Sample records for direct causal effect

  1. Tracking time-varying causality and directionality of information flow using an error reduction ratio test with applications to electroencephalography data.

    PubMed

    Zhao, Yifan; Billings, Steve A; Wei, Hualiang; Sarrigiannis, Ptolemaios G

    2012-11-01

    This paper introduces an error reduction ratio-causality (ERR-causality) test that can be used to detect and track causal relationships between two signals. In comparison to the traditional Granger method, one significant advantage of the new ERR-causality test is that it can effectively detect the time-varying direction of linear or nonlinear causality between two signals without fitting a complete model. Another important advantage is that the ERR-causality test can detect both the direction of interactions and estimate the relative time shift between the two signals. Numerical examples are provided to illustrate the effectiveness of the new method together with the determination of the causality between electroencephalograph signals from different cortical sites for patients during an epileptic seizure.

  2. Determining Directional Dependency in Causal Associations

    ERIC Educational Resources Information Center

    Pornprasertmanit, Sunthud; Little, Todd D.

    2012-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of…

  3. The Longitudinal Causal Directionality between Body Image Distress and Self-Esteem among Korean Adolescents: The Moderating Effect of Relationships with Parents

    ERIC Educational Resources Information Center

    Park, Woochul; Epstein, Norman B.

    2013-01-01

    This study examined the longitudinal relationship between self-esteem and body image distress, as well as the moderating effect of relationships with parents, among adolescents in Korea, using nationally representative prospective panel data. Regarding causal direction, the findings supported bi-directionality for girls, but for boys the…

  4. Assessing the causal role of adiposity on disordered eating in childhood, adolescence, and adulthood: a Mendelian randomization analysis

    PubMed Central

    2017-01-01

    Background: Observational studies have shown that higher body mass index (BMI) is associated with increased risk of developing disordered eating patterns. However, the causal direction of this relation remains ambiguous. Objective: We used Mendelian randomization (MR) to infer the direction of causality between BMI and disordered eating in childhood, adolescence, and adulthood. Design: MR analyses were conducted with a genetic score as an instrumental variable for BMI to assess the causal effect of BMI at age 7 y on disordered eating patterns at age 13 y with the use of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) (n = 4473). To examine causality in the reverse direction, MR analyses were used to estimate the effect of the same disordered eating patterns at age 13 y on BMI at age 17 y via a split-sample approach in the ALSPAC. We also investigated the causal direction of the association between BMI and eating disorders (EDs) in adults via a two-sample MR approach and publically available genome-wide association study data. Results: MR results indicated that higher BMI at age 7 y likely causes higher levels of binge eating and overeating, weight and shape concerns, and weight-control behavior patterns in both males and females and food restriction in males at age 13 y. Furthermore, results suggested that higher levels of binge eating and overeating in males at age 13 y likely cause higher BMI at age 17 y. We showed no evidence of causality between BMI and EDs in adulthood in either direction. Conclusions: This study provides evidence to suggest a causal effect of higher BMI in childhood and increased risk of disordered eating at age 13 y. Furthermore, higher levels of binge eating and overeating may cause higher BMI in later life. These results encourage an exploration of the ways to break the causal chain between these complex phenotypes, which could inform and prevent disordered eating problems in adolescence. PMID:28747331

  5. Assessing the causal role of adiposity on disordered eating in childhood, adolescence, and adulthood: a Mendelian randomization analysis.

    PubMed

    Reed, Zoe E; Micali, Nadia; Bulik, Cynthia M; Davey Smith, George; Wade, Kaitlin H

    2017-09-01

    Background: Observational studies have shown that higher body mass index (BMI) is associated with increased risk of developing disordered eating patterns. However, the causal direction of this relation remains ambiguous. Objective: We used Mendelian randomization (MR) to infer the direction of causality between BMI and disordered eating in childhood, adolescence, and adulthood. Design: MR analyses were conducted with a genetic score as an instrumental variable for BMI to assess the causal effect of BMI at age 7 y on disordered eating patterns at age 13 y with the use of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) ( n = 4473). To examine causality in the reverse direction, MR analyses were used to estimate the effect of the same disordered eating patterns at age 13 y on BMI at age 17 y via a split-sample approach in the ALSPAC. We also investigated the causal direction of the association between BMI and eating disorders (EDs) in adults via a two-sample MR approach and publically available genome-wide association study data. Results: MR results indicated that higher BMI at age 7 y likely causes higher levels of binge eating and overeating, weight and shape concerns, and weight-control behavior patterns in both males and females and food restriction in males at age 13 y. Furthermore, results suggested that higher levels of binge eating and overeating in males at age 13 y likely cause higher BMI at age 17 y. We showed no evidence of causality between BMI and EDs in adulthood in either direction. Conclusions: This study provides evidence to suggest a causal effect of higher BMI in childhood and increased risk of disordered eating at age 13 y. Furthermore, higher levels of binge eating and overeating may cause higher BMI in later life. These results encourage an exploration of the ways to break the causal chain between these complex phenotypes, which could inform and prevent disordered eating problems in adolescence.

  6. Using Ensemble-Based Methods for Directly Estimating Causal Effects: An Investigation of Tree-Based G-Computation

    ERIC Educational Resources Information Center

    Austin, Peter C.

    2012-01-01

    Researchers are increasingly using observational or nonrandomized data to estimate causal treatment effects. Essential to the production of high-quality evidence is the ability to reduce or minimize the confounding that frequently occurs in observational studies. When using the potential outcome framework to define causal treatment effects, one…

  7. Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy

    ERIC Educational Resources Information Center

    von Eye, Alexander; Wiedermann, Wolfgang

    2015-01-01

    Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…

  8. Causal knowledge and the development of inductive reasoning.

    PubMed

    Bright, Aimée K; Feeney, Aidan

    2014-06-01

    We explored the development of sensitivity to causal relations in children's inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey→predator) or diagnostic (predator→prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children's inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Causality Analysis of fMRI Data Based on the Directed Information Theory Framework.

    PubMed

    Wang, Zhe; Alahmadi, Ahmed; Zhu, David C; Li, Tongtong

    2016-05-01

    This paper aims to conduct fMRI-based causality analysis in brain connectivity by exploiting the directed information (DI) theory framework. Unlike the well-known Granger causality (GC) analysis, which relies on the linear prediction technique, the DI theory framework does not have any modeling constraints on the sequences to be evaluated and ensures estimation convergence. Moreover, it can be used to generate the GC graphs. In this paper, first, we introduce the core concepts in the DI framework. Second, we present how to conduct causality analysis using DI measures between two time series. We provide the detailed procedure on how to calculate the DI for two finite-time series. The two major steps involved here are optimal bin size selection for data digitization and probability estimation. Finally, we demonstrate the applicability of DI-based causality analysis using both the simulated data and experimental fMRI data, and compare the results with that of the GC analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly linear causal relationship, but may have difficulty in capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is more effective in capturing both linear and nonlinear causal relationships. Moreover, it is observed that brain connectivity among different regions generally involves dynamic two-way information transmissions between them. Our results show that when bidirectional information flow is present, DI is more effective than GC to quantify the overall causal relationship.

  10. Situation models and memory: the effects of temporal and causal information on recall sequence.

    PubMed

    Brownstein, Aaron L; Read, Stephen J

    2007-10-01

    Participants watched an episode of the television show Cheers on video and then reported free recall. Recall sequence followed the sequence of events in the story; if one concept was observed immediately after another, it was recalled immediately after it. We also made a causal network of the show's story and found that recall sequence followed causal links; effects were recalled immediately after their causes. Recall sequence was more likely to follow causal links than temporal sequence, and most likely to follow causal links that were temporally sequential. Results were similar at 10-minute and 1-week delayed recall. This is the most direct and detailed evidence reported on sequential effects in recall. The causal network also predicted probability of recall; concepts with more links and concepts on the main causal chain were most likely to be recalled. This extends the causal network model to more complex materials than previous research.

  11. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

    PubMed Central

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894

  12. Interpreting findings from Mendelian randomization using the MR-Egger method.

    PubMed

    Burgess, Stephen; Thompson, Simon G

    2017-05-01

    Mendelian randomization-Egger (MR-Egger) is an analysis method for Mendelian randomization using summarized genetic data. MR-Egger consists of three parts: (1) a test for directional pleiotropy, (2) a test for a causal effect, and (3) an estimate of the causal effect. While conventional analysis methods for Mendelian randomization assume that all genetic variants satisfy the instrumental variable assumptions, the MR-Egger method is able to assess whether genetic variants have pleiotropic effects on the outcome that differ on average from zero (directional pleiotropy), as well as to provide a consistent estimate of the causal effect, under a weaker assumption-the InSIDE (INstrument Strength Independent of Direct Effect) assumption. In this paper, we provide a critical assessment of the MR-Egger method with regard to its implementation and interpretation. While the MR-Egger method is a worthwhile sensitivity analysis for detecting violations of the instrumental variable assumptions, there are several reasons why causal estimates from the MR-Egger method may be biased and have inflated Type 1 error rates in practice, including violations of the InSIDE assumption and the influence of outlying variants. The issues raised in this paper have potentially serious consequences for causal inferences from the MR-Egger approach. We give examples of scenarios in which the estimates from conventional Mendelian randomization methods and MR-Egger differ, and discuss how to interpret findings in such cases.

  13. Normative and descriptive accounts of the influence of power and contingency on causal judgement.

    PubMed

    Perales, José C; Shanks, David R

    2003-08-01

    The power PC theory (Cheng, 1997) is a normative account of causal inference, which predicts that causal judgements are based on the power p of a potential cause, where p is the cause-effect contingency normalized by the base rate of the effect. In three experiments we demonstrate that both cause-effect contingency and effect base-rate independently affect estimates in causal learning tasks. In Experiment 1, causal strength judgements were directly related to power p in a task in which the effect base-rate was manipulated across two positive and two negative contingency conditions. In Experiments 2 and 3 contingency manipulations affected causal estimates in several situations in which power p was held constant, contrary to the power PC theory's predictions. This latter effect cannot be explained by participants' conflation of reliability and causal strength, as Experiment 3 demonstrated independence of causal judgements and confidence. From a descriptive point of view, the data are compatible with Pearce's (1987) model, as well as with several other judgement rules, but not with the Rescorla-Wagner (Rescorla & Wagner, 1972) or power PC models.

  14. Learning About Causes From People: Observational Causal Learning in 24-Month-Old Infants

    PubMed Central

    Meltzoff, Andrew N.; Waismeyer, Anna; Gopnik, Alison

    2013-01-01

    How do infants and young children learn about the causal structure of the world around them? In 4 experiments we investigate whether young children initially give special weight to the outcomes of goal-directed interventions they see others perform and use this to distinguish correlations from genuine causal relations—observational causal learning. In a new 2-choice procedure, 2- to 4-year-old children saw 2 identical objects (potential causes). Activation of 1 but not the other triggered a spatially remote effect. Children systematically intervened on the causal object and predictively looked to the effect. Results fell to chance when the cause and effect were temporally reversed, so that the events were merely associated but not causally related. The youngest children (24- to 36-month-olds) were more likely to make causal inferences when covariations were the outcome of human interventions than when they were not. Observational causal learning may be a fundamental learning mechanism that enables infants to abstract the causal structure of the world. PMID:22369335

  15. Causal relationships between milk quality and coagulation properties in Italian Holstein-Friesian dairy cattle.

    PubMed

    Tiezzi, Francesco; Valente, Bruno D; Cassandro, Martino; Maltecca, Christian

    2015-05-13

    Recently, selection for milk technological traits was initiated in the Italian dairy cattle industry based on direct measures of milk coagulation properties (MCP) such as rennet coagulation time (RCT) and curd firmness 30 min after rennet addition (a30) and on some traditional milk quality traits that are used as predictors, such as somatic cell score (SCS) and casein percentage (CAS). The aim of this study was to shed light on the causal relationships between traditional milk quality traits and MCP. Different structural equation models that included causal effects of SCS and CAS on RCT and a30 and of RCT on a30 were implemented in a Bayesian framework. Our results indicate a non-zero magnitude of the causal relationships between the traits studied. Causal effects of SCS and CAS on RCT and a30 were observed, which suggests that the relationship between milk coagulation ability and traditional milk quality traits depends more on phenotypic causal pathways than directly on common genetic influence. While RCT does not seem to be largely controlled by SCS and CAS, some of the variation in a30 depends on the phenotypes of these traits. However, a30 depends heavily on coagulation time. Our results also indicate that, when direct effects of SCS, CAS and RCT are considered simultaneously, most of the overall genetic variability of a30 is mediated by other traits. This study suggests that selection for RCT and a30 should not be performed on correlated traits such as SCS or CAS but on direct measures because the ability of milk to coagulate is improved through the causal effect that the former play on the latter, rather than from a common source of genetic variation. Breaking the causal link (e.g. standardizing SCS or CAS before the milk is processed into cheese) would reduce the impact of the improvement due to selective breeding. Since a30 depends heavily on RCT, the relative emphasis that is put on this trait should be reconsidered and weighted for the fact that the pure measure of a30 almost double-counts RCT.

  16. A study on the causal effect of urban population growth and international trade on environmental pollution: evidence from China.

    PubMed

    Boamah, Kofi Baah; Du, Jianguo; Boamah, Angela Jacinta; Appiah, Kingsley

    2018-02-01

    This study seeks to contribute to the recent literature by empirically investigating the causal effect of urban population growth and international trade on environmental pollution of China, for the period 1980-2014. The Johansen cointegration confirmed a long-run cointegration association among the utilised variables for the case of China. The direction of causality among the variables was, consequently, investigated using the recent bootstrapped Granger causality test. This bootstrapped Granger causality approach is preferred as it provides robust and accurate critical values for statistical inferences. The findings from the causality analysis revealed the existence of a bi-directional causality between import and urban population. The three most paramount variables that explain the environmental pollution in China, according to the impulse response function, are imports, urbanisation and energy consumption. Our study further established the presence of an N-shaped environmental Kuznets curve relationship between economic growth and environmental pollution of China. Hence, our study recommends that China should adhere to stricter environmental regulations in international trade, as well as enforce policies that promote energy efficiency in the urban residential and commercial sector, in the quest to mitigate environmental pollution issues as the economy advances.

  17. Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data.

    PubMed

    Zhang, Junpeng; Le, Thuc Duy; Liu, Lin; Liu, Bing; He, Jianfeng; Goodall, Gregory J; Li, Jiuyong

    2014-12-01

    Discovering the regulatory relationships between microRNAs (miRNAs) and mRNAs is an important problem that interests many biologists and medical researchers. A number of computational methods have been proposed to infer miRNA-mRNA regulatory relationships, and are mostly based on the statistical associations between miRNAs and mRNAs discovered in observational data. The miRNA-mRNA regulatory relationships identified by these methods can be both direct and indirect regulations. However, differentiating direct regulatory relationships from indirect ones is important for biologists in experimental designs. In this paper, we present a causal discovery based framework (called DirectTarget) to infer direct miRNA-mRNA causal regulatory relationships in heterogeneous data, including expression profiles of miRNAs and mRNAs, and miRNA target information. DirectTarget is applied to the Epithelial to Mesenchymal Transition (EMT) datasets. The validation by experimentally confirmed target databases suggests that the proposed method can effectively identify direct miRNA-mRNA regulatory relationships. To explore the upstream regulators of miRNA regulation, we further identify the causal feedforward patterns (CFFPs) of TF-miRNA-mRNA to provide insights into the miRNA regulation in EMT. DirectTarget has the potential to be applied to other datasets to elucidate the direct miRNA-mRNA causal regulatory relationships and to explore the regulatory patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework

    PubMed Central

    Richmond, Rebecca C.; Ward, Mary E.; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L.; Ring, Susan M.; Gaunt, Tom R.; Lawlor, Debbie A.; Davey Smith, George; Relton, Caroline L.

    2016-01-01

    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. PMID:26861784

  19. Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.

    PubMed

    Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng

    2018-04-15

    This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting. Copyright © 2018 John Wiley & Sons, Ltd.

  20. COMPARATIVE IN VITRO CARDIAC TOXICITY OF PRIMARY COMBUSTION PARTICLES: IDENTIFICATION OF CAUSAL CONSTITUENTS AND MECHANISMS OF INJURY

    EPA Science Inventory

    Identification of causal particle characteristics and mechanisms of injury would allow linkage of particulate air pollution adverse health effects to sources. Research has examined the direct cardiovascular effects of air pollution particle constituents since previous studies dem...

  1. A complete graphical criterion for the adjustment formula in mediation analysis.

    PubMed

    Shpitser, Ilya; VanderWeele, Tyler J

    2011-03-04

    Various assumptions have been used in the literature to identify natural direct and indirect effects in mediation analysis. These effects are of interest because they allow for effect decomposition of a total effect into a direct and indirect effect even in the presence of interactions or non-linear models. In this paper, we consider the relation and interpretation of various identification assumptions in terms of causal diagrams interpreted as a set of non-parametric structural equations. We show that for such causal diagrams, two sets of assumptions for identification that have been described in the literature are in fact equivalent in the sense that if either set of assumptions holds for all models inducing a particular causal diagram, then the other set of assumptions will also hold for all models inducing that diagram. We moreover build on prior work concerning a complete graphical identification criterion for covariate adjustment for total effects to provide a complete graphical criterion for using covariate adjustment to identify natural direct and indirect effects. Finally, we show that this criterion is equivalent to the two sets of independence assumptions used previously for mediation analysis.

  2. A Kernel Embedding-Based Approach for Nonstationary Causal Model Inference.

    PubMed

    Hu, Shoubo; Chen, Zhitang; Chan, Laiwan

    2018-05-01

    Although nonstationary data are more common in the real world, most existing causal discovery methods do not take nonstationarity into consideration. In this letter, we propose a kernel embedding-based approach, ENCI, for nonstationary causal model inference where data are collected from multiple domains with varying distributions. In ENCI, we transform the complicated relation of a cause-effect pair into a linear model of variables of which observations correspond to the kernel embeddings of the cause-and-effect distributions in different domains. In this way, we are able to estimate the causal direction by exploiting the causal asymmetry of the transformed linear model. Furthermore, we extend ENCI to causal graph discovery for multiple variables by transforming the relations among them into a linear nongaussian acyclic model. We show that by exploiting the nonstationarity of distributions, both cause-effect pairs and two kinds of causal graphs are identifiable under mild conditions. Experiments on synthetic and real-world data are conducted to justify the efficacy of ENCI over major existing methods.

  3. Attention Deficit Hyperactivity Disorder Symptoms and Low Educational Achievement: Evidence Supporting A Causal Hypothesis.

    PubMed

    de Zeeuw, Eveline L; van Beijsterveldt, Catharina E M; Ehli, Erik A; de Geus, Eco J C; Boomsma, Dorret I

    2017-05-01

    Attention Deficit Hyperactivity Disorder (ADHD) and educational achievement are negatively associated in children. Here we test the hypothesis that there is a direct causal effect of ADHD on educational achievement. The causal effect is tested in a genetically sensitive design to exclude the possibility of confounding by a third factor (e.g. genetic pleiotropy) and by comparing educational achievement and secondary school career in children with ADHD who take or do not take methylphenidate. Data on ADHD symptoms, educational achievement and methylphenidate usage were available in a primary school sample of ~10,000 12-year-old twins from the Netherlands Twin Register. A substantial group also had longitudinal data at ages 7-12 years. ADHD symptoms were cross-sectionally and longitudinally, associated with lower educational achievement at age 12. More ADHD symptoms predicted a lower-level future secondary school career at age 14-16. In both the cross-sectional and longitudinal analyses, testing the direct causal effect of ADHD on educational achievement, while controlling for genetic and environmental factors, revealed an association between ADHD symptoms and educational achievement independent of genetic and environmental pleiotropy. These findings were confirmed in MZ twin intra-pair differences models, twins with more ADHD symptoms scored lower on educational achievement than their co-twins. Furthermore, children with ADHD medication, scored significantly higher on the educational achievement test than children with ADHD who did not use medication. Taken together, the results are consistent with a direct causal effect of ADHD on educational achievement.

  4. Experimental test of nonlocal causality

    PubMed Central

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro

    2016-01-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045

  5. Experimental test of nonlocal causality.

    PubMed

    Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro

    2016-08-01

    Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.

  6. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  7. The Teacher, the Physician and the Person: Exploring Causal Connections between Teaching Performance and Role Model Types Using Directed Acyclic Graphs

    PubMed Central

    Boerebach, Benjamin C. M.; Lombarts, Kiki M. J. M. H.; Scherpbier, Albert J. J.; Arah, Onyebuchi A.

    2013-01-01

    Background In fledgling areas of research, evidence supporting causal assumptions is often scarce due to the small number of empirical studies conducted. In many studies it remains unclear what impact explicit and implicit causal assumptions have on the research findings; only the primary assumptions of the researchers are often presented. This is particularly true for research on the effect of faculty’s teaching performance on their role modeling. Therefore, there is a need for robust frameworks and methods for transparent formal presentation of the underlying causal assumptions used in assessing the causal effects of teaching performance on role modeling. This study explores the effects of different (plausible) causal assumptions on research outcomes. Methods This study revisits a previously published study about the influence of faculty’s teaching performance on their role modeling (as teacher-supervisor, physician and person). We drew eight directed acyclic graphs (DAGs) to visually represent different plausible causal relationships between the variables under study. These DAGs were subsequently translated into corresponding statistical models, and regression analyses were performed to estimate the associations between teaching performance and role modeling. Results The different causal models were compatible with major differences in the magnitude of the relationship between faculty’s teaching performance and their role modeling. Odds ratios for the associations between teaching performance and the three role model types ranged from 31.1 to 73.6 for the teacher-supervisor role, from 3.7 to 15.5 for the physician role, and from 2.8 to 13.8 for the person role. Conclusions Different sets of assumptions about causal relationships in role modeling research can be visually depicted using DAGs, which are then used to guide both statistical analysis and interpretation of results. Since study conclusions can be sensitive to different causal assumptions, results should be interpreted in the light of causal assumptions made in each study. PMID:23936020

  8. On the causal structure between CO2 and global temperature

    PubMed Central

    Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San

    2016-01-01

    We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086

  9. Analysis of electromagnetic forces and causality in electron microscopy.

    PubMed

    Reyes-Coronado, Alejandro; Ortíz-Solano, Carlos Gael; Zabala, Nerea; Rivacoba, Alberto; Esquivel-Sirvent, Raúl

    2018-09-01

    The non-physical effects on the transverse momentum transfer from fast electrons to gold nanoparticles associated to the use of non-causal dielectric functions are studied. A direct test of the causality based on the surface Kramers-Kronig relations is presented. This test is applied to the different dielectric function used to describe gold nanostructures in electron microscopy. Copyright © 2018. Published by Elsevier B.V.

  10. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    PubMed Central

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  11. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework.

    PubMed

    Richmond, Rebecca C; Sharp, Gemma C; Ward, Mary E; Fraser, Abigail; Lyttleton, Oliver; McArdle, Wendy L; Ring, Susan M; Gaunt, Tom R; Lawlor, Debbie A; Davey Smith, George; Relton, Caroline L

    2016-05-01

    Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Determining Directional Dependency in Causal Associations

    PubMed Central

    Pornprasertmanit, Sunthud; Little, Todd D.

    2014-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of skewness and excessive kurtosis of both variables, discouraging the use of D’Agostino’s K2, and encouraging the use of directional dependency to compare variables only within time points. We offer improved steps for determining directional dependency that fix the problems we note. Next, we discuss how to integrate directional dependency into longitudinal data analysis with two variables. We also examine the accuracy of directional dependency evaluations when several regression assumptions are violated. Directional dependency can suggest the direction of a relation if (a) the regression error in population is normal, (b) an unobserved explanatory variable correlates with any variables equal to or less than .2, (c) a curvilinear relation between both variables is not strong (standardized regression coefficient ≤ .2), (d) there are no bivariate outliers, and (e) both variables are continuous. PMID:24683282

  13. A Tutorial in Bayesian Potential Outcomes Mediation Analysis.

    PubMed

    Miočević, Milica; Gonzalez, Oscar; Valente, Matthew J; MacKinnon, David P

    2018-01-01

    Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.

  14. A pre-crisis vs. crisis analysis of peripheral EU stock markets by means of wavelet transform and a nonlinear causality test

    NASA Astrophysics Data System (ADS)

    Polanco-Martínez, J. M.; Fernández-Macho, J.; Neumann, M. B.; Faria, S. H.

    2018-01-01

    This paper presents an analysis of EU peripheral (so-called PIIGS) stock market indices and the S&P Europe 350 index (SPEURO), as a European benchmark market, over the pre-crisis (2004-2007) and crisis (2008-2011) periods. We computed a rolling-window wavelet correlation for the market returns and applied a non-linear Granger causality test to the wavelet decomposition coefficients of these stock market returns. Our results show that the correlation is stronger for the crisis than for the pre-crisis period. The stock market indices from Portugal, Italy and Spain were more interconnected among themselves during the crisis than with the SPEURO. The stock market from Portugal is the most sensitive and vulnerable PIIGS member, whereas the stock market from Greece tends to move away from the European benchmark market since the 2008 financial crisis till 2011. The non-linear causality test indicates that in the first three wavelet scales (intraweek, weekly and fortnightly) the number of uni-directional and bi-directional causalities is greater during the crisis than in the pre-crisis period, because of financial contagion. Furthermore, the causality analysis shows that the direction of the Granger cause-effect for the pre-crisis and crisis periods is not invariant in the considered time-scales, and that the causality directions among the studied stock markets do not seem to have a preferential direction. These results are relevant to better understand the behaviour of vulnerable stock markets, especially for investors and policymakers.

  15. Causal Learning in Gambling Disorder: Beyond the Illusion of Control.

    PubMed

    Perales, José C; Navas, Juan F; Ruiz de Lara, Cristian M; Maldonado, Antonio; Catena, Andrés

    2017-06-01

    Causal learning is the ability to progressively incorporate raw information about dependencies between events, or between one's behavior and its outcomes, into beliefs of the causal structure of the world. In spite of the fact that some cognitive biases in gambling disorder can be described as alterations of causal learning involving gambling-relevant cues, behaviors, and outcomes, general causal learning mechanisms in gamblers have not been systematically investigated. In the present study, we compared gambling disorder patients against controls in an instrumental causal learning task. Evidence of illusion of control, namely, overestimation of the relationship between one's behavior and an uncorrelated outcome, showed up only in gamblers with strong current symptoms. Interestingly, this effect was part of a more complex pattern, in which gambling disorder patients manifested a poorer ability to discriminate between null and positive contingencies. Additionally, anomalies were related to gambling severity and current gambling disorder symptoms. Gambling-related biases, as measured by a standard psychometric tool, correlated with performance in the causal learning task, but not in the expected direction. Indeed, performance of gamblers with stronger biases tended to resemble the one of controls, which could imply that anomalies of causal learning processes play a role in gambling disorder, but do not seem to underlie gambling-specific biases, at least in a simple, direct way.

  16. Testing for Granger Causality in the Frequency Domain: A Phase Resampling Method.

    PubMed

    Liu, Siwei; Molenaar, Peter

    2016-01-01

    This article introduces phase resampling, an existing but rarely used surrogate data method for making statistical inferences of Granger causality in frequency domain time series analysis. Granger causality testing is essential for establishing causal relations among variables in multivariate dynamic processes. However, testing for Granger causality in the frequency domain is challenging due to the nonlinear relation between frequency domain measures (e.g., partial directed coherence, generalized partial directed coherence) and time domain data. Through a simulation study, we demonstrate that phase resampling is a general and robust method for making statistical inferences even with short time series. With Gaussian data, phase resampling yields satisfactory type I and type II error rates in all but one condition we examine: when a small effect size is combined with an insufficient number of data points. Violations of normality lead to slightly higher error rates but are mostly within acceptable ranges. We illustrate the utility of phase resampling with two empirical examples involving multivariate electroencephalography (EEG) and skin conductance data.

  17. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways

    PubMed Central

    Burgess, Stephen; Daniel, Rhian M; Butterworth, Adam S; Thompson, Simon G

    2015-01-01

    Background: Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. Methods: We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. Results: These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. Conclusions: These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes. PMID:25150977

  18. Testing the Causal Direction of Mediation Effects in Randomized Intervention Studies.

    PubMed

    Wiedermann, Wolfgang; Li, Xintong; von Eye, Alexander

    2018-05-21

    In a recent update of the standards for evidence in research on prevention interventions, the Society of Prevention Research emphasizes the importance of evaluating and testing the causal mechanism through which an intervention is expected to have an effect on an outcome. Mediation analysis is commonly applied to study such causal processes. However, these analytic tools are limited in their potential to fully understand the role of theorized mediators. For example, in a design where the treatment x is randomized and the mediator (m) and the outcome (y) are measured cross-sectionally, the causal direction of the hypothesized mediator-outcome relation is not uniquely identified. That is, both mediation models, x → m → y or x → y → m, may be plausible candidates to describe the underlying intervention theory. As a third explanation, unobserved confounders can still be responsible for the mediator-outcome association. The present study introduces principles of direction dependence which can be used to empirically evaluate these competing explanatory theories. We show that, under certain conditions, third higher moments of variables (i.e., skewness and co-skewness) can be used to uniquely identify the direction of a mediator-outcome relation. Significance procedures compatible with direction dependence are introduced and results of a simulation study are reported that demonstrate the performance of the tests. An empirical example is given for illustrative purposes and a software implementation of the proposed method is provided in SPSS.

  19. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  20. Investigating causality in the association between 25(OH)D and schizophrenia.

    PubMed

    Taylor, Amy E; Burgess, Stephen; Ware, Jennifer J; Gage, Suzanne H; Richards, J Brent; Davey Smith, George; Munafò, Marcus R

    2016-05-24

    Vitamin D deficiency is associated with increased risk of schizophrenia. However, it is not known whether this association is causal or what the direction of causality is. We performed two sample bidirectional Mendelian randomization analysis using single nucleotide polymorphisms (SNPs) robustly associated with serum 25(OH)D to investigate the causal effect of 25(OH)D on risk of schizophrenia, and SNPs robustly associated with schizophrenia to investigate the causal effect of schizophrenia on 25(OH)D. We used summary data from genome-wide association studies and meta-analyses of schizophrenia and 25(OH)D to obtain betas and standard errors for the SNP-exposure and SNP-outcome associations. These were combined using inverse variance weighted fixed effects meta-analyses. In 34,241 schizophrenia cases and 45,604 controls, there was no clear evidence for a causal effect of 25(OH)D on schizophrenia risk. The odds ratio for schizophrenia per 10% increase in 25(OH)D conferred by the four 25(OH)D increasing SNPs was 0.992 (95% CI: 0.969 to 1.015). In up to 16,125 individuals with measured serum 25(OH)D, there was no clear evidence that genetic risk for schizophrenia causally lowers serum 25(OH)D. These findings suggest that associations between schizophrenia and serum 25(OH)D may not be causal. Therefore, vitamin D supplementation may not prevent schizophrenia.

  1. Multiple-input multiple-output causal strategies for gene selection.

    PubMed

    Bontempi, Gianluca; Haibe-Kains, Benjamin; Desmedt, Christine; Sotiriou, Christos; Quackenbush, John

    2011-11-25

    Traditional strategies for selecting variables in high dimensional classification problems aim to find sets of maximally relevant variables able to explain the target variations. If these techniques may be effective in generalization accuracy they often do not reveal direct causes. The latter is essentially related to the fact that high correlation (or relevance) does not imply causation. In this study, we show how to efficiently incorporate causal information into gene selection by moving from a single-input single-output to a multiple-input multiple-output setting. We show in synthetic case study that a better prioritization of causal variables can be obtained by considering a relevance score which incorporates a causal term. In addition we show, in a meta-analysis study of six publicly available breast cancer microarray datasets, that the improvement occurs also in terms of accuracy. The biological interpretation of the results confirms the potential of a causal approach to gene selection. Integrating causal information into gene selection algorithms is effective both in terms of prediction accuracy and biological interpretation.

  2. Correntropy-based partial directed coherence for testing multivariate Granger causality in nonlinear processes

    NASA Astrophysics Data System (ADS)

    Kannan, Rohit; Tangirala, Arun K.

    2014-06-01

    Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.

  3. Temporal Information of Directed Causal Connectivity in Multi-Trial ERP Data using Partial Granger Causality.

    PubMed

    Youssofzadeh, Vahab; Prasad, Girijesh; Naeem, Muhammad; Wong-Lin, KongFatt

    2016-01-01

    Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modeling.

  4. Causal strength induction from time series data.

    PubMed

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Causality, mediation and time: a dynamic viewpoint

    PubMed Central

    Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno

    2012-01-01

    Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356

  6. Equalizing secondary path effects using the periodicity of fMRI acoustic noise.

    PubMed

    Kannan, Govind; Milani, Ali A; Panahi, Issa; Briggs, Richard

    2008-01-01

    Non-minimum phase secondary path has a direct effect on achieving a desired noise attenuation level in active noise control (ANC) systems. The adaptive noise canceling filter is often a causal FIR filter which may not be able to sufficiently equalize the effect of a non-minimum phase secondary path, since in theory only a non-causal filter can equalize it. However a non-causal stable filter can be found to equalize the non-minimum phase effect of secondary path. Realization of non-causal stable filters requires knowledge of future values of input signal. In this paper we develop methods for equalizing the non-minimum phase property of the secondary path and improving the performance of an ANC system by exploiting the periodicity of fMRI acoustic noise. It has been shown that the scanner noise component is highly periodic and hence predictable which enables easy realization of non-causal filtering. Improvement in performance due to the proposed methods (with and without the equalizer) is shown for periodic fMRI acoustic noise.

  7. Biological causal links on physiological and evolutionary time scales.

    PubMed

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  8. Effects of urban sprawl and vehicle miles traveled on traffic fatalities.

    PubMed

    Yeo, Jiho; Park, Sungjin; Jang, Kitae

    2015-01-01

    Previous research suggests that urban sprawl increases auto-dependency and that excessive auto use increases the risk of traffic fatalities. This indirect effect of urban sprawl on traffic fatalities is compared to non-vehicle miles traveled (VMT)-related direct effect of sprawl on fatalities. We conducted a path analysis to examine the causal linkages among urban sprawl, VMT, traffic fatalities, income, and fuel cost. The path diagram includes 2 major linkages: the direct relationship between urban sprawl and traffic fatalities and the indirect effect on fatalities through increased VMT in sprawling urban areas. To measure the relative strength of these causal linkages, path coefficients are estimated using data collected nationally from 147 urbanized areas in the United States. Through both direct and indirect paths, urban sprawl is associated with greater numbers of traffic fatalities, but the direct effect of sprawl on fatalities is more influential than the indirect effect. Enhancing traffic safety can be achieved by impeding urban sprawl and encouraging compact development. On the other hand, policy tools reducing VMT may be less effective than anticipated for traffic safety.

  9. Multivariate causal attribution and cost-effectiveness of a national mass media campaign in the Philippines.

    PubMed

    Kincaid, D Lawrence; Do, Mai Phuong

    2006-01-01

    Cost-effectiveness analysis is based on a simple formula. A dollar estimate of the total cost to conduct a program is divided by the number of people estimated to have been affected by it in terms of some intended outcome. The direct, total costs of most communication campaigns are usually available. Estimating the amount of effect that can be attributed to the communication alone, however is problematical in full-coverage, mass media campaigns where the randomized control group design is not feasible. Single-equation, multiple regression analysis controls for confounding variables but does not adequately address the issue of causal attribution. In this article, multivariate causal attribution (MCA) methods are applied to data from a sample survey of 1,516 married women in the Philippines to obtain a valid measure of the number of new adopters of modern contraceptives that can be causally attributed to a national mass media campaign and to calculate its cost-effectiveness. The MCA analysis uses structural equation modeling to test the causal pathways and to test for endogeneity, biprobit analysis to test for direct effects of the campaign and endogeneity, and propensity score matching to create a statistically equivalent, matched control group that approximates the results that would have been obtained from a randomized control group design. The MCA results support the conclusion that the observed, 6.4 percentage point increase in modern contraceptive use can be attributed to the national mass media campaign and to its indirect effects on attitudes toward contraceptives. This net increase represented 348,695 new adopters in the population of married women at a cost of U.S. $1.57 per new adopter.

  10. Synchrony dynamics underlying effective connectivity reconstruction of neuronal circuits

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Qin, Qing; Deng, Yun; Wang, Jiang; Liu, Jing; Cao, Yibin

    2017-04-01

    Reconstruction of effective connectivity between neurons is essential for neural systems with function-related significance, characterizing directionally causal influences among neurons. In this work, causal interactions between neurons in spinal dorsal root ganglion, activated by manual acupuncture at Zusanli acupoint of experimental rats, are estimated using Granger causality (GC) method. Different patterns of effective connectivity are obtained for different frequencies and types of acupuncture. Combined with synchrony analysis between neurons, we show a dependence of effective connection on the synchronization dynamics. Based on the experimental findings, a neuronal circuit model with synaptic connections is constructed. The variation of neuronal effective connectivity with respect to its structural connectivity and synchronization dynamics is further explored. Simulation results show that reciprocally causal interactions with statistically significant are formed between well-synchronized neurons. The effective connectivity may be not necessarily equivalent to synaptic connections, but rather depend on the synchrony relationship. Furthermore, transitions of effective interaction between neurons are observed following the synchronization transitions induced by conduction delay and synaptic conductance. These findings are helpful to further investigate the dynamical mechanisms underlying the reconstruction of effective connectivity of neuronal population.

  11. Detectability of Granger causality for subsampled continuous-time neurophysiological processes.

    PubMed

    Barnett, Lionel; Seth, Anil K

    2017-01-01

    Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity from neurophysiological recordings. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Assessing natural direct and indirect effects through multiple pathways.

    PubMed

    Lange, Theis; Rasmussen, Mette; Thygesen, Lau Caspar

    2014-02-15

    Within the fields of epidemiology, interventions research and social sciences researchers are often faced with the challenge of decomposing the effect of an exposure into different causal pathways working through defined mediator variables. The goal of such analyses is often to understand the mechanisms of the system or to suggest possible interventions. The case of a single mediator, thus implying only 2 causal pathways (direct and indirect) from exposure to outcome, has been extensively studied. By using the framework of counterfactual variables, researchers have established theoretical properties and developed powerful tools. However, in practical problems, it is not uncommon to have several distinct causal pathways from exposure to outcome operating through different mediators. In this article, we suggest a widely applicable approach to quantifying and ranking different causal pathways. The approach is an extension of the natural effect models proposed by Lange et al. (Am J Epidemiol. 2012;176(3):190-195). By allowing the analysis of distinct multiple pathways, the suggested approach adds to the capabilities of modern mediation techniques. Furthermore, the approach can be implemented using standard software, and we have included with this article implementation examples using R (R Foundation for Statistical Computing, Vienna, Austria) and Stata software (StataCorp LP, College Station, Texas).

  13. A short educational intervention diminishes causal illusions and specific paranormal beliefs in undergraduates.

    PubMed

    Barberia, Itxaso; Tubau, Elisabet; Matute, Helena; Rodríguez-Ferreiro, Javier

    2018-01-01

    Cognitive biases such as causal illusions have been related to paranormal and pseudoscientific beliefs and, thus, pose a real threat to the development of adequate critical thinking abilities. We aimed to reduce causal illusions in undergraduates by means of an educational intervention combining training-in-bias and training-in-rules techniques. First, participants directly experienced situations that tend to induce the Barnum effect and the confirmation bias. Thereafter, these effects were explained and examples of their influence over everyday life were provided. Compared to a control group, participants who received the intervention showed diminished causal illusions in a contingency learning task and a decrease in the precognition dimension of a paranormal belief scale. Overall, results suggest that evidence-based educational interventions like the one presented here could be used to significantly improve critical thinking skills in our students.

  14. Non-causal spike filtering improves decoding of movement intention for intracortical BCIs

    PubMed Central

    Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.

    2014-01-01

    Background Multiple types of neural signals are available for controlling assistive devices through brain-computer interfaces (BCIs). Intracortically-recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. Conclusions Non-causally filtering neural signals prior to extracting threshold crossing events may be a simple yet effective way to condition intracortically recorded neural activity for direct control of external devices through BCIs. PMID:25128256

  15. An algorithm for direct causal learning of influences on patient outcomes.

    PubMed

    Rathnam, Chandramouli; Lee, Sanghoon; Jiang, Xia

    2017-01-01

    This study aims at developing and introducing a new algorithm, called direct causal learner (DCL), for learning the direct causal influences of a single target. We applied it to both simulated and real clinical and genome wide association study (GWAS) datasets and compared its performance to classic causal learning algorithms. The DCL algorithm learns the causes of a single target from passive data using Bayesian-scoring, instead of using independence checks, and a novel deletion algorithm. We generate 14,400 simulated datasets and measure the number of datasets for which DCL correctly and partially predicts the direct causes. We then compare its performance with the constraint-based path consistency (PC) and conservative PC (CPC) algorithms, the Bayesian-score based fast greedy search (FGS) algorithm, and the partial ancestral graphs algorithm fast causal inference (FCI). In addition, we extend our comparison of all five algorithms to both a real GWAS dataset and real breast cancer datasets over various time-points in order to observe how effective they are at predicting the causal influences of Alzheimer's disease and breast cancer survival. DCL consistently outperforms FGS, PC, CPC, and FCI in discovering the parents of the target for the datasets simulated using a simple network. Overall, DCL predicts significantly more datasets correctly (McNemar's test significance: p<0.0001) than any of the other algorithms for these network types. For example, when assessing overall performance (simple and complex network results combined), DCL correctly predicts approximately 1400 more datasets than the top FGS method, 1600 more datasets than the top CPC method, 4500 more datasets than the top PC method, and 5600 more datasets than the top FCI method. Although FGS did correctly predict more datasets than DCL for the complex networks, and DCL correctly predicted only a few more datasets than CPC for these networks, there is no significant difference in performance between these three algorithms for this network type. However, when we use a more continuous measure of accuracy, we find that all the DCL methods are able to better partially predict more direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had faster runtimes than the other algorithms. In the application to the real datasets, DCL identified rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct causes of late onset Alzheimer's disease (LOAD) development. In addition, DCL identified ER category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct predictor of 10-year breast cancer mortality. These predictors have been identified in previous studies to have a direct causal relationship with their respective phenotypes, supporting the predictive power of DCL. When the other algorithms discovered predictors from the real datasets, these predictors were either also found by DCL or could not be supported by previous studies. Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its potential for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Causal inference and longitudinal data: a case study of religion and mental health.

    PubMed

    VanderWeele, Tyler J; Jackson, John W; Li, Shanshan

    2016-11-01

    We provide an introduction to causal inference with longitudinal data and discuss the complexities of analysis and interpretation when exposures can vary over time. We consider what types of causal questions can be addressed with the standard regression-based analyses and what types of covariate control and control for the prior values of outcome and exposure must be made to reason about causal effects. We also consider newer classes of causal models, including marginal structural models, that can assess questions of the joint effects of time-varying exposures and can take into account feedback between the exposure and outcome over time. Such feedback renders cross-sectional data ineffective for drawing inferences about causation. The challenges are illustrated by analyses concerning potential effects of religious service attendance on depression, in which there may in fact be effects in both directions with service attendance preventing the subsequent depression, but depression itself leading to lower levels of the subsequent religious service attendance. Longitudinal designs, with careful control for prior exposures, outcomes, and confounders, and suitable methodology, will strengthen research on mental health, religion and health, and in the biomedical and social sciences generally.

  17. The longitudinal causal directionality between body image distress and self-esteem among Korean adolescents: the moderating effect of relationships with parents.

    PubMed

    Park, Woochul; Epstein, Norman B

    2013-04-01

    This study examined the longitudinal relationship between self-esteem and body image distress, as well as the moderating effect of relationships with parents, among adolescents in Korea, using nationally representative prospective panel data. Regarding causal direction, the findings supported bi-directionality for girls, but for boys the association was unidirectional, in that their self-esteem predicted body image distress, but not vice versa. A gender difference also emerged in the moderating effect of quality of relationships with parents. For girls, relationships with parents moderated the effect of body image distress on self-esteem, such that when relationships with parents were better, the effect of greater body image distress on subsequent lower self-esteem was stronger than when relationships with parents were less positive. For boys, relationships with parents moderated the influence of self-esteem on body image distress, such that self-esteem reduced body image distress more when boys had better relationships with parents. Copyright © 2013. Published by Elsevier Ltd.

  18. Effect decomposition in the presence of an exposure-induced mediator-outcome confounder

    PubMed Central

    VanderWeele, Tyler J.; Vansteelandt, Stijn; Robins, James M.

    2014-01-01

    Methods from causal mediation analysis have generalized the traditional approach to direct and indirect effects in the epidemiologic and social science literature by allowing for interaction and non-linearities. However, the methods from the causal inference literature have themselves been subject to a major limitation in that the so-called natural direct and indirect effects that are employed are not identified from data whenever there is a variable that is affected by the exposure, which also confounds the relationship between the mediator and the outcome. In this paper we describe three alternative approaches to effect decomposition that give quantities that can be interpreted as direct and indirect effects, and that can be identified from data even in the presence of an exposure-induced mediator-outcome confounder. We describe a simple weighting-based estimation method for each of these three approaches, illustrated with data from perinatal epidemiology. The methods described here can shed insight into pathways and questions of mediation even when an exposure-induced mediator-outcome confounder is present. PMID:24487213

  19. Direct and Indirect Effects of Print Exposure on Silent Reading Fluency

    ERIC Educational Resources Information Center

    Mano, Quintino R.; Guerin, Julia M.

    2018-01-01

    Print exposure is an important causal factor in reading development. Little is known, however, of the mechanisms through which print exposure exerts an effect onto reading. To address this gap, we examined the direct and indirect effects of print exposure on silent reading fluency among college students (n = 52). More specifically, we focused on…

  20. Cross-lagged relations between mentoring received from supervisors and employee OCBs: Disentangling causal direction and identifying boundary conditions.

    PubMed

    Eby, Lillian T; Butts, Marcus M; Hoffman, Brian J; Sauer, Julia B

    2015-07-01

    Although mentoring has documented relationships with employee attitudes and outcomes of interest to organizations, neither the causal direction nor boundary conditions of the relationship between mentoring and organizational citizenship behaviors (OCBs) has been fully explored. On the basis of Social Learning Theory (SLT; Bandura, 1977, 1986), we predicted that mentoring received by supervisors would causally precede OCBs, rather than employee OCBs resulting in the receipt of more mentoring from supervisors. Results from cross-lagged data collected at 2 points in time from 190 intact supervisor-employee dyads supported our predictions; however, only for OCBs directed at individuals (OCB-Is) and not for OCBs directed at the organization (OCB-Os). Further supporting our theoretical rationale for expecting mentoring to precede OCBs, we found that coworker support operates as a substitute for mentoring in predicting OCB-Is. By contrast, no moderating effects were found for perceived organizational support. The results are discussed in terms of theoretical implications for mentoring and OCB research, as well as practical suggestions for enhancing employee citizenship behaviors. (c) 2015 APA, all rights reserved).

  1. Subfertility factors rather than assisted conception factors affect cognitive and behavioural development of 4-year-old singletons.

    PubMed

    Schendelaar, Pamela; La Bastide-Van Gemert, Sacha; Heineman, Maas Jan; Middelburg, Karin J; Seggers, Jorien; Van den Heuvel, Edwin R; Hadders-Algra, Mijna

    2016-12-01

    Research on cognitive and behavioural development of children born after assisted conception is inconsistent. This prospective study aimed to explore underlying causal relationships between ovarian stimulation, in-vitro procedures, subfertility components and child cognition and behaviour. Participants were singletons born to subfertile couples after ovarian stimulation IVF (n = 63), modified natural cycle IVF (n = 53), natural conception (n = 79) and singletons born to fertile couples (reference group) (n = 98). At 4 years, cognition (Kaufmann-ABC-II; total IQ) and behaviour (Child Behavior Checklist; total problem T-score) were assessed. Causal inference search algorithms and structural equation modelling was applied to unravel causal mechanisms. Most children had typical cognitive and behavioural scores. No underlying causal effect was found between ovarian stimulation and the in-vitro procedure and outcome. Direct negative causal effects were found between severity of subfertility (time to pregnancy) and cognition and presence of subfertility and behaviour. Maternal age and maternal education acted as confounders. The study concludes that no causal effects were found between ovarian stimulation or in-vitro procedures and cognition and behaviour in childrenaged 4 years born to subfertile couples. Subfertility, especially severe subfertility, however, was associated with worse cognition and behaviour. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  2. A short educational intervention diminishes causal illusions and specific paranormal beliefs in undergraduates

    PubMed Central

    Tubau, Elisabet; Matute, Helena

    2018-01-01

    Cognitive biases such as causal illusions have been related to paranormal and pseudoscientific beliefs and, thus, pose a real threat to the development of adequate critical thinking abilities. We aimed to reduce causal illusions in undergraduates by means of an educational intervention combining training-in-bias and training-in-rules techniques. First, participants directly experienced situations that tend to induce the Barnum effect and the confirmation bias. Thereafter, these effects were explained and examples of their influence over everyday life were provided. Compared to a control group, participants who received the intervention showed diminished causal illusions in a contingency learning task and a decrease in the precognition dimension of a paranormal belief scale. Overall, results suggest that evidence-based educational interventions like the one presented here could be used to significantly improve critical thinking skills in our students. PMID:29385184

  3. The causal pie model: an epidemiological method applied to evolutionary biology and ecology

    PubMed Central

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-01-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a “causal pie” of “component causes”. Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made. PMID:24963386

  4. The causal pie model: an epidemiological method applied to evolutionary biology and ecology.

    PubMed

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-05-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made.

  5. Private schooling and admission to medicine: a case study using matched samples and causal mediation analysis.

    PubMed

    Houston, Muir; Osborne, Michael; Rimmer, Russell

    2015-08-20

    Are applicants from private schools advantaged in gaining entry to degrees in medicine? This is of international significance and there is continuing research in a range of nations including the USA, the UK, other English-speaking nations and EU countries. Our purpose is to seek causal explanations using a quantitative approach. We took as a case study admission to medicine in the UK and drew samples of those who attended private schools and those who did not, with sample members matched on background characteristics. Unlike other studies in the area, causal mediation analysis was applied to resolve private-school influence into direct and indirect effects. In so doing, we sought a benchmark, using data for 2004, against which the effectiveness of policies adopted over the past decade can be assessed. Private schooling improved admission likelihood. This did not occur indirectly via the effect of school type on academic performance; but arose directly from attending private schools. A sensitivity analysis suggests this finding is unlikely to be eliminated by the influence of an unobserved variable. Academic excellence is not a certain pathway into medicine at university; yet applying with good grades after attending private school is more certain. The results of our paper differ from those in an earlier observational study and find support in a later study. Consideration of sources of difference from the earlier observational study suggest the causal approach offers substantial benefits and the consequences in the causal study for gender, ethnicity, socio-economic classification and region of residence provide a benchmark for assessing policy in future research.

  6. Causal inference in survival analysis using pseudo-observations.

    PubMed

    Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T

    2017-07-30

    Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs to address right-censoring, and often, special techniques are required for that purpose. We will show how censoring can be dealt with 'once and for all' by means of so-called pseudo-observations when doing causal inference in survival analysis. The pseudo-observations can be used as a replacement of the outcomes without censoring when applying 'standard' causal inference methods, such as (1) or (2) earlier. We study this idea for estimating the average causal effect of a binary treatment on the survival probability, the restricted mean lifetime, and the cumulative incidence in a competing risks situation. The methods will be illustrated in a small simulation study and via a study of patients with acute myeloid leukemia who received either myeloablative or non-myeloablative conditioning before allogeneic hematopoetic cell transplantation. We will estimate the average causal effect of the conditioning regime on outcomes such as the 3-year overall survival probability and the 3-year risk of chronic graft-versus-host disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Reflecting on explanatory ability: A mechanism for detecting gaps in causal knowledge.

    PubMed

    Johnson, Dan R; Murphy, Meredith P; Messer, Riley M

    2016-05-01

    People frequently overestimate their understanding-with a particularly large blind-spot for gaps in their causal knowledge. We introduce a metacognitive approach to reducing overestimation, termed reflecting on explanatory ability (REA), which is briefly thinking about how well one could explain something in a mechanistic, step-by-step, causally connected manner. Nine experiments demonstrated that engaging in REA just before estimating one's understanding substantially reduced overestimation. Moreover, REA reduced overestimation with nearly the same potency as generating full explanations, but did so 20 times faster (although only for high complexity objects). REA substantially reduced overestimation by inducing participants to quickly evaluate an object's inherent causal complexity (Experiments 4-7). REA reduced overestimation by also fostering step-by-step, causally connected processing (Experiments 2 and 3). Alternative explanations for REA's effects were ruled out including a general conservatism account (Experiments 4 and 5) and a covert explanation account (Experiment 8). REA's overestimation-reduction effect generalized beyond objects (Experiments 1-8) to sociopolitical policies (Experiment 9). REA efficiently detects gaps in our causal knowledge with implications for improving self-directed learning, enhancing self-insight into vocational and academic abilities, and even reducing extremist attitudes. (c) 2016 APA, all rights reserved).

  8. How contrast situations affect the assignment of causality in symmetric physical settings.

    PubMed

    Beller, Sieghard; Bender, Andrea

    2014-01-01

    In determining the prime cause of a physical event, people often weight one of two entities in a symmetric physical relation as more important for bringing about the causal effect than the other. In a broad survey (Bender and Beller, 2011), we documented such weighting effects for different kinds of physical events and found that their direction and strength depended on a variety of factors. Here, we focus on one of those: adding a contrast situation that-while being formally irrelevant-foregrounds one of the factors and thus frames the task in a specific way. In two experiments, we generalize and validate our previous findings by using different stimulus material (in Experiment 1), by applying a different response format to elicit causal assignments, an analog rating scale instead of a forced-choice decision (in Experiment 2), and by eliciting explanations for the physical events in question (in both Experiments). The results generally confirm the contrast effects for both response formats; however, the effects were more pronounced with the force-choice format than with the rating format. People tended to refer to the given contrast in their explanations, which validates our manipulation. Finally, people's causal assignments are reflected in the type of explanation given in that contrast and property explanations were associated with biased causal assignments, whereas relational explanations were associated with unbiased assignments. In the discussion, we pick up the normative questions of whether or not these contrast effects constitute a bias in causal reasoning.

  9. New Evidence on Causal Relationship between Approximate Number System (ANS) Acuity and Arithmetic Ability in Elementary-School Students: A Longitudinal Cross-Lagged Analysis.

    PubMed

    He, Yunfeng; Zhou, Xinlin; Shi, Dexin; Song, Hairong; Zhang, Hui; Shi, Jiannong

    2016-01-01

    Approximate number system (ANS) acuity and mathematical ability have been found to be closely associated in recent studies. However, whether and how these two measures are causally related still remain less addressed. There are two hypotheses about the possible causal relationship: ANS acuity influences mathematical performances, or access to math education sharpens ANS acuity. Evidences in support of both hypotheses have been reported, but these two hypotheses have never been tested simultaneously. Therefore, questions still remain whether only one-direction or reciprocal causal relationships existed in the association. In this work, we provided a new evidence on the causal relationship between ANS acuity and arithmetic ability. ANS acuity and mathematical ability of elementary-school students were measured sequentially at three time points within one year, and all possible causal directions were evaluated simultaneously using cross-lagged regression analysis. The results show that ANS acuity influences later arithmetic ability while the reverse causal direction was not supported. Our finding adds a strong evidence to the causal association between ANS acuity and mathematical ability, and also has important implications for educational intervention designed to train ANS acuity and thereby promote mathematical ability.

  10. New Evidence on Causal Relationship between Approximate Number System (ANS) Acuity and Arithmetic Ability in Elementary-School Students: A Longitudinal Cross-Lagged Analysis

    PubMed Central

    He, Yunfeng; Zhou, Xinlin; Shi, Dexin; Song, Hairong; Zhang, Hui; Shi, Jiannong

    2016-01-01

    Approximate number system (ANS) acuity and mathematical ability have been found to be closely associated in recent studies. However, whether and how these two measures are causally related still remain less addressed. There are two hypotheses about the possible causal relationship: ANS acuity influences mathematical performances, or access to math education sharpens ANS acuity. Evidences in support of both hypotheses have been reported, but these two hypotheses have never been tested simultaneously. Therefore, questions still remain whether only one-direction or reciprocal causal relationships existed in the association. In this work, we provided a new evidence on the causal relationship between ANS acuity and arithmetic ability. ANS acuity and mathematical ability of elementary-school students were measured sequentially at three time points within one year, and all possible causal directions were evaluated simultaneously using cross-lagged regression analysis. The results show that ANS acuity influences later arithmetic ability while the reverse causal direction was not supported. Our finding adds a strong evidence to the causal association between ANS acuity and mathematical ability, and also has important implications for educational intervention designed to train ANS acuity and thereby promote mathematical ability. PMID:27462291

  11. Upsampling to 400-ms Resolution for Assessing Effective Connectivity in Functional Magnetic Resonance Imaging Data with Granger Causality

    PubMed Central

    Kerr, Deborah L.; Nitschke, Jack B.

    2013-01-01

    Abstract Granger causality analysis of functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent signal data allows one to infer the direction and magnitude of influence that brain regions exert on one another. We employed a method for upsampling the time resolution of fMRI data that does not require additional interpolation beyond the interpolation that is regularly used for slice-timing correction. The mathematics for this new method are provided, and simulations demonstrate its viability. Using fMRI, 17 snake phobics and 19 healthy controls viewed snake, disgust, and neutral fish video clips preceded by anticipatory cues. Multivariate Granger causality models at the native 2-sec resolution and at the upsampled 400-ms resolution assessed directional associations of fMRI data among 13 anatomical regions of interest identified in prior research on anxiety and emotion. Superior sensitivity was observed for the 400-ms model, both for connectivity within each group and for group differences in connectivity. Context-dependent analyses for the 400-ms multivariate Granger causality model revealed the specific trial types showing group differences in connectivity. This is the first demonstration of effective connectivity of fMRI data using a method for achieving 400-ms resolution without sacrificing accuracy available at 2-sec resolution. PMID:23134194

  12. Updating during reading comprehension: why causality matters.

    PubMed

    Kendeou, Panayiota; Smith, Emily R; O'Brien, Edward J

    2013-05-01

    The present set of 7 experiments systematically examined the effectiveness of adding causal explanations to simple refutations in reducing or eliminating the impact of outdated information on subsequent comprehension. The addition of a single causal-explanation sentence to a refutation was sufficient to eliminate any measurable disruption in comprehension caused by the outdated information (Experiment 1) but was not sufficient to eliminate its reactivation (Experiment 2). However, a 3 sentence causal-explanation addition to a refutation eliminated both any measurable disruption in comprehension (Experiment 3) and the reactivation of the outdated information (Experiment 4). A direct comparison between the 1 and 3 causal-explanation conditions provided converging evidence for these findings (Experiment 5). Furthermore, a comparison of the 3 sentence causal-explanation condition with a 3 sentence qualified-elaboration condition demonstrated that even though both conditions were sufficient to eliminate any measurable disruption in comprehension (Experiment 6), only the causal-explanation condition was sufficient to eliminate the reactivation of the outdated information (Experiment 7). These results establish a boundary condition under which outdated information will influence comprehension; they also have broader implications for both the updating process and knowledge revision in general.

  13. 'Mendelian randomization': an approach for exploring causal relations in epidemiology.

    PubMed

    Gupta, V; Walia, G K; Sachdeva, M P

    2017-04-01

    To assess the current status of Mendelian randomization (MR) approach in effectively influencing the observational epidemiology for examining causal relationships. Narrative review on studies related to principle, strengths, limitations, and achievements of MR approach. Observational epidemiological studies have repeatedly produced several beneficiary associations which were discarded when tested by standard randomized controlled trials (RCTs). The technique which is more feasible, highly similar to RCTs, and has the potential to establish a causal relationship between modifiable exposures and disease outcomes is known as MR. The technique uses genetic variants related to modifiable traits/exposures as instruments for detecting causal and directional associations with outcomes. In the last decade, the approach of MR has methodologically developed and progressed to a stage of high acceptance among the epidemiologists and is gradually expanding the landscape of causal relationships in non-communicable chronic diseases. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  14. Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam

    2016-10-01

    In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.

  15. Spillover effects in epidemiology: parameters, study designs and methodological considerations

    PubMed Central

    Benjamin-Chung, Jade; Arnold, Benjamin F; Berger, David; Luby, Stephen P; Miguel, Edward; Colford Jr, John M; Hubbard, Alan E

    2018-01-01

    Abstract Many public health interventions provide benefits that extend beyond their direct recipients and impact people in close physical or social proximity who did not directly receive the intervention themselves. A classic example of this phenomenon is the herd protection provided by many vaccines. If these ‘spillover effects’ (i.e. ‘herd effects’) are present in the same direction as the effects on the intended recipients, studies that only estimate direct effects on recipients will likely underestimate the full public health benefits of the intervention. Causal inference assumptions for spillover parameters have been articulated in the vaccine literature, but many studies measuring spillovers of other types of public health interventions have not drawn upon that literature. In conjunction with a systematic review we conducted of spillovers of public health interventions delivered in low- and middle-income countries, we classified the most widely used spillover parameters reported in the empirical literature into a standard notation. General classes of spillover parameters include: cluster-level spillovers; spillovers conditional on treatment or outcome density, distance or the number of treated social network links; and vaccine efficacy parameters related to spillovers. We draw on high quality empirical examples to illustrate each of these parameters. We describe study designs to estimate spillovers and assumptions required to make causal inferences about spillovers. We aim to advance and encourage methods for spillover estimation and reporting by standardizing spillover parameter nomenclature and articulating the causal inference assumptions required to estimate spillovers. PMID:29106568

  16. Globally conditioned Granger causality in brain–brain and brain–heart interactions: a combined heart rate variability/ultra-high-field (7 T) functional magnetic resonance imaging study

    PubMed Central

    Passamonti, Luca; Wald, Lawrence L.; Barbieri, Riccardo

    2016-01-01

    The causal, directed interactions between brain regions at rest (brain–brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain–heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain–brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain–brain and brain–heart interactions reflecting central modulation of ANS outflow. PMID:27044985

  17. The mutual causality analysis between the stock and futures markets

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Qing-Wen

    2017-07-01

    In this paper we employ the conditional Granger causality model to estimate the information flow, and find that the improved model outperforms the Granger causality model in revealing the asymmetric correlation between stocks and futures in the Chinese market. First, we find that information flows estimated by Granger causality tests from futures to stocks are greater than those from stocks to futures. Additionally, average correlation coefficients capture some important characteristics between stock prices and information flows over time. Further, we find that direct information flows estimated by conditional Granger causality tests from stocks to futures are greater than those from futures to stocks. Besides, the substantial increases of information flows and direct information flows exhibit a certain degree of synchronism with the occurrences of important events. Finally, the comparative analysis with the asymmetric ratio and the bootstrap technique demonstrates the slight asymmetry of information flows and the significant asymmetry of direct information flows. It reveals that the information flows from futures to stocks are slightly greater than those in the reverse direction, while the direct information flows from stocks to futures are significantly greater than those in the reverse direction.

  18. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    NASA Astrophysics Data System (ADS)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  19. Dimension reduction of frequency-based direct Granger causality measures on short time series.

    PubMed

    Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2017-09-01

    The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inverse odds ratio-weighted estimation for causal mediation analysis.

    PubMed

    Tchetgen Tchetgen, Eric J

    2013-11-20

    An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Implementation and reporting of causal mediation analysis in 2015: a systematic review in epidemiological studies.

    PubMed

    Liu, Shao-Hsien; Ulbricht, Christine M; Chrysanthopoulou, Stavroula A; Lapane, Kate L

    2016-07-20

    Causal mediation analysis is often used to understand the impact of variables along the causal pathway of an occurrence relation. How well studies apply and report the elements of causal mediation analysis remains unknown. We systematically reviewed epidemiological studies published in 2015 that employed causal mediation analysis to estimate direct and indirect effects of observed associations between an exposure on an outcome. We identified potential epidemiological studies through conducting a citation search within Web of Science and a keyword search within PubMed. Two reviewers independently screened studies for eligibility. For eligible studies, one reviewer performed data extraction, and a senior epidemiologist confirmed the extracted information. Empirical application and methodological details of the technique were extracted and summarized. Thirteen studies were eligible for data extraction. While the majority of studies reported and identified the effects of measures, most studies lacked sufficient details on the extent to which identifiability assumptions were satisfied. Although most studies addressed issues of unmeasured confounders either from empirical approaches or sensitivity analyses, the majority did not examine the potential bias arising from the measurement error of the mediator. Some studies allowed for exposure-mediator interaction and only a few presented results from models both with and without interactions. Power calculations were scarce. Reporting of causal mediation analysis is varied and suboptimal. Given that the application of causal mediation analysis will likely continue to increase, developing standards of reporting of causal mediation analysis in epidemiological research would be prudent.

  2. Causal Relationship Analysis of the Patient Safety Culture Based on Safety Attitudes Questionnaire in Taiwan.

    PubMed

    Lee, Yii-Ching; Zeng, Pei-Shan; Huang, Chih-Hsuan; Wu, Hsin-Hung

    2018-01-01

    This study uses the decision-making trial and evaluation laboratory method to identify critical dimensions of the safety attitudes questionnaire in Taiwan in order to improve the patient safety culture from experts' viewpoints. Teamwork climate, stress recognition, and perceptions of management are three causal dimensions, while safety climate, job satisfaction, and working conditions are receiving dimensions. In practice, improvements on effect-based dimensions might receive little effects when a great amount of efforts have been invested. In contrast, improving a causal dimension not only improves itself but also results in better performance of other dimension(s) directly affected by this particular dimension. Teamwork climate and perceptions of management are found to be the most critical dimensions because they are both causal dimensions and have significant influences on four dimensions apiece. It is worth to note that job satisfaction is the only dimension affected by the other dimensions. In order to effectively enhance the patient safety culture for healthcare organizations, teamwork climate, and perceptions of management should be closely monitored.

  3. Causal Relationship Analysis of the Patient Safety Culture Based on Safety Attitudes Questionnaire in Taiwan

    PubMed Central

    Zeng, Pei-Shan; Huang, Chih-Hsuan

    2018-01-01

    This study uses the decision-making trial and evaluation laboratory method to identify critical dimensions of the safety attitudes questionnaire in Taiwan in order to improve the patient safety culture from experts' viewpoints. Teamwork climate, stress recognition, and perceptions of management are three causal dimensions, while safety climate, job satisfaction, and working conditions are receiving dimensions. In practice, improvements on effect-based dimensions might receive little effects when a great amount of efforts have been invested. In contrast, improving a causal dimension not only improves itself but also results in better performance of other dimension(s) directly affected by this particular dimension. Teamwork climate and perceptions of management are found to be the most critical dimensions because they are both causal dimensions and have significant influences on four dimensions apiece. It is worth to note that job satisfaction is the only dimension affected by the other dimensions. In order to effectively enhance the patient safety culture for healthcare organizations, teamwork climate, and perceptions of management should be closely monitored. PMID:29686825

  4. [Causal analysis approaches in epidemiology].

    PubMed

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the formulation of causal hypotheses, which will be a basis for all methodological choices. Beyond this step, statistical analysis tools recently developed offer new possibilities to delineate complex relationships, in particular in life course epidemiology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Estimating causal contrasts involving intermediate variables in the presence of selection bias.

    PubMed

    Valeri, Linda; Coull, Brent A

    2016-11-20

    An important goal across the biomedical and social sciences is the quantification of the role of intermediate factors in explaining how an exposure exerts an effect on an outcome. Selection bias has the potential to severely undermine the validity of inferences on direct and indirect causal effects in observational as well as in randomized studies. The phenomenon of selection may arise through several mechanisms, and we here focus on instances of missing data. We study the sign and magnitude of selection bias in the estimates of direct and indirect effects when data on any of the factors involved in the analysis is either missing at random or not missing at random. Under some simplifying assumptions, the bias formulae can lead to nonparametric sensitivity analyses. These sensitivity analyses can be applied to causal effects on the risk difference and risk-ratio scales irrespectively of the estimation approach employed. To incorporate parametric assumptions, we also develop a sensitivity analysis for selection bias in mediation analysis in the spirit of the expectation-maximization algorithm. The approaches are applied to data from a health disparities study investigating the role of stage at diagnosis on racial disparities in colorectal cancer survival. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Granger causality revisited

    PubMed Central

    Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir

    2014-01-01

    This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817

  7. Perceived causality, force, and resistance in the absence of launching.

    PubMed

    Hubbard, Timothy L; Ruppel, Susan E

    2017-04-01

    In the launching effect, a moving object (the launcher) contacts a stationary object (the target), and upon contact, the launcher stops and the target begins moving in the same direction and at the same or slower velocity as previous launcher motion (Michotte, 1946/1963). In the study reported here, participants viewed a modified launching effect display in which the launcher stopped before or at the moment of contact and the target remained stationary. Participants rated perceived causality, perceived force, and perceived resistance of the launcher on the target or the target on the launcher. For launchers and for targets, increases in the size of the spatial gap between the final location of the launcher and the location of the target decreased ratings of perceived causality and ratings of perceived force and increased ratings of perceived resistance. Perceived causality, perceived force, and perceived resistance exhibited gradients or fields extending from the launcher and from the target and were not dependent upon contact of the launcher and target. Causal asymmetries and force asymmetries reported in previous studies did not occur, and this suggests that such asymmetries might be limited to typical launching effect stimuli. Deviations from Newton's laws of motion are noted, and the existence of separate radii of action extending from the launcher and from the target is suggested.

  8. Field experiment evidence of substantive, attributional, and behavioral persuasion by members of Congress in online town halls.

    PubMed

    Minozzi, William; Neblo, Michael A; Esterling, Kevin M; Lazer, David M J

    2015-03-31

    Do leaders persuade? Social scientists have long studied the relationship between elite behavior and mass opinion. However, there is surprisingly little evidence regarding direct persuasion by leaders. Here we show that political leaders can persuade their constituents directly on three dimensions: substantive attitudes regarding policy issues, attributions regarding the leaders' qualities, and subsequent voting behavior. We ran two randomized controlled field experiments testing the causal effects of directly interacting with a sitting politician. Our experiments consist of 20 online town hall meetings with members of Congress conducted in 2006 and 2008. Study 1 examined 19 small meetings with members of the House of Representatives (average 20 participants per town hall). Study 2 examined a large (175 participants) town hall with a senator. In both experiments we find that participating has significant and substantively important causal effects on all three dimensions of persuasion but no such effects on issues that were not discussed extensively in the sessions. Further, persuasion was not driven solely by changes in copartisans' attitudes; the effects were consistent across groups.

  9. Field experiment evidence of substantive, attributional, and behavioral persuasion by members of Congress in online town halls

    PubMed Central

    Minozzi, William; Neblo, Michael A.; Esterling, Kevin M.; Lazer, David M. J.

    2015-01-01

    Do leaders persuade? Social scientists have long studied the relationship between elite behavior and mass opinion. However, there is surprisingly little evidence regarding direct persuasion by leaders. Here we show that political leaders can persuade their constituents directly on three dimensions: substantive attitudes regarding policy issues, attributions regarding the leaders’ qualities, and subsequent voting behavior. We ran two randomized controlled field experiments testing the causal effects of directly interacting with a sitting politician. Our experiments consist of 20 online town hall meetings with members of Congress conducted in 2006 and 2008. Study 1 examined 19 small meetings with members of the House of Representatives (average 20 participants per town hall). Study 2 examined a large (175 participants) town hall with a senator. In both experiments we find that participating has significant and substantively important causal effects on all three dimensions of persuasion but no such effects on issues that were not discussed extensively in the sessions. Further, persuasion was not driven solely by changes in copartisans’ attitudes; the effects were consistent across groups. PMID:25775516

  10. Perceived Causalities of Physical Events Are Influenced by Social Cues

    ERIC Educational Resources Information Center

    Zhou, Jifan; Huang, Xiang; Jin, Xinyi; Liang, Junying; Shui, Rende; Shen, Mowei

    2012-01-01

    In simple mechanical events, we can directly perceive causal interactions of the physical objects. Physical cues (especially spatiotemporal features of the display) are found to associate with causal perception. Here, we demonstrate that cues of a completely different domain--"social cues"--also impact the causal perception of…

  11. Time, frequency, and time-varying Granger-causality measures in neuroscience.

    PubMed

    Cekic, Sezen; Grandjean, Didier; Renaud, Olivier

    2018-05-20

    This article proposes a systematic methodological review and an objective criticism of existing methods enabling the derivation of time, frequency, and time-varying Granger-causality statistics in neuroscience. The capacity to describe the causal links between signals recorded at different brain locations during a neuroscience experiment is indeed of primary interest for neuroscientists, who often have very precise prior hypotheses about the relationships between recorded brain signals. The increasing interest and the huge number of publications related to this topic calls for this systematic review, which describes the very complex methodological aspects underlying the derivation of these statistics. In this article, we first present a general framework that allows us to review and compare Granger-causality statistics in the time domain, and the link with transfer entropy. Then, the spectral and the time-varying extensions are exposed and discussed together with their estimation and distributional properties. Although not the focus of this article, partial and conditional Granger causality, dynamical causal modelling, directed transfer function, directed coherence, partial directed coherence, and their variant are also mentioned. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks.

    PubMed

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Galka, Andreas; Granert, Oliver; Wolff, Stephan; Deuschl, Guenther; Raethjen, Jan; Heute, Ulrich; Muthuraman, Muthuraman

    2013-01-01

    Brain activity can be measured using different modalities. Since most of the modalities tend to complement each other, it seems promising to measure them simultaneously. In to be presented research, the data recorded from Functional Magnetic Resonance Imaging (fMRI) and Near Infrared Spectroscopy (NIRS), simultaneously, are subjected to causality analysis using time-resolved partial directed coherence (tPDC). Time-resolved partial directed coherence uses the principle of state space modelling to estimate Multivariate Autoregressive (MVAR) coefficients. This method is useful to visualize both frequency and time dynamics of causality between the time series. Afterwards, causality results from different modalities are compared by estimating the Spearman correlation. In to be presented study, we used directionality vectors to analyze correlation, rather than actual signal vectors. Results show that causality analysis of the fMRI correlates more closely to causality results of oxy-NIRS as compared to deoxy-NIRS in case of a finger sequencing task. However, in case of simple finger tapping, no clear difference between oxy-fMRI and deoxy-fMRI correlation is identified.

  13. Triangulation in aetiological epidemiology

    PubMed Central

    Lawlor, Debbie A; Tilling, Kate; Davey Smith, George

    2016-01-01

    Abstract Triangulation is the practice of obtaining more reliable answers to research questions through integrating results from several different approaches, where each approach has different key sources of potential bias that are unrelated to each other. With respect to causal questions in aetiological epidemiology, if the results of different approaches all point to the same conclusion, this strengthens confidence in the finding. This is particularly the case when the key sources of bias of some of the approaches would predict that findings would point in opposite directions if they were due to such biases. Where there are inconsistencies, understanding the key sources of bias of each approach can help to identify what further research is required to address the causal question. The aim of this paper is to illustrate how triangulation might be used to improve causal inference in aetiological epidemiology. We propose a minimum set of criteria for use in triangulation in aetiological epidemiology, summarize the key sources of bias of several approaches and describe how these might be integrated within a triangulation framework. We emphasize the importance of being explicit about the expected direction of bias within each approach, whenever this is possible, and seeking to identify approaches that would be expected to bias the true causal effect in different directions. We also note the importance, when comparing results, of taking account of differences in the duration and timing of exposures. We provide three examples to illustrate these points. PMID:28108528

  14. Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals.

    PubMed

    Faes, L; Porta, A; Cucino, R; Cerutti, S; Antolini, R; Nollo, G

    2004-06-01

    Although the concept of transfer function is intrinsically related to an input-output relationship, the traditional and widely used estimation method merges both feedback and feedforward interactions between the two analyzed signals. This limitation may endanger the reliability of transfer function analysis in biological systems characterized by closed loop interactions. In this study, a method for estimating the transfer function between closed loop interacting signals was proposed and validated in the field of cardiovascular and cardiorespiratory variability. The two analyzed signals x and y were described by a bivariate autoregressive model, and the causal transfer function from x to y was estimated after imposing causality by setting to zero the model coefficients representative of the reverse effects from y to x. The method was tested in simulations reproducing linear open and closed loop interactions, showing a better adherence of the causal transfer function to the theoretical curves with respect to the traditional approach in presence of non-negligible reverse effects. It was then applied in ten healthy young subjects to characterize the transfer functions from respiration to heart period (RR interval) and to systolic arterial pressure (SAP), and from SAP to RR interval. In the first two cases, the causal and non-causal transfer function estimates were comparable, indicating that respiration, acting as exogenous signal, sets an open loop relationship upon SAP and RR interval. On the contrary, causal and traditional transfer functions from SAP to RR were significantly different, suggesting the presence of a considerable influence on the opposite causal direction. Thus, the proposed causal approach seems to be appropriate for the estimation of parameters, like the gain and the phase lag from SAP to RR interval, which have a large clinical and physiological relevance.

  15. Stimulation of Dorsolateral Prefrontal Cortex Enhances Adaptive Cognitive Control: A High-Definition Transcranial Direct Current Stimulation Study.

    PubMed

    Gbadeyan, Oyetunde; McMahon, Katie; Steinhauser, Marco; Meinzer, Marcus

    2016-12-14

    Conflict adaptation is a hallmark effect of adaptive cognitive control and refers to the adjustment of control to the level of previously experienced conflict. Conflict monitoring theory assumes that the dorsolateral prefrontal cortex (DLPFC) is causally involved in this adjustment. However, to date, evidence in humans is predominantly correlational, and heterogeneous with respect to the lateralization of control in the DLPFC. We used high-definition transcranial direct current stimulation (HD-tDCS), which allows for more focal current delivery than conventional tDCS, to clarify the causal involvement of the DLPFC in conflict adaptation. Specifically, we investigated the regional specificity and lateralization of potential beneficial stimulation effects on conflict adaptation during a visual flanker task. One hundred twenty healthy participants were assigned to four HD-tDCS conditions: left or right DLPFC or left or right primary motor cortex (M1). Each group underwent both active and sham HD-tDCS in crossover, double-blind designs. We obtained a sizeable conflict adaptation effect (measured as the modulation of the flanker effect as a function of previous response conflict) in all groups and conditions. However, this effect was larger under active HD-tDCS than under sham stimulation in both DLPFC groups. In contrast, active stimulation had no effect on conflict adaptation in the M1 groups. In sum, the present results indicate that the DLPFC plays a causal role in adaptive cognitive control, but that the involvement of DLPFC in control is not restricted to the left or right hemisphere. Moreover, our study confirms the potential of HD-tDCS to modulate cognition in a regionally specific manner. Conflict adaptation is a hallmark effect of adaptive cognitive control. While animal studies have suggested causal involvement of the DLPFC in this phenomenon, such evidence is currently lacking in humans. The present study used high-definition transcranial direct current stimulation (HD-tDCS) to demonstrate that the DLPFC is causally involved in conflict adaptation in humans. Our study confirms a central claim of conflict monitoring theory, which up to now has predominantly relied on correlational studies. Our results further indicate an equal involvement of the left and right DLPFC in adaptive control, whereas stimulation of a control region-the primary motor cortex-had no effect on adaptive control. The study thus confirms the potential of HD-tDCS to modulate cognition in a regionally specific manner. Copyright © 2016 the authors 0270-6474/16/3612530-07$15.00/0.

  16. Investigating the change of causality in emerging property markets during the financial tsunami

    NASA Astrophysics Data System (ADS)

    Hui, Eddie C. M.; Chen, Jia

    2012-08-01

    In this paper, we employ the multivariate CUSUM (cumulative sum) test for covariance structure as well as the renormalized partial directed coherence (PDC) method to capture the structural causality change of real estate stock indices of five emerging Asian countries and regions (i.e., Thailand, Malaysia, South Korea, PR China, and Taiwan). Meanwhile, we develop a method to make the comparison of renormalized PDC more intuitive and a set of criteria to measure the result. One of our findings indicates that the regional influence of the Chinese real estate stock market on the causality structure of the five markets has arisen under the effect of the financial tsunami.

  17. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Objective. Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. Approach. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. Main results. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. Significance. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  18. Effective brain network analysis with resting-state EEG data: a comparison between heroin abstinent and non-addicted subjects.

    PubMed

    Hu, Bin; Dong, Qunxi; Hao, Yanrong; Zhao, Qinglin; Shen, Jian; Zheng, Fang

    2017-08-01

    Neuro-electrophysiological tools have been widely used in heroin addiction studies. Previous studies indicated that chronic heroin abuse would result in abnormal functional organization of the brain, while few heroin addiction studies have applied the effective connectivity tool to analyze the brain functional system (BFS) alterations induced by heroin abuse. The present study aims to identify the abnormality of resting-state heroin abstinent BFS using source decomposition and effective connectivity tools. The resting-state electroencephalograph (EEG) signals were acquired from 15 male heroin abstinent (HA) subjects and 14 male non-addicted (NA) controls. Multivariate autoregressive models combined independent component analysis (MVARICA) was applied for blind source decomposition. Generalized partial directed coherence (GPDC) was applied for effective brain connectivity analysis. Effective brain networks of both HA and NA groups were constructed. The two groups of effective cortical networks were compared by the bootstrap method. Abnormal causal interactions between decomposed source regions were estimated in the 1-45 Hz frequency domain. This work suggested: (a) there were clear effective network alterations in heroin abstinent subject groups; (b) the parietal region was a dominant hub of the abnormally weaker causal pathways, and the left occipital region was a dominant hub of the abnormally stronger causal pathways. These findings provide direct evidence that chronic heroin abuse induces brain functional abnormalities. The potential value of combining effective connectivity analysis and brain source decomposition methods in exploring brain alterations of heroin addicts is also implied.

  19. Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification

    PubMed Central

    Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen

    2014-01-01

    Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922

  20. The Mediation Formula: A Guide to the Assessment of Causal Pathways in Nonlinear Models

    DTIC Science & Technology

    2011-10-27

    through (25), (26) and (27), rather than going through (23) ( van der Laan and Rubin, 2006). 29 values, though disparities in parameters may not...graphs. Epidemiology 22 378–381. Petersen, M., Sinisi, S. and van der Laan, M. (2006). Estimation of direct causal effects. Epidemiology 17 276–284...and J. Halpern, eds.). College Publications, UK, 415–444. van der Laan, M. J. and Rubin, D. (2006). Targeted maximum likelihood learning. The

  1. Directed Interaction Between Monkey Premotor and Posterior Parietal Cortex During Motor-Goal Retrieval from Working Memory

    PubMed Central

    Martínez-Vázquez, Pablo; Gail, Alexander

    2018-01-01

    Abstract Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM. PMID:29481586

  2. Directed Interaction Between Monkey Premotor and Posterior Parietal Cortex During Motor-Goal Retrieval from Working Memory.

    PubMed

    Martínez-Vázquez, Pablo; Gail, Alexander

    2018-05-01

    Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12-32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.

  3. Automated interviews on clinical case reports to elicit directed acyclic graphs.

    PubMed

    Luciani, Davide; Stefanini, Federico M

    2012-05-01

    Setting up clinical reports within hospital information systems makes it possible to record a variety of clinical presentations. Directed acyclic graphs (Dags) offer a useful way of representing causal relations in clinical problem domains and are at the core of many probabilistic models described in the medical literature, like Bayesian networks. However, medical practitioners are not usually trained to elicit Dag features. Part of the difficulty lies in the application of the concept of direct causality before selecting all the causal variables of interest for a specific patient. We designed an automated interview to tutor medical doctors in the development of Dags to represent their understanding of clinical reports. Medical notions were analyzed to find patterns in medical reasoning that can be followed by algorithms supporting the elicitation of causal Dags. Clinical relevance was defined to help formulate only relevant questions by driving an expert's attention towards variables causally related to nodes already inserted in the graph. Key procedural features of the proposed interview are described by four algorithms. The automated interview comprises questions on medical notions, phrased in medical terms. The first elicitation session produces questions concerning the patient's chief complaints and the outcomes related to diseases serving as diagnostic hypotheses, their observable manifestations and risk factors. The second session focuses on questions that refine the initial causal paths by considering syndromes, dysfunctions, pathogenic anomalies, biases and effect modifiers. A case study concerning a gastro-enterological problem and one dealing with an infected patient illustrate the output produced by the algorithms, depending on the answers provided by the doctor. The proposed elicitation framework is characterized by strong consistency with medical background and by a progressive introduction of relevant medical topics. Revision and testing of the subjectively elicited Dag is performed by matching the collected answers with the evidence included in accepted sources of biomedical knowledge. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data.

    PubMed

    Deshpande, Gopikrishna; Santhanam, Priya; Hu, Xiaoping

    2011-01-15

    Most neuroimaging studies of resting state networks have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. In this study we investigated both FC and effective connectivity (EC) based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data - default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). A method called correlation-purged Granger causality analysis was used, not only enabling the simultaneous evaluation of FC and EC of all networks using a single multivariate model, but also accounting for the interaction between them resulting from the smoothing of neuronal activity by hemodynamics. FC was visualized using a force-directed layout upon which causal interactions were overlaid. FC results revealed that DAN is very tightly coupled compared to the other networks while the DMN forms the backbone around which the other networks amalgamate. The pattern of bidirectional causal interactions indicates that posterior cingulate and posterior inferior parietal lobule of DMN act as major hubs. The pattern of unidirectional causal paths revealed that hippocampus and anterior prefrontal cortex (aPFC) receive major inputs, likely reflecting memory encoding/retrieval and cognitive integration, respectively. Major outputs emanating from anterior insula and middle temporal area, which are directed at aPFC, may carry information about interoceptive awareness and external environment, respectively, into aPFC for integration, supporting the hypothesis that aPFC-seeded FPCN acts as a control network. Our findings indicate the following. First, regions whose activities are not synchronized interact via time-delayed causal influences. Second, the causal interactions are organized such that cingulo-parietal regions act as hubs. Finally, segregation of different resting state networks is not clear cut but only by soft boundaries. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Mediation analysis with time varying exposures and mediators

    PubMed Central

    VanderWeele, Tyler J.; Tchetgen Tchetgen, Eric J.

    2016-01-01

    Summary In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the “mediational g-formula.” When there is no mediation, the mediational g-formula reduces to Robins’ regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl’s mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators. PMID:28824285

  6. Mediation analysis with time varying exposures and mediators.

    PubMed

    VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J

    2017-06-01

    In this paper we consider causal mediation analysis when exposures and mediators vary over time. We give non-parametric identification results, discuss parametric implementation, and also provide a weighting approach to direct and indirect effects based on combining the results of two marginal structural models. We also discuss how our results give rise to a causal interpretation of the effect estimates produced from longitudinal structural equation models. When there are time-varying confounders affected by prior exposure and mediator, natural direct and indirect effects are not identified. However, we define a randomized interventional analogue of natural direct and indirect effects that are identified in this setting. The formula that identifies these effects we refer to as the "mediational g-formula." When there is no mediation, the mediational g-formula reduces to Robins' regular g-formula for longitudinal data. When there are no time-varying confounders affected by prior exposure and mediator values, then the mediational g-formula reduces to a longitudinal version of Pearl's mediation formula. However, the mediational g-formula itself can accommodate both mediation and time-varying confounders and constitutes a general approach to mediation analysis with time-varying exposures and mediators.

  7. Does finance affect environmental degradation: evidence from One Belt and One Road Initiative region?

    PubMed

    Hafeez, Muhammad; Chunhui, Yuan; Strohmaier, David; Ahmed, Manzoor; Jie, Liu

    2018-04-01

    This paper explores the effects of finance on environmental degradation and investigates environmental Kuznets curve (EKC) of each country among 52 that participate in the One Belt and One Road Initiative (OBORI) using the latest long panel data span (1980-2016). We utilized panel long run econometric models (fully modified ordinary least square and dynamic ordinary least square) to explore the long-run estimates in full panel and country level. Moreover, the Dumitrescu and Hurlin (2012) causality test is applied to examine the short-run causalities among our considered variables. The empirical findings validate the EKC hypothesis; the long-run estimates point out that finance significantly enhances the environmental degradation (negatively in few cases). The short-run heterogeneous causality confirms the bi-directional causality between finance and environmental degradation. The empirical outcomes suggest that policymakers should consider the environmental degradation issue caused by financial development in the One Belt and One Road region.

  8. A Causal Relationship of Occupational Stress among University Employees.

    PubMed

    Kaewanuchit, Chonticha; Muntaner, Carles; Isha, Nizam

    2015-07-01

    Occupational stress is a psychosocial dimension of occupational health concept on social determinants of health, especially, job & environmental condition. Recently, staff network of different government universities of Thailand have called higher education commission, and Ministry of Education, Thailand to resolve the issue of government education policy (e.g. wage inequity, poor welfare, law, and job & environment condition) that leads to their job insecurity, physical and mental health problems from occupational stress. The aim of this study was to investigate a causal relationship of occupational stress among the academic university employees. This cross sectional research was conducted in 2014 among 2,000 academic university employees at Thai government universities using stratified random sampling. Independent variables were wage, family support, periods of duty, and job & environmental condition. Dependent variable was stress. Job & environmental condition, as social and environmental factor, and periods of duty as individual factor had direct effect to stress (P< 0.05). Family support, as family factor, and wage, as individual factor had direct effect to stress (P < 0.05). Both family support and wage were the causal endogenous variables. Job & environmental condition and periods of duty were increased so that it associated with occupational stress among academic university employees at moderate level.

  9. Analyzing brain networks with PCA and conditional Granger causality.

    PubMed

    Zhou, Zhenyu; Chen, Yonghong; Ding, Mingzhou; Wright, Paul; Lu, Zuhong; Liu, Yijun

    2009-07-01

    Identifying directional influences in anatomical and functional circuits presents one of the greatest challenges for understanding neural computations in the brain. Granger causality mapping (GCM) derived from vector autoregressive models of data has been employed for this purpose, revealing complex temporal and spatial dynamics underlying cognitive processes. However, the traditional GCM methods are computationally expensive, as signals from thousands of voxels within selected regions of interest (ROIs) are individually processed, and being based on pairwise Granger causality, they lack the ability to distinguish direct from indirect connectivity among brain regions. In this work a new algorithm called PCA based conditional GCM is proposed to overcome these problems. The algorithm implements the following two procedures: (i) dimensionality reduction in ROIs of interest with principle component analysis (PCA), and (ii) estimation of the direct causal influences in local brain networks, using conditional Granger causality. Our results show that the proposed method achieves greater accuracy in detecting network connectivity than the commonly used pairwise Granger causality method. Furthermore, the use of PCA components in conjunction with conditional GCM greatly reduces the computational cost relative to the use of individual voxel time series. Copyright 2009 Wiley-Liss, Inc

  10. Causality attribution biases oculomotor responses.

    PubMed

    Badler, Jeremy; Lefèvre, Philippe; Missal, Marcus

    2010-08-04

    When viewing one object move after being struck by another, humans perceive that the action of the first object "caused" the motion of the second, not that the two events occurred independently. Although established as a perceptual and linguistic concept, it is not yet known whether the notion of causality exists as a fundamental, preattentional "Gestalt" that can influence predictive motor processes. Therefore, eye movements of human observers were measured while viewing a display in which a launcher impacted a tool to trigger the motion of a second "reaction" target. The reaction target could move either in the direction predicted by transfer of momentum after the collision ("causal") or in a different direction ("noncausal"), with equal probability. Control trials were also performed with identical target motion, either with a 100 ms time delay between the collision and reactive motion, or without the interposed tool. Subjects made significantly more predictive movements (smooth pursuit and saccades) in the causal direction during standard trials, and smooth pursuit latencies were also shorter overall. These trends were reduced or absent in control trials. In addition, pursuit latencies in the noncausal direction were longer during standard trials than during control trials. The results show that causal context has a strong influence on predictive movements.

  11. Applying causal mediation analysis to personality disorder research.

    PubMed

    Walters, Glenn D

    2018-01-01

    This article is designed to address fundamental issues in the application of causal mediation analysis to research on personality disorders. Causal mediation analysis is used to identify mechanisms of effect by testing variables as putative links between the independent and dependent variables. As such, it would appear to have relevance to personality disorder research. It is argued that proper implementation of causal mediation analysis requires that investigators take several factors into account. These factors are discussed under 5 headings: variable selection, model specification, significance evaluation, effect size estimation, and sensitivity testing. First, care must be taken when selecting the independent, dependent, mediator, and control variables for a mediation analysis. Some variables make better mediators than others and all variables should be based on reasonably reliable indicators. Second, the mediation model needs to be properly specified. This requires that the data for the analysis be prospectively or historically ordered and possess proper causal direction. Third, it is imperative that the significance of the identified pathways be established, preferably with a nonparametric bootstrap resampling approach. Fourth, effect size estimates should be computed or competing pathways compared. Finally, investigators employing the mediation method are advised to perform a sensitivity analysis. Additional topics covered in this article include parallel and serial multiple mediation designs, moderation, and the relationship between mediation and moderation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Learning about causes from people and about people as causes: probabilistic models and social causal reasoning.

    PubMed

    Buchsbaum, Daphna; Seiver, Elizabeth; Bridgers, Sophie; Gopnik, Alison

    2012-01-01

    A major challenge children face is uncovering the causal structure of the world around them. Previous research on children's causal inference has demonstrated their ability to learn about causal relationships in the physical environment using probabilistic evidence. However, children must also learn about causal relationships in the social environment, including discovering the causes of other people's behavior, and understanding the causal relationships between others' goal-directed actions and the outcomes of those actions. In this chapter, we argue that social reasoning and causal reasoning are deeply linked, both in the real world and in children's minds. Children use both types of information together and in fact reason about both physical and social causation in fundamentally similar ways. We suggest that children jointly construct and update causal theories about their social and physical environment and that this process is best captured by probabilistic models of cognition. We first present studies showing that adults are able to jointly infer causal structure and human action structure from videos of unsegmented human motion. Next, we describe how children use social information to make inferences about physical causes. We show that the pedagogical nature of a demonstrator influences children's choices of which actions to imitate from within a causal sequence and that this social information interacts with statistical causal evidence. We then discuss how children combine evidence from an informant's testimony and expressed confidence with evidence from their own causal observations to infer the efficacy of different potential causes. We also discuss how children use these same causal observations to make inferences about the knowledge state of the social informant. Finally, we suggest that psychological causation and attribution are part of the same causal system as physical causation. We present evidence that just as children use covariation between physical causes and their effects to learn physical causal relationships, they also use covaration between people's actions and the environment to make inferences about the causes of human behavior.

  13. Atypicalities in Perceptual Adaptation in Autism Do Not Extend to Perceptual Causality

    PubMed Central

    Karaminis, Themelis; Turi, Marco; Neil, Louise; Badcock, Nicholas A.; Burr, David; Pellicano, Elizabeth

    2015-01-01

    A recent study showed that adaptation to causal events (collisions) in adults caused subsequent events to be less likely perceived as causal. In this study, we examined if a similar negative adaptation effect for perceptual causality occurs in children, both typically developing and with autism. Previous studies have reported diminished adaptation for face identity, facial configuration and gaze direction in children with autism. To test whether diminished adaptive coding extends beyond high-level social stimuli (such as faces) and could be a general property of autistic perception, we developed a child-friendly paradigm for adaptation of perceptual causality. We compared the performance of 22 children with autism with 22 typically developing children, individually matched on age and ability (IQ scores). We found significant and equally robust adaptation aftereffects for perceptual causality in both groups. There were also no differences between the two groups in their attention, as revealed by reaction times and accuracy in a change-detection task. These findings suggest that adaptation to perceptual causality in autism is largely similar to typical development and, further, that diminished adaptive coding might not be a general characteristic of autism at low levels of the perceptual hierarchy, constraining existing theories of adaptation in autism. PMID:25774507

  14. An Empirical Test of Causal Inference Between Role Perceptions, Satisfaction with Work, Performance and Organizational Level

    ERIC Educational Resources Information Center

    Szilagyi, Andrew D.

    1977-01-01

    Attempts to empirically verify the causal source and direction of causal influence between role ambiguity, role conflict and job satisfaction and performance for three organizational levels in a hospital environment. (Author/RK)

  15. Testing the relationships between energy consumption, CO2 emissions, and economic growth in 24 African countries: a panel ARDL approach.

    PubMed

    Asongu, Simplice; El Montasser, Ghassen; Toumi, Hassen

    2016-04-01

    This study complements existing literature by examining the nexus between energy consumption (EC), CO2 emissions (CE), and economic growth (GDP; gross domestic product) in 24 African countries using a panel autoregressive distributed lag (ARDL) approach. The following findings are established. First, there is a long-run relationship between EC, CE, and GDP. Second, a long-term effect from CE to GDP and EC is apparent, with reciprocal paths. Third, the error correction mechanisms are consistently stable. However, in cases of disequilibrium, only EC can be significantly adjusted to its long-run relationship. Fourth, there is a long-run causality running from GDP and CE to EC. Fifth, we find causality running from either CE or both CE and EC to GDP, and inverse causal paths are observable. Causality from EC to GDP is not strong, which supports the conservative hypothesis. Sixth, the causal direction from EC to GDP remains unobservable in the short term. By contrast, the opposite path is observable. There are also no short-run causalities from GDP, or EC, or EC, and GDP to EC. Policy implications are discussed.

  16. Triangulation in aetiological epidemiology.

    PubMed

    Lawlor, Debbie A; Tilling, Kate; Davey Smith, George

    2016-12-01

    Triangulation is the practice of obtaining more reliable answers to research questions through integrating results from several different approaches, where each approach has different key sources of potential bias that are unrelated to each other. With respect to causal questions in aetiological epidemiology, if the results of different approaches all point to the same conclusion, this strengthens confidence in the finding. This is particularly the case when the key sources of bias of some of the approaches would predict that findings would point in opposite directions if they were due to such biases. Where there are inconsistencies, understanding the key sources of bias of each approach can help to identify what further research is required to address the causal question. The aim of this paper is to illustrate how triangulation might be used to improve causal inference in aetiological epidemiology. We propose a minimum set of criteria for use in triangulation in aetiological epidemiology, summarize the key sources of bias of several approaches and describe how these might be integrated within a triangulation framework. We emphasize the importance of being explicit about the expected direction of bias within each approach, whenever this is possible, and seeking to identify approaches that would be expected to bias the true causal effect in different directions. We also note the importance, when comparing results, of taking account of differences in the duration and timing of exposures. We provide three examples to illustrate these points. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.

  17. Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments

    PubMed Central

    2014-01-01

    Background Knockdown or overexpression of genes is widely used to identify genes that play important roles in many aspects of cellular functions and phenotypes. Because next-generation sequencing generates high-throughput data that allow us to detect genes, it is important to identify genes that drive functional and phenotypic changes of cells. However, conventional methods rely heavily on the assumption of normality and they often give incorrect results when the assumption is not true. To relax the Gaussian assumption in causal inference, we introduce the non-paranormal method to test conditional independence in the PC-algorithm. Then, we present the non-paranormal intervention-calculus when the directed acyclic graph (DAG) is absent (NPN-IDA), which incorporates the cumulative nature of effects through a cascaded pathway via causal inference for ranking causal genes against a phenotype with the non-paranormal method for estimating DAGs. Results We demonstrate that causal inference with the non-paranormal method significantly improves the performance in estimating DAGs on synthetic data in comparison with the original PC-algorithm. Moreover, we show that NPN-IDA outperforms the conventional methods in exploring regulators of the flowering time in Arabidopsis thaliana and regulators that control the browning of white adipocytes in mice. Our results show that performance improvement in estimating DAGs contributes to an accurate estimation of causal effects. Conclusions Although the simplest alternative procedure was used, our proposed method enables us to design efficient intervention experiments and can be applied to a wide range of research purposes, including drug discovery, because of its generality. PMID:24980787

  18. Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments.

    PubMed

    Teramoto, Reiji; Saito, Chiaki; Funahashi, Shin-ichi

    2014-06-30

    Knockdown or overexpression of genes is widely used to identify genes that play important roles in many aspects of cellular functions and phenotypes. Because next-generation sequencing generates high-throughput data that allow us to detect genes, it is important to identify genes that drive functional and phenotypic changes of cells. However, conventional methods rely heavily on the assumption of normality and they often give incorrect results when the assumption is not true. To relax the Gaussian assumption in causal inference, we introduce the non-paranormal method to test conditional independence in the PC-algorithm. Then, we present the non-paranormal intervention-calculus when the directed acyclic graph (DAG) is absent (NPN-IDA), which incorporates the cumulative nature of effects through a cascaded pathway via causal inference for ranking causal genes against a phenotype with the non-paranormal method for estimating DAGs. We demonstrate that causal inference with the non-paranormal method significantly improves the performance in estimating DAGs on synthetic data in comparison with the original PC-algorithm. Moreover, we show that NPN-IDA outperforms the conventional methods in exploring regulators of the flowering time in Arabidopsis thaliana and regulators that control the browning of white adipocytes in mice. Our results show that performance improvement in estimating DAGs contributes to an accurate estimation of causal effects. Although the simplest alternative procedure was used, our proposed method enables us to design efficient intervention experiments and can be applied to a wide range of research purposes, including drug discovery, because of its generality.

  19. A review of covariate selection for non-experimental comparative effectiveness research.

    PubMed

    Sauer, Brian C; Brookhart, M Alan; Roy, Jason; VanderWeele, Tyler

    2013-11-01

    This paper addresses strategies for selecting variables for adjustment in non-experimental comparative effectiveness research and uses causal graphs to illustrate the causal network that relates treatment to outcome. Variables in the causal network take on multiple structural forms. Adjustment for a common cause pathway between treatment and outcome can remove confounding, whereas adjustment for other structural types may increase bias. For this reason, variable selection would ideally be based on an understanding of the causal network; however, the true causal network is rarely known. Therefore, we describe more practical variable selection approaches based on background knowledge when the causal structure is only partially known. These approaches include adjustment for all observed pretreatment variables thought to have some connection to the outcome, all known risk factors for the outcome, and all direct causes of the treatment or the outcome. Empirical approaches, such as forward and backward selection and automatic high-dimensional proxy adjustment, are also discussed. As there is a continuum between knowing and not knowing the causal, structural relations of variables, we recommend addressing variable selection in a practical way that involves a combination of background knowledge and empirical selection and that uses high-dimensional approaches. This empirical approach can be used to select from a set of a priori variables based on the researcher's knowledge to be included in the final analysis or to identify additional variables for consideration. This more limited use of empirically derived variables may reduce confounding while simultaneously reducing the risk of including variables that may increase bias. Copyright © 2013 John Wiley & Sons, Ltd.

  20. A Review of Covariate Selection for Nonexperimental Comparative Effectiveness Research

    PubMed Central

    Sauer, Brian C.; Brookhart, Alan; Roy, Jason; Vanderweele, Tyler

    2014-01-01

    This paper addresses strategies for selecting variables for adjustment in non-experimental comparative effectiveness research (CER), and uses causal graphs to illustrate the causal network that relates treatment to outcome. Variables in the causal network take on multiple structural forms. Adjustment for on a common cause pathway between treatment and outcome can remove confounding, while adjustment for other structural types may increase bias. For this reason variable selection would ideally be based on an understanding of the causal network; however, the true causal network is rarely know. Therefore, we describe more practical variable selection approaches based on background knowledge when the causal structure is only partially known. These approaches include adjustment for all observed pretreatment variables thought to have some connection to the outcome, all known risk factors for the outcome, and all direct causes of the treatment or the outcome. Empirical approaches, such as forward and backward selection and automatic high-dimensional proxy adjustment, are also discussed. As there is a continuum between knowing and not knowing the causal, structural relations of variables, we recommend addressing variable selection in a practical way that involves a combination of background knowledge and empirical selection and that uses the high-dimensional approaches. This empirical approach can be used to select from a set of a priori variables based on the researcher’s knowledge to be included in the final analysis or to identify additional variables for consideration. This more limited use of empirically-derived variables may reduce confounding while simultaneously reducing the risk of including variables that may increase bias. PMID:24006330

  1. Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy

    PubMed Central

    Abdul Razak, Fatimah; Jensen, Henrik Jeldtoft

    2014-01-01

    ‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time series are available and it is important to develop methods that can inform about possible causal connections between the different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets. PMID:24955766

  2. Principal Stratification — Uses and Limitations

    PubMed Central

    VanderWeele, Tyler J

    2011-01-01

    Pearl (2011) asked for the causal inference community to clarify the role of the principal stratification framework in the analysis of causal effects. Here, I argue that the notion of principal stratification has shed light on problems of non-compliance, censoring-by-death, and the analysis of post-infection outcomes; that it may be of use in considering problems of surrogacy but further development is needed; that it is of some use in assessing “direct effects”; but that it is not the appropriate tool for assessing “mediation.” There is nothing within the principal stratification framework that corresponds to a measure of an “indirect” or “mediated” effect. PMID:21841939

  3. Holographic Universe

    NASA Astrophysics Data System (ADS)

    Thakur, Sunil

    2012-03-01

    Theory of relativity prohibits faster-than-light communication; we assume information must be transmitted from the sender to the receiver for it to be communicated; however, experimental evidences presented in this paper show waves, be it electromagnetic waves or sound waves, do not carry and communicate information. Information can be communicated instantly without violating of law of causality. Law of causality only suggests that every effect has a cause; it does not suggest cause must precede the effect. This paradigm-shifting paper fully backed up by overwhelming experimental evidences and observations directly from nature shows universe is a hologram and information becomes available across the universe as soon as it is produced.

  4. Total, direct, and indirect effects of paan on oral cancer.

    PubMed

    Merchant, Anwar T; Pitiphat, Waranuch

    2015-03-01

    Paan (betel leaf and betel nut quid) used with or without tobacco has been positively associated with oral cancer. Oral submucous fibrosis (OSMF), a precancerous condition caused by paan, lies on the causal pathway between paan use and oral cancer. The purpose of this analysis was to estimate the effect of paan consumption on oral cancer risk when it is mediated by OSMF. We used mediation methods proposed by VanderWeele, which are based on causal inference principles, to characterize the total, direct, and indirect effects of paan, consumed with and without tobacco, on oral cancer mediated by OSMF. We reanalyzed case-control data collected from three hospitals in Karachi, Pakistan, between July 1996 and March 1998. For paan without tobacco, the total effect on oral cancer was OR 7.39, 95 % CI 1.01, 38.11, the natural indirect effect (due to OSMF among paan users) was OR 2.48, 95 % CI 0.99, 10.44, and the natural direct effect (due to paan with OSMF absent) was OR 3.32, 95 % CI 0.68, 10.07. For paan with tobacco, the total direct effect was OR 15.68, 95 % CI 3.00, 54.90, the natural indirect effect was OR 2.18, 95 % CI 0.82, 5.52, and the natural direct effect was OR 7.27, 95 % CI 2.15, 20.43. Paan, whether or not it contained tobacco, raised oral cancer risk irrespective of OSMF. Oral cancer risk was higher among those who used paan with tobacco.

  5. Mediation Analysis: A Practitioner's Guide.

    PubMed

    VanderWeele, Tyler J

    2016-01-01

    This article provides an overview of recent developments in mediation analysis, that is, analyses used to assess the relative magnitude of different pathways and mechanisms by which an exposure may affect an outcome. Traditional approaches to mediation in the biomedical and social sciences are described. Attention is given to the confounding assumptions required for a causal interpretation of direct and indirect effect estimates. Methods from the causal inference literature to conduct mediation in the presence of exposure-mediator interactions, binary outcomes, binary mediators, and case-control study designs are presented. Sensitivity analysis techniques for unmeasured confounding and measurement error are introduced. Discussion is given to extensions to time-to-event outcomes and multiple mediators. Further flexible modeling strategies arising from the precise counterfactual definitions of direct and indirect effects are also described. The focus throughout is on methodology that is easily implementable in practice across a broad range of potential applications.

  6. Mediation Analysis with Multiple Mediators

    PubMed Central

    VanderWeele, T.J.; Vansteelandt, S.

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects through other pathways. The approaches proposed here accommodate exposure-mediator interactions and, to a certain extent, mediator-mediator interactions as well. The methods handle binary or continuous mediators and binary, continuous or count outcomes. When the mediators affect one another, the strategy of trying to assess direct and indirect effects one mediator at a time will in general fail; the approach given in this paper can still be used. A characterization is moreover given as to when the sum of the mediated effects for multiple mediators considered separately will be equal to the mediated effect of all of the mediators considered jointly. The approach proposed in this paper is robust to unmeasured common causes of two or more mediators. PMID:25580377

  7. Mediation Analysis with Multiple Mediators.

    PubMed

    VanderWeele, T J; Vansteelandt, S

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects through other pathways. The approaches proposed here accommodate exposure-mediator interactions and, to a certain extent, mediator-mediator interactions as well. The methods handle binary or continuous mediators and binary, continuous or count outcomes. When the mediators affect one another, the strategy of trying to assess direct and indirect effects one mediator at a time will in general fail; the approach given in this paper can still be used. A characterization is moreover given as to when the sum of the mediated effects for multiple mediators considered separately will be equal to the mediated effect of all of the mediators considered jointly. The approach proposed in this paper is robust to unmeasured common causes of two or more mediators.

  8. What are the causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from comparing high-income with middle-income cohorts.

    PubMed

    Brion, Marie-Jo A; Lawlor, Debbie A; Matijasevich, Alicia; Horta, Bernardo; Anselmi, Luciana; Araújo, Cora L; Menezes, Ana Maria B; Victora, Cesar G; Smith, George Davey

    2011-06-01

    A novel approach is explored for improving causal inference in observational studies by comparing cohorts from high-income with low- or middle-income countries (LMIC), where confounding structures differ. This is applied to assessing causal effects of breastfeeding on child blood pressure (BP), body mass index (BMI) and intelligence quotient (IQ). Standardized approaches for assessing the confounding structure of breastfeeding by socio-economic position were applied to the British Avon Longitudinal Study of Parents and Children (ALSPAC) (N ≃ 5000) and Brazilian Pelotas 1993 cohorts (N ≃ 1000). This was used to improve causal inference regarding associations of breastfeeding with child BP, BMI and IQ. Analyses were extended to include results from a meta-analysis of five LMICs (N ≃ 10 000) and compared with a randomized trial of breastfeeding promotion. Findings Although higher socio-economic position was strongly associated with breastfeeding in ALSPAC, there was little such patterning in Pelotas. In ALSPAC, breastfeeding was associated with lower BP, lower BMI and higher IQ, adjusted for confounders, but in the directions expected if due to socioeconomic patterning. In contrast, in Pelotas, breastfeeding was not strongly associated with BP or BMI but was associated with higher IQ. Differences in associations observed between ALSPAC and the LMIC meta-analysis were in line with those observed between ALSPAC and Pelotas, but with robust evidence of heterogeneity detected between ALSPAC and the LMIC meta-analysis associations. Trial data supported the conclusions inferred by the cross-cohort comparisons, which provided evidence for causal effects on IQ but not for BP or BMI. While reported associations of breastfeeding with child BP and BMI are likely to reflect residual confounding, breastfeeding may have causal effects on IQ. Comparing associations between populations with differing confounding structures can be used to improve causal inference in observational studies.

  9. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.

    PubMed

    Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.

  10. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

    PubMed Central

    Besserve, Michel; Lowe, Scott C.; Logothetis, Nikos K.; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections. PMID:26394205

  11. Causality Analysis of Neural Connectivity: Critical Examination of Existing Methods and Advances of New Methods

    PubMed Central

    Hu, Sanqing; Dai, Guojun; Worrell, Gregory A.; Dai, Qionghai; Liang, Hualou

    2012-01-01

    Granger causality (GC) is one of the most popular measures to reveal causality influence of time series and has been widely applied in economics and neuroscience. Especially, its counterpart in frequency domain, spectral GC, as well as other Granger-like causality measures have recently been applied to study causal interactions between brain areas in different frequency ranges during cognitive and perceptual tasks. In this paper, we show that: 1) GC in time domain cannot correctly determine how strongly one time series influences the other when there is directional causality between two time series, and 2) spectral GC and other Granger-like causality measures have inherent shortcomings and/or limitations because of the use of the transfer function (or its inverse matrix) and partial information of the linear regression model. On the other hand, we propose two novel causality measures (in time and frequency domains) for the linear regression model, called new causality and new spectral causality, respectively, which are more reasonable and understandable than GC or Granger-like measures. Especially, from one simple example, we point out that, in time domain, both new causality and GC adopt the concept of proportion, but they are defined on two different equations where one equation (for GC) is only part of the other (for new causality), thus the new causality is a natural extension of GC and has a sound conceptual/theoretical basis, and GC is not the desired causal influence at all. By several examples, we confirm that new causality measures have distinct advantages over GC or Granger-like measures. Finally, we conduct event-related potential causality analysis for a subject with intracranial depth electrodes undergoing evaluation for epilepsy surgery, and show that, in the frequency domain, all measures reveal significant directional event-related causality, but the result from new spectral causality is consistent with event-related time–frequency power spectrum activity. The spectral GC as well as other Granger-like measures are shown to generate misleading results. The proposed new causality measures may have wide potential applications in economics and neuroscience. PMID:21511564

  12. Dynamic Granger-Geweke causality modeling with application to interictal spike propagation

    PubMed Central

    Lin, Fa-Hsuan; Hara, Keiko; Solo, Victor; Vangel, Mark; Belliveau, John W.; Stufflebeam, Steven M.; Hamalainen, Matti S.

    2010-01-01

    A persistent problem in developing plausible neurophysiological models of perception, cognition, and action is the difficulty of characterizing the interactions between different neural systems. Previous studies have approached this problem by estimating causal influences across brain areas activated during cognitive processing using Structural Equation Modeling and, more recently, with Granger-Geweke causality. While SEM is complicated by the need for a priori directional connectivity information, the temporal resolution of dynamic Granger-Geweke estimates is limited because the underlying autoregressive (AR) models assume stationarity over the period of analysis. We have developed a novel optimal method for obtaining data-driven directional causality estimates with high temporal resolution in both time and frequency domains. This is achieved by simultaneously optimizing the length of the analysis window and the chosen AR model order using the SURE criterion. Dynamic Granger-Geweke causality in time and frequency domains is subsequently calculated within a moving analysis window. We tested our algorithm by calculating the Granger-Geweke causality of epileptic spike propagation from the right frontal lobe to the left frontal lobe. The results quantitatively suggested the epileptic activity at the left frontal lobe was propagated from the right frontal lobe, in agreement with the clinical diagnosis. Our novel computational tool can be used to help elucidate complex directional interactions in the human brain. PMID:19378280

  13. Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.

    PubMed

    Silas, Jonathan; Brandt, Karen R

    2016-03-11

    It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Contemporary Quantitative Methods and "Slow" Causal Inference: Response to Palinkas

    ERIC Educational Resources Information Center

    Stone, Susan

    2014-01-01

    This response considers together simultaneously occurring discussions about causal inference in social work and allied health and social science disciplines. It places emphasis on scholarship that integrates the potential outcomes model with directed acyclic graphing techniques to extract core steps in causal inference. Although this scholarship…

  15. Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems

    NASA Astrophysics Data System (ADS)

    Verma, Ajay K.; Garg, Amanmeet; Xu, Da; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P.; Tavakolian, Kouhyar

    2017-03-01

    The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness.

  16. Parametric and nonparametric Granger causality testing: Linkages between international stock markets

    NASA Astrophysics Data System (ADS)

    De Gooijer, Jan G.; Sivarajasingham, Selliah

    2008-04-01

    This study investigates long-term linear and nonlinear causal linkages among eleven stock markets, six industrialized markets and five emerging markets of South-East Asia. We cover the period 1987-2006, taking into account the on-set of the Asian financial crisis of 1997. We first apply a test for the presence of general nonlinearity in vector time series. Substantial differences exist between the pre- and post-crisis period in terms of the total number of significant nonlinear relationships. We then examine both periods, using a new nonparametric test for Granger noncausality and the conventional parametric Granger noncausality test. One major finding is that the Asian stock markets have become more internationally integrated after the Asian financial crisis. An exception is the Sri Lankan market with almost no significant long-term linear and nonlinear causal linkages with other markets. To ensure that any causality is strictly nonlinear in nature, we also examine the nonlinear causal relationships of VAR filtered residuals and VAR filtered squared residuals for the post-crisis sample. We find quite a few remaining significant bi- and uni-directional causal nonlinear relationships in these series. Finally, after filtering the VAR-residuals with GARCH-BEKK models, we show that the nonparametric test statistics are substantially smaller in both magnitude and statistical significance than those before filtering. This indicates that nonlinear causality can, to a large extent, be explained by simple volatility effects.

  17. Effects of task performance, helping, voice, and organizational loyalty on performance appraisal ratings.

    PubMed

    Whiting, Steven W; Podsakoff, Philip M; Pierce, Jason R

    2008-01-01

    Despite the fact that several studies have investigated the relationship between organizational citizenship behavior and performance appraisal ratings, the vast majority of these studies have been cross-sectional, correlational investigations conducted in organizational settings that do not allow researchers to establish the causal nature of this relationship. To address this lack of knowledge regarding causality, the authors conducted 2 studies designed to investigate the effects of task performance, helping behavior, voice, and organizational loyalty on performance appraisal evaluations. Findings demonstrated that each of these forms of behavior has significant effects on performance evaluation decisions and suggest that additional attention should be directed at both voice and organizational loyalty as important forms of citizenship behavior aimed at the organization. 2008 APA

  18. Evaluating Alcoholics Anonymous's effect on drinking in Project MATCH using cross-lagged regression panel analysis.

    PubMed

    Magura, Stephen; Cleland, Charles M; Tonigan, J Scott

    2013-05-01

    The objective of the study is to determine whether Alcoholics Anonymous (AA) participation leads to reduced drinking and problems related to drinking within Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity), an existing national alcoholism treatment data set. The method used is structural equation modeling of panel data with cross-lagged partial regression coefficients. The main advantage of this technique for the analysis of AA outcomes is that potential reciprocal causation between AA participation and drinking behavior can be explicitly modeled through the specification of finite causal lags. For the outpatient subsample (n = 952), the results strongly support the hypothesis that AA attendance leads to increases in alcohol abstinence and reduces drinking/ problems, whereas a causal effect in the reverse direction is unsupported. For the aftercare subsample (n = 774), the results are not as clear but also suggest that AA attendance leads to better outcomes. Although randomized controlled trials are the surest means of establishing causal relations between interventions and outcomes, such trials are rare in AA research for practical reasons. The current study successfully exploited the multiple data waves in Project MATCH to examine evidence of causality between AA participation and drinking outcomes. The study obtained unique statistical results supporting the effectiveness of AA primarily in the context of primary outpatient treatment for alcoholism.

  19. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    USGS Publications Warehouse

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal wetlands. Here we identify three causal mechanisms that can reconcile disparities between long-term and short-term salinity impacts on organic matter decomposition.

  20. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands.

    PubMed

    Stagg, Camille L; Schoolmaster, Donald R; Krauss, Ken W; Cormier, Nicole; Conner, William H

    2017-08-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate-change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: (1) a direct pathway representing the effects of flooding on soil moisture, (2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and (3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to drought and sea-level rise, and increased decomposition following a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal wetlands. Here, we identify three causal mechanisms that can reconcile disparities between long-term and short-term salinity impacts on organic matter decomposition. © 2017 by the Ecological Society of America.

  1. A Causal Relationship of Occupational Stress among University Employees

    PubMed Central

    KAEWANUCHIT, Chonticha; MUNTANER, Carles; ISHA, Nizam

    2015-01-01

    Background: Occupational stress is a psychosocial dimension of occupational health concept on social determinants of health, especially, job & environmental condition. Recently, staff network of different government universities of Thailand have called higher education commission, and Ministry of Education, Thailand to resolve the issue of government education policy (e.g. wage inequity, poor welfare, law, and job & environment condition) that leads to their job insecurity, physical and mental health problems from occupational stress. The aim of this study was to investigate a causal relationship of occupational stress among the academic university employees. Methods: This cross sectional research was conducted in 2014 among 2,000 academic university employees at Thai government universities using stratified random sampling. Independent variables were wage, family support, periods of duty, and job & environmental condition. Dependent variable was stress. Results: Job & environmental condition, as social and environmental factor, and periods of duty as individual factor had direct effect to stress (P< 0.05). Family support, as family factor, and wage, as individual factor had direct effect to stress (P < 0.05). Both family support and wage were the causal endogenous variables. Conclusion: Job & environmental condition and periods of duty were increased so that it associated with occupational stress among academic university employees at moderate level. PMID:26576371

  2. School Connectedness and Chinese Adolescents' Sleep Problems: A Cross-Lagged Panel Analysis

    ERIC Educational Resources Information Center

    Bao, Zhenzhou; Chen, Chuansheng; Zhang, Wei; Jiang, Yanping; Zhu, Jianjun; Lai, Xuefen

    2018-01-01

    Background: Although previous research indicates an association between school connectedness and adolescents' sleep quality, its causal direction has not been determined. This study used a 2-wave cross-lagged panel analysis to explore the likely causal direction between these 2 constructs. Methods: Participants were 888 Chinese adolescents (43.80%…

  3. The Relationship between Food Insecurity and Obesity in Rural Childbearing Women

    ERIC Educational Resources Information Center

    Olson, Christine M.; Strawderman, Myla S.

    2008-01-01

    Context: While food insecurity and obesity have been shown to be positively associated in women, little is known about the direction of the causal relationship between these 2 constructs. Purpose: To clarify the direction of the causal relationship between food insecurity and obesity. Methods: Chi-square and logistic regression analysis of data…

  4. The influence of farmer demographic characteristics on environmental behaviour: a review.

    PubMed

    Burton, Rob J F

    2014-03-15

    Many agricultural studies have observed a relationship between farmer demographic characteristics and environmental behaviours. These relationships are frequently employed in the construction of models, the identification of farmer types, or as part of more descriptive analyses aimed at understanding farmers' environmental behaviour. However, they have also often been found to be inconsistent or contradictory. Although a considerable body of literature has built up around the subject area, research has a tendency to focus on factors such as the direction, strength and consistency of the relationship - leaving the issue of causality largely to speculation. This review addresses this gap by reviewing literature on 4 key demographic variables: age, experience, education, and gender for hypothesised causal links. Overall the review indicates that the issue of causality is a complex one. Inconsistent relationships can be attributed to the presence of multiple causal pathways, the role of scheme factors in determining which pathway is important, inadequately specified measurements of demographic characteristics, and the treatment of non-linear causalities as linear. In addition, all demographic characteristics were perceived to be influenced (to varying extents) by cultural-historical patterns leading to cohort effects or socialised differences in the relationship with environmental behaviour. The paper concludes that more work is required on the issue of causality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses.

    PubMed

    Shim, Woo H; Baek, Kwangyeol; Kim, Jeong Kon; Chae, Yongwook; Suh, Ji-Yeon; Rosen, Bruce R; Jeong, Jaeseung; Kim, Young R

    2013-01-01

    Resting-state functional MRI (fMRI) has emerged as an important method for assessing neural networks, enabling extensive connectivity analyses between multiple brain regions. Among the analysis techniques proposed, partial directed coherence (PDC) provides a promising tool to unveil causal connectivity networks in the frequency domain. Using the MRI time series obtained from the rat sensorimotor system, we applied PDC analysis to determine the frequency-dependent causality networks. In particular, we compared in vivo and postmortem conditions to establish the statistical significance of directional PDC values. Our results demonstrate that two distinctive frequency populations drive the causality networks in rat; significant, high-frequency causal connections clustered in the range of 0.2-0.4 Hz, and the frequently documented low-frequency connections <0.15 Hz. Frequency-dependence and directionality of the causal connection are characteristic between sensorimotor regions, implying the functional role of frequency bands to transport specific resting-state signals. In particular, whereas both intra- and interhemispheric causal connections between heterologous sensorimotor regions are robust over all frequency levels, the bilaterally homologous regions are interhemispherically linked mostly via low-frequency components. We also discovered a significant, frequency-independent, unidirectional connection from motor cortex to thalamus, indicating dominant cortical inputs to the thalamus in the absence of external stimuli. Additionally, to address factors underlying the measurement error, we performed signal simulations and revealed that the interactive MRI system noise alone is a likely source of the inaccurate PDC values. This work demonstrates technical basis for the PDC analysis of resting-state fMRI time series and the presence of frequency-dependent causality networks in the sensorimotor system.

  6. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature

    DOE PAGES

    Tsonis, Anastasios A.; Deyle, Ethan R.; May, Robert M.; ...

    2015-03-02

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR). Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research and elsewhere, demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we findmore » no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. Furthermore, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.« less

  7. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsonis, Anastasios A.; Deyle, Ethan R.; May, Robert M.

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR). Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research and elsewhere, demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we findmore » no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. Furthermore, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.« less

  8. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data sets, but little research exists of how these tools compare to each other in practice. This work introduces and defines exploratory causal analysis (ECA) to address this issue along with the concept of data causality in the taxonomy of causal studies introduced in this work. The motivation is to provide a framework for exploring potential causal structures in time series data sets. ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.

  9. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    PubMed Central

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  10. Causality and complexity: the myth of objectivity in science.

    PubMed

    Mikulecky, Donald C

    2007-10-01

    Two distinctly different worldviews dominate today's thinking in science and in the world of ideas outside of science. Using the approach advocated by Robert M. Hutchins, it is possible to see a pattern of interaction between ideas in science and in other spheres such as philosophy, religion, and politics. Instead of compartmentalizing these intellectual activities, it is worthwhile to look for common threads of mutual influence. Robert Rosen has created an approach to scientific epistemology that might seem radical to some. However, it has characteristics that resemble ideas in other fields, in particular in the writings of George Lakoff, Leo Strauss, and George Soros. Historically, the atmosphere at the University of Chicago during Hutchins' presidency gave rise to Rashevsky's relational biology, which Rosen carried forward. Strauss was writing his political philosophy there at the same time. One idea is paramount in all this, and it is Lakoff who gives us the most insight into how the worldviews differ using this idea. The central difference has to do with causality, the fundamental concept that we use to build a worldview. Causal entailment has two distinct forms in Lakoff 's analysis: direct causality and complex causality. Rosen's writings on complexity create a picture of complex causality that is extremely useful in its detail, grounding in the ideas of Aristotle. Strauss asks for a return to the ancients to put philosophy back on track. Lakoff sees the weaknesses in Western philosophy in a similar way, and Rosen provides tools for dealing with the problem. This introduction to the relationships between the thinking of these authors is meant to stimulate further discourse on the role of complex causal entailment in all areas of thought, and how it brings them together in a holistic worldview. The worldview built on complex causality is clearly distinct from that built around simple, direct causality. One important difference is that the impoverished causal entailment that accompanies the machine metaphor in science is unable to give us a clear way to distinguish living organisms from machines. Complex causality finds a dichotomy between organisms, which are closed to efficient cause, and machines, which require entailment from outside. An argument can be made that confusing living organisms with machines, as is done in the worldview using direct cause, makes religion a necessity to supply the missing causal entailment.

  11. Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Bae, H. J.; Encinar, M. P.; Lozano-Durán, A.

    2018-04-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical configurations. Most common approaches to investigate the turbulence phenomena do not provide a clear causal inference between events, which is essential to determine the dynamics of self-sustaining processes. In the present work, we examine the causal interactions between streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. We choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocity modes. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear which controls the dynamics and time-scales. The well-known lift-up effect is also identified, but shown to be of secondary importance in the causal network between shear, streaks and rolls.

  12. Causal analysis of self-sustaining processes in the log-layer of wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Lozano-Duran, Adrian; Bae, Hyunji Jane

    2017-11-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, the underlying dynamics remain elusive even in the most simple and canonical configurations. Most standard methods used to investigate turbulence do not provide a clear causal inference between events, which is necessary to determine this dynamics, particularly in self-sustaning processes. In the present work, we examine the causal interactions between streaks and rolls in the logarithmic layer of minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. Streaks are represented by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocities. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear, which controls the dynamics and time-scales. The well-known lift-up effect is shown to be not a key ingredient in the causal network between shear, streaks and rolls. Funded by ERC Coturb Madrid Summer Program.

  13. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    PubMed

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hydrocarbon exposure may cause glomerulonephritis and worsen renal function: evidence based on Hill's criteria for causality.

    PubMed

    Ravnskov, U

    2000-08-01

    Many observational and experimental studies point to hydrocarbon exposure as an important pathogenic factor in glomerulonephritis. The findings have made little impact on current concepts and patient care, possibly because the hypothesis of a direct causal effect of the exposure and the hypothesis that the exposure worsens renal function have not been considered separately. This review examines these two hypotheses using Hill's criteria for causality. The results from 14 cross-sectional, 18 case-control studies, two cohort studies, 15 experiments on laboratory animals and two on human beings together with many case reports satisfy all but one of Hill's criteria for both hypotheses. Of particular importance is the finding in the case-control and follow-up studies of an association between degree of exposure and stage of renal disease, and an inverse association between degree of exposure and renal function, indicating that the most important effect of hydrocarbon exposure is its effect on renal function. End-stage renal failure may be preventable in many patients with glomerulonephritis provided a possible exposure to toxic chemicals is discontinued.

  15. Of arrows and flows. Causality, determination, and specificity in the Central Dogma of molecular biology.

    PubMed

    Fantini, Bernardino

    2006-01-01

    From its first proposal, the Central Dogma had a graphical form, complete with arrows of different types, and this form quickly became its standard presentation. In different scientific contexts, arrows have different meanings and in this particular case the arrows indicated the flow of information among different macromolecules. A deeper analysis illustrates that the arrows also imply a causal statement, directly connected to the causal role of genetic information. The author suggests a distinction between two different kinds of causal links, defined as 'physical causality' and 'biological determination', both implied in the production of biological specificity.

  16. Ratio-of-Mediator-Probability Weighting for Causal Mediation Analysis in the Presence of Treatment-by-Mediator Interaction

    ERIC Educational Resources Information Center

    Hong, Guanglei; Deutsch, Jonah; Hill, Heather D.

    2015-01-01

    Conventional methods for mediation analysis generate biased results when the mediator-outcome relationship depends on the treatment condition. This article shows how the ratio-of-mediator-probability weighting (RMPW) method can be used to decompose total effects into natural direct and indirect effects in the presence of treatment-by-mediator…

  17. Ratio-of-Mediator-Probability Weighting for Causal Mediation Analysis in the Presence of Treatment-by-Mediator Interaction

    ERIC Educational Resources Information Center

    Hong, Guanglei; Deutsch, Jonah; Hill, Heather D.

    2015-01-01

    Conventional methods for mediation analysis generate biased results when the mediator--outcome relationship depends on the treatment condition. This article shows how the ratio-of-mediator-probability weighting (RMPW) method can be used to decompose total effects into natural direct and indirect effects in the presence of treatment-by-mediator…

  18. Causal mediation analysis with a latent mediator.

    PubMed

    Albert, Jeffrey M; Geng, Cuiyu; Nelson, Suchitra

    2016-05-01

    Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum-likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic.

    PubMed

    Bowden, Jack; Del Greco M, Fabiola; Minelli, Cosetta; Davey Smith, George; Sheehan, Nuala A; Thompson, John R

    2016-12-01

    : MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. An adaptation of the I2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it IGX2 . The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of IGX2 ), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We demonstrate our proposed approach for a two-sample summary data MR analysis to estimate the causal effect of low-density lipoprotein on heart disease risk. A high value of IGX2 close to 1 indicates that dilution does not materially affect the standard MR-Egger analyses for these data. : Care must be taken to assess the NOME assumption via the IGX2 statistic before implementing standard MR-Egger regression in the two-sample summary data context. If IGX2 is sufficiently low (less than 90%), inferences from the method should be interpreted with caution and adjustment methods considered. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  20. Transethnic differences in GWAS signals: A simulation study.

    PubMed

    Zanetti, Daniela; Weale, Michael E

    2018-05-07

    Genome-wide association studies (GWASs) have allowed researchers to identify thousands of single nucleotide polymorphisms (SNPs) and other variants associated with particular complex traits. Previous studies have reported differences in the strength and even the direction of GWAS signals across different populations. These differences could be due to a combination of (1) lack of power, (2) allele frequency differences, (3) linkage disequilibrium (LD) differences, and (4) true differences in causal variant effect sizes. To determine whether properties (1)-(3) on their own might be sufficient to explain the patterns previously noted in strong GWAS signals, we simulated case-control data of European, Asian and African ancestry, applying realistic allele frequencies and LD from 1000 Genomes data but enforcing equal causal effect sizes across populations. Much of the observed differences in strong GWAS signals could indeed be accounted for by allele frequency and LD differences, enhanced by the Euro-centric SNP bias and lower SNP coverage found in older GWAS panels. While we cannot rule out a role for true transethnic effect size differences, our results suggest that strong causal effects may be largely shared among human populations, motivating the use of transethnic data for fine-mapping. © 2018 John Wiley & Sons Ltd/University College London.

  1. An Efficient Two-Tier Causal Protocol for Mobile Distributed Systems

    PubMed Central

    Dominguez, Eduardo Lopez; Pomares Hernandez, Saul E.; Gomez, Gustavo Rodriguez; Medina, Maria Auxilio

    2013-01-01

    Causal ordering is a useful tool for mobile distributed systems (MDS) to reduce the non-determinism induced by three main aspects: host mobility, asynchronous execution, and unpredictable communication delays. Several causal protocols for MDS exist. Most of them, in order to reduce the overhead and the computational cost over wireless channels and mobile hosts (MH), ensure causal ordering at and according to the causal view of the Base Stations. Nevertheless, these protocols introduce certain disadvantage, such as unnecessary inhibition at the delivery of messages. In this paper, we present an efficient causal protocol for groupware that satisfies the MDS's constraints, avoiding unnecessary inhibitions and ensuring the causal delivery based on the view of the MHs. One interesting aspect of our protocol is that it dynamically adapts the causal information attached to each message based on the number of messages with immediate dependency relation, and this is not directly proportional to the number of MHs. PMID:23585828

  2. Bayes Nets and Babies: Infants' Developing Statistical Reasoning Abilities and Their Representation of Causal Knowledge

    ERIC Educational Resources Information Center

    Sobel, David M.; Kirkham, Natasha Z.

    2007-01-01

    A fundamental assumption of the causal graphical model framework is the Markov assumption, which posits that learners can discriminate between two events that are dependent because of a direct causal relation between them and two events that are independent conditional on the value of another event(s). Sobel and Kirkham (2006) demonstrated that…

  3. Inferring Causalities in Landscape Genetics: An Extension of Wright's Causal Modeling to Distance Matrices.

    PubMed

    Fourtune, Lisa; Prunier, Jérôme G; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Blanchet, Simon

    2018-04-01

    Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.

  4. Time-varying causal network of the Korean financial system based on firm-specific risk premiums

    NASA Astrophysics Data System (ADS)

    Song, Jae Wook; Ko, Bonggyun; Cho, Poongjin; Chang, Woojin

    2016-09-01

    The aim of this paper is to investigate the Korean financial system based on time-varying causal network. We discover many stylized facts by utilizing the firm-specific risk premiums for measuring the causality direction from a firm to firm. At first, we discover that the interconnectedness of causal network is affected by the outbreak of financial events; the co-movement of firm-specific risk premium is strengthened after each positive event, and vice versa. Secondly, we find that the major sector of the Korean financial system is the Depositories, and the financial reform in June-2011 achieves its purpose by weakening the power of risk-spillovers of Broker-Dealers. Thirdly, we identify that the causal network is a small-world network with scale-free topology where the power-law exponents of out-Degree and negative event are more significant than those of in-Degree and positive event. Lastly, we discuss that the current aspects of causal network are closely related to the long-term future scenario of the KOSPI Composite index where the direction and stability are significantly affected by the power of risk-spillovers and the power-law exponents of degree distributions, respectively.

  5. Income and obesity: what is the direction of the relationship? A systematic review and meta-analysis

    PubMed Central

    Kim, Tae Jun; von dem Knesebeck, Olaf

    2018-01-01

    Objective It was repeatedly shown that lower income is associated with higher risks for subsequent obesity. However, the perspective of a potential reverse causality is often neglected, in which obesity is considered a cause for lower income, when obese people drift into lower-income jobs due to labour–market discrimination and public stigmatisation. This review was performed to explore the direction of the relation between income and obesity by specifically assessing the importance of social causation and reverse causality. Design Systematic review and meta-analysis. Methods A systematic literature search was conducted in January 2017. The databases Medline, PsycINFO, Sociological Abstracts, International Bibliography of Social Sciences and Sociological Index were screened to identify prospective cohort studies with quantitative data on the relation between income and obesity. Meta-analytic methods were applied using random-effect models, and the quality of studies assessed with the Newcastle-Ottawa Scale. Results In total, 21 studies were eligible for meta-analysis. All included studies originated from either the USA (n=16), the UK (n=3) or Canada (n=2). From these, 14 studies on causation and 7 studies on reverse causality were found. Meta-analyses revealed that lower income is associated with subsequent obesity (OR 1.27, 95% CI 1.10 to 1.47; risk ratio 1.52, 95% CI 1.08 to 2.13), though the statistical significance vanished once adjusted for publication bias. Studies on reverse causality indicated a more consistent relation between obesity and subsequent income, even after taking publication bias into account (standardised mean difference −0.15, 95% CI −0.30 to 0.01). Sensitivity analyses implied that the association is influenced by obesity measurement, gender, length of observation and study quality. Conclusions Findings suggest that there is more consistent evidence for reverse causality. Therefore, there is a need to examine reverse causality processes in more detail to understand the relation between income and obesity. PROSPERO registration number 42016041296. PMID:29306894

  6. Key organizational commitment antecedents for nurses, paramedical professionals and non-clinical staff.

    PubMed

    Caykoylu, Sinan; Egri, Carolyn P; Havlovic, Stephen; Bradley, Christine

    2011-01-01

    The purpose of this paper is to develop a causal model that explains the antecedents and mediating factors predicting the organizational commitment of healthcare employees in different work roles. This study tests an integrative causal model that consists of a number of direct and indirect relationships for antecedents of organizational commitment. It is proposed that the relationship between job satisfaction and organizational commitment is best understood by focusing on the three interrelated facets of job satisfaction, i.e. satisfaction with career advancement, satisfaction with supervisor, and satisfaction with co-workers. However, the model also advances that these job satisfaction facets have different mediating effects for other antecedents of organizational commitment. The Structural Equation Modeling (SEM) path analysis showed that the job satisfaction facets of career advancement and satisfaction with supervisor had a direct impact on organizational commitment. Employee empowerment, job-motivating potential, effective leadership, acceptance by co-workers, role ambiguity and role conflict were also important determinants of organizational commitment. Interestingly, post hoc analyses showed that satisfaction with co-workers only had an indirect impact on organizational commitment. While there has been extensive research on organizational commitment and its antecedents in healthcare organizations, most previous studies have been limited either to a single employee group or to a single time frame. This study proposes a practical causal model of antecedents of organizational commitment that tests relationships across time and across different healthcare employee groups.

  7. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions. PMID:27740473

  8. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  9. From loss to loneliness: The relationship between bereavement and depressive symptoms.

    PubMed

    Fried, Eiko I; Bockting, Claudi; Arjadi, Retha; Borsboom, Denny; Amshoff, Maximilian; Cramer, Angélique O J; Epskamp, Sacha; Tuerlinckx, Francis; Carr, Deborah; Stroebe, Margaret

    2015-05-01

    Spousal bereavement can cause a rise in depressive symptoms. This study empirically evaluates 2 competing explanations concerning how this causal effect is brought about: (a) a traditional latent variable explanation, in which loss triggers depression which then leads to symptoms; and (b) a novel network explanation, in which bereavement directly affects particular depression symptoms which then activate other symptoms. We used data from the Changing Lives of Older Couples (CLOC) study and compared depressive symptomatology, assessed via the 11-item Center for Epidemiologic Studies Depression Scale (CES-D), among those who lost their partner (N = 241) with a still-married control group (N = 274). We modeled the effect of partner loss on depressive symptoms either as an indirect effect through a latent variable, or as a direct effect in a network constructed through a causal search algorithm. Compared to the control group, widow(er)s' scores were significantly higher for symptoms of loneliness, sadness, depressed mood, and appetite loss, and significantly lower for happiness and enjoyed life. The effect of partner loss on these symptoms was not mediated by a latent variable. The network model indicated that bereavement mainly affected loneliness, which in turn activated other depressive symptoms. The direct effects of spousal loss on particular symptoms are inconsistent with the predictions of latent variable models, but can be explained from a network perspective. The findings support a growing body of literature showing that specific adverse life events differentially affect depressive symptomatology, and suggest that future studies should examine interventions that directly target such symptoms. (c) 2015 APA, all rights reserved).

  10. Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality.

    PubMed

    Yang, Guanxue; Wang, Lin; Wang, Xiaofan

    2017-06-07

    Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.

  11. Effect of Insulin Resistance on Monounsaturated Fatty Acid Levels: A Multi-cohort Non-targeted Metabolomics and Mendelian Randomization Study

    PubMed Central

    Ganna, Andrea; Brandmaier, Stefan; Broeckling, Corey D.; Prenni, Jessica E.; Wang-Sattler, Rui; Peters, Annette; Strauch, Konstantin; Meitinger, Thomas; Giedraitis, Vilmantas; Ärnlöv, Johan; Berne, Christian; Gieger, Christian; Ripatti, Samuli; Lind, Lars; Sundström, Johan; Ingelsson, Erik

    2016-01-01

    Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining “gold standard” measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development. PMID:27768686

  12. Context-specific differences in fronto-parieto-occipital effective connectivity during short-term memory maintenance.

    PubMed

    Kundu, Bornali; Chang, Jui-Yang; Postle, Bradley R; Van Veen, Barry D

    2015-07-01

    Although visual short-term memory (VSTM) performance has been hypothesized to rely on two distinct mechanisms, capacity and filtering, the two have not been dissociated using network-level causality measures. Here, we hypothesized that behavioral tasks challenging capacity or distraction filtering would both engage a common network of areas, namely dorsolateral prefrontal cortex (dlPFC), superior parietal lobule (SPL), and occipital cortex, but would do so according to dissociable patterns of effective connectivity. We tested this by estimating directed connectivity between areas using conditional Granger causality (cGC). Consistent with our prediction, the results indicated that increasing mnemonic load (capacity) increased the top-down drive from dlPFC to SPL, and cGC in the alpha (8-14Hz) frequency range was a predominant component of this effect. The presence of distraction during encoding (filtering), in contrast, was associated with increased top-down drive from dlPFC to occipital cortices directly and from SPL to occipital cortices directly, in both cases in the beta (15-25Hz) range. Thus, although a common anatomical network may serve VSTM in different contexts, it does so via specific functions that are carried out within distinct, dynamically configured frequency channels. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Pairwise measures of causal direction in the epidemiology of sleep problems and depression.

    PubMed

    Rosenström, Tom; Jokela, Markus; Puttonen, Sampsa; Hintsanen, Mirka; Pulkki-Råback, Laura; Viikari, Jorma S; Raitakari, Olli T; Keltikangas-Järvinen, Liisa

    2012-01-01

    Depressive mood is often preceded by sleep problems, suggesting that they increase the risk of depression. Sleep problems can also reflect prodromal symptom of depression, thus temporal precedence alone is insufficient to confirm causality. The authors applied recently introduced statistical causal-discovery algorithms that can estimate causality from cross-sectional samples in order to infer the direction of causality between the two sets of symptoms from a novel perspective. Two common-population samples were used; one from the Young Finns study (690 men and 997 women, average age 37.7 years, range 30-45), and another from the Wisconsin Longitudinal study (3101 men and 3539 women, average age 53.1 years, range 52-55). These included three depression questionnaires (two in Young Finns data) and two sleep problem questionnaires. Three different causality estimates were constructed for each data set, tested in a benchmark data with a (practically) known causality, and tested for assumption violations using simulated data. Causality algorithms performed well in the benchmark data and simulations, and a prediction was drawn for future empirical studies to confirm: for minor depression/dysphoria, sleep problems cause significantly more dysphoria than dysphoria causes sleep problems. The situation may change as depression becomes more severe, or more severe levels of symptoms are evaluated; also, artefacts due to severe depression being less well presented in the population data than minor depression may intervene the estimation for depression scales that emphasize severe symptoms. The findings are consistent with other emerging epidemiological and biological evidence.

  14. Ecological Interventionist Causal Models in Psychosis: Targeting Psychological Mechanisms in Daily Life

    PubMed Central

    Reininghaus, Ulrich; Depp, Colin A.; Myin-Germeys, Inez

    2016-01-01

    Integrated models of psychotic disorders have posited a number of putative psychological mechanisms that may contribute to the development of psychotic symptoms, but it is only recently that a modest amount of experience sampling research has provided evidence on their role in daily life, outside the research laboratory. A number of methodological challenges remain in evaluating specificity of potential causal links between a given psychological mechanism and psychosis outcomes in a systematic fashion, capitalizing on longitudinal data to investigate temporal ordering. In this article, we argue for testing ecological interventionist causal models that draw on real world and real-time delivered, ecological momentary interventions for generating evidence on several causal criteria (association, time order, and direction/sole plausibility) under real-world conditions, while maximizing generalizability to social contexts and experiences in heterogeneous populations. Specifically, this approach tests whether ecological momentary interventions can (1) modify a putative mechanism and (2) produce changes in the mechanism that lead to sustainable changes in intended psychosis outcomes in individuals’ daily lives. Future research using this approach will provide translational evidence on the active ingredients of mobile health and in-person interventions that promote sustained effectiveness of ecological momentary interventions and, thereby, contribute to ongoing efforts that seek to enhance effectiveness of psychological interventions under real-world conditions. PMID:26707864

  15. Experiencing your brain: neurofeedback as a new bridge between neuroscience and phenomenology

    PubMed Central

    Bagdasaryan, Juliana; Quyen, Michel Le Van

    2013-01-01

    Neurophenomenology is a scientific research program aimed to combine neuroscience with phenomenology in order to study human experience. Nevertheless, despite several explicit implementations, the integration of first-person data into the experimental protocols of cognitive neuroscience still faces a number of epistemological and methodological challenges. Notably, the difficulties to simultaneously acquire phenomenological and neuroscientific data have limited its implementation into research projects. In our paper, we propose that neurofeedback paradigms, in which subjects learn to self-regulate their own neural activity, may offer a pragmatic way to integrate first-person and third-person descriptions. Here, information from first- and third-person perspectives is braided together in the iterative causal closed loop, creating experimental situations in which they reciprocally constrain each other. In real-time, the subject is not only actively involved in the process of data acquisition, but also assisted to directly influence the neural data through conscious experience. Thus, neurofeedback may help to gain a deeper phenomenological-physiological understanding of downward causations whereby conscious activities have direct causal effects on neuronal patterns. We discuss possible mechanisms that could mediate such effects and indicate a number of directions for future research. PMID:24187537

  16. Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Barrett, Adam B.; Seth, Anil K.

    2009-12-01

    Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. Developed originally in the field of econometrics, it has since found application in a broader arena, particularly in neuroscience. More recently transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes, has gained traction in a similarly wide field. While it has been recognized that the two concepts must be related, the exact relationship has until now not been formally described. Here we show that for Gaussian variables, Granger causality and transfer entropy are entirely equivalent, thus bridging autoregressive and information-theoretic approaches to data-driven causal inference.

  17. Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination.

    PubMed

    Afraz, Arash; Boyden, Edward S; DiCarlo, James J

    2015-05-26

    Neurons that respond more to images of faces over nonface objects were identified in the inferior temporal (IT) cortex of primates three decades ago. Although it is hypothesized that perceptual discrimination between faces depends on the neural activity of IT subregions enriched with "face neurons," such a causal link has not been directly established. Here, using optogenetic and pharmacological methods, we reversibly suppressed the neural activity in small subregions of IT cortex of macaque monkeys performing a facial gender-discrimination task. Each type of intervention independently demonstrated that suppression of IT subregions enriched in face neurons induced a contralateral deficit in face gender-discrimination behavior. The same neural suppression of other IT subregions produced no detectable change in behavior. These results establish a causal link between the neural activity in IT face neuron subregions and face gender-discrimination behavior. Also, the demonstration that brief neural suppression of specific spatial subregions of IT induces behavioral effects opens the door for applying the technical advantages of optogenetics to a systematic attack on the causal relationship between IT cortex and high-level visual perception.

  18. Mediation and moderation of treatment effects in randomised controlled trials of complex interventions.

    PubMed

    Emsley, Richard; Dunn, Graham; White, Ian R

    2010-06-01

    Complex intervention trials should be able to answer both pragmatic and explanatory questions in order to test the theories motivating the intervention and help understand the underlying nature of the clinical problem being tested. Key to this is the estimation of direct effects of treatment and indirect effects acting through intermediate variables which are measured post-randomisation. Using psychological treatment trials as an example of complex interventions, we review statistical methods which crucially evaluate both direct and indirect effects in the presence of hidden confounding between mediator and outcome. We review the historical literature on mediation and moderation of treatment effects. We introduce two methods from within the existing causal inference literature, principal stratification and structural mean models, and demonstrate how these can be applied in a mediation context before discussing approaches and assumptions necessary for attaining identifiability of key parameters of the basic causal model. Assuming that there is modification by baseline covariates of the effect of treatment (i.e. randomisation) on the mediator (i.e. covariate by treatment interactions), but no direct effect on the outcome of these treatment by covariate interactions leads to the use of instrumental variable methods. We describe how moderation can occur through post-randomisation variables, and extend the principal stratification approach to multiple group methods with explanatory models nested within the principal strata. We illustrate the new methodology with motivating examples of randomised trials from the mental health literature.

  19. The relationship between awareness of intellectual disability, causal and intervention beliefs and social distance in Kuwait and the UK.

    PubMed

    Scior, Katrina; Hamid, Aseel; Mahfoudhi, Abdessatar; Abdalla, Fauzia

    2013-11-01

    Evidence on lay beliefs and stigma associated with intellectual disability in an Arab context is almost non-existent. This study examined awareness of intellectual disability, causal and intervention beliefs and social distance in Kuwait. These were compared to a UK sample to examine differences in lay conceptions across cultures. 537 university students in Kuwait and 571 students in the UK completed a web-based survey asking them to respond to a diagnostically unlabelled vignette of a man presenting with symptoms of mild intellectual disability. They rated their agreement with 22 causal items as possible causes for the difficulties depicted in the vignette, the perceived helpfulness of 22 interventions, and four social distance items using a 7-point Likert scale. Only 8% of Kuwait students, yet 33% of UK students identified possible intellectual disability in the vignette. Medium to large differences between the two samples were observed on seven of the causal items, and 10 of the intervention items. Against predictions, social distance did not differ. Causal beliefs mediated the relationship between recognition of intellectual disability and social distance, but their mediating role differed by sample. The findings are discussed in relation to cultural practices and values, and in relation to attribution theory. In view of the apparent positive effect of awareness of the symptoms of intellectual disability on social distance, both directly and through the mediating effects of causal beliefs, promoting increased awareness of intellectual disability and inclusive practices should be a priority, particularly in countries such as Kuwait where it appears to be low. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Juvenile Delinquency and Recidivism: The Impact of Academic Achievement

    ERIC Educational Resources Information Center

    Katsiyannis, Antonis; Ryan, Joseph B.; Zhang, Dalun; Spann, Anastasia

    2008-01-01

    For well over a century, behavioral researchers have attempted to understand the relation between juvenile delinquency and academic achievement. The authors review current literature pertaining to academic achievement and its effect on delinquency. While researchers have not yet been able to establish a direct causal relation between these two…

  1. The Development of Concepts of Handicap in Adolescence: A Cross-Cultural Study-Part I.

    ERIC Educational Resources Information Center

    Doherty, Jim; Obani, Tim

    1986-01-01

    Reports the results of quasi-experimental study of 155 Nigerian and 151 British boys' and girls' understanding of handicaps. Presents information regarding the content of the questionnaire, which posed both direct and indirect questions regarding causality, effects, rehabilitation and interaction of handicapped persons. (JDH)

  2. The Effect of Translators' Emotional Intelligence on Their Translation Quality

    ERIC Educational Resources Information Center

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge, professional and psychological conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' Emotional Intelligence on their translation quality. Following a "causal-comparative study," a sample of…

  3. Causal discovery and inference: concepts and recent methodological advances.

    PubMed

    Spirtes, Peter; Zhang, Kun

    This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.

  4. Intelligence and obesity: which way does the causal direction go?

    PubMed

    Kanazawa, Satoshi

    2014-10-01

    The negative association between intelligence and obesity has been well established, but the direction of causality is unclear. The present review surveys the recent studies on the topic with both cross-sectional and longitudinal data in an attempt to establish causality. Most studies in the area employ cross-sectional data and conclude (without empirical justification) that obesity causes intellectual impairment. The few studies that employ prospectively longitudinal data, however, uniformly conclude that lower intelligence leads to BMI gains and obesity. A close examination of three such studies, from three different nations (Sweden, New Zealand, and the UK), leaves little doubt that the causality runs from low intelligence to obesity. The conclusion in previous studies that obesity impairs cognitive function stems from improper interpretation of a negative association between intelligence and obesity from cross-sectional studies. Results from the analyses of high-quality, population-based, prospectively longitudinal data firmly establish that low intelligence increases the chances of obesity.

  5. Causal gene identification using combinatorial V-structure search.

    PubMed

    Cai, Ruichu; Zhang, Zhenjie; Hao, Zhifeng

    2013-07-01

    With the advances of biomedical techniques in the last decade, the costs of human genomic sequencing and genomic activity monitoring are coming down rapidly. To support the huge genome-based business in the near future, researchers are eager to find killer applications based on human genome information. Causal gene identification is one of the most promising applications, which may help the potential patients to estimate the risk of certain genetic diseases and locate the target gene for further genetic therapy. Unfortunately, existing pattern recognition techniques, such as Bayesian networks, cannot be directly applied to find the accurate causal relationship between genes and diseases. This is mainly due to the insufficient number of samples and the extremely high dimensionality of the gene space. In this paper, we present the first practical solution to causal gene identification, utilizing a new combinatorial formulation over V-Structures commonly used in conventional Bayesian networks, by exploring the combinations of significant V-Structures. We prove the NP-hardness of the combinatorial search problem under a general settings on the significance measure on the V-Structures, and present a greedy algorithm to find sub-optimal results. Extensive experiments show that our proposal is both scalable and effective, particularly with interesting findings on the causal genes over real human genome data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Formulating and Answering High-Impact Causal Questions in Physiologic Childbirth Science: Concepts and Assumptions.

    PubMed

    Snowden, Jonathan M; Tilden, Ellen L; Odden, Michelle C

    2018-06-08

    In this article, we conclude our 3-part series by focusing on several concepts that have proven useful for formulating causal questions and inferring causal effects. The process of causal inference is of key importance for physiologic childbirth science, so each concept is grounded in content related to women at low risk for perinatal complications. A prerequisite to causal inference is determining that the question of interest is causal rather than descriptive or predictive. Another critical step in defining a high-impact causal question is assessing the state of existing research for evidence of causality. We introduce 2 causal frameworks that are useful for this undertaking, Hill's causal considerations and the sufficient-component cause model. We then provide 3 steps to aid perinatal researchers in inferring causal effects in a given study. First, the researcher should formulate a rigorous and clear causal question. We introduce an example of epidural analgesia and labor progression to demonstrate this process, including the central role of temporality. Next, the researcher should assess the suitability of the given data set to answer this causal question. In randomized controlled trials, data are collected with the express purpose of answering the causal question. Investigators using observational data should also ensure that their chosen causal question is answerable with the available data. Finally, investigators should design an analysis plan that targets the causal question of interest. Some data structures (eg, time-dependent confounding by labor progress when estimating the effect of epidural analgesia on postpartum hemorrhage) require specific analytical tools to control for bias and estimate causal effects. The assumptions of consistency, exchangeability, and positivity may be especially useful in carrying out these steps. Drawing on appropriate causal concepts and considering relevant assumptions strengthens our confidence that research has reduced the likelihood of alternative explanations (eg bias, chance) and estimated a causal effect. © 2018 by the American College of Nurse-Midwives.

  7. Context and Time in Causal Learning: Contingency and Mood Dependent Effects

    PubMed Central

    Msetfi, Rachel M.; Wade, Caroline; Murphy, Robin A.

    2013-01-01

    Defining cues for instrumental causality are the temporal, spatial and contingency relationships between actions and their effects. In this study, we carried out a series of causal learning experiments that systematically manipulated time and context in positive and negative contingency conditions. In addition, we tested participants categorized as non-dysphoric and mildly dysphoric because depressed mood has been shown to affect the processing of all these causal cues. Findings showed that causal judgements made by non-dysphoric participants were contextualized at baseline and were affected by the temporal spacing of actions and effects only with generative, but not preventative, contingency relationships. Participants categorized as dysphoric made less contextualized causal ratings at baseline but were more sensitive than others to temporal manipulations across the contingencies. These effects were consistent with depression affecting causal learning through the effects of slowed time experience on accrued exposure to the context in which causal events took place. Taken together, these findings are consistent with associative approaches to causal judgement. PMID:23691147

  8. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    PubMed

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015 Cognitive Science Society, Inc.

  9. Paradoxical Behavior of Granger Causality

    NASA Astrophysics Data System (ADS)

    Witt, Annette; Battaglia, Demian; Gail, Alexander

    2013-03-01

    Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen

  10. Carbon emissions-income relationships with structural breaks: the case of the Middle Eastern and North African countries.

    PubMed

    El Montasser, Ghassen; Ajmi, Ahdi Noomen; Nguyen, Duc Khuong

    2018-01-01

    This article revisits the carbon dioxide (CO 2 ) emissions-GDP causal relationships in the Middle Eastern and North African (MENA) countries by employing the Rossi (Economet Theor 21:962-990, 2005) instability-robust causality test. We show evidence of significant causality relationships for all considered countries within the instability context, whereas the standard Granger causality test fails to detect causal links in any direction, except for Egypt, Iran, and Morocco. An important policy implication resulting from this robust analysis is that the income is not affected by the cuts in the CO 2 emissions for only two MENA countries, the UAE and Syria.

  11. Toward improved public health outcomes from urban nature.

    PubMed

    Shanahan, Danielle F; Lin, Brenda B; Bush, Robert; Gaston, Kevin J; Dean, Julie H; Barber, Elizabeth; Fuller, Richard A

    2015-03-01

    There is mounting concern for the health of urban populations as cities expand at an unprecedented rate. Urban green spaces provide settings for a remarkable range of physical and mental health benefits, and pioneering health policy is recognizing nature as a cost-effective tool for planning healthy cities. Despite this, limited information on how specific elements of nature deliver health outcomes restricts its use for enhancing population health. We articulate a framework for identifying direct and indirect causal pathways through which nature delivers health benefits, and highlight current evidence. We see a need for a bold new research agenda founded on testing causality that transcends disciplinary boundaries between ecology and health. This will lead to cost-effective and tailored solutions that could enhance population health and reduce health inequalities.

  12. Toward Improved Public Health Outcomes From Urban Nature

    PubMed Central

    Bush, Robert; Gaston, Kevin J.; Dean, Julie H.; Barber, Elizabeth; Fuller, Richard A.

    2015-01-01

    There is mounting concern for the health of urban populations as cities expand at an unprecedented rate. Urban green spaces provide settings for a remarkable range of physical and mental health benefits, and pioneering health policy is recognizing nature as a cost-effective tool for planning healthy cities. Despite this, limited information on how specific elements of nature deliver health outcomes restricts its use for enhancing population health. We articulate a framework for identifying direct and indirect causal pathways through which nature delivers health benefits, and highlight current evidence. We see a need for a bold new research agenda founded on testing causality that transcends disciplinary boundaries between ecology and health. This will lead to cost-effective and tailored solutions that could enhance population health and reduce health inequalities. PMID:25602866

  13. Do capuchin monkeys (Cebus apella) diagnose causal relations in the absence of a direct reward?

    PubMed

    Edwards, Brian J; Rottman, Benjamin M; Shankar, Maya; Betzler, Riana; Chituc, Vladimir; Rodriguez, Ricardo; Silva, Liara; Wibecan, Leah; Widness, Jane; Santos, Laurie R

    2014-01-01

    We adapted a method from developmental psychology to explore whether capuchin monkeys (Cebus apella) would place objects on a "blicket detector" machine to diagnose causal relations in the absence of a direct reward. Across five experiments, monkeys could place different objects on the machine and obtain evidence about the objects' causal properties based on whether each object "activated" the machine. In Experiments 1-3, monkeys received both audiovisual cues and a food reward whenever the machine activated. In these experiments, monkeys spontaneously placed objects on the machine and succeeded at discriminating various patterns of statistical evidence. In Experiments 4 and 5, we modified the procedure so that in the learning trials, monkeys received the audiovisual cues when the machine activated, but did not receive a food reward. In these experiments, monkeys failed to test novel objects in the absence of an immediate food reward, even when doing so could provide critical information about how to obtain a reward in future test trials in which the food reward delivery device was reattached. The present studies suggest that the gap between human and animal causal cognition may be in part a gap of motivation. Specifically, we propose that monkey causal learning is motivated by the desire to obtain a direct reward, and that unlike humans, monkeys do not engage in learning for learning's sake.

  14. Do Capuchin Monkeys (Cebus apella) Diagnose Causal Relations in the Absence of a Direct Reward?

    PubMed Central

    Edwards, Brian J.; Rottman, Benjamin M.; Shankar, Maya; Betzler, Riana; Chituc, Vladimir; Rodriguez, Ricardo; Silva, Liara; Wibecan, Leah; Widness, Jane; Santos, Laurie R.

    2014-01-01

    We adapted a method from developmental psychology [1] to explore whether capuchin monkeys (Cebus apella) would place objects on a “blicket detector” machine to diagnose causal relations in the absence of a direct reward. Across five experiments, monkeys could place different objects on the machine and obtain evidence about the objects’ causal properties based on whether each object “activated” the machine. In Experiments 1–3, monkeys received both audiovisual cues and a food reward whenever the machine activated. In these experiments, monkeys spontaneously placed objects on the machine and succeeded at discriminating various patterns of statistical evidence. In Experiments 4 and 5, we modified the procedure so that in the learning trials, monkeys received the audiovisual cues when the machine activated, but did not receive a food reward. In these experiments, monkeys failed to test novel objects in the absence of an immediate food reward, even when doing so could provide critical information about how to obtain a reward in future test trials in which the food reward delivery device was reattached. The present studies suggest that the gap between human and animal causal cognition may be in part a gap of motivation. Specifically, we propose that monkey causal learning is motivated by the desire to obtain a direct reward, and that unlike humans, monkeys do not engage in learning for learning’s sake. PMID:24586347

  15. Pairwise Measures of Causal Direction in the Epidemiology of Sleep Problems and Depression

    PubMed Central

    Rosenström, Tom; Jokela, Markus; Puttonen, Sampsa; Hintsanen, Mirka; Pulkki-Råback, Laura; Viikari, Jorma S.; Raitakari, Olli T.; Keltikangas-Järvinen, Liisa

    2012-01-01

    Depressive mood is often preceded by sleep problems, suggesting that they increase the risk of depression. Sleep problems can also reflect prodromal symptom of depression, thus temporal precedence alone is insufficient to confirm causality. The authors applied recently introduced statistical causal-discovery algorithms that can estimate causality from cross-sectional samples in order to infer the direction of causality between the two sets of symptoms from a novel perspective. Two common-population samples were used; one from the Young Finns study (690 men and 997 women, average age 37.7 years, range 30–45), and another from the Wisconsin Longitudinal study (3101 men and 3539 women, average age 53.1 years, range 52–55). These included three depression questionnaires (two in Young Finns data) and two sleep problem questionnaires. Three different causality estimates were constructed for each data set, tested in a benchmark data with a (practically) known causality, and tested for assumption violations using simulated data. Causality algorithms performed well in the benchmark data and simulations, and a prediction was drawn for future empirical studies to confirm: for minor depression/dysphoria, sleep problems cause significantly more dysphoria than dysphoria causes sleep problems. The situation may change as depression becomes more severe, or more severe levels of symptoms are evaluated; also, artefacts due to severe depression being less well presented in the population data than minor depression may intervene the estimation for depression scales that emphasize severe symptoms. The findings are consistent with other emerging epidemiological and biological evidence. PMID:23226400

  16. Strategic environmental assessment performance factors and their interaction: An empirical study in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianwei, E-mail: li.tianwei@mep.gov.cn; Wang, Huizhi, E-mail: huizhiwangnk@163.com; Deng, Baole, E-mail: dengbaolekobe@126.com

    Strategic Environmental Assessment (SEA) has been seen as a preventive and participatory environmental management tool designed to integrate environmental protection into the decision-making process. However, the debate about SEA performance and effectiveness has increased in recent decades. Two main challenges exist in relation to this issue. The first is identifying the key influencing factors that affect SEA effectiveness, and the second is analyzing the relationship between SEA and these influencing factors. In this study, influencing factors were investigated through questionnaire surveys in the Chinese context, and then a Structural Equation Model (SEM) was developed and tested to identify potential linksmore » and causal relationships among factors. The associations between the independent factors were divided into direct and indirect causal associations. The results indicate that the decision-making process and policy context directly affect SEA implementation, while information and data sharing, public participation, expertise and SEA institutions are indirectly related with SEA. The results also suggest that a lack of cooperation between different sectors is an obstacle to the implementation of SEA. These findings could potentially contribute to the future management and implementation of SEA or enhance existing knowledge of SEA. The results show that the proposed model has a degree of feasibility and applicability. - Highlights: • Influencing factors were identified and investigated through questionnaire surveys. • Structural Equation Model (SEM) was developed and tested to identify potential links and causal relationships among factors. • Decision-making process and policy context directly affect SEA implementation. • Lack of cooperation among different sectors is an obstacle to the implementation of SEA. • The proposed model has a degree of feasibility and applicability.« less

  17. Causal Analysis After Haavelmo

    PubMed Central

    Heckman, James; Pinto, Rodrigo

    2014-01-01

    Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123

  18. A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.

    PubMed

    Balzer, Laura B; Zheng, Wenjing; van der Laan, Mark J; Petersen, Maya L

    2018-01-01

    We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment.

  19. Causality links among renewable energy consumption, CO2 emissions, and economic growth in Africa: evidence from a panel ARDL-PMG approach.

    PubMed

    Attiaoui, Imed; Toumi, Hassen; Ammouri, Bilel; Gargouri, Ilhem

    2017-05-01

    This research examines the causality (For the remainder of the paper, the notion of causality refers to Granger causality.) links among renewable energy consumption (REC), CO 2 emissions (CE), non-renewable energy consumption (NREC), and economic growth (GDP) using an autoregressive distributed lag model based on the pooled mean group estimation (ARDL-PMG) and applying Granger causality tests for a panel consisting of 22 African countries for the period between 1990 and 2011. There is unidirectional and irreversible short-run causality from CE to GDP. The causal direction between CE and REC is unobservable over the short-term. Moreover, we find unidirectional, short-run causality from REC to GDP. When testing per pair of variables, there are short-run bidirectional causalities among REC, CE, and GDP. However, if we add CE to the variables REC and NREC, the causality to GDP is observable, and causality from the pair REC and NREC to economic growth is neutral. Likewise, if we add NREC to the variables GDP and REC, there is causality. There are bidirectional long-run causalities among REC, CE, and GDP, which supports the feedback assumption. Causality from GDP to REC is not strong for the panel. If we test per pair of variables, the strong causality from GDP and CE to REC is neutral. The long-run PMG estimates show that NREC and gross domestic product increase CE, whereas REC decreases CE.

  20. Pigeons' Discrimination of Michotte's Launching Effect

    ERIC Educational Resources Information Center

    Young, Michael E.; Beckmann, Joshua S.; Wasserman, Edward A.

    2006-01-01

    We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal,…

  1. A Weighting Method for Assessing Between-Site Heterogeneity in Causal Mediation Mechanism

    ERIC Educational Resources Information Center

    Qin, Xu; Hong, Guanglei

    2017-01-01

    When a multisite randomized trial reveals between-site variation in program impact, methods are needed for further investigating heterogeneous mediation mechanisms across the sites. We conceptualize and identify a joint distribution of site-specific direct and indirect effects under the potential outcomes framework. A method-of-moments procedure…

  2. A general, multivariate definition of causal effects in epidemiology.

    PubMed

    Flanders, W Dana; Klein, Mitchel

    2015-07-01

    Population causal effects are often defined as contrasts of average individual-level counterfactual outcomes, comparing different exposure levels. Common examples include causal risk difference and risk ratios. These and most other examples emphasize effects on disease onset, a reflection of the usual epidemiological interest in disease occurrence. Exposure effects on other health characteristics, such as prevalence or conditional risk of a particular disability, can be important as well, but contrasts involving these other measures may often be dismissed as non-causal. For example, an observed prevalence ratio might often viewed as an estimator of a causal incidence ratio and hence subject to bias. In this manuscript, we provide and evaluate a definition of causal effects that generalizes those previously available. A key part of the generalization is that contrasts used in the definition can involve multivariate, counterfactual outcomes, rather than only univariate outcomes. An important consequence of our generalization is that, using it, one can properly define causal effects based on a wide variety of additional measures. Examples include causal prevalence ratios and differences and causal conditional risk ratios and differences. We illustrate how these additional measures can be useful, natural, easily estimated, and of public health importance. Furthermore, we discuss conditions for valid estimation of each type of causal effect, and how improper interpretation or inferences for the wrong target population can be sources of bias.

  3. Determining the direction of causality between psychological factors and aircraft noise annoyance.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2010-01-01

    In this paper, an attempt is made to establish the direction of causality between a range of psychological factors and aircraft noise annoyance. For this purpose, a panel model was estimated within a structural equation modeling approach. Data were gathered from two surveys conducted in April 2006 and April 2008, respectively, among the same residents living within the 45 Level day-evening-night contour of Amsterdam Airport Schiphol, the largest airport in the Netherlands (n=250). A surprising result is that none of the paths from the psychological factors to aircraft noise annoyance were found to be significant. Yet 2 effects were significant the other way around: (1) from 'aircraft noise annoyance' to 'concern about the negative health effects of noise' and (2) from 'aircraft noise annoyance' to 'belief that noise can be prevented.' Hence aircraft noise annoyance measured at time 1 contained information that can effectively explain changes in these 2 variables at time 2, while controlling for their previous values. Secondary results show that (1) aircraft noise annoyance is very stable through time and (2) that changes in aircraft noise annoyance and the identified psychological factors are correlated.

  4. Genre-Specific Cultivation Effects: Lagged Associations between Overall TV Viewing, Local TV News Viewing, and Fatalistic Beliefs about Cancer Prevention

    PubMed Central

    Niederdeppe, Jeff

    2014-01-01

    Cultivation theory and research has been criticized for its failure to consider variation in effects by genre, employ appropriate third-variable controls, and determine causal direction. Recent studies, controlling for a variety of demographic characteristics and media use variables, have found that exposure to local television (TV) newscasts is associated with a variety of problematic “real-world” beliefs. However, many of these studies have not adequately assessed causal direction. Redressing this limitation, we analyzed data from a two-wave national representative survey which permitted tests of lagged association between overall TV viewing, local TV news viewing, and fatalistic beliefs about cancer prevention. We first replicated the original cultivation effect and found a positive association between overall TV viewing at time 1 and increased fatalistic beliefs about cancer prevention at time 2. Analyses also provided evidence that local TV news viewing at time 1 predicts increased fatalistic beliefs about cancer prevention at time 2. There was little evidence for reverse causation in predicting changes in overall TV viewing or local TV news viewing. The paper concludes with a discussion of theoretical and practical implications of these findings. PMID:25605981

  5. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  6. Quantitative EEG analysis using error reduction ratio-causality test; validation on simulated and real EEG data.

    PubMed

    Sarrigiannis, Ptolemaios G; Zhao, Yifan; Wei, Hua-Liang; Billings, Stephen A; Fotheringham, Jayne; Hadjivassiliou, Marios

    2014-01-01

    To introduce a new method of quantitative EEG analysis in the time domain, the error reduction ratio (ERR)-causality test. To compare performance against cross-correlation and coherence with phase measures. A simulation example was used as a gold standard to assess the performance of ERR-causality, against cross-correlation and coherence. The methods were then applied to real EEG data. Analysis of both simulated and real EEG data demonstrates that ERR-causality successfully detects dynamically evolving changes between two signals, with very high time resolution, dependent on the sampling rate of the data. Our method can properly detect both linear and non-linear effects, encountered during analysis of focal and generalised seizures. We introduce a new quantitative EEG method of analysis. It detects real time levels of synchronisation in the linear and non-linear domains. It computes directionality of information flow with corresponding time lags. This novel dynamic real time EEG signal analysis unveils hidden neural network interactions with a very high time resolution. These interactions cannot be adequately resolved by the traditional methods of coherence and cross-correlation, which provide limited results in the presence of non-linear effects and lack fidelity for changes appearing over small periods of time. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Fertility and Female Employment: Problems of Causal Direction.

    ERIC Educational Resources Information Center

    Cramer, James C.

    1980-01-01

    Considers multicollinearity in nonrecursive models, misspecification of models, discrepancies between attitudes and behavior, and differences between static and dynamic models as explanations for contradictory information on the causal relationship between fertility and female employment. Finds that initially fertility affects employment but that,…

  8. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease

    PubMed Central

    Toth, Peter P

    2016-01-01

    Approximately 25% of US adults are estimated to have hypertriglyceridemia (triglyceride [TG] level ≥150 mg/dL [≥1.7 mmol/L]). Elevated TG levels are associated with increased cardiovascular disease (CVD) risk, and severe hypertriglyceridemia (TG levels ≥500 mg/dL [≥5.6 mmol/L]) is a well-established risk factor for acute pancreatitis. Plasma TG levels correspond to the sum of the TG content in TG-rich lipoproteins (TRLs; ie, very low-density lipoproteins plus chylomicrons) and their remnants. There remains some uncertainty regarding the direct causal role of TRLs in the progression of atherosclerosis and CVD, with cardiovascular outcome studies of TG-lowering agents, to date, having produced inconsistent results. Although low-density lipoprotein cholesterol (LDL-C) remains the primary treatment target to reduce CVD risk, a number of large-scale epidemiological studies have shown that elevated TG levels are independently associated with increased incidence of cardiovascular events, even in patients treated effectively with statins. Genetic studies have further clarified the causal association between TRLs and CVD. Variants in several key genes involved in TRL metabolism are strongly associated with CVD risk, with the strength of a variant’s effect on TG levels correlating with the magnitude of the variant’s effect on CVD. TRLs are thought to contribute to the progression of atherosclerosis and CVD via a number of direct and indirect mechanisms. They directly contribute to intimal cholesterol deposition and are also involved in the activation and enhancement of several proinflammatory, proapoptotic, and procoagulant pathways. Evidence suggests that non-high-density lipoprotein cholesterol, the sum of the total cholesterol carried by atherogenic lipoproteins (including LDL, TRL, and TRL remnants), provides a better indication of CVD risk than LDL-C, particularly in patients with hypertriglyceridemia. This article aims to provide an overview of the available epidemiological, clinical, and genetic evidence relating to the atherogenicity of TRLs and their role in the progression of CVD. PMID:27226718

  9. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers.

    PubMed

    Verdugo, Ricardo A; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S; Münzel, Thomas; Lackner, Karl J; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2013-01-01

    Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path "smoking→gene expression→plaques". Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the "smoking→gene expression→plaques" causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone.

  10. Graphical Modeling of Gene Expression in Monocytes Suggests Molecular Mechanisms Explaining Increased Atherosclerosis in Smokers

    PubMed Central

    Verdugo, Ricardo A.; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S.; Münzel, Thomas; Lackner, Karl J.; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2013-01-01

    Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path “smoking→gene expression→plaques”. Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the “smoking→gene expression→plaques” causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone. PMID:23372645

  11. A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials

    PubMed Central

    Li, Yun; Taylor, Jeremy M.G.; Elliott, Michael R.

    2011-01-01

    Summary A surrogate marker (S) is a variable that can be measured earlier and often easier than the true endpoint (T) in a clinical trial. Most previous research has been devoted to developing surrogacy measures to quantify how well S can replace T or examining the use of S in predicting the effect of a treatment (Z). However, the research often requires one to fit models for the distribution of T given S and Z. It is well known that such models do not have causal interpretations because the models condition on a post-randomization variable S. In this paper, we directly model the relationship among T, S and Z using a potential outcomes framework introduced by Frangakis and Rubin (2002). We propose a Bayesian estimation method to evaluate the causal probabilities associated with the cross-classification of the potential outcomes of S and T when S and T are both binary. We use a log-linear model to directly model the association between the potential outcomes of S and T through the odds ratios. The quantities derived from this approach always have causal interpretations. However, this causal model is not identifiable from the data without additional assumptions. To reduce the non-identifiability problem and increase the precision of statistical inferences, we assume monotonicity and incorporate prior belief that is plausible in the surrogate context by using prior distributions. We also explore the relationship among the surrogacy measures based on traditional models and this counterfactual model. The method is applied to the data from a glaucoma treatment study. PMID:19673864

  12. A Three-way Decomposition of a Total Effect into Direct, Indirect, and Interactive Effects

    PubMed Central

    VanderWeele, Tyler J.

    2013-01-01

    Recent theory in causal inference has provided concepts for mediation analysis and effect decomposition that allow one to decompose a total effect into a direct and an indirect effect. Here, it is shown that what is often taken as an indirect effect can in fact be further decomposed into a “pure” indirect effect and a mediated interactive effect, thus yielding a three-way decomposition of a total effect (direct, indirect, and interactive). This three-way decomposition applies to difference scales and also to additive ratio scales and additive hazard scales. Assumptions needed for the identification of each of these three effects are discussed and simple formulae are given for each when regression models allowing for interaction are used. The three-way decomposition is illustrated by examples from genetic and perinatal epidemiology, and discussion is given to what is gained over the traditional two-way decomposition into simply a direct and an indirect effect. PMID:23354283

  13. Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination

    PubMed Central

    Afraz, Arash; Boyden, Edward S.; DiCarlo, James J.

    2015-01-01

    Neurons that respond more to images of faces over nonface objects were identified in the inferior temporal (IT) cortex of primates three decades ago. Although it is hypothesized that perceptual discrimination between faces depends on the neural activity of IT subregions enriched with “face neurons,” such a causal link has not been directly established. Here, using optogenetic and pharmacological methods, we reversibly suppressed the neural activity in small subregions of IT cortex of macaque monkeys performing a facial gender-discrimination task. Each type of intervention independently demonstrated that suppression of IT subregions enriched in face neurons induced a contralateral deficit in face gender-discrimination behavior. The same neural suppression of other IT subregions produced no detectable change in behavior. These results establish a causal link between the neural activity in IT face neuron subregions and face gender-discrimination behavior. Also, the demonstration that brief neural suppression of specific spatial subregions of IT induces behavioral effects opens the door for applying the technical advantages of optogenetics to a systematic attack on the causal relationship between IT cortex and high-level visual perception. PMID:25953336

  14. On the Inference of Functional Circadian Networks Using Granger Causality

    PubMed Central

    Pourzanjani, Arya; Herzog, Erik D.; Petzold, Linda R.

    2015-01-01

    Being able to infer one way direct connections in an oscillatory network such as the suprachiastmatic nucleus (SCN) of the mammalian brain using time series data is difficult but crucial to understanding network dynamics. Although techniques have been developed for inferring networks from time series data, there have been no attempts to adapt these techniques to infer directional connections in oscillatory time series, while accurately distinguishing between direct and indirect connections. In this paper an adaptation of Granger Causality is proposed that allows for inference of circadian networks and oscillatory networks in general called Adaptive Frequency Granger Causality (AFGC). Additionally, an extension of this method is proposed to infer networks with large numbers of cells called LASSO AFGC. The method was validated using simulated data from several different networks. For the smaller networks the method was able to identify all one way direct connections without identifying connections that were not present. For larger networks of up to twenty cells the method shows excellent performance in identifying true and false connections; this is quantified by an area-under-the-curve (AUC) 96.88%. We note that this method like other Granger Causality-based methods, is based on the detection of high frequency signals propagating between cell traces. Thus it requires a relatively high sampling rate and a network that can propagate high frequency signals. PMID:26413748

  15. Exploring the causal machinery behind sex ratios at birth: does hepatitis B play a role?

    PubMed

    Hamoudi, Amar

    2010-01-01

    The causal machinery underlying sex determination is directly relevant to many questions relating gender and family composition to social and economic outcomes. In recent work, Oster highlighted a correlation between parental hepatitis B carrier status and sex of the child. One of her analyses went further, speaking directly to causality. That analysis appeared to have answered an important question that had remained unresolved in medical and biological literatures—namely, does chronic infection with hepatitis B cause male‐skewed sex ratios at birth? Oster’s creative empirical analysis appeared to suggest that it does; however, in this article I reassess the result and present evidence that, at the very least, the question remains open. Further investigation into questions around the causal machinery of sex determination is warranted in the social science literature, as well as in that of biology and medicine. However, my results suggest that it is extremely unlikely that chronic hepatitis B infection plays a biologically significant role.

  16. Financial networks based on Granger causality: A case study

    NASA Astrophysics Data System (ADS)

    Papana, Angeliki; Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees

    2017-09-01

    Connectivity analysis is performed on a long financial record of 21 international stock indices employing a linear and a nonlinear causality measure, the conditional Granger causality index (CGCI) and the partial mutual information on mixed embedding (PMIME), respectively. Both measures aim to specify the direction of the interrelationships among the international stock indexes and portray the links of the resulting networks, by the presence of direct couplings between variables exploiting all available information. However, their differences are assessed due to the presence of nonlinearity. The weighted networks formed with respect to the causality measures are transformed to binary ones using a significance test. The financial networks are formed on sliding windows in order to examine the network characteristics and trace changes in the connectivity structure. Subsequently, two statistical network quantities are calculated; the average degree and the average shortest path length. The empirical findings reveal interesting time-varying properties of the constructed network, which are clearly dependent on the nature of the financial cycle.

  17. Utility of the Roussel Uclaf Causality Assessment Method (RUCAM) to analyze the hepatic findings in a clinical trial program: evaluation of the direct thrombin inhibitor ximelagatran.

    PubMed

    Lewis, J H; Larrey, D; Olsson, R; Lee, W M; Frison, L; Keisu, M

    2008-07-01

    Causality assessment in drug-induced liver injury is often based on circumstantial evidence rather than a formal, systematic review. The Roussel Uclaf Causality Assessment Method (RUCAM) provides a more objective means of assessing causality of a suspected hepatotoxin but, to our knowledge, has never been used in the assessment of a single drug with unknown hepatotoxic potential in a clinical trial setting. We studied the utility of RUCAM in assessing the hepatic events during the long-term clinical trials of the oral direct thrombin inhibitor ximelagatran, which has been associated with an increased incidence of alanine aminotransferase (ALT) elevations. A total of 233 subjects with elevated ALT values signalling possibly severe hepatic injury were eligible for RUCAM analysis (198 ximelagatran and 35 comparator anticoagulants). RUCAM scores, calculated independently by the assessors, using the existing numerical criteria provided in its methodology, suggested a possible or probable causal relationship between ALT and ximelagatran in 37 and 27% of cases, respectively. Causality was excluded or unlikely in the remaining 36% of cases. However, in the course of utilizing RUCAM, several limitations to the methodology came to light, including awarding additional points for age > 55 years, an unspecified use of alcohol, and a latency period of < 90 days, which may have had the unintentional effect of raising the overall score. Moreover, rechallenge is highly rewarded by RUCAM but is seldom done in clinical practice or in clinical trials. We also found ambiguities in the extent to which other causes of liver injury were excluded, what constitutes a significant hepatotoxic concomitant medication, and whether a clinical trial drug should be considered as having an unknown hepatotoxic potential for purposes of RUCAM scoring. Increasing familiarity with the RUCAM over the course of the study allowed for only a slight improvement in concordance between and among the assessors regarding the scoring. While the results indicate that RUCAM can provide for an objective assessment of causality of the hepatotoxicity of a drug under development in the clinical trial setting, this study highlights a number of problems with the current scoring system that should be addressed by future enhancements of the methodology.

  18. Reasoning about Causal Relationships: Inferences on Causal Networks

    PubMed Central

    Rottman, Benjamin Margolin; Hastie, Reid

    2013-01-01

    Over the last decade, a normative framework for making causal inferences, Bayesian Probabilistic Causal Networks, has come to dominate psychological studies of inference based on causal relationships. The following causal networks—[X→Y→Z, X←Y→Z, X→Y←Z]—supply answers for questions like, “Suppose both X and Y occur, what is the probability Z occurs?” or “Suppose you intervene and make Y occur, what is the probability Z occurs?” In this review, we provide a tutorial for how normatively to calculate these inferences. Then, we systematically detail the results of behavioral studies comparing human qualitative and quantitative judgments to the normative calculations for many network structures and for several types of inferences on those networks. Overall, when the normative calculations imply that an inference should increase, judgments usually go up; when calculations imply a decrease, judgments usually go down. However, two systematic deviations appear. First, people’s inferences violate the Markov assumption. For example, when inferring Z from the structure X→Y→Z, people think that X is relevant even when Y completely mediates the relationship between X and Z. Second, even when people’s inferences are directionally consistent with the normative calculations, they are often not as sensitive to the parameters and the structure of the network as they should be. We conclude with a discussion of productive directions for future research. PMID:23544658

  19. A causal role for right frontopolar cortex in directed, but not random, exploration

    PubMed Central

    Zajkowski, Wojciech K; Kossut, Malgorzata

    2017-01-01

    The explore-exploit dilemma occurs anytime we must choose between exploring unknown options for information and exploiting known resources for reward. Previous work suggests that people use two different strategies to solve the explore-exploit dilemma: directed exploration, driven by information seeking, and random exploration, driven by decision noise. Here, we show that these two strategies rely on different neural systems. Using transcranial magnetic stimulation to inhibit the right frontopolar cortex, we were able to selectively inhibit directed exploration while leaving random exploration intact. This suggests a causal role for right frontopolar cortex in directed, but not random, exploration and that directed and random exploration rely on (at least partially) dissociable neural systems. PMID:28914605

  20. Smoking and subsequent human papillomavirus infection: a mediation analysis.

    PubMed

    Eldridge, Ronald C; Pawlita, Michael; Wilson, Lauren; Castle, Philip E; Waterboer, Tim; Gravitt, Patti E; Schiffman, Mark; Wentzensen, Nicolas

    2017-11-01

    Smoking is an established risk factor for a human papillomavirus (HPV) infection advancing to cervical precancer and cancer, but its role earlier in the natural history is less clear. Smoking is inversely associated with possessing HPV antibodies from a past infection suggesting that smoking may influence acquiring subsequent infections. In a cohort of 1976 U.S. women, we evaluate whether reduced antibodies to HPV-16 is a mechanism for smoking's role on acquiring a subsequent HPV-16 infection, through the analytic technique of causal mediation analysis. We posit a causal model and estimate two counterfactually defined effects: a smoking impaired antibody-mediated indirect effect and a nonmediated direct effect representing all other potential mechanisms of smoking. Compared to never smokers, current smokers had increased odds of HPV-16 infection by the antibody-mediated indirect effect (odds ratio [OR] = 1.29; 95% confidence interval [CI]: 1.11, 1.73); the estimated direct effect was very imprecise (OR = 0.57; 95% CI, 0.26-1.13). We observed a stronger estimated indirect effect among women who smoked at least half a pack of cigarettes daily (OR = 1.61, 95% CI, 1.27-2.15) than among women who smoked less than that threshold (OR = 1.09; 95% CI, 0.94-1.44). This is the first study to directly test the mechanism underlying smoking as an HPV cofactor. The results support current smoking as a risk factor earlier in the natural history of HPV and are consistent with the hypothesis that smoking increases the risk of a subsequent infection by reducing immunity. Published by Elsevier Inc.

  1. Causal mediation analysis for longitudinal data with exogenous exposure

    PubMed Central

    Bind, M.-A. C.; Vanderweele, T. J.; Coull, B. A.; Schwartz, J. D.

    2016-01-01

    Mediation analysis is a valuable approach to examine pathways in epidemiological research. Prospective cohort studies are often conducted to study biological mechanisms and often collect longitudinal measurements on each participant. Mediation formulae for longitudinal data have been developed. Here, we formalize the natural direct and indirect effects using a causal framework with potential outcomes that allows for an interaction between the exposure and the mediator. To allow different types of longitudinal measures of the mediator and outcome, we assume two generalized mixed-effects models for both the mediator and the outcome. The model for the mediator has subject-specific random intercepts and random exposure slopes for each cluster, and the outcome model has random intercepts and random slopes for the exposure, the mediator, and their interaction. We also expand our approach to settings with multiple mediators and derive the mediated effects, jointly through all mediators. Our method requires the absence of time-varying confounding with respect to the exposure and the mediator. This assumption is achieved in settings with exogenous exposure and mediator, especially when exposure and mediator are not affected by variables measured at earlier time points. We apply the methodology to data from the Normative Aging Study and estimate the direct and indirect effects, via DNA methylation, of air pollution, and temperature on intercellular adhesion molecule 1 (ICAM-1) protein levels. Our results suggest that air pollution and temperature have a direct effect on ICAM-1 protein levels (i.e. not through a change in ICAM-1 DNA methylation) and that temperature has an indirect effect via a change in ICAM-1 DNA methylation. PMID:26272993

  2. The diversity effect in diagnostic reasoning.

    PubMed

    Rebitschek, Felix G; Krems, Josef F; Jahn, Georg

    2016-07-01

    Diagnostic reasoning draws on knowledge about effects and their potential causes. The causal-diversity effect in diagnostic reasoning normatively depends on the distribution of effects in causal structures, and thus, a psychological diversity effect could indicate whether causally structured knowledge is used in evaluating the probability of a diagnosis, if the effect were to covary with manipulations of causal structures. In four experiments, participants dealt with a quasi-medical scenario presenting symptom sets (effects) that consistently suggested a specified diagnosis (cause). The probability that the diagnosis was correct had to be rated for two opposed symptom sets that differed with regard to the symptoms' positions (proximal or diverse) in the causal structure that was initially acquired. The causal structure linking the diagnosis to the symptoms and the base rate of the diagnosis were manipulated to explore whether the diagnosis was rated as more probable for diverse than for proximal symptoms when alternative causations were more plausible (e.g., because of a lower base rate of the diagnosis in question). The results replicated the causal diversity effect in diagnostic reasoning across these conditions, but no consistent effects of structure and base rate variations were observed. Diversity effects computed in causal Bayesian networks are presented, illustrating the consequences of the structure manipulations and corroborating that a diversity effect across the different experimental manipulations is normatively justified. The observed diversity effects presumably resulted from shortcut reasoning about the possibilities of alternative causation.

  3. Revisiting the child health-wealth nexus.

    PubMed

    Fakir, Adnan M S

    2016-12-01

    The causal link between a household's economic standing and child health is known to suffer from endogeneity. While past studies have exemplified the causal link to be small, albeit statistically significant, this paper aims to estimate the causal effect to investigate whether the effect of income after controlling for the endogeneity remains small in the long run. By correcting for the bias, and knowing the bias direction, one can also infer about the underlying backward effect. This paper uses an instrument variables two-stage-least-squares estimation on the Young Lives 2009 cross-sectional dataset from Andhra Pradesh, India, to understand the aforementioned relationship. The selected measure of household economic standing differentially affects the estimation. There is significant positive effect of both short-run household expenditure and long-run household wealth on child stunting, with the latter having a larger impact. The backward link running from child health to household income is likely an inverse association in our sample with lower child health inducing higher earnings. While higher average community education improved child health, increased community entertainment expenditure is found to have a negative effect. While policies catered towards improving household wealth will decrease child stunting in the long run, maternal education and the community play an equally reinforcing role in improving child health and are perhaps faster routes to achieving the goal of better child health in the short run.

  4. Explanatory models concerning the effects of small-area characteristics on individual health.

    PubMed

    Voigtländer, Sven; Vogt, Verena; Mielck, Andreas; Razum, Oliver

    2014-06-01

    Material and social living conditions at the small-area level are assumed to have an effect on individual health. We review existing explanatory models concerning the effects of small-area characteristics on health and describe the gaps future research should try to fill. Systematic literature search for, and analysis of, studies that propose an explanatory model of the relationship between small-area characteristics and health. Fourteen studies met our inclusion criteria. Using various theoretical approaches, almost all of the models are based on a three-tier structure linking social inequalities (posited at the macro-level), small-area characteristics (posited at the meso-level) and individual health (micro-level). No study explicitly defines the geographical borders of the small-area context. The health impact of the small-area characteristics is explained by specific pathways involving mediating factors (psychological, behavioural, biological). These pathways tend to be seen as uni-directional; often, causality is implied. They may be modified by individual factors. A number of issues need more attention in research on explanatory models concerning small-area effects on health. Among them are the (geographical) definition of the small-area context; the systematic description of pathways comprising small-area contextual as well as compositional factors; questions of direction of association and causality; and the integration of a time dimension.

  5. CAUSAL ANALYSIS AND PROBABILITY DATA: EXAMPLES FOR IMPAIRED AQUATIC CONDITION

    EPA Science Inventory

    Causal analysis is plausible reasoning applied to diagnosing observed effect(s), for example, diagnosing

    cause of biological impairment in a stream. Sir Bradford Hill basically defined the application of causal

    analysis when he enumerated the elements of causality f...

  6. Second-Language Skills for All? Analyzing a Proposed Language Requirement for U.S. Air Force Officers

    DTIC Science & Technology

    2012-01-01

    data cannot say for certain whether such a change would result directly from learning a lan- guage. The direction of causality could be the reverse... saying they were not even moderately likely do so. These findings add to what we know from the research literature (that those who know a second...rather than give way to the perhaps less effective and certainly less efficient avenue of language training. That is not to say that language

  7. The Impact of Employment during School on College Student Academic Performance. NBER Working Paper No. 14006

    ERIC Educational Resources Information Center

    DeSimone, Jeffrey S.

    2008-01-01

    This paper estimates the effect of paid employment on grades of full-time, four-year students from four nationally representative cross sections of the Harvard College Alcohol Study administered during 1993-2001. The relationship could be causal in either direction and is likely contaminated by unobserved heterogeneity. Two-stage GMM regressions…

  8. The roles of birth inputs and outputs in predicting health, behaviour and test scores in early childhood.

    PubMed

    Li, Kai; Poirier, Dale J

    2003-11-30

    The goal of this study is to address directly the predictive value of birth inputs and outputs, particularly birth weight, for measures of early childhood development in a simultaneous equations modelling framework. Strikingly, birth outputs have virtually no structural/causal effects on early childhood developmental outcomes, and only maternal smoking and drinking during pregnancy have some effects on child height. Not surprisingly, family child-rearing environment has sizeable negative and positive effects on a behavioural problems index and a mathematics/reading test score, respectively, and a mildly surprising negative effect on child height. Despite little evidence of a structural/causal effect of birth weight on early childhood developmental outcomes, our results demonstrate that birth weight nonetheless has strong predictive effects on early childhood outcomes. Furthermore, these effects are largely invariant to whether family child-rearing environment is taken into account. Family child-rearing environment has both structural and predictive effects on early childhood outcomes, but they are largely orthogonal and in addition to the effects of birth weight. Copyright 2003 John Wiley & Sons, Ltd.

  9. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  10. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  11. Disease causality extraction based on lexical semantics and document-clause frequency from biomedical literature.

    PubMed

    Lee, Dong-Gi; Shin, Hyunjung

    2017-05-18

    Recently, research on human disease network has succeeded and has become an aid in figuring out the relationship between various diseases. In most disease networks, however, the relationship between diseases has been simply represented as an association. This representation results in the difficulty of identifying prior diseases and their influence on posterior diseases. In this paper, we propose a causal disease network that implements disease causality through text mining on biomedical literature. To identify the causality between diseases, the proposed method includes two schemes: the first is the lexicon-based causality term strength, which provides the causal strength on a variety of causality terms based on lexicon analysis. The second is the frequency-based causality strength, which determines the direction and strength of causality based on document and clause frequencies in the literature. We applied the proposed method to 6,617,833 PubMed literature, and chose 195 diseases to construct a causal disease network. From all possible pairs of disease nodes in the network, 1011 causal pairs of 149 diseases were extracted. The resulting network was compared with that of a previous study. In terms of both coverage and quality, the proposed method showed outperforming results; it determined 2.7 times more causalities and showed higher correlation with associated diseases than the existing method. This research has novelty in which the proposed method circumvents the limitations of time and cost in applying all possible causalities in biological experiments and it is a more advanced text mining technique by defining the concepts of causality term strength.

  12. Does Maltreatment in Childhood Affect Sexual Orientation in Adulthood?

    PubMed Central

    Roberts, Andrea L.; Glymour, M. Maria; Koenen, Karestan C.

    2012-01-01

    Epidemiological studies find a positive association between physical and sexual abuse, neglect, and witnessing violence in childhood and same-sex sexuality in adulthood, but studies directly assessing the association between these diverse types of maltreatment and sexuality cannot disentangle the causal direction because the sequencing of maltreatment and emerging sexuality is difficult to ascertain. Nascent same-sex orientation may increase risk of maltreatment; alternatively, maltreatment may shape sexual orientation. Our study used instrumental variable models based on family characteristics that predict maltreatment but are not plausibly influenced by sexual orientation (e.g., having a stepparent) as natural experiments to investigate whether maltreatment might increase the likelihood of same-sex sexuality in a nationally representative sample (n = 34,653). In instrumental variable models, history of sexual abuse predicted increased prevalence of same-sex attraction by 2.0 percentage points (95% confidence interval [CI] = 1.4, 2.5), any same-sex partners by 1.4 percentage points (95% CI = 1.0, 1.9), and same-sex identity by 0.7 percentage points (95% CI = 0.4, 0.9). Effects of sexual abuse on men’s sexual orientation were substantially larger than on women’s. Effects of non-sexual maltreatment were significant only for men and women’s sexual identity and women’s same-sex partners. While point estimates suggest much of the association between maltreatment and sexual orientation may be due to the effects of maltreatment on sexual orientation, confidence intervals were wide. Our results suggest that causal relationships driving the association between sexual orientation and childhood abuse may be bidirectional, may differ by type of abuse, and may differ by sex. Better understanding of this potentially complex causal structure is critical to developing targeted strategies to reduce sexual orientation disparities in exposure to abuse. PMID:22976519

  13. Effects of risk factors for and components of metabolic syndrome on the quality of life of patients with systemic lupus erythematosus: a structural equation modeling approach.

    PubMed

    Lee, Jeong-Won; Kang, Ji-Hyoun; Lee, Kyung-Eun; Park, Dong-Jin; Kang, Seong Wook; Kwok, Seung-Ki; Kim, Seong-Kyu; Choe, Jung-Yoon; Kim, Hyoun-Ah; Sung, Yoon-Kyoung; Shin, Kichul; Lee, Sang-Il; Lee, Chang Hoon; Choi, Sung Jae; Lee, Shin-Seok

    2018-01-01

    This study assessed the relationships among the risk factors for and components of metabolic syndrome (MetS) and health-related quality of life (HRQOL) in a hypothesized causal model using structural equation modeling (SEM) in patients with systemic lupus erythematosus (SLE). Of the 505 SLE patients enrolled in the Korean Lupus Network (KORNET registry), 244 had sufficient data to assess the components of MetS at enrollment. Education level, monthly income, corticosteroid dose, Systemic Lupus Erythematosus Disease Activity Index, Physicians' Global Assessment, Beck Depression Inventory, MetS components, and the Short Form-36 at the time of cohort entry were determined. SEM was used to test the causal relationship based on the Analysis of Moment Structure. The average age of the 244 patients was 40.7 ± 11.8 years. The SEM results supported the good fit of the model (χ 2  = 71.629, p = 0.078, RMSEA 0.034, CFI 0.972). The final model showed a direct negative effect of higher socioeconomic status and a positive indirect effect of higher disease activity on MetS, the latter through corticosteroid dose. MetS did not directly impact HRQOL but had an indirect negative impact on it, through depression. In our causal model, MetS risk factors were related to MetS components. The latter had a negative indirect impact on HRQOL, through depression. Clinicians should consider socioeconomic status and medication and seek to modify disease activity, MetS, and depression to improve the HRQOL of SLE patients.

  14. Principal stratification in causal inference.

    PubMed

    Frangakis, Constantine E; Rubin, Donald B

    2002-03-01

    Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.

  15. Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer's disease.

    PubMed

    Iturria-Medina, Yasser; Carbonell, Félix M; Sotero, Roberto C; Chouinard-Decorte, Francois; Evans, Alan C

    2017-05-15

    Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Public beliefs about and attitudes towards bipolar disorder: testing theory based models of stigma.

    PubMed

    Ellison, Nell; Mason, Oliver; Scior, Katrina

    2015-04-01

    Given the vast literature into public beliefs and attitudes towards schizophrenia and depression, there is paucity of research on attitudes towards bipolar disorder despite its similar prevalence to schizophrenia. This study explored public beliefs and attitudes towards bipolar disorder and examined the relationship between these different components of stigma. Using an online questionnaire distributed via email, social networking sites and public institutions, 753 members of the UK population were presented with a vignette depicting someone who met DSM-IV criteria for bipolar disorder. Causal beliefs, beliefs about prognosis, emotional reactions, stereotypes, and social distance were assessed in response to the vignette. Preacher and Hayes procedure for estimating direct and indirect effects of multiple mediators was used to examine the relationship between these components of stigma. Bipolar disorder was primarily associated with positive beliefs and attitudes and elicited a relatively low desire for social distance. Fear partially mediated the relationship between stereotypes and social distance. Biomedical causal beliefs reduced desire for social distance by increasing compassion, whereas fate causal beliefs increased it through eliciting fear. Psychosocial causal beliefs had mixed effects. The measurement of stigma using vignettes and self-report questionnaires has implications for ecological validity and participants may have been reluctant to reveal the true extent of their negative attitudes. Dissemination of these findings to people with bipolar disorder has implications for the reduction of internalised stigma in this population. Anti-stigma campaigns should attend to causal beliefs, stereotypes and emotional reactions as these all play a vital role in discriminatory behaviour towards people with bipolar disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A self-agency bias in preschoolers' causal inferences

    PubMed Central

    Kushnir, Tamar; Wellman, Henry M.; Gelman, Susan A.

    2013-01-01

    Preschoolers' causal learning from intentional actions – causal interventions – is subject to a self-agency bias. We propose that this bias is evidence-based; it is responsive to causal uncertainty. In the current studies, two causes (one child-controlled, one experimenter-controlled) were associated with one or two effects, first independently, then simultaneously. When initial independent effects were probabilistic, and thus subsequent simultaneous actions were causally ambiguous, children showed a self-agency bias. Children showed no bias when initial effects were deterministic. Further controls establish that children's self-agency bias is not a wholesale preference but rather is influenced by uncertainty in causal evidence. These results demonstrate that children's own experience of action influences their causal learning, and suggest possible benefits in uncertain and ambiguous everyday learning contexts. PMID:19271843

  18. Tracing Actual Causes

    DTIC Science & Technology

    2016-08-08

    actual values for variables in the SEM ), and an event e with M ,~u |= e, our definition answers the question : Which paths of the causal network G( M ...for each variable and a directed edge from vari- able X to Y if the equation for computing X uses Y . Given an SEM M , a context ~u (that supplies the...caused the event e1? Our definition answers this question as a set of causal slices, where each causal slice is a subgraph of G( M ). All paths in each

  19. Structure and Strength in Causal Induction

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2005-01-01

    We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…

  20. Causal diagrams for empirical legal research: a methodology for identifying causation, avoiding bias and interpreting results

    PubMed Central

    VanderWeele, Tyler J.; Staudt, Nancy

    2014-01-01

    In this paper we introduce methodology—causal directed acyclic graphs—that empirical researchers can use to identify causation, avoid bias, and interpret empirical results. This methodology has become popular in a number of disciplines, including statistics, biostatistics, epidemiology and computer science, but has yet to appear in the empirical legal literature. Accordingly we outline the rules and principles underlying this new methodology and then show how it can assist empirical researchers through both hypothetical and real-world examples found in the extant literature. While causal directed acyclic graphs are certainly not a panacea for all empirical problems, we show they have potential to make the most basic and fundamental tasks, such as selecting covariate controls, relatively easy and straightforward. PMID:25685055

  1. Inferences about unobserved causes in human contingency learning.

    PubMed

    Hagmayer, York; Waldmann, Michael R

    2007-03-01

    Estimates of the causal efficacy of an event need to take into account the possible presence and influence of other unobserved causes that might have contributed to the occurrence of the effect. Current theoretical approaches deal differently with this problem. Associative theories assume that at least one unobserved cause is always present. In contrast, causal Bayes net theories (including Power PC theory) hypothesize that unobserved causes may be present or absent. These theories generally assume independence of different causes of the same event, which greatly simplifies modelling learning and inference. In two experiments participants were requested to learn about the causal relation between a single cause and an effect by observing their co-occurrence (Experiment 1) or by actively intervening in the cause (Experiment 2). Participants' assumptions about the presence of an unobserved cause were assessed either after each learning trial or at the end of the learning phase. The results show an interesting dissociation. Whereas there was a tendency to assume interdependence of the causes in the online judgements during learning, the final judgements tended to be more in the direction of an independence assumption. Possible explanations and implications of these findings are discussed.

  2. Children's Causal Inferences from Conflicting Testimony and Observations

    ERIC Educational Resources Information Center

    Bridgers, Sophie; Buchsbaum, Daphna; Seiver, Elizabeth; Griffiths, Thomas L.; Gopnik, Alison

    2016-01-01

    Preschoolers use both direct observation of statistical data and informant testimony to learn causal relationships. Can children integrate information from these sources, especially when source reliability is uncertain? We investigate how children handle a conflict between what they hear and what they see. In Experiment 1, 4-year-olds were…

  3. THE CHILD'S CONCEPTION OF PHYSICAL CAUSALITY.

    ERIC Educational Resources Information Center

    PIAGET, JEAN

    THE CHILD'S CONCEPTION OF PHYSICAL CAUSALITY WAS INVESTIGATED. THREE METHODS OF INVESTIGATION WERE USED. THE FIRST METHOD WAS PURELY VERBAL, AND CONSISTED OF A SERIES OF QUESTIONS DIRECTED TO CHILDREN, REGARDING SOME NATURAL PHENOMENON. THE SECOND METHOD INVOLVED A HALF-VERBAL, HALF-PRACTICAL APPROACH, WHEREIN A SPECIFIC REFERENCE TO NATURAL…

  4. Understanding how pain education causes changes in pain and disability: protocol for a causal mediation analysis of the PREVENT trial.

    PubMed

    Lee, Hopin; Moseley, G Lorimer; Hübscher, Markus; Kamper, Steven J; Traeger, Adrian C; Skinner, Ian W; McAuley, James H

    2015-07-01

    Pain education is a complex intervention developed to help clinicians manage low back pain. Although complex interventions are usually evaluated by their effects on outcomes, such as pain or disability, most do not directly target these outcomes; instead, they target intermediate factors that are presumed to be associated with the outcomes. The mechanisms underlying treatment effects, or the effect of an intervention on an intermediate factor and its subsequent effect on outcome, are rarely investigated in clinical trials. This leaves a gap in the evidence for understanding how treatments exert their effects on outcomes. Mediation analysis provides a method for identifying and quantifying the mechanisms that underlie interventions. To determine whether the effect of pain education on pain and disability is mediated by changes in self-efficacy, catastrophisation and back pain beliefs. Causal mediation analysis of the PREVENT randomised controlled trial. Two hundred and two participants with acute low back pain from primary care clinics in the Sydney metropolitan area. Participants will be randomised to receive either 'pain education' (intervention group) or 'sham education' (control group). All outcome measures (including patient characteristics), primary outcome measures (pain and disability), and putative mediating variables (self-efficacy, catastrophisation and back pain beliefs) will be measured prior to randomisation. Putative mediators and primary outcome measures will be measured 1 week after the intervention, and primary outcome measures will be measured 3 months after the onset of low back pain. Causal mediation analysis under the potential outcomes framework will be used to test single and multiple mediator models. A sensitivity analysis will be conducted to evaluate the robustness of the estimated mediation effects on the influence of violating sequential ignorability--a critical assumption for causal inference. Mediation analysis of clinical trials can estimate how much the total effect of the treatment on the outcome is carried through an indirect path. Using mediation analysis to understand these mechanisms can generate evidence that can be used to tailor treatments and optimise treatment effects. In this study, the causal mediation effects of a pain education intervention for acute non-specific low back pain will be estimated. This knowledge is critical for further development and refinement of interventions for conditions such as low back pain. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  5. Identifying Causal Variants at Loci with Multiple Signals of Association

    PubMed Central

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-01-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20–50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. PMID:25104515

  6. Identifying causal variants at loci with multiple signals of association.

    PubMed

    Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong; Pasaniuc, Bogdan; Eskin, Eleazar

    2014-10-01

    Although genome-wide association studies have successfully identified thousands of risk loci for complex traits, only a handful of the biologically causal variants, responsible for association at these loci, have been successfully identified. Current statistical methods for identifying causal variants at risk loci either use the strength of the association signal in an iterative conditioning framework or estimate probabilities for variants to be causal. A main drawback of existing methods is that they rely on the simplifying assumption of a single causal variant at each risk locus, which is typically invalid at many risk loci. In this work, we propose a new statistical framework that allows for the possibility of an arbitrary number of causal variants when estimating the posterior probability of a variant being causal. A direct benefit of our approach is that we predict a set of variants for each locus that under reasonable assumptions will contain all of the true causal variants with a high confidence level (e.g., 95%) even when the locus contains multiple causal variants. We use simulations to show that our approach provides 20-50% improvement in our ability to identify the causal variants compared to the existing methods at loci harboring multiple causal variants. We validate our approach using empirical data from an expression QTL study of CHI3L2 to identify new causal variants that affect gene expression at this locus. CAVIAR is publicly available online at http://genetics.cs.ucla.edu/caviar/. Copyright © 2014 by the Genetics Society of America.

  7. Multivariate co-integration analysis of the Kaya factors in Ghana.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-05-01

    The fundamental goal of the Government of Ghana's development agenda as enshrined in the Growth and Poverty Reduction Strategy to grow the economy to a middle income status of US$1000 per capita by the end of 2015 could be met by increasing the labour force, increasing energy supplies and expanding the energy infrastructure in order to achieve the sustainable development targets. In this study, a multivariate co-integration analysis of the Kaya factors namely carbon dioxide, total primary energy consumption, population and GDP was investigated in Ghana using vector error correction model with data spanning from 1980 to 2012. Our research results show an existence of long-run causality running from population, GDP and total primary energy consumption to carbon dioxide emissions. However, there is evidence of short-run causality running from population to carbon dioxide emissions. There was a bi-directional causality running from carbon dioxide emissions to energy consumption and vice versa. In other words, decreasing the primary energy consumption in Ghana will directly reduce carbon dioxide emissions. In addition, a bi-directional causality running from GDP to energy consumption and vice versa exists in the multivariate model. It is plausible that access to energy has a relationship with increasing economic growth and productivity in Ghana.

  8. Conditions for Confirmatory Analysis and Causal Inference.

    DTIC Science & Technology

    1982-05-03

    to subordinates regarding quality and quantity of subordinates’ performance , may cause subordinates to perceive that they have too much work to do...xl) and quantity (x2 ) of role performance do not cause state anxiety (y 2 ) directly, rather they affect it indirectly through their effects on the...and quantity of performance than managers more attuned to the effects of their demands on employees. on the other hand, impersonality is not expected

  9. Seeing through rose-colored glasses: How optimistic expectancies guide visual attention

    PubMed Central

    Bristle, Mirko; Aue, Tatjana

    2018-01-01

    Optimism bias and positive attention bias have important highly similar implications for mental health but have only been examined in isolation. Investigating the causal relationships between these biases can improve the understanding of their underlying cognitive mechanisms, leading to new directions in neurocognitive research and revealing important information about normal functioning as well as the development, maintenance, and treatment of psychological diseases. In the current project, we hypothesized that optimistic expectancies can exert causal influences on attention deployment. To test this causal relation, we conducted two experiments in which we manipulated optimistic and pessimistic expectancies regarding future rewards and punishments. In a subsequent visual search task, we examined participants’ attention to positive (i.e., rewarding) and negative (i.e., punishing) target stimuli, measuring their eye gaze behavior and reaction times. In both experiments, participants’ attention was guided toward reward compared with punishment when optimistic expectancies were induced. Additionally, in Experiment 2, participants’ attention was guided toward punishment compared with reward when pessimistic expectancies were induced. However, the effect of optimistic (rather than pessimistic) expectancies on attention deployment was stronger. A key characteristic of optimism bias is that people selectively update expectancies in an optimistic direction, not in a pessimistic direction, when receiving feedback. As revealed in our studies, selective attention to rewarding versus punishing evidence when people are optimistic might explain this updating asymmetry. Thus, the current data can help clarify why optimistic expectancies are difficult to overcome. Our findings elucidate the cognitive mechanisms underlying optimism and attention bias, which can yield a better understanding of their benefits for mental health. PMID:29466420

  10. Seeing through rose-colored glasses: How optimistic expectancies guide visual attention.

    PubMed

    Kress, Laura; Bristle, Mirko; Aue, Tatjana

    2018-01-01

    Optimism bias and positive attention bias have important highly similar implications for mental health but have only been examined in isolation. Investigating the causal relationships between these biases can improve the understanding of their underlying cognitive mechanisms, leading to new directions in neurocognitive research and revealing important information about normal functioning as well as the development, maintenance, and treatment of psychological diseases. In the current project, we hypothesized that optimistic expectancies can exert causal influences on attention deployment. To test this causal relation, we conducted two experiments in which we manipulated optimistic and pessimistic expectancies regarding future rewards and punishments. In a subsequent visual search task, we examined participants' attention to positive (i.e., rewarding) and negative (i.e., punishing) target stimuli, measuring their eye gaze behavior and reaction times. In both experiments, participants' attention was guided toward reward compared with punishment when optimistic expectancies were induced. Additionally, in Experiment 2, participants' attention was guided toward punishment compared with reward when pessimistic expectancies were induced. However, the effect of optimistic (rather than pessimistic) expectancies on attention deployment was stronger. A key characteristic of optimism bias is that people selectively update expectancies in an optimistic direction, not in a pessimistic direction, when receiving feedback. As revealed in our studies, selective attention to rewarding versus punishing evidence when people are optimistic might explain this updating asymmetry. Thus, the current data can help clarify why optimistic expectancies are difficult to overcome. Our findings elucidate the cognitive mechanisms underlying optimism and attention bias, which can yield a better understanding of their benefits for mental health.

  11. Pigeons' Discrimination of Michotte's Launching Effect

    PubMed Central

    Young, Michael E; Beckmann, Joshua S; Wasserman, Edward A

    2006-01-01

    We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal, and distal & delayed). Two pigeons were reinforced for pecking at the causal interaction, but not at the noncausal interactions; two other pigeons were reinforced for pecking at the distal & delayed interaction, but not at the other interactions. Both discriminations proved difficult for the pigeons to master; later tests suggested that the pigeons often learned the discriminations by attending to subtle stimulus properties other than the intended ones. PMID:17002229

  12. LUCK AND HISTORY-SENSITIVE COMPATIBILISM

    PubMed Central

    Levy, Neil

    2009-01-01

    Libertarianism seems vulnerable to a serious problem concerning present luck, because it requires indeterminism somewhere in the causal chain leading to directly free action. Compatibilism, in contrast, is thought to be free of this problem, as not requiring indeterminism in the causal chain. I argue that this view is false: compatibilism is subject to a problem of present luck. This is less of a problem for compatibilism than for libertarianism. However, its effects are just as devastating for one kind of compatibilism, the kind of compatibilism which is history-sensitive, and therefore must take the problem of constitutive luck seriously. The problem of present luck confronting compatibilism is sufficient to undermine the history-sensitive compatibilist’s response to remote – constitutive – luck. PMID:19649158

  13. Drawing causal inferences using propensity scores: a practical guide for community psychologists.

    PubMed

    Lanza, Stephanie T; Moore, Julia E; Butera, Nicole M

    2013-12-01

    Confounding present in observational data impede community psychologists' ability to draw causal inferences. This paper describes propensity score methods as a conceptually straightforward approach to drawing causal inferences from observational data. A step-by-step demonstration of three propensity score methods-weighting, matching, and subclassification-is presented in the context of an empirical examination of the causal effect of preschool experiences (Head Start vs. parental care) on reading development in kindergarten. Although the unadjusted population estimate indicated that children with parental care had substantially higher reading scores than children who attended Head Start, all propensity score adjustments reduce the size of this overall causal effect by more than half. The causal effect was also defined and estimated among children who attended Head Start. Results provide no evidence for improved reading if those children had instead received parental care. We carefully define different causal effects and discuss their respective policy implications, summarize advantages and limitations of each propensity score method, and provide SAS and R syntax so that community psychologists may conduct causal inference in their own research.

  14. Drawing Causal Inferences Using Propensity Scores: A Practical Guide for Community Psychologists

    PubMed Central

    Lanza, Stephanie T.; Moore, Julia E.; Butera, Nicole M.

    2014-01-01

    Confounding present in observational data impede community psychologists’ ability to draw causal inferences. This paper describes propensity score methods as a conceptually straightforward approach to drawing causal inferences from observational data. A step-by-step demonstration of three propensity score methods – weighting, matching, and subclassification – is presented in the context of an empirical examination of the causal effect of preschool experiences (Head Start vs. parental care) on reading development in kindergarten. Although the unadjusted population estimate indicated that children with parental care had substantially higher reading scores than children who attended Head Start, all propensity score adjustments reduce the size of this overall causal effect by more than half. The causal effect was also defined and estimated among children who attended Head Start. Results provide no evidence for improved reading if those children had instead received parental care. We carefully define different causal effects and discuss their respective policy implications, summarize advantages and limitations of each propensity score method, and provide SAS and R syntax so that community psychologists may conduct causal inference in their own research. PMID:24185755

  15. The Anxious and Ambivalent Partisan: The Effect of Incidental Anxiety on Partisan Motivated Recall and Ambivalence.

    PubMed

    Groenendyk, Eric

    2016-01-01

    Affective Intelligence Theory (AIT) asserts that anxiety reduces the effect of party identification on candidate preferences (Marcus, Neuman, and MacKuen 2000), but recent studies have raised doubts about this causal claim. Rather than functioning as a moderator of party identification, perhaps anxiety has a direct effect on preferences, or perhaps the relationship is reversed and preferences drive emotions (Ladd and Lenz 2008). Alternatively, Marcus et al.'s measure of anxiety may simply be capturing partisan ambivalence, so the posited relationship is spurious (Lavine, Johnston, and Steenbergen 2012). This paper addresses each of these questions by examining the effect of experimentally induced emotions on the types of considerations that came to mind when a national sample of adult Americans was asked what they liked and disliked about Barack Obama. By directly manipulating anxiety, this experiment avoids the causal ambiguity plaguing this debate and ascertains the true nature of the relationship between anxiety and ambivalence. Consistent with AIT, anxiety led respondents to recall more contemporary considerations, whereas enthusiasm brought to mind more long-standing considerations. Because the political context at the time of the study (fall 2013) was a very tumultuous time for the Obama administration, the increased accessibility of contemporary considerations led Democratic participants to experience more ambivalence in the anxiety condition. This effect was concentrated among those Democrats who were exposed to the most newspaper coverage.

  16. Large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  17. On the interpretability and computational reliability of frequency-domain Granger causality.

    PubMed

    Faes, Luca; Stramaglia, Sebastiano; Marinazzo, Daniele

    2017-01-01

    This Correspondence article is a comment which directly relates to the paper "A study of problems encountered in Granger causality analysis from a neuroscience perspective" ( Stokes and Purdon, 2017). We agree that interpretation issues of Granger causality (GC) in neuroscience exist, partially due to the historically unfortunate use of the name "causality", as described in previous literature. On the other hand, we think that Stokes and Purdon use a formulation of GC which is outdated (albeit still used) and do not fully account for the potential of the different frequency-domain versions of GC; in doing so, their paper dismisses GC measures based on a suboptimal use of them. Furthermore, since data from simulated systems are used, the pitfalls that are found with the used formulation are intended to be general, and not limited to neuroscience. It would be a pity if this paper, even if written in good faith, became a wildcard against all possible applications of GC, regardless of the large body of work recently published which aims to address faults in methodology and interpretation. In order to provide a balanced view, we replicate the simulations of Stokes and Purdon, using an updated GC implementation and exploiting the combination of spectral and causal information, showing that in this way the pitfalls are mitigated or directly solved.

  18. Impairments in action-outcome learning in schizophrenia.

    PubMed

    Morris, Richard W; Cyrzon, Chad; Green, Melissa J; Le Pelley, Mike E; Balleine, Bernard W

    2018-03-03

    Learning the causal relation between actions and their outcomes (AO learning) is critical for goal-directed behavior when actions are guided by desire for the outcome. This can be contrasted with habits that are acquired by reinforcement and primed by prevailing stimuli, in which causal learning plays no part. Recently, we demonstrated that goal-directed actions are impaired in schizophrenia; however, whether this deficit exists alongside impairments in habit or reinforcement learning is unknown. The present study distinguished deficits in causal learning from reinforcement learning in schizophrenia. We tested people with schizophrenia (SZ, n = 25) and healthy adults (HA, n = 25) in a vending machine task. Participants learned two action-outcome contingencies (e.g., push left to get a chocolate M&M, push right to get a cracker), and they also learned one contingency was degraded by delivery of noncontingent outcomes (e.g., free M&Ms), as well as changes in value by outcome devaluation. Both groups learned the best action to obtain rewards; however, SZ did not distinguish the more causal action when one AO contingency was degraded. Moreover, action selection in SZ was insensitive to changes in outcome value unless feedback was provided, and this was related to the deficit in AO learning. The failure to encode the causal relation between action and outcome in schizophrenia occurred without any apparent deficit in reinforcement learning. This implies that poor goal-directed behavior in schizophrenia cannot be explained by a more primary deficit in reward learning such as insensitivity to reward value or reward prediction errors.

  19. Reprint of “Non-causal spike filtering improves decoding of movement intention for intracortical BCIs”☆

    PubMed Central

    Masse, Nicolas Y.; Jarosiewicz, Beata; Simeral, John D.; Bacher, Daniel; Stavisky, Sergey D.; Cash, Sydney S.; Oakley, Erin M.; Berhanu, Etsub; Eskandar, Emad; Friehs, Gerhard; Hochberg, Leigh R.; Donoghue, John P.

    2015-01-01

    Background Multiple types of neural signals are available for controlling assistive devices through brain–computer interfaces (BCIs). Intracortically recorded spiking neural signals are attractive for BCIs because they can in principle provide greater fidelity of encoded information compared to electrocorticographic (ECoG) signals and electroencephalograms (EEGs). Recent reports show that the information content of these spiking neural signals can be reliably extracted simply by causally band-pass filtering the recorded extracellular voltage signals and then applying a spike detection threshold, without relying on “sorting” action potentials. New method We show that replacing the causal filter with an equivalent non-causal filter increases the information content extracted from the extracellular spiking signal and improves decoding of intended movement direction. This method can be used for real-time BCI applications by using a 4 ms lag between recording and filtering neural signals. Results Across 18 sessions from two people with tetraplegia enrolled in the BrainGate2 pilot clinical trial, we found that threshold crossing events extracted using this non-causal filtering method were significantly more informative of each participant’s intended cursor kinematics compared to threshold crossing events derived from causally filtered signals. This new method decreased the mean angular error between the intended and decoded cursor direction by 9.7° for participant S3, who was implanted 5.4 years prior to this study, and by 3.5° for participant T2, who was implanted 3 months prior to this study. PMID:25681017

  20. The influence of causal connections between symptoms on the diagnosis of mental disorders: evidence from online and offline measures.

    PubMed

    Flores, Amanda; Cobos, Pedro L; López, Francisco J; Godoy, Antonio; González-Martín, Estrella

    2014-09-01

    An experiment conducted with students and experienced clinicians demonstrated very fast and online causal reasoning in the diagnosis of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) mental disorders. The experiment also demonstrated that clinicians' causal reasoning is triggered by information that is directly related to the causal structure that explains the symptoms, such as their temporal sequence. The use of causal theories was measured through explicit, verbal diagnostic judgments and through the online registration of participants' reading times of clinical reports. To detect both online and offline causal reasoning, the consistency of clinical reports was manipulated. This manipulation was made by varying the temporal order in which different symptoms developed in hypothetical clients, and by providing explicit information about causal connections between symptoms. The temporal order of symptoms affected the clinicians' but not the students' reading times. However, offline diagnostic judgments in both groups were influenced by the consistency manipulation. Overall, our results suggest that clinicians engage in fast and online causal reasoning processes when dealing with diagnostic information concerning mental disorders, and that both clinicians and students engage in causal reasoning in diagnostic judgment tasks. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. A time domain frequency-selective multivariate Granger causality approach.

    PubMed

    Leistritz, Lutz; Witte, Herbert

    2016-08-01

    The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.

  2. Reciprocal Effects between Intrinsic Reading Motivation and Reading Competence? A Cross-Lagged Panel Model for Academic Track and Nonacademic Track Students

    ERIC Educational Resources Information Center

    Schaffner, Ellen; Philipp, Maik; Schiefele, Ulrich

    2016-01-01

    Previous research has demonstrated positive relations between intrinsic reading motivation and reading competence. However, the causal direction of these relations and the moderating role of relevant background variables (e.g., students' achievement level) are not well understood. In the present study, a cross-lagged panel model was applied to…

  3. Science of consciousness and the hard problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.P.

    1996-05-22

    Quantum theory is essentially a rationally coherent theory of the interaction of mind and matter, and it allows our conscious thoughts to play a causally efficacious and necessary role in brain dynamics. It therefore provides a natural basis, created by scientists, for the science of consciousness. As an illustration it is explained how the interaction of brain and consciousness can speed up brain processing, and thereby enhance the survival prospects of conscious organisms, as compared to similar organisms that lack consciousness. As a second illustration it is explained how, within the quantum framework, the consciously experienced {open_quotes}I{close_quotes} directs the actionsmore » of a human being. It is concluded that contemporary science already has an adequate framework for incorporating causally efficacious experimential events into the physical universe in a manner that: (1) puts the neural correlates of consciousness into the theory in a well defined way, (2) explains in principle how the effects of consciousness, per se, can enhance the survival prospects of organisms that possess it, (3) allows this survival effect to feed into phylogenetic development, and (4) explains how the consciously experienced {open_quotes}I{close_quotes} can direct human behaviour.« less

  4. The direct, not V1-mediated, functional influence between the thalamus and middle temporal complex in the human brain is modulated by the speed of visual motion.

    PubMed

    Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K

    2015-01-22

    The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Essays on Causal Inference for Public Policy

    ERIC Educational Resources Information Center

    Zajonc, Tristan

    2012-01-01

    Effective policymaking requires understanding the causal effects of competing proposals. Relevant causal quantities include proposals' expected effect on different groups of recipients, the impact of policies over time, the potential trade-offs between competing objectives, and, ultimately, the optimal policy. This dissertation studies causal…

  6. DES daughters in France: experts' points of view on the various genital, uterine and obstetric pathologies, and in utero DES exposure.

    PubMed

    Clement, R; Guilbaud, E; Barrios, L; Rougé-Maillart, C; Jousset, N; Rodat, O

    2014-10-01

    Compensation of diethylstilbestrol exposure depends on the judicial system. In France, girls having been exposed to diethylstilbestrol are currently being compensated, and each exposure victim is being evaluated. Fifty-nine expert evaluations were studied to determine the causal relation between exposure to diethylstilbestrol and the pathologies attributable to diethylstilbestrol. The following were taken into consideration: age at the first signs of the pathology; age of the sufferer at the time of evaluation; the pathologies grouped into five categories: fertility disorders - cancers - mishaps during pregnancy - psychosomatic complaints - pathologies of "3rd generation DES victims"; submission of proof of DES exposure; the degree of causality determined (direct, indirect, ruled out). 61% of the cases related to fertility disorders, 28.8% to cancer pathologies (clear-cell adenocarcinoma), 18.6% to mishaps during pregnancy, 8.5% to disorders resulting from preterm delivery, and 3.4% to psychosomatic disorders. Some cases involved a combination of two types of complaints. Indirect causality was determined in 47.1% of the cases involving primary sterility, in 66.7% involving secondary sterility, and in 5 out of 6 cases of total sterility. There is direct causality between in utero diethylstilbestrol exposure and vaginal or cervical clear cell adenocarcinoma. Causality is indirect in the case of disorders linked to prematurity in third generation victims. Causality was determined by the experts on the basis of scientific criteria which attribute the presenting pathologies to diethylstilbestrol exposure. When other risk factors come into play, or when exposure is indirect (third generation), this causality is diminished. © IMechE 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Whose statistical reasoning is facilitated by a causal structure intervention?

    PubMed

    McNair, Simon; Feeney, Aidan

    2015-02-01

    People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430-450, 2007) proposed that a causal Bayesian framework accounts for peoples' errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.

  8. Use of Causal Diagrams to Inform the Design and Interpretation of Observational Studies: An Example from the Study of Heart and Renal Protection (SHARP).

    PubMed

    Staplin, Natalie; Herrington, William G; Judge, Parminder K; Reith, Christina A; Haynes, Richard; Landray, Martin J; Baigent, Colin; Emberson, Jonathan

    2017-03-07

    Observational studies often seek to estimate the causal relevance of an exposure to an outcome of interest. However, many possible biases can arise when estimating such relationships, in particular bias because of confounding. To control for confounding properly, careful consideration of the nature of the assumed relationships between the exposure, the outcome, and other characteristics is required. Causal diagrams provide a simple graphic means of displaying such relationships, describing the assumptions made, and allowing for the identification of a set of characteristics that should be taken into account ( i.e. , adjusted for) in any analysis. Furthermore, causal diagrams can be used to identify other possible sources of bias (such as selection bias), which if understood from the outset, can inform the planning of appropriate analyses. In this article, we review the basic theory of causal diagrams and describe some of the methods available to identify which characteristics need to be taken into account when estimating the total effect of an exposure on an outcome. In doing so, we review the concept of collider bias and show how it is inappropriate to adjust for characteristics that may be influenced, directly or indirectly, by both the exposure and the outcome of interest. A motivating example is taken from the Study of Heart and Renal Protection, in which the relevance of smoking to progression to ESRD is considered. Copyright © 2017 by the American Society of Nephrology.

  9. Do people reason rationally about causally related events? Markov violations, weak inferences, and failures of explaining away.

    PubMed

    Rottman, Benjamin M; Hastie, Reid

    2016-06-01

    Making judgments by relying on beliefs about the causal relationships between events is a fundamental capacity of everyday cognition. In the last decade, Causal Bayesian Networks have been proposed as a framework for modeling causal reasoning. Two experiments were conducted to provide comprehensive data sets with which to evaluate a variety of different types of judgments in comparison to the standard Bayesian networks calculations. Participants were introduced to a fictional system of three events and observed a set of learning trials that instantiated the multivariate distribution relating the three variables. We tested inferences on chains X1→Y→X2, common cause structures X1←Y→X2, and common effect structures X1→Y←X2, on binary and numerical variables, and with high and intermediate causal strengths. We tested transitive inferences, inferences when one variable is irrelevant because it is blocked by an intervening variable (Markov Assumption), inferences from two variables to a middle variable, and inferences about the presence of one cause when the alternative cause was known to have occurred (the normative "explaining away" pattern). Compared to the normative account, in general, when the judgments should change, they change in the normative direction. However, we also discuss a few persistent violations of the standard normative model. In addition, we evaluate the relative success of 12 theoretical explanations for these deviations. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Linear and nonlinear causal relationship between energy consumption and economic growth in China: New evidence based on wavelet analysis

    PubMed Central

    2018-01-01

    The energy-growth nexus has important policy implications for economic development. The results from many past studies that investigated the causality direction of this nexus can lead to misleading policy guidance. Using data on China from 1953 to 2013, this study shows that an application of causality test on the time series of energy consumption and national output has masked a lot of information. The Toda-Yamamoto test with bootstrapped critical values and the newly proposed non-linear causality test reveal no causal relationship. However, a further application of these tests using series in different time-frequency domain obtained from wavelet decomposition indicates that while energy consumption Granger causes economic growth in the short run, the reverse is true in the medium term. A bidirectional causal relationship is found for the long run. This approach has proven to be superior in unveiling information on the energy-growth nexus that are useful for policy planning over different time horizons. PMID:29782534

  11. Transfer Entropy as a Log-Likelihood Ratio

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Bossomaier, Terry

    2012-09-01

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  12. Transfer entropy as a log-likelihood ratio.

    PubMed

    Barnett, Lionel; Bossomaier, Terry

    2012-09-28

    Transfer entropy, an information-theoretic measure of time-directed information transfer between joint processes, has steadily gained popularity in the analysis of complex stochastic dynamics in diverse fields, including the neurosciences, ecology, climatology, and econometrics. We show that for a broad class of predictive models, the log-likelihood ratio test statistic for the null hypothesis of zero transfer entropy is a consistent estimator for the transfer entropy itself. For finite Markov chains, furthermore, no explicit model is required. In the general case, an asymptotic χ2 distribution is established for the transfer entropy estimator. The result generalizes the equivalence in the Gaussian case of transfer entropy and Granger causality, a statistical notion of causal influence based on prediction via vector autoregression, and establishes a fundamental connection between directed information transfer and causality in the Wiener-Granger sense.

  13. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis.

    PubMed

    Rossi, Sergio; Morin, Hubert; Deslauriers, Annie

    2012-03-01

    Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [Picea mariana (Mill.) BSP] monitored for 8 years on four sites of the boreal forest of Quebec, Canada. The dependency links connecting the timing of xylem cell differentiation and cell production were defined and the resulting causal model was analysed with d-sep tests and generalized mixed models with repeated measurements, and tested with Fisher's C statistics to determine whether and how causality propagates through the measured variables. The higher correlations were observed between the dates of emergence of the first developing cells and between the ending of the differentiation phases, while the number of cells was significantly correlated with all phenological phases. The model with eight dependency links was statistically valid for explaining the causes and correlations between the dynamics of cambium phenology. Causal modelling suggested that the phenological phases involved in xylogenesis are closely interconnected by complex relationships of cause and effect, with the onset of cell differentiation being the main factor directly or indirectly triggering all successive phases of xylem maturation.

  14. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis

    PubMed Central

    Rossi, Sergio; Morin, Hubert; Deslauriers, Annie

    2012-01-01

    Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [Picea mariana (Mill.) BSP] monitored for 8 years on four sites of the boreal forest of Quebec, Canada. The dependency links connecting the timing of xylem cell differentiation and cell production were defined and the resulting causal model was analysed with d-sep tests and generalized mixed models with repeated measurements, and tested with Fisher’s C statistics to determine whether and how causality propagates through the measured variables. The higher correlations were observed between the dates of emergence of the first developing cells and between the ending of the differentiation phases, while the number of cells was significantly correlated with all phenological phases. The model with eight dependency links was statistically valid for explaining the causes and correlations between the dynamics of cambium phenology. Causal modelling suggested that the phenological phases involved in xylogenesis are closely interconnected by complex relationships of cause and effect, with the onset of cell differentiation being the main factor directly or indirectly triggering all successive phases of xylem maturation. PMID:22174441

  15. Stress increases the risk of type 2 diabetes onset in women: A 12-year longitudinal study using causal modelling

    PubMed Central

    Oldmeadow, Christopher; Hure, Alexis; Luu, Judy; Loxton, Deborah

    2017-01-01

    Background Type 2 diabetes is associated with significant morbidity and mortality. Modifiable risk factors have been found to contribute up to 60% of type 2 diabetes risk. However, type 2 diabetes continues to rise despite implementation of interventions based on traditional risk factors. There is a clear need to identify additional risk factors for chronic disease prevention. The aim of this study was to examine the relationship between perceived stress and type 2 diabetes onset, and partition the estimates into direct and indirect effects. Methods and findings Women born in 1946–1951 (n = 12,844) completed surveys for the Australian Longitudinal Study on Women’s Health in 1998, 2001, 2004, 2007 and 2010. The total causal effect was estimated using logistic regression and marginal structural modelling. Controlled direct effects were estimated through conditioning in the regression model. A graded association was found between perceived stress and all mediators in the multivariate time lag analyses. A significant association was found between hypertension, as well as physical activity and body mass index, and diabetes, but not smoking or diet quality. Moderate/high stress levels were associated with a 2.3-fold increase in the odds of diabetes three years later, for the total estimated effect. Results were only slightly attenuated when the direct and indirect effects of perceived stress on diabetes were partitioned, with the mediators only explaining 10–20% of the excess variation in diabetes. Conclusions Perceived stress is a strong risk factor for type 2 diabetes. The majority of the effect estimate of stress on diabetes risk is not mediated by the traditional risk factors of hypertension, physical activity, smoking, diet quality, and body mass index. This gives a new pathway for diabetes prevention trials and clinical practice. PMID:28222165

  16. Causal mediation analysis for longitudinal data with exogenous exposure.

    PubMed

    Bind, M-A C; Vanderweele, T J; Coull, B A; Schwartz, J D

    2016-01-01

    Mediation analysis is a valuable approach to examine pathways in epidemiological research. Prospective cohort studies are often conducted to study biological mechanisms and often collect longitudinal measurements on each participant. Mediation formulae for longitudinal data have been developed. Here, we formalize the natural direct and indirect effects using a causal framework with potential outcomes that allows for an interaction between the exposure and the mediator. To allow different types of longitudinal measures of the mediator and outcome, we assume two generalized mixed-effects models for both the mediator and the outcome. The model for the mediator has subject-specific random intercepts and random exposure slopes for each cluster, and the outcome model has random intercepts and random slopes for the exposure, the mediator, and their interaction. We also expand our approach to settings with multiple mediators and derive the mediated effects, jointly through all mediators. Our method requires the absence of time-varying confounding with respect to the exposure and the mediator. This assumption is achieved in settings with exogenous exposure and mediator, especially when exposure and mediator are not affected by variables measured at earlier time points. We apply the methodology to data from the Normative Aging Study and estimate the direct and indirect effects, via DNA methylation, of air pollution, and temperature on intercellular adhesion molecule 1 (ICAM-1) protein levels. Our results suggest that air pollution and temperature have a direct effect on ICAM-1 protein levels (i.e. not through a change in ICAM-1 DNA methylation) and that temperature has an indirect effect via a change in ICAM-1 DNA methylation. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Health and Wealth of Elderly Couples: Causality Tests Using Dynamic Panel Data Models*

    PubMed Central

    Michaud, Pierre-Carl; van Soest, Arthur

    2010-01-01

    A positive relationship between socio-economic status (SES) and health, the “health-wealth gradient”, is repeatedly found in many industrialized countries. This study analyzes competing explanations for this gradient: causal effects from health to wealth (health causation) and causal effects from wealth to health (wealth or social causation). Using six biennial waves of couples aged 51–61 in 1992 from the U.S. Health and Retirement Study, we test for causality in panel data models incorporating unobserved heterogeneity and a lag structure supported by specification tests. In contrast to tests relying on models with only first order lags or without unobserved heterogeneity, these tests provide no evidence of causal wealth health effects. On the other hand, we find strong evidence of causal effects from both spouses’ health on household wealth. We also find an effect of the husband’s health on the wife’s mental health, but no other effects from one spouse’s health to health of the other spouse. PMID:18513809

  18. Education and myopia: assessing the direction of causality by mendelian randomisation.

    PubMed

    Mountjoy, Edward; Davies, Neil M; Plotnikov, Denis; Smith, George Davey; Rodriguez, Santiago; Williams, Cathy E; Guggenheim, Jeremy A; Atan, Denize

    2018-06-06

    To determine whether more years spent in education is a causal risk factor for myopia, or whether myopia is a causal risk factor for more years in education. Bidirectional, two sample mendelian randomisation study. Publically available genetic data from two consortiums applied to a large, independent population cohort. Genetic variants used as proxies for myopia and years of education were derived from two large genome wide association studies: 23andMe and Social Science Genetic Association Consortium (SSGAC), respectively. 67 798 men and women from England, Scotland, and Wales in the UK Biobank cohort with available information for years of completed education and refractive error. Mendelian randomisation analyses were performed in two directions: the first exposure was the genetic predisposition to myopia, measured with 44 genetic variants strongly associated with myopia in 23andMe, and the outcome was years in education; and the second exposure was the genetic predisposition to higher levels of education, measured with 69 genetic variants from SSGAC, and the outcome was refractive error. Conventional regression analyses of the observational data suggested that every additional year of education was associated with a more myopic refractive error of -0.18 dioptres/y (95% confidence interval -0.19 to -0.17; P<2e-16). Mendelian randomisation analyses suggested the true causal effect was even stronger: -0.27 dioptres/y (-0.37 to -0.17; P=4e-8). By contrast, there was little evidence to suggest myopia affected education (years in education per dioptre of refractive error -0.008 y/dioptre, 95% confidence interval -0.041 to 0.025, P=0.6). Thus, the cumulative effect of more years in education on refractive error means that a university graduate from the United Kingdom with 17 years of education would, on average, be at least -1 dioptre more myopic than someone who left school at age 16 (with 12 years of education). Myopia of this magnitude would be sufficient to necessitate the use of glasses for driving. Sensitivity analyses showed minimal evidence for genetic confounding that could have biased the causal effect estimates. This study shows that exposure to more years in education contributes to the rising prevalence of myopia. Increasing the length of time spent in education may inadvertently increase the prevalence of myopia and potential future visual disability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Education and myopia: assessing the direction of causality by mendelian randomisation

    PubMed Central

    Mountjoy, Edward; Davies, Neil M; Plotnikov, Denis; Smith, George Davey; Rodriguez, Santiago; Williams, Cathy E; Guggenheim, Jeremy A

    2018-01-01

    Abstract Objectives To determine whether more years spent in education is a causal risk factor for myopia, or whether myopia is a causal risk factor for more years in education. Design Bidirectional, two sample mendelian randomisation study. Setting Publically available genetic data from two consortiums applied to a large, independent population cohort. Genetic variants used as proxies for myopia and years of education were derived from two large genome wide association studies: 23andMe and Social Science Genetic Association Consortium (SSGAC), respectively. Participants 67 798 men and women from England, Scotland, and Wales in the UK Biobank cohort with available information for years of completed education and refractive error. Main outcome measures Mendelian randomisation analyses were performed in two directions: the first exposure was the genetic predisposition to myopia, measured with 44 genetic variants strongly associated with myopia in 23andMe, and the outcome was years in education; and the second exposure was the genetic predisposition to higher levels of education, measured with 69 genetic variants from SSGAC, and the outcome was refractive error. Results Conventional regression analyses of the observational data suggested that every additional year of education was associated with a more myopic refractive error of −0.18 dioptres/y (95% confidence interval −0.19 to −0.17; P<2e-16). Mendelian randomisation analyses suggested the true causal effect was even stronger: −0.27 dioptres/y (−0.37 to −0.17; P=4e-8). By contrast, there was little evidence to suggest myopia affected education (years in education per dioptre of refractive error −0.008 y/dioptre, 95% confidence interval −0.041 to 0.025, P=0.6). Thus, the cumulative effect of more years in education on refractive error means that a university graduate from the United Kingdom with 17 years of education would, on average, be at least −1 dioptre more myopic than someone who left school at age 16 (with 12 years of education). Myopia of this magnitude would be sufficient to necessitate the use of glasses for driving. Sensitivity analyses showed minimal evidence for genetic confounding that could have biased the causal effect estimates. Conclusions This study shows that exposure to more years in education contributes to the rising prevalence of myopia. Increasing the length of time spent in education may inadvertently increase the prevalence of myopia and potential future visual disability. PMID:29875094

  20. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    DOE PAGES

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-08-28

    Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation experiments, themore » propose new methodology CGC-2SPR showed significant performance improvement in terms of accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods. In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true positive edges with CGC-2SPR than with the other existing methods. In our research, we noticed a “ 1+1>2” effect when we combined prior knowledge and gene expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that the Abm1 gene (its functions previously were unknown) might be related to the yeast’s responses to different levels of glucose. In conclusion, our research improves causality modeling by combining heterogeneous knowledge, which is well aligned with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-causality/wiki/Home.« less

  1. Effective connectivity of facial expression network by using Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Xiaoting

    2013-10-01

    Functional magnetic resonance imaging (fMRI) is an advanced non-invasive data acquisition technique to investigate the neural activity in human brain. In addition to localize the functional brain regions that is activated by specific cognitive task, fMRI can also be utilized to measure the task-related functional interactions among the active regions of interest (ROI) in the brain. Among the variety of analysis tools proposed for modeling the connectivity of brain regions, Granger causality analysis (GCA) measure the directions of information interactions by looking for the lagged effect among the brain regions. In this study, we use fMRI and Granger Causality analysis to investigate the effective connectivity of brain network induced by viewing several kinds of expressional faces. We focus on four kinds of facial expression stimuli: fearful, angry, happy and neutral faces. Five face selective regions of interest are localized and the effective connectivity within these regions is measured for the expressional faces. Our result based on 8 subjects showed that there is significant effective connectivity from STS to amygdala, from amygdala to OFA, aFFA and pFFA, from STS to aFFA and from pFFA to aFFA. This result suggested that there is an information flow from the STS to the amygdala when perusing expressional faces. This emotional expressional information flow that is conveyed by STS and amygdala, flow back to the face selective regions in occipital-temporal lobes, which constructed a emotional face processing network.

  2. Causal capture effects in chimpanzees (Pan troglodytes).

    PubMed

    Matsuno, Toyomi; Tomonaga, Masaki

    2017-01-01

    Extracting a cause-and-effect structure from the physical world is an important demand for animals living in dynamically changing environments. Human perceptual and cognitive mechanisms are known to be sensitive and tuned to detect and interpret such causal structures. In contrast to rigorous investigations of human causal perception, the phylogenetic roots of this perception are not well understood. In the present study, we aimed to investigate the susceptibility of nonhuman animals to mechanical causality by testing whether chimpanzees perceived an illusion called causal capture (Scholl & Nakayama, 2002). Causal capture is a phenomenon in which a type of bistable visual motion of objects is perceived as causal collision due to a bias from a co-occurring causal event. In our experiments, we assessed the susceptibility of perception of a bistable stream/bounce motion event to a co-occurring causal event in chimpanzees. The results show that, similar to in humans, causal "bounce" percepts were significantly increased in chimpanzees with the addition of a task-irrelevant causal bounce event that was synchronously presented. These outcomes suggest that the perceptual mechanisms behind the visual interpretation of causal structures in the environment are evolutionarily shared between human and nonhuman animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Common variants associated with plasma triglycerides and risk for coronary artery disease.

    PubMed

    Do, Ron; Willer, Cristen J; Schmidt, Ellen M; Sengupta, Sebanti; Gao, Chi; Peloso, Gina M; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L; Mora, Samia; Beckmann, Jacques S; Bragg-Gresham, Jennifer L; Chang, Hsing-Yi; Demirkan, Ayşe; Den Hertog, Heleen M; Donnelly, Louise A; Ehret, Georg B; Esko, Tõnu; Feitosa, Mary F; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M; Freitag, Daniel F; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U; Johansson, Asa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K E; Mangino, Massimo; Mihailov, Evelin; Montasser, May E; Müller-Nurasyid, Martina; Nolte, Ilja M; O'Connell, Jeffrey R; Palmer, Cameron D; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M; Thorleifsson, Gudmar; Van den Herik, Evita G; Voight, Benjamin F; Volcik, Kelly A; Waite, Lindsay L; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F; Bolton, Jennifer L; Bonnycastle, Lori L; Brambilla, Paolo; Burnett, Mary S; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S F; Döring, Angela; Elliott, Paul; Epstein, Stephen E; Eyjolfsson, Gudmundur Ingi; Gigante, Bruna; Goodarzi, Mark O; Grallert, Harald; Gravito, Martha L; Groves, Christopher J; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R; Kaleebu, Pontiano; Kastelein, John J P; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J F; Mach, François; McArdle, Wendy L; Meisinger, Christa; Mitchell, Braxton D; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V M; Nsubuga, Rebecca N; Olafsson, Isleifur; Ong, Ken K; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J; Reilly, Muredach P; Ridker, Paul M; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stančáková, Alena; Stirrups, Kathleen; Swift, Amy J; Tiret, Laurence; Uitterlinden, Andre G; van Pelt, L Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F; Young, Elizabeth H; Zhao, Jing Hua; Adair, Linda S; Arveiler, Dominique; Assimes, Themistocles L; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O; Boomsma, Dorret I; Borecki, Ingrid B; Bornstein, Stefan R; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C; Chen, Yii-Der Ida; Collins, Francis S; Cooper, Richard S; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B; Gieger, Christian; Groop, Leif C; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B; Hingorani, Aroon; Hirschhorn, Joel N; Hofman, Albert; Hovingh, G Kees; Hsiung, Chao Agnes; Humphries, Steve E; Hunt, Steven C; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S; Koudstaal, Peter J; Krauss, Ronald M; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O; Laakso, Markku; Lakka, Timo A; Lind, Lars; Lindgren, Cecilia M; Martin, Nicholas G; März, Winfried; McCarthy, Mark I; McKenzie, Colin A; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D; Munroe, Patricia B; Njølstad, Inger; Pedersen, Nancy L; Power, Chris; Pramstaller, Peter P; Price, Jackie F; Psaty, Bruce M; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K; Saramies, Jouko; Schwarz, Peter E H; Sheu, Wayne H-H; Shuldiner, Alan R; Siegbahn, Agneta; Spector, Tim D; Stefansson, Kari; Strachan, David P; Tayo, Bamidele O; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J; Whitfield, John B; Wolffenbuttel, Bruce H R; Altshuler, David; Ordovas, Jose M; Boerwinkle, Eric; Palmer, Colin N A; Thorsteinsdottir, Unnur; Chasman, Daniel I; Rotter, Jerome I; Franks, Paul W; Ripatti, Samuli; Cupples, L Adrienne; Sandhu, Manjinder S; Rich, Stephen S; Boehnke, Michael; Deloukas, Panos; Mohlke, Karen L; Ingelsson, Erik; Abecasis, Goncalo R; Daly, Mark J; Neale, Benjamin M; Kathiresan, Sekar

    2013-11-01

    Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.

  4. Common variants associated with plasma triglycerides and risk for coronary artery disease

    PubMed Central

    Do, Ron; Willer, Cristen J.; Schmidt, Ellen M.; Sengupta, Sebanti; Gao, Chi; Peloso, Gina M.; Gustafsson, Stefan; Kanoni, Stavroula; Ganna, Andrea; Chen, Jin; Buchkovich, Martin L.; Mora, Samia; Beckmann, Jacques S.; Bragg-Gresham, Jennifer L.; Chang, Hsing-Yi; Demirkan, Ayşe; Den Hertog, Heleen M.; Donnelly, Louise A.; Ehret, Georg B.; Esko, Tõnu; Feitosa, Mary F.; Ferreira, Teresa; Fischer, Krista; Fontanillas, Pierre; Fraser, Ross M.; Freitag, Daniel F.; Gurdasani, Deepti; Heikkilä, Kauko; Hyppönen, Elina; Isaacs, Aaron; Jackson, Anne U.; Johansson, Åsa; Johnson, Toby; Kaakinen, Marika; Kettunen, Johannes; Kleber, Marcus E.; Li, Xiaohui; Luan, Jian'an; Lyytikäinen, Leo-Pekka; Magnusson, Patrik K.E.; Mangino, Massimo; Mihailov, Evelin; Montasser, May E.; Müller-Nurasyid, Martina; Nolte, Ilja M.; O'Connell, Jeffrey R.; Palmer, Cameron D.; Perola, Markus; Petersen, Ann-Kristin; Sanna, Serena; Saxena, Richa; Service, Susan K.; Shah, Sonia; Shungin, Dmitry; Sidore, Carlo; Song, Ci; Strawbridge, Rona J.; Surakka, Ida; Tanaka, Toshiko; Teslovich, Tanya M.; Thorleifsson, Gudmar; Van den Herik, Evita G.; Voight, Benjamin F.; Volcik, Kelly A.; Waite, Lindsay L.; Wong, Andrew; Wu, Ying; Zhang, Weihua; Absher, Devin; Asiki, Gershim; Barroso, Inês; Been, Latonya F.; Bolton, Jennifer L.; Bonnycastle, Lori L; Brambilla, Paolo; Burnett, Mary S.; Cesana, Giancarlo; Dimitriou, Maria; Doney, Alex S.F.; Döring, Angela; Elliott, Paul; Epstein, Stephen E.; Eyjolfsson, Gudmundur Ingi; Gigante, Bruna; Goodarzi, Mark O.; Grallert, Harald; Gravito, Martha L.; Groves, Christopher J.; Hallmans, Göran; Hartikainen, Anna-Liisa; Hayward, Caroline; Hernandez, Dena; Hicks, Andrew A.; Holm, Hilma; Hung, Yi-Jen; Illig, Thomas; Jones, Michelle R.; Kaleebu, Pontiano; Kastelein, John J.P.; Khaw, Kay-Tee; Kim, Eric; Klopp, Norman; Komulainen, Pirjo; Kumari, Meena; Langenberg, Claudia; Lehtimäki, Terho; Lin, Shih-Yi; Lindström, Jaana; Loos, Ruth J.F.; Mach, François; McArdle, Wendy L; Meisinger, Christa; Mitchell, Braxton D.; Müller, Gabrielle; Nagaraja, Ramaiah; Narisu, Narisu; Nieminen, Tuomo V.M.; Nsubuga, Rebecca N.; Olafsson, Isleifur; Ong, Ken K.; Palotie, Aarno; Papamarkou, Theodore; Pomilla, Cristina; Pouta, Anneli; Rader, Daniel J.; Reilly, Muredach P.; Ridker, Paul M.; Rivadeneira, Fernando; Rudan, Igor; Ruokonen, Aimo; Samani, Nilesh; Scharnagl, Hubert; Seeley, Janet; Silander, Kaisa; Stančáková, Alena; Stirrups, Kathleen; Swift, Amy J.; Tiret, Laurence; Uitterlinden, Andre G.; van Pelt, L. Joost; Vedantam, Sailaja; Wainwright, Nicholas; Wijmenga, Cisca; Wild, Sarah H.; Willemsen, Gonneke; Wilsgaard, Tom; Wilson, James F.; Young, Elizabeth H.; Zhao, Jing Hua; Adair, Linda S.; Arveiler, Dominique; Assimes, Themistocles L.; Bandinelli, Stefania; Bennett, Franklyn; Bochud, Murielle; Boehm, Bernhard O.; Boomsma, Dorret I.; Borecki, Ingrid B.; Bornstein, Stefan R.; Bovet, Pascal; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chambers, John C.; Chen, Yii-Der Ida; Collins, Francis S.; Cooper, Richard S.; Danesh, John; Dedoussis, George; de Faire, Ulf; Feranil, Alan B.; Ferrières, Jean; Ferrucci, Luigi; Freimer, Nelson B.; Gieger, Christian; Groop, Leif C.; Gudnason, Vilmundur; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hingorani, Aroon; Hirschhorn, Joel N.; Hofman, Albert; Hovingh, G. Kees; Hsiung, Chao Agnes; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Iribarren, Carlos; Järvelin, Marjo-Riitta; Jula, Antti; Kähönen, Mika; Kaprio, Jaakko; Kesäniemi, Antero; Kivimaki, Mika; Kooner, Jaspal S.; Koudstaal, Peter J.; Krauss, Ronald M.; Kuh, Diana; Kuusisto, Johanna; Kyvik, Kirsten O.; Laakso, Markku; Lakka, Timo A.; Lind, Lars; Lindgren, Cecilia M.; Martin, Nicholas G.; März, Winfried; McCarthy, Mark I.; McKenzie, Colin A.; Meneton, Pierre; Metspalu, Andres; Moilanen, Leena; Morris, Andrew D.; Munroe, Patricia B.; Njølstad, Inger; Pedersen, Nancy L.; Power, Chris; Pramstaller, Peter P.; Price, Jackie F.; Psaty, Bruce M.; Quertermous, Thomas; Rauramaa, Rainer; Saleheen, Danish; Salomaa, Veikko; Sanghera, Dharambir K.; Saramies, Jouko; Schwarz, Peter E.H.; Sheu, Wayne H-H; Shuldiner, Alan R.; Siegbahn, Agneta; Spector, Tim D.; Stefansson, Kari; Strachan, David P.; Tayo, Bamidele O.; Tremoli, Elena; Tuomilehto, Jaakko; Uusitupa, Matti; van Duijn, Cornelia M.; Vollenweider, Peter; Wallentin, Lars; Wareham, Nicholas J.; Whitfield, John B.; Wolffenbuttel, Bruce H.R.; Altshuler, David; Ordovas, Jose M.; Boerwinkle, Eric; Palmer, Colin N.A.; Thorsteinsdottir, Unnur; Chasman, Daniel I.; Rotter, Jerome I.; Franks, Paul W.; Ripatti, Samuli; Cupples, L. Adrienne; Sandhu, Manjinder S.; Rich, Stephen S.; Boehnke, Michael; Deloukas, Panos; Mohlke, Karen L.; Ingelsson, Erik; Abecasis, Goncalo R.; Daly, Mark J.; Neale, Benjamin M.; Kathiresan, Sekar

    2013-01-01

    Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiologic studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P<5×10−8 for each) to examine the role of triglycerides on risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglycerides, and show that the direction and magnitude of both are factors in determining CAD risk. Second, we consider loci with only a strong magnitude of association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol, a polymorphism's strength of effect on triglycerides is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD. PMID:24097064

  5. Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study

    PubMed Central

    Price, T. Ryan; De Pablo-Fernandez, Eduardo; Haycock, Philip C.; Schrag, Anette; Lees, Andrew J.; Hardy, John; Singleton, Andrew; Nalls, Mike A.; Pearce, Neil; Wood, Nicholas W.

    2017-01-01

    Background Both positive and negative associations between higher body mass index (BMI) and Parkinson disease (PD) have been reported in observational studies, but it has been difficult to establish causality because of the possibility of residual confounding or reverse causation. To our knowledge, Mendelian randomisation (MR)—the use of genetic instrumental variables (IVs) to explore causal effects—has not previously been used to test the effect of BMI on PD. Methods and findings Two-sample MR was undertaken using genome-wide association (GWA) study data. The associations between the genetic instruments and BMI were obtained from the GIANT consortium and consisted of the per-allele difference in mean BMI for 77 independent variants that reached genome-wide significance. The per-allele difference in log-odds of PD for each of these variants was estimated from a recent meta-analysis, which included 13,708 cases of PD and 95,282 controls. The inverse-variance weighted method was used to estimate a pooled odds ratio (OR) for the effect of a 5-kg/m2 higher BMI on PD. Evidence of directional pleiotropy averaged across all variants was sought using MR–Egger regression. Frailty simulations were used to assess whether causal associations were affected by mortality selection. A combined genetic IV expected to confer a lifetime exposure of 5-kg/m2 higher BMI was associated with a lower risk of PD (OR 0.82, 95% CI 0.69–0.98). MR–Egger regression gave similar results, suggesting that directional pleiotropy was unlikely to be biasing the result (intercept 0.002; p = 0.654). However, the apparent protective influence of higher BMI could be at least partially induced by survival bias in the PD GWA study, as demonstrated by frailty simulations. Other important limitations of this application of MR include the inability to analyse non-linear associations, to undertake subgroup analyses, and to gain mechanistic insights. Conclusions In this large study using two-sample MR, we found that variants known to influence BMI had effects on PD in a manner consistent with higher BMI leading to lower risk of PD. The mechanism underlying this apparent protective effect warrants further study. PMID:28609445

  6. Neurotoxicity of cancer chemotherapy☆

    PubMed Central

    Yang, Miyoung; Moon, Changjong

    2013-01-01

    There is accumulating clinical evidence that chemotherapeutic agents induce neurological side effects, including memory deficits and mood disorders, in cancer patients who have undergone chemotherapeutic treatments. This review focuses on chemotherapy-induced neurodegeneration and hippocampal dysfunctions and related mechanisms as measured by in vivo and in vitro approaches. These investigations are helpful in determining how best to further explore the causal mechanisms of chemotherapy-induced neurological side effects and in providing direction for the future development of novel optimized chemotherapeutic agents. PMID:25206457

  7. Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: a resting-state functional MR imaging study with granger causality analysis

    PubMed Central

    Zhang, Xin Yuan; Wang, Yun Fei; Liu, Ya; Zheng, Gang; Lu, Guang Ming; Zhang, Long Jiang; Han, Ying

    2017-01-01

    Neuroimaging studies have demonstrated that the major depression disorder would increase the risk of dementia in the older with amnestic cognitive impairment. We used granger causality analysis algorithm to explore the amygdala- and hippocampus-based directional connectivity patterns in 12 patients with major depression disorder and amnestic cognitive impairment (mean age: 69.5 ± 10.3 years), 13 amnestic cognitive impairment patients (mean age: 72.7 ± 8.5 years) and 14 healthy controls (mean age: 64.7 ± 7.0 years). Compared with amnestic cognitive impairment patients and control groups respectively, the patients with both major depression disorder and amnestic cognitive impairment displayed increased effective connectivity from the right amygdala to the right lingual and calcarine gyrus, as well as to the bilateral supplementary motor areas. Meanwhile, the patients with both major depression disorder and amnestic cognitive impairment had enhanced effective connectivity from the left superior parietal gyrus, superior and middle occipital gyrus to the left hippocampus, the z values of which was also correlated with the scores of mini-mental state examination and auditory verbal learning test-immediate recall. Our findings indicated that the directional effective connectivity of right amygdala - occipital-parietal lobe – left hippocampus might be the pathway by which major depression disorder inhibited the brain activity in patients with amnestic cognitive impairment. PMID:28212570

  8. Altered amygdala and hippocampus effective connectivity in mild cognitive impairment patients with depression: a resting-state functional MR imaging study with granger causality analysis.

    PubMed

    Zheng, Li Juan; Yang, Gui Fen; Zhang, Xin Yuan; Wang, Yun Fei; Liu, Ya; Zheng, Gang; Lu, Guang Ming; Zhang, Long Jiang; Han, Ying

    2017-04-11

    Neuroimaging studies have demonstrated that the major depression disorder would increase the risk of dementia in the older with amnestic cognitive impairment. We used granger causality analysis algorithm to explore the amygdala- and hippocampus-based directional connectivity patterns in 12 patients with major depression disorder and amnestic cognitive impairment (mean age: 69.5 ± 10.3 years), 13 amnestic cognitive impairment patients (mean age: 72.7 ± 8.5 years) and 14 healthy controls (mean age: 64.7 ± 7.0 years). Compared with amnestic cognitive impairment patients and control groups respectively, the patients with both major depression disorder and amnestic cognitive impairment displayed increased effective connectivity from the right amygdala to the right lingual and calcarine gyrus, as well as to the bilateral supplementary motor areas. Meanwhile, the patients with both major depression disorder and amnestic cognitive impairment had enhanced effective connectivity from the left superior parietal gyrus, superior and middle occipital gyrus to the left hippocampus, the z values of which was also correlated with the scores of mini-mental state examination and auditory verbal learning test-immediate recall. Our findings indicated that the directional effective connectivity of right amygdala - occipital-parietal lobe - left hippocampus might be the pathway by which major depression disorder inhibited the brain activity in patients with amnestic cognitive impairment.

  9. The Anxious and Ambivalent Partisan

    PubMed Central

    Groenendyk, Eric

    2016-01-01

    Affective Intelligence Theory (AIT) asserts that anxiety reduces the effect of party identification on candidate preferences (Marcus, Neuman, and MacKuen 2000), but recent studies have raised doubts about this causal claim. Rather than functioning as a moderator of party identification, perhaps anxiety has a direct effect on preferences, or perhaps the relationship is reversed and preferences drive emotions (Ladd and Lenz 2008). Alternatively, Marcus et al.’s measure of anxiety may simply be capturing partisan ambivalence, so the posited relationship is spurious (Lavine, Johnston, and Steenbergen 2012). This paper addresses each of these questions by examining the effect of experimentally induced emotions on the types of considerations that came to mind when a national sample of adult Americans was asked what they liked and disliked about Barack Obama. By directly manipulating anxiety, this experiment avoids the causal ambiguity plaguing this debate and ascertains the true nature of the relationship between anxiety and ambivalence. Consistent with AIT, anxiety led respondents to recall more contemporary considerations, whereas enthusiasm brought to mind more long-standing considerations. Because the political context at the time of the study (fall 2013) was a very tumultuous time for the Obama administration, the increased accessibility of contemporary considerations led Democratic participants to experience more ambivalence in the anxiety condition. This effect was concentrated among those Democrats who were exposed to the most newspaper coverage. PMID:27274573

  10. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium

    PubMed Central

    Sharp, Gemma C.; Salas, Lucas A.; Monnereau, Claire; Allard, Catherine; Yousefi, Paul; Everson, Todd M.; Bohlin, Jon; Xu, Zongli; Huang, Rae-Chi; Reese, Sarah E.; Xu, Cheng-Jian; Baïz, Nour; Hoyo, Cathrine; Agha, Golareh; Roy, Ritu; Holloway, John W.; Ghantous, Akram; Merid, Simon K.; Bakulski, Kelly M.; Küpers, Leanne K.; Zhang, Hongmei; Richmond, Rebecca C.; Page, Christian M.; Duijts, Liesbeth; Lie, Rolv T.; Melton, Phillip E.; Vonk, Judith M.; Nohr, Ellen A.; Williams-DeVane, ClarLynda; Huen, Karen; Rifas-Shiman, Sheryl L.; Ruiz-Arenas, Carlos; Gonseth, Semira; Rezwan, Faisal I.; Herceg, Zdenko; Ekström, Sandra; Croen, Lisa; Falahi, Fahimeh; Perron, Patrice; Karagas, Margaret R.; Quraishi, Bilal M.; Suderman, Matthew; Magnus, Maria C.; Jaddoe, Vincent W.V.; Taylor, Jack A.; Anderson, Denise; Zhao, Shanshan; Smit, Henriette A.; Josey, Michele J.; Bradman, Asa; Baccarelli, Andrea A.; Bustamante, Mariona; Håberg, Siri E.; Pershagen, Göran; Hertz-Picciotto, Irva; Newschaffer, Craig; Corpeleijn, Eva; Bouchard, Luigi; Lawlor, Debbie A.; Maguire, Rachel L.; Barcellos, Lisa F.; Smith, George Davey; Eskenazi, Brenda; Karmaus, Wilfried; Marsit, Carmen J.; Hivert, Marie-France; Snieder, Harold; Fallin, M. Daniele; Melén, Erik; Munthe-Kaas, Monica C.; Arshad, Hasan; Wiemels, Joseph L.; Annesi-Maesano, Isabella; Vrijheid, Martine; Oken, Emily; Holland, Nina; Murphy, Susan K.; Sørensen, Thorkild I.A.; Koppelman, Gerard H.; Newnham, John P.; Wilcox, Allen J.; Nystad, Wenche; London, Stephanie J.; Felix, Janine F.; Relton, Caroline L.

    2017-01-01

    Pre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we meta-analysed the association between pre-pregnancy maternal BMI and methylation at over 450,000 sites in newborn blood DNA, across 19 cohorts (9,340 mother-newborn pairs). We attempted to infer causality by comparing the effects of maternal versus paternal BMI and incorporating genetic variation. In four additional cohorts (1,817 mother-child pairs), we meta-analysed the association between maternal BMI at the start of pregnancy and blood methylation in adolescents. In newborns, maternal BMI was associated with small (<0.2% per BMI unit (1 kg/m2), P < 1.06 × 10−7) methylation variation at 9,044 sites throughout the genome. Adjustment for estimated cell proportions greatly attenuated the number of significant CpGs to 104, including 86 sites common to the unadjusted model. At 72/86 sites, the direction of the association was the same in newborns and adolescents, suggesting persistence of signals. However, we found evidence for a6causal intrauterine effect of maternal BMI on newborn methylation at just 8/86 sites. In conclusion, this well-powered analysis identified robust associations between maternal adiposity and variations in newborn blood DNA methylation, but these small effects may be better explained by genetic or lifestyle factors than a causal intrauterine mechanism. This highlights the need for large-scale collaborative approaches and the application of causal inference techniques in epigenetic epidemiology. PMID:29016858

  11. Granger Causality Testing with Intensive Longitudinal Data.

    PubMed

    Molenaar, Peter C M

    2018-06-01

    The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.

  12. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization

    PubMed Central

    Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li

    2014-01-01

    Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158

  13. Three Cs in measurement models: causal indicators, composite indicators, and covariates.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2011-09-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.

  14. Cognitive Demand Differences in Causal Inferences: Characters' Plans Are More Difficult to Comprehend than Physical Causation

    ERIC Educational Resources Information Center

    Shears, Connie; Miller, Vanessa; Ball, Megan; Hawkins, Amanda; Griggs, Janna; Varner, Andria

    2007-01-01

    Readers may draw knowledge-based inferences to connect sentences in text differently depending on the knowledge domain being accessed. Most prior research has focused on the direction of the causal explanation (predictive vs. backward) without regard to the knowledge domain drawn on to support comprehension. We suggest that less cognitive effort…

  15. Learning to make things happen: Infants' observational learning of social and physical causal events.

    PubMed

    Waismeyer, Anna; Meltzoff, Andrew N

    2017-10-01

    Infants learn about cause and effect through hands-on experience; however, they also can learn about causality simply from observation. Such observational causal learning is a central mechanism by which infants learn from and about other people. Across three experiments, we tested infants' observational causal learning of both social and physical causal events. Experiment 1 assessed infants' learning of a physical event in the absence of visible spatial contact between the causes and effects. Experiment 2 developed a novel paradigm to assess whether infants could learn about a social causal event from third-party observation of a social interaction between two people. Experiment 3 compared learning of physical and social events when the outcomes occurred probabilistically (happening some, but not all, of the time). Infants demonstrated significant learning in all three experiments, although learning about probabilistic cause-effect relations was most difficult. These findings about infant observational causal learning have implications for children's rapid nonverbal learning about people, things, and their causal relations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  17. Can chance cause cancer? A causal consideration.

    PubMed

    Stensrud, Mats Julius; Strohmaier, Susanne; Valberg, Morten; Aalen, Odd Olai

    2017-04-01

    The role of randomness, environment and genetics in cancer development is debated. We approach the discussion by using the potential outcomes framework for causal inference. By briefly considering the underlying assumptions, we suggest that the antagonising views arise due to estimation of substantially different causal effects. These effects may be hard to interpret, and the results cannot be immediately compared. Indeed, it is not clear whether it is possible to define a causal effect of chance at all. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Spatio-temporal Granger causality: a new framework

    PubMed Central

    Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng

    2015-01-01

    That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924

  20. Chicken or the Egg: Longitudinal Analysis of the Causal Dilemma between Goal Orientation, Self-Regulation and Cognitive Processing Strategies in Higher Education

    ERIC Educational Resources Information Center

    De Clercq, Mikael; Galand, Benoit; Frenay, Mariane

    2013-01-01

    The aim of this study was to investigate the direction of the effect between goal orientation, self-regulation and deep processing strategies in order to understand the impact of these three constructs on students' achievement. The participants were 110 freshmen from the engineering faculty at the Universite catholique de Louvain in Belgium, who…

  1. A decision analysis tool for the assessment of posterior fossa tumour surgery outcomes in children--the "Liverpool Neurosurgical Complication Causality Assessment Tool".

    PubMed

    Zakaria, Rasheed; Ellenbogen, Jonathan; Graham, Catherine; Pizer, Barry; Mallucci, Conor; Kumar, Ram

    2013-08-01

    Complications may occur following posterior fossa tumour surgery in children. Such complications are subjectively and inconsistently reported even though they may have significant long-term behavioural and cognitive consequences for the child. This makes comparison of surgeons, programmes and treatments problematic. We have devised a causality tool for assessing if an adverse event after surgery can be classified as a surgical complication using a series of simple questions, based on a tool used in assessing adverse drug reactions. This tool, which we have called the "Liverpool Neurosurgical Complication Causality Assessment Tool", was developed by reviewing a series of ten posterior fossa tumour cases with a panel of neurosurgery, neurology, oncology and neuropsychology specialists working in a multidisciplinary paediatric tumour treatment programme. We have demonstrated its use and hope that it may improve reliability between different assessors both in evaluating the outcomes of existing programmes and treatments as well as aiding in trials which may directly compare the effects of surgical and medical treatments.

  2. Mechanisms and mediation in survival analysis: towards an integrated analytical framework.

    PubMed

    Pratschke, Jonathan; Haase, Trutz; Comber, Harry; Sharp, Linda; de Camargo Cancela, Marianna; Johnson, Howard

    2016-02-29

    A wide-ranging debate has taken place in recent years on mediation analysis and causal modelling, raising profound theoretical, philosophical and methodological questions. The authors build on the results of these discussions to work towards an integrated approach to the analysis of research questions that situate survival outcomes in relation to complex causal pathways with multiple mediators. The background to this contribution is the increasingly urgent need for policy-relevant research on the nature of inequalities in health and healthcare. The authors begin by summarising debates on causal inference, mediated effects and statistical models, showing that these three strands of research have powerful synergies. They review a range of approaches which seek to extend existing survival models to obtain valid estimates of mediation effects. They then argue for an alternative strategy, which involves integrating survival outcomes within Structural Equation Models via the discrete-time survival model. This approach can provide an integrated framework for studying mediation effects in relation to survival outcomes, an issue of great relevance in applied health research. The authors provide an example of how these techniques can be used to explore whether the social class position of patients has a significant indirect effect on the hazard of death from colon cancer. The results suggest that the indirect effects of social class on survival are substantial and negative (-0.23 overall). In addition to the substantial direct effect of this variable (-0.60), its indirect effects account for more than one quarter of the total effect. The two main pathways for this indirect effect, via emergency admission (-0.12), on the one hand, and hospital caseload, on the other, (-0.10) are of similar size. The discrete-time survival model provides an attractive way of integrating time-to-event data within the field of Structural Equation Modelling. The authors demonstrate the efficacy of this approach in identifying complex causal pathways that mediate the effects of a socio-economic baseline covariate on the hazard of death from colon cancer. The results show that this approach has the potential to shed light on a class of research questions which is of particular relevance in health research.

  3. Effect of a community-based diabetes self-management empowerment program on mental health-related quality of life: a causal mediation analysis from a randomized controlled trial.

    PubMed

    Sugiyama, Takehiro; Steers, William Neil; Wenger, Neil S; Duru, Obidiugwu Kenrik; Mangione, Carol M

    2015-03-22

    There is a paucity of evidence supporting the effectiveness of diabetes self-management education (DSME) in improving mental health-related quality of life (HRQoL) for African American and Latinos. Also, among studies supporting the favorable effects of DSME on mental HRQoL, the direct effect of DSME that is independent of improved glycemic control has never been investigated. The objectives of this study were to investigate the effect of community-based DSME intervention targeting empowerment on mental HRQoL and to determine whether the effect is direct or mediated by glycemic control. We conducted secondary analyses of data from the Diabetes Self-Care Study, a randomized controlled trial of a community-based DSME intervention. Study participants (n = 516) were African Americans and Latinos 55 years or older with poorly controlled diabetes (HbA1c ≥ 8.0%) recruited from senior centers and churches in Los Angeles. The intervention group received six weekly small-group self-care sessions based on the empowerment model. The control group received six lectures on unrelated geriatrics topics. The primary outcome variable in this secondary analysis was the change in Mental Component Summary score (MCS-12) from the SF-12 Health Survey between baseline and six-month follow-up. We used the change in HbA1c during the study period as the main mediator of interest in our causal mediation analysis. Additionally, possible mediations via social support and perceived empowerment attributable to the program were examined. MCS-12 increased by 1.4 points on average in the intervention group and decreased by 0.2 points in the control group (difference-in-change: 1.6 points, 95% CI: 0.1 to 3.2). In the causal mediation analysis, the intervention had a direct effect on MCS-12 improvement (1.7 points, 95% CI: 0.2 to 3.2) with no indirect effects mediated via HbA1c change (-0.1 points, 95% CI: -0.4 to 0.1), social support (0.1 points), and perception of empowerment (0.1 points). This Diabetes Self-Care Study empowerment intervention had a modest positive impact on mental HRQoL not mediated by the improvement in glycemic control, as well as social support and perception of empowerment. This favorable effect on mental HRQoL may be a separate clinical advantage of this DSME intervention. ClinicalTrial.gov NCT00263835.

  4. Diverging Mobility Trajectories: Grandparent Effects on Educational Attainment in One- and Two-Parent Families in the United States.

    PubMed

    Song, Xi

    2016-12-01

    In recent years, sociological research investigating grandparent effects in three-generation social mobility has proliferated, mostly focusing on the question of whether grandparents have a direct effect on their grandchildren's social attainment. This study hypothesizes that prior research has overlooked family structure as an important factor that moderates grandparents' direct effects. Capitalizing on a counterfactual causal framework and multigenerational data from the Panel Study of Income Dynamics, this study examines the direct effect of grandparents' years of education on grandchildren's years of educational attainment and heterogeneity in the effects associated with family structure. The results show that for both African Americans and whites, grandparent effects are the strongest for grandchildren who grew up in two-parent families, followed by those in single-parent families with divorced parents. The weakest effects were marked in single-parent families with unmarried parents. These findings suggest that the increasing diversity of family forms has led to diverging social mobility trajectories for families across generations.

  5. Mendelian randomisation in cardiovascular research: an introduction for clinicians

    PubMed Central

    Bennett, Derrick A; Holmes, Michael V

    2017-01-01

    Understanding the causal role of biomarkers in cardiovascular and other diseases is crucial in order to find effective approaches (including pharmacological therapies) for disease treatment and prevention. Classical observational studies provide naïve estimates of the likely role of biomarkers in disease development; however, such studies are prone to bias. This has direct relevance for drug development as if drug targets track to non-causal biomarkers, this can lead to expensive failure of these drugs in phase III randomised controlled trials. In an effort to provide a more reliable indication of the likely causal role of a biomarker in the development of disease, Mendelian randomisation studies are increasingly used, and this is facilitated by the availability of large-scale genetic data. We conducted a narrative review in order to provide a description of the utility of Mendelian randomisation for clinicians engaged in cardiovascular research. We describe the rationale and provide a basic description of the methods and potential limitations of Mendelian randomisation. We give examples from the literature where Mendelian randomisation has provided pivotal information for drug discovery including predicting efficacy, informing on target-mediated adverse effects and providing potential new evidence for drug repurposing. The variety of the examples presented illustrates the importance of Mendelian randomisation in order to prioritise drug targets for cardiovascular research. PMID:28596306

  6. Bayes and blickets: Effects of knowledge on causal induction in children and adults

    PubMed Central

    Griffiths, Thomas L.; Sobel, David M.; Tenenbaum, Joshua B.; Gopnik, Alison

    2011-01-01

    People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayesian inference. Five studies explored the predictions of this account with adults and 4-year-olds, using tasks in which participants learned about the causal properties of a set of objects. The studies varied the two factors that our Bayesian approach predicted should be relevant to causal induction: the prior probability with which causal relations exist, and the assumption of a deterministic or a probabilistic relation between cause and effect. Adults’ judgments (Experiments 1, 2, and 4) were in close correspondence with the quantitative predictions of the model, and children’s judgments (Experiments 3 and 5) agreed qualitatively with this account. PMID:21972897

  7. Estimation and Identification of the Complier Average Causal Effect Parameter in Education RCTs

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley S.

    2011-01-01

    In randomized control trials (RCTs) in the education field, the complier average causal effect (CACE) parameter is often of policy interest, because it pertains to intervention effects for students who receive a meaningful dose of treatment services. This article uses a causal inference and instrumental variables framework to examine the…

  8. Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex

    PubMed Central

    Hsu, Wan-Yu; Zanto, Theodore P.; Anguera, Joaquin A.; Lin, Yung-Yang; Gazzaley, Adam

    2015-01-01

    Background The dorsolateral prefrontal cortex (DLPFC) has been proposed to play an important role in neural processes that underlie multitasking performance. However, this claim is underexplored in terms of direct causal evidence. Objective The current study aimed to delineate the causal involvement of the DLPFC during multitasking by modulating neural activity with transcranial direct current stimulation (tDCS) prior to engagement in a demanding multitasking paradigm. Methods The study is a single-blind, crossover, sham-controlled experiment. Anodal tDCS or sham tDCS was applied over left DLPFC in forty-one healthy young adults (aged 18–35 years) immediately before they engaged in a 3-D video game designed to assess multitasking performance. Participants were separated into three subgroups: real-sham (i.e., real tDCS in the first session, followed by sham tDCS in the second session one hour later), sham-real (sham tDCS first session, real tDCS second session), and sham-sham (sham tDCS in both sessions). Results The real-sham group showed enhanced multitasking performance and decreased multitasking cost during the second session, compared to first session, suggesting delayed cognitive benefits of tDCS. Interestingly, performance benefits were observed only for multitasking and not on a single-task version of the game. No significant changes were found between the first and second sessions for either the sham-real or the sham-sham groups. Conclusions These results suggest a causal role of left prefrontal cortex in facilitating the simultaneous performance of more than one task, or multitasking. Moreover, these findings reveal that anodal tDCS may have delayed benefits that reflect an enhanced rate of learning. PMID:26073148

  9. Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex.

    PubMed

    Hsu, Wan-Yu; Zanto, Theodore P; Anguera, Joaquin A; Lin, Yung-Yang; Gazzaley, Adam

    2015-08-01

    The dorsolateral prefrontal cortex (DLPFC) has been proposed to play an important role in neural processes that underlie multitasking performance. However, this claim is underexplored in terms of direct causal evidence. The current study aimed to delineate the causal involvement of the DLPFC during multitasking by modulating neural activity with transcranial direct current stimulation (tDCS) prior to engagement in a demanding multitasking paradigm. The study is a single-blind, crossover, sham-controlled experiment. Anodal tDCS or sham tDCS was applied over left DLPFC in forty-one healthy young adults (aged 18-35 years) immediately before they engaged in a 3-D video game designed to assess multitasking performance. Participants were separated into three subgroups: real-sham (i.e., real tDCS in the first session, followed by sham tDCS in the second session 1 h later), sham-real (sham tDCS first session, real tDCS second session), and sham-sham (sham tDCS in both sessions). The real-sham group showed enhanced multitasking performance and decreased multitasking cost during the second session, compared to first session, suggesting delayed cognitive benefits of tDCS. Interestingly, performance benefits were observed only for multitasking and not on a single-task version of the game. No significant changes were found between the first and second sessions for either the sham-real or the sham-sham groups. These results suggest a causal role of left prefrontal cortex in facilitating the simultaneous performance of more than one task, or multitasking. Moreover, these findings reveal that anodal tDCS may have delayed benefits that reflect an enhanced rate of learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The cradle of causal reasoning: newborns' preference for physical causality.

    PubMed

    Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio; Simion, Francesca

    2013-05-01

    Perception of mechanical (i.e. physical) causality, in terms of a cause-effect relationship between two motion events, appears to be a powerful mechanism in our daily experience. In spite of a growing interest in the earliest causal representations, the role of experience in the origin of this sensitivity is still a matter of dispute. Here, we asked the question about the innate origin of causal perception, never tested before at birth. Three experiments were carried out to investigate sensitivity at birth to some visual spatiotemporal cues present in a launching event. Newborn babies, only a few hours old, showed that they significantly preferred a physical causality event (i.e. Michotte's Launching effect) when matched to a delay event (i.e. a delayed launching; Experiment 1) or to a non-causal event completely identical to the causal one except for the order of the displacements of the two objects involved which was swapped temporally (Experiment 3). This preference for the launching event, moreover, also depended on the continuity of the trajectory between the objects involved in the event (Experiment 2). These results support the hypothesis that the human system possesses an early available, possibly innate basic mechanism to compute causality, such a mechanism being sensitive to the additive effect of certain well-defined spatiotemporal cues present in the causal event independently of any prior visual experience. © 2013 Blackwell Publishing Ltd.

  11. The differential effect of the teacher-student interpersonal relationship on student outcomes for students with different ethnic backgrounds.

    PubMed

    den Brok, Perry; van Tartwijk, Jan; Wubbels, Theo; Veldman, Ietje

    2010-06-01

    The differential effectiveness of schools and teachers receives a growing interest, but few studies focused on the relevance of student ethnicity for this effectiveness and only a small number of these studies investigated teaching in terms of the teacher-student interpersonal relationship. Furthermore, the methodology employed often restricted researchers to investigating direct effects between variables across large samples of students. This study uses causal modelling to investigate associations between student background characteristics, students' perceptions of the teacher-student interpersonal relationship, and student outcomes, across and within several population subgroups in Dutch secondary multi-ethnic classes. Multi-group structural equation modelling was used to investigate causal paths between variables in four ethnic groups: Dutch (N=387), Turkish first- and second-generation immigrant students (N=267), Moroccan first and second generation (N=364), and Surinamese second-generation students (N=101). Different structural paths were necessary to explain associations between variables in the different (sub) groups. Different amounts of variance in student attitudes could be explained by these variables. The teacher-student interpersonal relationship is more important for students with a non-Dutch background than for students with a Dutch background. Results suggest that the teacher-student relationship is more important for second generation than for first-generation immigrant students. Multi-group causal model analyses can provide a better, more differentiated picture of the associations between student background variables, teacher behaviour, and student outcomes than do more traditional types of analyses.

  12. Rigor, vigor, and the study of health disparities

    PubMed Central

    Adler, Nancy; Bush, Nicole R.; Pantell, Matthew S.

    2012-01-01

    Health disparities research spans multiple fields and methods and documents strong links between social disadvantage and poor health. Associations between socioeconomic status (SES) and health are often taken as evidence for the causal impact of SES on health, but alternative explanations, including the impact of health on SES, are plausible. Studies showing the influence of parents’ SES on their children’s health provide evidence for a causal pathway from SES to health, but have limitations. Health disparities researchers face tradeoffs between “rigor” and “vigor” in designing studies that demonstrate how social disadvantage becomes biologically embedded and results in poorer health. Rigorous designs aim to maximize precision in the measurement of SES and health outcomes through methods that provide the greatest control over temporal ordering and causal direction. To achieve precision, many studies use a single SES predictor and single disease. However, doing so oversimplifies the multifaceted, entwined nature of social disadvantage and may overestimate the impact of that one variable and underestimate the true impact of social disadvantage on health. In addition, SES effects on overall health and functioning are likely to be greater than effects on any one disease. Vigorous designs aim to capture this complexity and maximize ecological validity through more complete assessment of social disadvantage and health status, but may provide less-compelling evidence of causality. Newer approaches to both measurement and analysis may enable enhanced vigor as well as rigor. Incorporating both rigor and vigor into studies will provide a fuller understanding of the causes of health disparities. PMID:23045672

  13. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature.

    PubMed

    Tsonis, Anastasios A; Deyle, Ethan R; May, Robert M; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D; Wang, Geli

    2015-03-17

    As early as 1959, it was hypothesized that an indirect link between solar activity and climate could be mediated by mechanisms controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Nature 183:451-452]. Although the connection between CR and climate remains controversial, a significant body of laboratory evidence has emerged at the European Organization for Nuclear Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635-1647; Kirkby J, et al. (2011) Nature 476(7361):429-433] and elsewhere [Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI (2007) Proc R Soc A 463:385-396; Enghoff MB, Pedersen JOP, Uggerhoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805], demonstrating the theoretical mechanism of this link. In this article, we present an analysis based on convergent cross mapping, which uses observational time series data to directly examine the causal link between CR and year-to-year changes in global temperature. Despite a gross correlation, we find no measurable evidence of a causal effect linking CR to the overall 20th-century warming trend. However, on short interannual timescales, we find a significant, although modest, causal effect between CR and short-term, year-to-year variability in global temperature that is consistent with the presence of nonlinearities internal to the system. Thus, although CR do not contribute measurably to the 20th-century global warming trend, they do appear as a nontraditional forcing in the climate system on short interannual timescales.

  14. The good, the bad, and the timely: how temporal order and moral judgment influence causal selection

    PubMed Central

    Reuter, Kevin; Kirfel, Lara; van Riel, Raphael; Barlassina, Luca

    2014-01-01

    Causal selection is the cognitive process through which one or more elements in a complex causal structure are singled out as actual causes of a certain effect. In this paper, we report on an experiment in which we investigated the role of moral and temporal factors in causal selection. Our results are as follows. First, when presented with a temporal chain in which two human agents perform the same action one after the other, subjects tend to judge the later agent to be the actual cause. Second, the impact of temporal location on causal selection is almost canceled out if the later agent did not violate a norm while the former did. We argue that this is due to the impact that judgments of norm violation have on causal selection—even if the violated norm has nothing to do with the obtaining effect. Third, moral judgments about the effect influence causal selection even in the case in which agents could not have foreseen the effect and did not intend to bring it about. We discuss our findings in connection to recent theories of the role of moral judgment in causal reasoning, on the one hand, and to probabilistic models of temporal location, on the other. PMID:25477851

  15. General dependencies and causality analysis of road traffic fatalities in OECD countries.

    PubMed

    Yaseen, Muhammad Rizwan; Ali, Qamar; Khan, Muhammad Tariq Iqbal

    2018-05-07

    The road traffic accidents were responsible for material and human loss which was equal to 2.8 to 5% of gross national product (GNP). However, literature does not explore the elasticity coefficients and nexus of road traffic fatalities with foreign direct investment, health expenditures, trade openness, mobile subscriptions, the number of researchers in R&D department, and environmental particulate matter. This study filled this research gap by exploring the nexus between road traffic fatalities, foreign direct investment, health expenditures, trade openness, mobile subscriptions, the number of researchers, and environmental particulate matter in Organization for Economic Cooperation and Development (OECD) countries by using panel data from 1995 to 2015. The panel Autoregressive Distributed Lag (ARDL) bound test was used for the detection of cointegration between the variables after checking the stationarity in selected variables with different panel unit root tests. Panel vector error correction model explored the causality of road traffic fatalities, foreign direct investment, PM2.5 in the environment, and trade openness in the long run. Road traffic fatalities showed short run bi-directional causality with foreign direct investment and health expenditures. The short run bi-directional causality was also observed between trade and foreign direct investment and cellular mobile subscriptions and foreign direct investment. The panel fully modified ordinary least square (FMOLS) and panel dynamic ordinary least square (DOLS) showed the 0.947% reduction in road fatalities for 1% increase in the health expenditures in OECD countries. The significant reduction in road fatalities was also observed due to 1% increase in trade openness and researchers in R&D, which implies the importance of trade and research for road safety. It is required to invest in the health sector for the safety of precious human lives like the hospitals with latest medical equipment and improvement in the emergency services in the country. The research and development activities should be enhanced especially for the health and transportation sectors. The trade of environment-friendly technology should be promoted for the protection of environment.

  16. Investigating causal associations between use of nicotine, alcohol, caffeine and cannabis: a two-sample bidirectional Mendelian randomization study.

    PubMed

    Verweij, Karin J H; Treur, Jorien L; Vink, Jacqueline M

    2018-07-01

    Epidemiological studies consistently show co-occurrence of use of different addictive substances. Whether these associations are causal or due to overlapping underlying influences remains an important question in addiction research. Methodological advances have made it possible to use published genetic associations to infer causal relationships between phenotypes. In this exploratory study, we used Mendelian randomization (MR) to examine the causality of well-established associations between nicotine, alcohol, caffeine and cannabis use. Two-sample MR was employed to estimate bidirectional causal effects between four addictive substances: nicotine (smoking initiation and cigarettes smoked per day), caffeine (cups of coffee per day), alcohol (units per week) and cannabis (initiation). Based on existing genome-wide association results we selected genetic variants associated with the exposure measure as an instrument to estimate causal effects. Where possible we applied sensitivity analyses (MR-Egger and weighted median) more robust to horizontal pleiotropy. Most MR tests did not reveal causal associations. There was some weak evidence for a causal positive effect of genetically instrumented alcohol use on smoking initiation and of cigarettes per day on caffeine use, but these were not supported by the sensitivity analyses. There was also some suggestive evidence for a positive effect of alcohol use on caffeine use (only with MR-Egger) and smoking initiation on cannabis initiation (only with weighted median). None of the suggestive causal associations survived corrections for multiple testing. Two-sample Mendelian randomization analyses found little evidence for causal relationships between nicotine, alcohol, caffeine and cannabis use. © 2018 Society for the Study of Addiction.

  17. Defining and estimating causal direct and indirect effects when setting the mediator to specific values is not feasible

    PubMed Central

    Lok, Judith J.

    2016-01-01

    Natural direct and indirect effects decompose the effect of a treatment into the part that is mediated by a covariate (the mediator) and the part that is not. Their definitions rely on the concept of outcomes under treatment with the mediator “set” to its value without treatment. Typically, the mechanism through which the mediator is set to this value is left unspecified, and in many applications it may be challenging to fix the mediator to particular values for each unit or patient. Moreover, how one sets the mediator may affect the distribution of the outcome. This article introduces “organic” direct and indirect effects, which can be defined and estimated without relying on setting the mediator to specific values. Organic direct and indirect effects can be applied for example to estimate how much of the effect of some treatments for HIV/AIDS on mother-to-child transmission of HIV infection is mediated by the effect of the treatment on the HIV viral load in the blood of the mother. PMID:27229743

  18. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2013-01-01

    In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021

  19. Bone mineral density and risk of type 2 diabetes and coronary heart disease: A Mendelian randomization study.

    PubMed

    Gan, Wei; Clarke, Robert J; Mahajan, Anubha; Kulohoma, Benard; Kitajima, Hidetoshi; Robertson, Neil R; Rayner, N William; Walters, Robin G; Holmes, Michael V; Chen, Zhengming; McCarthy, Mark I

    2017-01-01

    Background: Observational studies have demonstrated that increased bone mineral density is associated with a higher risk of type 2 diabetes (T2D), but the relationship with risk of coronary heart disease (CHD) is less clear. Moreover, substantial uncertainty remains about the causal relevance of increased bone mineral density for T2D and CHD, which can be assessed by Mendelian randomisation studies.  Methods: We identified 235 independent single nucleotide polymorphisms (SNPs) associated at p <5×10 -8 with estimated heel bone mineral density (eBMD) in 116,501 individuals from the UK Biobank study, accounting for 13.9% of eBMD variance. For each eBMD-associated SNP, we extracted effect estimates from the largest available GWAS studies for T2D (DIAGRAM: n=26,676 T2D cases and 132,532 controls) and CHD (CARDIoGRAMplusC4D: n=60,801 CHD cases and 123,504 controls). A two-sample design using several Mendelian randomization approaches was used to investigate the causal relevance of eBMD for risk of T2D and CHD. In addition, we explored the relationship of eBMD, instrumented by the 235 SNPs, on 12 cardiovascular and metabolic risk factors. Finally, we conducted Mendelian randomization analysis in the reverse direction to investigate reverse causality. Results: Each one standard deviation increase in genetically instrumented eBMD (equivalent to 0.14 g/cm 2 ) was associated with an 8% higher risk of T2D (odds ratio [OR] 1.08; 95% confidence interval [CI]: 1.02 to 1.14; p =0.012) and 5% higher risk of CHD (OR 1.05; 95%CI: 1.00 to 1.10; p =0.034). Consistent results were obtained in sensitivity analyses using several different Mendelian randomization approaches. Equivalent increases in eBMD were also associated with lower plasma levels of HDL-cholesterol and increased insulin resistance. Mendelian randomization in the reverse direction using 94 T2D SNPs or 52 CHD SNPs showed no evidence of reverse causality with eBMD. Conclusions: These findings suggest a causal relationship between elevated bone mineral density with risks of both T2D and CHD.

  20. In defense of causal-formative indicators: A minority report.

    PubMed

    Bollen, Kenneth A; Diamantopoulos, Adamantios

    2017-09-01

    Causal-formative indicators directly affect their corresponding latent variable. They run counter to the predominant view that indicators depend on latent variables and are thus often controversial. If present, such indicators have serious implications for factor analysis, reliability theory, item response theory, structural equation models, and most measurement approaches that are based on reflective or effect indicators. Psychological Methods has published a number of influential articles on causal and formative indicators as well as launching the first major backlash against them. This article examines 7 common criticisms of these indicators distilled from the literature: (a) A construct measured with "formative" indicators does not exist independently of its indicators; (b) Such indicators are causes rather than measures; (c) They imply multiple dimensions to a construct and this is a liability; (d) They are assumed to be error-free, which is unrealistic; (e) They are inherently subject to interpretational confounding; (f) They fail proportionality constraints; and (g) Their coefficients should be set in advance and not estimated. We summarize each of these criticisms and point out the flaws in the logic and evidence marshaled in their support. The most common problems are not distinguishing between what we call causal-formative and composite-formative indicators, tautological fallacies, and highlighting issues that are common to all indicators, but presenting them as special problems of causal-formative indicators. We conclude that measurement theory needs (a) to incorporate these types of indicators, and (b) to better understand their similarities to and differences from traditional indicators. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Comparison of weighting techniques for acoustic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Jeong, Gangwon; Hwang, Jongha; Min, Dong-Joo

    2017-12-01

    To reconstruct long-wavelength structures in full waveform inversion (FWI), the wavefield-damping and weighting techniques have been used to synthesize and emphasize low-frequency data components in frequency-domain FWI. However, these methods have some weak points. The application of wavefield-damping method on filtered data fails to synthesize reliable low-frequency data; the optimization formula obtained introducing the weighting technique is not theoretically complete, because it is not directly derived from the objective function. In this study, we address these weak points and present how to overcome them. We demonstrate that the source estimation in FWI using damped wavefields fails when the data used in the FWI process does not satisfy the causality condition. This phenomenon occurs when a non-causal filter is applied to data. We overcome this limitation by designing a causal filter. Also we modify the conventional weighting technique so that its optimization formula is directly derived from the objective function, retaining its original characteristic of emphasizing the low-frequency data components. Numerical results show that the newly designed causal filter enables to recover long-wavelength structures using low-frequency data components synthesized by damping wavefields in frequency-domain FWI, and the proposed weighting technique enhances the inversion results.

  2. Empirical Evaluation of Directional-Dependence Tests

    ERIC Educational Resources Information Center

    Thoemmes, Felix

    2015-01-01

    Testing of directional dependence is a method to infer causal direction that recently has attracted some attention. Previous examples by e.g. von Eye and DeShon (2012a) and extensive simulation studies by Pornprasertmanit and Little (2012) have demonstrated that under specific assumptions, directional-dependence tests can recover the true causal…

  3. Quantum-coherent mixtures of causal relations

    NASA Astrophysics Data System (ADS)

    Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-05-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  4. Quantum-coherent mixtures of causal relations

    PubMed Central

    MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-01-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394

  5. Quantum-coherent mixtures of causal relations.

    PubMed

    MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J

    2017-05-09

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  6. Effects of causality on the fluidity and viscous horizon of quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Rahaman, Mahfuzur; Alam, Jan-e.

    2018-05-01

    The second-order Israel-Stewart-M u ̈ller relativistic hydrodynamics was applied to study the effects of causality on the acoustic oscillation in relativistic fluid. Causal dispersion relations have been derived with nonvanishing shear viscosity, bulk viscosity, and thermal conductivity at nonzero temperature and baryonic chemical potential. These relations have been used to investigate the fluidity of quark-gluon plasma (QGP) at finite temperature (T ). Results of the first-order dissipative hydrodynamics have been obtained as a limiting case of the second-order theory. The effects of the causality on the fluidity near the transition point and on the viscous horizon are found to be significant. We observe that the inclusion of causality increases the value of fluidity measure of QGP near Tc and hence makes the flow strenuous. It was also shown that the inclusion of the large magnetic field in the causal hydrodynamics alters the fluidity of QGP.

  7. Dopamine Modulates Egalitarian Behavior In Humans

    PubMed Central

    Sáez, Ignacio; Zhu, Lusha; Set, Eric; Kayser, Andrew; Hsu, Ming

    2015-01-01

    SUMMARY Egalitarian motives form a powerful force in promoting prosocial behavior and enabling large-scale cooperation in the human species [1]. At the neural level, there is substantial, albeit correlational, evidence suggesting a link between dopamine and such behavior [2, 3]. However, important questions remain about the specific role of dopamine in setting or modulating behavioral sensitivity to prosocial concerns. Here, using a combination of pharmacological tools and economic games, we provide critical evidence for a causal involvement of dopamine in human egalitarian tendencies. Specifically, using the brain-penetrant catechol-O-methyl transferase (COMT) inhibitor tolcapone [4, 5], we investigated the causal relationship between dopaminergic mechanisms and two prosocial concerns at the core of a number of widely used economic games: (i) the extent to which individuals directly value the material payoffs of others, i.e., generosity, and (ii) the extent to which they are averse to differences between their own payoffs and those of others, i.e., inequity. We found that dopaminergic augmentation via COMT inhibition increased egalitarian tendencies in participants who played an extended version of the dictator game [6]. Strikingly, computational modeling of choice behavior [7] revealed that tolcapone exerted selective effects on inequity aversion, and not on other computational components such as the extent to which individuals directly value the material payoffs of others. Together, these data shed light on the causal relationship between neurochemical systems and human prosocial behavior, and have potential implications for our understanding of the complex array of social impairments accompanying neuropsychiatric disorders involving dopaminergic dysregulation. PMID:25802148

  8. Amodal causal capture in the tunnel effect.

    PubMed

    Bae, Gi Yeul; Flombaum, Jonathan I

    2011-01-01

    In addition to identifying individual objects in the world, the visual system must also characterize the relationships between objects, for instance when objects occlude one another or cause one another to move. Here we explored the relationship between perceived causality and occlusion. Can one perceive causality in an occluded location? In several experiments, observers judged whether a centrally presented event involved a single object passing behind an occluder, or one object causally launching another (out of view and behind the occluder). With no additional context, the centrally presented event was typically judged as a non-causal pass, even when the occluding and disoccluding objects were different colors--an illusion known as the 'tunnel effect' that results from spatiotemporal continuity. However, when a synchronized context event involved an unambiguous causal launch, participants perceived a causal launch behind the occluder. This percept of an occluded causal interaction could also be driven by grouping and synchrony cues in the absence of any explicitly causal interaction. These results reinforce the hypothesis that causality is an aspect of perception. It is among the interpretations of the world that are independently available to vision when resolving ambiguity, and that the visual system can 'fill in' amodally.

  9. Relative importance of male and territory quality in pairing success of male rock ptarmigan (Lagopus mutus)

    USGS Publications Warehouse

    Bart, Jonathan; Earnst, Susan L.

    1999-01-01

    We studied pairing success in male rock ptarmigan (Lagopus mutus) in northern Alaska to learn whether males obtaining more females possessed phenotypic traits that influenced female choice directly, whether these traits permitted males to obtain territories favored by females, or whether both processes occurred. The number of females per male varied from zero to three. Several male and territory traits were significantly correlated with number of females per male. We used multiple regression to obtain a single measure of male quality and a single measure of territory quality. These measures of male and territory quality correlated with each other and with male pairing success. We used path analysis to separate direct effects of male quality on pairing success from indirect effects due to high-quality males obtaining high-quality territories. Both direct and indirect pathways had significant effects on pairing success, and direct and indirect effects of male traits on pairing success were about equal. This study illustrates an analytical approach for estimating the relative importance of direct and indirect causal relationships in natural systems.

  10. Learning a theory of causality.

    PubMed

    Goodman, Noah D; Ullman, Tomer D; Tenenbaum, Joshua B

    2011-01-01

    The very early appearance of abstract knowledge is often taken as evidence for innateness. We explore the relative learning speeds of abstract and specific knowledge within a Bayesian framework and the role for innate structure. We focus on knowledge about causality, seen as a domain-general intuitive theory, and ask whether this knowledge can be learned from co-occurrence of events. We begin by phrasing the causal Bayes nets theory of causality and a range of alternatives in a logical language for relational theories. This allows us to explore simultaneous inductive learning of an abstract theory of causality and a causal model for each of several causal systems. We find that the correct theory of causality can be learned relatively quickly, often becoming available before specific causal theories have been learned--an effect we term the blessing of abstraction. We then explore the effect of providing a variety of auxiliary evidence and find that a collection of simple perceptual input analyzers can help to bootstrap abstract knowledge. Together, these results suggest that the most efficient route to causal knowledge may be to build in not an abstract notion of causality but a powerful inductive learning mechanism and a variety of perceptual supports. While these results are purely computational, they have implications for cognitive development, which we explore in the conclusion.

  11. Designing Effective Supports for Causal Reasoning

    ERIC Educational Resources Information Center

    Jonassen, David H.; Ionas, Ioan Gelu

    2008-01-01

    Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and…

  12. Causal Discovery of Dynamic Systems

    ERIC Educational Resources Information Center

    Voortman, Mark

    2010-01-01

    Recently, several philosophical and computational approaches to causality have used an interventionist framework to clarify the concept of causality [Spirtes et al., 2000, Pearl, 2000, Woodward, 2005]. The characteristic feature of the interventionist approach is that causal models are potentially useful in predicting the effects of manipulations.…

  13. Semantic domain-specific functional integration for action-related vs. abstract concepts.

    PubMed

    Ghio, Marta; Tettamanti, Marco

    2010-03-01

    A central topic in cognitive neuroscience concerns the representation of concepts and the specific neural mechanisms that mediate conceptual knowledge. Recently proposed modal theories assert that concepts are grounded on the integration of multimodal, distributed representations. The aim of the present work is to complement the available neuropsychological and neuroimaging evidence suggesting partially segregated anatomo-functional correlates for concrete vs. abstract concepts, by directly testing the semantic domain-specific patterns of functional integration between language and modal semantic brain regions. We report evidence from a functional magnetic resonance imaging study, in which healthy participants listened to sentences with either an action-related (actions involving physical entities) or an abstract (no physical entities involved) content. We measured functional integration using dynamic causal modeling, and found that the left superior temporal gyrus was more strongly connected: (1) for action-related vs. abstract sentences, with the left-hemispheric action representation system, including sensorimotor areas; (2) for abstract vs. action-related sentences, with left infero-ventral frontal, temporal, and retrosplenial cingulate areas. A selective directionality effect was observed, with causal modulatory effects exerted by perisylvian language regions on peripheral modal areas, and not vice versa. The observed condition-specific modulatory effects are consistent with embodied and situated language processing theories, and indicate that linguistic areas promote a semantic content-specific reactivation of modal simulations by top-down mechanisms. Copyright 2008 Elsevier Inc. All rights reserved.

  14. Sequential causal inference: Application to randomized trials of adaptive treatment strategies

    PubMed Central

    Dawson, Ree; Lavori, Philip W.

    2009-01-01

    SUMMARY Clinical trials that randomize subjects to decision algorithms, which adapt treatments over time according to individual response, have gained considerable interest as investigators seek designs that directly inform clinical decision making. We consider designs in which subjects are randomized sequentially at decision points, among adaptive treatment options under evaluation. We present a sequential method to estimate the comparative effects of the randomized adaptive treatments, which are formalized as adaptive treatment strategies. Our causal estimators are derived using Bayesian predictive inference. We use analytical and empirical calculations to compare the predictive estimators to (i) the ‘standard’ approach that allocates the sequentially obtained data to separate strategy-specific groups as would arise from randomizing subjects at baseline; (ii) the semi-parametric approach of marginal mean models that, under appropriate experimental conditions, provides the same sequential estimator of causal differences as the proposed approach. Simulation studies demonstrate that sequential causal inference offers substantial efficiency gains over the standard approach to comparing treatments, because the predictive estimators can take advantage of the monotone structure of shared data among adaptive strategies. We further demonstrate that the semi-parametric asymptotic variances, which are marginal ‘one-step’ estimators, may exhibit significant bias, in contrast to the predictive variances. We show that the conditions under which the sequential method is attractive relative to the other two approaches are those most likely to occur in real studies. PMID:17914714

  15. Implications of Einstein-Weyl Causality on Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bendaniel, David

    A fundamental physical principle that has consequences for the topology of space-time is the principle of Einstein-Weyl causality. This also has quantum mechanical manifestations. Borchers and Sen have rigorously investigated the mathematical implications of Einstein-Weyl causality and shown the denumerable space-time Q2 would be implied. They were left with important philosophical paradoxes regarding the nature of the physical real line E, e.g., whether E = R, the real line of mathematics. In order to remove these paradoxes an investigation into a constructible foundation is suggested. We have pursued such a program and find it indeed provides a dense, denumerable space-time and, moreover, an interesting connection with quantum mechanics. We first show that this constructible theory contains polynomial functions which are locally homeomorphic with a dense, denumerable metric space R* and are inherently quantized. Eigenfunctions governing fields can then be effectively obtained by computational iteration. Postulating a Lagrangian for fields in a compactified space-time, we get a general description of which the Schrodinger equation is a special case. From these results we can then also show that this denumerable space-time is relational (in the sense that space is not infinitesimally small if and only if it contains a quantized field) and, since Q2 is imbedded in R*2, it directly fulfills the strict topological requirements for Einstein-Weyl causality. Therefore, the theory predicts that E = R*.

  16. Causal Networks with Selectively Influenced Components

    DTIC Science & Technology

    2012-02-29

    influences a different vertex. If so, the form of a processing tree accounting for the data can determined. Prior to the work on the grant, processing...their order. Processing trees were found to account well for data in the literature on immediate ordered recall and on effects of sleep and...ordered in the network) or concurrent (unordered). Ordinarily for a given data set, if one directed acyclic network can account for the data

  17. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing.

    PubMed

    Reinhart, Robert M G; Cosman, Josh D; Fukuda, Keisuke; Woodman, Geoffrey F

    2017-01-01

    Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability.

  18. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing

    PubMed Central

    Reinhart, Robert M.G.; Cosman, Josh D.; Fukuda, Keisuke; Woodman, Geoffrey F.

    2017-01-01

    Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability. PMID:27804033

  19. Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation

    PubMed Central

    Peelle, Jonathan E.; Bonner, Michael F.; Grossman, Murray

    2016-01-01

    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. PMID:27030767

  20. Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation.

    PubMed

    Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F; Grossman, Murray; Hamilton, Roy H

    2016-03-30

    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend "plaid" and "jacket" as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of "plaid jacket." Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like "tiny radish" relative to non-meaningful combinations, such as "fast blueberry," when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., "leaf" and "wet" can be combined into the more complex representation "wet leaf"). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. Copyright © 2016 the authors 0270-6474/16/363829-10$15.00/0.

  1. Tool to assess causality of direct and indirect adverse events associated with therapeutic interventions.

    PubMed

    Zorzela, Liliane; Mior, Silvano; Boon, Heather; Gross, Anita; Yager, Jeromy; Carter, Rose; Vohra, Sunita

    2018-03-01

    To develop and test a tool to assess the causality of direct and indirect adverse events associated with therapeutic interventions. The intervention was one or more drugs and/or natural health products, a device, or practice (professional delivering the intervention). Through the assessment of causality of adverse events, we can learn about factors contributing to the harm and consider what modification may prevent its reoccurrence. Existing scales (WHO-UMC, Naranjo and Horn) were adapted to develop a tool (algorithm and table) to evaluate cases of serious harmful events reported through a national surveillance study. We also incorporated a novel approach that assesses indirect harm (caused by the delay in diagnosis/treatment) and the health provider delivering the intervention (practice). The tool was tested, revised and then implemented to assess all reported cases of serious events resulting from use of complementary therapies. The use of complementary therapies was the trigger to report the event. Each case was evaluated by two assessors, out of a panel of five, representing different health care professionals. The tool was used in assessment of eight serious adverse events. Each event was independently evaluated by two assessors. The algorithm facilitated assessment of a serious direct or indirect harm. Assessors agreed in the final score on seven of eight cases (weighted kappa coefficient of 0.75). A tool to support the assessment of causality of adverse events was developed and tested. We propose a novel method to assess direct and indirect harms related to product(s), device(s), practice or a combination of the previous. Further research will probably help evaluate this approach across different settings and interventions.

  2. Outward foreign direct investments and home country's economic growth

    NASA Astrophysics Data System (ADS)

    Ciesielska, Dorota; Kołtuniak, Marcin

    2017-09-01

    The study examines the time stability of the causality direction and cross-correlations between the home country's economic growth and pace of growth of its outward foreign direct investment (OFDI) stocks within the complex system of the Polish national economy. The research has been performed in order to verify, using both the time and frequency domains time series analyses, if economic agents' long term decisions on outward foreign direct investments, leading to cross-border value chains and production fragmentation processes, are of adaptive or predictive character. Consequently, the aim was to check if the home country's economic growth leads the internationalization processes of domestic enterprises, which stays in line with Dunning's Investment Development Path (IDP) paradigm, or if these complex processes, thanks to entrepreneurs' ability to formulate relevant rational expectations, precede the home country's economic growth, which would be supported with the introduction of the policy on reinforcing the internationalization processes of domestic enterprises. The presence of the unidirectional economic growth-led internationalization, consistent with the IDP concept's base assumptions, has been ascertained by the results of the short term Granger causality tests. Nevertheless, the results of the wavelet analyses, supported with the results of the econometric block exogeneity long term causality Wald tests, have revealed that in the long term the OFDI stocks' growth permanently precedes the home country's economic growth, which stays in the unequivocal contrast with the IDP paradigm's premises, as well as with the indicated above short term Granger causality tests' outcomes and indicates that economic agents' choices are not strictly of adaptive but also of predictive character, which influences the current state of knowledge on economic complex systems' characteristics. Such a result is of a great importance in the light of the existence of the significant and still unexploited internationalization potential of Polish enterprises.

  3. Perspectives on How Human Simultaneous Multi-Modal Imaging Adds Directionality to Spread Models of Alzheimer’s Disease

    PubMed Central

    Neitzel, Julia; Nuttall, Rachel; Sorg, Christian

    2018-01-01

    Previous animal research suggests that the spread of pathological agents in Alzheimer’s disease (AD) follows the direction of signaling pathways. Specifically, tau pathology has been suggested to propagate in an infection-like mode along axons, from transentorhinal cortices to medial temporal lobe cortices and consequently to other cortical regions, while amyloid-beta (Aβ) pathology seems to spread in an activity-dependent manner among and from isocortical regions into limbic and then subcortical regions. These directed connectivity-based spread models, however, have not been tested directly in AD patients due to the lack of an in vivo method to identify directed connectivity in humans. Recently, a new method—metabolic connectivity mapping (MCM)—has been developed and validated in healthy participants that uses simultaneous FDG-PET and resting-state fMRI data acquisition to identify directed intrinsic effective connectivity (EC). To this end, postsynaptic energy consumption (FDG-PET) is used to identify regions with afferent input from other functionally connected brain regions (resting-state fMRI). Here, we discuss how this multi-modal imaging approach allows quantitative, whole-brain mapping of signaling direction in AD patients, thereby pointing out some of the advantages it offers compared to other EC methods (i.e., Granger causality, dynamic causal modeling, Bayesian networks). Most importantly, MCM provides the basis on which models of pathology spread, derived from animal studies, can be tested in AD patients. In particular, future work should investigate whether tau and Aβ in humans propagate along the trajectories of directed connectivity in order to advance our understanding of the neuropathological mechanisms causing disease progression. PMID:29434570

  4. Right external globus pallidus changes are associated with altered causal awareness in youth with depression

    PubMed Central

    Griffiths, K R; Lagopoulos, J; Hermens, D F; Hickie, I B; Balleine, B W

    2015-01-01

    Cognitive impairment is a functionally disabling feature of depression contributing to maladaptive decision-making, a loss of behavioral control and an increased disease burden. The ability to calculate the causal efficacy of ones actions in achieving specific goals is critical to normal decision-making and, in this study, we combined voxel-based morphometry (VBM), shape analysis and diffusion tensor tractography to investigate the relationship between cortical–basal ganglia structural integrity and such causal awareness in 43 young subjects with depression and 21 demographically similar healthy controls. Volumetric analysis determined a relationship between right pallidal size and sensitivity to the causal status of specific actions. More specifically, shape analysis identified dorsolateral surface vertices where an inward location was correlated with reduced levels of causal awareness. Probabilistic tractography revealed that affected parts of the pallidum were primarily connected with the striatum, dorsal thalamus and hippocampus. VBM did not reveal any whole-brain gray matter regions that correlated with causal awareness. We conclude that volumetric reduction within the indirect pathway involving the right dorsolateral pallidum is associated with reduced awareness of the causal efficacy of goal-directed actions in young depressed individuals. This causal awareness task allows for the identification of a functionally and biologically relevant subgroup to which more targeted cognitive interventions could be applied, potentially enhancing the long-term outcomes for these individuals. PMID:26440541

  5. Functional ability loss in sensory impaired and sensory unimpaired very old adults: analyzing causal relations with positive affect across four years.

    PubMed

    Wahl, Hans-Werner; Drapaniotis, Philipp M; Heyl, Vera

    2014-11-01

    This paper focuses on the relationship between functional ability (FA) and positive affect (PA), a major component of well-being, in sensory impaired very old adults (SI) compared with sensory unimpaired individuals (UI). Previous research mostly suggests a robust causal impact of FA on PA. However, some research, drawing from Fredrickson's broaden-and-build theory, also points to the possibility of an inverse causality between FA and PA. We examine in this paper both of these causal directions in SI as well as UI individuals across a 4year observation period. Additionally, we checked for the role of negative affect (NA). The T1-T2 sample comprised 81 out of 237 SI individuals (visually or hearing impaired) assessed at T1, with a mean age at T1 of 81.8years, and 87 UI individuals out of 150 assessed at T1, with a mean age at T1 of 81.5years. Established scales were used to assess FA, PA, and NA. Using cross-lagged panel analysis to examine the direction of causality, our findings indicate that FA has significant impact on PA in both the SI and the UI group, whereas the alternative causal pathway was not confirmed. Both cross-lagged relationships between FA and NA were non-significant. No group differences in path strengths between SI and UI were present. Our study provides evidence that FA is a key competence for successful emotional aging in vulnerable groups of very old adults such as SI as well as in UI adults in advanced old age. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Nonparametric Identification of Causal Effects under Temporal Dependence

    ERIC Educational Resources Information Center

    Dafoe, Allan

    2018-01-01

    Social scientists routinely address temporal dependence by adopting a simple technical fix. However, the correct identification strategy for a causal effect depends on causal assumptions. These need to be explicated and justified; almost no studies do so. This article addresses this shortcoming by offering a precise general statement of the…

  7. Causal Inferences in the Campbellian Validity System

    ERIC Educational Resources Information Center

    Lund, Thorleif

    2010-01-01

    The purpose of the present paper is to critically examine causal inferences and internal validity as defined by Campbell and co-workers. Several arguments are given against their counterfactual effect definition, and this effect definition should be considered inadequate for causal research in general. Moreover, their defined independence between…

  8. Causal Mediation Analysis: Warning! Assumptions Ahead

    ERIC Educational Resources Information Center

    Keele, Luke

    2015-01-01

    In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…

  9. Instrumental variables and Mendelian randomization with invalid instruments

    NASA Astrophysics Data System (ADS)

    Kang, Hyunseung

    Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For example, in Mendelian randomization studies where genetic markers are used as instruments, complete knowledge about instruments' validity is equivalent to complete knowledge about the involved genes' functions. The dissertation explores the theory, methods, and application of IV methods when invalid instruments are present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect. We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in simulation studies as well as in real data analysis. Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3), our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are violated. Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a nonparametric IV estimation method based on full matching, a technique popular in causal inference for observational data, that leverages observed covariates to make the instrument more valid. We propose an estimator along with inferential results that are robust to mis-specifications of the covariate-outcome model. We also provide a sensitivity analysis should the instrument turn out to be invalid, specifically violate (A3). Fourth, in application work, we study the causal effect of malaria on stunting among children in Ghana. Previous studies on the effect of malaria and stunting were observational and contained various unobserved confounders, most notably nutritional deficiencies. To infer causality, we use the sickle cell genotype, a trait that confers some protection against malaria and was randomly assigned at birth, as an IV and apply our nonparametric IV method. We find that the risk of stunting increases by 0.22 (95% CI: 0.044,1) for every malaria episode and is sensitive to unmeasured confounders.

  10. On the road toward formal reasoning: reasoning with factual causal and contrary-to-fact causal premises during early adolescence.

    PubMed

    Markovits, Henry

    2014-12-01

    Understanding the development of conditional (if-then) reasoning is critical for theoretical and educational reasons. Here we examined the hypothesis that there is a developmental transition between reasoning with true and contrary-to-fact (CF) causal conditionals. A total of 535 students between 11 and 14 years of age received priming conditions designed to encourage use of either a true or CF alternatives generation strategy and reasoning problems with true causal and CF causal premises (with counterbalanced order). Results show that priming had no effect on reasoning with true causal premises. By contrast, priming with CF alternatives significantly improved logical reasoning with CF premises. Analysis of the effect of order showed that reasoning with CF premises reduced logical responding among younger students but had no effect among older students. Results support the idea that there is a transition in the reasoning processes in this age range associated with the nature of the alternatives generation process required for logical reasoning with true and CF causal conditionals. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Stable Causal Relationships Are Better Causal Relationships.

    PubMed

    Vasilyeva, Nadya; Blanchard, Thomas; Lombrozo, Tania

    2018-05-01

    We report three experiments investigating whether people's judgments about causal relationships are sensitive to the robustness or stability of such relationships across a range of background circumstances. In Experiment 1, we demonstrate that people are more willing to endorse causal and explanatory claims based on stable (as opposed to unstable) relationships, even when the overall causal strength of the relationship is held constant. In Experiment 2, we show that this effect is not driven by a causal generalization's actual scope of application. In Experiment 3, we offer evidence that stable causal relationships may be seen as better guides to action. Collectively, these experiments document a previously underappreciated factor that shapes people's causal reasoning: the stability of the causal relationship. Copyright © 2018 Cognitive Science Society, Inc.

  12. Evidence base and future research directions in the management of low back pain.

    PubMed

    Abbott, Allan

    2016-03-18

    Low back pain (LBP) is a prevalent and costly condition. Awareness of valid and reliable patient history taking, physical examination and clinical testing is important for diagnostic accuracy. Stratified care which targets treatment to patient subgroups based on key characteristics is reliant upon accurate diagnostics. Models of stratified care that can potentially improve treatment effects include prognostic risk profiling for persistent LBP, likely response to specific treatment based on clinical prediction models or suspected underlying causal mechanisms. The focus of this editorial is to highlight current research status and future directions for LBP diagnostics and stratified care.

  13. Abnormal neural activities of directional brain networks in patients with long-term bilateral hearing loss.

    PubMed

    Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu

    2017-10-13

    The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.

  14. Foundational perspectives on causality in large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain.

  15. Foundational perspectives on causality in large-scale brain networks.

    PubMed

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical likelihood that a change in the activity of one neuronal population affects the activity in another. We argue that these measures access the inherently probabilistic nature of causal influences in the brain, and are thus better suited for large-scale brain network analysis than are DC-based measures. Our work is consistent with recent advances in the philosophical study of probabilistic causality, which originated from inherent conceptual problems with deterministic regularity theories. It also resonates with concepts of stochasticity that were involved in establishing modern physics. In summary, we argue that probabilistic causality is a conceptually appropriate foundation for describing neural causality in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Adverse effects of plant food supplements and botanical preparations: a systematic review with critical evaluation of causality

    PubMed Central

    Di Lorenzo, Chiara; Ceschi, Alessandro; Kupferschmidt, Hugo; Lüde, Saskia; De Souza Nascimento, Elizabeth; Dos Santos, Ariana; Colombo, Francesca; Frigerio, Gianfranco; Nørby, Karin; Plumb, Jenny; Finglas, Paul; Restani, Patrizia

    2015-01-01

    AIMS The objective of this review was to collect available data on the following: (i) adverse effects observed in humans from the intake of plant food supplements or botanical preparations; (ii) the misidentification of poisonous plants; and (iii) interactions between plant food supplements/botanicals and conventional drugs or nutrients. METHODS PubMed/MEDLINE and Embase were searched from database inception to June 2014, using the terms ‘adverse effect/s’, ‘poisoning/s’, ‘plant food supplement/s’, ‘misidentification/s’ and ‘interaction/s’ in combination with the relevant plant name. All papers were critically evaluated according to the World Health Organization Guidelines for causality assessment. RESULTS Data were obtained for 66 plants that are common ingredients of plant food supplements; of the 492 papers selected, 402 (81.7%) dealt with adverse effects directly associated with the botanical and 89 (18.1%) concerned interactions with conventional drugs. Only one case was associated with misidentification. Adverse effects were reported for 39 of the 66 botanical substances searched. Of the total references, 86.6% were associated with 14 plants, including Glycine max/soybean (19.3%), Glycyrrhiza glabra/liquorice (12.2%), Camellia sinensis/green tea ( 8.7%) and Ginkgo biloba/gingko (8.5%). CONCLUSIONS Considering the length of time examined and the number of plants included in the review, it is remarkable that: (i) the adverse effects due to botanical ingredients were relatively infrequent, if assessed for causality; and (ii) the number of severe clinical reactions was very limited, but some fatal cases have been described. Data presented in this review were assessed for quality in order to make the results maximally useful for clinicians in identifying or excluding deleterious effects of botanicals. PMID:25251944

  17. Causal Relationships Among Time Series of the Lange Bramke Catchment (Harz Mountains, Germany)

    NASA Astrophysics Data System (ADS)

    Aufgebauer, Britta; Hauhs, Michael; Bogner, Christina; Meesenburg, Henning; Lange, Holger

    2016-04-01

    Convergent Cross Mapping (CCM) has recently been introduced by Sugihara et al. for the identification and quantification of causal relationships among ecosystem variables. In particular, the method allows to decide on the direction of causality; in some cases, the causality might be bidirectional, indicating a network structure. We extend this approach by introducing a method of surrogate data to obtain confidence intervals for CCM results. We then apply this method to time series from stream water chemistry. Specifically, we analyze a set of eight dissolved major ions from three different catchments belonging to the hydrological monitoring system at the Bramke valley in the Harz Mountains, Germany. Our results demonstrate the potentials and limits of CCM as a monitoring instrument in forestry and hydrology or as a tool to identify processes in ecosystem research. While some networks of causally linked ions can be associated with simple physical and chemical processes, other results illustrate peculiarities of the three studied catchments, which are explained in the context of their special history.

  18. Nightmare and Abnormal Dreams: Rare Side Effects of Metformin?

    PubMed Central

    Yanto, Theo Audi; Kosasih, Felicia Nathania

    2018-01-01

    Background Metformin is widely known as an antidiabetic agent which has significant gastrointestinal side effects, but nightmares and abnormal dreams as its adverse reactions are not well reported. Case Presentation Herein we present a case of 56-year-old male patient with no known history of recurrent nightmares and sleep disorder, experiencing nightmare and abnormal dreams directly after consumption of 750 mg extended release metformin. He reported his dream as an unpleasant experience which awakened him at night with negative feelings. The nightmare only lasted for a night, but his dreams every night thereafter seemed abnormal. The dreams were vivid and indescribable. The disappearance and occurrence of abnormal dreams ensued soon after the drug was discontinued and rechallenged. The case was assessed using Naranjo Adverse Drug Reaction (ADR) probability scale and resulted as probable causality. Conclusion Metformin might be the underlying cause of nightmare and abnormal dreams in this patient. More studies are needed to confirm the association and causality of this findings. PMID:29581904

  19. Effect of news coverage on the prevalence of drunk-driving behavior: evidence from a longitudinal study.

    PubMed

    Yanovitzky, Itzhak

    2002-05-01

    To examine the proposition that antidrunk driving messages in the news media contributed indirectly to the decline in drunk driving over the past two decades through their impact on related policy making processes. Time series regression techniques are applied to longitudinal data to examine the causal association between drivers' involvement in drunk-driving behavior, the volume of news coverage devoted to the drunk driving issue, and related policy making. Results show a significant contribution of news coverage to drunk-driving-related policy actions, which in turn are associated with a reduction in drunk driving among young and high-risk drivers. There was no evidence of a direct causal association between news coverage and change in drunk-driving behavior. News coverage of alcohol-related risky behaviors seems to provide a cost-effective way of reducing the prevalence of these practices by attracting institutional attention and prompting related environmental changes. Future interventions may benefit from actively seeking to influence news coverage of risky behaviors.

  20. Neural theory for the perception of causal actions.

    PubMed

    Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A

    2012-07-01

    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.

  1. AOP: An R Package For Sufficient Causal Analysis in Pathway ...

    EPA Pesticide Factsheets

    Summary: How can I quickly find the key events in a pathway that I need to monitor to predict that a/an beneficial/adverse event/outcome will occur? This is a key question when using signaling pathways for drug/chemical screening in pharma-cology, toxicology and risk assessment. By identifying these sufficient causal key events, we have fewer events to monitor for a pathway, thereby decreasing assay costs and time, while maximizing the value of the information. I have developed the “aop” package which uses backdoor analysis of causal net-works to identify these minimal sets of key events that are suf-ficient for making causal predictions. Availability and Implementation: The source and binary are available online through the Bioconductor project (http://www.bioconductor.org/) as an R package titled “aop”. The R/Bioconductor package runs within the R statistical envi-ronment. The package has functions that can take pathways (as directed graphs) formatted as a Cytoscape JSON file as input, or pathways can be represented as directed graphs us-ing the R/Bioconductor “graph” package. The “aop” package has functions that can perform backdoor analysis to identify the minimal set of key events for making causal predictions.Contact: burgoon.lyle@epa.gov This paper describes an R/Bioconductor package that was developed to facilitate the identification of key events within an AOP that are the minimal set of sufficient key events that need to be tested/monit

  2. CaSPIAN: A Causal Compressive Sensing Algorithm for Discovering Directed Interactions in Gene Networks

    PubMed Central

    Emad, Amin; Milenkovic, Olgica

    2014-01-01

    We introduce a novel algorithm for inference of causal gene interactions, termed CaSPIAN (Causal Subspace Pursuit for Inference and Analysis of Networks), which is based on coupling compressive sensing and Granger causality techniques. The core of the approach is to discover sparse linear dependencies between shifted time series of gene expressions using a sequential list-version of the subspace pursuit reconstruction algorithm and to estimate the direction of gene interactions via Granger-type elimination. The method is conceptually simple and computationally efficient, and it allows for dealing with noisy measurements. Its performance as a stand-alone platform without biological side-information was tested on simulated networks, on the synthetic IRMA network in Saccharomyces cerevisiae, and on data pertaining to the human HeLa cell network and the SOS network in E. coli. The results produced by CaSPIAN are compared to the results of several related algorithms, demonstrating significant improvements in inference accuracy of documented interactions. These findings highlight the importance of Granger causality techniques for reducing the number of false-positives, as well as the influence of noise and sampling period on the accuracy of the estimates. In addition, the performance of the method was tested in conjunction with biological side information of the form of sparse “scaffold networks”, to which new edges were added using available RNA-seq or microarray data. These biological priors aid in increasing the sensitivity and precision of the algorithm in the small sample regime. PMID:24622336

  3. Theory of mind training causes honest young children to lie

    PubMed Central

    Ding, Xiao Pan; Wellman, Henry; Wang, Yu; Fu, Genyue; Lee, Kang

    2015-01-01

    Theory of mind (ToM) has long been recognized to play a major role in children’s social functioning. However, no direct evidence confirms the causal linkage between the two. Here we addressed this significant gap by examining whether ToM causes the emergence of lying, an important social skill. We showed that after participating in ToM training to learn about mental state concepts, 3-year-olds who originally had been unable to lie began to deceive consistently. This training effect lasted for more than a month. In contrast, 3-year-olds who participated in control training to learn about physical concepts were significantly less inclined to lie than the ToM trained children. These findings provide the first experimental evidence supporting the causal role of ToM in the development of social competence in early childhood. PMID:26431737

  4. Driver crash risk factors and prevalence evaluation using naturalistic driving data.

    PubMed

    Dingus, Thomas A; Guo, Feng; Lee, Suzie; Antin, Jonathan F; Perez, Miguel; Buchanan-King, Mindy; Hankey, Jonathan

    2016-03-08

    The accurate evaluation of crash causal factors can provide fundamental information for effective transportation policy, vehicle design, and driver education. Naturalistic driving (ND) data collected with multiple onboard video cameras and sensors provide a unique opportunity to evaluate risk factors during the seconds leading up to a crash. This paper uses a National Academy of Sciences-sponsored ND dataset comprising 905 injurious and property damage crash events, the magnitude of which allows the first direct analysis (to our knowledge) of causal factors using crashes only. The results show that crash causation has shifted dramatically in recent years, with driver-related factors (i.e., error, impairment, fatigue, and distraction) present in almost 90% of crashes. The results also definitively show that distraction is detrimental to driver safety, with handheld electronic devices having high use rates and risk.

  5. Driver crash risk factors and prevalence evaluation using naturalistic driving data

    PubMed Central

    Dingus, Thomas A.; Guo, Feng; Lee, Suzie; Antin, Jonathan F.; Perez, Miguel; Buchanan-King, Mindy; Hankey, Jonathan

    2016-01-01

    The accurate evaluation of crash causal factors can provide fundamental information for effective transportation policy, vehicle design, and driver education. Naturalistic driving (ND) data collected with multiple onboard video cameras and sensors provide a unique opportunity to evaluate risk factors during the seconds leading up to a crash. This paper uses a National Academy of Sciences-sponsored ND dataset comprising 905 injurious and property damage crash events, the magnitude of which allows the first direct analysis (to our knowledge) of causal factors using crashes only. The results show that crash causation has shifted dramatically in recent years, with driver-related factors (i.e., error, impairment, fatigue, and distraction) present in almost 90% of crashes. The results also definitively show that distraction is detrimental to driver safety, with handheld electronic devices having high use rates and risk. PMID:26903657

  6. Model Selection Approach Suggests Causal Association between 25-Hydroxyvitamin D and Colorectal Cancer

    PubMed Central

    Theodoratou, Evropi; Farrington, Susan M.; Tenesa, Albert; Dunlop, Malcolm G.; McKeigue, Paul; Campbell, Harry

    2013-01-01

    Introduction Vitamin D deficiency has been associated with increased risk of colorectal cancer (CRC), but causal relationship has not yet been confirmed. We investigate the direction of causation between vitamin D and CRC by extending the conventional approaches to allow pleiotropic relationships and by explicitly modelling unmeasured confounders. Methods Plasma 25-hydroxyvitamin D (25-OHD), genetic variants associated with 25-OHD and CRC, and other relevant information was available for 2645 individuals (1057 CRC cases and 1588 controls) and included in the model. We investigate whether 25-OHD is likely to be causally associated with CRC, or vice versa, by selecting the best modelling hypothesis according to Bayesian predictive scores. We examine consistency for a range of prior assumptions. Results Model comparison showed preference for the causal association between low 25-OHD and CRC over the reverse causal hypothesis. This was confirmed for posterior mean deviances obtained for both models (11.5 natural log units in favour of the causal model), and also for deviance information criteria (DIC) computed for a range of prior distributions. Overall, models ignoring hidden confounding or pleiotropy had significantly poorer DIC scores. Conclusion Results suggest causal association between 25-OHD and colorectal cancer, and support the need for randomised clinical trials for further confirmations. PMID:23717431

  7. Decisions Concerning Directional Dependence

    ERIC Educational Resources Information Center

    von Eye, Alexander; DeShon, Richard P.

    2012-01-01

    In this rejoinder, von Eye and DeShon discuss the decision strategies proposed in their original article ("Directional Dependence in Developmental Research," this issue), as well as the ones proposed by the authors of the commentary (Pornprasertmanit and Little, "Determining Directional Dependency in Causal Associations," this issue). In addition,…

  8. Spot the difference: Causal contrasts in scientific diagrams.

    PubMed

    Scholl, Raphael

    2016-12-01

    An important function of scientific diagrams is to identify causal relationships. This commonly relies on contrasts that highlight the effects of specific difference-makers. However, causal contrast diagrams are not an obvious and easy to recognize category because they appear in many guises. In this paper, four case studies are presented to examine how causal contrast diagrams appear in a wide range of scientific reports, from experimental to observational and even purely theoretical studies. It is shown that causal contrasts can be expressed in starkly different formats, including photographs of complexly visualized macromolecules as well as line graphs, bar graphs, or plots of state spaces. Despite surface differences, however, there is a measure of conceptual unity among such diagrams. In empirical studies they often serve not only to infer and communicate specific causal claims, but also as evidence for them. The key data of some studies is given nowhere except in the diagrams. Many diagrams show multiple causal contrasts in order to demonstrate both that an effect exists and that the effect is specific - that is, to narrowly circumscribe the phenomenon to be explained. In a large range of scientific reports, causal contrast diagrams reflect the core epistemic claims of the researchers. Copyright © 2016. Published by Elsevier Ltd.

  9. Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology

    PubMed Central

    Marshall, Brandon D. L.; Galea, Sandro

    2015-01-01

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821

  10. Interventional effects for mediation analysis with multiple mediators

    PubMed Central

    Vansteelandt, Stijn; Daniel, Rhian M.

    2016-01-01

    The mediation formula for the identification of natural (in)direct effects has facilitated mediation analyses that better respect the nature of the data, with greater consideration of the need for confounding control. The default assumptions on which it relies are strong, however. In particular, they are known to be violated when confounders of the mediator–outcome association are affected by the exposure. This complicates extensions of counterfactual-based mediation analysis to settings that involve repeatedly measured mediators, or multiple correlated mediators. VanderWeele, Vansteelandt, and Robins21 introduced so-called interventional (in)direct effects. These can be identified under much weaker conditions than natural (in)direct effects, but have the drawback of not adding up to the total effect. In this article, we adapt their proposal in order to achieve an exact decomposition of the total effect, and extend it to the multiple mediator setting. Interestingly, the proposed effects capture the path-specific effects of an exposure on an outcome that are mediated by distinct mediators, even when – as often – the structural dependence between the multiple mediators is unknown; for instance, when the direction of the causal effects between the mediators is unknown, or there may be unmeasured common causes of the mediators. PMID:27922534

  11. Interventional Effects for Mediation Analysis with Multiple Mediators.

    PubMed

    Vansteelandt, Stijn; Daniel, Rhian M

    2017-03-01

    The mediation formula for the identification of natural (in)direct effects has facilitated mediation analyses that better respect the nature of the data, with greater consideration of the need for confounding control. The default assumptions on which it relies are strong, however. In particular, they are known to be violated when confounders of the mediator-outcome association are affected by the exposure. This complicates extensions of counterfactual-based mediation analysis to settings that involve repeatedly measured mediators, or multiple correlated mediators. VanderWeele, Vansteelandt, and Robins introduced so-called interventional (in)direct effects. These can be identified under much weaker conditions than natural (in)direct effects, but have the drawback of not adding up to the total effect. In this article, we adapt their proposal to achieve an exact decomposition of the total effect, and extend it to the multiple mediator setting. Interestingly, the proposed effects capture the path-specific effects of an exposure on an outcome that are mediated by distinct mediators, even when-as often-the structural dependence between the multiple mediators is unknown, for instance, when the direction of the causal effects between the mediators is unknown, or there may be unmeasured common causes of the mediators.

  12. Collinearity and Causal Diagrams: A Lesson on the Importance of Model Specification.

    PubMed

    Schisterman, Enrique F; Perkins, Neil J; Mumford, Sunni L; Ahrens, Katherine A; Mitchell, Emily M

    2017-01-01

    Correlated data are ubiquitous in epidemiologic research, particularly in nutritional and environmental epidemiology where mixtures of factors are often studied. Our objectives are to demonstrate how highly correlated data arise in epidemiologic research and provide guidance, using a directed acyclic graph approach, on how to proceed analytically when faced with highly correlated data. We identified three fundamental structural scenarios in which high correlation between a given variable and the exposure can arise: intermediates, confounders, and colliders. For each of these scenarios, we evaluated the consequences of increasing correlation between the given variable and the exposure on the bias and variance for the total effect of the exposure on the outcome using unadjusted and adjusted models. We derived closed-form solutions for continuous outcomes using linear regression and empirically present our findings for binary outcomes using logistic regression. For models properly specified, total effect estimates remained unbiased even when there was almost perfect correlation between the exposure and a given intermediate, confounder, or collider. In general, as the correlation increased, the variance of the parameter estimate for the exposure in the adjusted models increased, while in the unadjusted models, the variance increased to a lesser extent or decreased. Our findings highlight the importance of considering the causal framework under study when specifying regression models. Strategies that do not take into consideration the causal structure may lead to biased effect estimation for the original question of interest, even under high correlation.

  13. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    PubMed Central

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  14. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle

    NASA Astrophysics Data System (ADS)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen

    2017-04-01

    Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  15. Acoustic integrated extinction.

    PubMed

    Norris, Andrew N

    2015-05-08

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122 , 3206-3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  16. Systems GMM estimates of the health care spending and GDP relationship: a note.

    PubMed

    Kumar, Saten

    2013-06-01

    This paper utilizes the systems generalized method of moments (GMM) [Arellano and Bover (1995) J Econometrics 68:29-51; Blundell and Bond (1998) J Econometrics 87:115-143], and panel Granger causality [Hurlin and Venet (2001) Granger Causality tests in panel data models with fixed coefficients. Mime'o, University Paris IX], to investigate the health care spending and gross domestic product (GDP) relationship for organisation for economic co-operation and development countries over the period 1960-2007. The system GMM estimates confirm that the contribution of real GDP to health spending is significant and positive. The panel Granger causality tests imply that a bi-directional causality exists between health spending and GDP. To this end, policies aimed at raising health spending will eventually improve the well-being of the population in the long run.

  17. Militarism and globalization: Is there an empirical link?

    PubMed

    Irandoust, Manuchehr

    2018-01-01

    Despite the fact that previous studies have extensively investigated the causal nexus between military expenditure and economic growth in both developed and developing countries, those studies have not considered the role of globalization. The aim of this study is to examine the relationship between militarism and globalization for the top 15 military expenditure spenders over the period 1990-2012. The bootstrap panel Granger causality approach is utilized to detect the direction of causality. The results show that military expenditure and overall globalization are causally related in most of the countries under review. This implies that countries experiencing greater globalization have relatively large increases in militarization over the past 20 years. The policy implication of the findings is that greater military spending by a country increases the likelihood of military conflict in the future, the anticipation of which discourages globalization.

  18. Multivariate Granger causality: an estimation framework based on factorization of the spectral density matrix

    PubMed Central

    Wen, Xiaotong; Rangarajan, Govindan; Ding, Mingzhou

    2013-01-01

    Granger causality is increasingly being applied to multi-electrode neurophysiological and functional imaging data to characterize directional interactions between neurons and brain regions. For a multivariate dataset, one might be interested in different subsets of the recorded neurons or brain regions. According to the current estimation framework, for each subset, one conducts a separate autoregressive model fitting process, introducing the potential for unwanted variability and uncertainty. In this paper, we propose a multivariate framework for estimating Granger causality. It is based on spectral density matrix factorization and offers the advantage that the estimation of such a matrix needs to be done only once for the entire multivariate dataset. For any subset of recorded data, Granger causality can be calculated through factorizing the appropriate submatrix of the overall spectral density matrix. PMID:23858479

  19. Tests of a Direct Effect of Childhood Abuse on Adult Borderline Personality Disorder Traits: A Longitudinal Discordant Twin Design

    PubMed Central

    Bornovalova, Marina A.; Huibregtse, Brooke M.; Hicks, Brian M.; Keyes, Margaret; McGue, Matt; Iacono, William

    2012-01-01

    We used a longitudinal twin design to examine the causal association between sexual, emotional, and physical abuse in childhood (before age 18) and borderline personality disorder (BPD) traits at age 24 using a discordant twin design and biometric modeling. Additionally, we examined the mediating and moderating effects of symptoms of childhood externalizing and internalizing disorders on the link between childhood abuse and BPD traits. Although childhood abuse, BPD traits, and internalizing and externalizing symptoms were all correlated, the discordant twin analyses and biometric modeling showed little to no evidence that consistent with a causal effect of childhood abuse on BPD traits. Instead, our results indicate that the association between childhood abuse and BPD traits stems from common genetic influences that, in some cases, also overlap with internalizing and externalizing disorders. These findings are inconsistent with the widely held assumption that childhood abuse causes BPD, and suggests that BPD traits in adulthood are better accounted for by heritable vulnerabilities to internalizing and externalizing disorders. PMID:22686871

  20. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    PubMed Central

    Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225

  1. Sustainable deforestation evaluation model and system dynamics analysis.

    PubMed

    Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  2. Do labour market status transitions predict changes in psychological well-being?

    PubMed

    Flint, Ellen; Bartley, Mel; Shelton, Nicola; Sacker, Amanda

    2013-09-01

    The objective of this study was to establish the direction of causality in the relationship between labour market status and psychological well-being by investigating how transitions between secure employment, insecure employment, unemployment, permanent sickness and other economic inactivity predict changes in psychological well-being over a 16-year period. This study used data from the British Household Panel Survey (1991-2007). Psychological well-being was measured using the 12-item General Health Questionnaire (GHQ-12). Fixed effects models were utilised to investigate how transitions between labour market statuses predicted GHQ-12 score, adjusting for current labour market status and a range of covariates. After taking account of the contemporaneous effects of joblessness on psychological well-being, and the impact of a range of confounding factors, experiencing a transition from employment to joblessness was significantly predictive of poorer psychological well-being. Transitions into employment were not found to have equal and opposite effects: the positive effects of moving into work from unemployment were not as large as the negative effects of job loss. Transitions between secure and insecure employment did not independently predict changes in psychological well-being. A causal relationship between labour market status and psychological well-being is indicated.

  3. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    PubMed

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  4. Quantification of causal couplings via dynamical effects: A unifying perspective

    NASA Astrophysics Data System (ADS)

    Smirnov, Dmitry A.

    2014-12-01

    Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."

  5. Unexpected findings and promoting monocausal claims, a cautionary tale.

    PubMed

    Copeland, Samantha Marie

    2017-10-01

    Stories of serendipitous discoveries in medicine incorrectly imply that the path from an unexpected observation to major discovery is straightforward or guaranteed. In this paper, I examine a case from the field of research about chronic fatigue syndrome (CFS). In Norway, an unexpected positive result during clinical care has led to the development of a research programme into the potential for the immunosuppressant drug rituximab to relieve the symptoms of CFS. The media and public have taken up researchers' speculations that their research results indicate a causal mechanism for CFS - consequently, patients now have great hope that 'the cause' of CFS has been found, and thus, a cure is sure to follow. I argue that a monocausal claim cannot be correctly asserted, either on the basis of the single case of an unexpected, although positive, result or on the basis of the empirical research that has followed up on that result. Further, assertion and promotion of this claim will have specific harmful effects: it threatens to inappropriately narrow the scope of research on CFS, might misdirect research altogether, and could directly and indirectly harm patients. Therefore, the CFS case presents a cautionary tale, illustrating the risks involved in drawing a theoretical hypothesis from an unexpected observation. Further, I draw attention to the tendency in contemporary clinical research with CFS to promote new research directions on the basis of reductive causal models of that syndrome. Particularly, in the case of CFS research, underdetermination and causal complexity undermine the potential value of a monocausal claim. In sum, when an unexpected finding occurs in clinical practice or medical research, the value of following up on that finding is to be found not in the projected value of a singular causal relationship inferred from the finding but rather in the process of research that follows. © 2016 John Wiley & Sons, Ltd.

  6. Transformational Leadership, Transactional Contingent Reward, and Organizational Identification: The Mediating Effect of Perceived Innovation and Goal Culture Orientations.

    PubMed

    Xenikou, Athena

    2017-01-01

    Purpose: The aim of this research was to investigate the effect of transformational leadership and transactional contingent reward as complementary, but distinct, forms of leadership on facets of organizational identification via the perception of innovation and goal organizational values. Design/Methodology/Approach: Three studies were carried out implementing either a measurement of mediation or experimental-causal-chain design to test for the hypothesized effects. Findings: The measurement of mediation study showed that transformational leadership had a positive direct and indirect effect, via innovation value orientation, on cognitive identification, whereas transactional contingent reward was more strongly related to affective, rather than cognitive, identification, and goal orientation was a mediator of their link. The findings of the two experimental-causal-chain studies further supported the hypothesized effects. Transformational leadership was found to lead subordinates to perceive the culture as more innovative compared to transactional contingent reward, whereas transactional contingent reward led employees to perceive the culture as more goal, than innovation, oriented. Finally, innovation, compared to goal, value orientation increased cognitive identification, while goal orientation facilitated affective, rather than cognitive, identification. Implications: The practical implications involve the development of strategies organizations can apply, such as leadership training programs, to strengthen their ties with their employees, which, in turn, may have a positive impact on in-role, as well as extra-role, behaviors. Originality/Value: The originality of this research concerns the identification of distinct mechanisms explaining the effect of transformational leadership and transactional contingent reward on cognitive and affective identification applying an organizational culture perspective and a combination of measurement and causal mediation designs.

  7. Transformational Leadership, Transactional Contingent Reward, and Organizational Identification: The Mediating Effect of Perceived Innovation and Goal Culture Orientations

    PubMed Central

    Xenikou, Athena

    2017-01-01

    Purpose: The aim of this research was to investigate the effect of transformational leadership and transactional contingent reward as complementary, but distinct, forms of leadership on facets of organizational identification via the perception of innovation and goal organizational values. Design/Methodology/Approach: Three studies were carried out implementing either a measurement of mediation or experimental-causal-chain design to test for the hypothesized effects. Findings: The measurement of mediation study showed that transformational leadership had a positive direct and indirect effect, via innovation value orientation, on cognitive identification, whereas transactional contingent reward was more strongly related to affective, rather than cognitive, identification, and goal orientation was a mediator of their link. The findings of the two experimental-causal-chain studies further supported the hypothesized effects. Transformational leadership was found to lead subordinates to perceive the culture as more innovative compared to transactional contingent reward, whereas transactional contingent reward led employees to perceive the culture as more goal, than innovation, oriented. Finally, innovation, compared to goal, value orientation increased cognitive identification, while goal orientation facilitated affective, rather than cognitive, identification. Implications: The practical implications involve the development of strategies organizations can apply, such as leadership training programs, to strengthen their ties with their employees, which, in turn, may have a positive impact on in-role, as well as extra-role, behaviors. Originality/Value: The originality of this research concerns the identification of distinct mechanisms explaining the effect of transformational leadership and transactional contingent reward on cognitive and affective identification applying an organizational culture perspective and a combination of measurement and causal mediation designs. PMID:29093688

  8. Tests of causal links between alcohol abuse or dependence and major depression.

    PubMed

    Fergusson, David M; Boden, Joseph M; Horwood, L John

    2009-03-01

    There has been a great deal of research on the comorbidity between alcohol abuse or dependence (AAD) and major depression (MD). However, it is unclear whether AAD increases the risk of MD or vice versa. To examine the associations between AAD and MD using fixed-effects modeling to control for confounding and using structural equation models to ascertain the direction of causality. Data were gathered during the course of the Christchurch Health and Development Study, a 25-year longitudinal study of a birth cohort of children from New Zealand (635 boys, 630 girls). General community sample. The analysis was based on a sample of 1055 participants with available data on AAD and MD at ages 17 to 18, 20 to 21, and 24 to 25 years. Symptom criteria for AAD and MD from the DSM-IV at ages 17 to 18, 20 to 21, and 24 to 25 years as well as measures of life stress, cannabis use, other illicit drug use, affiliation with deviant peers, unemployment, partner substance use, and partner criminality at ages 17 to 18, 20 to 21, and 24 to 25 years. There were significant (P < .001) pooled associations between AAD and MD. Controlling for confounding factors using conditional fixed-effects models and time-dynamic covariate factors reduced the magnitude of these associations, but they remained statistically significant. Structural equation modeling suggested that the best-fitting causal model was one in which AAD led to increased risk of MD. The findings suggest that the associations between AAD and MD were best explained by a causal model in which problems with alcohol led to increased risk of MD as opposed to a self-medication model in which MD led to increased risk of AAD.

  9. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer

    ERIC Educational Resources Information Center

    Lu, Hongjing; Rojas, Randall R.; Beckers, Tom; Yuille, Alan L.

    2016-01-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about…

  10. Pathway Analysis and the Search for Causal Mechanisms

    ERIC Educational Resources Information Center

    Weller, Nicholas; Barnes, Jeb

    2016-01-01

    The study of causal mechanisms interests scholars across the social sciences. Case studies can be a valuable tool in developing knowledge and hypotheses about how causal mechanisms function. The usefulness of case studies in the search for causal mechanisms depends on effective case selection, and there are few existing guidelines for selecting…

  11. Electrophysiological difference between the representations of causal judgment and associative judgment in semantic memory.

    PubMed

    Chen, Qingfei; Liang, Xiuling; Lei, Yi; Li, Hong

    2015-05-01

    Causally related concepts like "virus" and "epidemic" and general associatively related concepts like "ring" and "emerald" are represented and accessed separately. The Evoked Response Potential (ERP) procedure was used to examine the representations of causal judgment and associative judgment in semantic memory. Participants were required to remember a task cue (causal or associative) presented at the beginning of each trial, and assess whether the relationship between subsequently presented words matched the initial task cue. The ERP data showed that an N400 effect (250-450 ms) was more negative for unrelated words than for all related words. Furthermore, the N400 effect elicited by causal relations was more positive than for associative relations in causal cue condition, whereas no significant difference was found in the associative cue condition. The centrally distributed late ERP component (650-750 ms) elicited by the causal cue condition was more positive than for the associative cue condition. These results suggested that the processing of causal judgment and associative judgment in semantic memory recruited different degrees of attentional and executive resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Identification and Sensitivity Analysis for Average Causal Mediation Effects with Time-Varying Treatments and Mediators: Investigating the Underlying Mechanisms of Kindergarten Retention Policy.

    PubMed

    Park, Soojin; Steiner, Peter M; Kaplan, David

    2018-06-01

    Considering that causal mechanisms unfold over time, it is important to investigate the mechanisms over time, taking into account the time-varying features of treatments and mediators. However, identification of the average causal mediation effect in the presence of time-varying treatments and mediators is often complicated by time-varying confounding. This article aims to provide a novel approach to uncovering causal mechanisms in time-varying treatments and mediators in the presence of time-varying confounding. We provide different strategies for identification and sensitivity analysis under homogeneous and heterogeneous effects. Homogeneous effects are those in which each individual experiences the same effect, and heterogeneous effects are those in which the effects vary over individuals. Most importantly, we provide an alternative definition of average causal mediation effects that evaluates a partial mediation effect; the effect that is mediated by paths other than through an intermediate confounding variable. We argue that this alternative definition allows us to better assess at least a part of the mediated effect and provides meaningful and unique interpretations. A case study using ECLS-K data that evaluates kindergarten retention policy is offered to illustrate our proposed approach.

  13. Bayesian networks improve causal environmental ...

    EPA Pesticide Factsheets

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  14. Alcohol intake and the risk of intracerebral hemorrhage in the elderly: The MUCH-Italy.

    PubMed

    Costa, Paolo; Grassi, Mario; Iacoviello, Licia; Zedde, Marialuisa; Marcheselli, Simona; Silvestrelli, Giorgio; DeLodovici, Maria Luisa; Sessa, Maria; Zini, Andrea; Paciaroni, Maurizio; Azzini, Cristiano; Gamba, Massimo; Del Sette, Massimo; Toriello, Antonella; Gandolfo, Carlo; Bonifati, Domenico Marco; Tassi, Rossana; Cavallini, Anna; Chiti, Alberto; Calabrò, Rocco Salvatore; Grillo, Francesco; Bovi, Paolo; Tomelleri, Giampaolo; Di Castelnuovo, Augusto; Ritelli, Marco; Agnelli, Giancarlo; De Vito, Alessandro; Pugliese, Nicola; Martini, Giuseppe; Lodigiani, Corrado; Morotti, Andrea; Poli, Loris; De Giuli, Valeria; Caria, Filomena; Cornali, Claudio; de Gaetano, Giovanni; Colombi, Marina; Padovani, Alessandro; Pezzini, Alessandro

    2018-06-13

    To investigate the role of alcohol as a causal factor for intracerebral hemorrhage (ICH) and whether its effects might vary according to the pathogenic mechanisms underlying cerebral bleeding. We performed a case-control analysis, comparing a cohort of consecutive white patients with ICH aged 55 years and older with a group of age- and sex-matched stroke-free controls, enrolled in the setting of the Multicenter Study on Cerebral Haemorrhage in Italy (MUCH-Italy) between 2002 and 2014. Participants were dichotomized into excessive drinkers (>45 g of alcohol) and light to moderate drinkers or nondrinkers. To isolate the unconfounded effect of alcohol on ICH, we used causal directed acyclic graphs and the back-door criterion to select a minimal sufficient adjustment set(s) of variables for multivariable analyses. Analyses were performed on the whole group as well as separately for lobar and deep ICH. We analyzed 3,173 patients (1,471 lobar ICH and 1,702 deep ICH) and 3,155 controls. After adjusting for the preselected variables in the minimal sufficient adjustments, heavy alcohol intake was associated with deep ICH risk (odds ratio [OR], 1.68; 95% confidence interval [CI], 1.36-2.09) as well as with the overall risk of ICH (OR, 1.38; 95% CI, 1.17-1.63), whereas no effect was found for lobar ICH (OR, 1.01; 95% CI, 0.77-1.32). In white people aged 55 years and older, high alcohol intake might exert a causal effect on ICH, with a prominent role in the vascular pathologies underlying deep ICH. © 2018 American Academy of Neurology.

  15. Effect of Alcohol on Risk of Coronary Heart Disease and Stroke: Causality, Bias, or a Bit of Both?

    PubMed Central

    Emberson, Jonathan R; Bennett, Derrick A

    2006-01-01

    Epidemiological studies of middle-aged populations generally find the relationship between alcohol intake and the risk of coronary heart disease (CHD) and stroke to be either U- or J-shaped. This review describes the extent that these relationships are likely to be causal, and the extent that they may be due to specific methodological weaknesses in epidemiological studies. The consistency in the vascular benefit associated with moderate drinking (compared with non-drinking) observed across different studies, together with the existence of credible biological pathways, strongly suggests that at least some of this benefit is real. However, because of biases introduced by: choice of reference categories; reverse causality bias; variations in alcohol intake over time; and confounding, some of it is likely to be an artefact. For heavy drinking, different study biases have the potential to act in opposing directions, and as such, the true effects of heavy drinking on vascular risk are uncertain. However, because of the known harmful effects of heavy drinking on non-vascular mortality, the problem is an academic one. Studies of the effects of alcohol consumption on health outcomes should recognise the methodological biases they are likely to face, and design, analyse and interpret their studies accordingly. While regular moderate alcohol consumption during middle-age probably does reduce vascular risk, care should be taken when making general recommendations about safe levels of alcohol intake. In particular, it is likely that any promotion of alcohol for health reasons would do substantially more harm than good. PMID:17326330

  16. Structural Model for the Effects of Environmental Elements on the Psychological Characteristics and Performance of the Employees of Manufacturing Systems

    PubMed Central

    Realyvásquez, Arturo; Maldonado-Macías, Aidé Aracely; García-Alcaraz, Jorge; Cortés-Robles, Guillermo; Blanco-Fernández, Julio

    2016-01-01

    This paper analyzes the effects of environmental elements on the psychological characteristics and performance of employees in manufacturing systems using structural equation modeling. Increasing the comprehension of these effects may help optimize manufacturing systems regarding their employees’ psychological characteristics and performance from a macroergonomic perspective. As the method, a new macroergonomic compatibility questionnaire (MCQ) was developed and statistically validated, and 158 respondents at four manufacture companies were considered. Noise, lighting and temperature, humidity and air quality (THAQ) were used as independent variables and psychological characteristics and employees’ performance as dependent variables. To propose and test the hypothetical causal model of significant relationships among the variables, a data analysis was deployed. Results found that the macroergonomic compatibility of environmental elements presents significant direct effects on employees’ psychological characteristics and either direct or indirect effects on the employees’ performance. THAQ had the highest direct and total effects on psychological characteristics. Regarding the direct and total effects on employees’ performance, the psychological characteristics presented the highest effects, followed by THAQ conditions. These results may help measure and optimize manufacturing systems’ performance by enhancing their macroergonomic compatibility and quality of life at work of the employees. PMID:26742054

  17. Structural Model for the Effects of Environmental Elements on the Psychological Characteristics and Performance of the Employees of Manufacturing Systems.

    PubMed

    Realyvásquez, Arturo; Maldonado-Macías, Aidé Aracely; García-Alcaraz, Jorge; Cortés-Robles, Guillermo; Blanco-Fernández, Julio

    2016-01-05

    This paper analyzes the effects of environmental elements on the psychological characteristics and performance of employees in manufacturing systems using structural equation modeling. Increasing the comprehension of these effects may help optimize manufacturing systems regarding their employees' psychological characteristics and performance from a macroergonomic perspective. As the method, a new macroergonomic compatibility questionnaire (MCQ) was developed and statistically validated, and 158 respondents at four manufacture companies were considered. Noise, lighting and temperature, humidity and air quality (THAQ) were used as independent variables and psychological characteristics and employees' performance as dependent variables. To propose and test the hypothetical causal model of significant relationships among the variables, a data analysis was deployed. Results found that the macroergonomic compatibility of environmental elements presents significant direct effects on employees' psychological characteristics and either direct or indirect effects on the employees' performance. THAQ had the highest direct and total effects on psychological characteristics. Regarding the direct and total effects on employees' performance, the psychological characteristics presented the highest effects, followed by THAQ conditions. These results may help measure and optimize manufacturing systems' performance by enhancing their macroergonomic compatibility and quality of life at work of the employees.

  18. The ADRA2B gene in the production of false memories for affective information in healthy female volunteers.

    PubMed

    Fairfield, Beth; Mammarella, Nicola; Di Domenico, Alberto; D'Aurora, Marco; Stuppia, Liborio; Gatta, Valentina

    2017-08-30

    False memories are common memory distortions in everyday life and seem to increase with affectively connoted complex information. In line with recent studies showing a significant interaction between the noradrenergic system and emotional memory, we investigated whether healthy volunteer carriers of the deletion variant of the ADRA2B gene that codes for the α2b-adrenergic receptor are more prone to false memories than non-carriers. In this study, we collected genotype data from 212 healthy female volunteers; 91 ADRA2B carriers and 121 non-carriers. To assess gene effects on false memories for affective information, factorial mixed model analysis of variances (ANOVAs) were conducted with genotype as the between-subjects factor and type of memory error as the within-subjects factor. We found that although carriers and non-carriers made comparable numbers of false memory errors, they showed differences in the direction of valence biases, especially for inferential causal errors. Specifically, carriers produced fewer causal false memory errors for scripts with a negative outcome, whereas non-carriers showed a more general emotional effect and made fewer causal errors with both positive and negative outcomes. These findings suggest that putatively higher levels of noradrenaline in deletion carriers may enhance short-term consolidation of negative information and lead to fewer memory distortions when facing negative events. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Framework for assessing causality of air pollution-related health effects for reviews of the National Ambient Air Quality Standards.

    PubMed

    Owens, Elizabeth Oesterling; Patel, Molini M; Kirrane, Ellen; Long, Thomas C; Brown, James; Cote, Ila; Ross, Mary A; Dutton, Steven J

    2017-08-01

    To inform regulatory decisions on the risk due to exposure to ambient air pollution, consistent and transparent communication of the scientific evidence is essential. The United States Environmental Protection Agency (U.S. EPA) develops the Integrated Science Assessment (ISA), which contains evaluations of the policy-relevant science on the effects of criteria air pollutants and conveys critical science judgments to inform decisions on the National Ambient Air Quality Standards. This article discusses the approach and causal framework used in the ISAs to evaluate and integrate various lines of scientific evidence and draw conclusions about the causal nature of air pollution-induced health effects. The framework has been applied to diverse pollutants and cancer and noncancer effects. To demonstrate its flexibility, we provide examples of causality judgments on relationships between health effects and pollutant exposures, drawing from recent ISAs for ozone, lead, carbon monoxide, and oxides of nitrogen. U.S. EPA's causal framework has increased transparency by establishing a structured process for evaluating and integrating various lines of evidence and uniform approach for determining causality. The framework brings consistency and specificity to the conclusions in the ISA, and the flexibility of the framework makes it relevant for evaluations of evidence across media and health effects. Published by Elsevier Inc.

  20. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Bauldry, Shawn

    2011-01-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of…

  1. Teaching Statistical Inference for Causal Effects in Experiments and Observational Studies

    ERIC Educational Resources Information Center

    Rubin, Donald B.

    2004-01-01

    Inference for causal effects is a critical activity in many branches of science and public policy. The field of statistics is the one field most suited to address such problems, whether from designed experiments or observational studies. Consequently, it is arguably essential that departments of statistics teach courses in causal inference to both…

  2. Two heads are better than one, but how much? Evidence that people's use of causal integration rules does not always conform to normative standards.

    PubMed

    Vadillo, Miguel A; Ortega-Castro, Nerea; Barberia, Itxaso; Baker, A G

    2014-01-01

    Many theories of causal learning and causal induction differ in their assumptions about how people combine the causal impact of several causes presented in compound. Some theories propose that when several causes are present, their joint causal impact is equal to the linear sum of the individual impact of each cause. However, some recent theories propose that the causal impact of several causes needs to be combined by means of a noisy-OR integration rule. In other words, the probability of the effect given several causes would be equal to the sum of the probability of the effect given each cause in isolation minus the overlap between those probabilities. In the present series of experiments, participants were given information about the causal impact of several causes and then they were asked what compounds of those causes they would prefer to use if they wanted to produce the effect. The results of these experiments suggest that participants actually use a variety of strategies, including not only the linear and the noisy-OR integration rules, but also averaging the impact of several causes.

  3. Causal structures in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Izumi, Keisuke

    2014-08-01

    We analyze causal structures in Gauss-Bonnet gravity. It is known that Gauss-Bonnet gravity potentially has superluminal propagation of gravitons due to its noncanonical kinetic terms. In a theory with superluminal modes, an analysis of causality based on null curves makes no sense, and thus, we need to analyze them in a different way. In this paper, using the method of the characteristics, we analyze the causal structure in Gauss-Bonnet gravity. We have the result that, on a Killing horizon, gravitons can propagate in the null direction tangent to the Killing horizon. Therefore, a Killing horizon can be a causal edge as in the case of general relativity; i.e. a Killing horizon is the "event horizon" in the sense of causality. We also analyze causal structures on nonstationary solutions with (D-2)-dimensional maximal symmetry, including spherically symmetric and flat spaces. If the geometrical null energy condition, RABNANB≥0 for any null vector NA, is satisfied, the radial velocity of gravitons must be less than or equal to that of light. However, if the geometrical null energy condition is violated, gravitons can propagate faster than light. Hence, on an evaporating black hole where the geometrical null energy condition is expected not to hold, classical gravitons can escape from the "black hole" defined with null curves. That is, the causal structures become nontrivial. It may be one of the possible solutions for the information loss paradox of evaporating black holes.

  4. Direction-Dependence Analysis: A Confirmatory Approach for Testing Directional Theories

    ERIC Educational Resources Information Center

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    The concept of direction dependence has attracted growing attention due to its potential to help decide which of two competing linear regression models (X ? Y or Y ? X) is more likely to reflect the correct causal flow. Several tests have been proposed to evaluate hypotheses compatible with direction dependence. In this issue, Thoemmes (2015)…

  5. Optimal causal inference: estimating stored information and approximating causal architecture.

    PubMed

    Still, Susanne; Crutchfield, James P; Ellison, Christopher J

    2010-09-01

    We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.

  6. Defining and estimating causal direct and indirect effects when setting the mediator to specific values is not feasible.

    PubMed

    Lok, Judith J

    2016-09-30

    Natural direct and indirect effects decompose the effect of a treatment into the part that is mediated by a covariate (the mediator) and the part that is not. Their definitions rely on the concept of outcomes under treatment with the mediator 'set' to its value without treatment. Typically, the mechanism through which the mediator is set to this value is left unspecified, and in many applications, it may be challenging to fix the mediator to particular values for each unit or patient. Moreover, how one sets the mediator may affect the distribution of the outcome. This article introduces 'organic' direct and indirect effects, which can be defined and estimated without relying on setting the mediator to specific values. Organic direct and indirect effects can be applied, for example, to estimate how much of the effect of some treatments for HIV/AIDS on mother-to-child transmission of HIV infection is mediated by the effect of the treatment on the HIV viral load in the blood of the mother. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Causal and causally separable processes

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and outcomes for each party, these correlations form a polytope whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by the process matrix formalism. We investigate the link between causality and the closely related notion of causal separability of quantum processes, which we here define rigorously in analogy with the link between Bell locality and separability of quantum states. We show that causality and causal separability are not equivalent in general by giving an example of a physically admissible tripartite quantum process that is causal but not causally separable. We also show that there are causally separable quantum processes that become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite case via simple conditions on the form of the process matrix. We show that the processes realizable by classically controlled quantum circuits are ECS and conjecture that the reverse also holds.

  8. Change, Self-Organization and the Search for Causality in Educational Research and Practice

    ERIC Educational Resources Information Center

    Koopmans, Matthijs

    2014-01-01

    Causality is an inextricable part of the educational process, as our understanding of what works in education depends on our ability to make causal attributions. Yet, the research and policy literature in education tends to define causality narrowly as the attribution of educational outcomes to intervention effects in a randomized control trial…

  9. Property Transmission: An Explanatory Account of the Role of Similarity Information in Causal Inference

    ERIC Educational Resources Information Center

    White, Peter A.

    2009-01-01

    Many kinds of common and easily observed causal relations exhibit property transmission, which is a tendency for the causal object to impose its own properties on the effect object. It is proposed that property transmission becomes a general and readily available hypothesis used to make interpretations and judgments about causal questions under…

  10. Causality and headache triggers

    PubMed Central

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  11. Dopamine modulates egalitarian behavior in humans.

    PubMed

    Sáez, Ignacio; Zhu, Lusha; Set, Eric; Kayser, Andrew; Hsu, Ming

    2015-03-30

    Egalitarian motives form a powerful force in promoting prosocial behavior and enabling large-scale cooperation in the human species [1]. At the neural level, there is substantial, albeit correlational, evidence suggesting a link between dopamine and such behavior [2, 3]. However, important questions remain about the specific role of dopamine in setting or modulating behavioral sensitivity to prosocial concerns. Here, using a combination of pharmacological tools and economic games, we provide critical evidence for a causal involvement of dopamine in human egalitarian tendencies. Specifically, using the brain penetrant catechol-O-methyl transferase (COMT) inhibitor tolcapone [4, 5], we investigated the causal relationship between dopaminergic mechanisms and two prosocial concerns at the core of a number of widely used economic games: (1) the extent to which individuals directly value the material payoffs of others, i.e., generosity, and (2) the extent to which they are averse to differences between their own payoffs and those of others, i.e., inequity. We found that dopaminergic augmentation via COMT inhibition increased egalitarian tendencies in participants who played an extended version of the dictator game [6]. Strikingly, computational modeling of choice behavior [7] revealed that tolcapone exerted selective effects on inequity aversion, and not on other computational components such as the extent to which individuals directly value the material payoffs of others. Together, these data shed light on the causal relationship between neurochemical systems and human prosocial behavior and have potential implications for our understanding of the complex array of social impairments accompanying neuropsychiatric disorders involving dopaminergic dysregulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The association between smoking and subsequent suicide-related outcomes in the National Comorbidity Survey panel sample

    PubMed Central

    Kessler, Ronald C.; Borges, Guilherme; Sampson, Nancy; Miller, Matthew; Nock, Matthew K.

    2009-01-01

    Controversy exists about whether the repeatedly-documented associations between smoking and subsequent suicide-related outcomes (SROs; ideation, plans, gestures, and attempts) are due to unmeasured common causes or to causal effects of smoking on SROs. We address this issue by examining associations of smoking with subsequent SROs with and without controls for potential explanatory variables in the National Comorbidity Survey (NCS) panel. The latter consists of 5001 people who participated in both the 199002 NCS and the 2001–03 NCS Follow-up Survey. Explanatory variables include socio-demographics, potential common causes (parental history of mental-substance disorders; other respondent childhood adversities) and potential mediators (respondent history of DSM-III-R mental-substance disorders). Small gross (i.e., without controls) prospective associations are found between history of early-onset nicotine dependence and both subsequent suicide ideation and, among ideators, subsequent suicide plans. None of the baseline smoking measures, though, predicts subsequent suicide gestures or attempts among ideators. The smoking-ideation association largely disappear, but the association of early-onset nicotine dependence with subsequent suicide plans persists (Odds-ratio = 3.0), after adjustment for control variables. However, the latter association is as strong with remitted as active nicotine dependence, arguing against a direct causal effect of nicotine dependence on suicide plans. Decomposition of the control variable effects, furthermore, suggests that these effects are due to common causes more than to mediators. These results refine our understanding of the ways in which smoking is associated with later SROs and for the most part argue against the view that these associations are due to causal effects of smoking. PMID:18645572

  13. The effects of income on mental health: evidence from the social security notch.

    PubMed

    Golberstein, Ezra

    2015-03-01

    Mental health is a key component of overall wellbeing and mental disorders are relatively common, including among older adults. Yet the causal effect of income on mental health status among older adults is poorly understood. This paper considers the effects of a major source of transfer income, Social Security retirement benefits, on the mental health of older adults. The Social Security benefit "Notch" is as a large, permanent, and exogenous shock to Social Security income in retirement. The "Notch" is used to identify the causal effect of Social Security income on mental health among older ages using data from the AHEAD cohort of the Health and Retirement Study. We find that increases in Social Security income significantly improve mental health status and the likelihood of a psychiatric diagnosis for women, but not for men. The effects of income on mental health for older women are statistically significant and meaningful in magnitude. While this is one of the only studies to use plausibly exogenous variation in household income to identify the effect of income on mental health, a limitation of this work is that the results only directly pertain to lower-education households. Public policy proposals that alter retirement benefits for the elderly may have important effects on the mental health of older adults.

  14. Causal Impact of Employee Work Perceptions on the Bottom Line of Organizations.

    PubMed

    Harter, James K; Schmidt, Frank L; Asplund, James W; Killham, Emily A; Agrawal, Sangeeta

    2010-07-01

    Perceptions of work conditions have proven to be important to the well-being of workers. However, customer loyalty, employee retention, revenue, sales, and profit are essential to the success of any business. It is known that these outcomes are correlated with employee attitudes and perceptions of work conditions, but the research into direction of causality has been inconclusive. Using a massive longitudinal database that included 2,178 business units in 10 large organizations, we found evidence supporting the causal impact of employee perceptions on these bottom-line measures; reverse causality of bottom-line measures on employee perceptions existed but was weaker. Managerial actions and practices can impact employee work conditions and employee perceptions of these conditions, thereby improving key outcomes at the organizational level. Perceptions of specific work conditions that engage employees in their work provide practical guidance in how best to manage people to obtain desired results. © The Author(s) 2010.

  15. Recurrence measure of conditional dependence and applications.

    PubMed

    Ramos, Antônio M T; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E N; Kurths, Jürgen; Marwan, Norbert

    2017-05-01

    Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.

  16. Recurrence measure of conditional dependence and applications

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E. N.; Kurths, Jürgen; Marwan, Norbert

    2017-05-01

    Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.

  17. Analysis of Longitudinal Studies With Repeated Outcome Measures: Adjusting for Time-Dependent Confounding Using Conventional Methods.

    PubMed

    Keogh, Ruth H; Daniel, Rhian M; VanderWeele, Tyler J; Vansteelandt, Stijn

    2018-05-01

    Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemiology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure, standard regression methods can lead to bias. Methods such as inverse probability weighted estimation of marginal structural models have been developed to address this problem. However, in this paper we show how standard regression methods can be used, even in the presence of time-dependent confounding, to estimate the total effect of an exposure on a subsequent outcome by controlling appropriately for prior exposures, outcomes, and time-varying covariates. We refer to the resulting estimation approach as sequential conditional mean models (SCMMs), which can be fitted using generalized estimating equations. We outline this approach and describe how including propensity score adjustment is advantageous. We compare the causal effects being estimated using SCMMs and marginal structural models, and we compare the two approaches using simulations. SCMMs enable more precise inferences, with greater robustness against model misspecification via propensity score adjustment, and easily accommodate continuous exposures and interactions. A new test for direct effects of past exposures on a subsequent outcome is described.

  18. Structural nested mean models for assessing time-varying effect moderation.

    PubMed

    Almirall, Daniel; Ten Have, Thomas; Murphy, Susan A

    2010-03-01

    This article considers the problem of assessing causal effect moderation in longitudinal settings in which treatment (or exposure) is time varying and so are the covariates said to moderate its effect. Intermediate causal effects that describe time-varying causal effects of treatment conditional on past covariate history are introduced and considered as part of Robins' structural nested mean model. Two estimators of the intermediate causal effects, and their standard errors, are presented and discussed: The first is a proposed two-stage regression estimator. The second is Robins' G-estimator. The results of a small simulation study that begins to shed light on the small versus large sample performance of the estimators, and on the bias-variance trade-off between the two estimators are presented. The methodology is illustrated using longitudinal data from a depression study.

  19. Students' reasons for preferring teleological explanations

    NASA Astrophysics Data System (ADS)

    Trommler, Friederike; Gresch, Helge; Hammann, Marcus

    2018-01-01

    The teleological bias, a major learning obstacle, involves explaining biological phenomena in terms of purposes and goals. To probe the teleological bias, researchers have used acceptance judgement tasks and preference judgement tasks. In the present study, such tasks were used with German high school students (N = 353) for 10 phenomena from human biology, that were explained both teleologically and causally. A sub-sample (n = 26) was interviewed about the reasons for their preferences. The results showed that the students favoured teleological explanations over causal explanations. Although the students explained their preference judgements etiologically (i.e. teleologically and causally), they also referred to a wide range of non-etiological criteria (i.e. familiarity, complexity, relevance and five more criteria). When elaborating on their preference for causal explanations, the students often focused not on the causality of the phenomenon, but on mechanisms whose complexity they found attractive. When explaining their preference for teleological explanations, they often focused not teleologically on purposes and goals, but rather on functions, which they found familiar and relevant. Generally, students' preference judgements rarely allowed for making inferences about causal reasoning and teleological reasoning, an issue that is controversial in the literature. Given that students were largely unaware of causality and teleology, their attention must be directed towards distinguishing between etiological and non-etiological reasoning. Implications for educational practice as well as for future research are discussed.

  20. Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge

    PubMed Central

    2012-01-01

    Background Identification of active causal regulators is a crucial problem in understanding mechanism of diseases or finding drug targets. Methods that infer causal regulators directly from primary data have been proposed and successfully validated in some cases. These methods necessarily require very large sample sizes or a mix of different data types. Recent studies have shown that prior biological knowledge can successfully boost a method's ability to find regulators. Results We present a simple data-driven method, Correlation Set Analysis (CSA), for comprehensively detecting active regulators in disease populations by integrating co-expression analysis and a specific type of literature-derived causal relationships. Instead of investigating the co-expression level between regulators and their regulatees, we focus on coherence of regulatees of a regulator. Using simulated datasets we show that our method performs very well at recovering even weak regulatory relationships with a low false discovery rate. Using three separate real biological datasets we were able to recover well known and as yet undescribed, active regulators for each disease population. The results are represented as a rank-ordered list of regulators, and reveals both single and higher-order regulatory relationships. Conclusions CSA is an intuitive data-driven way of selecting directed perturbation experiments that are relevant to a disease population of interest and represent a starting point for further investigation. Our findings demonstrate that combining co-expression analysis on regulatee sets with a literature-derived network can successfully identify causal regulators and help develop possible hypothesis to explain disease progression. PMID:22443377

  1. Long-Term Consequences of Early Sexual Initiation on Young Adult Health: A Causal Inference Approach

    ERIC Educational Resources Information Center

    Kugler, Kari C.; Vasilenko, Sara A.; Butera, Nicole M.; Coffman, Donna L.

    2017-01-01

    Although early sexual initiation has been linked to negative outcomes, it is unknown whether these effects are causal. In this study, we use propensity score methods to estimate the causal effect of early sexual initiation on young adult sexual risk behaviors and health outcomes using data from the National Longitudinal Study of Adolescent to…

  2. Is There a Causal Effect of High School Math on Labor Market Outcomes?

    ERIC Educational Resources Information Center

    Joensen, Juanna Schroter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…

  3. The Effects of Explicit Teaching of Strategies, Second-Order Concepts, and Epistemological Underpinnings on Students' Ability to Reason Causally in History

    ERIC Educational Resources Information Center

    Stoel, Gerhard L.; van Drie, Jannet P.; van Boxtel, Carla A. M.

    2017-01-01

    This article reports an experimental study on the effects of explicit teaching on 11th grade students' ability to reason causally in history. Underpinned by the model of domain learning, explicit teaching is conceptualized as multidimensional, focusing on strategies and second-order concepts to generate and verbalize causal explanations and…

  4. Epidemiological causality.

    PubMed

    Morabia, Alfredo

    2005-01-01

    Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.

  5. Causality constraints in conformal field theory

    DOE PAGES

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well knownmore » sign constraint on the (Φ) 4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators« less

  6. A linguistic investigation of mediators between religious commitment and health behaviors in older adolescents.

    PubMed

    Rew, Lynn; Wong, Y Joel; Torres, Rosamar; Howell, Elizabeth

    2007-01-01

    Social scientists are beginning to take an interest in the role that religiosity plays in the development of health behaviors throughout adolescence. Although there is mounting evidence of a relationship between these constructs, how and why such relationships exist is not well understood. In this exploratory study of 28 racially diverse university students, we examined whether the relationship between religious commitment and health behaviors could be detected through written language. The results indicated that religious commitment and various indices of healthy lifestyle practices were strongly correlated, that healthy lifestyle practices were related to use of causal words (representing cognitive attempts at understanding causes and effects) and first person plural words (representing social connectedness). The results were consistent with a model in which participants' use of causal words partially or fully mediated the relations between religious commitment and healthy lifestyle practices. Implications of findings and directions for future research are discussed.

  7. The relationship between the growth in the health sector and inbound health tourism: the case of Turkey.

    PubMed

    Uçak, Harun

    2016-01-01

    One of the consequences of globalisation for Turkey, as well as in other emerging countries, has been an increasing trend in health tourism. Households have been considered choice the best option in terms of price and alternative possibilities while they have been solved their health problems. Previous studies have argued that the main drivers of the growth of inbound health tourism to developing countries are lower costs, shorter waiting periods, and better quality of care. This study aimed to test the effect of health and social service sector growth on the flow of inbound health tourism between 2004:Q1 and 2015:Q4 by employing Granger causality and Johansen cointegration approaches. Our findings suggested that there is a long-run Granger causality from domestic health and social work expenditures to health tourism income whereas this is non-existence in the opposite direction.

  8. Theory-of-Mind Training Causes Honest Young Children to Lie.

    PubMed

    Ding, Xiao Pan; Wellman, Henry M; Wang, Yu; Fu, Genyue; Lee, Kang

    2015-11-01

    Theory of mind (ToM) has long been recognized to play a major role in children's social functioning. However, no direct evidence confirms the causal linkage between the two. In the current study, we addressed this significant gap by examining whether ToM causes the emergence of lying, an important social skill. We showed that after participating in ToM training to learn about mental-state concepts, 3-year-olds who originally had been unable to lie began to deceive consistently. This training effect lasted for more than a month. In contrast, 3-year-olds who participated in control training to learn about physical concepts were significantly less inclined to lie than the ToM-trained children. These findings provide the first experimental evidence supporting the causal role of ToM in the development of social competence in early childhood. © The Author(s) 2015.

  9. Effective connectivity: Influence, causality and biophysical modeling

    PubMed Central

    Valdes-Sosa, Pedro A.; Roebroeck, Alard; Daunizeau, Jean; Friston, Karl

    2011-01-01

    This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. PMID:21477655

  10. Category transfer in sequential causal learning: the unbroken mechanism hypothesis.

    PubMed

    Hagmayer, York; Meder, Björn; von Sydow, Momme; Waldmann, Michael R

    2011-07-01

    The goal of the present set of studies is to explore the boundary conditions of category transfer in causal learning. Previous research has shown that people are capable of inducing categories based on causal learning input, and they often transfer these categories to new causal learning tasks. However, occasionally learners abandon the learned categories and induce new ones. Whereas previously it has been argued that transfer is only observed with essentialist categories in which the hidden properties are causally relevant for the target effect in the transfer relation, we here propose an alternative explanation, the unbroken mechanism hypothesis. This hypothesis claims that categories are transferred from a previously learned causal relation to a new causal relation when learners assume a causal mechanism linking the two relations that is continuous and unbroken. The findings of two causal learning experiments support the unbroken mechanism hypothesis. Copyright © 2011 Cognitive Science Society, Inc.

  11. Altered effective connectivity within default mode network in major depression disorder

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Wang, Huaning; Zhang, Linchuan; Cui, Longbiao; Lu, Hongbing

    2016-03-01

    Understanding the neural basis of Major Depressive Disorder (MDD) is important for the diagnosis and treatment of this mental disorder. The default mode network (DMN) is considered to be highly involved in the MDD. To find directed interaction between DMN regions associated with the development of MDD, the effective connectivity within the DMN of the MDD patients and matched healthy controls was estimated by using a recently developed spectral dynamic causal modeling. Sixteen patients with MDD and sixteen matched healthy control subjects were included in this study. While the control group underwent the resting state fMRI scan just once, all patients underwent resting state fMRI scans before and after two months' treatment. The spectral dynamic causal modeling was used to estimate directed connections between four DMN nodes. Statistical analysis on connection strengths indicated that efferent connections from the medial frontal cortex (MFC) to posterior cingulate cortex (PCC) and to right parietal cortex (RPC) were significant higher in pretreatment MDD patients than those of the control group. After two-month treatment, the efferent connections from the MFC decreased significantly, while those from the left parietal cortex (LPC) to MFC, PCC and RPC showed a significant increase. These findings suggest that the MFC may play an important role for inhibitory conditioning of the DMN, which was disrupted in MDD patients. It also indicates that disrupted suppressive function of the MFC could be effectively restored after two-month treatment.

  12. Causality and Causal Inference in Social Work: Quantitative and Qualitative Perspectives

    PubMed Central

    Palinkas, Lawrence A.

    2015-01-01

    Achieving the goals of social work requires matching a specific solution to a specific problem. Understanding why the problem exists and why the solution should work requires a consideration of cause and effect. However, it is unclear whether it is desirable for social workers to identify cause and effect, whether it is possible for social workers to identify cause and effect, and, if so, what is the best means for doing so. These questions are central to determining the possibility of developing a science of social work and how we go about doing it. This article has four aims: (1) provide an overview of the nature of causality; (2) examine how causality is treated in social work research and practice; (3) highlight the role of quantitative and qualitative methods in the search for causality; and (4) demonstrate how both methods can be employed to support a “science” of social work. PMID:25821393

  13. Emerging Perception of Causality in Action-and-Reaction Sequences from 4 to 6 Months of Age: Is It Domain-Specific?

    ERIC Educational Resources Information Center

    Schlottmann, Anne; Ray, Elizabeth D.; Surian, Luca

    2012-01-01

    Two experiments (N=136) studied how 4- to 6-month-olds perceive a simple schematic event, seen as goal-directed action and reaction from 3 years of age. In our causal reaction event, a red square moved toward a blue square, stopping prior to contact. Blue began to move away before red stopped, so that both briefly moved simultaneously at a…

  14. Interpretational confounding is due to misspecification, not to type of indicator: comment on Howell, Breivik, and Wilcox (2007).

    PubMed

    Bollen, Kenneth A

    2007-06-01

    R. D. Howell, E. Breivik, and J. B. Wilcox (2007) have argued that causal (formative) indicators are inherently subject to interpretational confounding. That is, they have argued that using causal (formative) indicators leads the empirical meaning of a latent variable to be other than that assigned to it by a researcher. Their critique of causal (formative) indicators rests on several claims: (a) A latent variable exists apart from the model when there are effect (reflective) indicators but not when there are causal (formative) indicators, (b) causal (formative) indicators need not have the same consequences, (c) causal (formative) indicators are inherently subject to interpretational confounding, and (d) a researcher cannot detect interpretational confounding when using causal (formative) indicators. This article shows that each claim is false. Rather, interpretational confounding is more a problem of structural misspecification of a model combined with an underidentified model that leaves these misspecifications undetected. Interpretational confounding does not occur if the model is correctly specified whether a researcher has causal (formative) or effect (reflective) indicators. It is the validity of a model not the type of indicator that determines the potential for interpretational confounding. Copyright 2007 APA, all rights reserved.

  15. Stratified exact tests for the weak causal null hypothesis in randomized trials with a binary outcome.

    PubMed

    Chiba, Yasutaka

    2017-09-01

    Fisher's exact test is commonly used to compare two groups when the outcome is binary in randomized trials. In the context of causal inference, this test explores the sharp causal null hypothesis (i.e. the causal effect of treatment is the same for all subjects), but not the weak causal null hypothesis (i.e. the causal risks are the same in the two groups). Therefore, in general, rejection of the null hypothesis by Fisher's exact test does not mean that the causal risk difference is not zero. Recently, Chiba (Journal of Biometrics and Biostatistics 2015; 6: 244) developed a new exact test for the weak causal null hypothesis when the outcome is binary in randomized trials; the new test is not based on any large sample theory and does not require any assumption. In this paper, we extend the new test; we create a version of the test applicable to a stratified analysis. The stratified exact test that we propose is general in nature and can be used in several approaches toward the estimation of treatment effects after adjusting for stratification factors. The stratified Fisher's exact test of Jung (Biometrical Journal 2014; 56: 129-140) tests the sharp causal null hypothesis. This test applies a crude estimator of the treatment effect and can be regarded as a special case of our proposed exact test. Our proposed stratified exact test can be straightforwardly extended to analysis of noninferiority trials and to construct the associated confidence interval. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Deconstructing events: The neural bases for space, time, and causality

    PubMed Central

    Kranjec, Alexander; Cardillo, Eileen R.; Lehet, Matthew; Chatterjee, Anjan

    2013-01-01

    Space, time, and causality provide a natural structure for organizing our experience. These abstract categories allow us to think relationally in the most basic sense; understanding simple events require one to represent the spatial relations among objects, the relative durations of actions or movements, and links between causes and effects. The present fMRI study investigates the extent to which the brain distinguishes between these fundamental conceptual domains. Participants performed a one-back task with three conditions of interest (SPACE, TIME and CAUSALITY). Each condition required comparing relations between events in a simple verbal narrative. Depending on the condition, participants were instructed to either attend to the spatial, temporal, or causal characteristics of events, but between participants, each particular event relation appeared in all three conditions. Contrasts compared neural activity during each condition against the remaining two and revealed how thinking about events is deconstructed neurally. Space trials recruited neural areas traditionally associated with visuospatial processing, primarily bilateral frontal and occipitoparietal networks. Causality trials activated areas previously found to underlie causal thinking and thematic role assignment, such as left medial frontal, and left middle temporal gyri, respectively. Causality trials also produced activations in SMA, caudate, and cerebellum; cortical and subcortical regions associated with the perception of time at different timescales. The TIME contrast however, produced no significant effects. This pattern, indicating negative results for TIME trials, but positive effects for CAUSALITY trials in areas important for time perception, motivated additional overlap analyses to further probe relations between domains. The results of these analyses suggest a closer correspondence between time and causality than between time and space. PMID:21861674

  17. Extending earthquakes' reach through cascading.

    PubMed

    Marsan, David; Lengliné, Olivier

    2008-02-22

    Earthquakes, whatever their size, can trigger other earthquakes. Mainshocks cause aftershocks to occur, which in turn activate their own local aftershock sequences, resulting in a cascade of triggering that extends the reach of the initial mainshock. A long-lasting difficulty is to determine which earthquakes are connected, either directly or indirectly. Here we show that this causal structure can be found probabilistically, with no a priori model nor parameterization. Large regional earthquakes are found to have a short direct influence in comparison to the overall aftershock sequence duration. Relative to these large mainshocks, small earthquakes collectively have a greater effect on triggering. Hence, cascade triggering is a key component in earthquake interactions.

  18. Evidence base and future research directions in the management of low back pain

    PubMed Central

    Abbott, Allan

    2016-01-01

    Low back pain (LBP) is a prevalent and costly condition. Awareness of valid and reliable patient history taking, physical examination and clinical testing is important for diagnostic accuracy. Stratified care which targets treatment to patient subgroups based on key characteristics is reliant upon accurate diagnostics. Models of stratified care that can potentially improve treatment effects include prognostic risk profiling for persistent LBP, likely response to specific treatment based on clinical prediction models or suspected underlying causal mechanisms. The focus of this editorial is to highlight current research status and future directions for LBP diagnostics and stratified care. PMID:27004162

  19. Type I interferon causes thrombotic microangiopathy by a dose-dependent toxic effect on the microvasculature

    PubMed Central

    Kavanagh, David; Jury, Alexa; Williams, Jac; Scolding, Neil; Bellamy, Chris; Gunther, Claudia; Ritchie, Diane; Gale, Daniel P.; Kanwar, Yashpal S.; Challis, Rachel; Buist, Holly; Overell, James; Weller, Belinda; Flossmann, Oliver; Blunden, Mark; Meyer, Eric P.; Krucker, Thomas; Evans, Stephen J. W.; Campbell, Iain L.; Jackson, Andrew P.; Chandran, Siddharthan

    2016-01-01

    Many drugs have been reported to cause thrombotic microangiopathy (TMA), yet evidence supporting a direct association is often weak. In particular, TMA has been reported in association with recombinant type I interferon (IFN) therapies, with recent concern regarding the use of IFN in multiple sclerosis patients. However, a causal association has yet to be demonstrated. Here, we adopt a combined clinical and experimental approach to provide evidence of such an association between type I IFN and TMA. We show that the clinical phenotype of cases referred to a national center is uniformly consistent with a direct dose-dependent drug-induced TMA. We then show that dose-dependent microvascular disease is seen in a transgenic mouse model of IFN toxicity. This includes specific microvascular pathological changes seen in patient biopsies and is dependent on transcriptional activation of the IFN response through the type I interferon α/β receptor (IFNAR). Together our clinical and experimental findings provide evidence of a causal link between type I IFN and TMA. As such, recombinant type I IFN therapies should be stopped at the earliest stage in patients who develop this complication, with implications for risk mitigation. PMID:27663672

  20. Links between causal effects and causal association for surrogacy evaluation in a gaussian setting.

    PubMed

    Conlon, Anna; Taylor, Jeremy; Li, Yun; Diaz-Ordaz, Karla; Elliott, Michael

    2017-11-30

    Two paradigms for the evaluation of surrogate markers in randomized clinical trials have been proposed: the causal effects paradigm and the causal association paradigm. Each of these paradigms rely on assumptions that must be made to proceed with estimation and to validate a candidate surrogate marker (S) for the true outcome of interest (T). We consider the setting in which S and T are Gaussian and are generated from structural models that include an unobserved confounder. Under the assumed structural models, we relate the quantities used to evaluate surrogacy within both the causal effects and causal association frameworks. We review some of the common assumptions made to aid in estimating these quantities and show that assumptions made within one framework can imply strong assumptions within the alternative framework. We demonstrate that there is a similarity, but not exact correspondence between the quantities used to evaluate surrogacy within each framework, and show that the conditions for identifiability of the surrogacy parameters are different from the conditions, which lead to a correspondence of these quantities. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Beyond Markov: Accounting for independence violations in causal reasoning.

    PubMed

    Rehder, Bob

    2018-06-01

    Although many theories of causal cognition are based on causal graphical models, a key property of such models-the independence relations stipulated by the Markov condition-is routinely violated by human reasoners. This article presents three new accounts of those independence violations, accounts that share the assumption that people's understanding of the correlational structure of data generated from a causal graph differs from that stipulated by causal graphical model framework. To distinguish these models, experiments assessed how people reason with causal graphs that are larger than those tested in previous studies. A traditional common cause network (Y 1 ←X→Y 2 ) was extended so that the effects themselves had effects (Z 1 ←Y 1 ←X→Y 2 →Z 2 ). A traditional common effect network (Y 1 →X←Y 2 ) was extended so that the causes themselves had causes (Z 1 →Y 1 →X←Y 2 ←Z 2 ). Subjects' inferences were most consistent with the beta-Q model in which consistent states of the world-those in which variables are either mostly all present or mostly all absent-are viewed as more probable than stipulated by the causal graphical model framework. Substantial variability in subjects' inferences was also observed, with the result that substantial minorities of subjects were best fit by one of the other models (the dual prototype or a leaky gate models). The discrepancy between normative and human causal cognition stipulated by these models is foundational in the sense that they locate the error not in people's causal reasoning but rather in their causal representations. As a result, they are applicable to any cognitive theory grounded in causal graphical models, including theories of analogy, learning, explanation, categorization, decision-making, and counterfactual reasoning. Preliminary evidence that independence violations indeed generalize to other judgment types is presented. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Probable Cause: A Decision Making Framework.

    DTIC Science & Technology

    1984-08-01

    Thus, a biochemist may see the causal link between smoking and lung cancer as due to chemical effects of tar, nicotine , and the like, on cell structure...long term and complex effects like poverty can have short term and simple causes. Determinants of Gros Strength Causal chains. While the causal...explained is a standing state. For example, what is the cause of " poverty ?" Since the effect to be explained in a standing state of large duration and

  3. Comments on Surrogates measures and consistent surrogates (by Tyler VanderWeele)

    DTIC Science & Technology

    2013-03-01

    as a criterion for “good” surrogate, why can’t we create a new, formal definition of “ surrogacy ” that (1) will automatically avoid the paradox and (2...requirement of avoiding the paradox could not, in itself, constitute a satisfactory definition of surrogacy . As with other paradoxes of causal...situation in practice. A treatment that has such a negative direct effect on outcome would rarely be a candidate for surrogacy analysis. In practice

  4. Quasi-experimental study designs series-paper 5: a checklist for classifying studies evaluating the effects on health interventions-a taxonomy without labels.

    PubMed

    Reeves, Barnaby C; Wells, George A; Waddington, Hugh

    2017-09-01

    The aim of the study was to extend a previously published checklist of study design features to include study designs often used by health systems researchers and economists. Our intention is to help review authors in any field to set eligibility criteria for studies to include in a systematic review that relate directly to the intrinsic strength of the studies in inferring causality. We also seek to clarify key equivalences and differences in terminology used by different research communities. Expert consensus meeting. The checklist comprises seven questions, each with a list of response items, addressing: clustering of an intervention as an aspect of allocation or due to the intrinsic nature of the delivery of the intervention; for whom, and when, outcome data are available; how the intervention effect was estimated; the principle underlying control for confounding; how groups were formed; the features of a study carried out after it was designed; and the variables measured before intervention. The checklist clarifies the basis of credible quasi-experimental studies, reconciling different terminology used in different fields of investigation and facilitating communications across research communities. By applying the checklist, review authors' attention is also directed to the assumptions underpinning the methods for inferring causality. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Exploring the Epileptic Brain Network Using Time-Variant Effective Connectivity and Graph Theory.

    PubMed

    Storti, Silvia Francesca; Galazzo, Ilaria Boscolo; Khan, Sehresh; Manganotti, Paolo; Menegaz, Gloria

    2017-09-01

    The application of time-varying measures of causality between source time series can be very informative to elucidate the direction of communication among the regions of an epileptic brain. The aim of the study was to identify the dynamic patterns of epileptic networks in focal epilepsy by applying multivariate adaptive directed transfer function (ADTF) analysis and graph theory to high-density electroencephalographic recordings. The cortical network was modeled after source reconstruction and topology modulations were detected during interictal spikes. First a distributed linear inverse solution, constrained to the individual grey matter, was applied to the averaged spikes and the mean source activity over 112 regions, as identified by the Harvard-Oxford Atlas, was calculated. Then, the ADTF, a dynamic measure of causality, was used to quantify the connectivity strength between pairs of regions acting as nodes in the graph, and the measure of node centrality was derived. The proposed analysis was effective in detecting the focal regions as well as in characterizing the dynamics of the spike propagation, providing evidence of the fact that the node centrality is a reliable feature for the identification of the epileptogenic zones. Validation was performed by multimodal analysis as well as from surgical outcomes. In conclusion, the time-variant connectivity analysis applied to the epileptic patients can distinguish the generator of the abnormal activity from the propagation spread and identify the connectivity pattern over time.

  6. Tutorial in Biostatistics: Instrumental Variable Methods for Causal Inference*

    PubMed Central

    Baiocchi, Michael; Cheng, Jing; Small, Dylan S.

    2014-01-01

    A goal of many health studies is to determine the causal effect of a treatment or intervention on health outcomes. Often, it is not ethically or practically possible to conduct a perfectly randomized experiment and instead an observational study must be used. A major challenge to the validity of observational studies is the possibility of unmeasured confounding (i.e., unmeasured ways in which the treatment and control groups differ before treatment administration which also affect the outcome). Instrumental variables analysis is a method for controlling for unmeasured confounding. This type of analysis requires the measurement of a valid instrumental variable, which is a variable that (i) is independent of the unmeasured confounding; (ii) affects the treatment; and (iii) affects the outcome only indirectly through its effect on the treatment. This tutorial discusses the types of causal effects that can be estimated by instrumental variables analysis; the assumptions needed for instrumental variables analysis to provide valid estimates of causal effects and sensitivity analysis for those assumptions; methods of estimation of causal effects using instrumental variables; and sources of instrumental variables in health studies. PMID:24599889

  7. Measuring causal perception: connections to representational momentum?

    PubMed

    Choi, Hoon; Scholl, Brian J

    2006-01-01

    In a collision between two objects, we can perceive not only low-level properties, such as color and motion, but also the seemingly high-level property of causality. It has proven difficult, however, to measure causal perception in a quantitatively rigorous way which goes beyond perceptual reports. Here we focus on the possibility of measuring perceived causality using the phenomenon of representational momentum (RM). Recent studies suggest a relationship between causal perception and RM, based on the fact that RM appears to be attenuated for causally 'launched' objects. This is explained by appeal to the visual expectation that a 'launched' object is inert and thus should eventually cease its movement after a collision, without a source of self-propulsion. We first replicated these demonstrations, and then evaluated this alleged connection by exploring RM for different types of displays, including the contrast between causal launching and non-causal 'passing'. These experiments suggest that the RM-attenuation effect is not a pure measure of causal perception, but rather may reflect lower-level spatiotemporal correlates of only some causal displays. We conclude by discussing the strengths and pitfalls of various methods of measuring causal perception.

  8. Comparison Groups in Short Interrupted Time-Series: An Illustration Evaluating No Child Left Behind

    ERIC Educational Resources Information Center

    Wong, Manyee; Cook, Thomas D.; Steiner, Peter M.

    2009-01-01

    Interrupted time-series (ITS) are often used to assess the causal effect of a planned or even unplanned shock introduced into an on-going process. The pre-intervention slope is supposed to index the causal counterfactual, and deviations from it in mean, slope or variance are used to indicate an effect. However, a secure causal inference is only…

  9. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    PubMed Central

    Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258

  10. How multiple causes combine: independence constraints on causal inference.

    PubMed

    Liljeholm, Mimi

    2015-01-01

    According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.

  11. Additivity pretraining and cue competition effects: developmental evidence for a reasoning-based account of causal learning.

    PubMed

    Simms, Victoria; McCormack, Teresa; Beckers, Tom

    2012-04-01

    The effect of additivity pretraining on blocking has been taken as evidence for a reasoning account of human and animal causal learning. If inferential reasoning underpins this effect, then developmental differences in the magnitude of this effect in children would be expected. Experiment 1 examined cue competition effects in children's (4- to 5-year-olds and 6- to 7-year-olds) causal learning using a new paradigm analogous to the food allergy task used in studies of human adult causal learning. Blocking was stronger in the older than the younger children, and additivity pretraining only affected blocking in the older group. Unovershadowing was not affected by age or by pretraining. In experiment 2, levels of blocking were found to be correlated with the ability to answer questions that required children to reason about additivity. Our results support an inferential reasoning explanation of cue competition effects. (c) 2012 APA, all rights reserved.

  12. The Locus of Implicit Causality Effects in Comprehension

    PubMed Central

    Garnham, Alan; Traxler, Matthew; Oakhill, Jane; Gernsbacher, Morton Ann

    2015-01-01

    Implicit causality might enable readers to focus on the imputed cause of an event and make it the default referent of a following pronoun. Alternatively, its effects might arise only when a following explicit cause is integrated with a description of the event. In three probe recognition experiments, in which the participants in the events were of the same sex, the only reliable effect — apart from the advantage of first mention — was that of whether implicit and explicit causes were the same. This effect was independent of whether the probe named the referent of the pronoun. In a fourth experiment, in which the two participants were of different sexes, there was no simple effect of implicit causality, but there was an advantage for the pronoun’s referent. These results are consistent with the view that implicit causality has its effects at integration. We discuss their broader implications for theories of comprehension. PMID:26221059

  13. Inferring causal molecular networks: empirical assessment through a community-based effort

    PubMed Central

    Hill, Steven M.; Heiser, Laura M.; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K.; Carlin, Daniel E.; Zhang, Yang; Sokolov, Artem; Paull, Evan O.; Wong, Chris K.; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V.; Favorov, Alexander V.; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W.; Long, Byron L.; Noren, David P.; Bisberg, Alexander J.; Mills, Gordon B.; Gray, Joe W.; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A.; Fertig, Elana J.; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M.; Spellman, Paul T.; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-01-01

    Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks. PMID:26901648

  14. Quasi-Experimental Designs for Causal Inference

    ERIC Educational Resources Information Center

    Kim, Yongnam; Steiner, Peter

    2016-01-01

    When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…

  15. Predictive role of brain connectivity for resective surgery in Lennox-Gastaut syndrome.

    PubMed

    Hur, Yun Jung; Kim, Heung Dong

    2016-08-01

    Callosotomy can reveal hidden primary epileptogenic areas in Lennox-Gastaut syndrome (LGS). We studied the significance of causal connectivity for identifying hidden epileptogenic areas in preoperative electroencephalography (EEG) and for making a decision regarding resective surgery. We enrolled 18 LGS patients who underwent corpus callosotomy. Eight patients with unilateral epileptogenicity on post-callosotomy EEG underwent resective surgery (group A). Ten patients with independent bilateral epileptogenicity did not undergo resective surgery (group B). We analyzed generalized epileptiform discharges on pre-callosotomy EEG via direct directed transfer function (dDTF) and partial directed coherence (PDC). All regions exhibiting unilaterality in group A and bilaterality identified by dDTF or PDC in group B were concordant with the lateralization of the irritative zone on post-callosotomy EEG and with the localization of the resective areas, except for one patient in group A. The regions identified by dDTF exhibited high concordance rates with the resective areas in patients with good outcomes. Causal connectivity methods showed good concordance with hidden epileptogenic areas, and its concordance was associated with the prognosis of surgical outcome. This study provides evidence that causal connectivity methods can be helpful in deciding which type of surgery will be suitable for an LGS patient. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic Graph and Joint Probability Distribution.

    PubMed

    Zhang, Qin

    2015-07-01

    Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.

  17. Investigating Causality Between Interacting Brain Areas with Multivariate Autoregressive Models of MEG Sensor Data

    PubMed Central

    Michalareas, George; Schoffelen, Jan-Mathijs; Paterson, Gavin; Gross, Joachim

    2013-01-01

    Abstract In this work, we investigate the feasibility to estimating causal interactions between brain regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic (MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level causal interactions after projection of the sensor-level model coefficients onto the locations of the neural sources. Next, we show with simulated MEG data that causality, as measured by partial directed coherence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We further demonstrate, if a very large number of brain voxels is considered as potential activation sources, that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model coefficients alone contain meaningful causality information. The proposed method overcomes the problems of model nonrobustness and large computation times encountered during causality analysis by existing methods. These methods first project MEG sensor time-series onto a large number of brain locations after which the MAR model is built on this large number of source-level time-series. Instead, through this work, we demonstrate that by building the MAR model on the sensor-level and then projecting only the MAR coefficients in source space, the true casual pathways are recovered even when a very large number of locations are considered as sources. The main contribution of this work is that by this methodology entire brain causality maps can be efficiently derived without any a priori selection of regions of interest. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc. PMID:22328419

  18. Causal impulse response for circular sources in viscous media

    PubMed Central

    Kelly, James F.; McGough, Robert J.

    2008-01-01

    The causal impulse response of the velocity potential for the Stokes wave equation is derived for calculations of transient velocity potential fields generated by circular pistons in viscous media. The causal Green’s function is numerically verified using the material impulse response function approach. The causal, lossy impulse response for a baffled circular piston is then calculated within the near field and the far field regions using expressions previously derived for the fast near field method. Transient velocity potential fields in viscous media are computed with the causal, lossy impulse response and compared to results obtained with the lossless impulse response. The numerical error in the computed velocity potential field is quantitatively analyzed for a range of viscous relaxation times and piston radii. Results show that the largest errors are generated in locations near the piston face and for large relaxation times, and errors are relatively small otherwise. Unlike previous frequency-domain methods that require numerical inverse Fourier transforms for the evaluation of the lossy impulse response, the present approach calculates the lossy impulse response directly in the time domain. The results indicate that this causal impulse response is ideal for time-domain calculations that simultaneously account for diffraction and quadratic frequency-dependent attenuation in viscous media. PMID:18397018

  19. An assessment of change in risk perception and optimistic bias for hurricanes among Gulf Coast residents.

    PubMed

    Trumbo, Craig; Meyer, Michelle A; Marlatt, Holly; Peek, Lori; Morrissey, Bridget

    2014-06-01

    This study focuses on levels of concern for hurricanes among individuals living along the Gulf Coast during the quiescent two-year period following the exceptionally destructive 2005 hurricane season. A small study of risk perception and optimistic bias was conducted immediately following Hurricanes Katrina and Rita. Two years later, a follow-up was done in which respondents were recontacted. This provided an opportunity to examine changes, and potential causal ordering, in risk perception and optimistic bias. The analysis uses 201 panel respondents who were matched across the two mail surveys. Measures included hurricane risk perception, optimistic bias for hurricane evacuation, past hurricane experience, and a small set of demographic variables (age, sex, income, and education). Paired t-tests were used to compare scores across time. Hurricane risk perception declined and optimistic bias increased. Cross-lagged correlations were used to test the potential causal ordering between risk perception and optimistic bias, with a weak effect suggesting the former affects the latter. Additional cross-lagged analysis using structural equation modeling was used to look more closely at the components of optimistic bias (risk to self vs. risk to others). A significant and stronger potentially causal effect from risk perception to optimistic bias was found. Analysis of the experience and demographic variables' effects on risk perception and optimistic bias, and their change, provided mixed results. The lessening of risk perception and increase in optimistic bias over the period of quiescence suggest that risk communicators and emergency managers should direct attention toward reversing these trends to increase disaster preparedness. © 2013 Society for Risk Analysis.

  20. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors.

    PubMed

    Burgess, Stephen; Scott, Robert A; Timpson, Nicholas J; Davey Smith, George; Thompson, Simon G

    2015-07-01

    Finding individual-level data for adequately-powered Mendelian randomization analyses may be problematic. As publicly-available summarized data on genetic associations with disease outcomes from large consortia are becoming more abundant, use of published data is an attractive analysis strategy for obtaining precise estimates of the causal effects of risk factors on outcomes. We detail the necessary steps for conducting Mendelian randomization investigations using published data, and present novel statistical methods for combining data on the associations of multiple (correlated or uncorrelated) genetic variants with the risk factor and outcome into a single causal effect estimate. A two-sample analysis strategy may be employed, in which evidence on the gene-risk factor and gene-outcome associations are taken from different data sources. These approaches allow the efficient identification of risk factors that are suitable targets for clinical intervention from published data, although the ability to assess the assumptions necessary for causal inference is diminished. Methods and guidance are illustrated using the example of the causal effect of serum calcium levels on fasting glucose concentrations. The estimated causal effect of a 1 standard deviation (0.13 mmol/L) increase in calcium levels on fasting glucose (mM) using a single lead variant from the CASR gene region is 0.044 (95 % credible interval -0.002, 0.100). In contrast, using our method to account for the correlation between variants, the corresponding estimate using 17 genetic variants is 0.022 (95 % credible interval 0.009, 0.035), a more clearly positive causal effect.

  1. Mediation analysis when a continuous mediator is measured with error and the outcome follows a generalized linear model

    PubMed Central

    Valeri, Linda; Lin, Xihong; VanderWeele, Tyler J.

    2014-01-01

    Mediation analysis is a popular approach to examine the extent to which the effect of an exposure on an outcome is through an intermediate variable (mediator) and the extent to which the effect is direct. When the mediator is mis-measured the validity of mediation analysis can be severely undermined. In this paper we first study the bias of classical, non-differential measurement error on a continuous mediator in the estimation of direct and indirect causal effects in generalized linear models when the outcome is either continuous or discrete and exposure-mediator interaction may be present. Our theoretical results as well as a numerical study demonstrate that in the presence of non-linearities the bias of naive estimators for direct and indirect effects that ignore measurement error can take unintuitive directions. We then develop methods to correct for measurement error. Three correction approaches using method of moments, regression calibration and SIMEX are compared. We apply the proposed method to the Massachusetts General Hospital lung cancer study to evaluate the effect of genetic variants mediated through smoking on lung cancer risk. PMID:25220625

  2. Misconceived causal explanations for emergent processes.

    PubMed

    Chi, Michelene T H; Roscoe, Rod D; Slotta, James D; Roy, Marguerite; Chase, Catherine C

    2012-01-01

    Studies exploring how students learn and understand science processes such as diffusion and natural selection typically find that students provide misconceived explanations of how the patterns of such processes arise (such as why giraffes' necks get longer over generations, or how ink dropped into water appears to "flow"). Instead of explaining the patterns of these processes as emerging from the collective interactions of all the agents (e.g., both the water and the ink molecules), students often explain the pattern as being caused by controlling agents with intentional goals, as well as express a variety of many other misconceived notions. In this article, we provide a hypothesis for what constitutes a misconceived explanation; why misconceived explanations are so prevalent, robust, and resistant to instruction; and offer one approach of how they may be overcome. In particular, we hypothesize that students misunderstand many science processes because they rely on a generalized version of narrative schemas and scripts (referred to here as a Direct-causal Schema) to interpret them. For science processes that are sequential and stage-like, such as cycles of moon, circulation of blood, stages of mitosis, and photosynthesis, a Direct-causal Schema is adequate for correct understanding. However, for science processes that are non-sequential (or emergent), such as diffusion, natural selection, osmosis, and heat flow, using a Direct Schema to understand these processes will lead to robust misconceptions. Instead, a different type of general schema may be required to interpret non-sequential processes, which we refer to as an Emergent-causal Schema. We propose that students lack this Emergent Schema and teaching it to them may help them learn and understand emergent kinds of science processes such as diffusion. Our study found that directly teaching students this Emergent Schema led to increased learning of the process of diffusion. This article presents a fine-grained characterization of each type of Schema, our instructional intervention, the successes we have achieved, and the lessons we have learned. Copyright © 2011 Cognitive Science Society, Inc.

  3. Causal Inference for fMRI Time Series Data with Systematic Errors of Measurement in a Balanced On/Off Study of Social Evaluative Threat.

    PubMed

    Sobel, Michael E; Lindquist, Martin A

    2014-07-01

    Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.

  4. A Quantum Probability Model of Causal Reasoning

    PubMed Central

    Trueblood, Jennifer S.; Busemeyer, Jerome R.

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747

  5. Motivation and burnout among top amateur rugby players.

    PubMed

    Cresswell, Scott L; Eklund, Robert C

    2005-03-01

    Self-determination theory has proven to be a useful theoretical explanation of the occurrence of ill-being on a variety of accounts. Self-determination theory may also provide a useful explanation of the occurrence of athlete burnout. To date, limited evidence exists to support links between motivation and burnout. To examine relationships and potential causal directions among burnout and types of motivation differing in degree of self-determination. Data were collected on burnout using the Athlete Burnout Questionnaire and Sport Motivation Scale from 392 top amateur male rugby players. Structural equation modeling procedures were employed to evaluate a measurement model and three conceptually grounded structural models. One conceptual model specified concomitant (noncausal) relationships between burnout and motivations varying in self-determination. The other conceptual models specified causal pathways between burnout and the three motivation variables considered in the investigation (i.e., intrinsic motivation, external regulation, and amotivation). Within the models, amotivation, the least self-determined type of motivation, had a large positive association with burnout. Externally regulated motivation had trivial and nonsignificant relationships with burnout. Self-determined forms of motivation (i.e., intrinsic motivation) exhibited significant negative associations with burnout. Overall the results support the potential utility of a self-determination theory explanation of burnout. As all models displayed reasonable and comparable fits, further research is required to establish the nature (concomitant vs directional causal vs reciprocal causal) of the relationship between burnout and motivation.

  6. Gateway Effects: Why the Cited Evidence Does Not Support Their Existence for Low-Risk Tobacco Products (and What Evidence Would).

    PubMed

    Phillips, Carl V

    2015-05-21

    It is often claimed that low-risk drugs still create harm because of "gateway effects", in which they cause the use of a high-risk alternative. Such claims are popular among opponents of tobacco harm reduction, claiming that low-risk tobacco products (e.g., e-cigarettes, smokeless tobacco) cause people to start smoking, sometimes backed by empirical studies that ostensibly support the claim. However, these studies consistently ignore the obvious alternative causal pathways, particularly that observed associations might represent causation in the opposite direction (smoking causes people to seek low-risk alternatives) or confounding (the same individual characteristics increase the chance of using any tobacco product). Due to these complications, any useful analysis must deal with simultaneity and confounding by common cause. In practice, existing analyses seem almost as if they were designed to provide teaching examples about drawing simplistic and unsupported causal conclusions from observed associations. The present analysis examines what evidence and research strategies would be needed to empirically detect such a gateway effect, if there were one, explaining key methodological concepts including causation and confounding, examining the logic of the claim, identifying potentially useful data, and debunking common fallacies on both sides of the argument, as well as presenting an extended example of proper empirical testing. The analysis demonstrates that none of the empirical studies to date that are purported to show a gateway effect from tobacco harm reduction products actually does so. The observations and approaches can be generalized to other cases where observed association of individual characteristics in cross-sectional data could result from any of several causal relationships.

  7. The influence of the number of relevant causes on the processing of covariation information in causal reasoning.

    PubMed

    Kim, Kyungil; Markman, Arthur B; Kim, Tae Hoon

    2016-11-01

    Research on causal reasoning has focused on the influence of covariation between candidate causes and effects on causal judgments. We suggest that the type of covariation information to which people attend is affected by the task being performed. For this, we manipulated the test questions for the evaluation of contingency information and observed its influence on both contingency learning and subsequent causal selections. When people select one cause related to an effect, they focus on conditional contingencies assuming the absence of alternative causes. When people select two causes related to an effect, they focus on conditional contingencies assuming the presence of alternative causes. We demonstrated this use of contingency information in four experiments.

  8. Causal learning and inference as a rational process: the new synthesis.

    PubMed

    Holyoak, Keith J; Cheng, Patricia W

    2011-01-01

    Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.

  9. Formalizing the role of agent-based modeling in causal inference and epidemiology.

    PubMed

    Marshall, Brandon D L; Galea, Sandro

    2015-01-15

    Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The effect of normalization of Partial Directed Coherence on the statistical assessment of connectivity patterns: a simulation study.

    PubMed

    Toppi, J; Petti, M; Vecchiato, G; Cincotti, F; Salinari, S; Mattia, D; Babiloni, F; Astolfi, L

    2013-01-01

    Partial Directed Coherence (PDC) is a spectral multivariate estimator for effective connectivity, relying on the concept of Granger causality. Even if its original definition derived directly from information theory, two modifies were introduced in order to provide better physiological interpretations of the estimated networks: i) normalization of the estimator according to rows, ii) squared transformation. In the present paper we investigated the effect of PDC normalization on the performances achieved by applying the statistical validation process on investigated connectivity patterns under different conditions of Signal to Noise ratio (SNR) and amount of data available for the analysis. Results of the statistical analysis revealed an effect of PDC normalization only on the percentages of type I and type II errors occurred by using Shuffling procedure for the assessment of connectivity patterns. No effects of the PDC formulation resulted on the performances achieved during the validation process executed instead by means of Asymptotic Statistic approach. Moreover, the percentages of both false positives and false negatives committed by Asymptotic Statistic are always lower than those achieved by Shuffling procedure for each type of normalization.

  11. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of adaptive monitoring. We suspect our situation is not unique and many programs may suffer from the same inferential disconnect. Commonly, the survey design is optimized for robust estimates of regional status and trend detection and not necessarily to provide statistical inferences on the causal mechanisms outlined in the conceptual model, even though these relationships are typically used to justify and promote the long-term monitoring of a chosen ecological indicator. Our application demonstrates a process for empirical evaluation of conceptual models and exemplifies the need for such interim assessments in order for programs to evolve and persist.

  12. Seismic link at plate boundary

    NASA Astrophysics Data System (ADS)

    Ramdani, Faical; Kettani, Omar; Tadili, Benaissa

    2015-06-01

    Seismic triggering at plate boundaries has a very complex nature that includes seismic events at varying distances. The spatial orientation of triggering cannot be reduced to sequences from the main shocks. Seismic waves propagate at all times in all directions, particularly in highly active zones. No direct evidence can be obtained regarding which earthquakes trigger the shocks. The first approach is to determine the potential linked zones where triggering may occur. The second step is to determine the causality between the events and their triggered shocks. The spatial orientation of the links between events is established from pre-ordered networks and the adapted dependence of the spatio-temporal occurrence of earthquakes. Based on a coefficient of synchronous seismic activity to grid couples, we derive a network link by each threshold. The links of high thresholds are tested using the coherence of time series to determine the causality and related orientation. The resulting link orientations at the plate boundary conditions indicate that causal triggering seems to be localized along a major fault, as a stress transfer between two major faults, and parallel to the geothermal area extension.

  13. Foreign Direct Investment and Trade Openness: The Case of Developing Economies

    ERIC Educational Resources Information Center

    Liargovas, Panagiotis G.; Skandalis, Konstantinos S.

    2012-01-01

    This paper examines the importance of trade openness for attracting Foreign Direct Investment (FDI) inflows, using a sample of 36 developing economies for the period 1990-2008. It provides a direct test of causality between FDI inflows, trade openness and other key variables in developing regions of the world: Latin America, Asia, Africa, CIS…

  14. Causal inferences on the effectiveness of complex social programs: Navigating assumptions, sources of complexity and evaluation design challenges.

    PubMed

    Chatterji, Madhabi

    2016-12-01

    This paper explores avenues for navigating evaluation design challenges posed by complex social programs (CSPs) and their environments when conducting studies that call for generalizable, causal inferences on the intervention's effectiveness. A definition is provided of a CSP drawing on examples from different fields, and an evaluation case is analyzed in depth to derive seven (7) major sources of complexity that typify CSPs, threatening assumptions of textbook-recommended experimental designs for performing impact evaluations. Theoretically-supported, alternative methodological strategies are discussed to navigate assumptions and counter the design challenges posed by the complex configurations and ecology of CSPs. Specific recommendations include: sequential refinement of the evaluation design through systems thinking, systems-informed logic modeling; and use of extended term, mixed methods (ETMM) approaches with exploratory and confirmatory phases of the evaluation. In the proposed approach, logic models are refined through direct induction and interactions with stakeholders. To better guide assumption evaluation, question-framing, and selection of appropriate methodological strategies, a multiphase evaluation design is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Exogenous testosterone in women enhances and inhibits competitive decision-making depending on victory-defeat experience and trait dominance.

    PubMed

    Mehta, Pranjal H; van Son, Veerle; Welker, Keith M; Prasad, Smrithi; Sanfey, Alan G; Smidts, Ale; Roelofs, Karin

    2015-10-01

    The present experiment tested the causal impact of testosterone on human competitive decision-making. According to prevailing theories about testosterone's role in social behavior, testosterone should directly boost competitive decisions. But recent correlational evidence suggests that testosterone's behavioral effects may depend on specific aspects of the context and person relevant to social status (win-lose context and trait dominance). We tested the causal influence of testosterone on competitive decisions by combining hormone administration with measures of trait dominance and a newly developed social competition task in which the victory-defeat context was experimentally manipulated, in a sample of 54 female participants. Consistent with the hypothesis that testosterone has context- and person-dependent effects on competitive behavior, testosterone increased competitive decisions after victory only among high-dominant individuals but testosterone decreased competitive decisions after defeat across all participants. These results suggest that testosterone flexibly modulates competitive decision-making depending on prior social experience and dominance motivation in the service of enhancing social status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Do material, psychosocial and behavioural factors mediate the relationship between disability acquisition and mental health? A sequential causal mediation analysis.

    PubMed

    Aitken, Zoe; Simpson, Julie Anne; Gurrin, Lyle; Bentley, Rebecca; Kavanagh, Anne Marie

    2018-01-29

    There is evidence of a causal relationship between disability acquisition and poor mental health; however, the mechanism by which disability affects mental health is poorly understood. This gap in understanding limits the development of effective interventions to improve the mental health of people with disabilities. We used four waves of data from the Household, Income and Labour Dynamics in Australia Survey (2011-14) to compare self-reported mental health between individuals who acquired any disability (n=387) and those who remained disability-free (n=7936). We tested three possible pathways from disability acquisition to mental health, examining the effect of material, psychosocial and behavioural mediators. The effect was partitioned into natural direct and indirect effects through the mediators using a sequential causal mediation analysis approach. Multiple imputation using chained equations was used to assess the impact of missing data. Disability acquisition was estimated to cause a five-point decline in mental health [estimated mean difference: -5.3, 95% confidence interval (CI) -6.8, -3.7]. The indirect effect through material factors was estimated to be a 1.7-point difference (-1.7, 95% CI -2.8, -0.6), explaining 32% of the total effect, with a negligible proportion of the effect explained by the addition of psychosocial characteristics (material and psychosocial: -1.7, 95% CI -3.0, -0.5) and a further 5% by behavioural factors (material-psychosocial-behavioural: -2.0, 95% CI -3.4, -0.6). The finding that the effect of disability acquisition on mental health operates predominantly through material rather than psychosocial and behavioural factors has important implications. The results highlight the need for better social protection, including income support, employment and education opportunities, and affordable housing for people who acquire a disability. © The Author(s) 2018; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  17. What is the nature of causality in the brain? - Inherently probabilistic. Comment on "Foundational perspectives on causality in large-scale brain networks" by M. Mannino and S.L. Bressler

    NASA Astrophysics Data System (ADS)

    Dhamala, Mukesh

    2015-12-01

    Understanding cause-and-effect (causal) relations from observations concerns all sciences including neuroscience. Appropriately defining causality and its nature, though, has been a topic of active discussion for philosophers and scientists for centuries. Although brain research, particularly functional neuroimaging research, is now moving rapidly beyond identification of brain regional activations towards uncovering causal relations between regions, the nature of causality has not be been thoroughly described and resolved. In the current review article [1], Mannino and Bressler take us on a beautiful journey into the history of the work on causality and make a well-reasoned argument that the causality in the brain is inherently probabilistic. This notion is consistent with brain anatomy and functions, and is also inclusive of deterministic cases of inputs leading to outputs in the brain.

  18. The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis

    PubMed Central

    Ploner, Alexander; Fischer, Krista; Horikoshi, Momoko; Sarin, Antti-Pekka; Thorleifsson, Gudmar; Ladenvall, Claes; Kals, Mart; Kuningas, Maris; Draisma, Harmen H. M.; Ried, Janina S.; van Zuydam, Natalie R.; Huikari, Ville; Mangino, Massimo; Sonestedt, Emily; Benyamin, Beben; Nelson, Christopher P.; Rivera, Natalia V.; Kristiansson, Kati; Shen, Huei-yi; Havulinna, Aki S.; Dehghan, Abbas; Donnelly, Louise A.; Kaakinen, Marika; Nuotio, Marja-Liisa; Robertson, Neil; de Bruijn, Renée F. A. G.; Ikram, M. Arfan; Amin, Najaf; Balmforth, Anthony J.; Braund, Peter S.; Doney, Alexander S. F.; Döring, Angela; Elliott, Paul; Esko, Tõnu; Franco, Oscar H.; Gretarsdottir, Solveig; Hartikainen, Anna-Liisa; Heikkilä, Kauko; Herzig, Karl-Heinz; Holm, Hilma; Hottenga, Jouke Jan; Hyppönen, Elina; Illig, Thomas; Isaacs, Aaron; Isomaa, Bo; Karssen, Lennart C.; Kettunen, Johannes; Koenig, Wolfgang; Kuulasmaa, Kari; Laatikainen, Tiina; Laitinen, Jaana; Lindgren, Cecilia; Lyssenko, Valeriya; Läärä, Esa; Rayner, Nigel W.; Männistö, Satu; Pouta, Anneli; Rathmann, Wolfgang; Rivadeneira, Fernando; Ruokonen, Aimo; Savolainen, Markku J.; Sijbrands, Eric J. G.; Small, Kerrin S.; Smit, Jan H.; Steinthorsdottir, Valgerdur; Syvänen, Ann-Christine; Taanila, Anja; Tobin, Martin D.; Uitterlinden, Andre G.; Willems, Sara M.; Willemsen, Gonneke; Witteman, Jacqueline; Perola, Markus; Evans, Alun; Ferrières, Jean; Virtamo, Jarmo; Kee, Frank; Tregouet, David-Alexandre; Arveiler, Dominique; Amouyel, Philippe; Ferrario, Marco M.; Brambilla, Paolo; Hall, Alistair S.; Heath, Andrew C.; Madden, Pamela A. F.; Martin, Nicholas G.; Montgomery, Grant W.; Whitfield, John B.; Jula, Antti; Knekt, Paul; Oostra, Ben; van Duijn, Cornelia M.; Penninx, Brenda W. J. H.; Davey Smith, George; Kaprio, Jaakko; Samani, Nilesh J.; Gieger, Christian; Peters, Annette; Wichmann, H.-Erich; Boomsma, Dorret I.; de Geus, Eco J. C.; Tuomi, TiinaMaija; Power, Chris; Hammond, Christopher J.; Spector, Tim D.; Lind, Lars; Orho-Melander, Marju; Palmer, Colin Neil Alexander; Morris, Andrew D.; Groop, Leif; Järvelin, Marjo-Riitta; Salomaa, Veikko; Vartiainen, Erkki; Hofman, Albert; Ripatti, Samuli; Metspalu, Andres; Thorsteinsdottir, Unnur; Stefansson, Kari; Pedersen, Nancy L.; McCarthy, Mark I.; Ingelsson, Erik; Prokopenko, Inga

    2013-01-01

    Background The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach. Methods and Findings We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses. Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001). Conclusions We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes. Please see later in the article for the Editors' Summary PMID:23824655

  19. Assumption Trade-Offs When Choosing Identification Strategies for Pre-Post Treatment Effect Estimation: An Illustration of a Community-Based Intervention in Madagascar.

    PubMed

    Weber, Ann M; van der Laan, Mark J; Petersen, Maya L

    2015-03-01

    Failure (or success) in finding a statistically significant effect of a large-scale intervention may be due to choices made in the evaluation. To highlight the potential limitations and pitfalls of some common identification strategies used for estimating causal effects of community-level interventions, we apply a roadmap for causal inference to a pre-post evaluation of a national nutrition program in Madagascar. Selection into the program was non-random and strongly associated with the pre-treatment (lagged) outcome. Using structural causal models (SCM), directed acyclic graphs (DAGs) and simulated data, we illustrate that an estimand with the outcome defined as the post-treatment outcome controls for confounding by the lagged outcome but not by possible unmeasured confounders. Two separate differencing estimands (of the pre- and post-treatment outcome) have the potential to adjust for a certain type of unmeasured confounding, but introduce bias if the additional identification assumptions they rely on are not met. In order to illustrate the practical impact of choice between three common identification strategies and their corresponding estimands, we used observational data from the community nutrition program in Madagascar to estimate each of these three estimands. Specifically, we estimated the average treatment effect of the program on the community mean nutritional status of children 5 years and under and found that the estimate based on the post-treatment estimand was about a quarter of the magnitude of either of the differencing estimands (0.066 SD vs. 0.26-0.27 SD increase in mean weight-for-age z-score). Choice of estimand clearly has important implications for the interpretation of the success of the program to improve nutritional status of young children. A careful appraisal of the assumptions underlying the causal model is imperative before committing to a statistical model and progressing to estimation. However, knowledge about the data-generating process must be sufficient in order to choose the identification strategy that gets us closest to the truth.

  20. Genetic Risk Score Mendelian Randomization Shows that Obesity Measured as Body Mass Index, but not Waist:Hip Ratio, Is Causal for Endometrial Cancer.

    PubMed

    Painter, Jodie N; O'Mara, Tracy A; Marquart, Louise; Webb, Penelope M; Attia, John; Medland, Sarah E; Cheng, Timothy; Dennis, Joe; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Ahmed, Shahana; Healey, Catherine S; Shah, Mitul; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley V; Beckmann, Matthias W; Ekici, Arif B; Fasching, Peter A; Hein, Alexander; Rübner, Matthias; Czene, Kamila; Darabi, Hatef; Hall, Per; Li, Jingmei; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo B; Amant, Frederic; Annibali, Daniela; Depreeuw, Jeroen; Lambrechts, Diether; Neven, Patrick; Cunningham, Julie M; Dowdy, Sean C; Goode, Ellen L; Fridley, Brooke L; Winham, Stacey J; Njølstad, Tormund S; Salvesen, Helga B; Trovik, Jone; Werner, Henrica M J; Ashton, Katie A; Otton, Geoffrey; Proietto, Anthony; Mints, Miriam; Tham, Emma; Bolla, Manjeet K; Michailidou, Kyriaki; Wang, Qin; Tyrer, Jonathan P; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Pharoah, Paul D P; Tomlinson, Ian; Dunning, Alison M; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2016-11-01

    The strongest known risk factor for endometrial cancer is obesity. To determine whether SNPs associated with increased body mass index (BMI) or waist-hip ratio (WHR) are associated with endometrial cancer risk, independent of measured BMI, we investigated relationships between 77 BMI and 47 WHR SNPs and endometrial cancer in 6,609 cases and 37,926 country-matched controls. Logistic regression analysis and fixed effects meta-analysis were used to test for associations between endometrial cancer risk and (i) individual BMI or WHR SNPs, (ii) a combined weighted genetic risk score (wGRS) for BMI or WHR. Causality of BMI for endometrial cancer was assessed using Mendelian randomization, with BMIwGRS as instrumental variable. The BMIwGRS was significantly associated with endometrial cancer risk (P = 3.4 × 10 -17 ). Scaling the effect of the BMIwGRS on endometrial cancer risk by its effect on BMI, the endometrial cancer OR per 5 kg/m 2 of genetically predicted BMI was 2.06 [95% confidence interval (CI), 1.89-2.21], larger than the observed effect of BMI on endometrial cancer risk (OR = 1.55; 95% CI, 1.44-1.68, per 5 kg/m 2 ). The association attenuated but remained significant after adjusting for BMI (OR = 1.22; 95% CI, 1.10-1.39; P = 5.3 × 10 -4 ). There was evidence of directional pleiotropy (P = 1.5 × 10 -4 ). BMI SNP rs2075650 was associated with endometrial cancer at study-wide significance (P < 4.0 × 10 -4 ), independent of BMI. Endometrial cancer was not significantly associated with individual WHR SNPs or the WHRwGRS. BMI, but not WHR, is causally associated with endometrial cancer risk, with evidence that some BMI-associated SNPs alter endometrial cancer risk via mechanisms other than measurable BMI. The causal association between BMI SNPs and endometrial cancer has possible implications for endometrial cancer risk modeling. Cancer Epidemiol Biomarkers Prev; 25(11); 1503-10. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. How do practising clinicians and students apply newly learned causal information about mental disorders?

    PubMed

    de Kwaadsteniet, Leontien; Kim, Nancy S; Yopchick, Jennelle E

    2013-02-01

    New causal theories explaining the aetiology of psychiatric disorders continuously appear in the literature. How might such new information directly impact clinical practice, to the degree that clinicians are aware of it and accept it? We investigated whether expert clinical psychologists and students use new causal information about psychiatric disorders according to rationalist norms in their diagnostic reasoning. Specifically, philosophical and Bayesian analyses suggest that it is rational to draw stronger inferences about the presence of a disorder when a client's presenting symptoms are from disparate locations in a causal theory of the disorder than when they are from proximal locations. In a controlled experiment, we presented experienced clinical psychologists and students with recently published causal theories for different disorders; specifically, these theories proposed how the symptoms of each disorder stem from a root cause. Participants viewed hypothetical clients with presenting proximal or diverse symptoms, and indicated either the likelihood that the client has the disorder, or what additional information they would seek out to help inform a diagnostic decision. Clinicians and students alike showed a strong preference for diverse evidence, over proximal evidence, in making diagnostic judgments and in seeking additional information. They did not show this preference in the control condition, in which they gave their own opinions prior to learning the causal information. These findings suggest that experienced clinical psychologists and students are likely to use newly learned causal knowledge in a normative, rational way in diagnostic reasoning. © 2011 Blackwell Publishing Ltd.

  2. Understanding causal pathways within health systems policy evaluation through mediation analysis: an application to payment for performance (P4P) in Tanzania.

    PubMed

    Anselmi, Laura; Binyaruka, Peter; Borghi, Josephine

    2017-02-02

    The evaluation of payment for performance (P4P) programmes has focused mainly on understanding contributions to health service coverage, without unpacking causal mechanisms. The overall aim of the paper is to test the causal pathways through which P4P schemes may (or may not) influence maternal care outcomes. We used data from an evaluation of a P4P programme in Tanzania. Data were collected from a sample of 3000 women who delivered in the 12 months prior to interview and 200 health workers at 150 health facilities from seven intervention and four comparison districts in Tanzania in January 2012 and in February 2013. We applied causal mediation analysis using a linear structural equation model to identify direct and indirect effects of P4P on institutional delivery rates and on the uptake of two doses of an antimalarial drug during pregnancy. We first ran a series of linear difference-in-difference regression models to test the effect of P4P on potential mediators, which we then included in a linear difference-in-difference model evaluating the impact of P4P on the outcome. We tested the robustness of our results to unmeasured confounding using semi-parametric methods. P4P reduced the probability of women paying for delivery care (-4.5 percentage points) which mediates the total effect of P4P on institutional deliveries (by 48%) and on deliveries in a public health facility (by 78%). P4P reduced the stock-out rate for some essential drugs, specifically oxytocin (-36 percentage points), which mediated the total effect of P4P on institutional deliveries (by 22%) and deliveries in a public health facility (by 30%). P4P increased kindness at delivery (5 percentage points), which mediated the effect of P4P on institutional deliveries (by 48%) and on deliveries in a public health facility (by 49%). P4P increased the likelihood of supervision visits taking place within the last 90 days (18 percentage points), which mediated 15% of the total P4P effect on the uptake of two antimalarial doses during antenatal care (IPT2). Kindness during deliveries and the probability of paying out of pocket for delivery care were the mediators most robust to unmeasured confounding. The effect of P4P on institutional deliveries is mediated by financing and human resources factors, while uptake of antimalarials in pregnancy is mediated by governance factors. Further research is required to explore additional and more complex causal pathways.

  3. A Causal Model of Faculty Research Productivity.

    ERIC Educational Resources Information Center

    Bean, John P.

    A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…

  4. Blocking a Redundant Cue: What does it say about preschoolers’ causal competence?

    PubMed Central

    Kloos, Heidi; Sloutsky, Vladimir M.

    2013-01-01

    The current study investigates the degree to which preschoolers can engage in causal inferences in blocking paradigm, a paradigm in which a cue is consistently linked with a target, either alone (A-T) or paired with another cue (AB-T). Unlike previous blocking studies with preschoolers, we manipulated the causal structure of the events without changing the specific contingencies. In particular, cues were said to be either potential causes (prediction condition), or they were said to be potential effects (diagnosis condition). The causally appropriate inference is to block the redundant cue B when it is a potential cause of the target, but not when it is a potential effect. Findings show a stark difference in performance between preschoolers and adults: While adults blocked the redundant cue only in the prediction condition, children blocked the redundant cue indiscriminately across both conditions. Therefore, children, but not adults ignored the causal structure of the events. These findings challenge a developmental account that attributes sophisticated machinery of causal reasoning to young children. PMID:24033577

  5. Role of visceral adipose tissue in aging.

    PubMed

    Huffman, Derek M; Barzilai, Nir

    2009-10-01

    Visceral fat (VF) accretion is a hallmark of aging in humans. Epidemiologic studies have implicated abdominal obesity as a major risk factor for insulin resistance, type 2 diabetes, cardiovascular disease, metabolic syndrome and death. Studies utilizing novel rodent models of visceral obesity and surgical strategies in humans have been undertaken to determine if subcutaneous (SC) abdominal or VF are causally linked to age-related diseases. Specific depletion or expansion of the VF depot using genetic or surgical tools in rodents has been shown to have direct effects on disease risk. In contrast, surgically removing large quantities of SC fat does not consistently improve metabolic parameters in humans or rodents, while benefits were observed with SC fat expansion in mice, suggesting that SC fat accrual is not an important contributor to metabolic decline. There is also compelling evidence in humans that abdominal obesity is a stronger risk factor for mortality risk than general obesity. Likewise, we have shown that surgical removal of VF improves mean and maximum lifespan in rats, providing the first causal evidence that VF depletion may be an important underlying cause of improved lifespan with caloric restriction. This review provides both corollary and causal evidence for the importance of accounting for body fat distribution, and specifically VF, when assessing disease and mortality risk. Given the hazards of VF accumulation on health, treatment strategies aimed at selectively depleting VF should be considered as a viable tool to effectively reduce disease risk in humans.

  6. From Classification to Causality: Advancing Understanding of Mechanisms of Change in Implementation Science.

    PubMed

    Lewis, Cara C; Klasnja, Predrag; Powell, Byron J; Lyon, Aaron R; Tuzzio, Leah; Jones, Salene; Walsh-Bailey, Callie; Weiner, Bryan

    2018-01-01

    The science of implementation has offered little toward understanding how different implementation strategies work. To improve outcomes of implementation efforts, the field needs precise, testable theories that describe the causal pathways through which implementation strategies function. In this perspective piece, we describe a four-step approach to developing causal pathway models for implementation strategies. First, it is important to ensure that implementation strategies are appropriately specified. Some strategies in published compilations are well defined but may not be specified in terms of its core component that can have a reliable and measureable impact. Second, linkages between strategies and mechanisms need to be generated. Existing compilations do not offer mechanisms by which strategies act, or the processes or events through which an implementation strategy operates to affect desired implementation outcomes. Third, it is critical to identify proximal and distal outcomes the strategy is theorized to impact, with the former being direct, measurable products of the strategy and the latter being one of eight implementation outcomes (1). Finally, articulating effect modifiers, like preconditions and moderators, allow for an understanding of where, when, and why strategies have an effect on outcomes of interest. We argue for greater precision in use of terms for factors implicated in implementation processes; development of guidelines for selecting research design and study plans that account for practical constructs and allow for the study of mechanisms; psychometrically strong and pragmatic measures of mechanisms; and more robust curation of evidence for knowledge transfer and use.

  7. Driving and driven architectures of directed small-world human brain functional networks.

    PubMed

    Yan, Chaogan; He, Yong

    2011-01-01

    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.

  8. Brain Networks Shaping Religious Belief

    PubMed Central

    Deshpande, Gopikrishna; Krueger, Frank; Thornburg, Matthew P.; Grafman, Jordan Henry

    2014-01-01

    Abstract We previously demonstrated with functional magnetic resonance imaging (fMRI) that religious belief depends upon three cognitive dimensions, which can be mapped to specific brain regions. In the present study, we considered these co-activated regions as nodes of three networks each one corresponding to a particular dimension, corresponding to each dimension and examined the causal flow within and between these networks to address two important hypotheses that remained untested in our previous work. First, we hypothesized that regions involved in theory of mind (ToM) are located upstream the causal flow and drive non-ToM regions, in line with theories attributing religion to the evolution of ToM. Second, we hypothesized that differences in directional connectivity are associated with differences in religiosity. To test these hypotheses, we performed a multivariate Granger causality-based directional connectivity analysis of fMRI data to demonstrate the causal flow within religious belief-related networks. Our results supported both hypotheses. Religious subjects preferentially activated a pathway from inferolateral to dorsomedial frontal cortex to monitor the intent and involvement of supernatural agents (SAs; intent-related ToM). Perception of SAs engaged pathways involved in fear regulation and affective ToM. Religious beliefs are founded both on propositional statements for doctrine, but also on episodic memory and imagery. Beliefs based on doctrine engaged a pathway from Broca's to Wernicke's language areas. Beliefs related to everyday life experiences engaged pathways involved in imagery. Beliefs implying less involved SAs and evoking imagery activated a pathway from right lateral temporal to occipital regions. This pathway was more active in non-religious compared to religious subjects, suggesting greater difficulty and procedural demands for imagining and processing the intent of SAs. Insights gained by Granger connectivity analysis inform us about the causal binding of individual regions activated during religious belief processing. PMID:24279687

  9. Brain networks shaping religious belief.

    PubMed

    Kapogiannis, Dimitrios; Deshpande, Gopikrishna; Krueger, Frank; Thornburg, Matthew P; Grafman, Jordan Henry

    2014-02-01

    We previously demonstrated with functional magnetic resonance imaging (fMRI) that religious belief depends upon three cognitive dimensions, which can be mapped to specific brain regions. In the present study, we considered these co-activated regions as nodes of three networks each one corresponding to a particular dimension, corresponding to each dimension and examined the causal flow within and between these networks to address two important hypotheses that remained untested in our previous work. First, we hypothesized that regions involved in theory of mind (ToM) are located upstream the causal flow and drive non-ToM regions, in line with theories attributing religion to the evolution of ToM. Second, we hypothesized that differences in directional connectivity are associated with differences in religiosity. To test these hypotheses, we performed a multivariate Granger causality-based directional connectivity analysis of fMRI data to demonstrate the causal flow within religious belief-related networks. Our results supported both hypotheses. Religious subjects preferentially activated a pathway from inferolateral to dorsomedial frontal cortex to monitor the intent and involvement of supernatural agents (SAs; intent-related ToM). Perception of SAs engaged pathways involved in fear regulation and affective ToM. Religious beliefs are founded both on propositional statements for doctrine, but also on episodic memory and imagery. Beliefs based on doctrine engaged a pathway from Broca's to Wernicke's language areas. Beliefs related to everyday life experiences engaged pathways involved in imagery. Beliefs implying less involved SAs and evoking imagery activated a pathway from right lateral temporal to occipital regions. This pathway was more active in non-religious compared to religious subjects, suggesting greater difficulty and procedural demands for imagining and processing the intent of SAs. Insights gained by Granger connectivity analysis inform us about the causal binding of individual regions activated during religious belief processing.

  10. Supporting shared hypothesis testing in the biomedical domain.

    PubMed

    Agibetov, Asan; Jiménez-Ruiz, Ernesto; Ondrésik, Marta; Solimando, Alessandro; Banerjee, Imon; Guerrini, Giovanna; Catalano, Chiara E; Oliveira, Joaquim M; Patanè, Giuseppe; Reis, Rui L; Spagnuolo, Michela

    2018-02-08

    Pathogenesis of inflammatory diseases can be tracked by studying the causality relationships among the factors contributing to its development. We could, for instance, hypothesize on the connections of the pathogenesis outcomes to the observed conditions. And to prove such causal hypotheses we would need to have the full understanding of the causal relationships, and we would have to provide all the necessary evidences to support our claims. In practice, however, we might not possess all the background knowledge on the causality relationships, and we might be unable to collect all the evidence to prove our hypotheses. In this work we propose a methodology for the translation of biological knowledge on causality relationships of biological processes and their effects on conditions to a computational framework for hypothesis testing. The methodology consists of two main points: hypothesis graph construction from the formalization of the background knowledge on causality relationships, and confidence measurement in a causality hypothesis as a normalized weighted path computation in the hypothesis graph. In this framework, we can simulate collection of evidences and assess confidence in a causality hypothesis by measuring it proportionally to the amount of available knowledge and collected evidences. We evaluate our methodology on a hypothesis graph that represents both contributing factors which may cause cartilage degradation and the factors which might be caused by the cartilage degradation during osteoarthritis. Hypothesis graph construction has proven to be robust to the addition of potentially contradictory information on the simultaneously positive and negative effects. The obtained confidence measures for the specific causality hypotheses have been validated by our domain experts, and, correspond closely to their subjective assessments of confidences in investigated hypotheses. Overall, our methodology for a shared hypothesis testing framework exhibits important properties that researchers will find useful in literature review for their experimental studies, planning and prioritizing evidence collection acquisition procedures, and testing their hypotheses with different depths of knowledge on causal dependencies of biological processes and their effects on the observed conditions.

  11. Placental Abruption and Perinatal Mortality With Preterm Delivery as a Mediator: Disentangling Direct and Indirect Effects

    PubMed Central

    Ananth, Cande V.; VanderWeele, Tyler J.

    2011-01-01

    The authors use recent methodology in causal inference to disentangle the direct and indirect effects that operate through a mediator in an exposure-response association paradigm. They demonstrate how total effects can be partitioned into direct and indirect effects even when the exposure and mediator interact. The impact of bias due to unmeasured confounding on the exposure-response association is assessed through a series of sensitivity analyses. These methods are applied to a problem in perinatal epidemiology to examine the extent to which the effect of abruption on perinatal mortality is mediated through preterm delivery. Data on over 26 million US singleton births (1995–2002) were utilized. Risks of mortality among abruption and nonabruption births were 102.7 and 6.2 per 1,000 births, respectively. Risk ratios of the natural direct and indirect (preterm delivery-mediated) effects of abruption on mortality were 10.18 (95% confidence interval: 9.80, 10.58) and 1.35 (95% confidence interval: 1.33, 1.38), respectively. The proportion of increased mortality risk mediated through preterm delivery was 28.1%, with even higher proportions associated with deliveries at earlier gestational ages. Sensitivity analyses underscore that the qualitative conclusions of some mediated effects and substantial direct effects are reasonably robust to unmeasured confounding of a fairly considerable magnitude. PMID:21430195

  12. Confounding factors in determining causal soil moisture-precipitation feedback

    NASA Astrophysics Data System (ADS)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  13. Illusions of causality at the heart of pseudoscience.

    PubMed

    Matute, Helena; Yarritu, Ion; Vadillo, Miguel A

    2011-08-01

    Pseudoscience, superstitions, and quackery are serious problems that threaten public health and in which many variables are involved. Psychology, however, has much to say about them, as it is the illusory perceptions of causality of so many people that needs to be understood. The proposal we put forward is that these illusions arise from the normal functioning of the cognitive system when trying to associate causes and effects. Thus, we propose to apply basic research and theories on causal learning to reduce the impact of pseudoscience. We review the literature on the illusion of control and the causal learning traditions, and then present an experiment as an illustration of how this approach can provide fruitful ideas to reduce pseudoscientific thinking. The experiment first illustrates the development of a quackery illusion through the testimony of fictitious patients who report feeling better. Two different predictions arising from the integration of the causal learning and illusion of control domains are then proven effective in reducing this illusion. One is showing the testimony of people who feel better without having followed the treatment. The other is asking participants to think in causal terms rather than in terms of effectiveness. ©2010 The British Psychological Society.

  14. Soil Moisture Controls on Rainfall and Temperature Variability: A Modeler Searches Through Observational Data

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2010-01-01

    The degree to which atmospheric processes respond to variations in soil moisture - a potentially important but largely untapped element of subseasonal to seasonal prediction - can be determined easily and directly for an atmospheric model but cannot be determined directly for nature through an analysis of observations. In atmospheric models) directions of causality can be artificially manipulated; we can avoid difficulties associated with the fact that atmospheric variations have a much larger impact on land state variations than vice-versa. In nature) on the other hand) the dominant direction of causality (the atmosphere forcing the ground) cannot be artificially "turned off") and the statistics associated with this dominant direction overwhelm those of the feedback signal. Observational data) however) do allow a number of indirect measures of landatmosphere feedback. This seminar reports on a series of joint analyses of observational and model data designed to illuminate the degree of land-atmosphere feedback present in the real world. The indirect measures do in fact suggest that feedback in nature, though small) is significant - enough to warrant the development of realistic land initialization strategies for subseasonal and seasonal forecasts.

  15. Translating context to causality in cardiovascular disparities research.

    PubMed

    Benn, Emma K T; Goldfeld, Keith S

    2016-04-01

    Moving from a descriptive focus to a comprehensive analysis grounded in causal inference can be particularly daunting for disparities researchers. However, even a simple model supported by the theoretical underpinnings of causality gives researchers a better chance to make correct inferences about possible interventions that can benefit our most vulnerable populations. This commentary provides a brief description of how race/ethnicity and context relate to questions of causality, and uses a hypothetical scenario to explore how different researchers might analyze the data to estimate causal effects of interest. Perhaps although not entirely removed of bias, these causal estimates will move us a step closer to understanding how to intervene. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Effects of Increased Psychiatric Treatment Contact and Acculturation on the Causal Beliefs of Chinese Immigrant Relatives of Individuals with Psychosis

    PubMed Central

    Lo, Graciete; Tu, Ming; Wu, Olivia; Anglin, Deidre; Saw, Anne; Chen, Fang-pei

    2016-01-01

    Encounters with Western psychiatric treatment and acculturation may influence causal beliefs of psychiatric illness endorsed by Chinese immigrant relatives, thus affecting help-seeking. We examined causal beliefs held by forty-six Chinese immigrant relatives and found that greater acculturation was associated with an increased number of causal beliefs. Further, as Western psychiatric treatment and acculturation increased, causal models expanded to incorporate biological/physical causes. However, frequency of Chinese immigrant relatives' endorsing spiritual beliefs did not appear to change with acculturation. Clinicians might thus account for spiritual beliefs in treatment even after acculturation increases and biological causal models proliferate. PMID:27127454

  17. Estimating Causal Effects with Ancestral Graph Markov Models

    PubMed Central

    Malinsky, Daniel; Spirtes, Peter

    2017-01-01

    We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244

  18. How causal analysis can reveal autonomy in models of biological systems

    NASA Astrophysics Data System (ADS)

    Marshall, William; Kim, Hyunju; Walker, Sara I.; Tononi, Giulio; Albantakis, Larissa

    2017-11-01

    Standard techniques for studying biological systems largely focus on their dynamical or, more recently, their informational properties, usually taking either a reductionist or holistic perspective. Yet, studying only individual system elements or the dynamics of the system as a whole disregards the organizational structure of the system-whether there are subsets of elements with joint causes or effects, and whether the system is strongly integrated or composed of several loosely interacting components. Integrated information theory offers a theoretical framework to (1) investigate the compositional cause-effect structure of a system and to (2) identify causal borders of highly integrated elements comprising local maxima of intrinsic cause-effect power. Here we apply this comprehensive causal analysis to a Boolean network model of the fission yeast (Schizosaccharomyces pombe) cell cycle. We demonstrate that this biological model features a non-trivial causal architecture, whose discovery may provide insights about the real cell cycle that could not be gained from holistic or reductionist approaches. We also show how some specific properties of this underlying causal architecture relate to the biological notion of autonomy. Ultimately, we suggest that analysing the causal organization of a system, including key features like intrinsic control and stable causal borders, should prove relevant for distinguishing life from non-life, and thus could also illuminate the origin of life problem. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  19. Updating during Reading Comprehension: Why Causality Matters

    ERIC Educational Resources Information Center

    Kendeou, Panayiota; Smith, Emily R.; O'Brien, Edward J.

    2013-01-01

    The present set of 7 experiments systematically examined the effectiveness of adding causal explanations to simple refutations in reducing or eliminating the impact of outdated information on subsequent comprehension. The addition of a single causal-explanation sentence to a refutation was sufficient to eliminate any measurable disruption in…

  20. Chronometric Electrical Stimulation of Right Inferior Frontal Cortex Increases Motor Braking

    PubMed Central

    Conner, Christopher R.; Aron, Adam R.; Tandon, Nitin

    2013-01-01

    The right inferior frontal cortex (rIFC) is important for stopping responses. Recent research shows that it is also activated when response emission is slowed down when stopping is anticipated. This suggests that rIFC also functions as a goal-driven brake. Here, we investigated the causal role of rIFC in goal-driven braking by using computer-controlled, event-related (chronometric), direct electrical stimulation (DES). We compared the effects of rIFC stimulation on trials in which responses were made in the presence versus absence of a stopping-goal (“Maybe Stop” [MS] vs “No Stop” [NS]). We show that DES of rIFC slowed down responses (compared with control-site stimulation) and that rIFC stimulation induced more slowing when motor braking was required (MS) compared with when it was not (NS). Our results strongly support a causal role of a rIFC-based network in inhibitory motor control. Importantly, the results extend this causal role beyond externally driven stopping to goal-driven inhibitory control, which is a richer model of human self-control. These results also provide the first demonstration of double-blind chronometric DES of human prefrontal cortex, and suggest that—in the case of rIFC—this could lead to augmentation of motor braking. PMID:24336725

Top