
Refinement of moisture calibration curves for nuclear gage.
DOT National Transportation Integrated Search
1973-01-01
Over the last three years the Virginia Highway Research Council has directed a research effort toward improving the method of determining the moisture content of soils with a nuclear gage. The first task in this research was the determination of the ...
Chromý, Vratislav; Vinklárková, Bára; Šprongl, Luděk; Bittová, Miroslava
2015-01-01
We found previously that albumin-calibrated total protein in certified reference materials causes unacceptable positive bias in analysis of human sera. The simplest way to cure this defect is the use of human-based serum/plasma standards calibrated by the Kjeldahl method. Such standards, commutative with serum samples, will compensate for bias caused by lipids and bilirubin in most human sera. To find a suitable primary reference procedure for total protein in reference materials, we reviewed Kjeldahl methods adopted by laboratory medicine. We found two methods recommended for total protein in human samples: an indirect analysis based on total Kjeldahl nitrogen corrected for its nonprotein nitrogen and a direct analysis made on isolated protein precipitates. The methods found will be assessed in a subsequent article.
Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Salvio, A.; Bedwani, S.; Carrier, J-F.
2014-08-15
Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization frommore » single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.« less
Schneider, Adrian; Pezold, Simon; Baek, Kyung-Won; Marinov, Dilyan; Cattin, Philippe C
2016-09-01
PURPOSE : During the past five decades, laser technology emerged and is nowadays part of a great number of scientific and industrial applications. In the medical field, the integration of laser technology is on the rise and has already been widely adopted in contemporary medical applications. However, it is new to use a laser to cut bone and perform general osteotomy surgical tasks with it. In this paper, we describe a method to calibrate a laser deflecting tilting mirror and integrate it into a sophisticated laser osteotome, involving next generation robots and optical tracking. METHODS : A mathematical model was derived, which describes a controllable deflection mirror by the general projective transformation. This makes the application of well-known camera calibration methods possible. In particular, the direct linear transformation algorithm is applied to calibrate and integrate a laser deflecting tilting mirror into the affine transformation chain of a surgical system. RESULTS : Experiments were performed on synthetic generated calibration input, and the calibration was tested with real data. The determined target registration errors in a working distance of 150 mm for both simulated input and real data agree at the declared noise level of the applied optical 3D tracking system: The evaluation of the synthetic input showed an error of 0.4 mm, and the error with the real data was 0.3 mm.
Dönmez, Ozlem Aksu; Aşçi, Bürge; Bozdoğan, Abdürrezzak; Sungur, Sidika
2011-02-15
A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution. Copyright © 2010 Elsevier B.V. All rights reserved.
Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target
NASA Astrophysics Data System (ADS)
Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.
2016-06-01
In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.
A controlled experiment in ground water flow model calibration
Hill, M.C.; Cooley, R.L.; Pollock, D.W.
1998-01-01
Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.
NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struckmeyer, R.
This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.
Consumption of methane by soils.
Dueñas, C; Fernández, M C; Carretero, J; Pérez, M; Liger, E
1994-05-01
Measurements of the methane flux and methane concentration profiles in soil air are presented. The flux of methane from the soil is calculated by two methods: a) Direct by placing a static open chamber at the soil surface. b) Indirect, using the (222)Rn concentrations profile and the (222)Rn flux in the soil surface in parallel with the methane concentration ((222)Rn calibrated fluxes). The methane flux has been determined in two kinds of soils (sandy and loamy) in the surroundings of Málaga (SPAIN). The directly measured methane fluxes at all investigated sites is higher than methane fluxes derived from "Rn calibrated fluxes". Atmospheric methane is consumed by soils, mean direct flux to the atmosphere were - 0.33 g m(-2)yr-1. The direct methane flux is the same within the measuring error in sandy and loamy soils. The influence of the soil parameters on the methane flux indicates that microbial decomposition of methane is primarily controlled by the transport of methane.
Gerbig, Stefanie; Stern, Gerold; Brunn, Hubertus E; Düring, Rolf-Alexander; Spengler, Bernhard; Schulz, Sabine
2017-03-01
Direct analysis of fruit and vegetable surfaces is an important tool for in situ detection of food contaminants such as pesticides. We tested three different ways to prepare samples for the qualitative desorption electrospray ionization mass spectrometry (DESI-MS) analysis of 32 pesticides found on nine authentic fruits collected from food control. Best recovery rates for topically applied pesticides (88%) were found by analyzing the surface of a glass slide which had been rubbed against the surface of the food. Pesticide concentration in all samples was at or below the maximum residue level allowed. In addition to the high sensitivity of the method for qualitative analysis, quantitative or, at least, semi-quantitative information is needed in food control. We developed a DESI-MS method for the simultaneous determination of linear calibration curves of multiple pesticides of the same chemical class using normalization to one internal standard (ISTD). The method was first optimized for food extracts and subsequently evaluated for the quantification of pesticides in three authentic food extracts. Next, pesticides and the ISTD were applied directly onto food surfaces, and the corresponding calibration curves were obtained. The determination of linear calibration curves was still feasible, as demonstrated for three different food surfaces. This proof-of-principle method was used to simultaneously quantify two pesticides on an authentic sample, showing that the method developed could serve as a fast and simple preselective tool for disclosure of pesticide regulation violations. Graphical Abstract Multiple pesticide residues were detected and quantified in-situ from an authentic set of food items and extracts in a proof of principle study.
Description and evaluation of an interference assessment for a slotted-wall wind tunnel
NASA Technical Reports Server (NTRS)
Kemp, William B., Jr.
1991-01-01
A wind-tunnel interference assessment method applicable to test sections with discrete finite-length wall slots is described. The method is based on high order panel method technology and uses mixed boundary conditions to satisfy both the tunnel geometry and wall pressure distributions measured in the slotted-wall region. Both the test model and its sting support system are represented by distributed singularities. The method yields interference corrections to the model test data as well as surveys through the interference field at arbitrary locations. These results include the equivalent of tunnel Mach calibration, longitudinal pressure gradient, tunnel flow angularity, wall interference, and an inviscid form of sting interference. Alternative results which omit the direct contribution of the sting are also produced. The method was applied to the National Transonic Facility at NASA Langley Research Center for both tunnel calibration tests and tests of two models of subsonic transport configurations.
Cinelli, Giorgia; Tositti, Laura; Mostacci, Domiziano; Baré, Jonathan
2016-05-01
In view of assessing natural radioactivity with on-site quantitative gamma spectrometry, efficiency calibration of NaI(Tl) detectors is investigated. A calibration based on Monte Carlo simulation of detector response is proposed, to render reliable quantitative analysis practicable in field campaigns. The method is developed with reference to contact geometry, in which measurements are taken placing the NaI(Tl) probe directly against the solid source to be analyzed. The Monte Carlo code used for the simulations was MCNP. Experimental verification of the calibration goodness is obtained by comparison with appropriate standards, as reported. On-site measurements yield a quick quantitative assessment of natural radioactivity levels present ((40)K, (238)U and (232)Th). On-site gamma spectrometry can prove particularly useful insofar as it provides information on materials from which samples cannot be taken. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Use of model calibration to achieve high accuracy in analysis of computer networks
Frogner, Bjorn; Guarro, Sergio; Scharf, Guy
2004-05-11
A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.
Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration
Sumner, David M.; Geurink, Jeffrey S.; Swancar, Amy
2017-01-01
Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if “calibrated†to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2-kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r2=0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r2=0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.
Winterfield, Craig; van de Voort, F R
2014-12-01
The Fluid Life Corporation assessed and implemented Fourier transform infrared spectroscopy (FTIR)-based methods using American Society for Testing and Materials (ASTM)-like stoichiometric reactions for determination of acid and base number for in-service mineral-based oils. The basic protocols, quality control procedures, calibration, validation, and performance of these new quantitative methods are assessed. ASTM correspondence is attained using a mixed-mode calibration, using primary reference standards to anchor the calibration, supplemented by representative sample lubricants analyzed by ASTM procedures. A partial least squares calibration is devised by combining primary acid/base reference standards and representative samples, focusing on the main spectral stoichiometric response with chemometrics assisting in accounting for matrix variability. FTIR(AN/BN) methodology is precise, accurate, and free of most interference that affects ASTM D664 and D4739 results. Extensive side-by-side operational runs produced normally distributed differences with mean differences close to zero and standard deviations of 0.18 and 0.26 mg KOH/g, respectively. Statistically, the FTIR methods are a direct match to the ASTM methods, with superior performance in terms of analytical throughput, preparation time, and solvent use. FTIR(AN/BN) analysis is a viable, significant advance for in-service lubricant analysis, providing an economic means of trending samples instead of tedious and expensive conventional ASTM(AN/BN) procedures. © 2014 Society for Laboratory Automation and Screening.
In-Flight Calibration Methods for Temperature-Dependent Offsets in the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.;
2016-01-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
Calibration and Data Analysis of the MC-130 Air Balance
NASA Technical Reports Server (NTRS)
Booth, Dennis; Ulbrich, N.
2012-01-01
Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.
Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration
NASA Astrophysics Data System (ADS)
Xie, Yunhe; Ainsley, Christopher; Yin, Lingshu; Zou, Wei; McDonough, James; Solberg, Timothy D.; Lin, Alexander; Teo, Boon-Keng Kevin
2018-03-01
A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at 80 kVp and 140 kVp . The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ({{ρ }e} ), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample’s water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.
AXAF SIM focus mechanism study
NASA Technical Reports Server (NTRS)
Tananbaum, H. D.; Whitbeck, E.
1994-01-01
The design requirements and initial design concept for the AXAF-I Science Instrument Module (SIM) were reviewed at Ball on September 29, 1993. The concept design SIM focus mechanism utilizes a planetary gearset, with redundant motors, to drive a large ring (called 'main housing bearing') via a spur gearset. This large drive ring actuates three tangent bar links (called 'push rods'), which in turn actuate three levers (called 'pin levers'). Each of the three pin levers rotates an 'eccentric pin,' which in turn moves the base of a bipod flexure in both the radial (normal to optical axis) and axial (focus along optical axis) directions. Three bipod flexures are employed, equally spaced at 120 degrees apart, the base of each being translated in the two directions as described above. A focus adjustment is made by rotating the drive ring, which drives the push rods and therefore the pin levers, which in turn rotate the eccentric pins, finally imparting the two motions to the base of each of the bipod flexures. The axial translation (focus adjustment) of the focused structure is the sum of the direct axial motion plus axial motion which comes from uniformly squeezing the three bipod bases radially inward. SAO documented the following concerns regarding the focus mechanism in memo WAP-FY94-001, dated October 7, 1993: (1) The focus adjustment depends, in large part, on the structural properties (stiffnesses and end fixities) of the bipod flexures, push rods, pin levers and eccentric pins. If these properties are not matched very well, then lateral translations as well as unwanted rotations of the focussed structure will accompany focus motion. In addition, the stackup of linkage tolerances and any nonuniform wear in the linkages will result in the same unwanted motions. Thermal gradients will also affect these motions. At the review Ball did not present supporting analyses to support their choice of this design concept. (2) The proposed 'primary' method of measuring focus is by counting motor steps. The 'backup' method is by a pot mounted on the drive ring. Neither method provides for a direct measurement of the quantity desired (focus position). This is of concern because of the long and indirect relationship between focus and the sensed quantity (drive ring rotation). There are three sinusoidal relationships and structural stiffness in the path, and the resulting calibration is likely to be highly nonlinear. These methods would require an accurate ground calibration. (3) Ground calibration (and verification) of focus vs. drive position must be done in 1-g on the ground. This calibration will be complicated by both the structural characteristics of the bipods and the fact that the CG of the translating portion of the SIM is not on the optical axis (thereby causing unwated rotations and changing the focus position vs. motor step and pot readout relationships). The SIM translating weight could be offloaded, but the calibration then becomes sensitive to any errors in offloading (both magnitude and direction). There are concerns as to whether a calibration to the required accuracy can be accomplished on the ground. (4) The choice of a potentiometer as the focus position sensor is questionable in terms of reliability for a five year mission. The results of SAO's study of items 1, 2 and 3 described above are presented in this report.
Calibration of Sudbury Neutrino Observatory for the detection of boron-8 neutrinos
NASA Astrophysics Data System (ADS)
Ford, Richard James
1999-08-01
The Sudbury Neutrino Observatory (SNO) is a second generation water Čerenkov detector using 1000 tonnes of heavy water to study neutrino astrophysics. Using deuterium neutrino reactions, SNO will measure the flux and energy spectrum of solar electron neutrinos, and will measure the flavour-blind flux of neutrinos. A nitrogen/multi-dye laser diffuser ball has been designed and installed in SNO for calibration of the electronics, photomultiplier tubes (PMTs) and optical parameters. The laser provides pulsed radiation at 337.1 nm with a 600 psec width and pulse rate up to 50 Hz. The laser can be used directly or as a pump for one of four dye laser resonators, which provides five wavelength selections from 337-500 nm. The light is delivered to a pseudo-isotropic diffuser ball (the laserball) by a 100 μm UV-VIS fibre bundle with less than 1 nsec dispersion at 337 nm. The laserball can be deployed throughout the detector with the rope manipulator system. The laserball output is adjustable from 0.01 to 1000 photo-electrons (PE) and has a pulsewidth of 0.90 nsec at 386 nm and 1.18 nsec at 337.1 nm. A method has been developed for measuring the optical attenuation and scattering in SNO using the laserball and single photo-electron (SPE) PMT time histograms. At SPE intensity the nanosecond PMT timing can be used to separate direct and scattered light, and the extinction coefficients determined using varying path lengths from the source. A calibration function has been developed that accounts for the position and direction dependence of the response for electrons and gamma rays. The calibration function uses simplified or parameterized distributions for the Čerenkov output and detector geometry. The function is fast enough to be built in to neutrino spectrum analysis and can be used to evaluate the uncertainties in the position response. The laserball system has been tested and used to provide a PMT and electronics calibration of the detector for analysis of the airfill commissioning runs. The electronics channels were calibrated for charge pedestals and slopes, time offsets and slopes and discriminator walk (slewing). The PMT occupancies were measured and a method was developed for measuring the mean SPE gain. Finally, event reconstruction was studied for the airfill data, and a time biased reconstruction algorithm was created for cutting flashing PMT events.
Li, Wen-xia; Li, Feng; Zhao, Guo-liang; Tang, Shi-jun; Liu, Xiao-ying
2014-12-01
A series of 376 cotton-polyester (PET) blend fabrics were studied by a portable near-infrared (NIR) spectrometer. A NIR semi-quantitative-qualitative calibration model was established by Partial Least Squares (PLS) method combined with qualitative identification coefficient. In this process, PLS method in a quantitative analysis was used as a correction method, and the qualitative identification coefficient was set by the content of cotton and polyester in blend fabrics. Cotton-polyester blend fabrics were identified qualitatively by the model and their relative contents were obtained quantitatively, the model can be used for semi-quantitative identification analysis. In the course of establishing the model, the noise and baseline drift of the spectra were eliminated by Savitzky-Golay(S-G) derivative. The influence of waveband selection and different pre-processing method was also studied in the qualitative calibration model. The major absorption bands of 100% cotton samples were in the 1400~1600 nm region, and the one for 100% polyester were around 1600~1800 nm, the absorption intensity was enhancing with the content increasing of cotton or polyester. Therefore, the cotton-polyester's major absorption region was selected as the base waveband, the optimal waveband (1100~2500 nm) was found by expanding the waveband in two directions (the correlation coefficient was 0.6, and wave-point number was 934). The validation samples were predicted by the calibration model, the results showed that the model evaluation parameters was optimum in the 1100~2500 nm region, and the combination of S-G derivative, multiplicative scatter correction (MSC) and mean centering was used as the pre-processing method. RC (relational coefficient of calibration) value was 0.978, RP (relational coefficient of prediction) value was 0.940, SEC (standard error of calibration) value was 1.264, SEP (standard error of prediction) value was 1.590, and the sample's recognition accuracy was up to 93.4%. It showed that the cotton-polyester blend fabrics could be predicted by the semi-quantitative-qualitative calibration model.
NASA Astrophysics Data System (ADS)
Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura
2018-03-01
We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range <1 GeV /c2 . We argue that single-electron-resolution semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.
NASA Astrophysics Data System (ADS)
Grossman, S.
2015-05-01
Since the events of September 11, 2001, the intelligence focus has moved from large order-of-battle targets to small targets of opportunity. Additionally, the business community has discovered the use of remotely sensed data to anticipate demand and derive data on their competition. This requires the finer spectral and spatial fidelity now available to recognize those targets. This work hypothesizes that directed searches using calibrated data perform at least as well as inscene manually intensive target detection searches. It uses calibrated Worldview-2 multispectral images with NEF generated signatures and standard detection algorithms to compare bespoke directed search capabilities against ENVI™ in-scene search capabilities. Multiple execution runs are performed at increasing thresholds to generate detection rates. These rates are plotted and statistically analyzed. While individual head-to-head comparison results vary, 88% of the directed searches performed at least as well as in-scene searches with 50% clearly outperforming in-scene methods. The results strongly support the premise that directed searches perform at least as well as comparable in-scene searches.
Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel
2018-05-03
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).
Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel
2018-01-01
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560
47 CFR 73.267 - Determining operating power.
Code of Federal Regulations, 2013 CFR
2013-10-01
... direct method of power determination for an FM station uses the indications of a calibrated transmission... a resistance equal to the transmission line characteristic impedance) and using an electrical device... the design of the transmitter final amplifier, use a formula specified by the transmitter manufacturer...
47 CFR 73.267 - Determining operating power.
Code of Federal Regulations, 2014 CFR
2014-10-01
... direct method of power determination for an FM station uses the indications of a calibrated transmission... a resistance equal to the transmission line characteristic impedance) and using an electrical device... the design of the transmitter final amplifier, use a formula specified by the transmitter manufacturer...
47 CFR 73.267 - Determining operating power.
Code of Federal Regulations, 2011 CFR
2011-10-01
... direct method of power determination for an FM station uses the indications of a calibrated transmission... a resistance equal to the transmission line characteristic impedance) and using an electrical device... the design of the transmitter final amplifier, use a formula specified by the transmitter manufacturer...
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca
2010-05-01
The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance distributed model developed at the Department of Civil and Environmental Engineering of the University of Florence. Discussion on the comparisons between the effectiveness of the different algorithms on different cases of study on Central Italy basins is provided.
Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L
2012-07-06
A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
A tunable laser system for precision wavelength calibration of spectra
NASA Astrophysics Data System (ADS)
Cramer, Claire
2010-02-01
We present a novel laser-based wavelength calibration technique that improves the precision of astronomical spectroscopy, and solves a calibration problem inherent to multi-object spectroscopy. We have tested a prototype with the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method uses of spectra from ThAr hollow-cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We also present results from studies of globular clusters, and explain how the calibration technique can aid in stellar age determinations, studies of young stars, and searches for dark matter clumping in the galactic halo. )
Air-kerma strength determination of a new directional 103Pd source
Reed, Joshua L.; DeWerd, Larry A.; Culberson, Wesley S.
2015-01-01
Purpose: A new directional 103Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing 103Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active 103Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (SK) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring SK to a well-type ionization chamber. Methods: SK measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity SK from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the mcnp 6 Monte Carlo code in order to determine SK with the presence of gold fluorescent energy lines. In addition to SK measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating SK values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the SK of four CivaDots with reproducibilities within 0.3%. Monte Carlo methods were used to calculate the UW VAFAC correction factors and the calculated spectrum emitted from a CivaDot was experimentally verified with HPGe detector measurements. The well-type ionization chamber showed minimal variation in response (<1.5%) as a function of source positioning angle, indicating that an American Association of Physicists in Medicine (AAPM) Accredited Dosimetry Calibration Laboratory calibrated well chamber would be a suitable device to transfer an SK-based calibration to a clinical user. SK per well-chamber ionization current ratios were consistent among the four dots measured. Additionally, the measurements and predictions of anisotropy show uniform emission within the solid angle of the VAFAC, which demonstrates the robustness of the SK measurement approach. Conclusions: This characterization of a new 103Pd directional brachytherapy source helps to establish calibration methods that could ultimately be used in the well-established AAPM Task Group 43 formalism. Monte Carlo methods accurately predict the changes in the energy spectrum caused by the fluorescent x-rays produced in the gold shield. PMID:26632069
Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase
NASA Astrophysics Data System (ADS)
Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten
2016-04-01
Objective. One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. Approach. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. Main results. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. Significance. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase.
Zink, Rob; Hunyadi, Borbála; Huffel, Sabine Van; Vos, Maarten De
2016-04-01
One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eken Tuna, Kevin Mayeda, Abraham Hofstetter, Rengin Gok, Gonca Orgulu, Niyazi Turkelli
A recently developed coda magnitude methodology was applied to selected broadband stations in Turkey for the purpose of testing the coda method in a large, laterally complex region. As found in other, albeit smaller regions, coda envelope amplitude measurements are significantly less variable than distance-corrected direct wave measurements (i.e., L{sub g} and surface waves) by roughly a factor 3-to-4. Despite strong lateral crustal heterogeneity in Turkey, they found that the region could be adequately modeled assuming a simple 1-D, radially symmetric path correction. After calibrating the stations ISP, ISKB and MALT for local and regional distances, single-station moment-magnitude estimates (M{submore » W}) derived from the coda spectra were in excellent agreement with those determined from multistation waveform modeling inversions, exhibiting a data standard deviation of 0.17. Though the calibration was validated using large events, the results of the calibration will extend M{sub W} estimates to significantly smaller events which could not otherwise be waveform modeled. The successful application of the method is remarkable considering the significant lateral complexity in Turkey and the simple assumptions used in the coda method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struckmeyer, R.
This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.
Validation of early GOES-16 ABI on-orbit geometrical calibration accuracy using SNO method
NASA Astrophysics Data System (ADS)
Yu, Fangfang; Shao, Xi; Wu, Xiangqian; Kondratovich, Vladimir; Li, Zhengping
2017-09-01
The Advanced Baseline Imager (ABI) onboard the GOES-16 satellite, which was launched on 19 November 2016, is the first next-generation geostationary weather instrument in the west hemisphere. It has 16 spectral solar reflective and emissive bands located in three focal plane modules (FPM): one visible and near infrared (VNIR) FPM, one midwave infrared (MWIR), and one longwave infrared (LWIR) FPM. All the ABI bands are geometeorically calibrated with new techniques of Kalman filtering and Global Positioning System (GPS) to determine the accurate spacecraft attitude and orbit configuration to meet the challenging image navigation and registration (INR) requirements of ABI data. This study is to validate the ABI navigation and band-to-band registration (BBR) accuracies using the spectrally matched pixels of the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) M-band data and the ABI images from the Simultaneous Nadir Observation (SNO) images. The preliminary results showed that during the ABI post-launch product test (PLPT) period, the ABI BBR errors at the y-direction (along the VIIRS track direction) is smaller than at the x-direction (along the VIIRS scan direction). Variations in the ABI BBR calibration residuals and navigation difference to VIIRS can be observed. Note that ABI is not operational yet and the data is experimental and still under testing. Effort is still ongoing to improve the ABI data quality.
Calibration factors for the SNOOPY NP-100 neutron dosimeter
NASA Astrophysics Data System (ADS)
Moscu, D. F.; McNeill, F. E.; Chase, J.
2007-10-01
Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.
NASA Astrophysics Data System (ADS)
Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.
2018-06-01
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk
2014-01-01
Independent component analysis (ICA) has recently been shown to be a promising new path in data analysis and de-trending of exoplanetary time series signals. Such approaches do not require or assume any prior or auxiliary knowledge about the data or instrument in order to de-convolve the astrophysical light curve signal from instrument or stellar systematic noise. These methods are often known as 'blind-source separation' (BSS) algorithms. Unfortunately, all BSS methods suffer from an amplitude and sign ambiguity of their de-convolved components, which severely limits these methods in low signal-to-noise (S/N) observations where their scalings cannot be determined otherwise. Here wemore » present a novel approach to calibrate ICA using sparse wavelet calibrators. The Amplitude Calibrated Independent Component Analysis (ACICA) allows for the direct retrieval of the independent components' scalings and the robust de-trending of low S/N data. Such an approach gives us an unique and unprecedented insight in the underlying morphology of a data set, which makes this method a powerful tool for exoplanetary data de-trending and signal diagnostics.« less
Jennelle, C.S.; Runge, M.C.; MacKenzie, D.I.
2002-01-01
The search for easy-to-use indices that substitute for direct estimation of animal density is a common theme in wildlife and conservation science, but one fraught with well-known perils (Nichols & Conroy, 1996; Yoccoz, Nichols & Boulinier, 2001; Pollock et al., 2002). To establish the utility of an index as a substitute for an estimate of density, one must: (1) demonstrate a functional relationship between the index and density that is invariant over the desired scope of inference; (2) calibrate the functional relationship by obtaining independent measures of the index and the animal density; (3) evaluate the precision of the calibration (Diefenbach et al., 1994). Carbone et al. (2001) argue that the number of camera-days per photograph is a useful index of density for large, cryptic, forest-dwelling animals, and proceed to calibrate this index for tigers (Panthera tigris). We agree that a properly calibrated index may be useful for rapid assessments in conservation planning. However, Carbone et al. (2001), who desire to use their index as a substitute for density, do not adequately address the three elements noted above. Thus, we are concerned that others may view their methods as justification for not attempting directly to estimate animal densities, without due regard for the shortcomings of their approach.
Delanghe, Joris R; Cobbaert, Christa; Galteau, Marie-Madeleine; Harmoinen, Aimo; Jansen, Rob; Kruse, Rolf; Laitinen, Päivi; Thienpont, Linda M; Wuyts, Birgitte; Weykamp, Cas; Panteghini, Mauro
2008-01-01
The European In Vitro Diagnostics (IVD) directive requires traceability to reference methods and materials of analytes. It is a task of the profession to verify the trueness of results and IVD compatibility. The results of a trueness verification study by the European Communities Confederation of Clinical Chemistry (EC4) working group on creatinine standardization are described, in which 189 European laboratories analyzed serum creatinine in a commutable serum-based material, using analytical systems from seven companies. Values were targeted using isotope dilution gas chromatography/mass spectrometry. Results were tested on their compliance to a set of three criteria: trueness, i.e., no significant bias relative to the target value, between-laboratory variation and within-laboratory variation relative to the maximum allowable error. For the lower and intermediate level, values differed significantly from the target value in the Jaffe and the dry chemistry methods. At the high level, dry chemistry yielded higher results. Between-laboratory coefficients of variation ranged from 4.37% to 8.74%. Total error budget was mainly consumed by the bias. Non-compensated Jaffe methods largely exceeded the total error budget. Best results were obtained for the enzymatic method. The dry chemistry method consumed a large part of its error budget due to calibration bias. Despite the European IVD directive and the growing needs for creatinine standardization, an unacceptable inter-laboratory variation was observed, which was mainly due to calibration differences. The calibration variation has major clinical consequences, in particular in pediatrics, where reference ranges for serum and plasma creatinine are low, and in the estimation of glomerular filtration rate.
Switzer, P.; Harden, J.W.; Mark, R.K.
1988-01-01
A statistical method for estimating rates of soil development in a given region based on calibration from a series of dated soils is used to estimate ages of soils in the same region that are not dated directly. The method is designed specifically to account for sampling procedures and uncertainties that are inherent in soil studies. Soil variation and measurement error, uncertainties in calibration dates and their relation to the age of the soil, and the limited number of dated soils are all considered. Maximum likelihood (ML) is employed to estimate a parametric linear calibration curve, relating soil development to time or age on suitably transformed scales. Soil variation on a geomorphic surface of a certain age is characterized by replicate sampling of soils on each surface; such variation is assumed to have a Gaussian distribution. The age of a geomorphic surface is described by older and younger bounds. This technique allows age uncertainty to be characterized by either a Gaussian distribution or by a triangular distribution using minimum, best-estimate, and maximum ages. The calibration curve is taken to be linear after suitable (in certain cases logarithmic) transformations, if required, of the soil parameter and age variables. Soil variability, measurement error, and departures from linearity are described in a combined fashion using Gaussian distributions with variances particular to each sampled geomorphic surface and the number of sample replicates. Uncertainty in age of a geomorphic surface used for calibration is described using three parameters by one of two methods. In the first method, upper and lower ages are specified together with a coverage probability; this specification is converted to a Gaussian distribution with the appropriate mean and variance. In the second method, "absolute" older and younger ages are specified together with a most probable age; this specification is converted to an asymmetric triangular distribution with mode at the most probable age. The statistical variability of the ML-estimated calibration curve is assessed by a Monte Carlo method in which simulated data sets repeatedly are drawn from the distributional specification; calibration parameters are reestimated for each such simulation in order to assess their statistical variability. Several examples are used for illustration. The age of undated soils in a related setting may be estimated from the soil data using the fitted calibration curve. A second simulation to assess age estimate variability is described and applied to the examples. ?? 1988 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Montalvão, Diogo; Baker, Thomas; Ihracska, Balazs; Aulaqi, Muhammad
2017-01-01
Many applications in Experimental Modal Analysis (EMA) require that the sensors' masses are known. This is because the added mass from sensors will affect the structural mode shapes, and in particular its natural frequencies. EMA requires the measurement of the exciting forces at given coordinates, which is often made using piezoelectric force transducers. In such a case, the live mass of the force transducer, i.e. the mass as 'seen' by the structure in perpendicular directions must be measured somehow, so that compensation methods like mass cancelation can be performed. This however presents a problem on how to obtain an accurate measurement for the live mass. If the system is perfectly calibrated, then a reasonably accurate estimate can be made using a straightforward method available in most classical textbooks based on Newton's second law. However, this is often not the case (for example when the transducer's sensitivity changed over time, when it is unknown or when the connection influences the transmission of the force). In a self-calibrating iterative method, both the live mass and calibration factor are determined, but this paper shows that the problem may be ill-conditioned, producing misleading results if certain conditions are not met. Therefore, a more robust method is presented and discussed in this paper, reducing the ill-conditioning problems and the need to know the calibration factors beforehand. The three methods will be compared and discussed through numerical and experimental examples, showing that classical EMA still is a field of research that deserves the attention from scientists and engineers.
A calibration method for fringe reflection technique based on the analytical phase-slope description
NASA Astrophysics Data System (ADS)
Wu, Yuxiang; Yue, Huimin; Pan, Zhipeng; Liu, Yong
2018-05-01
The fringe reflection technique (FRT) has been one of the most popular methods to measure the shape of specular surface these years. The existing system calibration methods of FRT usually contain two parts, which are camera calibration and geometric calibration. In geometric calibration, the liquid crystal display (LCD) screen position calibration is one of the most difficult steps among all the calibration procedures, and its accuracy is affected by the factors such as the imaging aberration, the plane mirror flatness, and LCD screen pixel size accuracy. In this paper, based on the deduction of FRT analytical phase-slope description, we present a novel calibration method with no requirement to calibrate the position of LCD screen. On the other hand, the system can be arbitrarily arranged, and the imaging system can either be telecentric or non-telecentric. In our experiment of measuring the 5000mm radius sphere mirror, the proposed calibration method achieves 2.5 times smaller measurement error than the geometric calibration method. In the wafer surface measuring experiment, the measurement result with the proposed calibration method is closer to the interferometer result than the geometric calibration method.
40 CFR 63.365 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Volatile Alcohols in Water By Direct Aqueous-Injection Gas Chromatography, (incorporated by... be determined by either: (A) Weighing the ethylene oxide gas cylinder(s) used to charge the... mass of gas charged by the weight percent ethylene oxide present in the gas. (B) Installing calibrated...
A Bionic Polarization Navigation Sensor and Its Calibration Method.
Zhao, Huijie; Xu, Wujian
2016-08-03
The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects' polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor's signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation.
A Bionic Polarization Navigation Sensor and Its Calibration Method
Zhao, Huijie; Xu, Wujian
2016-01-01
The polarization patterns of skylight which arise due to the scattering of sunlight in the atmosphere can be used by many insects for deriving compass information. Inspired by insects’ polarized light compass, scientists have developed a new kind of navigation method. One of the key techniques in this method is the polarimetric sensor which is used to acquire direction information from skylight. In this paper, a polarization navigation sensor is proposed which imitates the working principles of the polarization vision systems of insects. We introduce the optical design and mathematical model of the sensor. In addition, a calibration method based on variable substitution and non-linear curve fitting is proposed. The results obtained from the outdoor experiments provide support for the feasibility and precision of the sensor. The sensor’s signal processing can be well described using our mathematical model. A relatively high degree of accuracy in polarization measurement can be obtained without any error compensation. PMID:27527171
Optimum data weighting and error calibration for estimation of gravitational parameters
NASA Technical Reports Server (NTRS)
Lerch, Francis J.
1989-01-01
A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least-squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 Goddard Earth Model-T1 (GEM-T1) were employed toward application of this technique for gravity field parameters. Also GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized. The method employs subset solutions of the data associated with the complete solution to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.
Murillo Pulgarín, J A; Alañón Molina, A; Boras, N
2013-03-20
A new method for the simultaneous determination of danofloxacin and flumequine in milk samples was developed by using the nonlinear variable-angle synchronous fluorescence technique to acquire data and a partial least-squares chemometric algorithm to process them. A calibration set of standard samples was designed by combination of a factorial design with two levels per factor and a central star design. Whey was used as the third component of the calibration matrix. In order to assess the goodness of the proposed method, a prediction set of 11 synthetic samples was analyzed, obtaining recovery percentages between 96.1% and 104.0%. Limits of detection, calculated by means of a new criterion, were 0.90 and 12.4 ng mL(-1) for danofloxacin and flumequine, respectively. Finally, the simultaneous determination of both fluoroquinoles in milk samples containing the analytes was successfully carried out, obtaining an average recovery percentage of 99.3 ± 4.4 for danofloxacin and 100.7 ± 4.4.
Calibration of the Minolta SPAD-502 leaf chlorophyll meter.
Markwell, J; Osterman, J C; Mitchell, J L
1995-01-01
Use of leaf meters to provide an instantaneous assessment of leaf chlorophyll has become common, but calibration of meter output into direct units of leaf chlorophyll concentration has been difficult and an understanding of the relationship between these two parameters has remained elusive. We examined the correlation of soybean (Glycine max) and maize (Zea mays L.) leaf chlorophyll concentration, as measured by organic extraction and spectrophotometric analysis, with output (M) of the Minolta SPAD-502 leaf chlorophyll meter. The relationship is non-linear and can be described by the equation chlorophyll (μmol m(-2))=10((M0.265)), r (2)=0.94. Use of such an exponential equation is theoretically justified and forces a more appropriate fit to a limited data set than polynomial equations. The exact relationship will vary from meter to meter, but will be similar and can be readily determined by empirical methods. The ability to rapidly determine leaf chlorophyll concentrations by use of the calibration method reported herein should be useful in studies on photosynthesis and crop physiology.
Cho, H-M; Ding, H; Ziemer, B P; Molloi, S
2014-12-07
Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.
NASA Astrophysics Data System (ADS)
Cho, H.-M.; Ding, H.; Ziemer, BP; Molloi, S.
2014-12-01
Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.
Cho, H-M; Ding, H; Ziemer, BP; Molloi, S
2014-01-01
Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288
Calibrating AIS images using the surface as a reference
NASA Technical Reports Server (NTRS)
Smith, M. O.; Roberts, D. A.; Shipman, H. M.; Adams, J. B.; Willis, S. C.; Gillespie, A. R.
1987-01-01
A method of evaluating the initial assumptions and uncertainties of the physical connection between Airborne Imaging Spectrometer (AIS) image data and laboratory/field spectrometer data was tested. The Tuscon AIS-2 image connects to lab reference spectra by an alignment to the image spectral endmembers through a system gain and offset for each band. Images were calibrated to reflectance so as to transform the image into a measure that is independent of the solar radiant flux. This transformation also makes the image spectra directly comparable to data from lab and field spectrometers. A method was tested for calibrating AIS images using the surface as a reference. The surface heterogeneity is defined by lab/field spectral measurements. It was found that the Tuscon AIS-2 image is consistent with each of the initial hypotheses: (1) that the AIS-2 instrument calibration is nearly linear; (2) the spectral variance is caused by sub-pixel mixtures of spectrally distinct materials and shade, and (3) that sub-pixel mixtures can be treated as linear mixtures of pure endmembers. It was also found that the image can be characterized by relatively few endmembers using the AIS-2 spectra.
Focal plane based wavefront sensing with random DM probes
NASA Astrophysics Data System (ADS)
Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.
2017-09-01
An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.
NLT and extrapolated DLT:3-D cinematography alternatives for enlarging the volume of calibration.
Hinrichs, R N; McLean, S P
1995-10-01
This study investigated the accuracy of the direct linear transformation (DLT) and non-linear transformation (NLT) methods of 3-D cinematography/videography. A comparison of standard DLT, extrapolated DLT, and NLT calibrations showed the standard (non-extrapolated) DLT to be the most accurate, especially when a large number of control points (40-60) were used. The NLT was more accurate than the extrapolated DLT when the level of extrapolation exceeded 100%. The results indicated that when possible one should use the DLT with a control object, sufficiently large as to encompass the entire activity being studied. However, in situations where the activity volume exceeds the size of one's DLT control object, the NLT method should be considered.
Extending calibration-free force measurements to optically-trapped rod-shaped samples
Català, Frederic; Marsà, Ferran; Montes-Usategui, Mario; Farré, Arnau; Martín-Badosa, Estela
2017-01-01
Optical trapping has become an optimal choice for biological research at the microscale due to its non-invasive performance and accessibility for quantitative studies, especially on the forces involved in biological processes. However, reliable force measurements depend on the calibration of the optical traps, which is different for each experiment and hence requires high control of the local variables, especially of the trapped object geometry. Many biological samples have an elongated, rod-like shape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certain microalgae, and a wide variety of bacteria and parasites. This type of samples often requires several optical traps to stabilize and orient them in the correct spatial direction, making it more difficult to determine the total force applied. Here, we manipulate glass microcylinders with holographic optical tweezers and show the accurate measurement of drag forces by calibration-free direct detection of beam momentum. The agreement between our results and slender-body hydrodynamic theoretical calculations indicates potential for this force-sensing method in studying protracted, rod-shaped specimens. PMID:28220855
Determination of polarimetric parameters of honey by near-infrared transflectance spectroscopy.
García-Alvarez, M; Ceresuela, S; Huidobro, J F; Hermida, M; Rodríguez-Otero, J L
2002-01-30
NIR transflectance spectroscopy was used to determine polarimetric parameters (direct polarization, polarization after inversion, specific rotation in dry matter, and polarization due to nonmonosaccharides) and sucrose in honey. In total, 156 honey samples were collected during 1992 (45 samples), 1995 (56 samples), and 1996 (55 samples). Samples were analyzed by NIR spectroscopy and polarimetric methods. Calibration (118 samples) and validation (38 samples) sets were made up; honeys from the three years were included in both sets. Calibrations were performed by modified partial least-squares regression and scatter correction by standard normal variation and detrend methods. For direct polarization, polarization after inversion, specific rotation in dry matter, and polarization due to nonmonosaccharides, good statistics (bias, SEV, and R(2)) were obtained for the validation set, and no statistically (p = 0.05) significant differences were found between instrumental and polarimetric methods for these parameters. Statistical data for sucrose were not as good as those of the other parameters. Therefore, NIR spectroscopy is not an effective method for quantitative analysis of sucrose in these honey samples. However, NIR spectroscopy may be an acceptable method for semiquantitative evaluation of sucrose for honeys, such as those in our study, containing up to 3% of sucrose. Further work is necessary to validate the uncertainty at higher levels.
Auto calibration of a cone-beam-CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, Daniel; Heil, Ulrich; Schulze, Ralf
2012-10-15
Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferablymore » form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to demonstrate the achievable spatial resolution of their calibration procedure. Results: Compared to the results published in the most closely related work [K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)], the simulation proved the greater accuracy of their method, as well as a lower standard deviation of roughly 1 order of magnitude. When compared to another similar approach [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004)], their results were roughly of the same order of accuracy. Their analysis revealed that the method is capable of sufficiently calibrating out-of-plane angles in cases of larger cone angles when neglecting these angles negatively affects the reconstruction. Fine details in the 3D reconstruction of the spine segment and an electronic device indicate a high geometric calibration accuracy and the capability to produce state-of-the-art reconstructions. Conclusions: The method introduced here makes no requirements on the accuracy of the test object. In contrast to many previous autocalibration methods their approach also includes out-of-plane rotations of the detector. Although assuming a perfect rotation, the method seems to be sufficiently accurate for a commercial CBCT scanner. For devices which require higher dimensional geometry models, the method could be used as a initial calibration procedure.« less
Data multiplexing in radio interferometric calibration
NASA Astrophysics Data System (ADS)
Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L. V. E.
2018-03-01
New and upcoming radio interferometers will produce unprecedented amount of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full data set using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full data set when a limited number of compute agents are available.
NASA Astrophysics Data System (ADS)
Alipour, M. H.; Kibler, Kelly M.
2018-02-01
A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.
Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert
2015-01-01
The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed.
Robust radio interferometric calibration using the t-distribution
NASA Astrophysics Data System (ADS)
Kazemi, S.; Yatawatta, S.
2013-10-01
A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data due to interference or due to errors in the sky model would have adverse effects on processing based on a Gaussian noise model. Most of the shortcomings of calibration such as the loss in flux or coherence, and the appearance of spurious sources, could be attributed to the deviations of the underlying noise model. In this paper, we propose to improve the robustness of calibration by using a noise model based on Student's t-distribution. Student's t-noise is a special case of Gaussian noise when the variance is unknown. Unlike Gaussian-noise-model-based calibration, traditional least-squares minimization would not directly extend to a case when we have a Student's t-noise model. Therefore, we use a variant of the expectation-maximization algorithm, called the expectation-conditional maximization either algorithm, when we have a Student's t-noise model and use the Levenberg-Marquardt algorithm in the maximization step. We give simulation results to show the robustness of the proposed calibration method as opposed to traditional Gaussian-noise-model-based calibration, especially in preserving the flux of weaker sources that are not included in the calibration model.
New Cost-Effective Method for Long-Term Groundwater Monitoring Programs
2013-05-01
with a small-volume, gas -tight syringe (< 1 mL) and injected directly into the field-portable GC. Alternatively, the well headspace sample can be...according to manufacturers’ protocols. Isobutylene was used as the calibration standard for the PID. The standard gas mixtures were used for 3-point...monitoring wells are being evaluated: 1) direct headspace sampling, 2) sampling tube with gas permeable membrane, and 3) gas -filled passive vapor
Using the auxiliary camera for system calibration of 3D measurement by digital speckle
NASA Astrophysics Data System (ADS)
Xue, Junpeng; Su, Xianyu; Zhang, Qican
2014-06-01
The study of 3D shape measurement by digital speckle temporal sequence correlation have drawn a lot of attention by its own advantages, however, the measurement mainly for depth z-coordinate, horizontal physical coordinate (x, y) are usually marked as image pixel coordinate. In this paper, a new approach for the system calibration is proposed. With an auxiliary camera, we made up the temporary binocular vision system, which are used for the calibration of horizontal coordinates (mm) while the temporal sequence reference-speckle-sets are calibrated. First, the binocular vision system has been calibrated using the traditional method. Then, the digital speckles are projected on the reference plane, which is moved by equal distance in the direction of depth, temporal sequence speckle images are acquired with camera as reference sets. When the reference plane is in the first position and final position, crossed fringe pattern are projected to the plane respectively. The control points of pixel coordinates are extracted by Fourier analysis from the images, and the physical coordinates are calculated by the binocular vision. The physical coordinates corresponding to each pixel of the images are calculated by interpolation algorithm. Finally, the x and y corresponding to arbitrary depth value z are obtained by the geometric formula. Experiments prove that our method can fast and flexibly measure the 3D shape of an object as point cloud.
Quantifying Particle Numbers and Mass Flux in Drifting Snow
NASA Astrophysics Data System (ADS)
Crivelli, Philip; Paterna, Enrico; Horender, Stefan; Lehning, Michael
2016-12-01
We compare two of the most common methods of quantifying mass flux, particle numbers and particle-size distribution for drifting snow events, the snow-particle counter (SPC), a laser-diode-based particle detector, and particle tracking velocimetry based on digital shadowgraphic imaging. The two methods were correlated for mass flux and particle number flux. For the SPC measurements, the device was calibrated by the manufacturer beforehand. The shadowgrapic imaging method measures particle size and velocity directly from consecutive images, and before each new test the image pixel length is newly calibrated. A calibration study with artificially scattered sand particles and glass beads provides suitable settings for the shadowgraphical imaging as well as obtaining a first correlation of the two methods in a controlled environment. In addition, using snow collected in trays during snowfall, several experiments were performed to observe drifting snow events in a cold wind tunnel. The results demonstrate a high correlation between the mass flux obtained for the calibration studies (r ≥slant 0.93) and good correlation for the drifting snow experiments (r ≥slant 0.81). The impact of measurement settings is discussed in order to reliably quantify particle numbers and mass flux in drifting snow. The study was designed and performed to optimize the settings of the digital shadowgraphic imaging system for both the acquisition and the processing of particles in a drifting snow event. Our results suggest that these optimal settings can be transferred to different imaging set-ups to investigate sediment transport processes.
Air-kerma strength determination of a new directional (103)Pd source.
Aima, Manik; Reed, Joshua L; DeWerd, Larry A; Culberson, Wesley S
2015-12-01
A new directional (103)Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing (103)Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active (103)Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S(K)) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S(K) to a well-type ionization chamber. S(K) measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S(K) from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S(K) with the presence of gold fluorescent energy lines. In addition to S(K) measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S(K) values for a directional source within a cylindrically symmetric measurement volume. The UW VAFAC was successfully used to measure the S(K) of four CivaDots with reproducibilities within 0.3%. Monte Carlo methods were used to calculate the UW VAFAC correction factors and the calculated spectrum emitted from a CivaDot was experimentally verified with HPGe detector measurements. The well-type ionization chamber showed minimal variation in response (<1.5%) as a function of source positioning angle, indicating that an American Association of Physicists in Medicine (AAPM) Accredited Dosimetry Calibration Laboratory calibrated well chamber would be a suitable device to transfer an S(K)-based calibration to a clinical user. S(K) per well-chamber ionization current ratios were consistent among the four dots measured. Additionally, the measurements and predictions of anisotropy show uniform emission within the solid angle of the VAFAC, which demonstrates the robustness of the S(K) measurement approach. This characterization of a new (103)Pd directional brachytherapy source helps to establish calibration methods that could ultimately be used in the well-established AAPM Task Group 43 formalism. Monte Carlo methods accurately predict the changes in the energy spectrum caused by the fluorescent x-rays produced in the gold shield.
Calibration method for a large-scale structured light measurement system.
Wang, Peng; Wang, Jianmei; Xu, Jing; Guan, Yong; Zhang, Guanglie; Chen, Ken
2017-05-10
The structured light method is an effective non-contact measurement approach. The calibration greatly affects the measurement precision of structured light systems. To construct a large-scale structured light system with high accuracy, a large-scale and precise calibration gauge is always required, which leads to an increased cost. To this end, in this paper, a calibration method with a planar mirror is proposed to reduce the calibration gauge size and cost. An out-of-focus camera calibration method is also proposed to overcome the defocusing problem caused by the shortened distance during the calibration procedure. The experimental results verify the accuracy of the proposed calibration method.
Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor
NASA Astrophysics Data System (ADS)
Colbaugh, Lauren
In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect method and the direct method prove to be viable approaches to determining throat diameter during solid rocket motor operation.
Application of two direct runoff prediction methods in Puerto Rico
Sepulveda, N.
1997-01-01
Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.
In-Flight Calibration Methods for Temperature-Dependendent Offsets in the MMS Fluxgate Magnetometers
NASA Astrophysics Data System (ADS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.; Baumjohann, W.; Chutter, M.; Torbert, R. B.; Le, G.; Slavin, J. A.; Kepko, L.
2016-12-01
During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen — for the period of any given week — to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope
NASA Astrophysics Data System (ADS)
Hsu, H.-H.
2012-04-01
The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.
NASA Astrophysics Data System (ADS)
Feng, Zhixin
2018-02-01
Projector calibration is crucial for a camera-projector three-dimensional (3-D) structured light measurement system, which has one camera and one projector. In this paper, a novel projector calibration method is proposed based on digital image correlation. In the method, the projector is viewed as an inverse camera, and a plane calibration board with feature points is used to calibrate the projector. During the calibration processing, a random speckle pattern is projected onto the calibration board with different orientations to establish the correspondences between projector images and camera images. Thereby, dataset for projector calibration are generated. Then the projector can be calibrated using a well-established camera calibration algorithm. The experiment results confirm that the proposed method is accurate and reliable for projector calibration.
NASA Technical Reports Server (NTRS)
Adams, J. B.; Smith, M. O.; Johnson, P. E.
1986-01-01
A Viking Lander 1 image was modeled as mixtures of reflectance spectra of palagonite dust, gray andesitelike rock, and a coarse rocklike soil. The rocks are covered to varying degrees by dust but otherwise appear unweathered. Rocklike soil occurs as lag deposits in deflation zones around stones and on top of a drift and as a layer in a trench dug by the lander. This soil probably is derived from the rocks by wind abrasion and/or spallation. Dust is the major component of the soil and covers most of the surface. The dust is unrelated spectrally to the rock but is equivalent to the global-scale dust observed telescopically. A new method was developed to model a multispectral image as mixtures of end-member spectra and to compare image spectra directly with laboratory reference spectra. The method for the first time uses shade and secondary illumination effects as spectral end-members; thus the effects of topography and illumination on all scales can be isolated or removed. The image was calibrated absolutely from the laboratory spectra, in close agreement with direct calibrations. The method has broad applications to interpreting multispectral images, including satellite images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V. V., E-mail: VVYashchuk@lbl.gov; Chan, E. R.; Lacey, I.
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
NASA Astrophysics Data System (ADS)
Cong, Wang; Xu, Lingdi; Li, Ang
2017-10-01
Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial-grade coordinate system nominal measurement accuracy PV value of 7 microns to 4microns, Which effectively improves the grinding efficiency of aspheric mirrors and verifies the correctness of the method. This paper also investigates the error detection and operation control method, the error calibration of the CMM and the random error calibration of the CMM .
NASA Astrophysics Data System (ADS)
Ströhl, Florian; Wong, Hovy H. W.; Holt, Christine E.; Kaminski, Clemens F.
2018-01-01
Fluorescence anisotropy imaging microscopy (FAIM) measures the depolarization properties of fluorophores to deduce molecular changes in their environment. For successful FAIM, several design principles have to be considered and a thorough system-specific calibration protocol is paramount. One important calibration parameter is the G factor, which describes the system-induced errors for different polarization states of light. The determination and calibration of the G factor is discussed in detail in this article. We present a novel measurement strategy, which is particularly suitable for FAIM with high numerical aperture objectives operating in TIRF illumination mode. The method makes use of evanescent fields that excite the sample with a polarization direction perpendicular to the image plane. Furthermore, we have developed an ImageJ/Fiji plugin, AniCalc, for FAIM data processing. We demonstrate the capabilities of our TIRF-FAIM system by measuring β -actin polymerization in human embryonic kidney cells and in retinal neurons.
Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A
2018-03-01
A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.
Improved Radial Velocity Precision with a Tunable Laser Calibrator
NASA Astrophysics Data System (ADS)
Cramer, Claire; Brown, S.; Dupree, A. K.; Lykke, K. R.; Smith, A.; Szentgyorgyi, A.
2010-01-01
We present radial velocities obtained using a novel laser-based wavelength calibration technique. We have built a prototype laser calibrator for the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method makes use of spectra from thorium-argon hollow cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator solves these problems. The laser is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order to generate a calibration spectrum, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We present these results as well as an application of tunable laser calibration to stellar radial velocities determined with the infrared Ca triplet in globular clusters M15 and NGC 7492. We also suggest how the tunable laser could be useful for other instruments, including single-object, cross-dispersed echelle spectrographs, and adapted for infrared spectroscopy.
The influence of the in situ camera calibration for direct georeferencing of aerial imagery
NASA Astrophysics Data System (ADS)
Mitishita, E.; Barrios, R.; Centeno, J.
2014-11-01
The direct determination of exterior orientation parameters (EOPs) of aerial images via GNSS/INS technologies is an essential prerequisite in photogrammetric mapping nowadays. Although direct sensor orientation technologies provide a high degree of automation in the process due to the GNSS/INS technologies, the accuracies of the obtained results depend on the quality of a group of parameters that models accurately the conditions of the system at the moment the job is performed. One sub-group of parameters (lever arm offsets and boresight misalignments) models the position and orientation of the sensors with respect to the IMU body frame due to the impossibility of having all sensors on the same position and orientation in the airborne platform. Another sub-group of parameters models the internal characteristics of the sensor (IOP). A system calibration procedure has been recommended by worldwide studies to obtain accurate parameters (mounting and sensor characteristics) for applications of the direct sensor orientation. Commonly, mounting and sensor characteristics are not stable; they can vary in different flight conditions. The system calibration requires a geometric arrangement of the flight and/or control points to decouple correlated parameters, which are not available in the conventional photogrammetric flight. Considering this difficulty, this study investigates the feasibility of the in situ camera calibration to improve the accuracy of the direct georeferencing of aerial images. The camera calibration uses a minimum image block, extracted from the conventional photogrammetric flight, and control point arrangement. A digital Vexcel UltraCam XP camera connected to POS AV TM system was used to get two photogrammetric image blocks. The blocks have different flight directions and opposite flight line. In situ calibration procedures to compute different sets of IOPs are performed and their results are analyzed and used in photogrammetric experiments. The IOPs from the in situ camera calibration improve significantly the accuracies of the direct georeferencing. The obtained results from the experiments are shown and discussed.
In-Flight Calibration of the MMS Fluxgate Magnetometers
NASA Technical Reports Server (NTRS)
Bromund, K. R.; Plaschke, F.; Strangeway, R. J.; Anderson, B. J.; Huang, B. G.; Magnes, W.; Fischer, D.; Nakamura, R.; Leinweber, H. K.; Russell, C. T.;
2017-01-01
We present an overview of the approach to in-flight calibration, which is a coordinated effort between the University of California Los Angeles (UCLA), Space Research Institute, Graz, Austria (IWF) and the NASA Goddard Space Flight Center (GSFC). We present details of the calibration effort at GSFC. During the first dayside season of the Magnetospheric Multiscale (MMS) mission, the in-flight calibration process for the Fluxgate magnetometers (FGM) implemented an algorithm that selected a constant offset (zero-level) for each sensor on each orbit. This method was generally able to reduce the amplitude of residual spin tone to less than 0.2 nT within the region of interest. However, there are times when the offsets do show significant short-term variations. These variations are most prominent in the nighttime season (phase 1X), when eclipses are accompanied by offset changes as large as 1 nT. Eclipses are followed by a recovery period as long as 12 hours where the offsets continue to change as temperatures stabilize. Understanding and compensating for these changes will become critical during Phase 2 of the mission in 2017, when the nightside will become the focus of MMS science. Although there is no direct correlation between offset and temperature, the offsets are seen for the period of any given week to be well-characterized as function of instrument temperature. Using this property, a new calibration method has been developed that has proven effective in compensating for temperature-dependent offsets during phase 1X of the MMS mission and also promises to further refine calibration quality during the dayside season.
NASA Astrophysics Data System (ADS)
Dziomba, Thorsten; Koenders, Ludger; Wilkening, Günter
2005-10-01
The continuing miniaturization in many technologies - among them the optical systems - demands high-resolution measurements with uncertainties in the nanometre-range or even well below. A brief introduction of measurement methods used at the micro- & nanometre scale is therefore given as introduction. While a wide range of these methods are well established for the determination of various physical properties down to the nanometric scale, it is Scanning Probe Microscopy (SPM) that provides a unique direct access to topographic surface features in the size range from atomic diameters to some ten or hundred micrometres. With the increasing use of SPMs as quantitative measurement instruments, the demand for standardized calibration routines also for this type of instruments rises. However, except for a few specially designed set-ups mainly at National Metrology Institutes (e. g. PTB in Germany), measurements made with SPMs usually lack traceability to the metre definition. A number of physical transfer standards have therefore been developed and are already available commercially. While detailed knowledge of the standards' properties is a prerequisite for their practical applicability, the calibration procedure itself deserves careful consideration as well. As there is, up to now, no generally accepted concept how to perform SPM calibrations, guidelines are now being developed on various national and international levels, e. g. VDI/VDE-GMA in Germany and ISO. This papers discusses the draft of an SPM calibration guideline by focusing on several critical practical aspects of SPM calibration. The paper intends to invite the readers to take active part in guideline discussions.
Actively controlled vibration welding system and method
Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An
2013-04-02
A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prez, L de; Pooter, J de; Jansen, B
2016-06-15
Purpose: Reference dosimetry in MR-guided radiotherapy is performed in the presence of a B-field. As a consequence the response of ionization chambers changes considerably and depends on parameters not considered in traditional reference dosimetry. Therefore future Codes of Practices need ionization chamber correction factors to correct for both the change in beam quality and the presence of a B-field. The objective was to study the feasibility of water calorimetric absorbed-dose measurements in a 1.5 T B-field of an MRLinac and the direct measurement of kQ,B calibration of ionization chambers. Methods: Calorimetric absorbed dose to water Dw was measured with amore » new water calorimeter in the bore of an MRLinac (TPR20,10 of 0.702). Two waterproof ionization chambers (PTW 30013, IBA FC-65G) were calibrated inside the calorimeter phantom (ND,w,Q,B). Both measurements were normalized to a monitor ionization chamber. Ionization chamber measurements were corrected for conventional influence parameter. Based on the chambers’ Co-60 calibrations (ND,w,Q0), measured directly against the calorimeter. In this study the correction factors kQ,B was determined as the ratio of the calibration coefficients in the MRLinac and in Co-60. Additionally, kB was determined based on kQ values obtained with the IAEA TRS-398 Code of Practice. Results: The kQ,B factors of the ionization chambers mentioned above were respectively 0.9488(8) and 0.9445(8) with resulting kB factors of 0.961(13) and 0.952(13) with standard uncertainties on the least significant digit(s) between brackets. Conclusion: Calorimetric Dw measurements and calibration of waterproof ionization chambers were successfully carried out in the 1.5 T B-field of an MRLinac with a standard uncertainty of 0.7%. Preliminary kQ,B and kB factors were determined with standard uncertainties of respectively 0.8% and 1.3%. The kQ,B agrees with an alternative method within 0.4%. The feasibility of water calorimetry in the presence of B-fields was demonstrated by the direct determination of Dw and kQ,B. This work was supported by EMRP grant HLT06. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.« less
Anatomical Calibration through Post-Processing of Standard Motion Tests Data.
Kong, Weisheng; Sessa, Salvatore; Zecca, Massimiliano; Takanishi, Atsuo
2016-11-28
The inertial measurement unit is popularly used as a wearable and flexible tool for human motion tracking. Sensor-to-body alignment, or anatomical calibration (AC), is fundamental to improve accuracy and reliability. Current AC methods either require extra movements or are limited to specific joints. In this research, the authors propose a novel method to achieve AC from standard motion tests (such as walking, or sit-to-stand), and compare the results with the AC obtained from specially designed movements. The proposed method uses the limited acceleration range on medial-lateral direction, and applies principal component analysis to estimate the sagittal plane, while the vertical direction is estimated from acceleration during quiet stance. The results show a good correlation between the two sets of IMUs placed on frontal/back and lateral sides of head, trunk and lower limbs. Moreover, repeatability and convergence were verified. The AC obtained from sit-to-stand and walking achieved similar results as the movements specifically designed for upper and lower body AC, respectively, except for the feet. Therefore, the experiments without AC performed can be recovered through post-processing on the walking and sit-to-stand data. Moreover, extra movements for AC can be avoided during the experiment and instead achieved through the proposed method.
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Abd El-Rahman, Mohamed K.
2015-03-01
Normalized spectra have a great power in resolving spectral overlap of challenging Orphenadrine (ORP) and Paracetamol (PAR) binary mixture, four smart techniques utilizing the normalized spectra were used in this work, namely, amplitude modulation (AM), simultaneous area ratio subtraction (SARS), simultaneous derivative spectrophotometry (S1DD) and ratio H-point standard addition method (RHPSAM). In AM, peak amplitude at 221.6 nm of the division spectra was measured for both ORP and PAR determination, while in SARS, concentration of ORP was determined using the area under the curve from 215 nm to 222 nm of the regenerated ORP zero order absorption spectra, in S1DD, concentration of ORP was determined using the peak amplitude at 224 nm of the first derivative ratio spectra. PAR concentration was determined directly at 288 nm in the division spectra obtained during the manipulation steps in the previous three methods. The last RHPSAM is a dual wavelength method in which two calibrations were plotted at 216 nm and 226 nm. RH point is the intersection of the two calibration lines, where ORP and PAR concentrations were directly determined from coordinates of RH point. The proposed methods were applied successfully for the determination of ORP and PAR in their dosage form.
Weldegebreal, Blen; Redi-Abshiro, Mesfin; Chandravanshi, Bhagwan Singh
2017-12-05
This study was conducted to develop fast and cost effective methods for the determination of caffeine in green coffee beans. In the present work direct determination of caffeine in aqueous solution of green coffee bean was performed using FT-IR-ATR and fluorescence spectrophotometry. Caffeine was also directly determined in dimethylformamide solution using NIR spectroscopy with univariate calibration technique. The percentage of caffeine for the same sample of green coffee beans was determined using the three newly developed methods. The caffeine content of the green coffee beans was found to be 1.52 ± 0.09 (% w/w) using FT-IR-ATR, 1.50 ± 0.14 (% w/w) using NIR and 1.50 ± 0.05 (% w/w) using fluorescence spectroscopy. The means of the three methods were compared by applying one way analysis of variance and at p = 0.05 significance level the means were not significantly different. The percentage of caffeine in the same sample of green coffee bean was also determined by using the literature reported UV/Vis spectrophotometric method for comparison and found to be 1.40 ± 0.02 (% w/w). New simple, rapid and inexpensive methods were developed for direct determination of caffeine content in aqueous solution of green coffee beans using FT-IR-ATR and fluorescence spectrophotometries. NIR spectrophotometry can also be used as alternative choice of caffeine determination using reduced amount of organic solvent (dimethylformamide) and univariate calibration technique. These analytical methods may therefore, be recommended for the rapid, simple, safe and cost effective determination of caffeine in green coffee beans.
Air-kerma strength determination of a new directional {sup 103}Pd source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aima, Manik, E-mail: aima@wisc.edu; Reed, Joshua L.; DeWerd, Larry A.
2015-12-15
Purpose: A new directional {sup 103}Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing {sup 103}Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active {sup 103}Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normallymore » used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S{sub K}) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S{sub K} to a well-type ionization chamber. Methods: S{sub K} measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S{sub K} from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S{sub K} with the presence of gold fluorescent energy lines. In addition to S{sub K} measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S{sub K} values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the S{sub K} of four CivaDots with reproducibilities within 0.3%. Monte Carlo methods were used to calculate the UW VAFAC correction factors and the calculated spectrum emitted from a CivaDot was experimentally verified with HPGe detector measurements. The well-type ionization chamber showed minimal variation in response (<1.5%) as a function of source positioning angle, indicating that an American Association of Physicists in Medicine (AAPM) Accredited Dosimetry Calibration Laboratory calibrated well chamber would be a suitable device to transfer an S{sub K}-based calibration to a clinical user. S{sub K} per well-chamber ionization current ratios were consistent among the four dots measured. Additionally, the measurements and predictions of anisotropy show uniform emission within the solid angle of the VAFAC, which demonstrates the robustness of the S{sub K} measurement approach. Conclusions: This characterization of a new {sup 103}Pd directional brachytherapy source helps to establish calibration methods that could ultimately be used in the well-established AAPM Task Group 43 formalism. Monte Carlo methods accurately predict the changes in the energy spectrum caused by the fluorescent x-rays produced in the gold shield.« less
NASA Astrophysics Data System (ADS)
Estapa, Meg; Durkin, Colleen; Buesseler, Ken; Johnson, Rod; Feen, Melanie
2017-02-01
Our mechanistic understanding of the processes controlling the ocean's biological pump is limited, in part, by our lack of observational data at appropriate timescales. The "optical sediment trap" (OST) technique utilizes a transmissometer on a quasi-Lagrangian platform to collect sedimenting particles. This method could help fill the observational gap by providing autonomous measurements of particulate carbon (PC) flux in the upper mesopelagic ocean at high spatiotemporal resolution. Here, we used a combination of field measurements and laboratory experiments to test hydrodynamic and zooplankton-swimmer effects on the OST method, and we quantitatively calibrated this method against PC flux measured directly in same-platform, neutrally buoyant sediment traps (NBSTs) during 5 monthly cruises at the Bermuda Atlantic Time-series Study (BATS) site. We found a well-correlated, positive relationship (R2=0.66, n=15) between the OST proxy, and the PC flux measured directly using NBSTs. Laboratory tests showed that scattering of light from multiple particles between the source and detector was unlikely to affect OST proxy results. We found that the carbon-specific attenuance of sinking particles was larger than literature values for smaller, suspended particles in the ocean, and consistent with variable carbon: size relationships reported in the literature for sinking particles. We also found evidence for variability in PC flux at high spatiotemporal resolution. Our results are consistent with the literature on particle carbon content and optical properties in the ocean, and support more widespread use of the OST proxy, with proper site-specific and platform-specific calibration, to better understand variability in the ocean biological pump.
Yao, Mingyin; Yang, Hui; Huang, Lin; Chen, Tianbing; Rao, Gangfu; Liu, Muhua
2017-05-10
In seeking a novel method with the ability of green analysis in monitoring toxic heavy metals residue in fresh leafy vegetables, laser-induced breakdown spectroscopy (LIBS) was applied to prove its capability in performing this work. The spectra of fresh vegetable samples polluted in the lab were collected by optimized LIBS experimental setup, and the reference concentrations of cadmium (Cd) from samples were obtained by conventional atomic absorption spectroscopy after wet digestion. The direct calibration employing intensity of single Cd line and Cd concentration exposed the weakness of this calibration method. Furthermore, the accuracy of linear calibration can be improved a little by triple Cd lines as characteristic variables, especially after the spectra were pretreated. However, it is not enough in predicting Cd in samples. Therefore, partial least-squares regression (PLSR) was utilized to enhance the robustness of quantitative analysis. The results of the PLSR model showed that the prediction accuracy of the Cd target can meet the requirement of determination in food safety. This investigation presented that LIBS is a promising and emerging method in analyzing toxic compositions in agricultural products, especially combined with suitable chemometrics.
Depth profile measurement with lenslet images of the plenoptic camera
NASA Astrophysics Data System (ADS)
Yang, Peng; Wang, Zhaomin; Zhang, Wei; Zhao, Hongying; Qu, Weijuan; Zhao, Haimeng; Asundi, Anand; Yan, Lei
2018-03-01
An approach for carrying out depth profile measurement of an object with the plenoptic camera is proposed. A single plenoptic image consists of multiple lenslet images. To begin with, these images are processed directly with a refocusing technique to obtain the depth map, which does not need to align and decode the plenoptic image. Then, a linear depth calibration is applied based on the optical structure of the plenoptic camera for depth profile reconstruction. One significant improvement of the proposed method concerns the resolution of the depth map. Unlike the traditional method, our resolution is not limited by the number of microlenses inside the camera, and the depth map can be globally optimized. We validated the method with experiments on depth map reconstruction, depth calibration, and depth profile measurement, with the results indicating that the proposed approach is both efficient and accurate.
Fish-Eye Observing with Phased Array Radio Telescopes
NASA Astrophysics Data System (ADS)
Wijnholds, S. J.
The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.
Kaufmann, Tobias; Völker, Stefan; Gunesch, Laura; Kübler, Andrea
2012-01-01
Brain-computer interfaces (BCI) based on event-related potentials (ERP) allow for selection of characters from a visually presented character-matrix and thus provide a communication channel for users with neurodegenerative disease. Although they have been topic of research for more than 20 years and were multiply proven to be a reliable communication method, BCIs are almost exclusively used in experimental settings, handled by qualified experts. This study investigates if ERP-BCIs can be handled independently by laymen without expert support, which is inevitable for establishing BCIs in end-user's daily life situations. Furthermore we compared the classic character-by-character text entry against a predictive text entry (PTE) that directly incorporates predictive text into the character-matrix. N = 19 BCI novices handled a user-centered ERP-BCI application on their own without expert support. The software individually adjusted classifier weights and control parameters in the background, invisible to the user (auto-calibration). All participants were able to operate the software on their own and to twice correctly spell a sentence with the auto-calibrated classifier (once with PTE, once without). Our PTE increased spelling speed and, importantly, did not reduce accuracy. In sum, this study demonstrates feasibility of auto-calibrating ERP-BCI use, independently by laymen and the strong benefit of integrating predictive text directly into the character-matrix.
Kaufmann, Tobias; Völker, Stefan; Gunesch, Laura; Kübler, Andrea
2012-01-01
Brain–computer interfaces (BCI) based on event-related potentials (ERP) allow for selection of characters from a visually presented character-matrix and thus provide a communication channel for users with neurodegenerative disease. Although they have been topic of research for more than 20 years and were multiply proven to be a reliable communication method, BCIs are almost exclusively used in experimental settings, handled by qualified experts. This study investigates if ERP–BCIs can be handled independently by laymen without expert support, which is inevitable for establishing BCIs in end-user’s daily life situations. Furthermore we compared the classic character-by-character text entry against a predictive text entry (PTE) that directly incorporates predictive text into the character-matrix. N = 19 BCI novices handled a user-centered ERP–BCI application on their own without expert support. The software individually adjusted classifier weights and control parameters in the background, invisible to the user (auto-calibration). All participants were able to operate the software on their own and to twice correctly spell a sentence with the auto-calibrated classifier (once with PTE, once without). Our PTE increased spelling speed and, importantly, did not reduce accuracy. In sum, this study demonstrates feasibility of auto-calibrating ERP–BCI use, independently by laymen and the strong benefit of integrating predictive text directly into the character-matrix. PMID:22833713
Inter-printer color calibration using constrained printer gamut
NASA Astrophysics Data System (ADS)
Zeng, Huanzhao; Humet, Jacint
2005-01-01
Due to the drop size variation of the print heads in inkjet printers, consistent color reproduction becomes challenge for high quality color printing. To improve the color consistency, we developed a method and system to characterize a pair of printers using a colorimeter or a color scanner. Different from prior known approaches that simply try to match colors of one printer to the other without considering the gamut differences, we first constructed an overlapped gamut in which colors can be produced by both printers, and then characterized both printers using a pair of 3-D or 4-D lookup tables (LUT) to produce same colors limited to the overlapped gamut. Each LUT converts nominal device color values into engine-dependent device color values limited to the overlapped gamut. Compared to traditional approaches, the color calibration accuracy is significantly improved. This method can be simply extended to calibrate more than two engines. In a color imaging system that includes a scanner and more than one print engine, this method improves the color consistency very effectively without increasing hardware costs. A few examples for applying this method are: 1) one-pass bi-directional inkjet printing; 2) a printer with two or more sets of pens for printing; and 3) a system embedded with a pair of printers (the number of printers could be easily incremented).
Matschat, Ralf; Hassler, Jürgen; Traub, Heike; Dette, Angelika
2005-12-01
The members of the committee NMP 264 "Chemical analysis of non-oxidic raw and basic materials" of the German Standards Institute (DIN) have organized two interlaboratory comparisons for multielement determination of trace elements in silicon carbide (SiC) powders via direct solid sampling methods. One of the interlaboratory comparisons was based on the application of inductively coupled plasma optical emission spectrometry with electrothermal vaporization (ETV ICP OES), and the other on the application of optical emission spectrometry with direct current arc (DC arc OES). The interlaboratory comparisons were organized and performed in the framework of the development of two standards related to "the determination of mass fractions of metallic impurities in powders and grain sizes of ceramic raw and basic materials" by both methods. SiC powders were used as typical examples of this category of material. The aim of the interlaboratory comparisons was to determine the repeatability and reproducibility of both analytical methods to be standardized. This was an important contribution to the practical applicability of both draft standards. Eight laboratories participated in the interlaboratory comparison with ETV ICP OES and nine in the interlaboratory comparison with DC arc OES. Ten analytes were investigated by ETV ICP OES and eleven by DC arc OES. Six different SiC powders were used for the calibration. The mass fractions of their relevant trace elements were determined after wet chemical digestion. All participants followed the analytical requirements described in the draft standards. In the calculation process, three of the calibration materials were used successively as analytical samples. This was managed in the following manner: the material that had just been used as the analytical sample was excluded from the calibration, so the five other materials were used to establish the calibration plot. The results from the interlaboratory comparisons were summarized and used to determine the repeatability and the reproducibility (expressed as standard deviations) of both methods. The calculation was carried out according to the related standard. The results are specified and discussed in this paper, as are the optimized analytical conditions determined and used by the authors of this paper. For both methods, the repeatability relative standard deviations were <25%, usually ~10%, and the reproducibility relative standard deviations were <35%, usually ~15%. These results were regarded as satifactory for both methods intended for rapid analysis of materials for which decomposition is difficult and time-consuming. Also described are some results from an interlaboratory comparison used to certify one of the materials that had been previously used for validation in both interlaboratory comparisons. Thirty laboratories (from eight countries) participated in this interlaboratory comparison for certification. As examples, accepted results are shown from laboratories that used ETV ICP OES or DC arc OES and had performed calibrations by using solutions or oxides, respectively. The certified mass fractions of the certified reference materials were also compared with the mass fractions determined in the interlaboratory comparisons performed within the framework of method standardization. Good agreement was found for most of the analytes.
Automatic multi-camera calibration for deployable positioning systems
NASA Astrophysics Data System (ADS)
Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan
2012-06-01
Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.
A Novel Multi-Camera Calibration Method based on Flat Refractive Geometry
NASA Astrophysics Data System (ADS)
Huang, S.; Feng, M. C.; Zheng, T. X.; Li, F.; Wang, J. Q.; Xiao, L. F.
2018-03-01
Multi-camera calibration plays an important role in many field. In the paper, we present a novel multi-camera calibration method based on flat refractive geometry. All cameras can acquire calibration images of transparent glass calibration board (TGCB) at the same time. The application of TGCB leads to refractive phenomenon which can generate calibration error. The theory of flat refractive geometry is employed to eliminate the error. The new method can solve the refractive phenomenon of TGCB. Moreover, the bundle adjustment method is used to minimize the reprojection error and obtain optimized calibration results. Finally, the four-cameras calibration results of real data show that the mean value and standard deviation of the reprojection error of our method are 4.3411e-05 and 0.4553 pixel, respectively. The experimental results show that the proposed method is accurate and reliable.
Wherry, Susan A.; Wood, Tamara M.; Anderson, Chauncey W.
2015-01-01
Using the extended 1991–2010 external phosphorus loading dataset, the lake TMDL model was recalibrated following the same procedures outlined in the Phase 1 review. The version of the model selected for further development incorporated an updated sediment initial condition, a numerical solution method for the chlorophyll a model, changes to light and phosphorus factors limiting algal growth, and a new pH-model regression, which removed Julian day dependence in order to avoid discontinuities in pH at year boundaries. This updated lake TMDL model was recalibrated using the extended dataset in order to compare calibration parameters to those obtained from a calibration with the original 7.5-year dataset. The resulting algal settling velocity calibrated from the extended dataset was more than twice the value calibrated with the original dataset, and, because the calibrated values of algal settling velocity and recycle rate are related (more rapid settling required more rapid recycling), the recycling rate also was larger than that determined with the original dataset. These changes in calibration parameters highlight the uncertainty in critical rates in the Upper Klamath Lake TMDL model and argue for their direct measurement in future data collection to increase confidence in the model predictions.
NASA Astrophysics Data System (ADS)
Dhara, Sangita; Misra, N. L.; Aggarwal, S. K.; Venugopal, V.
2010-06-01
An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 µg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 µg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1 σ) and the results deviated from the expected values by < 4% on average.
A calibration method of infrared LVF based spectroradiometer
NASA Astrophysics Data System (ADS)
Liu, Jiaqing; Han, Shunli; Liu, Lei; Hu, Dexin
2017-10-01
In this paper, a calibration method of LVF-based spectroradiometer is summarize, including spectral calibration and radiometric calibration. The spectral calibration process as follow: first, the relationship between stepping motor's step number and transmission wavelength is derivative by theoretical calculation, including a non-linearity correction of LVF;second, a line-to-line method was used to corrected the theoretical wavelength; Finally, the 3.39 μm and 10.69 μm laser is used for spectral calibration validation, show the sought 0.1% accuracy or better is achieved.A new sub-region multi-point calibration method is used for radiometric calibration to improving accuracy, results show the sought 1% accuracy or better is achieved.
NASA Astrophysics Data System (ADS)
Kedrov, O. K.; Kedrov, E. O.; Sergeyeva, N. A.; Zabarinskaya, L. P.; Gordon, V. R.
2008-05-01
The dynamic calibration method (DCM), using natural seismicity data and initially elaborated in [Kedrov, 2001; Kedrov et al., 2001; Kedrov and Kedrov, 2003], is applied to International Monitoring System (IMS) stations in Central Asia. The algorithm of the method is refined and a program is designed for calibrating diagnostic parameters (discriminants) that characterize a seismic source on the source-station traces. The DCM calibration of stations in relation to the region under study is performed by the choice of attenuation coefficients that adapt the diagnostic parameters to the conditions in a reference region. In this method, the stable Eurasia region is used as the latter. The calibration used numerical data samples taken from the archive of the International Data Centre (IDC) for the IMS stations MKAR, BVAR, EIL, ASF, and CMAR. In this paper, we used discriminants in the spectral and time domains that have the form D_i = X_i - a_m m_b - b_Δ log Δ and are independent of the magnitude m b and the epicentral distance Δ; these discriminants were elaborated in [Kedrov et al., 1990; Kedrov and Lyuke, 1999] on the basis of a method used for identification of events at regional distances in Eurasia. Prerequisites of the DCM are the assumptions that the coefficient a m is regionindependent and the coefficient b Δ depends only on the geotectonic characteristics of the medium and does not depend on the source type. Thus, b Δ can be evaluated only from a sample of earthquakes in the region studied; it is used for adapting the discriminants D( X i ) in the region studied to the reference region. The algorithm is constructed in such a way that corrected values of D( X i) are calculated from the found values of the calibration coefficients b Δ, after which natural events in the region under study are selected by filtering. Empirical estimates of the filtering efficiency as a function of a station vary in a range of 95 100%. The DCM was independently tested using records obtained at the IRIS (Incorporated Research Institutions for Seismology) stations BRVK and MAKZ from explosions detonated in India on May 11, 1998, and Pakistan on May 28, 1998; these stations are similar in location and recording instrumentation characteristics to the IMS stations BVAR and MKAR. This test resulted in correct recognition of the source type and thereby directly confirmed the validity of the proposed calibration method of stations with the use of natural seismicity data. It is shown that the calibration coefficients b Δ for traces similar in the conditions of signal propagation (e.g., the traces from Iran to the stations EIL and ASF) are comparable for nearly all diagnostic parameters. We arrive at the conclusion that the method of dynamic calibration of stations using natural seismicity data in a region where no explosions were detonated can be significant for a rapid and inexpensive calibration of IMS stations. The DCM can also be used for recognition of industrial chemical explosions that are sometimes erroneously classified in regional catalogs as earthquakes.
Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B
2014-09-01
Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87
Optics-Only Calibration of a Neural-Net Based Optical NDE Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
A calibration process is presented that uses optical measurements alone to calibrate a neural-net based NDE method. The method itself detects small changes in the vibration mode shapes of structures. The optics-only calibration process confirms previous work that the sensitivity to vibration-amplitude changes can be as small as 10 nanometers. A more practical value in an NDE service laboratory is shown to be 50 nanometers. Both model-generated and experimental calibrations are demonstrated using two implementations of the calibration technique. The implementations are based on previously published demonstrations of the NDE method and an alternative calibration procedure that depends on comparing neural-net and point sensor measurements. The optics-only calibration method, unlike the alternative method, does not require modifications of the structure being tested or the creation of calibration objects. The calibration process can be used to test improvements in the NDE process and to develop a vibration-mode-independence of damagedetection sensitivity. The calibration effort was intended to support NASA s objective to promote safety in the operations of ground test facilities or aviation safety, in general, by allowing the detection of the gradual onset of structural changes and damage.
NASA Technical Reports Server (NTRS)
Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher
2015-01-01
Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.
Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Moyer, David; Turpie, Kevin; DeLuccia, Frank; Moeller, Christopher
2016-01-01
Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered. PMID:26836861
Calibration and validation of wearable monitors.
Bassett, David R; Rowlands, Alex; Trost, Stewart G
2012-01-01
Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.
NASA Astrophysics Data System (ADS)
Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai
2016-05-01
The commonly employed calibration methods for laboratory-made spectrometers have several disadvantages, including poor calibration when the number of characteristic spectral peaks is low. Therefore, we present a wavelength calibration method using relative k-space distribution with low coherence interferometer. The proposed method utilizes an interferogram with a perfect sinusoidal pattern in k-space for calibration. Zero-crossing detection extracts the k-space distribution of a spectrometer from the interferogram in the wavelength domain, and a calibration lamp provides information about absolute wavenumbers. To assign wavenumbers, wavelength-to-k-space conversion is required for the characteristic spectrum of the calibration lamp with the extracted k-space distribution. Then, the wavelength calibration is completed by inverse conversion of the k-space into wavelength domain. The calibration performance of the proposed method was demonstrated with two experimental conditions of four and eight characteristic spectral peaks. The proposed method elicited reliable calibration results in both cases, whereas the conventional method of third-order polynomial curve fitting failed to determine wavelengths in the case of four characteristic peaks. Moreover, for optical coherence tomography imaging, the proposed method could improve axial resolution due to higher suppression of sidelobes in point spread function than the conventional method. We believe that our findings can improve not only wavelength calibration accuracy but also resolution for optical coherence tomography.
Process analytical technology in continuous manufacturing of a commercial pharmaceutical product.
Vargas, Jenny M; Nielsen, Sarah; Cárdenas, Vanessa; Gonzalez, Anthony; Aymat, Efrain Y; Almodovar, Elvin; Classe, Gustavo; Colón, Yleana; Sanchez, Eric; Romañach, Rodolfo J
2018-03-01
The implementation of process analytical technology and continuous manufacturing at an FDA approved commercial manufacturing site is described. In this direct compaction process the blends produced were monitored with a Near Infrared (NIR) spectroscopic calibration model developed with partial least squares (PLS) regression. The authors understand that this is the first study where the continuous manufacturing (CM) equipment was used as a gravimetric reference method for the calibration model. A principal component analysis (PCA) model was also developed to identify the powder blend, and determine whether it was similar to the calibration blends. An air diagnostic test was developed to assure that powder was present within the interface when the NIR spectra were obtained. The air diagnostic test as well the PCA and PLS calibration model were integrated into an industrial software platform that collects the real time NIR spectra and applies the calibration models. The PCA test successfully detected an equipment malfunction. Variographic analysis was also performed to estimate the sampling analytical errors that affect the results from the NIR spectroscopic method during commercial production. The system was used to monitor and control a 28 h continuous manufacturing run, where the average drug concentration determined by the NIR method was 101.17% of label claim with a standard deviation of 2.17%, based on 12,633 spectra collected. The average drug concentration for the tablets produced from these blends was 100.86% of label claim with a standard deviation of 0.4%, for 500 tablets analyzed by Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The excellent agreement between the mean drug concentration values in the blends and tablets produced provides further evidence of the suitability of the validation strategy that was followed. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, Menghua
2003-01-01
The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.
Verification of the ISO calibration method for field pyranometers under tropical sky conditions
NASA Astrophysics Data System (ADS)
Janjai, Serm; Tohsing, Korntip; Pattarapanitchai, Somjet; Detkhon, Pasakorn
2017-02-01
Field pyranomters need to be annually calibrated and the International Organization for Standardization (ISO) has defined a standard method (ISO 9847) for calibrating these pyranometers. According to this standard method for outdoor calibration, the field pyranometers have to be compared to a reference pyranometer for the period of 2 to 14 days, depending on sky conditions. In this work, the ISO 9847 standard method was verified under tropical sky conditions. To verify the standard method, calibration of field pyranometers was conducted at a tropical site located in Nakhon Pathom (13.82o N, 100.04o E), Thailand under various sky conditions. The conditions of the sky were monitored by using a sky camera. The calibration results for different time periods used for the calibration under various sky conditions were analyzed. It was found that the calibration periods given by this standard method could be reduced without significant change in the final calibration result. In addition, recommendation and discussion on the use of this standard method in the tropics were also presented.
NASA Technical Reports Server (NTRS)
Mueller, Robert L.
1987-01-01
Calculations of the influence of atmospheric conditions on solar cell short-circuit current (Isc) are made using a recently developed computer model for solar spectral irradiance distribution. The results isolate the dependence of Isc on changes in the spectral irradiance distribution without the direct influence of the total irradiance level. The calculated direct normal irradiance and percent diffuse irradiance are given as a reference to indicate the expected irradiance levels. This method can be applied to the calibration of photovoltaic reference cells. Graphic examples are provided for amorphous silicon and monocrystalline silicon solar cells under direct normal and global normal solar irradiances.
NASA Astrophysics Data System (ADS)
Davies, L. J. M.; Driver, S. P.; Robotham, A. S. G.; Grootes, M. W.; Popescu, C. C.; Tuffs, R. J.; Hopkins, A.; Alpaslan, M.; Andrews, S. K.; Bland-Hawthorn, J.; Bremer, M. N.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Croom, S.; da Cunha, E.; Dunne, L.; Lara-López, M. A.; Liske, J.; Loveday, J.; Moffett, A. J.; Owers, M.; Phillipps, S.; Sansom, A. E.; Taylor, E. N.; Michalowski, M. J.; Ibar, E.; Smith, M.; Bourne, N.
2016-09-01
We present a meta-analysis of star formation rate (SFR) indicators in the Galaxy And Mass Assembly (GAMA) survey, producing 12 different SFR metrics and determining the SFR-M* relation for each. We compare and contrast published methods to extract the SFR from each indicator, using a well-defined local sample of morphologically selected spiral galaxies, which excludes sources which potentially have large recent changes to their SFR. The different methods are found to yield SFR-M* relations with inconsistent slopes and normalizations, suggesting differences between calibration methods. The recovered SFR-M* relations also have a large range in scatter which, as SFRs of the targets may be considered constant over the different time-scales, suggests differences in the accuracy by which methods correct for attenuation in individual targets. We then recalibrate all SFR indicators to provide new, robust and consistent luminosity-to-SFR calibrations, finding that the most consistent slopes and normalizations of the SFR-M* relations are obtained when recalibrated using the radiation transfer method of Popescu et al. These new calibrations can be used to directly compare SFRs across different observations, epochs and galaxy populations. We then apply our calibrations to the GAMA II equatorial data set and explore the evolution of star formation in the local Universe. We determine the evolution of the normalization to the SFR-M* relation from 0 < z < 0.35 - finding consistent trends with previous estimates at 0.3 < z < 1.2. We then provide the definitive z < 0.35 cosmic star formation history, SFR-M* relation and its evolution over the last 3 billion years.
Research on camera on orbit radial calibration based on black body and infrared calibration stars
NASA Astrophysics Data System (ADS)
Wang, YuDu; Su, XiaoFeng; Zhang, WanYing; Chen, FanSheng
2018-05-01
Affected by launching process and space environment, the response capability of a space camera must be attenuated. So it is necessary for a space camera to have a spaceborne radiant calibration. In this paper, we propose a method of calibration based on accurate Infrared standard stars was proposed for increasing infrared radiation measurement precision. As stars can be considered as a point target, we use them as the radiometric calibration source and establish the Taylor expansion method and the energy extrapolation model based on WISE catalog and 2MASS catalog. Then we update the calibration results from black body. Finally, calibration mechanism is designed and the technology of design is verified by on orbit test. The experimental calibration result shows the irradiance extrapolation error is about 3% and the accuracy of calibration methods is about 10%, the results show that the methods could satisfy requirements of on orbit calibration.
Attitude-Independent Magnetometer Calibration for Spin-Stabilized Spacecraft
NASA Technical Reports Server (NTRS)
Natanson, Gregory
2005-01-01
The paper describes a three-step estimator to calibrate a Three-Axis Magnetometer (TAM) using TAM and slit Sun or star sensor measurements. In the first step, the Calibration Utility forms a loss function from the residuals of the magnitude of the geomagnetic field. This loss function is minimized with respect to biases, scale factors, and nonorthogonality corrections. The second step minimizes residuals of the projection of the geomagnetic field onto the spin axis under the assumption that spacecraft nutation has been suppressed by a nutation damper. Minimization is done with respect to various directions of the body spin axis in the TAM frame. The direction of the spin axis in the inertial coordinate system required for the residual computation is assumed to be unchanged with time. It is either determined independently using other sensors or included in the estimation parameters. In both cases all estimation parameters can be found using simple analytical formulas derived in the paper. The last step is to minimize a third loss function formed by residuals of the dot product between the geomagnetic field and Sun or star vector with respect to the misalignment angle about the body spin axis. The method is illustrated by calibrating TAM for the Fast Auroral Snapshot Explorer (FAST) using in-flight TAM and Sun sensor data. The estimated parameters include magnetic biases, scale factors, and misalignment angles of the spin axis in the TAM frame. Estimation of the misalignment angle about the spin axis was inconclusive since (at least for the selected time interval) the Sun vector was about 15 degrees from the direction of the spin axis; as a result residuals of the dot product between the geomagnetic field and Sun vectors were to a large extent minimized as a by-product of the second step.
A Comparison of Two Balance Calibration Model Building Methods
NASA Technical Reports Server (NTRS)
DeLoach, Richard; Ulbrich, Norbert
2007-01-01
Simulated strain-gage balance calibration data is used to compare the accuracy of two balance calibration model building methods for different noise environments and calibration experiment designs. The first building method obtains a math model for the analysis of balance calibration data after applying a candidate math model search algorithm to the calibration data set. The second building method uses stepwise regression analysis in order to construct a model for the analysis. Four balance calibration data sets were simulated in order to compare the accuracy of the two math model building methods. The simulated data sets were prepared using the traditional One Factor At a Time (OFAT) technique and the Modern Design of Experiments (MDOE) approach. Random and systematic errors were introduced in the simulated calibration data sets in order to study their influence on the math model building methods. Residuals of the fitted calibration responses and other statistical metrics were compared in order to evaluate the calibration models developed with different combinations of noise environment, experiment design, and model building method. Overall, predicted math models and residuals of both math model building methods show very good agreement. Significant differences in model quality were attributable to noise environment, experiment design, and their interaction. Generally, the addition of systematic error significantly degraded the quality of calibration models developed from OFAT data by either method, but MDOE experiment designs were more robust with respect to the introduction of a systematic component of the unexplained variance.
Flight calibration tests of a nose-boom-mounted fixed hemispherical flow-direction sensor
NASA Technical Reports Server (NTRS)
Armistead, K. H.; Webb, L. D.
1973-01-01
Flight calibrations of a fixed hemispherical flow angle-of-attack and angle-of-sideslip sensor were made from Mach numbers of 0.5 to 1.8. Maneuvers were performed by an F-104 airplane at selected altitudes to compare the measurement of flow angle of attack from the fixed hemispherical sensor with that from a standard angle-of-attack vane. The hemispherical flow-direction sensor measured differential pressure at two angle-of-attack ports and two angle-of-sideslip ports in diametrically opposed positions. Stagnation pressure was measured at a center port. The results of these tests showed that the calibration curves for the hemispherical flow-direction sensor were linear for angles of attack up to 13 deg. The overall uncertainty in determining angle of attack from these curves was plus or minus 0.35 deg or less. A Mach number position error calibration curve was also obtained for the hemispherical flow-direction sensor. The hemispherical flow-direction sensor exhibited a much larger position error than a standard uncompensated pitot-static probe.
A panning DLT procedure for three-dimensional videography.
Yu, B; Koh, T J; Hay, J G
1993-06-01
The direct linear transformation (DLT) method [Abdel-Aziz and Karara, APS Symposium on Photogrammetry. American Society of Photogrammetry, Falls Church, VA (1971)] is widely used in biomechanics to obtain three-dimensional space coordinates from film and video records. This method has some major shortcomings when used to analyze events which take place over large areas. To overcome these shortcomings, a three-dimensional data collection method based on the DLT method, and making use of panning cameras, was developed. Several small single control volumes were combined to construct a large total control volume. For each single control volume, a regression equation (calibration equation) is developed to express each of the 11 DLT parameters as a function of camera orientation, so that the DLT parameters can then be estimated from arbitrary camera orientations. Once the DLT parameters are known for at least two cameras, and the associated two-dimensional film or video coordinates of the event are obtained, the desired three-dimensional space coordinates can be computed. In a laboratory test, five single control volumes (in a total control volume of 24.40 x 2.44 x 2.44 m3) were used to test the effect of the position of the single control volume on the accuracy of the computed three dimensional space coordinates. Linear and quadratic calibration equations were used to test the effect of the order of the equation on the accuracy of the computed three dimensional space coordinates. For four of the five single control volumes tested, the mean resultant errors associated with the use of the linear calibration equation were significantly larger than those associated with the use of the quadratic calibration equation. The position of the single control volume had no significant effect on the mean resultant errors in computed three dimensional coordinates when the quadratic calibration equation was used. Under the same data collection conditions, the mean resultant errors in the computed three dimensional coordinates associated with the panning and stationary DLT methods were 17 and 22 mm, respectively. The major advantages of the panning DLT method lie in the large image sizes obtained and in the ease with which the data can be collected. The method also has potential for use in a wide variety of contexts. The major shortcoming of the method is the large amount of digitizing necessary to calibrate the total control volume. Adaptations of the method to reduce the amount of digitizing required are being explored.
NASA Astrophysics Data System (ADS)
McCorkel, J.; Kuester, M. A.; Johnson, B. R.; Krause, K.; Kampe, T. U.; Moore, D. J.
2011-12-01
The National Ecological Observatory Network (NEON) is a research facility under development by the National Science Foundation to improve our understanding of and ability to forecast the impacts of climate change, land-use change, and invasive species on ecology. The infrastructure, designed to operate over 30 years or more, includes site-based flux tower and field measurements, coordinated with airborne remote sensing observations to observe key ecological processes over a broad range of temporal and spatial scales. NEON airborne data on vegetation biochemical, biophysical, and structural properties and on land use and land cover will be captured at 1 to 2 meter resolution by an imaging spectrometer, a small-footprint waveform-LiDAR and a high-resolution digital camera. Annual coverage of the 60 NEON sites and capacity to support directed research flights or respond to unexpected events will require three airborne observation platforms (AOP). The integration of field and airborne data with satellite observations and other national geospatial data for analysis, monitoring and input to ecosystem models will extend NEON observations to regions across the United States not directly sampled by the observatory. The different spatial scales and measurement methods make quantitative comparisons between remote sensing and field data, typically collected over small sample plots (e.g. < 0.2 ha), difficult. New approaches to developing temporal and spatial scaling relationships between these data are necessary to enable validation of airborne and satellite remote sensing data and for incorporation of these data into continental or global scale ecological models. In addition to consideration of the methods used to collect ground-based measurements, careful calibration of the remote sensing instrumentation and an assessment of the accuracy of algorithms used to derive higher-level science data products are needed. Furthermore, long-term consistency of the data collected by all three airborne instrument packages over the NEON sites requires traceability of the calibration to national standards, field-based verification of instrument calibration and stability in the aircraft environment, and an independent assessment of the quality of derived data products. This work describes the development of the calibration laboratory, early evaluation of field-based vicarious calibration, development of scaling relationships, and test flights. Complementary laboratory- and field-based calibration of the AOP in addition to consistency with on-board calibration methods provide confidence that low-level data such as radiance and surface reflectance measurements are accurate and comparable among different sensors. Algorithms that calculate higher-level data products including essential climate variables will be validated against equivalent ground- and satellite-based results. Such a validated data set across multiple spatial and temporal scales is key to enabling ecosystem models to forecast the effects of climate change, land-use change and invasive species on the continental scale.
Geometric calibration of Colour and Stereo Surface Imaging System of ESA's Trace Gas Orbiter
NASA Astrophysics Data System (ADS)
Tulyakov, Stepan; Ivanov, Anton; Thomas, Nicolas; Roloff, Victoria; Pommerol, Antoine; Cremonese, Gabriele; Weigel, Thomas; Fleuret, Francois
2018-01-01
There are many geometric calibration methods for "standard" cameras. These methods, however, cannot be used for the calibration of telescopes with large focal lengths and complex off-axis optics. Moreover, specialized calibration methods for the telescopes are scarce in literature. We describe the calibration method that we developed for the Colour and Stereo Surface Imaging System (CaSSIS) telescope, on board of the ExoMars Trace Gas Orbiter (TGO). Although our method is described in the context of CaSSIS, with camera-specific experiments, it is general and can be applied to other telescopes. We further encourage re-use of the proposed method by making our calibration code and data available on-line.
Boresight alignment method for mobile laser scanning systems
NASA Astrophysics Data System (ADS)
Rieger, P.; Studnicka, N.; Pfennigbauer, M.; Zach, G.
2010-06-01
Mobile laser scanning (MLS) is the latest approach towards fast and cost-efficient acquisition of 3-dimensional spatial data. Accurately evaluating the boresight alignment in MLS systems is an obvious necessity. However, recent systems available on the market may lack of suitable and efficient practical workflows on how to perform this calibration. This paper discusses an innovative method for accurately determining the boresight alignment of MLS systems by employing 3D laser scanners. Scanning objects using a 3D laser scanner operating in a 2D line-scan mode from various different runs and scan directions provides valuable scan data for determining the angular alignment between inertial measurement unit and laser scanner. Field data is presented demonstrating the final accuracy of the calibration and the high quality of the point cloud acquired during an MLS campaign.
Mach-zehnder based optical marker/comb generator for streak camera calibration
Miller, Edward Kirk
2015-03-03
This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.
Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut
2005-01-01
Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175
NASA Astrophysics Data System (ADS)
Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander
2017-09-01
The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.
Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander
2017-09-01
The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.
NASA Technical Reports Server (NTRS)
Eskins, Jonathan
1988-01-01
The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.
The calibration methods for Multi-Filter Rotating Shadowband Radiometer: a review
NASA Astrophysics Data System (ADS)
Chen, Maosi; Davis, John; Tang, Hongzhao; Ownby, Carolyn; Gao, Wei
2013-09-01
The continuous, over two-decade data record from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is ideal for climate research which requires timely and accurate information of important atmospheric components such as gases, aerosols, and clouds. Except for parameters derived from MFRSR measurement ratios, which are not impacted by calibration error, most applications require accurate calibration factor(s), angular correction, and spectral response function(s) from calibration. Although a laboratory lamp (or reference) calibration can provide all the information needed to convert the instrument readings to actual radiation, in situ calibration methods are implemented routinely (daily) to fill the gaps between lamp calibrations. In this paper, the basic structure and the data collection and pretreatment of the MFRSR are described. The laboratory lamp calibration and its limitations are summarized. The cloud screening algorithms for MFRSR data are presented. The in situ calibration methods, the standard Langley method and its variants, the ratio-Langley method, the general method, Alexandrov's comprehensive method, and Chen's multi-channel method, are outlined. The reason that all these methods do not fit for all situations is that they assume some properties, such as aerosol optical depth (AOD), total optical depth (TOD), precipitable water vapor (PWV), effective size of aerosol particles, or angstrom coefficient, are invariant over time. These properties are not universal and some of them rarely happen. In practice, daily calibration factors derived from these methods should be smoothed to restrain error.
Wang, Xinyu; Gao, Jing-Lin; Du, Chaohui; An, Jing; Li, MengJiao; Ma, Haiyan; Zhang, Lina; Jiang, Ye
2017-01-01
People today have a stronger interest in the risk of biosafety in clinical bioanalysis. A safe, simple, effective method of preparation is needed urgently. To improve biosafety of clinical analysis, we used antiviral drugs of adefovir and tenofovir as model drugs and developed a safe pretreatment method combining sealing technique with direct injection technique. The inter- and intraday precision (RSD %) of the method were <4%, and the extraction recoveries ranged from 99.4 to 100.7%. Meanwhile, the results showed that standard solution could be used to prepare calibration curve instead of spiking plasma, acquiring more accuracy result. Compared with traditional methods, the novel method not only improved biosecurity of the pretreatment method significantly, but also achieved several advantages including higher precision, favorable sensitivity and satisfactory recovery. With these highly practical and desirable characteristics, the novel method may become a feasible platform in bioanalysis.
Features calibration of the dynamic force transducers
NASA Astrophysics Data System (ADS)
Sc., M. Yu Prilepko D.; Lysenko, V. G.
2018-04-01
The article discusses calibration methods of dynamic forces measuring instruments. The relevance of work is dictated by need to valid definition of the dynamic forces transducers metrological characteristics taking into account their intended application. The aim of this work is choice justification of calibration method, which provides the definition dynamic forces transducers metrological characteristics under simulation operating conditions for determining suitability for using in accordance with its purpose. The following tasks are solved: the mathematical model and the main measurements equation of calibration dynamic forces transducers by load weight, the main budget uncertainty components of calibration are defined. The new method of dynamic forces transducers calibration with use the reference converter “force-deformation” based on the calibrated elastic element and measurement of his deformation by a laser interferometer is offered. The mathematical model and the main measurements equation of the offered method is constructed. It is shown that use of calibration method based on measurements by the laser interferometer of calibrated elastic element deformations allows to exclude or to considerably reduce the uncertainty budget components inherent to method of load weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
Accurate solar radiation measured by radiometers depends on instrument performance specifications, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methodologies and resulting differences provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these methods calibrate radiometers indoors and some outdoors. To establish or understand the differences in calibration methodologies, we processed and analyzed field-measured data from radiometers deployed for 10 months at NREL's Solar Radiation Research Laboratory. These different methods of calibration resulted in a difference ofmore » +/-1% to +/-2% in solar irradiance measurements. Analyzing these differences will ultimately assist in determining the uncertainties of the field radiometer data and will help develop a consensus on a standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainties will help the accurate prediction of the output of planned solar conversion projects and improve the bankability of financing solar projects.« less
NASA Astrophysics Data System (ADS)
Chatzistergos, Theodosios; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Krivova, Natalie A.; Solanki, Sami K.
2017-06-01
Context. The group sunspot number (GSN) series constitute the longest instrumental astronomical database providing information on solar activity. This database is a compilation of observations by many individual observers, and their inter-calibration has usually been performed using linear rescaling. There are multiple published series that show different long-term trends for solar activity. Aims: We aim at producing a GSN series, with a non-linear non-parametric calibration. The only underlying assumptions are that the differences between the various series are due to different acuity thresholds of the observers, and that the threshold of each observer remains constant throughout the observing period. Methods: We used a daisy chain process with backbone (BB) observers and calibrated all overlapping observers to them. We performed the calibration of each individual observer with a probability distribution function (PDF) matrix constructed considering all daily values for the overlapping period with the BB. The calibration of the BBs was carried out in a similar manner. The final series was constructed by merging different BB series. We modelled the propagation of errors straightforwardly with Monte Carlo simulations. A potential bias due to the selection of BBs was investigated and the effect was shown to lie within the 1σ interval of the produced series. The exact selection of the reference period was shown to have a rather small effect on our calibration as well. Results: The final series extends back to 1739 and includes data from 314 observers. This series suggests moderate activity during the 18th and 19th century, which is significantly lower than the high level of solar activity predicted by other recent reconstructions applying linear regressions. Conclusions: The new series provides a robust reconstruction, based on modern and non-parametric methods, of sunspot group numbers since 1739, and it confirms the existence of the modern grand maximum of solar activity in the second half of the 20th century. Values of the group sunspot number series are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A69
Performance of three reflectance calibration methods for airborne hyperspectral spectrometer data.
Miura, Tomoaki; Huete, Alfredo R
2009-01-01
In this study, the performances and accuracies of three methods for converting airborne hyperspectral spectrometer data to reflectance factors were characterized and compared. The "reflectance mode (RM)" method, which calibrates a spectrometer against a white reference panel prior to mounting on an aircraft, resulted in spectral reflectance retrievals that were biased and distorted. The magnitudes of these bias errors and distortions varied significantly, depending on time of day and length of the flight campaign. The "linear-interpolation (LI)" method, which converts airborne spectrometer data by taking a ratio of linearly-interpolated reference values from the preflight and post-flight reference panel readings, resulted in precise, but inaccurate reflectance retrievals. These reflectance spectra were not distorted, but were subject to bias errors of varying magnitudes dependent on the flight duration length. The "continuous panel (CP)" method uses a multi-band radiometer to obtain continuous measurements over a reference panel throughout the flight campaign, in order to adjust the magnitudes of the linear-interpolated reference values from the preflight and post-flight reference panel readings. Airborne hyperspectral reflectance retrievals obtained using this method were found to be the most accurate and reliable reflectance calibration method. The performances of the CP method in retrieving accurate reflectance factors were consistent throughout time of day and for various flight durations. Based on the dataset analyzed in this study, the uncertainty of the CP method has been estimated to be 0.0025 ± 0.0005 reflectance units for the wavelength regions not affected by atmospheric absorptions. The RM method can produce reasonable results only for a very short-term flight (e.g., < 15 minutes) conducted around a local solar noon. The flight duration should be kept shorter than 30 minutes for the LI method to produce results with reasonable accuracies. An important advantage of the CP method is that the method can be used for long-duration flight campaigns (e.g., 1-2 hours). Although this study focused on reflectance calibration of airborne spectrometer data, the methods evaluated in this study and the results obtained are directly applicable to ground spectrometer measurements.
Model-based color halftoning using direct binary search.
Agar, A Ufuk; Allebach, Jan P
2005-12-01
In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.
Research on the calibration methods of the luminance parameter of radiation luminance meters
NASA Astrophysics Data System (ADS)
Cheng, Weihai; Huang, Biyong; Lin, Fangsheng; Li, Tiecheng; Yin, Dejin; Lai, Lei
2017-10-01
This paper introduces standard diffusion reflection white plate method and integrating sphere standard luminance source method to calibrate the luminance parameter. The paper compares the effects of calibration results by using these two methods through principle analysis and experimental verification. After using two methods to calibrate the same radiation luminance meter, the data obtained verifies the testing results of the two methods are both reliable. The results show that the display value using standard white plate method has fewer errors and better reproducibility. However, standard luminance source method is more convenient and suitable for on-site calibration. Moreover, standard luminance source method has wider range and can test the linear performance of the instruments.
Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E
2017-09-08
Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.
Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBT3® film
NASA Astrophysics Data System (ADS)
Ng, C. Y. P.; Chun, S. L.; Yu, K. N.
2016-08-01
A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The ;landscape; and ;portrait; scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E., E-mail: koepferl@usm.lmu.de
Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 μ m, 70 μ m and total infrared emission, which have been previously calibrated formore » global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.« less
Zhao, Guo; Wang, Hui; Liu, Gang
2017-07-03
Abstract : In this study, a novel method based on a Bi/glassy carbon electrode (Bi/GCE) for quantitatively and directly detecting Cd 2+ in the presence of Cu 2+ without further electrode modifications by combining square-wave anodic stripping voltammetry (SWASV) and a back-propagation artificial neural network (BP-ANN) has been proposed. The influence of the Cu 2+ concentration on the stripping response to Cd 2+ was studied. In addition, the effect of the ferrocyanide concentration on the SWASV detection of Cd 2+ in the presence of Cu 2+ was investigated. A BP-ANN with two inputs and one output was used to establish the nonlinear relationship between the concentration of Cd 2+ and the stripping peak currents of Cu 2+ and Cd 2+ . The factors affecting the SWASV detection of Cd 2+ and the key parameters of the BP-ANN were optimized. Moreover, the direct calibration model (i.e., adding 0.1 mM ferrocyanide before detection), the BP-ANN model and other prediction models were compared to verify the prediction performance of these models in terms of their mean absolute errors (MAEs), root mean square errors (RMSEs) and correlation coefficients. The BP-ANN model exhibited higher prediction accuracy than the direct calibration model and the other prediction models. Finally, the proposed method was used to detect Cd 2+ in soil samples with satisfactory results.
Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration
Deng, Mingjun; Li, Jiansong
2017-01-01
The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675
Dos Santos Augusto, Amanda; Barsanelli, Paulo Lopes; Pereira, Fabiola Manhas Verbi; Pereira-Filho, Edenir Rodrigues
2017-04-01
This study describes the application of laser-induced breakdown spectroscopy (LIBS) for the direct determination of Ca, K and Mg in powdered milk and solid dietary supplements. The following two calibration strategies were applied: (i) use of the samples to calculate calibration models (milk) and (ii) use of sample mixtures (supplements) to obtain a calibration curve. In both cases, reference values obtained from inductively coupled plasma optical emission spectroscopy (ICP OES) after acid digestion were used. The emission line selection from LIBS spectra was accomplished by analysing the regression coefficients of partial least squares (PLS) regression models, and wavelengths of 534.947, 766.490 and 285.213nm were chosen for Ca, K and Mg, respectively. In the case of the determination of Ca in supplements, it was necessary to perform a dilution (10-fold) of the standards and samples to minimize matrix interference. The average accuracy for powdered milk ranged from 60% to 168% for Ca, 77% to 152% for K and 76% to 131% for Mg. In the case of dietary supplements, standard error of prediction (SEP) varied from 295 (Mg) to 3782mgkg -1 (Ca). The proposed method presented an analytical frequency of around 60 samples per hour and the step of sample manipulation was drastically reduced, with no generation of toxic chemical residues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiometric calibration of the Earth observing system's imaging sensors
NASA Technical Reports Server (NTRS)
Slater, P. N.
1987-01-01
Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.
Configurations and calibration methods for passive sampling techniques.
Ouyang, Gangfeng; Pawliszyn, Janusz
2007-10-19
Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.
Signal inference with unknown response: calibration-uncertainty renormalized estimator.
Dorn, Sebastian; Enßlin, Torsten A; Greiner, Maksim; Selig, Marco; Boehm, Vanessa
2015-01-01
The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to start with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.
Kern, Simon; Meyer, Klas; Guhl, Svetlana; Gräßer, Patrick; Paul, Andrea; King, Rudibert; Maiwald, Michael
2018-05-01
Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for enabling closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (indirect hard modeling-IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union's Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analyzed by IHM with low calibration effort, compared to a multivariate PLS-R (partial least squares regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy. Graphical abstract NMR sensor module for monitoring of the aromatic coupling of 1-fluoro-2-nitrobenzene (FNB) with aniline to 2-nitrodiphenylamine (NDPA) using lithium-bis(trimethylsilyl) amide (Li-HMDS) in continuous operation. Online 43.5 MHz low-field NMR (LF) was compared to 500 MHz high-field NMR spectroscopy (HF) as reference method.
Calibrating Detailed Chemical Analysis of M dwarfs
NASA Astrophysics Data System (ADS)
Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek
2018-01-01
The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.
Rayne, Sierra; Forest, Kaya
2014-09-19
The air-water partition coefficient (Kaw) of perfluoro-2-methyl-3-pentanone (PFMP) was estimated using the G4MP2/G4 levels of theory and the SMD solvation model. A suite of 31 fluorinated compounds was employed to calibrate the theoretical method. Excellent agreement between experimental and directly calculated Kaw values was obtained for the calibration compounds. The PCM solvation model was found to yield unsatisfactory Kaw estimates for fluorinated compounds at both levels of theory. The HENRYWIN Kaw estimation program also exhibited poor Kaw prediction performance on the training set. Based on the resulting regression equation for the calibration compounds, the G4MP2-SMD method constrained the estimated Kaw of PFMP to the range 5-8 × 10(-6) M atm(-1). The magnitude of this Kaw range indicates almost all PFMP released into the atmosphere or near the land-atmosphere interface will reside in the gas phase, with only minor quantities dissolved in the aqueous phase as the parent compound and/or its hydrate/hydrate conjugate base. Following discharge into aqueous systems not at equilibrium with the atmosphere, significant quantities of PFMP will be present as the dissolved parent compound and/or its hydrate/hydrate conjugate base.
Direct estimation of evoked hemoglobin changes by multimodality fusion imaging
Huppert, Theodore J.; Diamond, Solomon G.; Boas, David A.
2009-01-01
In the last two decades, both diffuse optical tomography (DOT) and blood oxygen level dependent (BOLD)-based functional magnetic resonance imaging (fMRI) methods have been developed as noninvasive tools for imaging evoked cerebral hemodynamic changes in studies of brain activity. Although these two technologies measure functional contrast from similar physiological sources, i.e., changes in hemoglobin levels, these two modalities are based on distinct physical and biophysical principles leading to both limitations and strengths to each method. In this work, we describe a unified linear model to combine the complimentary spatial, temporal, and spectroscopic resolutions of concurrently measured optical tomography and fMRI signals. Using numerical simulations, we demonstrate that concurrent optical and BOLD measurements can be used to create cross-calibrated estimates of absolute micromolar deoxyhemoglobin changes. We apply this new analysis tool to experimental data acquired simultaneously with both DOT and BOLD imaging during a motor task, demonstrate the ability to more robustly estimate hemoglobin changes in comparison to DOT alone, and show how this approach can provide cross-calibrated estimates of hemoglobin changes. Using this multimodal method, we estimate the calibration of the 3 tesla BOLD signal to be −0.55% ± 0.40% signal change per micromolar change of deoxyhemoglobin. PMID:19021411
NASA Astrophysics Data System (ADS)
Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.
2014-03-01
The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.
Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer
NASA Astrophysics Data System (ADS)
Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.
2018-04-01
Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.
Gatti, M.
2018-02-22
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatti, M.
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less
NASA Technical Reports Server (NTRS)
Doelling, David R.; Scarino, Benjamin R.; Morstad, Daniel; Gopalan, Arun; Bhatt, Rajendra; Lukashin, Constantine; Minnis, Patrick
2013-01-01
Spectral band differences between sensors can complicate the process of intercalibration of a visible sensor against a reference sensor. This can be best addressed by using a hyperspectral reference sensor whenever possible because they can be used to accurately mitigate the band differences. This paper demonstrates the feasibility of using operational Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) large-footprint hyperspectral radiances to calibrate geostationary Earth-observing (GEO) sensors. Near simultaneous nadir overpass measurements were used to compare the temporal calibration of SCIAMACHY with Aqua Moderate Resolution Imaging Spectroradiometer band radiances, which were found to be consistent to within 0.44% over seven years. An operational SCIAMACHY/GEO ray-matching technique was presented, along with enhancements to improve radiance pair sampling. These enhancements did not bias the underlying intercalibration and provided enough sampling to allow up to monthly monitoring of the GEO sensor degradation. The results of the SCIAMACHY/GEO intercalibration were compared with other operational four-year Meteosat-9 0.65-µm calibration coefficients and were found to be within 1% of the gain, and more importantly, it had one of the lowest temporal standard errors of all the methods. This is more than likely that the GEO spectral response function could be directly applied to the SCIAMACHY radiances, whereas the other operational methods inferred a spectral correction factor. This method allows the validation of the spectral corrections required by other methods.
NASA Astrophysics Data System (ADS)
Witthuhn, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar
2017-03-01
The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4 % for most channels within a 95 % confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95 % confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.
Structured light system calibration method with optimal fringe angle.
Li, Beiwen; Zhang, Song
2014-11-20
For structured light system calibration, one popular approach is to treat the projector as an inverse camera. This is usually performed by projecting horizontal and vertical sequences of patterns to establish one-to-one mapping between camera points and projector points. However, for a well-designed system, either horizontal or vertical fringe images are not sensitive to depth variation and thus yield inaccurate mapping. As a result, the calibration accuracy is jeopardized if a conventional calibration method is used. To address this limitation, this paper proposes a novel calibration method based on optimal fringe angle determination. Experiments demonstrate that our calibration approach can increase the measurement accuracy up to 38% compared to the conventional calibration method with a calibration volume of 300(H) mm×250(W) mm×500(D) mm.
Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki
2016-01-01
Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.
Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki
2016-01-01
Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120
Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism
NASA Astrophysics Data System (ADS)
Smirnov, O. M.
2011-03-01
Context. Since its formulation by Hamaker et al., the radio interferometer measurement equation (RIME) has provided a rigorous mathematical basis for the development of novel calibration methods and techniques, including various approaches to the problem of direction-dependent effects (DDEs). However, acceptance of the RIME in the radio astronomical community at large has been slow, which is partially due to the limited availability of software to exploit its power, and the sparsity of practical results. This needs to change urgently. Aims: This series of papers aims to place recent developments in the treatment of DDEs into one RIME-based mathematical framework, and to demonstrate the ease with which the various effects can be described and understood. It also aims to show the benefits of a RIME-based approach to calibration. Methods: Paper I re-derives the RIME from first principles, extends the formalism to the full-sky case, and incorporates DDEs. Paper II then uses the formalism to describe self-calibration, both with a full RIME, and with the approximate equations of older software packages, and shows how this is affected by DDEs. It also gives an overview of real-life DDEs and proposed methods of dealing with them. Finally, in Paper III some of these methods are exercised to achieve an extremely high-dynamic range calibration of WSRT observations of 3C 147 at 21 cm, with full treatment of DDEs. Results: The RIME formalism is extended to the full-sky case (Paper I), and is shown to be an elegant way of describing calibration and DDEs (Paper II). Applying this to WSRT data (Paper III) results in a noise-limited image of the field around 3C 147 with a very high dynamic range (1.6 million), and none of the off-axis artifacts that plague regular selfcal. The resulting differential gain solutions contain significant information on DDEs and errors in the sky model. Conclusions: The RIME is a powerful formalism for describing radio interferometry, and underpins the development of novel calibration methods, in particular those dealing with DDEs. One of these is the differential gains approach used for the 3C 147 reduction. Differential gains can eliminate DDE-related artifacts, and provide information for iterative improvements of sky models. Perhaps most importantly, sources as faint as 2 mJy have been shown to yield meaningful differential gain solutions, and thus can be used as potential calibration beacons in other DDE-related schemes.
Node-to-node field calibration of wireless distributed air pollution sensor network.
Kizel, Fadi; Etzion, Yael; Shafran-Nathan, Rakefet; Levy, Ilan; Fishbain, Barak; Bartonova, Alena; Broday, David M
2018-02-01
Low-cost air quality sensors offer high-resolution spatiotemporal measurements that can be used for air resources management and exposure estimation. Yet, such sensors require frequent calibration to provide reliable data, since even after a laboratory calibration they might not report correct values when they are deployed in the field, due to interference with other pollutants, as a result of sensitivity to environmental conditions and due to sensor aging and drift. Field calibration has been suggested as a means for overcoming these limitations, with the common strategy involving periodical collocations of the sensors at an air quality monitoring station. However, the cost and complexity involved in relocating numerous sensor nodes back and forth, and the loss of data during the repeated calibration periods make this strategy inefficient. This work examines an alternative approach, a node-to-node (N2N) calibration, where only one sensor in each chain is directly calibrated against the reference measurements and the rest of the sensors are calibrated sequentially one against the other while they are deployed and collocated in pairs. The calibration can be performed multiple times as a routine procedure. This procedure minimizes the total number of sensor relocations, and enables calibration while simultaneously collecting data at the deployment sites. We studied N2N chain calibration and the propagation of the calibration error analytically, computationally and experimentally. The in-situ N2N calibration is shown to be generic and applicable for different pollutants, sensing technologies, sensor platforms, chain lengths, and sensor order within the chain. In particular, we show that chain calibration of three nodes, each calibrated for a week, propagate calibration errors that are similar to those found in direct field calibration. Hence, N2N calibration is shown to be suitable for calibration of distributed sensor networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of Primary Gage Sensitivities on the Convergence of Balance Load Iterations
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred
2012-01-01
The connection between the convergence of wind tunnel balance load iterations and the existence of the primary gage sensitivities of a balance is discussed. First, basic elements of two load iteration equations that the iterative method uses in combination with results of a calibration data analysis for the prediction of balance loads are reviewed. Then, the connection between the primary gage sensitivities, the load format, the gage output format, and the convergence characteristics of the load iteration equation choices is investigated. A new criterion is also introduced that may be used to objectively determine if the primary gage sensitivity of a balance gage exists. Then, it is shown that both load iteration equations will converge as long as a suitable regression model is used for the analysis of the balance calibration data, the combined influence of non linear terms of the regression model is very small, and the primary gage sensitivities of all balance gages exist. The last requirement is fulfilled, e.g., if force balance calibration data is analyzed in force balance format. Finally, it is demonstrated that only one of the two load iteration equation choices, i.e., the iteration equation used by the primary load iteration method, converges if one or more primary gage sensitivities are missing. This situation may occur, e.g., if force balance calibration data is analyzed in direct read format using the original gage outputs. Data from the calibration of a six component force balance is used to illustrate the connection between the convergence of the load iteration equation choices and the existence of the primary gage sensitivities.
A new systematic calibration method of ring laser gyroscope inertial navigation system
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu
2016-10-01
Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.
Software validation applied to spreadsheets used in laboratories working under ISO/IEC 17025
NASA Astrophysics Data System (ADS)
Banegas, J. M.; Orué, M. W.
2016-07-01
Several documents deal with software validation. Nevertheless, more are too complex to be applied to validate spreadsheets - surely the most used software in laboratories working under ISO/IEC 17025. The method proposed in this work is intended to be directly applied to validate spreadsheets. It includes a systematic way to document requirements, operational aspects regarding to validation, and a simple method to keep records of validation results and modifications history. This method is actually being used in an accredited calibration laboratory, showing to be practical and efficient.
Method for determining shear direction using liquid crystal coatings
NASA Technical Reports Server (NTRS)
Reda, Daniel C.
1995-01-01
A method is provided for determining shear direction wherein a beam of white light is directed onto the surface of a liquid crystal coating to cause the white light to be dispersed (reflected) from the surface in a spectrum having bands of different colors in a fixed spatial 2 (angular) sequence. The system is calibrated by locating an observer, e.g., a video and movie camera, such that a particular color band (preferably at or near the center of the reflected spectrum) is observed to thereby provide a reference color band. Because the application of shear causes either clockwise or counterclockwise rotation of the reflected spectrum dependent on the direction of the shear, a determination is then made of the reflected color band observed by the observer when the surface of the liquid crystal is subjected to shear to thereby determine the direction of the shear based on the directional (rotation) relation of the observed color band with respect to the reference color band in the spatial sequence of color bands.
Measuring coronary calcium on CT images adjusted for attenuation differences.
Nelson, Jennifer Clark; Kronmal, Richard A; Carr, J Jeffrey; McNitt-Gray, Michael F; Wong, Nathan D; Loria, Catherine M; Goldin, Jonathan G; Williams, O Dale; Detrano, Robert
2005-05-01
To quantify scanner and participant variability in attenuation values for computed tomographic (CT) images assessed for coronary calcium and define a method for standardizing attenuation values and calibrating calcium measurements. Institutional review board approval and participant informed consent were obtained at all study sites. An image attenuation adjustment method involving the use of available calibration phantom data to define standard attenuation values was developed. The method was applied to images from two population-based multicenter studies: the Coronary Artery Risk Development in Young Adults study (3041 participants) and the Multi-Ethnic Study of Atherosclerosis (6814 participants). To quantify the variability in attenuation, analysis of variance techniques were used to compare the CT numbers of standardized torso phantom regions across study sites, and multivariate linear regression models of participant-specific calibration phantom attenuation values that included participant age, race, sex, body mass index (BMI), smoking status, and site as covariates were developed. To assess the effect of the calibration method on calcium measurements, Pearson correlation coefficients between unadjusted and attenuation-adjusted calcium measurements were computed. Multivariate models were used to examine the effect of sex, race, BMI, smoking status, unadjusted score, and site on Agatston score adjustments. Mean attenuation values (CT numbers) of a standard calibration phantom scanned beneath participants varied significantly according to scanner and participant BMI (P < .001 for both). Values were lowest for Siemens multi-detector row CT scanners (110.0 HU), followed by GE-Imatron electron-beam (116.0 HU) and GE LightSpeed multi-detector row scanners (121.5 HU). Values were also lower for morbidly obese (BMI, > or =40.0 kg/m(2)) participants (108.9 HU), followed by obese (BMI, 30.0-39.9 kg/m(2)) (114.8 HU), overweight (BMI, 25.0-29.9 kg/m(2)) (118.5 HU), and normal-weight or underweight (BMI, <25.0 kg/m(2)) (120.1 HU) participants. Agatston score calibration adjustments ranged from -650 to 1071 (mean, -8 +/- 50 [standard deviation]) and increased with Agatston score (P < .001). The direction and magnitude of adjustment varied significantly according to scanner and BMI (P < .001 for both) and were consistent with phantom attenuation results in that calibration resulted in score decreases for images with higher phantom attenuation values. Image attenuation values vary by scanner and participant body size, producing calcium score differences that are not due to true calcium burden disparities. Use of calibration phantoms to adjust attenuation values and calibrate calcium measurements in research studies and clinical practice may improve the comparability of such measurements between persons scanned with different scanners and within persons over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osthus, Dave; Godinez, Humberto C.; Rougier, Esteban
We presenmore » t a generic method for automatically calibrating a computer code to an experiment, with uncertainty, for a given “training” set of computer code runs. The calibration technique is general and probabilistic, meaning the calibration uncertainty is represented in the form of a probability distribution. We demonstrate the calibration method by calibrating a combined Finite-Discrete Element Method (FDEM) to a Split Hopkinson Pressure Bar (SHPB) experiment with a granite sample. The probabilistic calibration method combines runs of a FDEM computer simulation for a range of “training” settings and experimental uncertainty to develop a statistical emulator. The process allows for calibration of input parameters and produces output quantities with uncertainty estimates for settings where simulation results are desired. Input calibration and FDEM fitted results are presented. We find that the maximum shear strength σ t max and to a lesser extent maximum tensile strength σ n max govern the behavior of the stress-time curve before and around the peak, while the specific energy in Mode II (shear) E t largely governs the post-peak behavior of the stress-time curve. Good agreement is found between the calibrated FDEM and the SHPB experiment. Interestingly, we find the SHPB experiment to be rather uninformative for calibrating the softening-curve shape parameters (a, b, and c). This work stands as a successful demonstration of how a general probabilistic calibration framework can automatically calibrate FDEM parameters to an experiment.« less
Osthus, Dave; Godinez, Humberto C.; Rougier, Esteban; ...
2018-05-01
We presenmore » t a generic method for automatically calibrating a computer code to an experiment, with uncertainty, for a given “training” set of computer code runs. The calibration technique is general and probabilistic, meaning the calibration uncertainty is represented in the form of a probability distribution. We demonstrate the calibration method by calibrating a combined Finite-Discrete Element Method (FDEM) to a Split Hopkinson Pressure Bar (SHPB) experiment with a granite sample. The probabilistic calibration method combines runs of a FDEM computer simulation for a range of “training” settings and experimental uncertainty to develop a statistical emulator. The process allows for calibration of input parameters and produces output quantities with uncertainty estimates for settings where simulation results are desired. Input calibration and FDEM fitted results are presented. We find that the maximum shear strength σ t max and to a lesser extent maximum tensile strength σ n max govern the behavior of the stress-time curve before and around the peak, while the specific energy in Mode II (shear) E t largely governs the post-peak behavior of the stress-time curve. Good agreement is found between the calibrated FDEM and the SHPB experiment. Interestingly, we find the SHPB experiment to be rather uninformative for calibrating the softening-curve shape parameters (a, b, and c). This work stands as a successful demonstration of how a general probabilistic calibration framework can automatically calibrate FDEM parameters to an experiment.« less
Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)
2016-09-17
test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model
Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang
2016-09-21
An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results.
Eye gaze tracking using correlation filters
NASA Astrophysics Data System (ADS)
Karakaya, Mahmut; Bolme, David; Boehnen, Chris
2014-03-01
In this paper, we studied a method for eye gaze tracking that provide gaze estimation from a standard webcam with a zoom lens and reduce the setup and calibration requirements for new users. Specifically, we have developed a gaze estimation method based on the relative locations of points on the top of the eyelid and eye corners. Gaze estimation method in this paper is based on the distances between top point of the eyelid and eye corner detected by the correlation filters. Advanced correlation filters were found to provide facial landmark detections that are accurate enough to determine the subjects gaze direction up to angle of approximately 4-5 degrees although calibration errors often produce a larger overall shift in the estimates. This is approximately a circle of diameter 2 inches for a screen that is arm's length from the subject. At this accuracy it is possible to figure out what regions of text or images the subject is looking but it falls short of being able to determine which word the subject has looked at.
Minimizing thermal degradation in gas chromatographic quantitation of pentaerythritol tetranitrate.
Lubrano, Adam L; Field, Christopher R; Newsome, G Asher; Rogers, Duane A; Giordano, Braden C; Johnson, Kevin J
2015-05-15
An analytical method for establishing calibration curves for the quantitation of pentaerythriol tetranitrate (PETN) from sorbent-filled thermal desorption tubes by gas chromatography with electron capture detection (TDS-GC-ECD) was developed. As PETN has been demonstrated to thermally degrade under typical GC instrument conditions, peaks corresponding to both PETN degradants and molecular PETN are observed. The retention time corresponding to intact PETN was verified by high-resolution mass spectrometry with a flowing atmospheric pressure afterglow (FAPA) ionization source, which enabled soft ionization of intact PETN eluting the GC and subsequent accurate-mass identification. The GC separation parameters were transferred to a conventional GC-ECD instrument where analytical method-induced PETN degradation was further characterized and minimized. A method calibration curve was established by direct liquid deposition of PETN standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Two local, linear relationships between detector response and PETN concentration were observed, with a total dynamic range of 0.25-25ng. Published by Elsevier B.V.
Satellite-Sensor Calibration Verification Using the Cloud-Shadow Method
NASA Technical Reports Server (NTRS)
Reinersman, P.; Carder, K. L.; Chen, F. R.
1995-01-01
An atmospheric-correction method which uses cloud-shaded pixels together with pixels in a neighboring region of similar optical properties is described. This cloud-shadow method uses the difference between the total radiance values observed at the sensor for these two regions, thus removing the nearly identical atmospheric radiance contributions to the two signals (e.g. path radiance and Fresnel-reflected skylight). What remains is largely due to solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by the direct solar irradiance reaching the sea surface and correction for some second-order effects provides the remote-sensing reflectance of the ocean at the location of the neighbor region, providing a known 'ground target' spectrum for use in testing the calibration of the sensor. A similar approach may be useful for land targets if horizontal homogeneity of scene reflectance exists about the shadow. Monte Carlo calculations have been used to correct for adjacency effects and to estimate the differences in the skylight reaching the shadowed and neighbor pixels.
ACCELERATORS: Beam based alignment of the SSRF storage ring
NASA Astrophysics Data System (ADS)
Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming
2009-04-01
There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
Banks financing solar energy projects require assurance that these systems will produce the energy predicted. Furthermore, utility planners and grid system operators need to understand the impact of the variable solar resource on solar energy conversion system performance. Accurate solar radiation data sets reduce the expense associated with mitigating performance risk and assist in understanding the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methods provided by radiometric calibrationmore » service providers, such as NREL and manufacturers of radiometers, on the resulting calibration responsivity. Some of these radiometers are calibrated indoors and some outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides the outdoor calibration responsivity of pyranometers and pyrheliometers at 45 degree solar zenith angle, and as a function of solar zenith angle determined by clear-sky comparisons with reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison between the test radiometer under calibration and a reference radiometer of the same type. In both methods, the reference radiometer calibrations are traceable to the World Radiometric Reference (WRR). These different methods of calibration demonstrated +1% to +2% differences in solar irradiance measurement. Analyzing these differences will ultimately help determine the uncertainty of the field radiometer data and guide the development of a consensus standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainty will allow more accurate prediction of solar output and improve the bankability of solar projects.« less
Calibration Method to Eliminate Zeroth Order Effect in Lateral Shearing Interferometry
NASA Astrophysics Data System (ADS)
Fang, Chao; Xiang, Yang; Qi, Keqi; Chen, Dawei
2018-04-01
In this paper, a calibration method is proposed which eliminates the zeroth order effect in lateral shearing interferometry. An analytical expression of the calibration error function is deduced, and the relationship between the phase-restoration error and calibration error is established. The analytical results show that the phase-restoration error introduced by the calibration error is proportional to the phase shifting error and zeroth order effect. The calibration method is verified using simulations and experiments. The simulation results show that the phase-restoration error is approximately proportional to the phase shift error and zeroth order effect, when the phase shifting error is less than 2° and the zeroth order effect is less than 0.2. The experimental result shows that compared with the conventional method with 9-frame interferograms, the calibration method with 5-frame interferograms achieves nearly the same restoration accuracy.
Technical Note: Procedure for the calibration and validation of kilo-voltage cone-beam CT models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilches-Freixas, Gloria; Létang, Jean Michel; Rit,
2016-09-15
Purpose: The aim of this work is to propose a general and simple procedure for the calibration and validation of kilo-voltage cone-beam CT (kV CBCT) models against experimental data. Methods: The calibration and validation of the CT model is a two-step procedure: the source model then the detector model. The source is described by the direction dependent photon energy spectrum at each voltage while the detector is described by the pixel intensity value as a function of the direction and the energy of incident photons. The measurements for the source consist of a series of dose measurements in air performedmore » at each voltage with varying filter thicknesses and materials in front of the x-ray tube. The measurements for the detector are acquisitions of projection images using the same filters and several tube voltages. The proposed procedure has been applied to calibrate and assess the accuracy of simple models of the source and the detector of three commercial kV CBCT units. If the CBCT system models had been calibrated differently, the current procedure would have been exclusively used to validate the models. Several high-purity attenuation filters of aluminum, copper, and silver combined with a dosimeter which is sensitive to the range of voltages of interest were used. A sensitivity analysis of the model has also been conducted for each parameter of the source and the detector models. Results: Average deviations between experimental and theoretical dose values are below 1.5% after calibration for the three x-ray sources. The predicted energy deposited in the detector agrees with experimental data within 4% for all imaging systems. Conclusions: The authors developed and applied an experimental procedure to calibrate and validate any model of the source and the detector of a CBCT unit. The present protocol has been successfully applied to three x-ray imaging systems. The minimum requirements in terms of material and equipment would make its implementation suitable in most clinical environments.« less
Existing methods for improving the accuracy of digital-to-analog converters
NASA Astrophysics Data System (ADS)
Eielsen, Arnfinn A.; Fleming, Andrew J.
2017-09-01
The performance of digital-to-analog converters is principally limited by errors in the output voltage levels. Such errors are known as element mismatch and are quantified by the integral non-linearity. Element mismatch limits the achievable accuracy and resolution in high-precision applications as it causes gain and offset errors, as well as harmonic distortion. In this article, five existing methods for mitigating the effects of element mismatch are compared: physical level calibration, dynamic element matching, noise-shaping with digital calibration, large periodic high-frequency dithering, and large stochastic high-pass dithering. These methods are suitable for improving accuracy when using digital-to-analog converters that use multiple discrete output levels to reconstruct time-varying signals. The methods improve linearity and therefore reduce harmonic distortion and can be retrofitted to existing systems with minor hardware variations. The performance of each method is compared theoretically and confirmed by simulations and experiments. Experimental results demonstrate that three of the five methods provide significant improvements in the resolution and accuracy when applied to a general-purpose digital-to-analog converter. As such, these methods can directly improve performance in a wide range of applications including nanopositioning, metrology, and optics.
Geophysical Methods for Investigating Ground-Water Recharge
Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.
2007-01-01
While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods that are currently available or under development for recharge monitoring. The material is written primarily for hydrogeologists. Uses of geophysical methods for improving recharge monitoring are explored through brief discussions and case studies. The intent is to indicate how geophysical methods can be used effectively in studying recharge processes and quantifying recharge. As such, the material constructs a framework for matching the strengths of individual geophysical methods with the manners in which they can be applied for hydrologic analyses. The appendix is organized in three sections. First, the key hydrologic parameters necessary to determine the rate, timing, and patterns of recharge are identified. Second, the basic operating principals of the relevant geophysical methods are discussed. Methods are grouped by the physical property that they measure directly. Each measured property is related to one or more of the key hydrologic properties for recharge monitoring. Third, the emerging conceptual framework for applying geophysics to recharge monitoring is presented. Examples of the application of selected geophysical methods to recharge monitoring are presented in nine case studies. These studies illustrate hydrogeophysical applications under a wide range of conditions and measurement scales, which vary from tenths of a meter to hundreds of meters. The case studies include practice-proven as well as emerging applications of geophysical methods to recharge monitoring.
History of the Federal Interagency Sedimentation Project
Skinner, John V.
1989-01-01
Since 1939, the date of the Project's inception, the team has operated under the direction of two lead agencies - the U.S. Geological Survey and U.S. Army Corps of Engineers. The supporting agencies are the Agricultural Research Service, Bureau of Reclamation, U.S. Forest Service, Bureau of Land Management, Federal Highway Administration, and the Tennessee Valley Authority. Overall direction of the Project rests with the Subcommittee on Sedimentation, Interagency Advisory Committee on Water Data. The Project's goals focus on improving and maintaining the quality of fluvial sediment data by (1) developing sediment samplers, laboratory analyzers, and automatic gages (2) evaluating methods, (3) standardizing equipment and methods and (4) procuring, calibrating and selling equipment.
Hamada, T
1984-04-01
A method has been developed to measure the gain of the electro-oculogram (in volts per degree of eye rotation) which does not require the experimental subject to gaze at reference targets. The basis of the method is that the positional difference between the center of the entrance pupil and the corneal reflection of a light source is linearly related to the angle of eye rotation and is equal to zero when the pupillary axis of the eye is directed at the light source. The method has been validated in man and cat.
Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H.; Lewis, Marc S.; Brautigam, Chad A.; Schuck, Peter; Zhao, Huaying
2013-01-01
Sedimentation velocity (SV) is a method based on first-principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton® temperature logger to directly measure the temperature of a spinning rotor, and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration, which were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., doi 10.1016/j.ab.2013.02.011) and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from eleven instruments displayed a significantly reduced standard deviation of ∼ 0.7 %. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. PMID:23711724
Ghirlando, Rodolfo; Balbo, Andrea; Piszczek, Grzegorz; Brown, Patrick H; Lewis, Marc S; Brautigam, Chad A; Schuck, Peter; Zhao, Huaying
2013-09-01
Sedimentation velocity (SV) is a method based on first principles that provides a precise hydrodynamic characterization of macromolecules in solution. Due to recent improvements in data analysis, the accuracy of experimental SV data emerges as a limiting factor in its interpretation. Our goal was to unravel the sources of experimental error and develop improved calibration procedures. We implemented the use of a Thermochron iButton temperature logger to directly measure the temperature of a spinning rotor and detected deviations that can translate into an error of as much as 10% in the sedimentation coefficient. We further designed a precision mask with equidistant markers to correct for instrumental errors in the radial calibration that were observed to span a range of 8.6%. The need for an independent time calibration emerged with use of the current data acquisition software (Zhao et al., Anal. Biochem., 437 (2013) 104-108), and we now show that smaller but significant time errors of up to 2% also occur with earlier versions. After application of these calibration corrections, the sedimentation coefficients obtained from 11 instruments displayed a significantly reduced standard deviation of approximately 0.7%. This study demonstrates the need for external calibration procedures and regular control experiments with a sedimentation coefficient standard. Published by Elsevier Inc.
Bore-sight calibration of the profile laser scanner using a large size exterior calibration field
NASA Astrophysics Data System (ADS)
Koska, Bronislav; Křemen, Tomáš; Štroner, Martin
2014-10-01
The bore-sight calibration procedure and results of a profile laser scanner using a large size exterior calibration field is presented in the paper. The task is a part of Autonomous Mapping Airship (AMA) project which aims to create s surveying system with specific properties suitable for effective surveying of medium-wide areas (units to tens of square kilometers per a day). As is obvious from the project name an airship is used as a carrier. This vehicle has some specific properties. The most important properties are high carrying capacity (15 kg), long flight time (3 hours), high operating safety and special flight characteristics such as stability of flight, in terms of vibrations, and possibility to flight at low speed. The high carrying capacity enables using of high quality sensors like professional infrared (IR) camera FLIR SC645, high-end visible spectrum (VIS) digital camera and optics in the visible spectrum and tactical grade INSGPS sensor iMAR iTracerRT-F200 and profile laser scanner SICK LD-LRS1000. The calibration method is based on direct laboratory measuring of coordinate offset (lever-arm) and in-flight determination of rotation offsets (bore-sights). The bore-sight determination is based on the minimization of squares of individual point distances from measured planar surfaces.
Vessel calibre—a potential MRI biomarker of tumour response in clinical trials
Emblem, Kyrre E.; Farrar, Christian T.; Gerstner, Elizabeth R.; Batchelor, Tracy T.; Borra, Ronald J. H.; Rosen, Bruce R.; Sorensen, A. Gregory; Jain, Rakesh K.
2015-01-01
Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research. PMID:25113840
Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.
2015-01-01
While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726
Evaluating and Extending the Ocean Wind Climate Data Record
Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W.; Bourassa, Mark A.; Long, David G.; Hoffman, Ross N.; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W.; Farrar, J. Tomas; Vandemark, Douglas; Fore, Alexander G.; Hristova-Veleva, Svetla M.; Turk, F. Joseph; Gaston, Robert; Tyler, Douglas
2017-01-01
Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σo measurements include 1) direct Ku-band σo intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times. PMID:28824741
Evaluating and Extending the Ocean Wind Climate Data Record.
Wentz, Frank J; Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W; Bourassa, Mark A; Long, David G; Hoffman, Ross N; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W; Farrar, J Tomas; Vandemark, Douglas; Fore, Alexander G; Hristova-Veleva, Svetla M; Turk, F Joseph; Gaston, Robert; Tyler, Douglas
2017-05-01
Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σ o measurements include 1) direct Ku-band σ o intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times.
Apparatus for the Calibration/Certification of Direct Reading Tritium in Air Monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otlet, R.L.; Mather, I.D.; Pottinger, M
2005-07-15
Direct reading tritium-in-air-monitors are widely used for immediate observation of discharges or working area levels where significant sources of tritium are held. These monitors require initial and periodic calibration certification at the levels likely to be encountered. We describe a purpose built gas handling apparatus which enables various activity levels of tritiated gas ({sup 3}H + N{sub 2}) to be precisely metered and circulated in a closed loop through the monitor under calibration at a wide range of activity levels.
Post-processing method for wind speed ensemble forecast using wind speed and direction
NASA Astrophysics Data System (ADS)
Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin
2017-04-01
Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.
Determining Light Decay Curves in a Plastic Scintillator using Cosmic Ray Muons
NASA Astrophysics Data System (ADS)
Wakwella, Praveen; Mandanas, Sarah; Wilson, John; Visca, Hannah; Padalino, Stephen; Sangster, T. Craig; Regan, Sean P.
2017-10-01
Plastic scintillators are used in ICF research to measure neutron energies via their time of flight (nToF). The energy resolution and sensitivity of an nToF system is directly correlated with the scintillation decay time of the plastic. To decrease the decay time, some scintillators are quenched with oxygen. Consequently, they become less efficient at producing light. As time passes, oxygen defuses out of the scintillator this in turn increases light production and the decay time. Mono-energetic calibration neutrons produced at accelerator facilities can be used to monitor the decreased oxygen content, however this is a time consuming process and requires that the scintillators be removed from the ICF facilities on a regular basis. Here, a possible method for cross calibrating accelerator neutrons with cosmic ray muons is presented. This method characterizes the scintillator with accelerator-generated neutrons and then cross calibrates them with cosmic ray muons. Once the scintillators are redeployed at the ICF facility the oxygen level can be regularly monitored using muons in situ. Funded in part by the United States Department of Energy through a Grant from the Laboratory for Laser Energetics.
Optimum data weighting and error calibration for estimation of gravitational parameters
NASA Technical Reports Server (NTRS)
Lerch, F. J.
1989-01-01
A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 (Goddard Earth Model, 36x36 spherical harmonic field) were employed toward application of this technique for gravity field parameters. Also, GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized here. The method employs subset solutions of the data associated with the complete solution and uses an algorithm to adjust the data weights by requiring the differences of parameters between solutions to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting as compared to the nominal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.
Invited article: Time accurate mass flow measurements of solid-fueled systems.
Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D
2008-10-01
A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.
Invited Article: Time accurate mass flow measurements of solid-fueled systems
NASA Astrophysics Data System (ADS)
Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.
2008-10-01
A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.
NASA Astrophysics Data System (ADS)
Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki
2012-10-01
A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.
Calibration and accuracy analysis of a focused plenoptic camera
NASA Astrophysics Data System (ADS)
Zeller, N.; Quint, F.; Stilla, U.
2014-08-01
In this article we introduce new methods for the calibration of depth images from focused plenoptic cameras and validate the results. We start with a brief description of the concept of a focused plenoptic camera and how from the recorded raw image a depth map can be estimated. For this camera, an analytical expression of the depth accuracy is derived for the first time. In the main part of the paper, methods to calibrate a focused plenoptic camera are developed and evaluated. The optical imaging process is calibrated by using a method which is already known from the calibration of traditional cameras. For the calibration of the depth map two new model based methods, which make use of the projection concept of the camera are developed. These new methods are compared to a common curve fitting approach, which is based on Taylor-series-approximation. Both model based methods show significant advantages compared to the curve fitting method. They need less reference points for calibration than the curve fitting method and moreover, supply a function which is valid in excess of the range of calibration. In addition the depth map accuracy of the plenoptic camera was experimentally investigated for different focal lengths of the main lens and is compared to the analytical evaluation.
Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S
2002-02-07
The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.3% (1sigma uncertainty). It is found that the conversion factor is not sensitive to beam filtration.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; Gubbels, Timothy; Barnes, Robert
2011-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those in the IPCC Report. A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO Project will implement a spaceborne earth observation mission designed to provide rigorous SI traceable observations (i.e., radiance, reflectance, and refractivity) that are sensitive to a wide range of key decadal change variables, including: 1) Surface temperature and atmospheric temperature profile 2) Atmospheric water vapor profile 3) Far infrared water vapor greenhouse 4) Aerosol properties and anthropogenic aerosol direct radiative forcing 5) Total and spectral solar irradiance 6) Broadband reflected and emitted radiative fluxes 7) Cloud properties 8) Surface albedo There are two methods the CLARREO mission will rely on to achieve these critical decadal change benchmarks: direct and reference inter-calibration. A quantitative analysis of the strengths and weaknesses of the two methods has led to the recommended CLARREO mission approach. The project consists of two satellites launched into 90-degree, precessing orbits separated by 90 degrees. The instrument suite receiver on each spacecraft includes one emitted infrared spectrometer, two reflected solar spectrometers: dividing the spectrum from ultraviolet through near infrared, and one global navigation receiver for radio occultation. The measurements will be acquired for a period of three years minimum, with a five-year lifetime goal, enabling follow-on missions to extend the climate record over the decades needed to understand climate change. The current work concentrates on the reflected solar instrument giving an overview of its design and calibration approach. The calibration description includes the approach to achieving an SI-traceable system on orbit. The calibration overview is followed by a preliminary error budget based on techniques currently in place at the National Institute of Standards and Technology (NIST).
Methods for Calibration of Prout-Tompkins Kinetics Parameters Using EZM Iteration and GLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K; de Supinski, B
2006-11-07
This document contains information regarding the standard procedures used to calibrate chemical kinetics parameters for the extended Prout-Tompkins model to match experimental data. Two methods for calibration are mentioned: EZM calibration and GLO calibration. EZM calibration matches kinetics parameters to three data points, while GLO calibration slightly adjusts kinetic parameters to match multiple points. Information is provided regarding the theoretical approach and application procedure for both of these calibration algorithms. It is recommended that for the calibration process, the user begin with EZM calibration to provide a good estimate, and then fine-tune the parameters using GLO. Two examples have beenmore » provided to guide the reader through a general calibrating process.« less
NASA Technical Reports Server (NTRS)
Taylor, Brian R.
2012-01-01
A novel, efficient air data calibration method is proposed for aircraft with limited envelopes. This method uses output-error optimization on three-dimensional inertial velocities to estimate calibration and wind parameters. Calibration parameters are based on assumed calibration models for static pressure, angle of attack, and flank angle. Estimated wind parameters are the north, east, and down components. The only assumptions needed for this method are that the inertial velocities and Euler angles are accurate, the calibration models are correct, and that the steady-state component of wind is constant throughout the maneuver. A two-minute maneuver was designed to excite the aircraft over the range of air data calibration parameters and de-correlate the angle-of-attack bias from the vertical component of wind. Simulation of the X-48B (The Boeing Company, Chicago, Illinois) aircraft was used to validate the method, ultimately using data derived from wind-tunnel testing to simulate the un-calibrated air data measurements. Results from the simulation were accurate and robust to turbulence levels comparable to those observed in flight. Future experiments are planned to evaluate the proposed air data calibration in a flight environment.
Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides
Beattie, Bradley J.; Thorek, Daniel L. J.; Schmidtlein, Charles R.; Pentlow, Keith S.; Humm, John L.; Hielscher, Andreas H.
2012-01-01
There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and β particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use. PMID:22363636
Miranda, Nahieh Toscano; Sequinel, Rodrigo; Hatanaka, Rafael Rodrigues; de Oliveira, José Eduardo; Flumignan, Danilo Luiz
2017-04-01
Benzene, toluene, ethylbenzene, and xylenes are some of the most hazardous constituents found in commercial gasoline samples; therefore, these components must be monitored to avoid toxicological problems. We propose a new routine method of ultrafast gas chromatography coupled to flame ionization detection for the direct determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline. This method is based on external standard calibration to quantify each compound, including the validation step of the study of linearity, detection and quantification limits, precision, and accuracy. The time of analysis was less than 3.2 min, with quantitative statements regarding the separation and quantification of all compounds in commercial gasoline samples. Ultrafast gas chromatography is a promising alternative method to official analytical techniques. Government laboratories could consider using this method for quality control. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eslamizad, Samira; Yazdanpanah, Hassan; Javidnia, Katayon; Sadeghi, Ramezan; Bayat, Mitra; Shahabipour, Sara; Khalighian, Najmeh; Kobarfard, Farzad
2016-01-01
A fast and simple modified QuEChERS (quick, easy, cheap, rugged and safe) extraction method based on spiked calibration curves and direct sample introduction was developed for determination of Benzo [a] pyrene (BaP) in bread by gas chromatography-mass spectrometry single quadrupole selected ion monitoring (GC/MS-SQ-SIM). Sample preparation includes: extraction of BaP into acetone followed by cleanup with dispersive solid phase extraction. The use of spiked samples for constructing the calibration curve substantially reduced adverse matrix-related effects. The average recovery of BaP at 6 concentration levels was in range of 95-120%. The method was proved to be reproducible with relative standard deviation less than 14.5% for all of the concentration levels. The limit of detection and limit of quantification were 0.3 ng/g and 0.5 ng/g, respectively. Correlation coefficient of 0.997 was obtained for spiked calibration standards over the concentration range of 0.5-20 ng/g. To the best of our knowledge, this is the first time that a QuEChERS method is used for the analysis of BaP in breads. The developed method was used for determination of BaP in 29 traditional (Sangak) and industrial (Senan) bread samples collected from Tehran in 2014. These results showed that two Sangak samples were contaminated with BaP. Therefore, a comprehensive survey for monitoring of BaP in Sangak bread samples seems to be needed. This is the first report concerning contamination of bread samples with BaP in Iran. PMID:27642317
Bjerklie, David M.; O’Brien, Kevin; Rozsa, Ron
2013-01-01
A one-dimensional diffusion analogy model for estimating tide heights in coastal marshes was developed and calibrated by using data from previous tidal-marsh studies. The method is simpler to use than other one- and two-dimensional hydrodynamic models because it does not require marsh depth and tidal prism information; however, the one-dimensional diffusion analogy model cannot be used to estimate tide heights, flow velocities, and tide arrival times for tide conditions other than the highest tide for which it is calibrated. Limited validation of the method indicates that it has an accuracy within 0.3 feet. The method can be applied with limited calibration information that is based entirely on remote sensing or geographic information system data layers. The method can be used to estimate high-tide heights in tidal wetlands drained by tide gates where tide levels cannot be observed directly by opening the gates without risk of flooding properties and structures. A geographic information system application of the method is demonstrated for Sybil Creek marsh in Branford, Connecticut. The tidal flux into this marsh is controlled by two tide gates that prevent full tidal inundation of the marsh. The method application shows reasonable tide heights for the gates-closed condition (the normal condition) and the one-gate-open condition on the basis of comparison with observed heights. The condition with all tide gates open (two gates) was simulated with the model; results indicate where several structures would be flooded if the gates were removed as part of restoration efforts or if the tide gates were to fail.
A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer.
Pagoulatos, N; Haynor, D R; Kim, Y
2001-09-01
We have developed a fast calibration method for computing the position and orientation of 2-D ultrasound (US) images in 3-D space where a position sensor is mounted on the US probe. This calibration is required in the fields of 3-D ultrasound and registration of ultrasound with other imaging modalities. Most of the existing calibration methods require a complex and tedious experimental procedure. Our method is simple and it is based on a custom-built phantom. Thirty N-fiducials (markers in the shape of the letter "N") embedded in the phantom provide the basis for our calibration procedure. We calibrated a 3.5-MHz sector phased-array probe with a magnetic position sensor, and we studied the accuracy and precision of our method. A typical calibration procedure requires approximately 2 min. We conclude that we can achieve accurate and precise calibration using a single US image, provided that a large number (approximately ten) of N-fiducials are captured within the US image, enabling a representative sampling of the imaging plane.
Wu, Jun; Yu, Zhijing; Zhuge, Jingchang
2016-04-01
A rotating laser positioning system (RLPS) is an efficient measurement method for large-scale metrology. Due to multiple transmitter stations, which consist of a measurement network, the position relationship of these stations must be first calibrated. However, with such auxiliary devices such as a laser tracker, scale bar, and complex calibration process, the traditional calibration methods greatly reduce the measurement efficiency. This paper proposes a self-calibration method for RLPS, which can automatically obtain the position relationship. The method is implemented through interscanning technology by using a calibration bar mounted on the transmitter station. Each bar is composed of three RLPS receivers and one ultrasonic sensor whose coordinates are known in advance. The calibration algorithm is mainly based on multiplane and distance constraints and is introduced in detail through a two-station mathematical model. The repeated experiments demonstrate that the coordinate measurement uncertainty of spatial points by using this method is about 0.1 mm, and the accuracy experiments show that the average coordinate measurement deviation is about 0.3 mm compared with a laser tracker. The accuracy can meet the requirements of most applications, while the calibration efficiency is significantly improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Misun; Bilheux, Hassina Z; Voisin, Sophie
2013-04-01
Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scatteringmore » effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.« less
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2017-06-08
The industrial production of liquid detergent compositions entails delicate balance of ingredients and process steps. In order to assure high quality and productivity in the manufacturing line, process analytical technology tools such as Raman spectroscopy are to be implemented. Marked chemical specificity, negligible water interference and high robustness are ascribed to this process analytical technique. Previously, at-line calibration models have been developed for determining the concentration levels of the being studied liquid detergents main ingredients from Raman spectra. A strategy is now proposed to transfer such at-line developed regression models to an in-line set-up, allowing real-time dosing control of the liquid detergent composition under production. To mimic in-line manufacturing conditions, liquid detergent compositions are created in a five-liter vessel with an overhead mixer. Raman spectra are continuously acquired by pumping the detergent under production via plastic tubing towards a Raman superhead probe, which is incorporated into a metal frame with a sapphire window facing the detergent fluid. Two at-line developed partial least squares (PLS) models are aimed at transferring, predicting the concentration of surfactant 1 and polymer 2 in the examined liquid detergent composition. A univariate slope/bias correction (SBC) is investigated, next to three well-acknowledged multivariate transformation methods: direct, piecewise and double-window piecewise direct standardization. Transfer is considered successful when the magnitude of the validation sets root mean square error of prediction (RMSEP) is similar to or smaller than the corresponding at-line prediction error. The transferred model offering the most promising outcome is further subjected to an exhaustive statistical evaluation, in order to appraise the applicability of the suggested calibration transfer method. Interval hypothesis tests are thereby performed for method comparison. It is illustrated that the investigated transfer approach yields satisfactory results, provided that the original at-line calibration model is thoroughly validated. Both SBC transfer models return lower RMSEP values than their corresponding original models. The surfactant 1 assay met all relevant evaluation criteria, demonstrating successful transfer to the in-line set-up. The in-line quantification of polymer 2 levels in the liquid detergent composition could not be statistically validated, due to the poorer performance of the at-line model. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ji, Qiang; Tsay, Si-Chee; Lau, K. M.; Hansell, R. A.; Butler, J. J.; Cooper, J. W.
2011-01-01
Traditionally the calibration equation for pyranometers assumes that the measured solar irradiance is solely proportional to the thermopile's output voltage; therefore only a single calibration factor is derived. This causes additional measurement uncertainties because it does not capture sufficient information to correctly account for a pyranometer's thermal effect. In our updated calibration equation, temperatures from the pyranometer's dome and case are incorporated to describe the instrument's thermal behavior, and a new set of calibration constants are determined, thereby reducing measurement uncertainties. In this paper, we demonstrate why a pyranometer's uncertainty using the traditional calibration equation is always larger than a-few-percent, but with the new approach can become much less than 1% after the thermal issue is resolved. The highlighted calibration results are based on NIST-traceable light sources under controlled laboratory conditions. The significance of the new approach lends itself to not only avoiding the uncertainty caused by a pyranometer's thermal effect but also the opportunity to better isolate and characterize other instrumental artifacts, such as angular response and non-linearity of the thermopile, to further reduce additional uncertainties. We also discuss some of the implications, including an example of how the thermal issue can potentially impact climate studies by evaluating aerosol's direct-radiative effect using field measurements with and without considering the pyranometer's thermal effect. The results of radiative transfer model simulation show that a pyranometer's thermal effect on solar irradiance measurements at the surface can be translated into a significant alteration of the calculated distribution of solar energy inside the column atmosphere.
NASA Technical Reports Server (NTRS)
Ji. Q.; Tsay, S.-C.; Lau, K. M.; Hansell, R. A.; Butler, J. J.; Cooper, J. W.
2011-01-01
Traditionally the calibration equation for pyranometers assumes that the measured solar irradiance is solely proportional to the thermopile s output voltage; therefore, only a single calibration factor is derived. This causes additional measurement uncertainties because it does not capture sufficient information to correctly account for a pyranometer s thermal effect. In our updated calibration equation, temperatures from the pyranometer's dome and case are incorporated to describe the instrument's thermal behavior, and a new set of calibration constants are determined, thereby reducing measurement uncertainties. In this paper, we demonstrate why a pyranometer's uncertainty using the traditional calibration equation is always larger than a few percent, but with the new approach can become much less than 1% after the thermal issue is resolved. The highlighted calibration results are based on NIST traceable light sources under controlled laboratory conditions. The significance of the new approach lends itself to not only avoiding the uncertainty caused by a pyranometer's thermal effect but also the opportunity to better isolate and characterize other instrumental artifacts, such as angular response and nonlinearity of the thermopile, to further reduce additional uncertainties. We also discuss some of the implications, including an example of how the thermal issue can potentially impact climate studies by evaluating aerosol s direct radiative effect using field measurements with and without considering the pyranometer s thermal effect. The results of radiative transfer model simulation show that a pyranometer s thermal effect on solar irradiance measurements at the surface can be translated into a significant alteration of the calculated distribution of solar energy inside the column atmosphere.
Novel crystal timing calibration method based on total variation
NASA Astrophysics Data System (ADS)
Yu, Xingjian; Isobe, Takashi; Watanabe, Mitsuo; Liu, Huafeng
2016-11-01
A novel crystal timing calibration method based on total variation (TV), abbreviated as ‘TV merge’, has been developed for a high-resolution positron emission tomography (PET) system. The proposed method was developed for a system with a large number of crystals, it can provide timing calibration at the crystal level. In the proposed method, the timing calibration process was formulated as a linear problem. To robustly optimize the timing resolution, a TV constraint was added to the linear equation. Moreover, to solve the computer memory problem associated with the calculation of the timing calibration factors for systems with a large number of crystals, the merge component was used for obtaining the crystal level timing calibration values. Compared with other conventional methods, the data measured from a standard cylindrical phantom filled with a radioisotope solution was sufficient for performing a high-precision crystal-level timing calibration. In this paper, both simulation and experimental studies were performed to demonstrate the effectiveness and robustness of the TV merge method. We compare the timing resolutions of a 22Na point source, which was located in the field of view (FOV) of the brain PET system, with various calibration techniques. After implementing the TV merge method, the timing resolution improved from 3.34 ns at full width at half maximum (FWHM) to 2.31 ns FWHM.
method for testing home energy audit software and associated calibration methods. BESTEST-EX is one of Energy Analysis Model Calibration Methods. When completed, the ANSI/RESNET SMOT will specify test procedures for evaluating calibration methods used in conjunction with predicting building energy use and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu
2015-10-15
We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documentedmore » methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen irradiance standard lamp.« less
An Introduction to the Global Space-based Inter-Calibration System from a EUMETSAT Perspective
NASA Astrophysics Data System (ADS)
Wagner, S. C.; Hewison, T.; Roebeling, R. A.; Koenig, M.; Schulz, J.; Miu, P.
2012-04-01
The Global Space-based Inter-Calibration System (GSICS) (Goldberg and al. 2011) is an international collaborative effort which aims to monitor, improve and harmonize the quality of observations from operational weather and environmental satellites of the Global Observing System (GOS). GSICS aims at ensuring consistent accuracy among space-based observations worldwide for climate monitoring, weather forecasting, and environmental applications. This is achieved through a comprehensive calibration strategy, which involves monitoring instrument performances, operational inter-calibration of satellite instruments, tying the measurements to absolute references and standards, and recalibration of archived data. A major part of this strategy involves direct comparison of collocated observations from pairs of satellite instruments, which are used to systematically generate calibration functions to compare and correct the calibration of monitored instruments to references. These GSICS Corrections are needed for accurately integrating data from multiple observing systems into both near real-time and re-analysis products, applications and services. This paper gives more insight into the activities carried out by EUMETSAT as a GSICS Processing and Research Centre. Currently these are closely bound to the in-house development and operational implementation of calibration methods for solar and thermal band channels of geostationary and polar-orbiting satellites. They include inter-calibration corrections for Meteosat imagers using reference instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite for solar band channels, the Infrared Atmospheric Sounding Interferometer (IASI) on-board Metop-A and, for historic archive data, the High-resolution InfraRed Sounder (HIRS). Additionally, bias monitoring is routinely performed, allowing users to visualise the calibration accuracy of the instruments in near real-time. These activities are based on principles and protocols defined by the GSICS Research Working Group and Data Management Working Group, which require assessment of the calibration uncertainties to ensure the traceability to community references.
High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu
2017-05-01
Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.
Uncertainty propagation in the calibration equations for NTC thermistors
NASA Astrophysics Data System (ADS)
Liu, Guang; Guo, Liang; Liu, Chunlong; Wu, Qingwen
2018-06-01
The uncertainty propagation problem is quite important for temperature measurements, since we rely so much on the sensors and calibration equations. Although uncertainty propagation for platinum resistance or radiation thermometers is well known, there have been few publications concerning negative temperature coefficient (NTC) thermistors. Insight into the propagation characteristics of uncertainty that develop when equations are determined using the Lagrange interpolation or least-squares fitting method is presented here with respect to several of the most common equations used in NTC thermistor calibration. Within this work, analytical expressions of the propagated uncertainties for both fitting methods are derived for the uncertainties in the measured temperature and resistance at each calibration point. High-precision calibration of an NTC thermistor in a precision water bath was performed by means of the comparison method. Results show that, for both fitting methods, the propagated uncertainty is flat in the interpolation region but rises rapidly beyond the calibration range. Also, for temperatures interpolated between calibration points, the propagated uncertainty is generally no greater than that associated with the calibration points. For least-squares fitting, the propagated uncertainty is significantly reduced by increasing the number of calibration points and can be well kept below the uncertainty of the calibration points.
A New Online Calibration Method Based on Lord's Bias-Correction.
He, Yinhong; Chen, Ping; Li, Yong; Zhang, Shumei
2017-09-01
Online calibration technique has been widely employed to calibrate new items due to its advantages. Method A is the simplest online calibration method and has attracted many attentions from researchers recently. However, a key assumption of Method A is that it treats person-parameter estimates θ ^ s (obtained by maximum likelihood estimation [MLE]) as their true values θ s , thus the deviation of the estimated θ ^ s from their true values might yield inaccurate item calibration when the deviation is nonignorable. To improve the performance of Method A, a new method, MLE-LBCI-Method A, is proposed. This new method combines a modified Lord's bias-correction method (named as maximum likelihood estimation-Lord's bias-correction with iteration [MLE-LBCI]) with the original Method A in an effort to correct the deviation of θ ^ s which may adversely affect the item calibration precision. Two simulation studies were carried out to explore the performance of both MLE-LBCI and MLE-LBCI-Method A under several scenarios. Simulation results showed that MLE-LBCI could make a significant improvement over the ML ability estimates, and MLE-LBCI-Method A did outperform Method A in almost all experimental conditions.
Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras.
Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-06-24
Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer's calibration.
Simultaneous Calibration: A Joint Optimization Approach for Multiple Kinect and External Cameras
Liao, Yajie; Sun, Ying; Li, Gongfa; Kong, Jianyi; Jiang, Guozhang; Jiang, Du; Cai, Haibin; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
Camera calibration is a crucial problem in many applications, such as 3D reconstruction, structure from motion, object tracking and face alignment. Numerous methods have been proposed to solve the above problem with good performance in the last few decades. However, few methods are targeted at joint calibration of multi-sensors (more than four devices), which normally is a practical issue in the real-time systems. In this paper, we propose a novel method and a corresponding workflow framework to simultaneously calibrate relative poses of a Kinect and three external cameras. By optimizing the final cost function and adding corresponding weights to the external cameras in different locations, an effective joint calibration of multiple devices is constructed. Furthermore, the method is tested in a practical platform, and experiment results show that the proposed joint calibration method can achieve a satisfactory performance in a project real-time system and its accuracy is higher than the manufacturer’s calibration. PMID:28672823
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Ibrahim M.; Andreas, Afshin M.
2017-08-01
Accurate pyranometer calibrations, traceable to internationally recognized standards, are critical for solar irradiance measurements. One calibration method is the component summation method, where the pyranometers are calibrated outdoors under clear sky conditions, and the reference global solar irradiance is calculated as the sum of two reference components, the diffuse horizontal and subtended beam solar irradiances. The beam component is measured with pyrheliometers traceable to the World Radiometric Reference, while there is no internationally recognized reference for the diffuse component. In the absence of such a reference, we present a method to consistently calibrate pyranometers for measuring the diffuse component. Themore » method is based on using a modified shade/unshade method and a pyranometer with less than 0.5 W/m2 thermal offset. The calibration result shows that the responsivity of Hukseflux SR25 pyranometer equals 10.98 uV/(W/m2) with +/-0.86 percent uncertainty.« less
Radiation calibration for LWIR Hyperspectral Imager Spectrometer
NASA Astrophysics Data System (ADS)
Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong
2014-11-01
The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.
The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
2016-06-02
This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturersmore » are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.« less
Liu, Rui; Lv, Yi; Hou, Xiandeng; Yang, Lu; Mester, Zoltan
2012-03-20
An accurate, simple, and sensitive method for the direct determination of proteins by nonspecies specific isotope dilution and external calibration high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) is described. The labeling of myoglobin (17 kDa), transferrin (77 kDa), and thyroglobulin (670 kDa) proteins was accomplished in a single-step reaction with a commercially available bis(2,2'-bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester-bis(hexafluorophosphate) (Ru-NHS ester). Using excess amounts of Ru-NHS ester compared to the protein concentration at optimized labeling conditions, constant ratios for Ru to proteins were obtained. Bioconjugate solutions containing both labeled and unlabeled proteins as well as excess Ru-NHS ester reagent were injected onto a size exclusion HPLC column for separation and ICPMS detection without any further treatment. A (99)Ru enriched spike was used for nonspecies specific ID calibration. The accuracy of the method was confirmed at various concentration levels. An average recovery of 100% ± 3% (1 standard deviation (SD), n = 9) was obtained with a typical precision of better than 5% RSD at 100 μg mL(-1) for nonspecies specific ID. Detection limits (3SD) of 1.6, 3.2, and 7.0 fmol estimated from three procedure blanks were obtained for myoglobin, transferrin, and thyroglobulin, respectively. These detection limits are suitable for the direct determination of intact proteins at trace levels. For simplicity, external calibration was also tested. Good linear correlation coefficients, 0.9901, 0.9921, and 0.9980 for myoglobin, transferrin, and thyroglobulin, respectively, were obtained. The measured concentrations of proteins in a solution were in good agreement with their volumetrically prepared values. To the best of our knowledge, this is the first application of nonspecies specific ID for the accurate and direct determination of proteins using a Ru-NHS ester labeling reagent.
NASA Astrophysics Data System (ADS)
Lin, Zesen; Hu, Ning; Kong, Xu; Gao, Yulong; Zou, Hu; Wang, Enci; Cheng, Fuzhen; Fang, Guanwen; Lin, Lin; Wang, Jing
2017-06-01
The spectra of 413 star-forming (or H II) regions in M33 (NGC 598) were observed using the multifiber spectrograph of Hectospec at the 6.5 m Multiple Mirror Telescope. Using this homogeneous spectra sample, we measured the intensities of emission lines and some physical parameters, such as electron temperatures, electron densities, and metallicities. Oxygen abundances were derived via the direct method (when available) and two empirical strong-line methods, namely, O3N2 and N2. At the high-metallicity end, oxygen abundances derived from the O3N2 calibration were higher than those derived from the N2 index, indicating an inconsistency between O3N2 and N2 calibrations. We present a detailed analysis of the spatial distribution of gas-phase oxygen abundances in M33 and confirm the existence of the axisymmetric global metallicity distribution that is widely assumed in the literature. Local variations were also observed and subsequently associated with spiral structures to provide evidence of radial migration driven by arms. Our O/H gradient fitted out to 1.1 R 25 resulted in slopes of -0.17 ± 0.03, -0.19 ± 0.01, and -0.16 ± 0.17 dex {R}25-1, utilizing abundances from O3N2, N2 diagnostics, and a direct method, respectively.
Vanishing Point Extraction and Refinement for Robust Camera Calibration
Tsai, Fuan
2017-01-01
This paper describes a flexible camera calibration method using refined vanishing points without prior information. Vanishing points are estimated from human-made features like parallel lines and repeated patterns. With the vanishing points extracted from the three mutually orthogonal directions, the interior and exterior orientation parameters can be further calculated using collinearity condition equations. A vanishing point refinement process is proposed to reduce the uncertainty caused by vanishing point localization errors. The fine-tuning algorithm is based on the divergence of grouped feature points projected onto the reference plane, minimizing the standard deviation of each of the grouped collinear points with an O(1) computational complexity. This paper also presents an automated vanishing point estimation approach based on the cascade Hough transform. The experiment results indicate that the vanishing point refinement process can significantly improve camera calibration parameters and the root mean square error (RMSE) of the constructed 3D model can be reduced by about 30%. PMID:29280966
Research on new dynamic force calibration system
NASA Astrophysics Data System (ADS)
Zhang, Li
2008-06-01
Sinusoidal force calibration method based on electrodynamic shaker and interferometric system was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). In that system a load mass are screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition F(t) = ma(t), where m is the total mass acting on the sensing element of the force transducer and a is the time and spatial-dependent acceleration of the mass, which is directly measured by a laser interferometer. This paper will introduce a new dynamic force calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electrodynamic shakers to generate dynamic force in the range from 1N to 20kN, and heterodyne laser interferometers are used for acceleration measurement. A new air bearing system is developed to increase the performance of shakers and an active vibration isolator is used to reduce enviromental disturbance to the interferometric system.
Calibration of 3-D wind measurements on a single engine research aircraft
NASA Astrophysics Data System (ADS)
Mallaun, C.; Giez, A.; Baumann, R.
2015-02-01
An innovative calibration method for the wind speed measurement using a boom mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high accuracy Inertial Reference System (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the 3-D wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.
Calibration of 3-D wind measurements on a single-engine research aircraft
NASA Astrophysics Data System (ADS)
Mallaun, C.; Giez, A.; Baumann, R.
2015-08-01
An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.
Boiret, Mathieu; Meunier, Loïc; Ginot, Yves-Michel
2011-02-20
A near infrared (NIR) method was developed for determination of tablet potency of active pharmaceutical ingredient (API) in a complex coated tablet matrix. The calibration set contained samples from laboratory and production scale batches. The reference values were obtained by high performance liquid chromatography (HPLC) and partial least squares (PLS) regression was used to establish a model. The model was challenged by calculating tablet potency of two external test sets. Root mean square errors of prediction were respectively equal to 2.0% and 2.7%. To use this model with a second spectrometer from the production field, a calibration transfer method called piecewise direct standardisation (PDS) was used. After the transfer, the root mean square error of prediction of the first test set was 2.4% compared to 4.0% without transferring the spectra. A statistical technique using bootstrap of PLS residuals was used to estimate confidence intervals of tablet potency calculations. This method requires an optimised PLS model, selection of the bootstrap number and determination of the risk. In the case of a chemical analysis, the tablet potency value will be included within the confidence interval calculated by the bootstrap method. An easy to use graphical interface was developed to easily determine if the predictions, surrounded by minimum and maximum values, are within the specifications defined by the regulatory organisation. Copyright © 2010 Elsevier B.V. All rights reserved.
Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes.
Wighton, Paul; Lee, Tim K; Lui, Harvey; McLean, David; Atkins, M Stella
2011-08-01
We present a method for calibrating low-cost digital dermoscopes that corrects for color and inconsistent lighting and also corrects for chromatic aberration. Chromatic aberration is a form of radial distortion that often occurs in inexpensive digital dermoscopes and creates red and blue halo-like effects on edges. Being radial in nature, distortions due to chromatic aberration are not constant across the image, but rather vary in both magnitude and direction. As a result, distortions are not only visually distracting but could also mislead automated characterization techniques. Two low-cost dermoscopes, based on different consumer-grade cameras, were tested. Color is corrected by imaging a reference and applying singular value decomposition to determine the transformation required to ensure accurate color reproduction. Lighting is corrected by imaging a uniform surface and creating lighting correction maps. Chromatic aberration is corrected using a second-order radial distortion model. Our results for color and lighting calibration are consistent with previously published results, while distortions due to chromatic aberration can be reduced by 42-47% in the two systems considered. The disadvantages of inexpensive dermoscopy can be quickly substantially mitigated with a suitable calibration procedure. © 2011 John Wiley & Sons A/S.
Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations.
Lehman, John H; Vayshenker, Igor; Livigni, David J; Hadler, Joshua
2004-01-01
The responsivity of two optical detectors was determined by the method of direct substitution in four different NIST measurement facilities. The measurements were intended to demonstrate the determination of absolute responsivity as provided by NIST calibration services at laser and optical-communication wavelengths; nominally 633 nm, 850 nm, 1060 nm, 1310 nm, and 1550 nm. The optical detectors have been designated as checks standards for the purpose of routine intramural comparison of our calibration services and to meet requirements of the NIST quality system, based on ISO 17025. The check standards are two optical-trap detectors, one based on silicon and the other on indium gallium arsenide photodiodes. The four measurement services are based on: (1) the laser optimized cryogenic radiometer (LOCR) and free field collimated laser light; (2) the C-series isoperibol calorimeter and free-field collimated laser light; (3) the electrically calibrated pyroelectric radiometer and fiber-coupled laser light; (4) the pyroelectric wedge trap detector, which measures light from a lamp source and monochromator. The results indicate that the responsivity of the check standards, as determined independently using the four services, agree to within the published expanded uncertainty ranging from approximately 0.02 % to 1.24 %.
Development of new methodologies for evaluating the energy performance of new commercial buildings
NASA Astrophysics Data System (ADS)
Song, Suwon
The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against Standards 90.1-1989 and 90.1-2001, and (3) A new evaluation of the performance of selected Energy Conservation Design Measures (ECDMs). Finally, potential energy savings were also simulated from selected improvements, including: minimum supply air flow, undocumented exhaust air, and daylighting.
Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers
NASA Technical Reports Server (NTRS)
Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.
2010-01-01
This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.
Xiao, Hui; Sun, Ke; Sun, Ye; Wei, Kangli; Tu, Kang; Pan, Leiqing
2017-11-22
Near-infrared (NIR) spectroscopy was applied for the determination of total soluble solid contents (SSC) of single Ruby Seedless grape berries using both benchtop Fourier transform (VECTOR 22/N) and portable grating scanning (SupNIR-1500) spectrometers in this study. The results showed that the best SSC prediction was obtained by VECTOR 22/N in the range of 12,000 to 4000 cm -1 (833-2500 nm) for Ruby Seedless with determination coefficient of prediction (R p ²) of 0.918, root mean squares error of prediction (RMSEP) of 0.758% based on least squares support vector machine (LS-SVM). Calibration transfer was conducted on the same spectral range of two instruments (1000-1800 nm) based on the LS-SVM model. By conducting Kennard-Stone (KS) to divide sample sets, selecting the optimal number of standardization samples and applying Passing-Bablok regression to choose the optimal instrument as the master instrument, a modified calibration transfer method between two spectrometers was developed. When 45 samples were selected for the standardization set, the linear interpolation-piecewise direct standardization (linear interpolation-PDS) performed well for calibration transfer with R p ² of 0.857 and RMSEP of 1.099% in the spectral region of 1000-1800 nm. And it was proved that re-calculating the standardization samples into master model could improve the performance of calibration transfer in this study. This work indicated that NIR could be used as a rapid and non-destructive method for SSC prediction, and provided a feasibility to solve the transfer difficulty between totally different NIR spectrometers.
NASA Astrophysics Data System (ADS)
Tol, Paul; van Hees, Richard; van Kempen, Tim; Krijger, Matthijs; Cadot, Sidney; Aben, Ilse; Ludewig, Antje; Dingjan, Jos; Persijn, Stefan; Hoogeveen, Ruud
2016-10-01
The Tropospheric Monitoring Instrument (TROPOMI) on-board the Sentinel-5 Precursor satellite is an Earth-observing spectrometer with bands in the ultraviolet, visible, near infrared and short-wave infrared (SWIR). It provides daily global coverage of atmospheric trace gases relevant for tropospheric air quality and climate research. Three new techniques will be presented that are unique for the TROPOMI-SWIR spectrometer. The retrieval of methane and CO columns from the data of the SWIR band requires for each detector pixel an accurate instrument spectral response function (ISRF), i.e. the normalized signal as a function of wavelength. A new determination method for Earth-observing instruments has been used in the on-ground calibration, based on measurements with a SWIR optical parametric oscillator (OPO) that was scanned over the whole TROPOMI-SWIR spectral range. The calibration algorithm derives the ISRF without needing the absolute wavelength during the measurement. The same OPO has also been used to determine the two-dimensional stray-light distribution for each SWIR pixel with a dynamic range of 7 orders. This was achieved by combining measurements at several exposure times and taking saturation into account. The correction algorithm and data are designed to remove the mean stray-light distribution and a reflection that moves relative to the direct image, within the strict constraints of the available time for the L01b processing. A third new technique is an alternative calibration of the SWIR absolute radiance and irradiance using a black body at the temperature of melting silver. Unlike a standard FEL lamp, this source does not have to be calibrated itself, because the temperature is very stable and well known. Measurement methods, data analyses, correction algorithms and limitations of the new techniques will be presented.
NASA Astrophysics Data System (ADS)
Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Drzymała, Jan; Abramski, Krzysztof M.
2014-07-01
Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eken, T; Mayeda, K; Hofstetter, A
A recently developed coda magnitude methodology was applied to selected broadband stations in Turkey for the purpose of testing the coda method in a large, laterally complex region. As found in other, albeit smaller regions, coda envelope amplitude measurements are significantly less variable than distance-corrected direct wave measurements (i.e., L{sub g} and surface waves) by roughly a factor 3-to-4. Despite strong lateral crustal heterogeneity in Turkey, we found that the region could be adequately modeled assuming a simple 1-D, radially symmetric path correction for 10 narrow frequency bands ranging between 0.02 to 2.0 Hz. For higher frequencies however, 2-D pathmore » corrections will be necessary and will be the subject of a future study. After calibrating the stations ISP, ISKB, and MALT for local and regional distances, single-station moment-magnitude estimates (M{sub w}) derived from the coda spectra were in excellent agreement with those determined from multi-station waveform modeling inversions of long-period data, exhibiting a data standard deviation of 0.17. Though the calibration was validated using large events, the results of the calibration will extend M{sub w} estimates to significantly smaller events which could not otherwise be waveform modeled due to poor signal-to-noise ratio at long periods and sparse station coverage. The successful application of the method is remarkable considering the significant lateral complexity in Turkey and the simple assumptions used in the coda method.« less
Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan
2010-02-01
The goal of this article is to present a novel method for spectral characterization and calibration of spectrometers and hyper-spectral imaging systems based on non-collinear acousto-optical tunable filters. The method characterizes the spectral tuning curve (frequency-wavelength characteristic) of the AOTF (Acousto-Optic Tunable Filter) filter by matching the acquired and modeled spectra of the HgAr calibration lamp, which emits line spectrum that can be well modeled via AOTF transfer function. In this way, not only tuning curve characterization and corresponding spectral calibration but also spectral resolution assessment is performed. The obtained results indicated that the proposed method is efficient, accurate and feasible for routine calibration of AOTF spectrometers and hyper-spectral imaging systems and thereby a highly competitive alternative to the existing calibration methods.
The Calibration of AVHRR/3 Visible Dual Gain Using Meteosat-8 as a MODIS Calibration Transfer Medium
NASA Technical Reports Server (NTRS)
Avey, Lance; Garber, Donald; Nguyen, Louis; Minnis, Patrick
2007-01-01
This viewgraph presentation reviews the NOAA-17 AVHRR visible channels calibrated against MET-8/MODIS using dual gain regression methods. The topics include: 1) Motivation; 2) Methodology; 3) Dual Gain Regression Methods; 4) Examples of Regression methods; 5) AVHRR/3 Regression Strategy; 6) Cross-Calibration Method; 7) Spectral Response Functions; 8) MET8/NOAA-17; 9) Example of gain ratio adjustment; 10) Effect of mixed low/high count FOV; 11) Monitor dual gains over time; and 12) Conclusions
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292
Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira
2015-02-01
Momentum, i.e., force, exerted from a small helicon plasma thruster to a target plate is measured simultaneously with a direct thrust measurement using a thrust balance. The calibration coefficient relating a target displacement to a steady-state force is obtained by supplying a dc to a calibration coil mounted on the target, where a force acting to a small permanent magnet located near the coil is directly measured by using a load cell. As the force exerted by the plasma flow to the target plate is in good agreement with the directly measured thrust, the validity of the target technique is demonstrated under the present operating conditions, where the thruster is operated in steady-state. Furthermore, a calibration coefficient relating a swing amplitude of the target to an impulse bit is also obtained by pulsing the calibration coil current. The force exerted by the pulsed plasma, which is estimated from the measured impulse bit and the pulse width, is also in good agreement with that obtained for the steady-state operation; hence, the thrust assessment of the helicon plasma thruster by the target is validated for both the steady-state and pulsed operations.
Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.
Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang
2016-06-22
An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.
IMU-based online kinematic calibration of robot manipulator.
Du, Guanglong; Zhang, Ping
2013-01-01
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods.
SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, X; Elder, E; Roper, J
2015-06-15
Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less
NASA Astrophysics Data System (ADS)
Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli
2017-11-01
The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.
A holistic calibration method with iterative distortion compensation for stereo deflectometry
NASA Astrophysics Data System (ADS)
Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian
2018-07-01
This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.
Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions
Chen, Shengyong; Xiao, Gang; Li, Xiaoli
2014-01-01
This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954
Alignment and Calibration of an Airborne Infrared Spectrometer
NASA Astrophysics Data System (ADS)
Vira, A.
2017-12-01
The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the Major Research Instrumentation program. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.
NASA Astrophysics Data System (ADS)
Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.
2015-12-01
Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.
Modeling human faces with multi-image photogrammetry
NASA Astrophysics Data System (ADS)
D'Apuzzo, Nicola
2002-03-01
Modeling and measurement of the human face have been increasing by importance for various purposes. Laser scanning, coded light range digitizers, image-based approaches and digital stereo photogrammetry are the used methods currently employed in medical applications, computer animation, video surveillance, teleconferencing and virtual reality to produce three dimensional computer models of the human face. Depending on the application, different are the requirements. Ours are primarily high accuracy of the measurement and automation in the process. The method presented in this paper is based on multi-image photogrammetry. The equipment, the method and results achieved with this technique are here depicted. The process is composed of five steps: acquisition of multi-images, calibration of the system, establishment of corresponding points in the images, computation of their 3-D coordinates and generation of a surface model. The images captured by five CCD cameras arranged in front of the subject are digitized by a frame grabber. The complete system is calibrated using a reference object with coded target points, which can be measured fully automatically. To facilitate the establishment of correspondences in the images, texture in the form of random patterns can be projected from two directions onto the face. The multi-image matching process, based on a geometrical constrained least squares matching algorithm, produces a dense set of corresponding points in the five images. Neighborhood filters are then applied on the matching results to remove the errors. After filtering the data, the three-dimensional coordinates of the matched points are computed by forward intersection using the results of the calibration process; the achieved mean accuracy is about 0.2 mm in the sagittal direction and about 0.1 mm in the lateral direction. The last step of data processing is the generation of a surface model from the point cloud and the application of smooth filters. Moreover, a color texture image can be draped over the model to achieve a photorealistic visualization. The advantage of the presented method over laser scanning and coded light range digitizers is the acquisition of the source data in a fraction of a second, allowing the measurement of human faces with higher accuracy and the possibility to measure dynamic events like the speech of a person.
NASA Astrophysics Data System (ADS)
Chiarucci, Simone; Wijnholds, Stefan J.
2018-02-01
Blind calibration, i.e. calibration without a priori knowledge of the source model, is robust to the presence of unknown sources such as transient phenomena or (low-power) broad-band radio frequency interference that escaped detection. In this paper, we present a novel method for blind calibration of a radio interferometric array assuming that the observed field only contains a small number of discrete point sources. We show the huge computational advantage over previous blind calibration methods and we assess its statistical efficiency and robustness to noise and the quality of the initial estimate. We demonstrate the method on actual data from a Low-Frequency Array low-band antenna station showing that our blind calibration is able to recover the same gain solutions as the regular calibration approach, as expected from theory and simulations. We also discuss the implications of our findings for the robustness of regular self-calibration to poor starting models.
Development of HRO interferometer at Kochi University of Technology
NASA Astrophysics Data System (ADS)
Yamamoto, Masa-Yuki; Horiuchi, Hirotaka; Okamoto, Goro; Hamaguchi, Haruko; Noguchi, Kazuya
2007-12-01
As a typical radio meteor observation method, the Ham-band Radio meteor Observation (HRO) has been spread to many amateur meteor observers in the world, resulting in worldwide continuous detection of each meteor echo at precise time of appearance in any weather condition as well as in daytime. However, direction finding of incoming electromagnetic waves by meteors is difficult to obtain by a usual HRO system. An application of HRO with interferometer technique was developed in 2004-2005 in Kochi University of Technology (KUT), Japan. Within a context of the forwardscattering radar method, an HRO interferometer (HRO-IF) with 3 antennas was developed. Detailed structure of the HRO-IF system at KUT as well as calibration experiments of establishing accurate direction determination are presented.
Marsh, Kimberly; Mahy, Mary; Salomon, Joshua A.; Hogan, Daniel R.
2014-01-01
Objective(s): To assess differences between HIV prevalence estimates derived from national population surveys and antenatal care (ANC) surveillance sites and to improve the calibration of ANC-derived estimates in Spectrum 2013 to more appropriately account for differences between these data. Design: Retrospective analysis of national population survey and ANC surveillance data from 25 countries with generalized epidemics in sub-Saharan Africa and 8 countries with concentrated epidemics. Methods: Adult national population survey and ANC surveillance HIV prevalence estimates were compared for all available national population survey data points for the years 1999–2012. For sub-Saharan Africa, a mixed-effects linear regression model determined whether the relationship between national population and ANC estimates was constant across surveys. A new calibration method was developed to incorporate national population survey data directly into the likelihood for HIV prevalence in countries with generalized epidemics. Results were used to develop default rules for adjusting ANC data for countries with no national population surveys. Results: ANC surveillance data typically overestimate population prevalence, although a wide variation, particularly in rural areas, is observed across countries and survey years. The new calibration method yields similar point estimates to previous approaches, but leads to an average 44% increase in the width of 95% uncertainty intervals. Conclusion: Important biases remain in ANC surveillance data for HIV prevalence. The new approach to model-fitting in Spectrum 2013 more appropriately accounts for this bias when producing national estimates in countries with generalized epidemics. In countries with concentrated epidemics, local sex ratios should be used to calibrate ANC surveillance estimates. PMID:25203158
Novel Calibration Algorithm for a Three-Axis Strapdown Magnetometer
Liu, Yan Xia; Li, Xi Sheng; Zhang, Xiao Juan; Feng, Yi Bo
2014-01-01
A complete error calibration model with 12 independent parameters is established by analyzing the three-axis magnetometer error mechanism. The said model conforms to an ellipsoid restriction, the parameters of the ellipsoid equation are estimated, and the ellipsoid coefficient matrix is derived. However, the calibration matrix cannot be determined completely, as there are fewer ellipsoid parameters than calibration model parameters. Mathematically, the calibration matrix derived from the ellipsoid coefficient matrix by a different matrix decomposition method is not unique, and there exists an unknown rotation matrix R between them. This paper puts forward a constant intersection angle method (angles between the geomagnetic field and gravitational field are fixed) to estimate R. The Tikhonov method is adopted to solve the problem that rounding errors or other errors may seriously affect the calculation results of R when the condition number of the matrix is very large. The geomagnetic field vector and heading error are further corrected by R. The constant intersection angle method is convenient and practical, as it is free from any additional calibration procedure or coordinate transformation. In addition, the simulation experiment indicates that the heading error declines from ±1° calibrated by classical ellipsoid fitting to ±0.2° calibrated by a constant intersection angle method, and the signal-to-noise ratio is 50 dB. The actual experiment exhibits that the heading error is further corrected from ±0.8° calibrated by the classical ellipsoid fitting to ±0.3° calibrated by a constant intersection angle method. PMID:24831110
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
NASA Astrophysics Data System (ADS)
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2017-01-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery. PMID:28943703
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization.
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool ( rdCalib ; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker ® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
A novel calibration method of focused light field camera for 3-D reconstruction of flame temperature
NASA Astrophysics Data System (ADS)
Sun, Jun; Hossain, Md. Moinul; Xu, Chuan-Long; Zhang, Biao; Wang, Shi-Min
2017-05-01
This paper presents a novel geometric calibration method for focused light field camera to trace the rays of flame radiance and to reconstruct the three-dimensional (3-D) temperature distribution of a flame. A calibration model is developed to calculate the corner points and their projections of the focused light field camera. The characteristics of matching main lens and microlens f-numbers are used as an additional constrains for the calibration. Geometric parameters of the focused light field camera are then achieved using Levenberg-Marquardt algorithm. Total focused images in which all the points are in focus, are utilized to validate the proposed calibration method. Calibration results are presented and discussed in details. The maximum mean relative error of the calibration is found less than 0.13%, indicating that the proposed method is capable of calibrating the focused light field camera successfully. The parameters obtained by the calibration are then utilized to trace the rays of flame radiance. A least square QR-factorization algorithm with Plank's radiation law is used to reconstruct the 3-D temperature distribution of a flame. Experiments were carried out on an ethylene air fired combustion test rig to reconstruct the temperature distribution of flames. The flame temperature obtained by the proposed method is then compared with that obtained by using high-precision thermocouple. The difference between the two measurements was found no greater than 6.7%. Experimental results demonstrated that the proposed calibration method and the applied measurement technique perform well in the reconstruction of the flame temperature.
Phase Calibration of Microphones by Measurement in the Free-field
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Bartram, Scott M.; Humphreys, William M.; Zuckewar, Allan J.
2006-01-01
Over the past several years, significant effort has been expended at NASA Langley developing new Micro-Electro-Mechanical System (MEMS)-based microphone directional array instrumentation for high-frequency aeroacoustic measurements in wind tunnels. This new type of array construction solves two challenges which have limited the widespread use of large channel-count arrays, namely by providing a lower cost-per-channel and a simpler method for mounting microphones in wind tunnels and in field-deployable arrays. The current generation of array instrumentation is capable of extracting accurate noise source location and directivity on a variety of airframe components using sophisticated data reduction algorithms [1-2]. Commercially-available MEMS microphones are condenser-type devices and have some desirable characteristics when compared with conventional condenser-type microphones. The most important advantages of MEMS microphones are their size, price, and power consumption. However, the commercially-available units suffer from certain important shortcomings. Based on experiments with array prototypes, it was found that both the bandwidth and the sound pressure limit of the microphones should be increased significantly to improve the performance and flexibility of the microphone array [3]. It was also desired to modify the packaging to eliminate unwanted Helmholtz resonance s exhibited by the commercial devices. Thus, new requirements were defined as follows: Frequency response: 100 Hz to 100 KHz (+/-3dB) Upper sound pressure limit: Design 1: 130 dB SPL (THD less than 5%) Design 2: 150-160 dB SPL (THD less than 5%) Packaging: 3.73 x 6.13 x 1.3 mm can with laser-etched lid. In collaboration with Novusonic Acoustic Innovation, NASA modified a Knowles SiSonic MEMS design to meet these new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size [4]. Hence a substitution based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. The free-field sensitivity (voltage per unit sound pressure) was obtained using the procedure outlined in reference 4. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone. The free-field calibration procedure along with representative sensitivity and phase responses for the new high-frequency MEMS microphones are presented here.
NASA Astrophysics Data System (ADS)
Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng
2016-06-01
The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.
Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2017-01-01
Purpose Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that calibration can be performed in the OR on demand. Methods We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration result in the OR, we integrated a tube phantom with fCalib and overlaid a virtual representation of the tube on the live video scene. Results We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggested that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, would affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s – 22.7 s). Conclusions We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand. PMID:27250853
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.
Design of an ultra-portable field transfer radiometer supporting automated vicarious calibration
NASA Astrophysics Data System (ADS)
Anderson, Nikolaus; Thome, Kurtis; Czapla-Myers, Jeffrey; Biggar, Stuart
2015-09-01
The University of Arizona Remote Sensing Group (RSG) began outfitting the radiometric calibration test site (RadCaTS) at Railroad Valley Nevada in 2004 for automated vicarious calibration of Earth-observing sensors. RadCaTS was upgraded to use RSG custom 8-band ground viewing radiometers (GVRs) beginning in 2011 and currently four GVRs are deployed providing an average reflectance for the test site. This measurement of ground reflectance is the most critical component of vicarious calibration using the reflectance-based method. In order to ensure the quality of these measurements, RSG has been exploring more efficient and accurate methods of on-site calibration evaluation. This work describes the design of, and initial results from, a small portable transfer radiometer for the purpose of GVR calibration validation on site. Prior to deployment, RSG uses high accuracy laboratory calibration methods in order to provide radiance calibrations with low uncertainties for each GVR. After deployment, a solar radiation based calibration has typically been used. The method is highly dependent on a clear, stable atmosphere, requires at least two people to perform, is time consuming in post processing, and is dependent on several large pieces of equipment. In order to provide more regular and more accurate calibration monitoring, the small portable transfer radiometer is designed for quick, one-person operation and on-site field calibration comparison results. The radiometer is also suited for laboratory calibration use and thus could be used as a transfer radiometer calibration standard for ground viewing radiometers of a RadCalNet site.
Jurowski, Kamil; Buszewski, Bogusław; Piekoszewski, Wojciech
2015-01-01
Nowadays, studies related to the distribution of metallic elements in biological samples are one of the most important issues. There are many articles dedicated to specific analytical atomic spectrometry techniques used for mapping/(bio)imaging the metallic elements in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to reviewing calibration strategies, and their problems, nomenclature, definitions, ways and methods used to obtain quantitative distribution maps. The aim of this article was to characterize the analytical calibration in the (bio)imaging/mapping of the metallic elements in biological samples including (1) nomenclature; (2) definitions, and (3) selected and sophisticated, examples of calibration strategies with analytical calibration procedures applied in the different analytical methods currently used to study an element's distribution in biological samples/materials such as LA ICP-MS, SIMS, EDS, XRF and others. The main emphasis was placed on the procedures and methodology of the analytical calibration strategy. Additionally, the aim of this work is to systematize the nomenclature for the calibration terms: analytical calibration, analytical calibration method, analytical calibration procedure and analytical calibration strategy. The authors also want to popularize the division of calibration methods that are different than those hitherto used. This article is the first work in literature that refers to and emphasizes many different and complex aspects of analytical calibration problems in studies related to (bio)imaging/mapping metallic elements in different kinds of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Automatic Calibration Method for Driver’s Head Orientation in Natural Driving Environment
Fu, Xianping; Guan, Xiao; Peli, Eli; Liu, Hongbo; Luo, Gang
2013-01-01
Gaze tracking is crucial for studying driver’s attention, detecting fatigue, and improving driver assistance systems, but it is difficult in natural driving environments due to nonuniform and highly variable illumination and large head movements. Traditional calibrations that require subjects to follow calibrators are very cumbersome to be implemented in daily driving situations. A new automatic calibration method, based on a single camera for determining the head orientation and which utilizes the side mirrors, the rear-view mirror, the instrument board, and different zones in the windshield as calibration points, is presented in this paper. Supported by a self-learning algorithm, the system tracks the head and categorizes the head pose in 12 gaze zones based on facial features. The particle filter is used to estimate the head pose to obtain an accurate gaze zone by updating the calibration parameters. Experimental results show that, after several hours of driving, the automatic calibration method without driver’s corporation can achieve the same accuracy as a manual calibration method. The mean error of estimated eye gazes was less than 5°in day and night driving. PMID:24639620
NASA Astrophysics Data System (ADS)
de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank
2017-06-01
This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.
Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, J.; Polly, B.; Collis, J.
2013-09-01
This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less
Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon
2013-09-01
This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less
A novel autonomous real-time position method based on polarized light and geomagnetic field.
Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen
2015-04-08
Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we present a combined real-time position method based on the use of polarized light and geomagnetic field. The new method works independently of any artificial signal source with no accumulation of errors and can obtain the position and the orientation directly. The novel device simply consists of two polarized light sensors, a 3-axis compass and a computer. The field experiments demonstrate device performance.
A novel autonomous real-time position method based on polarized light and geomagnetic field
Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen
2015-01-01
Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we present a combined real-time position method based on the use of polarized light and geomagnetic field. The new method works independently of any artificial signal source with no accumulation of errors and can obtain the position and the orientation directly. The novel device simply consists of two polarized light sensors, a 3-axis compass and a computer. The field experiments demonstrate device performance. PMID:25851793
A novel autonomous real-time position method based on polarized light and geomagnetic field
NASA Astrophysics Data System (ADS)
Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Wang, Lu; Wang, Zhiwen
2015-04-01
Many animals exploit polarized light in order to calibrate their magnetic compasses for navigation. For example, some birds are equipped with biological magnetic and celestial compasses enabling them to migrate between the Western and Eastern Hemispheres. The Vikings' ability to derive true direction from polarized light is also widely accepted. However, their amazing navigational capabilities are still not completely clear. Inspired by birds' and Vikings' ancient navigational skills. Here we present a combined real-time position method based on the use of polarized light and geomagnetic field. The new method works independently of any artificial signal source with no accumulation of errors and can obtain the position and the orientation directly. The novel device simply consists of two polarized light sensors, a 3-axis compass and a computer. The field experiments demonstrate device performance.
NASA Astrophysics Data System (ADS)
Bolis, A.; Cantwell, C. D.; Moxey, D.; Serson, D.; Sherwin, S. J.
2016-09-01
A hybrid parallelisation technique for distributed memory systems is investigated for a coupled Fourier-spectral/hp element discretisation of domains characterised by geometric homogeneity in one or more directions. The performance of the approach is mathematically modelled in terms of operation count and communication costs for identifying the most efficient parameter choices. The model is calibrated to target a specific hardware platform after which it is shown to accurately predict the performance in the hybrid regime. The method is applied to modelling turbulent flow using the incompressible Navier-Stokes equations in an axisymmetric pipe and square channel. The hybrid method extends the practical limitations of the discretisation, allowing greater parallelism and reduced wall times. Performance is shown to continue to scale when both parallelisation strategies are used.
Fast wavelength calibration method for spectrometers based on waveguide comb optical filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhengang; Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Huang, Meizhen, E-mail: mzhuang@sjtu.edu.cn
2015-04-15
A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines,more » the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfold, S; Miller, A
2015-06-15
Purpose: Stoichiometric calibration of Hounsfield Units (HUs) for conversion to proton relative stopping powers (RStPs) is vital for accurate dose calculation in proton therapy. However proton dose distributions are not only dependent on RStP, but also on relative scattering power (RScP) of patient tissues. RScP is approximated from material density but a stoichiometric calibration of HU-density tables is commonly neglected. The purpose of this work was to quantify the difference in calculated dose of a commercial TPS when using HU-density tables based on tissue substitute materials and stoichiometric calibrated ICRU tissues. Methods: Two HU-density calibration tables were generated based onmore » scans of the CIRS electron density phantom. The first table was based directly on measured HU and manufacturer quoted density of tissue substitute materials. The second was based on the same CT scan of the CIRS phantom followed by a stoichiometric calibration of ICRU44 tissue materials. The research version of Pinnacle{sup 3} proton therapy was used to compute dose in a patient CT data set utilizing both HU-density tables. Results: The two HU-density tables showed significant differences for bone tissues; the difference increasing with increasing HU. Differences in density calibration table translated to a difference in calculated RScP of −2.5% for ICRU skeletal muscle and 9.2% for ICRU femur. Dose-volume histogram analysis of a parallel opposed proton therapy prostate plan showed that the difference in calculated dose was negligible when using the two different HU-density calibration tables. Conclusion: The impact of HU-density calibration technique on proton therapy dose calculation was assessed. While differences were found in the calculated RScP of bony tissues, the difference in dose distribution for realistic treatment scenarios was found to be insignificant.« less
A Flexile and High Precision Calibration Method for Binocular Structured Light Scanning System
Yuan, Jianying; Wang, Qiong; Li, Bailin
2014-01-01
3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system. PMID:25202736
Radiometric calibration method for large aperture infrared system with broad dynamic range.
Sun, Zhiyuan; Chang, Songtao; Zhu, Wei
2015-05-20
Infrared radiometric measurements can acquire important data for missile defense systems. When observation is carried out by ground-based infrared systems, a missile is characterized by long distance, small size, and large variation of radiance. Therefore, the infrared systems should be manufactured with a larger aperture to enhance detection ability and calibrated at a broader dynamic range to extend measurable radiance. Nevertheless, the frequently used calibration methods demand an extended-area blackbody with broad dynamic range or a huge collimator for filling the system's field stop, which would greatly increase manufacturing costs and difficulties. To overcome this restriction, a calibration method based on amendment of inner and outer calibration is proposed. First, the principles and procedures of this method are introduced. Then, a shifting strategy of infrared systems for measuring targets with large fluctuations of infrared radiance is put forward. Finally, several experiments are performed on a shortwave infrared system with Φ400 mm aperture. The results indicate that the proposed method cannot only ensure accuracy of calibration but have the advantage of low cost, low power, and high motility. Hence, it is an effective radiometric calibration method in the outfield.
Automatic alignment method for calibration of hydrometers
NASA Astrophysics Data System (ADS)
Lee, Y. J.; Chang, K. H.; Chon, J. C.; Oh, C. Y.
2004-04-01
This paper presents a new method to automatically align specific scale-marks for the calibration of hydrometers. A hydrometer calibration system adopting the new method consists of a vision system, a stepping motor, and software to control the system. The vision system is composed of a CCD camera and a frame grabber, and is used to acquire images. The stepping motor moves the camera, which is attached to the vessel containing a reference liquid, along the hydrometer. The operating program has two main functions: to process images from the camera to find the position of the horizontal plane and to control the stepping motor for the alignment of the horizontal plane with a particular scale-mark. Any system adopting this automatic alignment method is a convenient and precise means of calibrating a hydrometer. The performance of the proposed method is illustrated by comparing the calibration results using the automatic alignment method with those obtained using the manual method.
An overview of in-orbit radiometric calibration of typical satellite sensors
NASA Astrophysics Data System (ADS)
Zhou, G. Q.; Li, C. Y.; Yue, T.; Jiang, L. J.; Liu, N.; Sun, Y.; Li, M. Y.
2015-06-01
This paper reviews the development of in-orbit radiometric calibration methods in the past 40 years. It summarizes the development of in-orbit radiometric calibration technology of typical satellite sensors in the visible/near-infrared bands and the thermal infrared band. Focuses on the visible/near-infrared bands radiometric calibration method including: Lamp calibration and solar radiationbased calibration. Summarizes the calibration technology of Landsat series satellite sensors including MSS, TM, ETM+, OLI, TIRS; SPOT series satellite sensors including HRV, HRS. In addition to the above sensors, there are also summarizing ALI which was equipped on EO-1, IRMSS which was equipped on CBERS series satellite. Comparing the in-orbit radiometric calibration technology of different periods but the same type satellite sensors analyzes the similarities and differences of calibration technology. Meanwhile summarizes the in-orbit radiometric calibration technology in the same periods but different country satellite sensors advantages and disadvantages of calibration technology.
Embedded Augmented Reality Training System for Dynamic Human-Robot Cooperation
2009-10-01
through (OST) head- mounted displays ( HMDs ) still lack in usability and ergonomics because of their size, weight, resolution, and the hard-to-realize...with addressable focal planes [10], for example. Accurate and easy-to-use calibration routines for OST HMDs remains a challenging task; established...methods are based on matching of virtual over real objects [11], newer approaches use cameras looking directly through the HMD optics to exploit both
Topics in Statistical Calibration
2014-03-27
on a parametric bootstrap where, instead of sampling directly from the residuals , samples are drawn from a normal distribution. This procedure will...addition to centering them (Davison and Hinkley, 1997). When there are outliers in the residuals , the bootstrap distribution of x̂0 can become skewed or...based and inversion methods using the linear mixed-effects model. Then, a simple parametric bootstrap algorithm is proposed that can be used to either
Díaz, Laura; Llorca-Pórcel, Julio; Valor, Ignacio
2008-08-22
A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for the detection of pesticides in tap and treated wastewater was developed and validated according to the ISO/IEC 17025:1999. Key features of this method include direct injection of 100 microL of sample, an 11 min separation by means of a rapid resolution liquid chromatography system with a 4.6 mm x 50 mm, 1.8 microm particle size reverse phase column and detection by electrospray ionization (ESI) MS-MS. The limits of detection were below 15 ng L(-1) and correlation coefficients for the calibration curves in the range of 30-2000 ng L(-1) were higher than 0.99. Precision was always below 20% and accuracy was confirmed by external evaluation. The main advantages of this method are direct injection of sample without preparative procedures and low limits of detection that fulfill the requirements established by the current European regulations governing pesticide detection.
APEX calibration facility: status and first commissioning results
NASA Astrophysics Data System (ADS)
Suhr, Birgit; Fries, Jochen; Gege, Peter; Schwarzer, Horst
2006-09-01
The paper presents the current status of the operational calibration facility that can be used for radiometric, spectral and geometric on-ground characterisation and calibration of imaging spectrometers. The European Space Agency (ESA) co-funded this establishment at DLR Oberpfaffenhofen within the framework of the hyper-spectral imaging spectrometer Airborne Prism Experiment (APEX). It was designed to fulfil the requirements for calibration of APEX, but can also be used for other imaging spectrometers. A description of the hardware set-up of the optical bench will be given. Signals from two sides can alternatively be sent to the hyper-spectral sensor under investigation. Frome one side the spatial calibration will be done by using an off-axis collimator and six slits of different width and orientation to measure the line spread function (LSF) in flight direction as well as across flight direction. From the other side the spectral calibration will be performed. A monochromator provides radiation in a range from 380 nm to 13 μm with a bandwidth between 0.1 nm in the visible and 5 nm in the thermal infrared. For the relative radiometric calibration a large integrating sphere of 1.65 m diameter and exit port size of 55 cm × 40 cm is used. The absolute radiometric calibration will be done using a small integrating sphere with 50 cm diameter that is regularly calibrated according to national standards. This paper describes the hardware components and their accuracy, and it presents the software interface for automation of the measurements.
The purpose of this SOP is to describe the procedures for the periodic calibration and leak testing of Harvard particulate matter (PM) impactor units. This procedure applies directly to the calibration and leak testing of Harvard PM impactor units used during the Arizona NHEXAS ...
The purpose of this SOP is to describe the procedures for the periodic calibration and leak testing of Harvard particulate matter (PM) impactor units. This procedure applies directly to the calibration and leak testing of Harvard PM impactor units used during the Arizona NHEXAS ...
Influence of Installation Errors On the Output Data of the Piezoelectric Vibrations Transducers
NASA Astrophysics Data System (ADS)
Kozuch, Barbara; Chelmecki, Jaroslaw; Tatara, Tadeusz
2017-10-01
The paper examines an influence of installation errors of the piezoelectric vibrations transducers on the output data. PCB Piezotronics piezoelectric accelerometers were used to perform calibrations by comparison. The measurements were performed with TMS 9155 Calibration Workstation version 5.4.0 at frequency in the range of 5Hz - 2000Hz. Accelerometers were fixed on the calibration station in a so-called back-to-back configuration in accordance with the applicable international standard - ISO 16063-21: Methods for the calibration of vibration and shock transducers - Part 21: Vibration calibration by comparison to a reference transducer. The first accelerometer was calibrated by suitable methods with traceability to a primary reference transducer. Each subsequent calibration was performed when changing one setting in relation to the original calibration. The alterations were related to negligence and failures in relation to the above-mentioned standards and operating guidelines - e.g. the sensor was not tightened or appropriate substance was not placed. Also, there was modified the method of connection which was in the standards requirements. Different kind of wax, light oil, grease and other assembly methods were used. The aim of the study was to verify the significance of standards requirements and to estimate of their validity. The authors also wanted to highlight the most significant calibration errors. Moreover, relation between various appropriate methods of the connection was demonstrated.
Nonlinear Kalman filters for calibration in radio interferometry
NASA Astrophysics Data System (ADS)
Tasse, C.
2014-06-01
The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes. Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visibilities are understood and analytically stable. Recursive algorithms are particularly well adapted for pre-calibration and sky model estimate in a streaming way. This may be useful for the SKA-type instruments that produce huge amounts of data that have to be calibrated before being averaged.
Calibration of the borated ion chamber at NIST reactor thermal column.
Wang, Z; Hertel, N E; Lennox, A
2007-01-01
In boron neutron capture therapy and boron neutron capture enhanced fast neutron therapy, the absorbed dose of tissue due to the boron neutron capture reaction is difficult to measure directly. This dose can be computed from the measured thermal neutron fluence rate and the (10)B concentration at the site of interest. A borated tissue-equivalent (TE) ion chamber can be used to directly measure the boron dose in a phantom under irradiation by a neutron beam. Fermilab has two Exradin 0.5 cm(3) Spokas thimble TE ion chambers, one loaded with boron, available for such measurements. At the Fermilab Neutron Therapy Facility, these ion chambers are generally used with air as the filling gas. Since alpha particles and lithium ions from the (10)B(n,alpha)(7)Li reactions have very short ranges in air, the Bragg-Gray principle may not be satisfied for the borated TE ion chamber. A calibration method is described in this paper for the determination of boron capture dose using paired ion chambers. The two TE ion chambers were calibrated in the thermal column of the National Institute of Standards and Technology (NIST) research reactor. The borated TE ion chamber is loaded with 1,000 ppm of natural boron (184 ppm of (10)B). The NIST thermal column has a cadmium ratio of greater than 400 as determined by gold activation. The thermal neutron fluence rate during the calibration was determined using a NIST fission chamber to an accuracy of 5.1%. The chambers were calibrated at two different thermal neutron fluence rates: 5.11 x 10(6) and 4.46 x 10(7)n cm(-2) s(-1). The non-borated ion chamber reading was used to subtract collected charge not due to boron neutron capture reactions. An optically thick lithium slab was used to attenuate the thermal neutrons from the neutron beam port so the responses of the chambers could be corrected for fast neutrons and gamma rays in the beam. The calibration factor of the borated ion chamber was determined to be 1.83 x 10(9) +/- 5.5% (+/- 1sigma) n cm(-2) per nC at standard temperature and pressure condition.
Efficient calibration for imperfect computer models
Tuo, Rui; Wu, C. F. Jeff
2015-12-01
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.