Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century
NASA Astrophysics Data System (ADS)
Gedalof, Ze'ev; Berg, Aaron A.
2010-09-01
The effect that rising atmospheric CO2 levels will have on forest productivity and water use efficiency remains uncertain, yet it has critical implications for future rates of carbon sequestration and forest distributions. Efforts to understand the effect that rising CO2 will have on forests are largely based on growth chamber studies of seedlings, and the relatively small number of FACE sites. Inferences from these studies are limited by their generally short durations, artificial growing conditions, unnatural step-increases in CO2 concentrations, and poor replication. Here we analyze the global record of annual radial tree growth, derived from the International Tree ring Data Bank (ITRDB), for evidence of increasing growth rates that cannot be explained by climatic change alone, and for evidence of decreasing sensitivity to drought. We find that approximately 20 percent of sites globally exhibit increasing trends in growth that cannot be attributed to climatic causes, nitrogen deposition, elevation, or latitude, which we attribute to a direct CO2 fertilization effect. No differences were found between species in their likelihood to exhibit growth increases attributable to CO2 fertilization, although Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa), the two most commonly sampled species in the ITRDB, exhibit a CO2 fertilization signal at frequencies very near their upper and lower confidence limits respectively. Overall these results suggest that CO2 fertilization of forests will not counteract emissions or slow warming in any substantial fashion, but do suggest that future forest dynamics may differ from those seen today depending on site conditions and individual species' responses to elevated CO2.
Direct effects of increasing carbon dioxide on vegetation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strain, B R; Cure, J D
1985-12-01
CO/sub 2/ is an essential environmental resource. It is required as a raw material of the orderly development of all green plants. As the availability of CO/sub 2/ increases, perhaps reaching two or three times the concentration prevailing in preindustrial times, plants and all other organisms dependent on them for food will be affected. Humans are releasing a gaseous fertilizer into the global atmosphere in quantities sufficient to affect all life. This volume considers the direct effects of global CO/sub 2/ fertilization on plants and thus on all other life. Separate abstracts have been prepared for individual papers. (ACR)
Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.
Fine, Pinchas; Hadas, Efrat
2012-02-01
Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which might be exploited in the construction of new wastewater treatment facilities, especially in developing countries. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Clark, Deborah A.; Clark, David B.; Oberbauer, Steven F.
2013-06-01
A directional change in tropical-forest productivity, a large component in the global carbon budget, would affect the rate of increase in atmospheric carbon dioxide ([CO2]). One current hypothesis is that "CO2 fertilization" has been increasing tropical forest productivity. Some lines of evidence instead suggest climate-driven productivity declines. Relevant direct field observations remain extremely limited for this biome. Using a unique long-term record of annual field measurements, we assessed annual aboveground net primary productivity (ANPP) and its relation to climatic factors and [CO2] in a neotropical rainforest through 1997-2009. Over this 12 year period, annual productivity did not increase, as would be expected with a dominant CO2 fertilization effect. Instead, the negative responses of ANPP components to climatic stress far exceeded the small positive responses associated with increasing [CO2]. Annual aboveground biomass production was well explained (73%) by the independent negative effects of increasing minimum temperatures and greater dry-season water stress. The long-term records enable a first field-based estimate of the [CO2] response of tropical forest ANPP: 5.24 g m-2 yr-1 yr-1 (the summed [CO2]-associated increases in two of the four production components; the largest component, leaf litterfall, showed no [CO2] association). If confirmed by longer data series, such a small response from a fertile tropical rainforest would indicate that current global models overestimate the benefits from CO2 fertilization for this biome, where most forests' poorer nutrient status more strongly constrains productivity responses to increasing [CO2]. Given the rapidly intensifying warming across tropical regions, tropical forest productivity could sharply decline through coming decades.
Testing for a CO2 fertilization effect on growth of Canadian boreal forests
NASA Astrophysics Data System (ADS)
Girardin, Martin P.; Bernier, Pierre Y.; Raulier, FréDéRic; Tardif, Jacques C.; Conciatori, France; Guo, Xiao Jing
2011-03-01
The CO2 fertilization hypothesis stipulates that rising atmospheric CO2 has a direct positive effect on net primary productivity (NPP), with experimental evidence suggesting a 23% growth enhancement with a doubling of CO2. Here, we test this hypothesis by comparing a bioclimatic model simulation of NPP over the twentieth century against tree growth increment (TGI) data of 192 Pinus banksiana trees from the Duck Mountain Provincial Forest in Manitoba, Canada. We postulate that, if a CO2 fertilization effect has occurred, climatically driven simulations of NPP and TGI will diverge with increasing CO2. We use a two-level scaling approach to simulate NPP. A leaf-level model is first used to simulate high-frequency responses to climate variability. A canopy-level model of NPP is then adjusted to the aggregated leaf-level results and used to simulate yearly plot-level NPP. Neither model accounts for CO2 fertilization. The climatically driven simulations of NPP for 1912-2000 are effective for tracking the measured year-to-year variations in TGI, with 47.2% of the variance in TGI reproduced by the simulation. In addition, the simulation reproduces without divergence the positive linear trend detected in TGI over the same period. Our results therefore do not support the attribution of a portion of the historical linear trend in TGI to CO2 fertilization at the level suggested by current experimental evidence. A sensitivity analysis done by adding an expected CO2 fertilization effect to simulations suggests that the detection limit of the study is for a 14% growth increment with a doubling of atmospheric CO2 concentration.
Bicarbonate uptake by Southern Ocean phytoplankton
NASA Astrophysics Data System (ADS)
Cassar, Nicolas; Laws, Edward A.; Bidigare, Robert R.; Popp, Brian N.
2004-06-01
Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [, 1993]. Estimation of the extent of bicarbonate (HCO3-) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term 14CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3- uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3- uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3- transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3-, whose concentration is negligibly affected by the anthropogenic rise in CO2. We conclude that biological productivity in this region of the world's ocean is unlikely to be directly regulated by natural or anthropogenic variations in atmospheric CO2 concentrations because of the presence of a constitutive CCM.
Silva, Lucas C R; Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R
2015-08-21
The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history.
NASA Astrophysics Data System (ADS)
Moore, Frances C.; Baldos, Uris Lantz C.; Hertel, Thomas
2017-06-01
A large number of studies have been published examining the implications of climate change for agricultural productivity that, broadly speaking, can be divided into process-based modeling and statistical approaches. Despite a general perception that results from these methods differ substantially, there have been few direct comparisons. Here we use a data-base of yield impact studies compiled for the IPCC Fifth Assessment Report (Porter et al 2014) to systematically compare results from process-based and empirical studies. Controlling for differences in representation of CO2 fertilization between the two methods, we find little evidence for differences in the yield response to warming. The magnitude of CO2 fertilization is instead a much larger source of uncertainty. Based on this set of impact results, we find a very limited potential for on-farm adaptation to reduce yield impacts. We use the Global Trade Analysis Project (GTAP) global economic model to estimate welfare consequences of yield changes and find negligible welfare changes for warming of 1 °C-2 °C if CO2 fertilization is included and large negative effects on welfare without CO2. Uncertainty bounds on welfare changes are highly asymmetric, showing substantial probability of large declines in welfare for warming of 2 °C-3 °C even including the CO2 fertilization effect.
N fertilization reduces the losses of old soil organic carbon
NASA Astrophysics Data System (ADS)
Zang, H.; Blagodatskaya, E.; Wang, J.; Kuzyakov, Y.; Xu, X.
2016-12-01
Agricultural soils have experiencing large anthropogenic nitrogen (N) inputs, which directly and indirectly affect soil organic matter (SOM) stocks and CO2 emissions. However, current understanding of how these additional N inputs affect SOM pools of various ages and turnover remains incomplete. The δ13C values of SOM after wheat (C3) - maize (C4) vegetation change enable to calculate the contribution of C4-derived rhizodeposited C (rhizo-C) and C3-derived old SOM pools. Soil (Ap from Haplic Luvisol) sampled from maize rhizosphere was incubated over 56 days after increasing N fertilization (4 levels up to 300 kg N ha-1). N fertilization decreased soil CO2 emissions by 27-42% as compared to unfertilized control. This decrease was mainly caused by the retardation of old C mineralization. The relative availability of rhizo-C (released by maize roots within 4 weeks) for microorganisms was about 10 times higher than of old C (older than 4 weeks). Microbial biomass and dissolved organic C were unaffected by increasing N. N fertilization, however, increased relative contribution of rhizo-C to microbial biomass for 2 - 5 times and to CO2 for about 2 times. This clearly reflects acceleration of microbial biomass turnover by N addition. The decomposition rate of rhizo-C was 3.7 times higher than of old C, and it increased additionally by the factor of 6.5 under high N fertilization. Our study is the first estimated the turnover and incorporation of very recent rhizo-C (within 4 weeks). Compared with several-years old C4, the turnover of rhizo-C was about 2 times faster. Concluding, the contribution of rhizo-C to CO2 and microbial biomass was highly responsive to N fertilization. N fertilization facilitates C sequestration in agricultural soils by decreasing old SOM decomposition mainly through increase the turnover and C use efficiency of rhizo-C. Keywords: CO2 partitioning; C3-C4 vegetation; microbial biomass; SOM decomposition; Nutrient availability
NASA Astrophysics Data System (ADS)
Kort, E. A.; Gvakharia, A.; Smith, M. L.; Conley, S.; Frauhammer, K.
2017-12-01
Nitrous Oxide (N2O) is a crucial atmospheric trace gas that drives 21st century stratospheric ozone depletion and substantively impacts climate. Anthropogenic emissions drive the global imbalance and annual growth of N2O, and the dominant anthropogenic source is fertilizer production and application, both of which have large uncertainties. In this presentation we will discuss the FEAST campaign, a study designed to demonstrate new approaches to quantify N2O emissions from fertilizer production and usage with aircraft measurements. In the FEAST campaign we deployed new instrumentation along with experienced flight sensors onboard the Scientific Aviation Mooney aircraft to make 40 hours of continuous 1Hz measurements of N2O, CO2, CO, H2O, CH4, O3, T, and winds. The Mississippi River Valley provided an optimal target as this location includes significant fertilizer production facilities as well as large cropland areas (dominated by corn, soy, rice, and cotton) with substantive fertilizer application. By leveraging our payload and unique airborne capabilities we directly observe and quantify N2O emissions from individual fertilizer production facilities (as well as CO2 and CH4 emissions from these same facilities). We are also able to quantify N2O fluxes from large cropland areas ( 100's km) employing a mass balance approach, a first for N2O, and will show results highlighting differences between crop types and amounts of applied fertilizer. The ability to quantify fluxes of croplands at 100km scale enables new understanding of processes controlling emissions at spatial scales that has eluded prior studies that either rely on extrapolation of small (flux chamber, towers), or work on 1,000+ km spatial scales (regional-global inversions from atmospheric measurements).
Ward, Eric J; Oren, Ram; Bell, David M; Clark, James S; McCarthy, Heather R; Kim, Hyun-Seok; Domec, Jean-Christophe
2013-02-01
In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration (E(L)) and stomatal conductance (G(S)) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO(2) levels (eCO(2)) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO(2) intermittently (49% of monthly values) decreased stomatal conductance (G(S)) relative to the control, with a mean reduction of 13% in both total E(L) and mean daytime G(S). This intermittent response was related to changes in a hydraulic allometry index (A(H)), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO(2) over the course of the study, due mostly to a mean 19% increase in leaf area (A(L)). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G(S) with eCO(2) with a total reduction of 32% E(L), 31% G(S) and 23% A(H) (due to increased A(L) per sapwood area). For L. styraciflua, like P. taeda, the relationship between A(H) and G(S) at reference conditions suggested a decrease in G(S) across the range of A(H). Our findings suggest an indirect structural effect of eCO(2) on G(S) in P. taeda and a direct leaf level effect in L. styraciflua. In the initial year of fertilization, P. taeda in both CO(2) treatments, as well as L. styraciflua in eCO(2), exhibited higher G(S) with N(F) than expected from shifts in A(H), suggesting a transient direct effect on G(S). Whether treatment effects on mean leaf-specific G(S) are direct or indirect, this paper highlights that long-term treatment effects on G(S) are generally reflected in A(H) as well.
NASA Astrophysics Data System (ADS)
Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk
2014-09-01
Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.
Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities.
Byrne, Maria; Soars, Natalie; Selvakumaraswamy, Paulina; Dworjanyn, Symon A; Davis, Andrew R
2010-05-01
Marine invertebrate gametes are being spawned into an ocean simultaneously warming, acidifying and increasing in pCO(2). Decreased pH/increased pCO(2) narcotizes sperm indicating that acidification may impair fertilization, exacerbating problems of sperm limitation, with dire implications for marine life. In contrast, increased temperature may have a stimulatory effect, enhancing fertilization. We investigated effects of ocean change on sea urchin fertilization across a range of sperm densities. We address two predictions: (1) low pH/increased pCO(2) reduces fertilization at low sperm density and (2) increased temperature enhances fertilization, buffering negative effects of acidification and increased pCO(2). Neither prediction was supported. Fertilization was only affected by sperm density. Increased acidification and pCO(2) did not reduce fertilization even at low sperm density and increased temperature did not enhance fertilization. It is important to identify where vulnerabilities lie across life histories and our results indicate that sea urchin fertilization is robust to climate change stressors. However, developmental stages may be vulnerable to ocean change. Copyright 2009 Elsevier Ltd. All rights reserved.
Silva, Lucas C. R.; Salamanca-Jimenez, Alveiro; Doane, Timothy A.; Horwath, William R.
2015-01-01
The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases (13CO2 and 15NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the 13CO2 pulse, assimilation and transport of the 15NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history. PMID:26294035
Method for reducing CO2, CO, NOX, and SOx emissions
Lee, James Weifu; Li, Rongfu
2002-01-01
Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.
Yang, Ke Bin; Meng, Fan Zhi; Guo, Xian Feng
2017-06-18
Aiming at the problem of the acute shortage of CO 2 in winter production of cut Anthurium andraeanum in solar greenhouse, the effect of CO 2 fertilization on photosynthetic characteristics and growth performance of A. andraeanum 'Fire' was investigated. Three treatments with different concentrations of CO 2 were designed, i.e., 700, 1000 and 1300 Μmol·mol -1 , with receiving no extra CO 2 as the control. The results showed that for the CO 2 -fertilized plants, the photosynthetic rate, intercellular CO 2 concentration and water use efficiency were significantly greater than those in the control plants after CO 2 fertilization for 60 days, and the largest increase range was observed in the 1000 Μmol·mol -1 CO 2 treatment, whereas the stomata conductance was significantly reduced compared with the control. Meanwhile, the contents of soluble sugar, starch and soluble protein in CO 2 -fertilized plants were significantly higher than those in control plants. Moreover, the quality of cut flowers with CO 2 fertilization was remarkably superior to control flowers in term of the parameters including spathe size, spathe color, peduncle length, leaf growth performance and peduncle growth rate. The most superior improvement was observed in the 1000 Μmol·mol -1 CO 2 treatment. It was therefore concluded that CO 2 fertilization of 1000 Μmol·mol -1 could effectively improve the winter production of cut A. andraeanum in solar greenhouse.
Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil
2015-01-01
The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement.
Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil
2015-01-01
The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement. PMID:26252377
Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil
NASA Astrophysics Data System (ADS)
Syabruk, Olesia
2017-04-01
Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from 5 to 15 % of the average level. The influence of the crop on the allocation dynamics of CO2 was also investigates during the research. Due to root respiration, total CO2 flux from soil increases by an average of 12-32 % when growing grain crops. The mathematical models of dependency between the CO2 emissions intensity and hydrothermal conditions were developed. These models will allow to predict the volume of CO2 emissions from automorphic chernozems under different scenarios of weather conditions during warm period, based on generalizing models with the corrections depending on the method of cultivation, fertilization system and agricultural culture. As a result of the research, it was proved that there is a necessity to conduct periodic direct measurements of CO2 emission losses from the soil surface and to summarize the results in an annual cycle, which allows estimating the probable emission losses of carbon already in the first years of the introduction of new agricultural technologies.
NASA Astrophysics Data System (ADS)
Czubaszek, Robert; Wysocka-Czubaszek, Agnieszka
2018-01-01
Digestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2 and CH4 fluxes, 79.62 and 3.049 µmol s-1 m-2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2 emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.
Effect of different fertilization measures on soil CO2 emissions of spring corn in Northeast China
NASA Astrophysics Data System (ADS)
Xu, Shicai; Qiao, Shaoqing
2018-04-01
To research the sustainability of efficient utilization approaches and modes of nitrogen in spring corns. Taking different fertilization measures to research the influence on soil respiration and microbial biomass carbon and nitrogen; the experiment takes the spring corns and black soil of Harbin in Northeast China as research objects. It researches the influence of 4 different fertilization measures by using field long-term located experiment on soil respiration of the spring corns and analyzes the yield. The four measures are as follows: farmer's fertilization practice FP; Tl mode of decreasing 20% of nitrogenous fertilizer on the basis of FP; T2 mode of 20% of Tl nitrogenous fertilizer replaced by organic fertilizer and other 20% replaced by slow-release nitrogen fertilizer; T3 mode of adding 2t/hm2 of corn stalk carbon on the basis of T2. There are significant differences of CO2 emission flux in spring corn soil with four fertilization measures (P<0.05). The rank of CO2 emission flux is: T3>Tl>T2>FP and the yield rank of spring corns is: T3>T2>Tl>FP. (1) The rational nitrogen-decrease fertilization measure has no obvious influence on spring corn yield and the replacement of organic fertilizer and slow-release nitrogen fertilizer and the addition of active carbon can improve the spring corn yield. (2) Utilization of organic fertilizer can accelerate the emission of CO2 from the soil. (3) Addition of biological carbon can promote the emission of CO2 from soil during the growing period of spring corns.
New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China
Dou, Zheng-xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G.; Zhang, Fu-Suo
2013-01-01
Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world’s population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China’s participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China’s use of N fertilizer, we quantify the carbon footprint of China’s N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20–63%, amounting to 102–357 Tg CO2-eq annually. Such reduction would decrease China’s total GHG emissions by 2–6%, which is significant on a global scale. PMID:23671096
New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China.
Zhang, Wei-Feng; Dou, Zheng-Xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G; Zhang, Fu-Suo
2013-05-21
Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale.
Upscaling nitrogen-mycorrhizal effects to quantify CO2 fertilization.
NASA Astrophysics Data System (ADS)
Terrer, C.; Franklin, O.; Kaiser, C.; Vicca, S.; Stocker, B.; Prentice, I. C.; Soudzilovskaia, N.
2016-12-01
Terrestrial ecosystems sequester annually about a quarter of anthropogenic carbon dioxide (CO2) emissions. However, it has been proposed that nitrogen (N) availability will limit plants' capacity to absorb increasing quantities of CO2 in the atmosphere. Experiments in which plants are fumigated with elevated CO2 show contrasting results, leaving open the debate of whether the magnitude of the CO2 fertilization effect will be limited by N. By synthesizing data from CO2 experiments through meta-analysis, we found that the magnitude of the CO2 fertilization effect can be explained based on the interaction between N availability and type of mycorrhizal association. Indeed, N availability is the most important driver of the CO2 fertilization effect, however, plants that associate with ectomycorrhizal fungi can overcome N limitations and grow about 30% more under 650ppm than under 400ppm of atmospheric CO2. On the other hand, plants that associate with arbuscular mycorrhizal fungi show no CO2 fertilization effect under low N availability. Using this framework, we quantified biomass responses to CO2 as a function of the soil parameters that determine N availability for the two mycorrhizal types. Then, by overlaying the distribution of mycorrhizal plants with global projections of the soil parameters that determine N availability, we estimated the amount of extra CO2 that terrestrial plants can sequester in biomass for an increase in CO2, as well as the distribution of the CO2 fertilization effect. This synthesis reconciles contrasting views of the role of N in terrestrial carbon uptake and emphasizes the plant control on N availability through interaction with ectomycorrhizal fungi. Large-scale ecosystem models should account for the influence of nitrogen and mycorrhizae reported here, which will improve representation of the CO2 fertilization effect, critical for projecting ecosystem responses and feedbacks to climate change.
Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G
2015-05-01
Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.
Iron in the Ross Sea: 2. Impact of discrete iron addition strategies
NASA Astrophysics Data System (ADS)
Arrigo, Kevin R.; Tagliabue, Alessandro
2005-03-01
Presented are results of a regional-scale numerical investigation into the effectiveness of Fe fertilization as a means to increase the efficiency of the biological pump in Fe-limited waters of the Ross Sea, Antarctica. This investigation was conducted using a modified version of the Coupled Ice And Ocean (CIAO) ecosystem model of the Ross Sea sector of the Southern Ocean. Four sets of experiments were performed, investigating the impacts of differences in (1) timing of fertilization, (2) duration of fertilization, (3) amount of Fe added, and (4) size of the fertilized patch. Results show that the stimulation of air-sea CO2 exchange (FCO2) depends primarily on the timing of fertilization, regardless of the amount of Fe added. When Fe was added at the optimal time of year, FCO2 from the atmosphere into the Ross Sea was increased by 3-22%, depending on fertilization strategy. Increasing patch size produced the largest response, and increasing initial Fe concentration produced the smallest. In all cases, as the intensity of Fe fertilization increased, the fertilization efficiency (increase in CO2 uptake per unit added Fe) dropped. Strategies that maximized the fertilization efficiency resulted in relatively little additional CO2 being drawn out of the atmosphere. To markedly increase oceanic uptake of atmospheric CO2 would require the addition of large amounts of Fe due to the low fertilization efficiencies associated with maximum air-sea CO2 exchange. Our results also show that differences in the fertilization strategy should be kept in mind when comparing the results of different Fe fertilization experiments.
NASA Astrophysics Data System (ADS)
Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.
2017-12-01
Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected response ratio to elevated CO2 at the AmazonFACE site and identify priorities for experimental work and model development.
[Effects of enhanced CO2 fertilization on phytoremediation of DEHP-polluted soil].
Diao, Xiao-Jun; Wang, Shu-Guang; Mu, Nan
2013-03-01
Low efficiency of remediation is one of the key issues to be solved in phytoremediation technology. Based on the necessity of reducing CO2 emission in China and the significance of CO2 in plant photosynthesis, this paper studied the effects of enhanced CO2 fertilization on the phytoremediation of polluted soil, selecting the C3 plant mung bean (Vigna radiate) and the C4 plant maize (Zea mays) as test plants for phytoremediation and the DEHP as the target pollutant. DEHP pollution had negative effects on the growth and rhizosphere micro-environment of the two plants. After enhanced CO2 fertilization, the aboveground dry mass of the two plants and the alkaline phosphatase activity in the rhizosphere soils of the two plants increased, the COD activity in the leaves of the two plants decreased, the microbial community in the rhizosphere soils shifted, and the numbers of the microbes with DEHP-tolerance in the rhizosphere soils increased. These changes indicated that enhanced CO2 fertilization could promote the plant growth and the plant tolerance to DEHP stress, and improve the rhizosphere micro-environment. Enhanced CO2 fertilization also increased the DEHP uptake by the two plants, especially their underground parts. All these effects induced the residual DEHP concentration in the rhizospheres of the two plants, especially that of mung bean, decreased obviously, and the phytoremediation efficiency increased. Overall, enhanced CO2 fertilization produced greater effects on C3 plant than on C4 plant. It was suggested that enhanced CO2 fertilization could be a useful measure to enhance the efficiency of phytoremediation.
Ocean Fertilization and Ocean Acidification
NASA Astrophysics Data System (ADS)
Cao, L.; Caldeira, K.
2008-12-01
It has been suggested that ocean fertilization could help diminish ocean acidification. Here, we quantitatively evaluate this suggestion. Ocean fertilization is one of several ocean methods proposed to mitigate atmospheric CO2 concentrations. The basic idea of this method is to enhance the biological uptake of atmospheric CO2 by stimulating net phytoplankton growth through the addition of iron to the surface ocean. Concern has been expressed that ocean fertilization may not be very effective at reducing atmospheric CO2 concentrations and may produce unintended environmental consequences. The rationale for thinking that ocean fertilization might help diminish ocean acidification is that dissolved inorganic carbon concentrations in the near-surface equilibrate with the atmosphere in about a year. If ocean fertilization could reduce atmospheric CO2 concentrations, it would also reduce surface ocean dissolved inorganic carbon concentrations, and thus diminish the degree of ocean acidification. To evaluate this line of thinking, we use a global ocean carbon cycle model with a simple representation of marine biology and investigate the maximum potential effect of ocean fertilization on ocean carbonate chemistry. We find that the effect of ocean fertilization on ocean acidification depends, in part, on the context in which ocean fertilization is performed. With fixed emissions of CO2 to the atmosphere, ocean fertilization moderately mitigates changes in ocean carbonate chemistry near the ocean surface, but at the expense of further acidifying the deep ocean. Under the SRES A2 CO2 emission scenario, by year 2100 simulated atmospheric CO2, global mean surface pH, and saturation state of aragonite is 965 ppm, 7.74, and 1.55 for the scenario without fertilization and 833 ppm, 7.80, and 1.71 for the scenario with 100-year (between 2000 and 2100) continuous fertilization for the global ocean (For comparison, pre-industrial global mean surface pH and saturation state of aragonite is 8.18 and 3.5). As a result of ocean fertilization, 10 years from now, the depth of saturation horizon (the depth below which ocean water is undersaturated with respect to calcium carbonate) for aragonite in the Southern Ocean shoals from its present average value of about 700 m to 100 m. In contrast, no significant change in the depth of aragonite saturation horizontal is seen in the scenario without fertilization for the corresponding period. By year 2100, global mean calcite saturation horizon shoals from its present value of 3150 m to 2965 and 2534 m in the case without fertilization and with it. In contrast, if the sale of carbon credits from ocean fertilization leads to greater CO2 emissions to the atmosphere (e.g., if carbon credits from ocean fertilization are used to offset CO2 emissions from a coal plant), then there is the potential that ocean fertilization would further acidify the deep ocean without conferring any chemical benefit to surface ocean waters.
CESM-simulated 21st Century Changes in Large Scale Crop Water Requirements and Yields
NASA Astrophysics Data System (ADS)
Levis, S.; Badger, A.; Drewniak, B. A.; O'Neill, B. C.; Ren, X.
2014-12-01
We assess potential changes in crop water requirements and corresponding yields relative to the late 20th century in major crop producing regions of the world by using the Community Land Model (CLM) driven with 21st century meteorology from RCP8.5 and RCP4.5 Community Earth System Model (CESM) simulations. The RCP4.5 simulation allows us to explore the potential for averted societal impacts when compared to the RCP8.5 simulation. We consider the possibility for increased yields and improved water use efficiency under conditions of elevated atmospheric CO2 due to the CO2 fertilization effect (also known as concentration-carbon feedback). We address uncertainty in the current understanding of plant CO2 fertilization by repeating the simulations with and without the CO2 fertilization effect. Simulations without CO2 fertilization represent the radiative effect of elevated CO2 (i.e., warming) without representing the physiological effect of elevated CO2 (enhanced carbon uptake and increased water use efficiency by plants during photosynthesis). Preliminary results suggest that some plants may suffer from increasing heat and drought in much of the world without the CO2 fertilization effect. On the other hand plants (especially C3) tend to grow more with less water when models include the CO2 fertilization effect. Performing 21st century simulations with and without the CO2 fertilization effect brackets the potential range of outcomes. In this work we use the CLM crop model, which includes specific crop types that differ from the model's default plant functional types in that the crops get planted, harvested, and potentially fertilized and irrigated according to algorithms that attempt to capture human management decisions. We use an updated version of the CLM4.5 that includes cotton, rice, and sugarcane, spring wheat, spring barley, and spring rye, as well as temperate and tropical maize and soybean.
Kicklighter, D.W.; Bruno, M.; Donges, S.; Esser, G.; Heimann, Martin; Helfrich, J.; Ift, F.; Joos, F.; Kaduk, J.; Kohlmaier, G.H.; McGuire, A.D.; Melillo, J.M.; Meyer, R.; Moore, B.; Nadler, A.; Prentice, I.C.; Sauf, W.; Schloss, A.L.; Sitch, S.; Wittenberg, U.; Wurth, G.
1999-01-01
We compared the simulated responses of net primary production, heterotrophic respiration, net ecosystem production and carbon storage in natural terrestrial ecosystems to historical (1765 to 1990) and projected (1990 to 2300) changes of atmospheric CO2 concentration of four terrestrial biosphere models: the Bern model, the Frankfurt Biosphere Model (FBM), the High-Resolution Biosphere Model (HRBM) and the Terrestrial Ecosystem Model (TEM). The results of the model intercomparison suggest that CO2 fertilization of natural terrestrial vegetation has the potential to account for a large fraction of the so-called 'missing carbon sink' of 2.0 Pg C in 1990. Estimates of this potential are reduced when the models incorporate the concept that CO2 fertilization can be limited by nutrient availability. Although the model estimates differ on the potential size (126 to 461 Pg C) of the future terrestrial sink caused by CO2 fertilization, the results of the four models suggest that natural terrestrial ecosystems will have a limited capacity to act as a sink of atmospheric CO2 in the future as a result of physiological constraints and nutrient constraints on NPP. All the spatially explicit models estimate a carbon sink in both tropical and northern temperate regions, but the strength of these sinks varies over time. Differences in the simulated response of terrestrial ecosystems to CO2 fertilization among the models in this intercomparison study reflect the fact that the models have highlighted different aspects of the effect of CO2 fertilization on carbon dynamics of natural terrestrial ecosystems including feedback mechanisms. As interactions with nitrogen fertilization, climate change and forest regrowth may play an important role in simulating the response of terrestrial ecosystems to CO2 fertilization, these factors should be included in future analyses. Improvements in spatially explicit data sets, whole-ecosystems experiments and the availability of net carbon exchange measurements across the globe will also help to improve future evaluations of the role of CO2 fertilization on terrestrial carbon storage.
We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...
The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).
Xu, Ming
2015-07-20
This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. Copyright © 2015. Published by Elsevier GmbH.
Shifting terrestrial feedbacks from CO2 fertilization to global warming
NASA Astrophysics Data System (ADS)
Peñuelas, Josep; Ciais, Philippe; Janssens, Ivan; Canadell, Josep; Obersteiner, Michael; Piao, Shilong; Vautard, Robert; Sardans Jordi Sardans, Jordi
2016-04-01
Humans are increasingly fertilizing the planet. Our activities are increasing atmospheric concentrations of carbon dioxide, nitrogen inputs to ecosystems and global temperatures. Individually and combined, they lead to biospheric availability of carbon and nitrogen, enhanced metabolic activity, and longer growing seasons. Plants can consequently grow more and take up more carbon that can be stored in ecosystem carbon pools, thus enhancing carbon sinks for atmospheric CO2. Data on the increased strength of carbon sinks are, however, inconclusive: Some data (eddy covariance, short-term experiments on elevated CO2 and nutrient fertilization) suggest that biospheric carbon uptake is already effectively increasing but some other data suggest it is not, or are not general and conclusive (tree-ring, forest inventory). The combined land-ocean CO2 sink flux per unit of excess atmospheric CO2 above preindustrial levels declined over 1959-2012 by a factor of about 1/3, implying that CO2 sinks increased more slowly than excess CO2. We will discuss the available data, and the discussion will drive us to revisit our projections for enhanced carbon sinks. We will reconsider the performance of the modulators of increased carbon uptake in a CO2 fertilized and warmed world: nutrients, climate, land use and pollution. Nutrient availability in particular plays a crucial role. A simple mass-balance approach indicates that limited phosphorus availability and the corresponding N:P imbalances can jointly reduce the projected future carbon storage by natural ecosystems during this century. We then present a new paradigm: we are shifting from a fertilization to a warming era. Compared to the historical period, future impacts of warming will be larger than the benefits of CO2 fertilization given nutrient limitations, management and disturbance (which reduces C stocks and thus sequestration potential) and because CO2 will decrease by 2050 in RCP2.6, meaning loss of CO2 fertilization, and CO2 stabilizes by 2060 in RCP4.5. So in light of the Paris agreement, it is more important to investigate climate change impacts on carbon stocks than to expect a continuation of increasing sink due to CO2 fertilization, which will have only a small role or disappear in RCP2.6 during this century.
[Contents of nutrient elements in NH4(+)-N fertilizer and urea].
Wang, Zheng-Rui; Qu, Gui-Qin; Rui, Yu-Kui; Shen, Jian-Bo; Zhang, Fu-Suo
2009-03-01
Fertilizer contains not only one compound or one element, so it is important to determine the contents of other elements necessitous and beneficial to plant. All the other nutrient elements for plant, including necessitous elements and beneficial elements in ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2, were analyzed by method of ICP-MS. The results showed that ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2 both contain many necessitous elements, Mg, P, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo, thereinto the contents of Mg, P, K, Ca, Mn and Fe were on microg x g(-1) the level, and Ni, Cu, Zn and Mo were on the ng x g(-1) level; compared with CO(NH2)2, ammonia nitrogen fertilizer ((NH4)2SO4) contains more necessitous elements and beneficial elements except Mo and Si. All the above elements could influence the results of nitrogen fertilizer efficiency experiments, so pure fertilizer should be used in the future nitrogen fertilizer efficiency experiments and the comparative experiments of different form nitrogen fertilizer.
NASA Astrophysics Data System (ADS)
Opazo, N. E.; Lambert, F.
2017-12-01
Mineral dust aerosols affect climate directly by changing the radiative balance of the Earth, and indirectly by acting as cloud condensation nuclei and by affecting biogeochemical cycles. The impact on marine biogeochemical cycles is primarily through the supply of micronutrients such as iron to nutrient-limited regions of the oceans. Iron fertilization of High Nutrient Low Chlorophyll (HNLC) regions of the oceans is thought to have significantly affected the carbon cycle on glacial-interglacial scales and contributed about one fourth of the 80-100 ppm lowering of glacial atmospheric CO2 concentrations.In this study, we quantify the effect of global dust fluxes on atmospheric CO2 using the cGENIE model, an Earth System Model of Intermediate Complexity with emphasis on the carbon cycle. Global Holocene and Last Glacial Maximum (LGM) dust flux fields were obtained from both dust model simulations and reconstructions based on observational data. The analysis was performed in two stages. In the first instance, we produced 8 global intermediate dust flux fields between Holocene and LGM and simulated the atmospheric CO2 drawdown due to these 10 dust levels. In the second stage, we only changed dust flux levels in specific HNLC regions to isolate the effect of these ocean basins. We thus quantify the contribution of the South Atlantic, the South Pacific, the North Pacific, and the Central Pacific HNLC regions to the total atmospheric CO2 difference due to iron fertilization of the Earth's oceans.
Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment.
Zamanian, Kazem; Zarebanadkouki, Mohsen; Kuzyakov, Yakov
2018-07-01
Nitrogen (N) fertilization is an indispensable agricultural practice worldwide, serving the survival of half of the global population. Nitrogen transformation (e.g., nitrification) in soil as well as plant N uptake releases protons and increases soil acidification. Neutralizing this acidity in carbonate-containing soils (7.49 × 10 9 ha; ca. 54% of the global land surface area) leads to a CO 2 release corresponding to 0.21 kg C per kg of applied N. We here for the first time raise this problem of acidification of carbonate-containing soils and assess the global CO 2 release from pedogenic and geogenic carbonates in the upper 1 m soil depth. Based on a global N-fertilization map and the distribution of soils containing CaCO 3 , we calculated the CO 2 amount released annually from the acidification of such soils to be 7.48 × 10 12 g C/year. This level of continuous CO 2 release will remain constant at least until soils are fertilized by N. Moreover, we estimated that about 273 × 10 12 g CO 2 -C are released annually in the same process of CaCO 3 neutralization but involving liming of acid soils. These two CO 2 sources correspond to 3% of global CO 2 emissions by fossil fuel combustion or 30% of CO 2 by land-use changes. Importantly, the duration of CO 2 release after land-use changes usually lasts only 1-3 decades before a new C equilibrium is reached in soil. In contrast, the CO 2 released by CaCO 3 acidification cannot reach equilibrium, as long as N fertilizer is applied until it becomes completely neutralized. As the CaCO 3 amounts in soils, if present, are nearly unlimited, their complete dissolution and CO 2 release will take centuries or even millennia. This emphasizes the necessity of preventing soil acidification in N-fertilized soils as an effective strategy to inhibit millennia of CO 2 efflux to the atmosphere. Hence, N fertilization should be strictly calculated based on plant-demand, and overfertilization should be avoided not only because N is a source of local and regional eutrophication, but also because of the continuous CO 2 release by global acidification. © 2018 John Wiley & Sons Ltd.
Zhang, Kai; Zheng, Hua; Chen, Falin; Li, Ruida; Yang, Miao; Ouyang, Zhiyun; Lan, Jun; Xiang, Xuewu
2017-01-01
Nitrogen (N) fertilization is necessary to sustain productivity in eucalypt plantations, but it can increase the risk of greenhouse gas emissions. However, the response of soil greenhouse gas emissions to N fertilization might be influenced by soil characteristics, which is of great significance for accurately assessing greenhouse gas budgets and scientific fertilization in plantations. We conducted a two-year N fertilization experiment (control [CK], low N [LN], middle N [MN] and high N [HN] fertilization) in two eucalypt plantations with different soil characteristics (higher and lower soil organic carbon sites [HSOC and LSOC]) in Guangxi, China, and assessed soil-atmosphere greenhouse gas exchanges. The annual mean fluxes of soil CO2, CH4, and N2O were separately 153-266 mg m-2 h-1, -55 --40 μg m-2 h-1, and 11-95 μg m-2 h-1, with CO2 and N2O emissions showing significant seasonal variations. N fertilization significantly increased soil CO2 and N2O emissions and decreased CH4 uptake at both sites. There were significant interactions of N fertilization and SOC level on soil CO2 and N2O emissions. At the LSOC site, the annual mean flux of soil CO2 emission was only significantly higher than the CK treatment in the HN treatment, but, at the HSOC site, the annual mean flux of soil CO2 emission was significantly higher for both the LN (or MN) and HN treatments in comparison to the CK treatment. Under the CK and LN treatments, the annual mean flux of N2O emission was not significantly different between HSOC and LSOC sites, but under the HN treatment, it was significantly higher in the HSOC site than in the LSOC site. Correlation analysis showed that changes in soil CO2 and N2O emissions were significantly related to soil dissolved organic carbon, ammonia, nitrate and pH. Our results suggested significant interactions of N fertilization and soil characteristics existed in soil-atmosphere greenhouse gas exchanges, which should be considered in assessing greenhouse gas budgets and scientific fertilization strategies in eucalypt plantations.
NASA Astrophysics Data System (ADS)
Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.
2014-11-01
To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha-1 yr-1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.
NASA Astrophysics Data System (ADS)
Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.
2014-06-01
To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05-5.00 Mg CO2-eq ha-1 yr-1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.
Blumenthal, Dana M; Resco, Víctor; Morgan, Jack A; Williams, David G; Lecain, Daniel R; Hardy, Erik M; Pendall, Elise; Bladyka, Emma
2013-12-01
As global changes reorganize plant communities, invasive plants may benefit. We hypothesized that elevated CO2 and warming would strongly influence invasive species success in a semi-arid grassland, as a result of both direct and water-mediated indirect effects. To test this hypothesis, we transplanted the invasive forb Linaria dalmatica into mixed-grass prairie treated with free-air CO2 enrichment and infrared warming, and followed survival, growth, and reproduction over 4 yr. We also measured leaf gas exchange and carbon isotopic composition in L. dalmatica and the dominant native C3 grass Pascopyrum smithii. CO2 enrichment increased L. dalmatica biomass 13-fold, seed production 32-fold, and clonal expansion seven-fold, while warming had little effect on L. dalmatica biomass or reproduction. Elevated CO2 decreased stomatal conductance in P. smithii, contributing to higher soil water, but not in L. dalmatica. Elevated CO2 also strongly increased L. dalmatica photosynthesis (87% versus 23% in P. smithii), as a result of both enhanced carbon supply and increased soil water. More broadly, rapid growth and less conservative water use may allow invasive species to take advantage of both carbon fertilization and water savings under elevated CO2 . Water-limited ecosystems may therefore be particularly vulnerable to invasion as CO2 increases. No claim to original US goverment works. New Phytologist © 2013 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Yang, J.; Luedtke, C.; Akers, K.; McGuire, M.; Aubrey, D. P.; Teskey, R. O.
2014-12-01
Soil CO2 efflux (RS) is an important component of forest ecosystem carbon budgets and net ecosystem CO2 exchange, but little is known about how RS and its components respond to decreasing soil moisture and changes in soil fertility. The experiment design was a 2 X 2 factorial combination of fertilization (2 levels) and precipitation (throughfall exclusion, 2 levels) replicated in four blocks. We measured RS along with soil temperature (Ts) and soil moisture (WS) from 2012 to 2014 in a loblolly pine plantation in Washington, GA. The autotrophic (RA) and heterotrophic (RH) components of soil CO2 efflux were separated using trenched plots. Our objectives were to (1) quantify impacts of throughfall exclusion and fertilization on RS and its components (RA, RH).and (2) determine soil CO2efflux and its components individually response to environmental factors and biological factors in throughfall exclusion and fertilization treatments. Annual mean RS was 2.11, 1.73, 2.09 and 1.92 for treatments of control, fertilization, throughfall exclusion and combination of fertilization and throughfall exclusion, respectively, from 2012 to 2013. The apparent Q10 for RS was 2.26, 2.25, 2.12 and 2.35 in the four treatments, respectively. There were no significant differences in RS among treatments except between the Ws treatments. However, there was slight reduction in RS and RA in fertilization and the fertilization plus throughfall exclusion treatment. In all treaments, Ts explained more than 80% of variation in RS. The contribution of CO2-derived from ectomycorrhizal hyphae was less than 15%. RS and RH was better predicted by TS in the dormant season than the growing season, indicating that additional factors such as root growth and photosynthesis became more important contributors to RS during the growing season. Fertilization slightly decreased RS mainly from a decrease in RH. Throughfall exclusion increased the contribution of RA to RS. We concluded that soil moisture had more effect on RS and its components than changes in fertility.
Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2.
Wenzel, Sabrina; Cox, Peter M; Eyring, Veronika; Friedlingstein, Pierre
2016-10-27
Uncertainties in the response of vegetation to rising atmospheric CO 2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO 2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO 2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO 2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO 2 fertilization using observed changes in the amplitude of the atmospheric CO 2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO 2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO 2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO 2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO 2 seasonal cycle and the magnitude of CO 2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO 2 amplitude, these relationships lead to consistent emergent constraints on the CO 2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO 2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.
NASA Astrophysics Data System (ADS)
Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.
2015-12-01
To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.
Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng
2018-04-01
Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy soil fertility.
Fatichi, Simone; Leuzinger, Sebastian; Paschalis, Athanasios; Langley, J Adam; Donnellan Barraclough, Alicia; Hovenden, Mark J
2016-10-24
Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation and evapotranspiration (ET), ultimately driving changes in plant growth, hydrology, and the global carbon balance. Direct leaf biochemical effects have been widely investigated, whereas indirect effects, although documented, elude explicit quantification in experiments. Here, we used a mechanistic model to investigate the relative contributions of direct (through carbon assimilation) and indirect (via soil moisture savings due to stomatal closure, and changes in leaf area index) effects of elevated CO 2 across a variety of ecosystems. We specifically determined which ecosystems and climatic conditions maximize the indirect effects of elevated CO 2 The simulations suggest that the indirect effects of elevated CO 2 on net primary productivity are large and variable, ranging from less than 10% to more than 100% of the size of direct effects. For ET, indirect effects were, on average, 65% of the size of direct effects. Indirect effects tended to be considerably larger in water-limited ecosystems. As a consequence, the total CO 2 effect had a significant, inverse relationship with the wetness index and was directly related to vapor pressure deficit. These results have major implications for our understanding of the CO 2 response of ecosystems and for global projections of CO 2 fertilization, because, although direct effects are typically understood and easily reproducible in models, simulations of indirect effects are far more challenging and difficult to constrain. Our findings also provide an explanation for the discrepancies between experiments in the total CO 2 effect on net primary productivity.
Extreme weather conditions reduce the CO2 fertilization effect in temperate C3 grasslands
NASA Astrophysics Data System (ADS)
Obermeier, Wolfgang; Lehnert, Lukas; Kammann, Claudia; Müller, Christoph; Grünhage, Ludger; Luterbacher, Jürg; Erbs, Martin; Yuan, Naiming; Bendix, Jörg
2016-04-01
The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of global climate change. The rising atmospheric carbon dioxide (CO2) concentrations may stimulate plant photosynthesis and, thus, cause a net sink effect in the global carbon cycle. As a consequence of an enhanced photosynthesis, an increase in the net primary productivity (NPP) of C3 plants (termed CO2 fertilization) is widely assumed. This process is associated with a reduced stomatal conductance of leaves as the carbon demand of photosynthesis is met earlier. This causes a higher water-use efficiency and, hence, may reduce water stress in plants exposed to elevated CO2 concentrations ([eCO2]). However, the magnitude and persistence of the CO2 fertilization effect under a future climate including more frequent weather extremes are controversial. To test the CO2 fertilization effect for Central European grasslands, a data set comprising 16 years of biomass samples and environmental variables such as local weather and soil conditions was analysed by means of a novel approach. The data set was recorded on a "Free Air Carbon dioxide Enrichment" (FACE) experimental site which allows to quantify the CO2 fertilization effect under naturally occurring climate variations. The results indicate that the CO2 fertilization effect on the aboveground biomass is strongest under local average environmental conditions. Such intermediate regimes were defined by the mean +/- 1 standard deviation of the long-term average in the respective variable three months before harvest. The observed CO2 fertilization effect was reduced or vanished under drier, wetter and hotter conditions when the respective variable exceeded the bounds of the intermediate regimes. Comparable conditions, characterized by a higher frequency of more extreme weather conditions, are predicted for the future by climate projections. Consequently, biogeochemical models may overestimate the future NPP sink capacity of temperate C3 grasslands. Because temperate grasslands represent an important part of the Earth's terrestrial surface and therefore the global carbon cycle, atmospheric CO2 concentrations [CO2] might increase faster than currently expected.
NASA Astrophysics Data System (ADS)
Bögner, D.; Bickmeyer, U.; Köhler, A.
2013-05-01
Sea urchins as broadcasting spawners, release their gametes into open water for fertilization, thus being particularly vulnerable to ocean acidification. In this study, we assessed the effects of different pH scenarios on fertilization success of Strongylocentrotus droebachiensis, collected at Spitsbergen, Arctic. We achieved acidification by bubbling CO2 into filtered seawater using partial pressures (pCO2) of 180, 380, 980, 1400 and 3000 μatm}. Untreated filtered seawater was used as control. We recorded fertilization rates and diagnosed morphological aberrations after post-fertilization periods of 1 h and 3 h under different exposure conditions in experiments with and without pre-incubation of the eggs prior to fertilization. In parallel, we conducted measurements of intracellular pH changes using BCECF/AM in unfertilized eggs exposed to a range of acidified seawater. We observed increasing rates of polyspermy in relation to higher seawater pCO2, which might be due to failures in the formation of the fertilization envelope. In addition, our experiments showed anomalies in fertilized eggs: incomplete lifting-off of the fertilization envelope and blebs of the hyaline layer. Other drastic malformations consisted of constriction, extrusion, vacuolization or degeneration (observed as a gradient from the cortex to the central region of the cell) of the egg cytoplasm, and irregular cell divisions until 2- to 4-cell stages. The intracellular pH (pHi) decreased significantly from 1400 μatm on. All results indicate a decreasing fertilization success at CO2 concentrations from 1400 μatm upwards. Exposure time to low pH might be a threatening factor for the cellular buffer capacity, viability, and development after fertilization.
Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R
2015-02-20
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.
Michael Tyree; John Seiler; Thomas R. Fox
2006-01-01
Fertilization is becoming a common, cost effective treatment within managed forests of the Southeastern United States. However, there is little known about how fertilization will affect the belowground processes that drive soil CO2
Zhang, Kai; Zheng, Hua; Chen, Falin; Li, Ruida; Yang, Miao; Ouyang, Zhiyun; Lan, Jun; Xiang, Xuewu
2017-01-01
Nitrogen (N) fertilization is necessary to sustain productivity in eucalypt plantations, but it can increase the risk of greenhouse gas emissions. However, the response of soil greenhouse gas emissions to N fertilization might be influenced by soil characteristics, which is of great significance for accurately assessing greenhouse gas budgets and scientific fertilization in plantations. We conducted a two-year N fertilization experiment (control [CK], low N [LN], middle N [MN] and high N [HN] fertilization) in two eucalypt plantations with different soil characteristics (higher and lower soil organic carbon sites [HSOC and LSOC]) in Guangxi, China, and assessed soil–atmosphere greenhouse gas exchanges. The annual mean fluxes of soil CO2, CH4, and N2O were separately 153–266 mg m-2 h-1, -55 –-40 μg m-2 h-1, and 11–95 μg m-2 h-1, with CO2 and N2O emissions showing significant seasonal variations. N fertilization significantly increased soil CO2 and N2O emissions and decreased CH4 uptake at both sites. There were significant interactions of N fertilization and SOC level on soil CO2 and N2O emissions. At the LSOC site, the annual mean flux of soil CO2 emission was only significantly higher than the CK treatment in the HN treatment, but, at the HSOC site, the annual mean flux of soil CO2 emission was significantly higher for both the LN (or MN) and HN treatments in comparison to the CK treatment. Under the CK and LN treatments, the annual mean flux of N2O emission was not significantly different between HSOC and LSOC sites, but under the HN treatment, it was significantly higher in the HSOC site than in the LSOC site. Correlation analysis showed that changes in soil CO2 and N2O emissions were significantly related to soil dissolved organic carbon, ammonia, nitrate and pH. Our results suggested significant interactions of N fertilization and soil characteristics existed in soil–atmosphere greenhouse gas exchanges, which should be considered in assessing greenhouse gas budgets and scientific fertilization strategies in eucalypt plantations. PMID:28192496
Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat
NASA Astrophysics Data System (ADS)
J. Bloom, Arnold; Burger, Martin; A. Kimball, Bruce; J. Pinter, Paul, Jr.
2014-06-01
Total protein and nitrogen concentrations in plants generally decline under elevated CO2 atmospheres. Explanations for this decline include that plants under elevated CO2 grow larger, diluting the protein within their tissues; that carbohydrates accumulate within leaves, downregulating the amount of the most prevalent protein Rubisco; that carbon enrichment of the rhizosphere leads to progressively greater limitations of the nitrogen available to plants; and that elevated CO2 directly inhibits plant nitrogen metabolism, especially the assimilation of nitrate into proteins in leaves of C3 plants. Recently, several meta-analyses have indicated that CO2 inhibition of nitrate assimilation is the explanation most consistent with observations. Here, we present the first direct field test of this explanation. We analysed wheat (Triticum aestivum L.) grown under elevated and ambient CO2 concentrations in the free-air CO2 enrichment experiment at Maricopa, Arizona. In leaf tissue, the ratio of nitrate to total nitrogen concentration and the stable isotope ratios of organic nitrogen and free nitrate showed that nitrate assimilation was slower under elevated than ambient CO2. These findings imply that food quality will suffer under the CO2 levels anticipated during this century unless more sophisticated approaches to nitrogen fertilization are employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, T.M.
1995-09-01
In general, C3 annual plants respond positively in terms of growth, reproduction and biomass accrued when grown under elevated levels of atmospheric carbon dioxide. However, most studies documenting this response have been conducted in growth chambers where plants can be reared under conditions free form environmental stressors such as nutrient and water constraints, UV exposure and damage from pests. During the 1993 fieldseason, I grew 200 individuals of Solanum ptycanthum in an array of 10 outdoor, open-topped CO2 enclosures (5 @ 700 ppm CO2) at the University of Michigan Biological Station in Pellston, MI. Half of the plants were grownmore » in a 50;50 mix of native C-horizon soil and topsoil (low fertility); the other half were grown in 100% topsoil (high-fertility). Plants were censused throughout the growing season for flower and fruit production, growth rate and degree of infestation of aphids. Fertility and CO2 both significantly affected production of flowers and fruits, but only fertility was significantly related to vegetative growth. Aphid infestation varied significantly among enclosures, but was not related to CO2 or fertility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osbrink, W.L.A.; Trumble, J.T.; Wagner, R.E.
1987-06-01
Elevated atmospheric carbon dioxide (CO/sub 2/) levels of 1000 parts per million (ppm) significantly increased consumption of foliage by Trichoplusia ni (Huebner) and significantly enhanced growth of Phaseolus lunata L. when compared with ambient levels of 340 ppm. Mean pupal weight was less under treatments with elevated atmospheric CO/sub 2/ under a high fertilization regime, but larval survival and percent nitrogen content of pupae were not affected by level of CO/sub 2/ treatments at high, medium, or low fertilizer rates. Regardless of CO/sub 2/ concentration, larval survival and pupal weight were reduced in absence of fertilizer. Nitrogen and protein consumptionmore » increased with fertilization rate. Because percent leaf area of plants consumed by T. ni larvae was not affected by CO/sub 2/ concentration, this study suggests that increased plant growth resulting from elevated atmospheric CO/sub 2/ may benefit the plant proportionately more than the insect.« less
Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng
2014-11-01
A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.
Taylor, Benton N; Strand, Allan E; Cooper, Emily R; Beidler, Katilyn V; Schönholz, Marcos; Pritchard, Seth G
2014-09-01
Root systems serve important roles in carbon (C) storage and resource acquisition required for the increased photosynthesis expected in CO2-enriched atmospheres. For these reasons, understanding the changes in size, distribution and tissue chemistry of roots is central to predicting the ability of forests to capture anthropogenic CO2. We sampled 8000 cm(3) soil monoliths in a pine forest exposed to 14 years of free-air-CO2-enrichment and 6 years of nitrogen (N) fertilization to determine changes in root length, biomass, tissue C : N and mycorrhizal colonization. CO2 fumigation led to greater root length (98%) in unfertilized plots, but root biomass increases under elevated CO2 were only found for roots <1 mm in diameter in unfertilized plots (59%). Neither fine root [C] nor [N] was significantly affected by increased CO2. There was significantly less root biomass in N-fertilized plots (19%), but fine root [N] and [C] both increased under N fertilization (29 and 2%, respectively). Mycorrhizal root tip biomass responded positively to CO2 fumigation in unfertilized plots, but was unaffected by CO2 under N fertilization. Changes in fine root [N] and [C] call for further study of the effects of N fertilization on fine root function. Here, we show that the stimulation of pine roots by elevated CO2 persisted after 14 years of fumigation, and that trees did not rely exclusively on increased mycorrhizal associations to acquire greater amounts of required N in CO2-enriched plots. Stimulation of root systems by CO2 enrichment was seen primarily for fine root length rather than biomass. This observation indicates that studies measuring only biomass might overlook shifts in root systems that better reflect treatment effects on the potential for soil resource uptake. These results suggest an increase in fine root exploration as a primary means for acquiring additional soil resources under elevated CO2. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Modeling some long-term implications of CO2 fertilization for global forests and forest industries
Joseph Buongiorno
2015-01-01
Background: This paper explored the long-term, ceteris-paribus effects of potential CO2 fertilization on the globalforest sector. Based on the findings of Norby et al. (PNAS 2005, 102(50)) about forest response to elevated [CO2].Methods:...
Paudel, Jamuna Risal; Amirizian, Alexandre; Krosse, Sebastian; Giddings, Jessica; Ismail, Shoieb Akaram Arief; Xia, Jianguo; Gloer, James B; van Dam, Nicole M; Bede, Jacqueline C
2016-03-22
Increased atmospheric carbon dioxide (CO2) levels predicted to occur before the end of the century will impact plant metabolism. In addition, nitrate availability will affect metabolism and levels of nitrogen-containing defense compounds, such as glucosinolates (GSLs). We compared Arabidopsis foliar metabolic profile in plants grown under two CO2 regimes (440 vs 880 ppm), nitrate fertilization (1 mM vs 10 mM) and in response to mechanical damage of rosette leaves. Constitutive foliar metabolites in nitrate-limited plants show distinct global patterns depending on atmospheric CO2 levels; in contrast, plants grown under higher nitrate fertilization under elevated atmospheric CO2 conditions have a unique metabolite signature. Nitrate fertilization dampens the jasmonate burst in response to wounding in plants grown at elevated CO2 levels. Leaf GSL profile mirrors the jasmonate burst; in particular, indole GSLs increase in response to damage in plants grown at ambient CO2 but only in nitrate-limited plants grown under elevated CO2 conditions. This may reflect a reduced capacity of C3 plants grown under enriched CO2 and nitrate levels to signal changes in oxidative stress and has implications for future agricultural management practices.
NASA Astrophysics Data System (ADS)
Moorcroft, P. R.; Zhang, K.; Castanho, A. D. D. A.; Galbraith, D.; Moghim, S.; Levine, N. M.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Longo, M.; Knox, R. G.; McKnight, S. L.; Wang, J.
2014-12-01
There is considerable interest and uncertainty regarding the expected fate of the Amazon over the coming century in face of the combined impacts of climate change, rising atmospheric CO2 levels, and on-going land transformation in the region. In this analysis, we explore the fate of Amazonian ecosystems under projected climate, CO2 and land-use change in the 21st century using three state-of-the-art terrestrial biosphere models (ED2, IBIS, and JULES) driven by three representative, bias-corrected GCM climate projections (PCM1, CCSM3, and HadCM3) under the SRES A2 scenario, coupled with two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change depend strongly on the direction and severity of projected changes in precipitation regimes within the region: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%; however, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and as a result sustain high biomass forests, even under the driest climate scenario. Land-use change and changes in fire frequency are predicted cause additional aboveground live biomass loss and changes in forest extent. The relative impact of land-use and fire dynamics versus the impacts of climate and CO2 on the Amazon varies considerably, depending on both the climate and land-use scenarios used and on the terrestrial biosphere model, highlighting the importance of improved understanding of all four factors -- future climate, CO2 fertilization effects, fire and land-use -- to the fate of the Amazon over the coming century.
Method of euthanasia influences the oocyte fertilization rate with fresh mouse sperm.
Hazzard, Karen C; Watkins-Chow, Dawn E; Garrett, Lisa J
2014-11-01
In vitro fertilization (IVF) is used to produce mouse embryos for a variety of reasons. We evaluated the effect of the method of euthanasia on the fertilization rate in 2 different IVF protocols. Oocytes collected from C57BL/6J female mice euthanized by CO2 inhalation or cervical dislocation were used in IVF with fresh sperm from either wild-type or genetically engineered C57BL/6J. Compared with CO2 inhalation, cervical dislocation improved the resulting rate of fertilization by 18% in an IVF method using Cook media and by 13% in an IVF method using methyl-B cyclodextrin and reduced glutathione. The lower fertilization rate due to euthanasia by CO2 inhalation was accompanied by changes in blood pH and body temperature despite efforts to minimize temperature drops. In our hands, euthanasia by cervical dislocation improved fertilization rates and consequently reduced the number of egg-donor mice required.
NASA Astrophysics Data System (ADS)
Lapola, David M.; Oyama, Marcos D.; Nobre, Carlos A.
2009-09-01
Tropical South America vegetation cover projections for the end of the century differ considerably depending on climate scenario and also on how physiological processes are considered in vegetation models. In this paper we use a potential vegetation model (CPTEC-PVM2) to analyze biome distribution in tropical South America under a range of climate projections and a range of estimates about the effects of increased atmospheric CO2. We show that if the CO2 "fertilization effect" indeed takes place and is maintained in the long term in tropical forests, then it will avoid biome shifts in Amazonia in most of the climate scenarios, even if the effect of CO2 fertilization is halved. However, if CO2 fertilization does not play any important role on tropical forests in the future or if dry season is longer than 4 months (projected by 2/14 GCMs), then there is replacement of large portions of Amazonia by tropical savanna.
Quantifying Direct and Indirect Effects of Elevated CO2 on Ecosystem Response
NASA Astrophysics Data System (ADS)
Fatichi, S.; Leuzinger, S.; Paschalis, A.; Donnellan-Barraclough, A.; Hovenden, M. J.; Langley, J. A.
2015-12-01
Increasing concentrations of atmospheric carbon dioxide are expected to affect carbon assimilation, evapotranspiration (ET) and ultimately plant growth. Direct leaf biochemical effects have been widely investigated, while indirect effects, although documented, are very difficult to quantify in experiments. We hypothesize that the interaction of direct and indirect effects is a possible reason for conflicting results concerning the magnitude of CO2 fertilization effects across different climates and ecosystems. A mechanistic ecohydrological model (Tethys-Chloris) is used to investigate the relative contribution of direct (through plant physiology) and indirect (via stomatal closure and thus soil moisture, and changes in Leaf Area Index, LAI) effects of elevated CO2 across a number of ecosystems. We specifically ask in which ecosystems and climate indirect effects are expected to be largest. Data and boundary conditions from flux-towers and free air CO2 enrichment (FACE) experiments are used to force the model and evaluate its performance. Numerical results suggest that indirect effects of elevated CO2, through water savings and increased LAI, are very significant and sometimes larger than direct effects. Indirect effects tend to be considerably larger in water-limited ecosystems, while direct effects correlate positively with mean air temperature. Increasing CO2 from 375 to 550 ppm causes a total effect on Net Primary Production in the order of 15 to 40% and on ET from 0 to -8%, depending on climate and ecosystem type. The total CO2 effect has a significant negative correlation with the wetness index and positive correlation with vapor pressure deficit. These results provide a more general mechanistic understanding of relatively short-term (less than 20 years) implications of elevated CO2 on ecosystem response and suggest plausible magnitudes for the expected changes.
Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J; Ball, J Timothy; Johnson, Dale W
2006-06-01
We conducted a 4-year study of juvenile Pinus ponderosa fine root (< or =2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 mumol/mol, ambient+350 mumol/mol) and three N-fertilization levels (0, 10, 20 g m(-2) year(-1)). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.5 years old. Neither CO2 nor N-fertilization treatments affected the seasonal patterns of root production or mortality. Yearly values of fine-root length standing crop (m m(-2)), production (m m(-2) year(-1)), and mortality (m m(-2) year(-1)) were consistently higher in elevated CO2 treatments throughout the study, except for mortality in the first year; however, the only statistically significant CO2 effects were in the fine-root length standing crop (m m(-2)) in the second and third years, and production and mortality (m m(-2) year(-1)) in the third year. Higher mortality (m m(-2) year(-1)) in elevated CO2 was due to greater standing crop rather than shorter life span, as fine roots lived longer in elevated CO2. No significant N effects were noted for annual cumulative production, cumulative mortality, or mean standing crop. N availability did not significantly affect responses of fine-root standing crop, production, or mortality to elevated CO2. Multi-year studies at all life stages of trees are important to characterize belowground responses to factors such as atmospheric CO2 and N-fertilization. This study showed the potential for juvenile ponderosa pine to increase fine-root C pools and C fluxes through root mortality in response to elevated CO2.
Projected near-future levels of temperature and pCO2 reduce coral fertilization success.
Albright, Rebecca; Mason, Benjamin
2013-01-01
Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1-6.4°C rise in global average surface temperatures and a 0.14-0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential.
Projected Near-Future Levels of Temperature and pCO2 Reduce Coral Fertilization Success
Albright, Rebecca; Mason, Benjamin
2013-01-01
Increases in atmospheric carbon dioxide (pCO2) are projected to contribute to a 1.1–6.4°C rise in global average surface temperatures and a 0.14–0.35 reduction in the average pH of the global surface ocean by 2100. If realized, these changes are expected to have negative consequences for reef-building corals including increased frequency and severity of coral bleaching and reduced rates of calcification and reef accretion. Much less is known regarding the independent and combined effects of temperature and pCO2 on critical early life history processes such as fertilization. Here we show that increases in temperature (+3°C) and pCO2 (+400 µatm) projected for this century negatively impact fertilization success of a common Indo-Pacific coral species, Acropora tenuis. While maximum fertilization did not differ among treatments, the sperm concentration required to obtain 50% of maximum fertilization increased 6- to 8- fold with the addition of a single factor (temperature or CO2) and nearly 50- fold when both factors interact. Our results indicate that near-future changes in temperature and pCO2 narrow the range of sperm concentrations that are capable of yielding high fertilization success in A. tenuis. Increased sperm limitation, in conjunction with adult population decline, may have severe consequences for coral reproductive success. Impaired sexual reproduction will further challenge corals by inhibiting population recovery and adaptation potential. PMID:23457572
Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO2 Uptake
NASA Astrophysics Data System (ADS)
Kondo, Masayuki; Ichii, Kazuhito; Patra, Prabir K.; Poulter, Benjamin; Calle, Leonardo; Koven, Charles; Pugh, Thomas A. M.; Kato, Etsushi; Harper, Anna; Zaehle, Sönke; Wiltshire, Andy
2018-05-01
The increasing strength of land CO2 uptake in the 2000s has been attributed to a stimulating effect of rising atmospheric CO2 on photosynthesis (CO2 fertilization). Using terrestrial biosphere models, we show that enhanced CO2 uptake is induced not only by CO2 fertilization but also an increasing uptake by plant regrowth (accounting for 0.33 ± 0.10 Pg C/year increase of CO2 uptake in the 2000s compared with the 1960s-1990s) with its effect most pronounced in eastern North America, southern-eastern Europe, and southeastern temperate Eurasia. Our analysis indicates that ecosystems in North America and Europe have established the current productive state through regrowth since the 1960s, and those in temperate Eurasia are still in a stage from regrowth following active afforestation in the 1980s-1990s. As the strength of model representation of CO2 fertilization is still in debate, plant regrowth might have a greater potential to sequester carbon than indicated by this study.
NASA Astrophysics Data System (ADS)
Groenendijk, P.; Zuidema, P.; Sleen, P. V. D.; Vlam, M.; Ehlers, I.; Schleucher, J.
2014-12-01
Tropical forests are a crucial component of the global carbon cycle, and their responses to atmospheric changes may shift carbon cycling and climate systems. Dynamic Global Vegetation Models (DGVMs) are the major tools to simulate tropical forest responses to climate change. One of the main determinants of these simulated responses is the effect of CO2 on tropical tree physiology and growth, the 'CO2 fertilization effect'. The paucity of CO2 enrichment experiments in the tropics importantly limits insights into the CO2 fertilization effect as well as the validation of DGVMs. However, use can be made of the 40% rise in atmospheric CO2 concentration since the onset of the Industrial Revolution. The effects of the historical CO2 rise on tree physiology and growth can be obtained from stable isotopes, isotopomers and tree diameter increments obtained in tree-ring studies. We studied the physiological and growth responses of 12 tree species in Bolivia, Cameroon and Thailand to 150 years of CO2 enrichment. Analyses of 13C of wood cellulose revealed strong, long-term increases in leaf intercellular CO2 concentrations for all study species and a marked improvement of intrinsic water use efficiency (iWUE). For a subset of one species per site, we studied the Deuterium isotopomers (isomers with isotopic atoms) of glucose in wood to obtain a direct estimate of the photorespiration-to-photosynthesis ratio. We found that this ratio consistently and strongly decreased over the past century, thus increasing the effeciency and rate of photosynthesis. In spite of these strong physiological responses to increased CO2levels, we did not find evidence for increased tree diameter growth for any of the sites, or for sites combined. Possible reasons for the lack of a growth stimulation include increased (leaf) temperature, insufficient availability of nutrients or a shift in biomass investment in trees. Our results suggest that the strong CO2 fertilization of tropical tree growth often assumed in DGVMs does not hold and that these models may overestimate future biomass production in tropical forests. Empirical information on responses of tropical trees to historical CO2rise as presented here can be used to validate and possibly adapt (components of) DGVMs and improve the projections of tropical forest structure under climate change.
LAI is the major cause of divergence in CO2 fertilization effect in land surface models
NASA Astrophysics Data System (ADS)
Li, Q.; Luo, Y.; Lu, X.; Wang, Y.; Huang, X.; Lin, G., Sr.
2017-12-01
Concentration-carbon feedback (β), also called CO2 fertilization effect, is an important feedback between terrestrial ecosystems and atmosphere to alleviate global climate change. However, models participating in C4MIP and CMIP5 predicted diverse CO2 fertilization effects under future CO2 inceasing scenarios. Hence identifing the key processes dominating the divergence of β in land surface models is of significance. We calculated CO2 fertilization effects from leaf level, canopy gross productivity level, net ecosystem productivity level and ecosystem carbon stock level in Community Atmosphere Biosphere Land Exchange (CABLE) model. Our results identified LAI is the key factor dominating the divergence of β among C3 plants in CABLE model. Saturation of the ecosystem productivity to increasing CO2 is not only regulated by leaf-level response, but also the response of LAI to increasing CO2. The greatest variation among C3 plants at ecosystem level suggests that other processes such as different allocation patterns and soil carbon dynamics of various vegetation types are also responsible for the divergence. Our results indicate that processes regarding to LAI need to be better calibrated according to experiments and observations in order to better represent the response of ecosystem productivity to increasing CO2.
Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere
Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris Maier; Karina V.R. Schafer; Heather McCarthy; George Hendrey; Steven G. McNulty; Gabriel G. Katul
2001-01-01
Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in...
Method of Euthanasia Influences the Oocyte Fertilization Rate with Fresh Mouse Sperm
Hazzard, Karen C; Watkins-Chow, Dawn E; Garrett, Lisa J
2014-01-01
In vitro fertilization (IVF) is used to produce mouse embryos for a variety of reasons. We evaluated the effect of the method of euthanasia on the fertilization rate in 2 different IVF protocols. Oocytes collected from C57BL/6J female mice euthanized by CO2 inhalation or cervical dislocation were used in IVF with fresh sperm from either wild-type or genetically engineered C57BL/6J. Compared with CO2 inhalation, cervical dislocation improved the resulting rate of fertilization by 18% in an IVF method using Cook media and by 13% in an IVF method using methyl-B cyclodextrin and reduced glutathione. The lower fertilization rate due to euthanasia by CO2 inhalation was accompanied by changes in blood pH and body temperature despite efforts to minimize temperature drops. In our hands, euthanasia by cervical dislocation improved fertilization rates and consequently reduced the number of egg-donor mice required. PMID:25650969
DO ELEVATED CO2 AND N FERTILIZATION ALTER FINE ROOT-MYCORRHIZAE RELATIONSHIPS IN PINUS PONDEROSA?
Despite extensive studies on the response of plants to elevated CO2, climate change and N deposition, little is known about the response of roots and mycorrhizae in spite of their key role in plant water and nutrient acquisition. The effects of elevated CO2 and N fertilization on...
Albright, Rebecca; Mason, Benjamin; Miller, Margaret; Langdon, Chris
2010-01-01
Ocean acidification (OA) refers to the ongoing decline in oceanic pH resulting from the uptake of atmospheric CO2. Mounting experimental evidence suggests that OA will have negative consequences for a variety of marine organisms. Whereas the effect of OA on the calcification of adult reef corals is increasingly well documented, effects on early life history stages are largely unknown. Coral recruitment, which necessitates successful fertilization, larval settlement, and postsettlement growth and survivorship, is critical to the persistence and resilience of coral reefs. To determine whether OA threatens successful sexual recruitment of reef-building corals, we tested fertilization, settlement, and postsettlement growth of Acropora palmata at pCO2 levels that represent average ambient conditions during coral spawning (∼400 μatm) and the range of pCO2 increases that are expected to occur in this century [∼560 μatm (mid-CO2) and ∼800 μatm (high-CO2)]. Fertilization, settlement, and growth were all negatively impacted by increasing pCO2, and impairment of fertilization was exacerbated at lower sperm concentrations. The cumulative impact of OA on fertilization and settlement success is an estimated 52% and 73% reduction in the number of larval settlers on the reef under pCO2 conditions projected for the middle and the end of this century, respectively. Additional declines of 39% (mid-CO2) and 50% (high-CO2) were observed in postsettlement linear extension rates relative to controls. These results suggest that OA has the potential to impact multiple, sequential early life history stages, thereby severely compromising sexual recruitment and the ability of coral reefs to recover from disturbance. PMID:21059900
Albright, Rebecca; Mason, Benjamin; Miller, Margaret; Langdon, Chris
2010-11-23
Ocean acidification (OA) refers to the ongoing decline in oceanic pH resulting from the uptake of atmospheric CO(2). Mounting experimental evidence suggests that OA will have negative consequences for a variety of marine organisms. Whereas the effect of OA on the calcification of adult reef corals is increasingly well documented, effects on early life history stages are largely unknown. Coral recruitment, which necessitates successful fertilization, larval settlement, and postsettlement growth and survivorship, is critical to the persistence and resilience of coral reefs. To determine whether OA threatens successful sexual recruitment of reef-building corals, we tested fertilization, settlement, and postsettlement growth of Acropora palmata at pCO(2) levels that represent average ambient conditions during coral spawning (∼400 μatm) and the range of pCO(2) increases that are expected to occur in this century [∼560 μatm (mid-CO(2)) and ∼800 μatm (high-CO(2))]. Fertilization, settlement, and growth were all negatively impacted by increasing pCO(2), and impairment of fertilization was exacerbated at lower sperm concentrations. The cumulative impact of OA on fertilization and settlement success is an estimated 52% and 73% reduction in the number of larval settlers on the reef under pCO(2) conditions projected for the middle and the end of this century, respectively. Additional declines of 39% (mid-CO(2)) and 50% (high-CO(2)) were observed in postsettlement linear extension rates relative to controls. These results suggest that OA has the potential to impact multiple, sequential early life history stages, thereby severely compromising sexual recruitment and the ability of coral reefs to recover from disturbance.
Fertilizer application timing influences greenhouse gas fluxes over a growing season.
Phillips, Rebecca L; Tanaka, Donald L; Archer, David W; Hanson, Jon D
2009-01-01
Microbial production and consumption of greenhouse gases (GHG) is influenced by temperature and nutrients, especially during the first few weeks after agricultural fertilization. The effect of fertilization on GHG fluxes should occur during and shortly after application, yet data indicating how application timing affects both GHG fluxes and crop yields during a growing season are lacking. We designed a replicated (n = 5) field experiment to test for the short-term effect of fertilizer application timing on fluxes of methane (CH(4)), carbon dioxide (CO(2)), and nitrous oxide (N(2)O) over a growing season in the northern Great Plains. Each 0.30-ha plot was planted to maize (Zea mays L.) and treated similarly with the exception of fertilizer timing: five plots were fertilized with urea in early spring (1 April) and five plots were fertilized with urea in late spring (13 May). We hypothesized time-integrated fluxes over a growing season would be greater for the late-spring treatment, resulting in a greater net GHG flux, as compared to the early-spring treatment. Data collected on 59 dates and integrated over a 5-mo time course indicated CO(2) fluxes were greater (P < 0.0001) and CH(4) fluxes were lower (P < 0.05) for soils fertilized in late spring. Net GHG flux was also significantly affected by treatment, with 0.84 +/- 0.11 kg CO(2) equivalents m(-2) for early spring and 1.04 +/- 0.13 kg CO(2) equivalents m(-2) for late spring. Nitrous oxide fluxes, however, were similar for both treatments. Results indicate fertilizer application timing influences net GHG emissions in dryland cropping systems.
Does elevated CO 2 alter silica uptake in trees?
Fulweiler, Robinson W.; Maguire, Timothy J.; Carey, Joanna C.; ...
2015-01-13
Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO 2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO 2 fertilization, longterm free-air CO 2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO 2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblollymore » pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO 2 enrichment, N enrichment, and N and CO 2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO 2, N fertilization, or combined elevated CO 2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO 2 concentrations. Due largely to increased primary production, elevated CO 2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.« less
Sebastian, Dennis; Rodrigues, Hugh; Kinsey, Charles; Korndörfer, Gaspar; Pereira, Hamilton; Buck, Guilherme; Datnoff, Lawrence; Miranda, Stephen; Provance-Bowley, Mary
2013-01-01
A 5-day method for determining the soluble silicon (Si) concentrations in nonliquid fertilizer products was developed using a sodium carbonate (Na2CO3)-ammonium nitrate (NH4NO3) extractant followed by visible spectroscopy with heteropoly blue analysis at 660 nm. The 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method can be applied to quantify the plant-available Si in solid fertilizer products at levels ranging from 0.2 to 8.4% Si with an LOD of 0.06%, and LOQ of 0.20%. This Si extraction method for fertilizers correlates well with plant uptake of Si (r2 = 0.96 for a range of solid fertilizers) and is applicable to solid Si fertilizer products including blended products and beneficial substances. Fertilizer materials can be processed as received using commercially available laboratory chemicals and materials at ambient laboratory temperatures. The single-laboratory validation of the 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method has been approved by The Association of American Plant Food Control Officials for testing nonliquid Si fertilizer products.
Sewell, Mary A; Millar, Russell B; Yu, Pauline C; Kapsenberg, Lydia; Hofmann, Gretchen E
2014-01-01
Ocean acidification (OA), the reduction of the seawater pH as a result of increasing levels of atmospheric CO2, is an important climate change stressor in the Southern Ocean and Antarctic. We examined the impact of OA on fertilization success in the Antarctic sea urchin Sterechinus neumayeri using pH treatment conditions reflective of the current and near-future "pH seascape" for this species: current (control: pH 8.052, 384.1 μatm of pCO2), a high CO2 treatment approximating the 0.2-0.3 unit decrease in pH predicted for 2100 (high CO2: pH 7.830, 666.0 μatm of pCO2), and an intermediate medium CO2 (pH 7.967, 473.4 μatm of pCO2). Using a fertilization kinetics approach and mixed-effect models, we observed significant variation in the OA response between individual male/female pairs (N = 7) and a significant population-level increase (70-100%) in tb (time for a complete block to polyspermy) at medium and high CO2, a mechanism that potentially explains the higher levels of abnormal development seen in OA conditions. However, two pairs showed higher fertilization success with CO2 treatment and a nonsignificant effect. Future studies should focus on the mechanisms and levels of interindividual variability in OA response, so that we can consider the potential for selection and adaptation of organisms to a future ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sionit, N.
1992-12-31
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO{sub 2}, may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO{sub 2}, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO{sub 2} levels. Native tall grass prairie plots were exposed continuously to ambient and twice-ambient CO{sub 2}. We compared our results to an unfertilized companion experiment on the same research site. Above- and below-ground biomass production and leafmore » area of fertilized plots were greater with elevated than ambient CO{sub 2}. Nitrogen concentration was lower in plants exposed to elevated CO{sub 2}, but total standing crop N was greater at high CO{sub 2} increased root biomass under elevated CO{sub 2} apparently increased N uptake. The biomass production response to elevated CO{sub 2} was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated C{sub 2} was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and below-ground biomass could slow microbial degradation of soil organic matter and surface litter. The reduced tissue N concentration higher acid detergent fiber under elevated CO{sub 2} compared to ambient for forage indicated that ruminant growth and reproduction could be reduced under elevated CO{sub 2}.« less
Effects of ultrashort gamete co-incubation time on porcine in vitro fertilization.
Almiñana, C; Gil, M A; Cuello, C; Parrilla, I; Roca, J; Vazquez, J M; Martinez, E A
2008-07-01
A reduction in co-incubation time has been suggested as an alternative method to reduce polyspermic fertilization. The aim of this study was to evaluate the effect of short periods of gamete co-incubation during pig in vitro fertilization. A total of 2,833 in vitro matured oocytes were inseminated with thawed spermatozoa and coincubated for 0.25, 1, 2, 3, 7, 10 min and 6h. The oocytes from the 0.25-10 min groups were washed three times in modified Tris-buffered medium (mTBM) medium to remove spermatozoa not bound to the zona and transferred to the same medium (containing no spermatozoa) until 6h of co-incubation time were completed. After 6h, presumptive zygotes from each group were cultured in NCSU-23 medium for 12-15 h to assess fertilization parameters. After each period of co-incubation, 45-50 oocytes from each group were stained with Hoechst-33342 and the number of spermatozoa bound to the zona was counted. Although the number of zona bound spermatozoa increased (p<0.05) with the co-incubation time, no increase was observed in penetration rates among groups from 2 min to 6h of co-incubation time (ranging from 53.5+/-2.8 to 61.3+/-2.6%). Similarly, the efficiency of fertilization reached a maximum for the 2 min of co-incubation group with values ranging between 32.3+/-2.4 and 41.9+/-2.5%. The reduction of co-incubation time did not affect the monospermy rate (range: 71.3+/-3.4-80.2+/-3.8%) and the mean number of spermatozoa/oocyte (range: 1.2+/-0.4-1.4+/-0.5). These results show that, under our in vitro conditions, high penetration rate can be obtained with co-incubation times as short as 2 min, although monospermy could not be improved using this strategy.
Closing CO2 Loop in Biogas Production: Recycling Ammonia As Fertilizer.
He, Qingyao; Yu, Ge; Tu, Te; Yan, Shuiping; Zhang, Yanlin; Zhao, Shuaifei
2017-08-01
We propose and demonstrate a novel system for simultaneous ammonia recovery, carbon capture, biogas upgrading, and fertilizer production in biogas production. Biogas slurry pretreatment (adjusting the solution pH, turbidity, and chemical oxygen demand) plays an important role in the system as it significantly affects the performance of ammonia recovery. Vacuum membrane distillation is used to recover ammonia from biogas slurry at various conditions. The ammonia removal efficiency in vacuum membrane distillation is around 75% regardless of the ammonia concentration of the biogas slurry. The recovered ammonia is used for CO 2 absorption to realize simultaneous biogas upgrading and fertilizer generation. CO 2 absorption performance of the recovered ammonia (absorption capacity and rate) is compared with a conventional model absorbent. Theoretical results on biogas upgrading are also provided. After ammonia recovery, the treated biogas slurry has significantly reduced phytotoxicity, improving the applicability for agricultural irrigation. The novel concept demonstrated in this study shows great potential in closing the CO 2 loop in biogas production by recycling ammonia as an absorbent for CO 2 absorption associated with producing fertilizers.
Amplification of heat extremes by plant CO2 physiological forcing.
Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S
2018-03-15
Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.
Tillage, Mulch and N Fertilizer Affect Emissions of CO2 under the Rain Fed Condition
Tanveer, Sikander Khan; Wen, Xiaoxia; Lu, Xing Li; Zhang, Junli; Liao, Yuncheng
2013-01-01
A two year (2010–2012) study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage), T2: (zero-tillage), T3: (rotary tillage) and T4: (mold board plow tillage), 2 mulch levels i.e., M0 (no corn residue mulch) and M1 (application of corn residue mulch) and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha). A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010–11 relative to the year 2011–12. During cropping year 2010–11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011–12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options. PMID:24086256
Drivers of multi-century trends in the atmospheric CO2 mean annual cycle in a prognostic ESM
NASA Astrophysics Data System (ADS)
Liptak, Jessica; Keppel-Aleks, Gretchen; Lindsay, Keith
2017-03-01
The amplitude of the mean annual cycle of atmospheric CO2 is a diagnostic of seasonal surface-atmosphere carbon exchange. Atmospheric observations show that this quantity has increased over most of the Northern Hemisphere (NH) extratropics during the last 3 decades, likely from a combination of enhanced atmospheric CO2, climate change, and anthropogenic land use change. Accurate climate prediction requires accounting for long-term interactions between the environment and carbon cycling; thus, analysis of the evolution of the mean annual cycle in a fully prognostic Earth system model may provide insight into the multi-decadal influence of environmental change on the carbon cycle. We analyzed the evolution of the mean annual cycle in atmospheric CO2 simulated by the Community Earth System Model (CESM) from 1950 to 2300 under three scenarios designed to separate the effects of climate change, atmospheric CO2 fertilization, and land use change. The NH CO2 seasonal amplitude increase in the CESM mainly reflected enhanced primary productivity during the growing season due to climate change and the combined effects of CO2 fertilization and nitrogen deposition over the mid- and high latitudes. However, the simulations revealed shifts in key climate drivers of the atmospheric CO2 seasonality that were not apparent before 2100. CO2 fertilization and nitrogen deposition in boreal and temperate ecosystems were the largest contributors to mean annual cycle amplification over the midlatitudes for the duration of the simulation (1950-2300). Climate change from boreal ecosystems was the main driver of Arctic CO2 annual cycle amplification between 1950 and 2100, but CO2 fertilization had a stronger effect on the Arctic CO2 annual cycle amplitude during 2100-2300. Prior to 2100, the NH CO2 annual cycle amplitude increased in conjunction with an increase in the NH land carbon sink. However, these trends decoupled after 2100, underscoring that an increasing atmospheric CO2 annual cycle amplitude does not necessarily imply a strengthened terrestrial carbon sink.
Chris A. Maier; Sari Palmroth; Eric Ward
2008-01-01
We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in ~20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO2]) for 9 years. Duke Forest free-air CO2 enrichment (FACE) plots were split and half of...
Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina
2017-01-01
The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content.
Bautista, Gabriela; Mátyás, Bence; Carpio, Isabel; Vilches, Richard; Pazmino, Karina
2017-01-01
The number of studies investigating the effect of bio-fertilizers is increasing because of their importance in sustainable agriculture and environmental quality. In our experiments, we measured the effect of different fertilizers on soil respiration. In the present study, we were looking for the cause of unexpected changes in CO2 values while examining Chernozem soil samples. We concluded that CO2 oxidizing microbes or methanotrophs may be present in the soil that periodically consume CO2 . This is unusual for a sample taken from the upper layer of well-ventilated Chernozem soil with optimal moisture content. PMID:29333243
NASA Astrophysics Data System (ADS)
Lo Monaco, C.; Metzl, N.; D'Ovidio, F.; Llort, J.; Ridame, C.
2014-12-01
Iron and light are the main factors limiting the biological pump of CO2 in the Southern Ocean. Iron fertilization experiments have demonstrated the potential for increased uptake of atmospheric CO2, but little is known about the evolution of fertilized environnements. This paper presents observations collected in one of the largest phytoplankton bloom of the Southern Ocean sustained by iron originating from the Kerguelen Plateau. We first complement previous studies by investigating the mechanisms that control air-sea CO2 fluxes over and downstream of the Kerguelen Plateau at the onset of the bloom based on measurements obtained in October-November 2011. These new observations show the rapid establishment of a strong CO2 sink in waters fertilized with iron as soon as vertical mixing is reduced. The magnitude of the CO2 sink was closely related to chlorophyll a and iron concentrations. Because iron concentration strongly depends on the distance from the iron source and the mode of delivery, we identified lateral advection as the main mechanism controlling air-sea CO2 fluxes downtream the Kerguelen Plateau during the growing season. In the southern part of the bloom, situated over the Plateau (iron source), the CO2 sink was stronger and spatially more homogeneous than in the plume offshore. However, we also witnessed a substantial reduction in the uptake of atmospheric CO2 over the Plateau following a strong winds event. Next, we used all the data available in this region in order to draw the seasonal evolution of air-sea CO2 fluxes. The CO2 sink is rapidly reduced during the course of the growing season, which we attribute to iron and silicic acid depletion. South of the Polar Front, where nutrients depletion is delayed, we suggest that the amplitude and duration of the CO2 sink is mainly controlled by vertical mixing. The impact of iron fertilization on air-sea CO2 fluxes is revealed by comparing the uptake of CO2 integrated over the productive season in the bloom, between 1 and 1.5 mol C m-2 yr-1, and in the iron-poor HNLC waters, where we found a typical value of 0.4 mol C m-2 yr-1. Extrapolating our results to the ice-free Southern Ocean (~50-60° S) suggests that iron fertilization of the whole area would increase the contemporay oceanic uptake of CO2 by less than 0.1 Pg C yr-1, i.e., less than 1% of the current anthropogenic CO2 emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...
2016-07-25
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
NASA Astrophysics Data System (ADS)
Andres, M.; Hagemann, U.; Pohl, M.; Sommer, M.; Augustin, J.
2012-04-01
Erosion effects and the influence of organic fertiliser (fermentation residues, FR) on the climate impact and greenhouse gas (GHG) emissions of N2O, CH4 and CO2 were investigated at an experimental field side in the lowlands of north-east Germany during the years 2010 and 2011. This intensively used agricultural landscape is glacially shaped and characterized by well-drained sandy and loamy soils. Erosion effects on GHG exchange were investigated for energy maize at the CarboZALF-D project site near Dedelow, Uckermark. In addition to a non-eroded haplic luvisol (reference), emissions were measured for three eroded soil types: a) eroded haplic luvisol, b) haplic regosol (calcaric) and c) endogleyic colluvic regosol (deposition side). In a second field trial, the impact of organic fertilization on GHG emissions was assessed for a range of FR fertilization (0-200% N) and compared to a non-fertilized and a minerally fertilized control. Only 70% of the N content of the FR was assumed to be available for plants. Discontinuous measurements of N2O and CH4 were carried out bi-weekly using the closed-chamber method and 20-minute interval sampling. Gas samples were analysed using a gas chromatograph. Gas fluxes were calculated using linear regression, interpolated and finally cumulated. CO2 flux measurements of ecosystem respiration (Reco) and net ecosystem exchange (NEE) were conducted every four weeks by using a non-flow-through non-steady-state closed chamber system (Livingston and Hutchinson 1995) based on Drösler (2005). Measurement gaps of NEE were filled by modeling the Reco fluxes using the Lloyd-Taylor (Lloyd and Taylor 1994) method and the gross primary production (GPP) fluxes using Michaelis-Menten (Michaelis and Menten 1913) modeling approach. Annual NEE balances were then calculated based on the modeled Reco and GPP fluxes. All investigated soil types were C sinks, storing up to 9,6 t CO2eq ha-1 yr-1. As expected for this well-drained soils, the climate impact of CH4 emissions was negligible on all plots with mineral and organic fertilization (-0,05 t CO2eq ha-1 yr-1 up to 0,01 t CO2eq ha-1 yr-1). On minerally fertilized plots, contribution of N2O emissions were very different and varied between 10% and 43% to the overall climate impact (-9,6 t CO2eq ha-1 yr-1 to -2,3 t CO2eq ha-1 yr-1). The highest amount was investigated on the deposition plot. For organic fertilization, N2O emissions increased moderate from 0,02 t CO2eq ha-1 yr-1 (non-fertilized control) with increasing amount of fertilizer to 1,5 t CO2eq ha-1 yr-1. In contrast to N fertilizer application, the contribution of N2O and CH4 to the overall climate impact of eroded agriculturally soils in the glacially shaped landscape is very heterogeneous. Drösler, M. 2005. Trace Gas Exchange and climatic relevance of bog ecosystems, Southern Germany, phD-thesis, TU München, München Livingston, G.P. & Hutchinson, G.L. 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of error. p. 14-51. In P.A. Matson & Harriss, R.C. (ed.) Methods in ecology - Biogenic trace gases: Measuring emissions from soil and water. Blackwell Science, Oxford, England
McGee, K.A.; Gerlach, T.M.
1998-01-01
Time-series sensor data reveal significant short-term and seasonal variations of magmatic CO2 in soil over a 12 month period in 1995-1996 at the largest tree-kill site on Mammoth Mountain, central-eastern California. Short-term variations leading to ground-level soil CO2 concentrations hazardous and lethal to humans were triggered by shallow faulting in the absence of increased seismicity or intrusion, consistent with tapping a reservoir of accumulated CO2, rather than direct magma degassing. Hydrologic processes closely modulated seasonal variations in CO2 concentrations, which rose to 65%-100% in soil gas under winter snowpack and plunged more than 25% in just days as the CO2 dissolved in spring snowmelt. The high efflux of CO2 through the tree-kill soils acts as an open-system CO2 buffer causing infiltration of waters with pH values commonly of < 4.2, acid loading of up to 7 keqH+.ha-1.yr-1, mobilization of toxic Al3+, and long-term decline of soil fertility.
INDEPENDENT AND CONTRASTING EFFECTS OF ELEVATED CO2 AND N-FERTILIZATION ROOT ARCHITECTURE
The effects of elevated CO2 and N fertilization on architecture of Pinus ponderosa fine roots and their associated mycorrhizal symbionts were measured over a 4-year period. The study was conducted in open-top field-exposure chambers located near Placerville, CA. A replicated (thr...
NASA Astrophysics Data System (ADS)
Salehi, Aliyeh; Fallah, Seyfollah; Sourki, Ali Abasi
2017-01-01
Cattle manure has a high carbon/nitrogen ratio and may not decompose; therefore, full-dose application of urea fertilizer might improve biological properties by increasing manure decomposition. This study aimed to investigate the effect of combining cattle manure and urea fertilizer on soil CO2 flux, microbial biomass carbon, and dry matter accumulation during Nigella sativa L. (black cumin) growth under field conditions. The treatments were control, cattle manure, urea, different levels of split and full-dose integrated fertilizer. The results showed that integrated application of cattle manure and chemical fertilizer significantly increased microbial biomass carbon by 10%, soil organic carbon by 2.45%, total N by 3.27%, mineral N at the flowering stage by 7.57%, and CO2 flux by 9% over solitary urea application. Integrated application increased microbial biomass carbon by 10% over the solitary application and the full-dose application by 5% over the split application. The soil properties and growth parameters of N. sativa L. benefited more from the full-dose application than the split application of urea. Cattle manure combined with chemical fertilizer and the full-dose application of urea increased fertilizer efficiency and improved biological soil parameters and plant growth. This method decreased the cost of top dressing urea fertilizer and proved beneficial for the environment and medicinal plant health.
NASA Astrophysics Data System (ADS)
Bala, G.; N, D.
2015-12-01
In this work, using the fully coupled NCAR Community Earth System Model (CESM1.0.4), we investigate the relative importance of CO2-fertilization, climate warming, anthropogenic nitrogen deposition, and land use and land cover change (LULCC) for terrestrial carbon uptake during the historical period (1850-2005). In our simulations, between the beginning and end of this period, we find an increase in global net primary productivity (NPP) on land of about 4 PgCyr-1 (8.1%) with a contribution of 2.3 PgCyr-1 from CO2-fertilization and 2.0 PgCyr-1 from nitrogen deposition. Climate warming also causes NPP to increase by 0.35 PgCyr-1 but LULCC causes a decline of 0.7 PgCyr-1. These results indicate that the recent increase in vegetation productivity is most likely driven by CO2 fertilization and nitrogen deposition. Further, we find that this configuration of CESM projects that the global terrestrial ecosystem has been a net source of carbon during 1850-2005 (release of 45.1±2.4 PgC), largely driven by historical LULCC related CO2 fluxes to the atmosphere. During the recent three decades (early 1970s to early 2000s), however, our model simulations project that the terrestrial ecosystem acts as a sink, taking up about 10 PgC mainly due to CO2 fertilization and nitrogen deposition. Our results are in good qualitative agreement with recent studies that indicate an increase in vegetation production and water use efficiency in the satellite era and that the terrestrial ecosystem has been a net sink for carbon in recent decades.
Closed-loop 15N measurement of N2O and its isotopomers for real-time greenhouse gas tracing
NASA Astrophysics Data System (ADS)
Slaets, Johanna; Mayr, Leopold; Heiling, Maria; Zaman, Mohammad; Resch, Christian; Weltin, Georg; Gruber, Roman; Dercon, Gerd
2016-04-01
Quantifying sources of nitrous oxide is essential to improve understanding of the global N cycle and to develop climate-smart agriculture, as N2O has a global warming potential 300 times higher than CO2. The isotopic signature and the intramolecular distribution (site preference) of 15N are powerful tools to trace N2O, but the application of these methods is limited as conventional methods cannot provide continuous and in situ data. Here we present a method for closed-loop, real time monitoring of the N2O flux, the isotopic signature and the intramolecular distribution of 15N by using off-axis integrated cavity output spectroscopy (ICOS, Los Gatos Research). The developed method was applied to a fertilizer inhibitor experiment, in which N2O emissions were measured on undisturbed soil cores for three weeks. The treatments consisted of enriched urea-N (100 kg urea-N/ha), the same fertilizer combined with the nitrification inhibitor nitrapyrin (375 g/100 kg urea), and control cores. Monitoring the isotopic signature makes it possible to distinguish emissions from soil and fertilizer. Characterization of site preference could additionally provide a tool to identify different microbial processes leading to N2O emissions. Furthermore, the closed-loop approach enables direct measurement on site and does not require removal of CO2 and H2O. Results showed that 75% of total N2O emissions (total=11 346 μg N2O-N/m2) in the fertilized cores originated from fertilizer, while only 55% of total emissions (total=2 450 μg N2ON/m2) stemmed from fertilizer for the cores treated with nitrapyrin. In the controls, N2O derived from soil was only 40% of the size of the corresponding pool from the fertilized cores, pointing towards a priming effect on the microbial community from the fertilizer and demonstrating the bias that could be introduced by relying on non-treated cores to estimate soil emission rates, rather than using the isotopic signature. The site preference increased linearly over time for the cores with fertilizer and those with nitrapyrin, but the increase was stronger for the fertilized cores: during the first 10 days of the experiment, theses cores showed a more negative site preference than the cores with inhibitor, while during the last 10 days, the site preference for the fertilized cores was more positive than that of the inhibitor. This change indicates that the site preference of 15N can be used to distinguish the processes of nitrification and denitrification, the former having been supressed by nitrapyrin in the cores treated with the inhibitor. Low enrichment levels (5% atomic excess in this study) sufficed in order to separate emissions from soil and fertilizer, making the proposed closed-loop approach a cost-effective and practical tool to obtain a continuous, in situ characterization of N2O sources.
NASA Astrophysics Data System (ADS)
O'Sullivan, M.; Buermann, W.; Spracklen, D. V.; Gloor, E. U.; Arnold, S.
2017-12-01
The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that these parallel increases in fossil fuel burning and terrestrial sink are causally linked via increases in atmospheric CO2 and nitrogen deposition (and carbon-nitrogen interaction). Using the dynamic global vegetation model CLM4.5-BGC, we performed factorial analyses, separating the effects of individual drivers to changes in carbon fluxes and sinks. Globally, we found that increases in nitrogen deposition from 1900 to 2016 led to an additional 32 PgC stored. 40% of this increase could be attributed to East Asia and Europe alone, with North America also having a significant contribution. The global, post-2000 anthropogenic nitrogen deposition effect on terrestrial carbon uptake was 0.7 PgC/yr (20% of the total sink). Comparing the past decade (2005-2016) to the previous (1990-2005), regionally, we find nitrogen deposition to be an important driver of changes in net carbon uptake. In East Asia, increases in nitrogen deposition contributed 26% of the total increase in carbon uptake, with direct CO2 fertilization contributing 67%, and the synergistic carbon-nitrogen effect explaining 7% of the sink. Conversely, declining nitrogen deposition rates over North America contributed negatively (-35%) to the carbon sink, with a near zero contribution from the synergistic effect. At global scale, however, our findings suggest that changes in nitrogen deposition (both direct and via increasing the efficiency of the CO2 fertilization effect) played only a minor role in the enhanced plant carbon uptake and sink activity during the most recent decade. This finding is due to regional compensations but also suggesting that other factors (direct CO2, climate, land use change) may have been more important drivers.
Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi
2016-09-15
The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. Copyright © 2016 Elsevier B.V. All rights reserved.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2007-10-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2008-03-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
NASA Astrophysics Data System (ADS)
Lu, Y.
2016-12-01
Wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of earth's croplands. As such, it plays an important role in soil carbon balance, and land-atmosphere interactions in these key regions. Understanding whether the Community Land Model (CLM) appropriate response to elevated CO2 and different levels of nitrogen fertilization and irrigation is a crucial question. We participated the AgMIP-wheat project and run 72 simulations at Maricopa spring wheat FACE sites and five winter wheat sites in North America forcing with site observed meteorology data. After calibration on the phenology, carbon allocation, and soil hydrology parameters, wheat in CLM45 has reasonable response to irrigation and elevated CO2. However, wheat in CLM45 has no response to low or high N fertilization because the low amount of N fertilization is sufficient for wheat growth in CLM45. We plan to further extend the same simulations for CLM5 (will release in Fall 2016), which has substantial improvements on soil hydrology (improved soil evaporation and plant hydraulic parameterization) and nitrogen dynamics (flexible leaf CN ratio and Vcmax25, plant pays for carbon to get nitrogen). We will evaluate the uncertainties of wheat response to nitrogen fertilization, irrigation, CO2 due to model improvements.
The effects of elevated CO-2 and N fertilization on fine root growth of Pinus ponderosa Dougl. ex P. Laws. C. Laws., grown in native soil in open-top field-exposure chambers at Placerville, CA, were monitored for a 2-year period using minirhizotrons. The experimental design was a...
NASA Astrophysics Data System (ADS)
Nichols, Virginia A.
It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize. Contrary to our hypothesis, total growing-season root CO2 flux was not proportional to end-of-season root biomass of cropping systems; unfertilized prairie contained nearly twice the root biomass of N-fertilized prairie, but the two systems' total root CO2 fluxes were not significantly different in either year. We found that the total growing-season flux of both root- and organic matter-derived CO 2 was higher in the prairie systems compared to the maize system. However, on a percentage basis, the prairies' soil-surface CO2 flux from May-September averaged 29% root-derived while from mid-June through September the maize averaged 22% root-derived. The percentage of the total CO2 flux that was root-derived in a given system varied from year to year, indicating there is no set relationship for a given cropping system.
NASA Astrophysics Data System (ADS)
Hassler, E.; Corre, M. D.; Tjoa, A.; Damris, M.; Utami, S. R.; Veldkamp, E.
2015-06-01
Expansion of palm oil and rubber production, for which global demand is increasing, causes rapid deforestation in Sumatra, Indonesia and is expected to continue in the next decades. Our study aimed to (1) quantify changes in soil CO2 and CH4 fluxes with land-use change, and (2) determine their controlling factors. In Jambi Province, Sumatra, we selected two landscapes on heavily weathered soils that differ mainly in texture: loam and clay Acrisol soils. At each landscape, we investigated the reference land uses: forest and secondary forest with regenerating rubber, and the converted land uses: rubber (7-17 years old) and oil palm plantations (9-16 years old). We measured soil CO2 and CH4 fluxes monthly from December 2012 to December 2013. Annual soil CO2 fluxes from the reference land uses were correlated with soil fertility: low extractable phosphorus (P) coincided with high annual CO2 fluxes from the loam Acrisol soil that had lower fertility than the clay Acrisol soil (P < 0.05). Soil CO2 fluxes from the oil palm decreased compared to the other land uses (P < 0.01). Across land uses, annual CO2 fluxes were positively correlated with soil organic carbon (C) and negatively correlated with 15N signatures, extractable P and base saturation. This suggests that the reduced soil CO2 fluxes from oil palm was a result of strongly decomposed soil organic matter due to reduced litter input, and possible reduction in C allocation to roots due to improved soil fertility from liming and P fertilization in these plantations. Soil CH4 uptake in the reference land uses was negatively correlated with net nitrogen (N) mineralization and soil mineral N, suggesting N limitation of CH4 uptake, and positively correlated with exchangeable aluminum (Al), indicating decrease in methanotrophic activity at high Al saturation. Reduction in soil CH4 uptake in the converted land uses compared to the reference land uses (P < 0.01) was due to decrease in soil N availability in the converted land uses. Our study shows for the first time that differences in soil fertility control soil-atmosphere exchange of CO2 and CH4 in a tropical landscape, a mechanism that we were able to detect by conducting this study at the landscape scale.
Cleveland, Cory C; Townsend, Alan R
2006-07-05
Terrestrial biosphere-atmosphere carbon dioxide (CO(2)) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are high, P fertilization drove large increases in soil respiration. Although the P-stimulated increase in soil respiration was largely confined to the dry-to-wet season transition, the seasonal increase was sufficient to drive an 18% annual increase in CO(2) efflux from the P-fertilized plots. Nitrogen (N) fertilization caused similar responses, and the net increases in soil respiration in response to the additions of N and P approached annual soil C fluxes in mid-latitude forests. Human activities are altering natural patterns of tropical soil N and P availability by land conversion and enhanced atmospheric deposition. Although our data suggest that the mechanisms driving the observed respiratory responses to increased N and P may be different, the large CO(2) losses stimulated by N and P fertilization suggest that knowledge of such patterns and their effects on soil CO(2) efflux is critical for understanding the role of tropical forests in a rapidly changing global C cycle.
Impact of mesophyll diffusion on estimated global land CO 2 fertilization
Sun, Ying; Gu, Lianhong; Dickinson, Robert E.; ...
2014-10-13
In C 3 plants, CO 2 concentrations drop considerably along mesophyll diffusion pathways from substomatal cavities to chloroplasts where CO 2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown and so overestimate CO 2 available for carboxylation and underestimate photosynthetic responsiveness to atmospheric CO 2. An explicit consideration of mesophyll diffusion increases the modeled cumulative CO 2 fertilization effect (CFE) for global gross primary production (GPP) from 915 PgC to 1057 PgC for the period of 1901 to 2010. This increase represents a 16% correction, large enough to explain the persistent overestimation of growth ratesmore » of historical atmospheric CO 2 by Earth System Models. Without this correction, the CFE for global GPP is underestimated by 0.05 PgC yr -1ppm -1. This finding implies that the contemporary terrestrial biosphere is more CO 2-limited than previously thought.« less
Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César
2014-06-01
Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.
Estimating the risk of Amazonian forest dieback.
Rammig, Anja; Jupp, Tim; Thonicke, Kirsten; Tietjen, Britta; Heinke, Jens; Ostberg, Sebastian; Lucht, Wolfgang; Cramer, Wolfgang; Cox, Peter
2010-08-01
*Climate change will very likely affect most forests in Amazonia during the course of the 21st century, but the direction and intensity of the change are uncertain, in part because of differences in rainfall projections. In order to constrain this uncertainty, we estimate the probability for biomass change in Amazonia on the basis of rainfall projections that are weighted by climate model performance for current conditions. *We estimate the risk of forest dieback by using weighted rainfall projections from 24 general circulation models (GCMs) to create probability density functions (PDFs) for future forest biomass changes simulated by a dynamic vegetation model (LPJmL). *Our probabilistic assessment of biomass change suggests a likely shift towards increasing biomass compared with nonweighted results. Biomass estimates range between a gain of 6.2 and a loss of 2.7 kg carbon m(-2) for the Amazon region, depending on the strength of CO(2) fertilization. *The uncertainty associated with the long-term effect of CO(2) is much larger than that associated with precipitation change. This underlines the importance of reducing uncertainties in the direct effects of CO(2) on tropical ecosystems.
An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhicheng Wang
The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This projectmore » includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.« less
Husna, A U; Azam, A; Qadeer, S; Awan, M A; Nasreen, S; Shahzad, Q; Fouladi-Nashta, A; Khalid, M; Akhter, S
2018-04-01
Routinely, swim-up method is used to separate high-quality sperm; however, long processing time and close cell-to-cell contact during the centrifugation step are inevitable elements of oxidative stress to sperm. The objective was to evaluate Sephadex ™ and glass wool filtration to separate motile, intact and viable sperm for in vitro fertilization in buffalo. The cumulus-oocyte complexes (COCs) were collected from ovaries of slaughtered buffaloes by aspiration and matured for 24 hr in CO 2 incubator at 38.5°C and 5% CO 2 . Matured COCs were rinsed twice in fertilization TALP and placed in the pre-warmed fertilization medium without sperm. Cryopreserved buffalo semen was thawed at 37°C for 30 s and processed through Sephadex ™ , glass wool filtration and swim-up (control). Total and motile sperm recovery rates were assessed, resuspended in fertilization TALP and incubated for 15-20 min in CO 2 incubator. Samples prepared by each method were divided into two aliquots: one aliquot was studied for sperm quality (progressive motility, membrane integrity, viability, liveability), while the other was subjected to co-incubation with sets of 10-15 in vitro matured oocytes. Data on sperm quality were analysed by ANOVA, while in vitro fertilizing rates were compared by chi-squared test using SPSS-20. Least significant difference (LSD) test was used to compare treatment means. Glass wool filtration yielded higher total and motile sperm recovery rate, while Sephadex ™ filtration improved (p < .05) sperm quality (progressive motility, membrane integrity, viability, liveability). Sperm preparation through Sephadex filtration yielded higher in vitro fertilization rate in terms of cleavage rate compared to glass wool filtration and swim-up (control). In conclusion, cryopreserved Nili-Ravi buffalo sperm selected through Sephadex filtration showed improved quality and yielded better fertilization rates (cleavage rate) of in vitro matured/fertilized oocytes. Sephadex filtration could be a promising technique for use in in vitro fertilization in buffalo. © 2017 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan
2017-02-01
Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.
NASA Astrophysics Data System (ADS)
Ammann, C.; Leifeld, J.; Neftel, A.; Fuhrer, J.
2012-04-01
Experimental assessment of soil carbon (C) stock changes over time is typically based on the application of either one of two methods, namely (i) repeated soil inventory and (ii) determination of the ecosystem C budget or net biome productivity (NBP) by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports. However, there exist hardly any published study hitherto that directly compared the results of both methods. Here, we applied both methods in parallel to determine C stock changes of two temperate grassland fields previously converted from long-term cropland. The grasslands differed in management intensity with either intensive management (high fertilization, frequent cutting) or extensive management (no fertilization, less frequent cutting). Soil organic C stocks (0-45 cm depth) were quantified at the beginning (2001) and the end (2006) of a 5 year observational period using the equivalent soil mass approach. For the same period and in both fields, NBP was quantified from net CO2 fluxes monitored using eddy covariance systems, and measured C import by organic fertilizer and C export by harvest. Both NBP and repeated soil inventories revealed a consistent and significant difference between management systems of 170 ± 48 and 253 ± 182 g C m-2 a-1, respectively. For both fields, the inventory method showed a tendency towards higher C loss/smaller C gain than NBP. In the extensive field, a significant C loss was observed by the inventory but not by the NBP approach. Thus both, flux measurements and repeated soil sampling, seem to be adequate and equally suited for detecting relative management effects. However, the suitability for tracking absolute changes in SOC could not be proven for neither of the two methods. Overall, our findings stress the need for more direct comparisons to evaluate whether the observed difference in the outcome of the two approaches reflects a general methodological bias, which would have important implications for regional terrestrial C budgets.
Iwata, H; Shiono, H; Kon, Y; Matsubara, K; Kimura, K; Kuwayama, T; Monji, Y
2008-05-01
The duration of sperm-oocyte co-incubation has been observed to affect the sex ratio of in vitro produced bovine embryos. The purpose of this study was to investigate some factors that may be responsible for the skewed sex ratio. The factors studied were selected combinations of the duration of co-incubation, the presence or absence of cumulus cells, and the level of hyaluronic acid (HA) in the culture medium. Experiment 1 examined the effect of selected combinations of different factors during the fertilization phase of in vitro oocyte culture. The factors were the nature of the sperm or its treatment, the duration of the sperm-oocyte co-incubation, and the level of hyaluronic acid in the culture medium. In experiment 2, the capacitation of frozen-thawed-Percoll-washed sperm (control), pre-incubated, and non-binding sperm was evaluated by the zona pellucida (ZP) binding assay and the hypo-osmotic swelling test (HOST). The purpose of experiment 3 was to determine the oocyte cleavage rate and sex ratio of the embryos (>5 cells) produced as a consequence of the 10 treatments used in experiment 1. In treatments 1-3 (experiments 1 and 3) COC were co-cultured with sperm for 1, 5 or 18 h. Polyspermic fertilization rose as the co-incubation period increased (1 h 6.5%, 5 h 15.9%, 18 h 41.8%; P<0.05), and the highest rate of normal fertilization was observed for 5h culture (73.4%; P<0.05). The sex ratio was significantly (P<0.05) skewed from the expected 50:50 towards males following 1 h (64.4%) and 5 h (67.3%) co-incubation, but was not affected by 18 h incubation (52.3%). In treatment 4, sperm was pre-incubated for 1h and cultured with COC for 5 h. Relative to control sperm, pre-incubation of sperm increased ZP binding (116 versus 180 per ZP; P<0.05) and decreased the proportion of HOST positive sperm (65.8-48.6%; P<0.05; experiment 2). Pre-incubation did not affect the rates of polyspermy, normal fertilization or the sex ratio of the embryos (experiments 1 and 3). The oocytes used in treatments 5-10 of experiments 1 and 3 were denuded prior to fertilization. Co-incubation of denuded oocytes for 1h (treatment 5) or 5h (treatment 6) resulted in levels of polyspermic fertilization similar to that for treatment 2 with significantly lower levels of normal fertilization (41.7% and 52.6%, respectively; P<0.05), and the 1h co-incubation significantly skewed (P<0.05) the proportion of male embryos to 70.0%. Denuded oocytes were fertilized for 5h with sperm unable to bind to cumulus cells (NB sperm) in treatment 7 or those that bound to cumulus cells (B) in treatment 8. These two treatments had similar rates of polyspermic, normal and non-fertilization. However, the B sperm caused the sex ratio of the embryos to be significantly skewed to males (63.9%; P<0.05). Fertilization of denuded oocytes in medium containing hyaluronic acid (0.1 mg/ml, treatment 9; 1.0 mg/ml treatment 10) significantly (P<0.05) reduced the incidence of polyspermic fertilization relative to treatments 2 and 6, and normal fertilization relative to treatment 2, but did not affect the sex ratio of the embryos. It was concluded that exposure of sperm to cumulus cells, either before fertilization of denuded oocytes or during the process of fertilization of complete COC, increased the proportion of male embryos produced by in vitro culture. It was hypothesized that this may be due to the capacitation state of the sperm, the cumulus-sperm interaction, and/or the ability of the sperm to bind to cumulus cells or oocytes.
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
NASA Astrophysics Data System (ADS)
Oschlies, A.
2009-08-01
The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIP models (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere but from the terrestrial biosphere.
Jiang, Shoulin; Lu, Yongqing; Dai, Yang; Qian, Lei; Muhammad, Adnan Bodlah; Li, Teng; Wan, Guijun; Parajulee, Megha N; Chen, Fajun
2017-11-07
Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO 2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO 2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO 2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO 2 .
Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae
2017-01-01
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.
Meki, Manyowa N.; Kiniry, James R.; Taylor, Andrew D.; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae
2017-01-01
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield. PMID:28052075
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
NASA Astrophysics Data System (ADS)
Oschlies, A.
2009-04-01
The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively. On longer than decadal timescales, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization may not come from the atmosphere but from the terrestrial biosphere.
Greenhouse gas emissions from solid and liquid organic fertilizers applied to lettuce
USDA-ARS?s Scientific Manuscript database
Excessive and improper application of nitrogen (N) fertilizer, and environmental factors can cause the loss of carbon dioxide (CO2) and nitrous oxide (N2O) to the environment. Also, different types of fertilizers may have different effects on the environment. The focus of this study was to evaluate ...
NASA Astrophysics Data System (ADS)
Liimatainen, Maarit; Maljanen, Marja; Hytönen, Jyrki
2017-04-01
Out of Finland's original 10 million hectares of peatlands over half has been drained for forestry. Natural peatlands act as a sink for carbon but when peatland is drained, increased oxygen concentration in the peat accelerates the aerobic decomposition of the old organic matter of the peat leading to carbon dioxide (CO2) emissions to atmosphere. Increasing use of bioenergy increases also the amount of ash produced as a byproduct in power plants. Wood ash contains all essential nutrients for trees to grow except nitrogen. Therefore, wood ash is ideal fertilizer for nitrogen rich peatland forests where lack of phosphorus or potassium may restrict tree growth. At the moment, wood ash is the only available PK-fertilizer for peatland forests in Finland and areas of peatland forests fertilized with ash are increasing annually. The effects of wood ash on vegetation, soil properties and tree growth are rather well known although most of the studies have been made using fine ash whereas nowadays mostly stabilized ash (e.g. granulated) is used. Transporting and spreading of stabilized ash is easier than that of dusty fine ash. Also, slower leaching rate of nutrients is environmentally beneficial and prolongs the fertilizer effect. The knowledge on the impact of granulated wood ash on greenhouse gas emissions is still very limited. The aim of this study was to examine the effects of granulated wood ash on CO2 emissions from peat and tree stand growth. Field measurements were done in two boreal peatland forests in 2011 and 2012. One of the sites is more nutrient rich with soil carbon to nitrogen ratio (C/N) of 18 whereas the other site is nutrient poor with C/N ratio of 82. Both sites were fertilized with granulated wood ash in 2003 (5000 kg ha-1). The effect of fertilization was followed with tree stand measurements conducted 0, 5 and 10 years after the fertilization. The CO2 emissions of the decomposing peat (heterotrophic respiration) were measured from study plots where vegetation and litter were removed to eliminate respiration by vegetation (autotrophic respiration). Roots were cut by installing aluminum tubes into the depth of 30 cm. Emissions were measured with chamber method using portable CO2 analyzer. Soil temperature was measured simultaneously with gas measurements manually from the depth of 5 cm as well as continuously with data loggers embedded into the peat. Annual soil respiration was modelled assuming that emissions change as a function of temperature. According to preliminary results, fertilization with granulated wood ash increased CO2 emissions of the peat significantly, especially in nutrient poor site. Ash fertilization increased also strongly the accumulation of carbon into the trees. Nonetheless, in both sites CO2emissions from decomposing peat where higher than carbon that was stored in biomass. This was the case especially in the nutrient poor site where trees are growing poorly and due to low peat nitrogen content the area is not considered suitable for ash fertilization. However, at the more fertile site both stand C sequestration and soil C efflux increased similarly.
Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across a wide range of soils
Nord, Eric A.; Jaramillo, Raúl E.; Lynch, Jonathan P.
2015-01-01
Soils vary widely in mineral nutrient availability and physical characteristics, but the influence of this variability on plant responses to elevated CO2 remains poorly understood. As a first approximation of the effect of global soil variability on plant growth response to CO2, we evaluated the effect of CO2 on tall fescue (Festuca arundinacea) grown in soils representing 10 of the 12 global soil orders plus a high-fertility control. Plants were grown in small pots in continuously stirred reactor tanks in a greenhouse. Elevated CO2 (800 ppm) increased plant biomass in the high-fertility control and in two of the more fertile soils. Elevated CO2 had variable effects on foliar mineral concentration—nitrogen was not altered by elevated CO2, and phosphorus and potassium were only affected by CO2 in a small number of soils. While leaf photosynthesis was stimulated by elevated CO2 in six soils, canopy photosynthesis was not stimulated. Four principle components were identified; the first was associated with foliar minerals and soil clay, and the second with soil acidity and foliar manganese concentration. The third principle component was associated with gas exchange, and the fourth with plant biomass and soil minerals. Soils in which tall fescue did not respond to elevated CO2 account for 83% of global land area. These results show that variation in soil physical and chemical properties have important implications for plant responses to global change, and highlight the need to consider soil variability in models of vegetation response to global change. PMID:25774160
Włóka, Dariusz; Placek, Agnieszka; Rorat, Agnieszka; Smol, Marzena; Kacprzak, Małgorzata
2017-11-01
The aim of this study was to investigate the polycyclic aromatic hydrocarbons (PAHs) biodegradation kinetics in soils fertilized with organic amendments (sewage sludge, compost), bulking agents (mineral sorbent, silicon dioxide in form of nano powder), and novel compositions of those materials. The scope of conducted works includes a cyclic CO 2 production measurements and the determinations of PAHs content in soil samples, before and after 3-months of incubation. Obtained results show that the use of both type of organic fertilizers have a positive effect on the PAHs removal from soil. However, the CO 2 emission remains higher only in the first stage of the process. The best acquired means in terms of PAHs removal as well as most sustained CO 2 production were noted in samples treated with the mixtures of organic fertilizers and bulking agents. In conclusion the addition of structural forming materials to the organic fertilizers was critical for the soil bioremediation efficiency. Therefore, the practical implementation of collected data could find a wide range of applications during the design of new, more effective solutions for the soil bioremediation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhan, Yaoyao; Hu, Wanbin; Zhang, Weijie; Liu, Minbo; Duan, Lizhu; Huang, Xianya; Chang, Yaqing; Li, Cong
2016-11-15
The impact of CO 2 -driven ocean acidification(OA) on early development and calcification in the sea urchin Strongylocentrotus intermedius cultured in northern Yellow Sea was investigated by comparing fertilization success, early cleavage rate, hatching rate of blastulae, larvae survival rate at 70h post-fertilization, larval morphology and calcification under present natural seawater condition (pH=8.00±0.03) and three laboratory-controlled acidified conditions (OA 1 , △pH=-0.3units; OA 2 , △pH=-0.4units; OA 3 , △pH=-0.5units) projected by IPCC for 2100. Results showed that pH decline had no effect on the overall fertilization, however, with decreased pH, delayed early embryonic cleavage, reduced hatching rate of blastulae and four-armed larvae survival rate at 70h post-fertilization, impaired larval symmetry, shortened larval spicules, and corrosion spicule structure were observed in all OA-treated groups as compared to control, which indicated that CO 2 -driven OA affected early development and calcification in S. intermedius negatively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smith, W. Kolby; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y; Running, Steven W.
2015-01-01
Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 ± 1.50%) less than half of ESM-derived increases (7.6 ± 1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle–climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.
Sainju, Upendra M; Stevens, William B; Caesar-TonThat, Thecan; Liebig, Mark A; Wang, Jun
2014-05-01
Little information exists about how global warming potential (GWP) is affected by management practices in agroecosystems. We evaluated the effects of irrigation, tillage, crop rotation, and N fertilization on net GWP and greenhouse gas intensity (GHGI or GWP per unit crop yield) calculated by soil respiration (GWP and GHGI) and organic C (SOC) (GWP and GHGI) methods after accounting for CO emissions from all sources (irrigation, farm operations, N fertilization, and greenhouse gas [GHG] fluxes) and sinks (crop residue and SOC) in a Lihen sandy loam from 2008 to 2011 in western North Dakota. Treatments were two irrigation practices (irrigated vs. nonirrigated) and five cropping systems (conventional-till malt barley [ L.] with N fertilizer [CTBN], conventional-till malt barley with no N fertilizer [CTBO], no-till malt barley-pea [ L.] with N fertilizer [NTB-P], no-till malt barley with N fertilizer, and no-till malt barley with no N fertilizer [NTBO]). While CO equivalents were greater with irrigation, tillage, and N fertilization than without, NO and CH fluxes were 2 to 218 kg CO eq. ha greater in nonirrigated NTBN and irrigated CTBN than in other treatments. Previous year's crop residue and C sequestration rate were 202 to 9316 kg CO eq. ha greater in irrigated NTB-P than in other treatments. Compared with other treatments, GWP and GWP were 160 to 9052 kg CO eq. ha lower in irrigated and nonirrigated NTB-P. Similarly, GHGI and GHGI were lower in nonirrigated NTB-P than in other treatments. Regardless of irrigation practices, NTB-P may lower net GHG emissions more than other treatments in the northern Great Plains. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Nitrogen fertilization challenges the climate benefit of cellulosic biofuels
Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.; ...
2016-06-01
Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass ( Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yieldsmore » became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO 2e ha –1 yr –1 in switchgrass fertilized at 56 kgNha –1 to only –2.97 ± 0.18 MgCO 2e ha –1 yr –1 in switchgrass fertilized at 196 kgNha –1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less
Nitrogen fertilization challenges the climate benefit of cellulosic biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.
Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass ( Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R 2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yieldsmore » became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO 2e ha –1 yr –1 in switchgrass fertilized at 56 kgNha –1 to only –2.97 ± 0.18 MgCO 2e ha –1 yr –1 in switchgrass fertilized at 196 kgNha –1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less
Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions
NASA Astrophysics Data System (ADS)
Obermeier, W. A.; Lehnert, L. W.; Kammann, C. I.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N.; Bendix, J.
2017-02-01
The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of recent global climate change. The stimulation of plant photosynthesis due to rising atmospheric carbon dioxide concentrations ([CO2]) is widely assumed to increase the net primary productivity (NPP) of C3 plants--the CO2 fertilization effect (CFE). However, the magnitude and persistence of the CFE under future climates, including more frequent weather extremes, are controversial. Here we use data from 16 years of temperate grassland grown under `free-air carbon dioxide enrichment’ conditions to show that the CFE on above-ground biomass is strongest under local average environmental conditions. The observed CFE was reduced or disappeared under wetter, drier and/or hotter conditions when the forcing variable exceeded its intermediate regime. This is in contrast to predictions of an increased CO2 fertilization effect under drier and warmer conditions. Such extreme weather conditions are projected to occur more intensely and frequently under future climate scenarios. Consequently, current biogeochemical models might overestimate the future NPP sink capacity of temperate C3 grasslands and hence underestimate future atmospheric [CO2] increase.
Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.
Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J
2013-05-01
Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.
Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra
NASA Astrophysics Data System (ADS)
Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.
2015-12-01
As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory losses, leading to a positive feedback to global climate.
Multifunctional slow-release organic-inorganic compound fertilizer.
Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang
2010-12-08
Multifunctional slow-release organic-inorganic compound fertilizer (MSOF) has been investigated to improve fertilizer use efficiency and reduce environmental pollution derived from fertilizer overdosage. The special fertilizer is based on natural attapulgite (APT) clay used as a matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid (SA-g-P(AA-co-AM)/HA) superabsorbent polymer used as an outer coating. The coated multielement compound fertilizer granules were produced in a pan granulator, and the diameter of the prills was in the range of 2.5-3.5 mm. The structural and chemical characteristics of the product, as well as its efficiency in slowing the nutrients release, were examined. In addition, a mathematical model for nutrient release from the fertilizer was applied to calculate the diffusion coefficient D of nutrients in MSOF. The degradation of the SA-g-P(AA-co-AM)/HA coating was assessed by examining the weight loss with incubation time in soil. It is demonstrated that the product prepared by a simple route with good slow-release property may be expected to have wide potential applications in modern agriculture and horticulture.
-induced fertilization impairment in Strongylocentrotus droebachiensis collected in the Arctic
NASA Astrophysics Data System (ADS)
Bögner, D.; Bickmeyer, U.; Köhler, A.
2014-06-01
Fertilization depends on distribution and aggregation patterns of sea urchins which influence gamete contact time and may potentially enhance their vulnerability to ocean acidification. In this study, we conducted fertilization experiments to assess the effects of selected pH scenarios on fertilization success of Strongylocentrotus droebachiensis, from Spitsbergen, Arctic. Acidification was achieved by aerating seawater with different CO2 partial pressures to represent pre-industrial and present conditions (measured ~180-425 µatm) and future acidification scenarios (~550-800, ~1,300, ~2,000 µatm). Fertilization success was defined as the proportion of successful/unsuccessful fertilizations per treatment; eggs were classified according to features of their fertilization envelope (FE), hyaline layer (HL) and achievement of cellular division. The diagnostic findings of specific pathological aberrations were described in detail. We additionally measured intracellular pH changes in unfertilized eggs exposed for 1 h to selected acidification treatments using BCECF/AM. We conclude that (a) acidified conditions increase the proportion of eggs that failed fertilization, (b) acidification may increase the risk of polyspermy due to failures in the FE formation supported by the occasional observation of multiple sperms in the perivitelline space and (c) irregular formation of the embryo may arise due to impaired formation of the HL. The decrease in fertilization success could be also related to the observed changes in intracellular pH at pCO2 ~ 1,000 μatm or higher.
We measured growing season soil CO-2 evolution under elevated atmospheric (CO-2) and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated (CO-2) treatments were applied in op...
USDA-ARS?s Scientific Manuscript database
Mexico is one of the largest users of N fertilizer in the world, and the 2nd largest user in Latin America after Brazil. Across large areas of Mexico, N fertilizers are being over-applied, resulting in lower N use efficiencies. Mexico’s trace gas inventory (in CO2 equivalents) reports that agricultu...
Climate change impacts on crop yield and quality with CO2 fertilization in China
Erda, Lin; Wei, Xiong; Hui, Ju; Yinlong, Xu; Yue, Li; Liping, Bai; Liyong, Xie
2005-01-01
A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 °C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO2) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20–80 years. Interactions of CO2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO2 enrichment under field conditions consistently increases biomass and yields in the range of 5–15%, with CO2 concentration elevated to 550 ppm Levels of CO2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications. PMID:16433100
Stumpp, M; Dupont, S; Thorndyke, M C; Melzner, F
2011-11-01
Extensive use of fossil fuels is leading to increasing CO(2) concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO(2). As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO(2) 41 Pa e.g. 399 μatm) and CO(2) acidified seawater with pH of 7.7 (pCO(2) 134 Pa e.g. 1318 μatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10% reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (two-way ANOSIM: Global R=1) while acidification effects were less pronounced (Global R=0.518). Significant differences in gene expression patterns (ANOSIM R=0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO(2) treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO(2) effect. We found an up regulation of metabolic genes (between 10%and 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes (between 23% and 36% in msp130, SM30B, and SM50 at day 4). Ion regulation was mainly impacted by up regulation of Na(+)/K(+)-ATPase at day 4 (15%) and down regulation of NHE3 at day 4 (45%). We conclude that in studies in which a stressor induces an alteration in the speed of development, it is crucial to employ experimental designs with a high time resolution in order to correct for developmental artifacts. This helps prevent misinterpretation of stressor effects on organism physiology. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Chao; Liu, Changli; Han, Guilin; Liu, Congqiang
2017-09-01
Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, is strongly influenced by agricultural fertilization, since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH. Different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as yet not well-known. In this study, a field column experiment was conducted to explore the response of carbonate weathering to the addition of different fertilizers. We compared 11 different treatments, including a control treatment, using three replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of soil-filled columns. The results show that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased carbonate weathering, which was attributed to the nitrification of NH4+. The addition of Ca3(PO4)2, Ca-Mg-P and K2CO3 induced carbonate precipitation due to the common ion effect. The addition of (NH4)3PO4 and NaNO3 had a relatively small impact on carbonate weathering in comparison to those five NH4-based fertilizers above. The results of NaNO3 treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in an overestimation of the impact of N fertilizer on CO2 consumption by carbonate weathering on the regional/global scale if the effects of NO3 and NH4 are not distinguished.
NASA Astrophysics Data System (ADS)
Hassler, E.; Corre, M. D.; Tjoa, A.; Damris, M.; Utami, S. R.; Veldkamp, E.
2015-10-01
Expansion of palm oil and rubber production, for which global demand is increasing, causes rapid deforestation in Sumatra, Indonesia, and is expected to continue in the next decades. Our study aimed to (1) quantify changes in soil CO2 and CH4 fluxes with land-use change and (2) determine their controlling factors. In Jambi Province, Sumatra, we selected two landscapes on heavily weathered soils that differ mainly in texture: loam and clay Acrisol soils. In each landscape, we investigated the reference land-use types (forest and secondary forest with regenerating rubber) and the converted land-use types (rubber, 7-17 years old, and oil palm plantations, 9-16 years old). We measured soil CO2 and CH4 fluxes monthly from December 2012 to December 2013. Annual soil CO2 fluxes from the reference land-use types were correlated with soil fertility: low extractable phosphorus (P) coincided with high annual CO2 fluxes from the loam Acrisol soil that had lower fertility than the clay Acrisol soil (P < 0.05). Soil CO2 fluxes from the oil palm (107.2 to 115.7 mg C m-2 h-1) decreased compared to the other land-use types (between 178.7 and 195.9 mg C m-2 h-1; P < 0.01). Across land-use types, annual CO2 fluxes were positively correlated with soil organic carbon (C) and negatively correlated with 15N signatures, extractable P and base saturation. This suggests that the reduced soil CO2 fluxes from oil palm were the result of strongly decomposed soil organic matter and reduced soil C stocks due to reduced litter input as well as being due to a possible reduction in C allocation to roots due to improved soil fertility from liming and P fertilization in these plantations. Soil CH4 uptake in the reference land-use types was negatively correlated with net nitrogen (N) mineralization and soil mineral N, suggesting N limitation of CH4 uptake, and positively correlated with exchangeable aluminum (Al), indicating a decrease in methanotrophic activity at high Al saturation. Reduction in soil CH4 uptake in the converted land-use types (ranging from -3.0 to -14.9 μg C m-2 h-1) compared to the reference land-use types (ranging from -20.8 to -40.3 μg C m-2 h-1; P < 0.01) was due to a decrease in soil N availability in the converted land-use types. Our study shows for the first time that differences in soil fertility control the soil-atmosphere exchange of CO2 and CH4 in a tropical landscape, a mechanism that we were able to detect by conducting this study on the landscape scale.
NASA Astrophysics Data System (ADS)
Wang, Weimin; Liu, Guangxing; Zhang, Tianwen; Chen, Hongju; Tang, Liao; Mao, Xuewei
2016-12-01
To investigate the effects of elevated seawater pCO2 on the early developmental stages of marine benthic calcifying organisms, we exposed the eggs and larvae of Argopecten irradias, an important bivalve species in Chinese aquaculture, in seawater equilibrated with CO2-enriched (1000 ppm) gas mixtures. We demonstrated that elevated seawater pCO2 significantly interfered with fertilization and larval development and resulted in an increased aberration rate. Fertilization in the treatment (pH 7.6) was 74.3% ± 3.8%, which was 9.7% lower than that in the control (pH 8.3) (84.0% ±3.0%). Hatching success decreased by 23.7%, and aberration rate increased by 30.3% under acidic condition. Larvae in acidified seawater still developed a shell during the post-embryonic phase. However, the shell length and height in the treatment were smaller than those in the control. The development of embryos differed significantly at 12 h after fertilization between the two experimental groups. Embryos developed slower in acidified seawater. Nearly half of the embryos in the control developed into D-shaped larvae at 48 h after fertilization, which were considerably more than those in the treatment (11.7%). Results suggest that future ocean acidification (OA) would cause detrimental effects on the early development of A. irradias.
Cherry, J.A.; McKee, K.L.; Grace, J.B.
2009-01-01
1. Sea-level rise, one indirect consequence of increasing atmospheric CO2, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO 2 on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO2 concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C3 species, Schoenoplectus americanus, and a C4 grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO2 and sea-level rise, we used conventional anova procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C3 plant response was influenced by interactive effects between CO2 and salinity on plant growth, not a direct CO2 fertilization effect. Elevated CO2 ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO 2 conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C3 plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and mechanisms contributing to marsh elevation change, including amelioration of salt stress by elevated CO2 and the importance of plant production and shoot-base expansion for elevation gain. Identification of biological processes contributing to elevation change is an important first step in developing comprehensive models that permit more accurate predictions of whether coastal marshes will persist with continued sea-level rise or become submerged. ?? 2008 The Authors.
Duke FACE -- Forest-Atmosphere Carbon Transfer and Storage (FACTS I)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oren, Ram
The Duke FACE experiment increases atmospheric [CO 2] to a height of 25 m in four 30-m diameter plots, each containing ~100 canopy trees and many sub-canopy individuals. The experiment was initiated in 1994 with CO 2 fumigation of the prototype plot, and reached full CO 2-fumigation capacity in 1996 when three additional FACE plots came on line. All elevated plots enriched the atmospheric CO 2 concentration by 200 ppmv relative to paired, ambient-CO 2 plots. Formalizing the analysis of CO 2 x N interactions, in March of 2005 each of the six FACE plots established in 1996 was trenchedmore » in half, and one half plot fertilized with nitrogen (N) at a rate of 11 g m -2 yr -1, following the approach established in 1998 in the prototype and its reference plot. The δ 13C of the fumigated plots’ atmosphere was -42.6‰, and while the 15N of the fertilizer did not affect the δ 15N of tissues directly it greatly reduced the effect of a 15N tracer study on tissue δ 15N. The CO 2 enrichment was completed in early November, 2010. Prior to termination of fumigation, 1-8 branches from 4-5 Pinus taeda individuals in each half plot were harvested, as well as most Juniperus occidentalis and broadleaved individuals <2 cm in diameter (1.4 m aboveground), including vine and herbaceous individuals. Following the termination, all individuals <8 cm in diameter, followed by all remaining individuals were harvested in half of each plot (a quarter in each CO 2 X N treatment). In all, 189 m 3 of dry material and 826 m 3 of wet material, or a total of 1014 m 3 of material is stored in various suited settings. The project quantified the effect of CO 2 X N on carbon uptake, allocation to various pools, accumulation of carbon in these pools, the release of carbon to the atmosphere, and factors controlling these processes. The project also assessed the effect of CO 2 X N on the components of the water budget, and related processes, as well as on the amount and diversity of understory vegetation.« less
Effect of elevated CO2, O3, and UV radiation on soils.
Formánek, Pavel; Rejšek, Klement; Vranová, Valerie
2014-01-01
In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.
Effect of Elevated CO2, O3, and UV Radiation on Soils
Rejšek, Klement; Vranová, Valerie
2014-01-01
In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil Nt content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research. PMID:24688424
James M. Vose; Katherine J. Elliott; Dale W. Johnson; Roger F. Walker; Mark G. Johnson; David T. Tingey
1995-01-01
We measured growing season soil CO2 evolution under elevated atmospheric CO2 and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and determine regulating mechanisms. Elevated CO2 treatments were applied in open-top chambers containing 3-...
James M. Vose; Katherine J. Elliott; Dale W. Johnson; David T. Tingey; Mark G. Johnson
1997-01-01
We measured growing season soil CO2 evolution under elevated atmospheric [CO2 and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated [CO2] treatments were applied in open-top chambers...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, W.L.; Achutuni, R.
1987-01-01
General circulation models have been used to estimate the probable changes in climate due to increased levels of carbon dioxide. These models, generally, project increases in the mean surface temperatures; but changes in precipitation due to CO/sub 2/ enrichment are not as clear. It appears that some process models, which utilize a minimum amount of empiricism, can be adopted for use in studying the impacts of both climate change scenarios and the direct effects of CO/sub 2/ fertilization. The CERES-Maize, CERES-Wheat, SORGF, GLYCIM, and SOYGRO are among those classified for this use. There is a great deal of effort beingmore » directed toward these developments. A WMO/UNEP/ICSU focus has sponsored at least two European meetings but with only limited success for testing production models. A similar effort has been conducted by the Commission of European Communities. An attempt has been made to modify the CERES models, which have been used in climate studies, for use in simulation of the direct effects. Initial simulations involving this modification, show that doubling CO/sub 2/ will increase corn production 12 to 30% at locations in northern Illinois for the four-year period 1982 to 1985. The increase in yield due to higher photosynthesis showed a greater effect than the impact of decreased transpiration.« less
Olive oil mill wastewater for soil nitrogen and carbon conservation.
Aguilar, Manuel Jimenez
2009-06-01
In this work the application of two levels of N fertilizer (NH(4)NO(3)) dissolved in water or olive oil mill wastewater (OOMW) diluted 10 or 20 times in water, has been studied in relation to the properties of two soils (Loam and Silt-Clay-Loam). Also, the effect of irrigation water bubbled with CO(2) (Dissolved Inorganic Carbon, DIC) was studied. Nitrate N, ammonium N, total N, organic C (OC), and CaCO(3) contents were determined in the soil as well as pH, electrical conductivity (EC), oxidation-reduction potential (ORP), and absorbance at 250 and 360 nm. Our data provide evidence that inorganic-N fertilizer dissolved in OOMW significantly reduced the emission of nitrates from soils for two months, increasing OC values. Moreover, OOMW significantly lowered the ORP. The irrigation with DIC also increased soil OC. Thus, the application of inorganic-N fertilizers dissolved in OOMW diluted with water on soils and the irrigation with water bubbled with CO(2) could reduce the environmental impact of OOMW, nitrates, and CO(2).
López-Saucedo, J; Santiago-Moreno, J; Fierro, R; Izquierdo, D; Coloma, M A; Catalá, M G; Jiménez, I; Paramio, M T
2015-02-01
In vitro fertilization (IVF) can be used to assess the fertilization capacity of sperm. Heterologous IVF may be useful when assessing that of wild animals as it is often difficult to obtain adequate numbers of naturally corresponding oocytes. The aim of the present study was to assess the fertilization capacity of frozen-thawed ibex epididymal spermatozoa via heterologous IVF involving the oocytes of prepubertal domestic goats. The effect on fertilization and embryo development of adding oestrous sheep serum (ESS) to the fertilization medium was also examined. Cumulus-oocyte complexes (COCs) were matured in TCM-199 for 24-27 h at 38.5°C in a 5% CO2 in air atmosphere. Frozen-thawed epididymal spermatozoa were selected by density gradient centrifugation. After maturation, the oocytes were co-incubated with spermatozoa in synthetic oviductal fluid (SOF) with different concentrations of ESS: SOF-C (0%), SOF-2 (2%) and SOF-20 (20%). At 17 h post-insemination (hpi), zygotes with one female and one male pronucleus (2PN) were categorised as normal; zygotes with 3PN were recorded as polyspermic, and oocytes with 1PN as asynchronous. Cleavage and blastocyst development were assessed at 48 and 168 hpi respectively. The percentage of zygotes with 2PN was higher in the SOF-2 than in the SOF-20 treatment group (27.7% versus 2.9% P < 0.05). The percentage of blastocysts formed with the SOF-C, SOF-2 and SOF-20 treatments were 1.1%, 7.5% and 0% respectively. These results show that the presence of 2% ESS achieves better results than the use of no serum or the standard 20% concentration. Heterologous IVF may be an effective method for predicting the fertilization capacity of ibex spermatozoa, and therefore perhaps that of other wild mountain ungulates.
NASA Astrophysics Data System (ADS)
Yuan, Jing; Sha, Zhi-min; Hassani, Danial; Zhao, Zheng; Cao, Lin-kui
2017-04-01
According to the 5th Intergovernmental Panel on Climate Change evaluation report, the average surface temperature of the earth has escalated from 0.69 °C (1901) to 1.08 °C (2012), which is primarily ascribed to the anthropogenic emissions of Greenhouse Gases (GHGs). For the current study, a field experiment with four treatments, including chemical fertilizer, mixed fertilizer (MT), organic fertilizer (OT) and control (CK) was carried out in the Station of Long-term Fertilization Qingpu, Shanghai. The probable impact of fertilization on the average daily and accumulative emissions of GHGs were examined during different growth stages. The results indicated that fertilizer treatments considerably affected emissions of CH4, N2O and CO2. CH4 emitted most in OT, followed by MT, CT and CK, with the emissions of 77.29, 41.64, 30.20 and 17.37 kg ha-1, respectively. As for N2O emissions, there were no significant variations between CT (1.18 kg ha-1) and MT (1.05 kg ha-1), which were both higher than OT (0.66 kg ha-1) and CK (0.23 kg ha-1). CO2 emissions in CT (34 371 kg ha-1) came first, followed by MT (28 929 kg ha-1), OT (19 118 kg ha-1) and CK (11 533 kg ha-1), independently. Soil nutrients or fertility (humid acid, carbon, nitrogen, phosphorus, potassium and C: N) may perhaps speed up CH4 emissions, whilst drainage implicated could alleviate its production. Furthermore, applying substantial organic fertilizer at once might accelerate sudden and huge release of N2O. In addition, despite the inconsistencies among different years observed, the trend that organic fertilizer made the biggest amount of contribution to warming potential was alike. Consequently, the utilization of organic fertilizer should be mitigated, by applying some other inorganic fertilizers.
NASA Astrophysics Data System (ADS)
Heintze, Gawan
2017-04-01
Influence of soil organic C content on the greenhouse gas emission potential after application of biogas residues or cattle slurry - Results from a pot experiment Gawan Heintze1,2, Tim Eickenscheidt1, Urs Schmidthalter2 and Matthias Drösler1 1University of Applied Sciences Weihenstephan-Triesdorf, Chair of Vegetation Ecology, Weihenstephaner Berg 4, 85354 Freising, Germany 2Technische Universität München, Chair of Plant Nutrition, Emil-Ramann-Str. 2, 85354 Freising, Germany The European Union Renewable Energy Directive, which sets a binding target of a final energy consumption of 20% from renewable sources by 2020, has markedly promoted the increase of biogas plants, particularly in Germany. As a consequence, a large amount of biogas residue remains as a by-product of the fermentative process. These residues are now widely used instead of mineral fertilizers or animal slurries to maintain soil fertility and productivity. However, to date, the effect of the application of biogas residue on greenhouse gas (GHG) emission, compared to that of other organic fertilizers, is contradictory in literature, not having been completely understood. It is often stated that GHG fluxes are closely related to the quality of the raw material, particularly the type of soil to which the digestates are applied. This study addresses the questions (a) to what extent are the applications of biogas digestate and cattle slurry different in terms of their GHG emission (CO2, CH4 and N2O) potential, and (b) how do different soil organic carbon contents (SOCs) influence the rate of GHG exchange. We hypothesize that, i) cattle slurry application enhances the CO2 and N2O fluxes compared to the biogas digestate due to the overall higher C and N input, and ii) that with increasing SOC and N content, higher emissions of CO2 and N2O can be expected. The study was conducted as a pot experiment. Biogas digestate and cattle slurry were applied to and incorporated into three different soil types with varying SOC contents (Cambisol, termed Clow; Mollic Gleysol, termed Cmedium and Sapric Histosol, termed Chigh). The application rate was equivalent to 150 kg NH4+-N ha-1. GHG exchange (CO2, CH4 and N2O) was measured on five replicates over a period of 22 days using the closed chamber technique to simulate the high-risk situation of enhanced GHG emissions following organic fertilizer application in energy maize cultivation. Generally, it was found that the application of cattle slurry resulted in significantly higher CO2 and N2O fluxes compared to the application of biogas digestate. The total cumulative CO2 exchange rates after 22 days ranged from 137 ± 4.6 kg C ha-1 22d-1 (Clow, control) to 885 ± 32.5 kg C ha-1 22 d-1 (Chigh, CS). However, the total cumulative N2O exchange rates ranged from 7.7 ± 6.1 g N ha-1 22 d-1 (Clow, control) up to 2000 ± 226 g N ha-1 22 d-1 (Cmedium, CS). No differences were found regarding the CH4 exchange, which was close to zero for all treatments. Total cumulative CH4 exchange rates ranged between -31 ± 32 g C ha-1 22d-1 (Cmedium, control) and -167 ± 34 g C ha-1 22d-1 (Chigh, CS). Calculated cumulative emissions revealed that 4% to 15% of the C derived from the organic fertilizer was emitted as CO2, and 0.06% to 0.67% of the applied N as N2O. Significantly higher CO2 emissions were observed at the Chigh treatments compared to the other two soil types investigated, whereas the significantly highest N2O emissions were found at the Cmedium treatments. The results clearly demonstrate the importance of soil type-adapted fertilization with respect to changing soil physical and environmental conditions. Considering the distinctly higher global warming potential (GWP) of N2O compared to CO2 (298:1; IPCC 2014), the present results revealed that soil type-specific 22-day cumulative N2O emissions contributed to 8% of the total GWP balance at Clow, 25% at Cmedium and 4% at Chigh, respectively. Overall, it seems that soils rich in SOM have a higher sensitivity regarding changing physical soil conditions than soils with low SOM contents.
Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.
Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar
2018-01-01
The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Jouandet, Marie Paule; Blain, Stephane; Metzl, Nicolas; Brunet, Christian; Trull, Thomas W.; Obernosterer, Ingrid
2008-03-01
During the Kerguelen Ocean and Plateau compared Study (KEOPS, January-February 2005), a high-resolution distribution of surface fugacity of carbon dioxide ( fCO 2) was obtained from underway measurements. The stations in the core of the naturally iron-fertilized bloom were characterized by low fCO 2 (311±8 μatm) compared to the atmosphere, thus representing a large CO 2 sink. This contrasted with stations typical of high-nutrient low-chlorophyll (HNLC) conditions where the surface water was roughly in equilibrium with the atmosphere ( fCO 2=372±5 μatm). The vertical distribution of dissolved inorganic carbon (DIC) also was obtained at stations within and outside the bloom. Based on this data set, we constructed a carbon budget for the mixed layer that allowed us to determine the seasonal net community production (NCP season) and the seasonal carbon export in two contrasting environments. The robustness of the approach and the errors also were estimated. The NCP season in the core of the bloom was 6.6±2.2 mol m -2, typical of productive areas of the Southern Ocean. At the HNLC station the NCP season was 3 times lower than in the bloom. Our estimate of the daily net community production (NCP daily) within the bloom compares well with shipboard measurements of NCP. The NCP daily obtained above the Kerguelen Plateau was of the same order as the estimates from Southern Ocean artificial iron-fertilization experiments (SOIREE and EisenEx). The seasonal carbon export was derived from NCP season after subtraction of the seasonal accumulation of particulate and dissolved organic carbon. In the bloom, the carbon export (5.4±1.9 mol m -2) was 3-fold higher than at the HNLC station (1.7±0.4 mol m -2). Comparison of our results to artificial iron-fertilization experiments shows that the biological pump is enhanced by natural iron fertilization.
NASA Astrophysics Data System (ADS)
Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.
2015-12-01
In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.
NASA Astrophysics Data System (ADS)
He, Liming; Chen, Jing M.; Croft, Holly; Gonsamo, Alemu; Luo, Xiangzhong; Liu, Jane; Zheng, Ting; Liu, Ronggao; Liu, Yang
2017-11-01
The magnitude and variability of the terrestrial CO2 sink remain uncertain, partly due to limited global information on ecosystem nitrogen (N) and its cycle. Without N constraint in ecosystem models, the simulated benefits from CO2 fertilization and CO2-induced increases in water use efficiency (WUE) may be overestimated. In this study, satellite observations of a relative measure of chlorophyll content are used as a proxy for leaf photosynthetic N content globally for 2003-2011. Global gross primary productivity (GPP) and evapotranspiration are estimated under elevated CO2 and N-constrained model scenarios. Results suggest that the rate of global GPP increase is overestimated by 85% during 2000-2015 without N limitation. This limitation is found to occur in many tropical and boreal forests, where a negative leaf N trend indicates a reduction in photosynthetic capacity, thereby suppressing the positive vegetation response to enhanced CO2 fertilization. Based on our carbon-water coupled simulations, enhanced CO2 concentration decreased stomatal conductance and hence increased WUE by 10% globally over the 1982 to 2015 time frame. Due to increased anthropogenic N application, GPP in croplands continues to grow and offset the weak negative trend in forests due to N limitation. Our results also show that the improved WUE is unlikely to ease regional droughts in croplands because of increases in evapotranspiration, which are associated with the enhanced GPP. Although the N limitation on GPP increase is large, its associated confidence interval is still wide, suggesting an urgent need for better understanding and quantification of N limitation from satellite observations.
Jennings, Katie A; Guerrieri, Rossella; Vadeboncoeur, Matthew A; Asbjornsen, Heidi
2016-04-01
Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) ofQuercus velutinaLamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low- and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar %N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increasedQ. velutinasensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2has improved iWUE, with N fertilization and CO2having synergistic effects on iWUE. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sreeharsha, Rachapudi Venkata; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra
2015-02-01
In the present study, we investigated the likely consequences of future atmospheric CO2 concentrations [CO2] on growth, physiology and reproductive phenology of Pigeonpea. A short duration Pigeonpea cultivar (ICPL 15011) was grown without N fertilizer from emergence to final harvest in CO2 enriched atmosphere (open top chambers; 550μmolmol(-1)) for two seasons. CO2 enrichment improved both net photosynthetic rates (Asat) and foliar carbohydrate content by 36 and 43%, respectively, which further reflected in dry biomass after harvest, showing an increment of 29% over the control plants. Greater carboxylation rates of Rubisco (Vcmax) and photosynthetic electron transport rates (Jmax) in elevated CO2 grown plants measured during different growth periods, clearly demonstrated lack of photosynthetic acclimation. Further, chlorophyll a fluorescence measurements as indicated by Fv/Fm and ΔF/Fm' ratios justified enhanced photosystem II efficiency. Mass and number of root nodules were significantly high in elevated CO2 grown plants showing 58% increase in nodule mass ratio (NMR) which directly correlated with Pn. Growth under high CO2 showed significant ontogenic changes including delayed flowering. In conclusion, our data demonstrate that the lack of photosynthetic acclimation and increased carbohydrate-nitrogen reserves modulate the vegetative and reproductive growth patterns in Pigeonpea grown under elevated CO2. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Agricultural management impact on greenhouse gas emissions
USDA-ARS?s Scientific Manuscript database
Management practices used on croplands to enhance crop yields and quality can contribute about 10 to 20% of global greenhouse gases (GHGs: carbon dioxide [CO2], nitrous oxide [N2O], and methane [CH4]). Some of these practices are tillage, cropping systems, N fertilization, organic fertilizer applica...
Efficiency of small scale carbon mitigation by patch iron fertilization
NASA Astrophysics Data System (ADS)
Sarmiento, J. L.; Slater, R. D.; Dunne, J.; Gnanadesikan, A.; Hiscock, M. R.
2010-11-01
While nutrient depletion scenarios have long shown that the high-latitude High Nutrient Low Chlorophyll (HNLC) regions are the most effective for sequestering atmospheric carbon dioxide, recent simulations with prognostic biogeochemical models have suggested that only a fraction of the potential drawdown can be realized. We use a global ocean biogeochemical general circulation model developed at GFDL and Princeton to examine this and related issues. We fertilize two patches in the North and Equatorial Pacific, and two additional patches in the Southern Ocean HNLC region north of the biogeochemical divide and in the Ross Sea south of the biogeochemical divide. We evaluate the simulations using observations from both artificial and natural iron fertilization experiments at nearby locations. We obtain by far the greatest response to iron fertilization at the Ross Sea site, where sea ice prevents escape of sequestered CO2 during the wintertime, and the CO2 removed from the surface ocean by the biological pump is carried into the deep ocean by the circulation. As a consequence, CO2 remains sequestered on century time-scales and the efficiency of fertilization remains almost constant no matter how frequently iron is applied as long as it is confined to the growing season. The second most efficient site is in the Southern Ocean. The North Pacific site has lower initial nutrients and thus a lower efficiency. Fertilization of the Equatorial Pacific leads to an expansion of the suboxic zone and a striking increase in denitrification that causes a sharp reduction in overall surface biological export production and CO2 uptake. The impacts on the oxygen distribution and surface biological export are less prominent at other sites, but nevertheless still a source of concern. The century time scale retention of iron in this model greatly increases the long-term biological response to iron addition as compared with simulations in which the added iron is rapidly scavenged from the ocean.
Efficiency of small scale carbon mitigation by patch iron fertilization
NASA Astrophysics Data System (ADS)
Sarmiento, J. L.; Slater, R. D.; Dunne, J.; Gnanadesikan, A.; Hiscock, M. R.
2009-11-01
While nutrient depletion scenarios have long shown that the high-latitude High Nutrient Low Chlorophyll (HNLC) regions are the most effective for sequestering atmospheric carbon dioxide, recent simulations with prognostic biogeochemical models have suggested that only a fraction of the potential drawdown can be realized. We use a global ocean biogeochemical general circulation model developed at GFDL and Princeton to examine this and related issues. We fertilize two patches in the North and Equatorial Pacific, and two additional patches in the Southern Ocean HNLC region north of the biogeochemical divide and in the Ross Sea south of the biogeochemical divide. We obtain by far the greatest response to iron fertilization at the Ross Sea site. Here the CO2 remains sequestered on century time-scales and the efficiency of fertilization remains almost constant no matter how frequently iron is applied as long as it is confined to the growing season. The second most efficient site is in the Southern Ocean. Here the biological response to iron fertilization is comparable to the Ross Sea, but the enhanced biological uptake of CO2 is more spread out in the vertical and thus less effective at leading to removal of CO2 from the atmosphere. The North Pacific site has lower initial nutrients and thus a lower efficiency. Fertilization of the Equatorial Pacific leads to an expansion of the suboxic zone and a striking increase in denitrification that causes a sharp reduction in overall surface biological export production and CO2 uptake. The impacts on the oxygen distribution and surface biological export are less prominent at other sites, but nevertheless still a source of concern. The century time scale retention of iron in these models greatly increases the long-term biological response to iron addition as compared with models in which the added iron is rapidly scavenged from the ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowski, Meghan N.; Crow, Susan E.; Meki, Manyowa N.
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHGmore » emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO 2), as methane was oxidized and nitrous oxide (N 2O) emission was very low even following fertilization. High N 2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO 2 flux. Furthermore, deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated below ground. In the first two years of cultivation napier grass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.« less
Pawlowski, Meghan N.; Crow, Susan E.; Meki, Manyowa N.; ...
2017-01-04
Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHGmore » emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO 2), as methane was oxidized and nitrous oxide (N 2O) emission was very low even following fertilization. High N 2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO 2 flux. Furthermore, deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated below ground. In the first two years of cultivation napier grass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.« less
NASA Astrophysics Data System (ADS)
Nelson, E. A.; Thomas, S. C.
2007-12-01
Global increases in temperature and atmospheric CO2 concentration are predicted to enhance tree growth in the short term, but studies of current impacts of climate change on Canada's forests are limited. This study examined the effects of increasing temperature and atmospheric CO2 concentration on tree ring growth in west-central Manitoba and northern Ontario, sampling white spruce (Picea glauca) and black spruce (Picea mariana), respectively. Over 50 tree cores from each site were sampled, analysed for ring-width, cross-dated and detrended, generating a ~100 y chronology for each population. We found a positive correlation between ring-width increment and spring temperatures (April-May: p<0.005) in Ontario. In Manitoba, however, we found a negative correlation between summer temperatures (Jul-Aug: p<0.005) and ring-width increment coincident with a positive relationship with summer precipitation (July: p<0.03). We examined the residuals following a regression with temperature for a positive trend over time, which has been interpreted in prior studies as evidence for a CO2 fertilization effect. We detected no such putative CO2 fertilization signal in either spruce population. Our results suggest that temperature-limited lowland black spruce communities may respond positively to moderate warming, but that water-limited upland white spruce communities may suffer from drought stress under high temperature conditions. Neither population appears to benefit from increasing CO2 availability.
Management effects on greenhouse gas emissions from a fen covered with riverine silt
NASA Astrophysics Data System (ADS)
Bräuer, Melanie; Gatersleben, Peter; Tiemeyer, Bärbel
2017-04-01
Drainage is necessary to use peatlands for conventional agriculture, but this practice causes high emissions of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O). The effect of hydrological conditions and management on greenhouse gas (GHG) emissions from "true" peat soils is relatively well examined, but there is little data on GHG emissions from organic soils covered with mineral soil. Such a cover may either be man-made to improve the trafficability of the fields or natural, e.g. due to the deposition of riverine silt. Such mineral covers are widespread in North-Western Germany and other regions with intensively used peatlands. Here, we aim to evaluate the effect of management, water table depth and properties of the mineral cover on the emissions of CO2, N2O and methane (CH4). As the majority of peatlands in North-Western Germany, the study area is used as grassland. The area is artificially drained and intensively used (4 to 5 cuts per year, annual nitrogen fertilisation of 112 to 157 kg/ha). The fen peat with a thickness of 0.6 to 1.50 m is covered by riverine silt deposited by the river Weser. Six measurement sites have been chosen to represent typical agricultural management, soil properties and hydrological conditions of one hydrological management unit. The sites differ in the soil organic carbon (SOC) content of the riverine silt (4 - 15 % SOC), the occurrence of a ploughed horizon as well as water and agricultural management. We use static closed chambers to measure CO2, CH4 and N2O fluxes. CO2 measurement campaigns using transparent and opaque chambers and a portable IRGA take place every third or fourth week depending on season. CH4 and N2O samples are taken every second week and, in addition, on the first, third and seventh day after fertilizer application. Samples are analyzed by gas chromatography. First results show negligible CH4 fluxes due to low groundwater levels. Total N2O emissions reflected mainly the different fertilizer application rates although there were rarely specific N2O peaks directly after fertilizer application, probably due to low soil moisture during these periods. Estimated from the first six months of data, N2O emissions from peat soils covered with riverine silt are in the same range as emissions from true peat soils with comparable fertilisation rates. First results on CO2 emissions will be presented as well.
HIV/AIDS and Infertility: Emerging Problems in the Era of Highly Active Antiretrovirals
Kushnir, Vitaly A.; Lewis, William
2011-01-01
Objective To review the effects of HIV/AIDS, associated co-morbid conditions, and side effects of antiretroviral treatment on fertility. Design A Pubmed computer search was performed to identify relevant articles. Setting Research institution. Intervention(s) None. Result(s) Biological alterations in reproductive physiology may account for sub-fertility in patients infected with HIV. Psychosocial factors in patients with HIV infection may affect reproductive desires and outcomes. Antiretroviral medications may have direct toxicity on gametes and embryos. Available evidence indicates that fertility treatments can be a safe option for HIV-discordant couples; although, potential risk of viral transmission cannot be completely eliminated. Conclusion(s) Reproductive desires are increasingly becoming prominent in the healthcare of young HIV-infected patients. Additional data is needed to address the effect of HIV and its treatments on fertility and reproductive outcomes. PMID:21722892
Balshi, M. S.; McGuire, Anthony David; Duffy, P.; Flannigan, M.; Kicklighter, David W.; Melillo, J.
2009-01-01
The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post-fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.
Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai
2018-01-01
The interactive effects of CO2 elevation, N fertilization, and reduced irrigation regimes on fruit yield (FY) and quality in tomato (Solanum lycopersicum L.) were investigated in a split-root pot experiment. The plants were grown in two separate climate-controlled greenhouse cells at atmospheric [CO2] of 400 and 800 ppm, respectively. In each cell, the plants were fertilized at either 100 or 200 mg N kg-1 soil and were either irrigated to full water holding capacity [i.e., a volumetric soil water content of 18%; full irrigation (FI)], or using 70% water of FI to the whole pot [deficit irrigation (DI)] or alternately to only half of the pot [partial root-zone irrigation (PRI)]. The yield and fruit quality attributes mainly from sugars (sucrose, fructose, and glucose) and organic acids (OAs; citric acid and malic acid) to various ionic (NH4+, K+, Mg2+, Ca2+, NO3-, SO42-, and PO43-) concentrations in fruit juice were determined. The results indicated that lower N supply reduced fruit number and yield, whereas it enhanced some of the quality attributes of fruit as indicated by greater firmness and higher concentrations of sugars and OAs. Elevated [CO2] (e[CO2]) attenuated the negative influence of reduced irrigation (DI and PRI) on FY. Principal component analysis revealed that the reduced irrigation regimes, especially PRI, in combination with e[CO2] could synergistically improve the comprehensive quality of tomato fruits at high N supply. These findings provide useful knowledge for sustaining tomato FY and quality in a future drier and CO2-enriched environment. PMID:29636756
Application of intracytoplasmic sperm injection (ICSI) for fertilization and development in birds.
Shimada, Kiyoshi; Ono, Tamao; Mizushima, Shusei
2014-01-15
Intracytoplasmic sperm injection (ICSI) technology in birds has been hampered due to opacity of oocyte. We developed ICSI-assisted fertilization and gene transfer in quail. This paper reviews recent advances of our ICSI experiments. The oocyte retrieved from the oviduct and a quail sperm was injected into the oocyte under a stereomicroscope. The oocyte was cultured for 24h at 41°C under 5% CO2 in air. The fertilization and development was assessed by microscopic observation. The fertility rate ranged 12-18% and development varied from stage II to V in trials. To improve the fertility rate, phospholipase C (PLC) zeta was injected with a sperm. It was increased to 37-50%. Furthermore, injection of inositol trisphosphate increased to over 85%. Quail oocyte can be fertilized with chicken sperm and so can testicular elongated spermatid. To extend embryonic development, chicken eggshell was used as a surrogate culture at 37°C after the 24h incubation at 41°C under 5% CO2 in air. It survived up to 2days thereafter. Finally, gene transfer was attempted in quail egg. The sperm membrane was disrupted with Triton X-100 (TX-100) and was injected with PLCzeta cRNA and enhanced green fluorescent protein (EGFP) gene in oocyte. The GFP expression was evaluated at 24h incubation at 41°C under 5% CO2 in air in the embryos. While the expression was not detected in the control oocytes, the experimental treatment induced blastoderm development (44%) of the oocytes and 86% of blastoderm showed fluorescent emission. In addition, PCR analysis detected EGFP fragments in 50% of GFP-expressing blastoderm. Our ICSI method may be the first step toward the production of transgenic birds. Copyright © 2013 Elsevier Inc. All rights reserved.
Combined global change effects on ecosystem processesin nine U.S. topographically complex areas
Hartman, Melannie D.; Baron, Jill S.; Ewing, Holly A.; Weathers, Kathleen
2014-01-01
Concurrent changes in climate, atmospheric nitrogen (N) deposition, and increasing levels of atmospheric carbon dioxide (CO2) affect ecosystems in complex ways. The DayCent-Chem model was used to investigate the combined effects of these human-caused drivers of change over the period 1980–2075 at seven forested montane and two alpine watersheds in the United States. Net ecosystem production (NEP) increased linearly with increasing N deposition for six out of seven forested watersheds; warming directly increased NEP at only two of these sites. Warming reduced soil organic carbon storage at all sites by increasing heterotrophic respiration. At most sites, warming together with high N deposition increased nitrous oxide (N2O) emissions enough to negate the greenhouse benefit of soil carbon sequestration alone, though there was a net greenhouse gas sink across nearly all sites mainly due to the effect of CO2 fertilization and associated sequestration by plants. Over the simulation period, an increase in atmospheric CO2 from 350 to 600 ppm was the main driver of change in net ecosystem greenhouse gas sequestration at all forested sites and one of two alpine sites, but an additional increase in CO2 from 600 to 760 ppm produced smaller effects. Warming either increased or decreased net greenhouse gas sequestration, depending on the site. The N contribution to net ecosystem greenhouse gas sequestration averaged across forest sites was only 5–7 % and was negligible for the alpine. Stream nitrate (NO3−) fluxes increased sharply with N-loading, primarily at three watersheds where initial N deposition values were high relative to terrestrial N uptake capacity. The simulated results displayed fewer synergistic responses to warming, N-loading, and CO2 fertilization than expected. Overall, simulations with DayCent-Chem suggest individual site characteristics and historical patterns of N deposition are important determinants of forest or alpine ecosystem responses to global change.
Cheng-Fang, Li; Dan-Na, Zhou; Zhi-Kui, Kou; Zhi-Sheng, Zhang; Jin-Ping, Wang; Ming-Li, Cai; Cou-Gui, Cao
2012-01-01
Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha(-1)) on fluxes of CH(4) and CO(2), and soil organic C (SOC) sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH(4) emissions by 13%-66% and SOC by 21%-94% irrespective of soil sampling depths, but had no effect on CO(2) emissions in either year. Tillage significantly affected CH(4) and CO(2) emissions, where NT significantly decreased CH(4) emissions by 10%-36% but increased CO(2) emissions by 22%-40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%-48% in the 0-5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0-20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered.
NASA Astrophysics Data System (ADS)
Stretch, V.; Gedalof, Z.; Berg, A. A.
2010-12-01
Increased atmospheric CO2 could increase photosynthetic rates and cause trees to use water more efficiently, thereby increasing overall growth rates relative to climatic limiting factors. CO2 fertilization has been found across a range of forest types; however results have been inconsistent and based on short-term studies. Long-term studies based on tree-rings have generally been restricted to a few sites and have produced conflicting results. An initial global analysis of tree-ring widths for evidence of increasing growth relative to drought suggested a small but highly significant proportion of trees exhibit increasing growth over the past 130 years. These growth increases could not be attributed to increasing water use efficiency, elevation effects, nitrogen deposition, or divergence. These results suggest that CO2 fertilization is occurring at some locations and may influence future forest dynamics but this does not appear to occur at all locations. The processes causing differential responses are the focus of this study. Here we illustrate response differences between Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Using multiple site chronologies from these species over western North America, we demonstrate several site-specific explanations for differential responses to CO2 fertilization, such as forest composition, density, slope, aspect, soil type, and position relative to range limits.
Dale Johnson; Donn Geisinger; Roger Walker; John Newman; James Vose; Katherine Elliott; Timothy Ball
1994-01-01
The purpose of this paper is to describe the effects of C02 and N treatments on soil pC02, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO...
Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae
NASA Astrophysics Data System (ADS)
Andersen, Sissel; Grefsrud, Ellen S.; Harboe, Torstein
2017-02-01
The increasing amount of dissolved anthropogenic CO2 has caused a drop in pH values in the open ocean known as ocean acidification. This change in seawater carbonate chemistry has been shown to have a negative effect on a number of marine organisms. Early life stages are the most vulnerable, and especially the organisms that produce calcified structures in the phylum Mollusca. Few studies have looked at effects on scallops, and this is the first study presented including fed larvae of the great scallop (Pecten maximus) followed until day 14 post-fertilization. Fertilized eggs from unexposed parents were exposed to three levels of pCO2 using four replicate units: 465 (ambient), 768 and 1294 µatm, corresponding to pHNIST of 7.94, 7.75 (-0.19 units) and 7.54 (-0.40 units), respectively. All of the observed parameters were negatively affected by elevated pCO2: survival, larval development, shell growth and normal shell development. The latter was observed to be affected only 2 days after fertilization. Negative effects on the fed larvae at day 7 were similar to what was shown earlier for unfed P. maximus larvae. Growth rate in the group at 768 µatm seemed to decline after day 7, indicating that the ability to overcome the environmental change at moderately elevated pCO2 was lost over time. The present study shows that food availability does not decrease the sensitivity to elevated pCO2 in P. maximus larvae. Unless genetic adaptation and acclimatization counteract the negative effects of long term elevated pCO2, recruitment in populations of P. maximus will most likely be negatively affected by the projected drop of 0.06-0.32 units in pH within year 2100.
Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure
USDA-ARS?s Scientific Manuscript database
While previous elevated atmospheric CO2 research has addressed changes in belowground processes, its effects on soil structure remain virtually undescribed. This study examined the long-term effects of elevated CO2 and N fertilization on soil structural changes in a bahiagrass pasture grown on a san...
Forest response to elevated CO2 is conserved across a broad range of productivity
R. Norby; E. DeLucia; B. Gielen; C. Calfapietra; C. Giardina; J. King; J. Ledford; H. McCarthy; D. Moore; R. Ceulemans; P. De Angelis; A. C. Finzi; D. F. Karnosky; M. E. Kubiske; M. Lukac; K. S. Pregitzer; G. E. Scarascia-Mugnozza; W. Schlesinger and R. Oren.
2005-01-01
Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO2] ("CO2 fertilization...
Transient nature of CO2 fertilization in arctic tundra
Walter C. Oechel; Sid Cowles; Nancy Grulke; Steven J. Hastings; Bill Lawrence; Tom Prudhomme; George Riechers; Boyd Strain; David Tissue; George Vourlitis
1994-01-01
There has been much debate about the effect of increased atmospheric CO2 concentrations on plant net primary production1,3 and on net ecosystem CO2 flux3â10. Apparently conflicting experimental findings could be the result of differences in genetic potential11â15...
Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov
2010-05-01
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum
NASA Astrophysics Data System (ADS)
Zahariev, Konstantin; Christian, James R.; Denman, Kenneth L.
2008-04-01
The Canadian Model of Ocean Carbon (CMOC) has been developed as part of a global coupled climate carbon model. In a stand-alone integration to preindustrial equilibrium, the model ecosystem and global ocean carbon cycle are in general agreement with estimates based on observations. CMOC reproduces global mean estimates and spatial distributions of various indicators of the strength of the biological pump; the spatial distribution of the air-sea exchange of CO 2 is consistent with present-day estimates. Agreement with the observed distribution of alkalinity is good, consistent with recent estimates of the mean rain ratio that are lower than historic estimates, and with calcification occurring primarily in the lower latitudes. With anthropogenic emissions and climate forcing from a 1850-2000 climate model simulation, anthropogenic CO 2 accumulates at a similar rate and with a similar spatial distribution as estimated from observations. A hypothetical scenario for complete elimination of iron limitation generates maximal rates of uptake of atmospheric CO 2 of less than 1 PgC y -1, or about 11% of 2004 industrial emissions. Even a ‘perfect’ future of sustained fertilization would have a minor impact on atmospheric CO 2 growth. In the long term, the onset of fertilization causes the ocean to take up an additional 77 PgC after several thousand years, compared with about 84 PgC thought to have occurred during the transition into the last glacial maximum due to iron fertilization associated with increased dust deposition.
NASA Astrophysics Data System (ADS)
Erba, E.
2013-12-01
The topical emergence of climate change as a crucial issue for society and governments has urged the understanding of the future state of the planet within the context of increasing carbon dioxide concentrations. In the near future, the ocean's uptake of CO2 is expected to rapidly decline because of surface warming, increased vertical stratification, and slowed thermohaline circulation. The Anthropocene CO2 emissions are inferred to be the cause of global warming and alteration of ocean chemistry, triggering unknown responses of marine biota in terms of extinction, innovation and/or temporary adaptations. During the Mesozoic under excess CO2 and greenhouse conditions, the ocean became depleted of oxygen, promoting the burial of massive amounts of organic matter. These episodes are named Oceanic Anoxic Events (OAEs) and might provide guidance as to the response of marine biota to massive CO2 releases and how and at what rate pre-perturbation conditions are eventually restored. After over three decades of research on OAEs, an impressive amount of data has been generated: there is a general consensus on the role of Large Igneous Provinces (LIPs) inducing CO2 increases, greenhouse climate and profound variations in chemical, physical and trophic characteristics of the ocean. OAEs can be studied to decipher the complexity of drivers and of responses within and among different organisms to CO2 pulses, extreme warmth, weathering changes, ocean fertilization and acidification to add the long-term and large-scale prospective to investigations on current, very-short-term and local responses. In Jurassic and Cretaceous oceans, coccolithophores were already a most efficient carbonate-forming group and OAEs offer the opportunity of characterizing variations in their abundance, diversity, and morphology to trace ecological affinities and adaptations to oceanic ecosystem perturbations. We quantitatively investigated the Toarcian OAE, the early Aptian OAE1a and the latest Cenomanian OAE2 and detected major changes in nannofossil abundance, composition and biomineralization, separating most-, intermediate-, and least-tolerant taxa. The T-OAE, OAE1a and OAE2 share similarities in nannoplankton changes, although some differential response was detected. Nannofossil indices highlight strong variability in climate and fertility during OAEs and point to ocean acidification as central distress to calcifying plankton. In general, calcareous phytoplankton show a major calcification failure of heavily calcified forms, ephemeral coccolith dwarfism and malformation possibly representing most remarkable species-specific adjustments to survive surface water acidity. However, different patterns and degree of calcification reduction, dwarfism and malformation during OAEs suggest unequal volcanic CO2 rates, pulses and amount. The duration of OAEs seems a direct measure of LIP-derived excess CO2, hampering biocalcification while turning the oceans into an immense anoxic pool. Changes in ocean chemistry, structure, and fertility during LIP formation might explain observed tempo and mode of nannoplankton evolution: major origination episodes might result from magmas especially enriched in biogeochemically important elements from the mantle.
NASA Astrophysics Data System (ADS)
Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank
2009-12-01
Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.
Bento, Camila Bolfarini; Filoso, Solange; Pitombo, Leonardo Machado; Cantarella, Heitor; Rossetto, Raffaella; Martinelli, Luiz Antonio; do Carmo, Janaina Braga
2018-01-15
Sugarcane is a widespread bioenergy crop in tropical regions, and the growing global demand for renewable energy in recent years has led to a dramatic expansion and intensification of sugarcane agriculture in Brazil. Currently, extensive areas of low-intensity pasture are being converted to sugarcane, while management in the remaining pasture is becoming more intensive, i.e., includes tilling and fertilizer use. In this study, we assessed how such changes in land use and management practices alter emissions of greenhouse gases (GHG) such as CO 2 , N 2 O and CH 4 by measuring in situ fluxes for one year after conversion from low-intensity pasture to conventional sugarcane agriculture and management-intensive pasture. Results show that CO 2 and N 2 O fluxes increased significantly in pasture and sugarcane with tillage, fertilizer use, or both combined. Emissions were highly variable for all GHGs, yet, cumulatively, it was clear that annual emissions in CO 2 -equivalent (CO 2 -eq) were higher in management-intense pasture and sugarcane than in unmanaged pasture. Surprisingly, tilled pasture with fertilizer (management-intensive pasture) resulted in higher CO 2 -eq emissions than conventional sugarcane. We concluded that intensification of pasture management and the conversion of pasture to sugarcane can increase the emission factor (EF) estimated for sugarcane produced in Brazil. The role of management practices and environmental conditions and the potential for reducing emissions are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility
K.A. Novick; G.G. Katul; H.R. McCarthy; R. Oren
2012-01-01
Warmer climates induced by elevated atmospheric CO2 (eCO2) are expected to increase damaging bark beetle activity in pine forests, yet the effect of eCO2 on resin productionâthe treeâs primary defense against beetle attackâremains largely unknown. Following growth-differentiation balance theory, if extra carbohydrates produced under eCO2 are not consumed by respiration...
NASA Astrophysics Data System (ADS)
Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan
2016-08-01
Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG and Nr releases, especially for CH4 emission and NH3 volatilization, from rice production in the TLR could be further reduced, considering the current incorporation pattern of wheat straw and N fertilizer.
Camarero, J Julio; Gazol, Antonio; Galván, Juan Diego; Sangüesa-Barreda, Gabriel; Gutiérrez, Emilia
2015-02-01
Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (c(a)) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold-limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high-elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased c(a) by focusing on region- and age-dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing-season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151-300 year-old trees) and old-mature trees (301-450 year-old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated c(a) on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought-prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming-triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising c(a) on forest growth. © 2014 John Wiley & Sons Ltd.
Sainju, Upendra M; Stevens, William B; Caesar-Tonthat, Thecan; Liebig, Mark A
2012-01-01
Management practices, such as irrigation, tillage, cropping system, and N fertilization, may influence soil greenhouse gas (GHG) emissions. We quantified the effects of irrigation, tillage, crop rotation, and N fertilization on soil CO, NO, and CH emissions from March to November, 2008 to 2011 in a Lihen sandy loam in western North Dakota. Treatments were two irrigation practices (irrigated and nonirrigated) and five cropping systems (conventional-tilled malt barley [ L.] with N fertilizer [CT-N], conventional-tilled malt barley with no N fertilizer [CT-C], no-tilled malt barley-pea [ L.] with N fertilizer [NT-PN], no-tilled malt barley with N fertilizer [NT-N], and no-tilled malt barley with no N fertilizer [NT-C]). The GHG fluxes varied with date of sampling and peaked immediately after precipitation, irrigation, and/or N fertilization events during increased soil temperature. Both CO and NO fluxes were greater in CT-N under the irrigated condition, but CH uptake was greater in NT-PN under the nonirrigated condition than in other treatments. Although tillage and N fertilization increased CO and NO fluxes by 8 to 30%, N fertilization and monocropping reduced CH uptake by 39 to 40%. The NT-PN, regardless of irrigation, might mitigate GHG emissions by reducing CO and NO emissions and increasing CH uptake relative to other treatments. To account for global warming potential for such a practice, information on productions associated with CO emissions along with NO and CH fluxes is needed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Moraru, P. I.; Rusu, T.
2012-04-01
Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS-UEFISCSU, project number PN II-RU 273/2010.
Møller, Jacob; Boldrin, Alessio; Christensen, Thomas H
2009-11-01
Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO(2)-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG accounting for a generic AD facility with either biogas utilization at the facility or upgrading of the gas for vehicle fuel resulted in a GWF from -375 (a saving) to 111 (a load) kg CO(2)-eq. tonne(-1) wet waste. In both cases the digestate was used for fertilizer substitution. This large range was a result of the variation found for a number of key parameters: energy substitution by biogas, N(2)O-emission from digestate in soil, fugitive emission of CH( 4), unburned CH(4), carbon bound in soil and fertilizer substitution. GWF for a specific type of AD facility was in the range -95 to -4 kg CO(2)-eq. tonne(-1) wet waste. The ranges of uncertainty, especially of fugitive losses of CH(4) and carbon sequestration highly influenced the result. In comparison with the few published GWFs for AD, the range of our data was much larger demonstrating the need to use a consistent and robust approach to GHG accounting and simultaneously accept that some key parameters are highly uncertain.
Effects of elevated atmospheric CO2 and N fertilization on bahiagrass root distribution
USDA-ARS?s Scientific Manuscript database
The effects of elevated atmospheric CO2 on pasture systems remain understudied in the Southeastern US. A 10-year study of bahiagrass (Paspalum notatum Flüggé) response to elevated CO2 was established in 2005 using open top field chambers on a Blanton loamy sand (loamy siliceous, thermic, Grossarenic...
USDA-ARS?s Scientific Manuscript database
Elevated atmospheric CO2 concentrations ([CO2]) are expected to benefit the production of C3 crops through the CO2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is also widely believed to lead to greater benefits in...
Understanding Nitrogen Fixation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul J. Chirik
The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactionsmore » are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from atmospheric nitrogen could, in principle, be more energy-efficient. This is particularly attractive given the interest in direct hydrazine fuel cells.« less
Subtask 1.22 - Microbial Cycling of CH4, CO2, and N2O in a Wetlands Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dingyi Ye; Bethany Kurz; Marc Kurz
Soil microbial metabolic activities play an important role in determining CO{sub 2}, CH{sub 4}, and N{sub 2}O fluxes from terrestrial ecosystems. To verify and evaluate CO{sub 2} sequestration potential by wetland restoration in the Prairie Pothole Region (PPR), as well as to address concern over restoration effects on CH{sub 4} and N{sub 2}O emissions, laboratory and in situ microcosm studies on microbial cycling of CO{sub 2}, CH{sub 4}, and N{sub 2}O were initiated. In addition, to evaluate the feasibility of the use of remote sensing to detect soil gas flux from wetlands, a remote-sensing investigation was also conducted. Results ofmore » the laboratory microcosm study unequivocally proved that restoration of PPR wetlands does sequester atmospheric CO{sub 2}. Under the experimental conditions, the simulated restored wetlands did not promote neither N{sub 2}O nor CH{sub 4} fluxes. Application of ammonia enhanced both N{sub 2}O and CH{sub 4} emission, indicating that restoration of PPR wetlands may reduce both N{sub 2}O and CH{sub 4} emission by cutting N-fertilizer input. Enhancement of CO{sub 2} emission by the N-fertilizer was observed, and this observation revealed an overlooked fact that application of N-fertilizer may potentially increase CO{sub 2} emission. In addition, the CO{sub 2} results also demonstrate that wetland restoration sequesters atmospheric carbon not only by turning soil conditions from aerobic to anoxic, but also by cutting N-fertilizer input that may enhance CO{sub 2} flux. The investigation on microbial community structure and population dynamics showed that under the experimental conditions restoration of the PPR wetlands would not dramatically increase population sizes of those microorganisms that produce N{sub 2}O and CH{sub 4}. Results of the in situ study proved that restoration of the PPR wetland significantly reduced CO{sub 2} flux. Ammonia enhanced the greenhouse gas emission and linearly correlated to the CO{sub 2} flux within the experimental rate range (46-200 kg N ha{sup -1}). The results also clarified that the overall reduction in global warming potential (GWP) by the PPR wetland restoration was mainly contributed from reduction in CO{sub 2} flux. These results demonstrate that restoration of currently farmed PPR wetlands will significantly reduce the overall GWP budget. Remote sensing investigations indicate that while the 15-meter resolution of the imagery was sufficient to delineate multiple zones in larger wetlands, it was not sufficient for correlation with the ground-based gas flux measurement data, which were collected primarily for smaller wetland sites (<250 meters) in the areas evaluated by this task. To better evaluate the feasibility of using satellite imagery to quantify wetland gas flux, either higher-resolution satellite imagery or gas flux data from larger wetland sites is needed.« less
Coucheney, Elsa; Strömgren, Monika; Lerch, Thomas Z; Herrmann, Anke M
2013-01-01
Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ soil C respiration was investigated in a boreal forest, which has received long-term nutrient fertilization (22 years), and compared with the temperature sensitivity of C mineralization measured in the laboratory. We found that the fertilization treatment increased both the response of soil in situ CO2 effluxes to a warming treatment and the temperature sensitivity of C mineralization measured in the laboratory (Q10). These results suggested that soil C may be more sensitive to an increase in temperature in long-term fertilized in comparison with nutrient poor boreal ecosystems. Furthermore, the fertilization treatment modified the SOC content and the microbial community composition, but we found no direct relationship between either SOC or microbial changes and the temperature sensitivity of C mineralization. However, the relation between the soil C:N ratio and the fungal/bacterial ratio was changed in the combined warmed and fertilized treatment compared with the other treatments, which suggest that strong interaction mechanisms may occur between nutrient input and warming in boreal soils. Further research is needed to unravel into more details in how far soil organic matter and microbial community composition changes are responsible for the change in the temperature sensitivity of soil C under increasing mineral N inputs. Such research would help to take into account the effect of fertilization managements on soil C storage in C cycling numerical models. PMID:24455147
NASA Astrophysics Data System (ADS)
Erhart, Eva; Schmid, Harald; Hülsbergen, Kurt-Jürgen; Hartl, Wilfried
2015-04-01
Humus and energy balances and greenhouse gas emissions with compost fertilization in organic farming compared with mineral fertilization E. Erhart, H. Schmid, K.-J. Hülsbergen, W. Hartl The positive effects of compost fertilization on soil humus with their associated benefits for soil quality are well-established. The aim of the present study was to assess the effect of compost fertilization on humus and energy balances and greenhouse gas emissions and to compare the results of the humus balances with the changes in soil organic carbon contents measured in the soil of the experimental field. In order to assess the effects of compost use in organic farming as compared to conventional farming practice using mineral fertilizers, the field experiment with compost fertilization 'STIKO' was set up in 1992 near Vienna, Austria, on a Molli-gleyic Fluvisol. It included three treatments with compost fertilization (C1, C2 and C3 with 8, 14 and 20 t ha-1 y-1 f. m. on average of 14 years), three treatments with mineral nitrogen fertilization (N1, N2 and N3 with 29, 46 and 63 kg N ha-1 y 1 on average) and an unfertilized control (0) in six replications in a latin rectangle design. In the field trial, biowaste compost from the composting plant of the City of Vienna was used. Data from the field experiment (from 14 experimental years) were fed into the model software REPRO to calculate humus and energy balances and greenhouse gas emissions. The model software REPRO (REPROduction of soil fertility) couples the balancing of C, N and energy fluxes. For the determination of the net greenhouse effect, REPRO performs calculations of C sequestration in the soil, CO2 emissions from the use of fossil energy and N2O emissions from the soil. Humus balances showed that compost fertilization at a rate of 8 t ha-1 y-1 (C1) resulted in a positive humus balance of +115 kg C ha-1 y-1. With 14 and 20 t ha-1 y-1 compost (C2 and C3), respectively, humus accumulated at rates of 558 and 1021 kg C ha-1 y-1. With mineral fertilization at rates of 29 - 63 kg N ha-1 y-1 (N1 - N3), balances were moderately negative ( 169 to -227 kg C ha-1 y-1), while a clear humus deficit of 457 kg C ha-1 y-1 showed in the unfertilized control. Compared with measured soil organic carbon data REPRO predicted soil organic carbon contents fairly well with the exception of the treatments with high compost rates. Here REPRO clearly overestimated soil organic carbon contents for this site. Energy efficiency, as described by the output/input ratio, was highest in the control, followed by C1. Mineral fertilization treatment N3 was most energy intensive. The greenhouse gas balance indicated net carbon sequestration already with medium compost rates (C2), and net carbon sequestration of 1700 kg CO2-eq ha-1 y-1 in C3. Mineral fertilization yielded net greenhouse gas emissions of around 2000 kg CO2-eq ha-1 y 1. The highest greenhouse gas emissions had the unfertilized control due to the degradation of soil organic matter and lowest organic matter input. These findings underline that compost fertilization holds a high potential for carbon sequestration and for the reduction of greenhouse gas emissions.
Simulated ocean acidification reveals winners and losers in coastal phytoplankton.
Bach, Lennart T; Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf
2017-01-01
The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.
Simulated ocean acidification reveals winners and losers in coastal phytoplankton
Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf
2017-01-01
The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean. PMID:29190760
NASA Astrophysics Data System (ADS)
Htun, Yin Min; Tong, Yanan; Gao, Pengcheng; Xiaotang, Ju
2017-05-01
Straw incorporation is a common agricultural practice, but the additional carbon source may increase greenhouse gas emissions by stimulating microbial activity in soil, particularly when straw is applied at the same time as nitrogen (N) fertilizer. We investigated the coupled effects of straw and N fertilizer on greenhouse gas emissions in a rainfed winter wheat-summer fallow system in Northwest China. Simultaneous applications of straw and N fertilizer increased N2O emissions by up to 88%, net greenhouse gas (NGHG) emission and net greenhouse gas intensity (NGHGI) by over 90%, and the N2O emission factor by over 2-fold. When straw was applied before N fertilizer, the emission factor (0.22%) decreased by approximately one-half compared with that for simultaneous applications (0.45%). In addition, early straw incorporation decreased N2O emissions, NGHG, and NGHGI by 35% (0.62 kg N2O-N ha-1 yr-1), 40% (242 kg CO2-eq ha-1 yr-1), and 38% (42 kg CO2-eq t-1 grain), respectively. We identified the period 30-35 days after N fertilization as a crucial period for evaluating the effectiveness of management practices on N2O emissions. The time between straw and fertilizer applications was negatively related to N2O emission (R2 = 0.8031; p < 0.01) but positively related to soil CH4 uptake (R2 = 0.7662; p < 0.01). Therefore, early straw incorporation can effectively mitigate greenhouse gas emissions by reducing N2O flux and increasing soil CH4 uptake without significantly decreasing grain yield.
Wingenter, Oliver W; Haase, Karl B; Strutton, Peter; Friederich, Gernot; Meinardi, Simone; Blake, Donald R; Rowland, F Sherwood
2004-06-08
Oceanic iron (Fe) fertilization experiments have advanced the understanding of how Fe regulates biological productivity and air-sea carbon dioxide (CO(2)) exchange. However, little is known about the production and consumption of halocarbons and other gases as a result of Fe addition. Besides metabolizing inorganic carbon, marine microorganisms produce and consume many other trace gases. Several of these gases, which individually impact global climate, stratospheric ozone concentration, or local photochemistry, have not been previously quantified during an Fe-enrichment experiment. We describe results for selected dissolved trace gases including methane (CH(4)), isoprene (C(5)H(8)), methyl bromide (CH(3)Br), dimethyl sulfide, and oxygen (O(2)), which increased subsequent to Fe fertilization, and the associated decreases in concentrations of carbon monoxide (CO), methyl iodide (CH(3)I), and CO(2) observed during the Southern Ocean Iron Enrichment Experiments.
NASA Astrophysics Data System (ADS)
Castanho, A. D.; Zhang, K.; Coe, M. T.; Costa, M. H.; Moorcroft, P. R.
2012-12-01
Field observations from undisturbed old-growth Amazonian forest plots have recently reported on the temporal variation of many of the physical and chemical characteristics such as: physiological properties of leaves, above ground live biomass, above ground productivity, mortality and turnover rates. However, although this variation has been measured, it is still not well understood what mechanisms control the observed temporal variability. The observed changes in time are believed to be a result of a combination of increasing atmospheric CO2 concentration, climate variability, recovery from natural disturbance (drought, wind blow, flood), and increase of nutrient availability. The time and spatial variability of the fertilization effect of CO2 on above ground biomass will be explored in more detail in this work. A precise understanding of the CO2 effect on the vegetation is essential for an accurate prediction of the future response of the forest to climate change. To address this issue we simultaneously explore the effects of climate variability, historical CO2 and land-use change on total biomass and productivity using two different Dynamic Global Vegetation Models (DGVM). We use the Integrated Biosphere Simulator (IBIS) and the Ecosystem Demography Model 2.1 (ED2.1). Using land use changes database from 1700 - 2008 we reconstruct the total carbon balance in the Amazonian forest in space and time and present how the models predict the forest as carbon sink or source and explore why the model and field data diverge from each other. From 1970 to 2005 the Amazonian forest has been exposed to an increase of approximately 50 ppm in the atmospheric CO2 concentration. Preliminary analyses with the IBIS and ED2.1 dynamic vegetation model shows the CO2 fertilization effect could account for an increase in above ground biomass of 0.03 and 0.04 kg-C/m2/yr on average for the Amazon basin, respectively. The annual biomass change varies temporally and spatially from about 0.01 - 0.08 Kg-C/m2/yr, indicating a significant combined effect of the physical environment and climatological variability. The change in biomass due to CO2 fertilization in this study is comparable to the lower limit of the change that has been observed in the field (0.04 - 0.085 kg-C/m2/yr), which suggests that other factors must also be considered to explain the total amount of biomass change observed in the field.
Zhi-Kui, Kou; Zhi-Sheng, Zhang; Jin-Ping, Wang; Ming-Li, Cai; Cou-Gui, Cao
2012-01-01
Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha−1) on fluxes of CH4 and CO2, and soil organic C (SOC) sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH4 emissions by 13%–66% and SOC by 21%–94% irrespective of soil sampling depths, but had no effect on CO2 emissions in either year. Tillage significantly affected CH4 and CO2 emissions, where NT significantly decreased CH4 emissions by 10%–36% but increased CO2 emissions by 22%–40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%–48% in the 0–5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0–20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered. PMID:22574109
Kantola, Ilsa B; Masters, Michael D; Beerling, David J; Long, Stephen P; DeLucia, Evan H
2017-04-01
Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils-applying crushed silicate rock as a soil amendment-is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and reduces N 2 O loss through pH buffering. As biofuel use increases, EW in bioenergy crops offers the opportunity to sequester CO 2 while reducing fossil fuel combustion. Uncertainties remain in the long-term effects and global implications of large-scale efforts to directly manipulate Earth's atmospheric CO 2 composition, but EW in agricultural lands is an opportunity to employ these soils to sequester atmospheric C while benefitting crop production and the global climate. © 2017 The Author(s).
Effect of Increasing Nitrogen Deposition on Soil Microbial Communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Shengmu; Xue, Kai; He, Zhili
2010-05-17
Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNAmore » from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.« less
Enhancement of Carbon Sequestration in west coast Douglas-fir Forests with Nitrogen Fertilization
NASA Astrophysics Data System (ADS)
Chen, B.; Jassal, R.; Black, A.; Brummer, C.; Spittlehouse, D.; Nesic, Z.
2008-12-01
Fertilization is one of the eligible management practices for C sequestering and hence reducing CO2 emissions under Article 3.4 of the Kyoto Protocol. In the coastal regions of British Columbia, which have very little nitrogen (N) deposition from pollution sources owing to their remote location, and soils deficient in N (Hanley et al., 1996), Douglas-fir stands respond to N fertilization (Brix, 1981; Fisher and Binkley, 2000; Chapin et al., 2002). However, a major concern with N fertilization is the potential loss from the soil surface of the highly potent greenhouse gas N2O, and little is known about such losses in N-fertilized forest soils. While it is necessary to determine and quantify the effects of N fertilization on stand C sequestration, it is also important to address environmental concerns by measuring N2O emissions to determine the net greenhouse gas (GHG) global warming potential (GWP). The GWP of N2O is 296 times (100-year time horizon) greater than that of CO2 (Ehhalt and Prather, 2001), yet there is little information on its net radiative forcing as a result of forest fertilization. We report two years of results on the effects of N fertilization in a chronosequence of three Douglas-fir stands (7, 19 and 58 years old, hereafter referred to as HDF00, HDF88 and DF49, respectively) on net C sequestration or net primary productivity measured using the eddy-covariance technique. DF49 (110 ha) and HDF88 (20 ha) were aerially fertilized with urea at 200 kg N ha-1 on Jan 13 and Feb 17, 2007, respectively, while due to its young age and competing understory, fertilizer to HDF00 (5 ha) was manually applied at 80 g urea/tree (60 kg N ha-1) along the tree drip line on Feb 13-14, 2007. Additionally, we calculate the net change in GHG GWP resulting from fertilization of DF49 by accounting for N2O emissions and energy costs of fertilizer production, transport, and application. We also compare polymer-coated slow-release urea (Environmentally Smart Nitrogen (ESN), Agrium Inc., Calgary, AB, Canada) with regular urea for its potential effectiveness in reducing N2O emissions from the forest-floor.
Informing climate models with rapid chamber measurements of forest carbon uptake.
Metcalfe, Daniel B; Ricciuto, Daniel; Palmroth, Sari; Campbell, Catherine; Hurry, Vaughan; Mao, Jiafu; Keel, Sonja G; Linder, Sune; Shi, Xiaoying; Näsholm, Torgny; Ohlsson, Klas E A; Blackburn, M; Thornton, Peter E; Oren, Ram
2017-05-01
Models predicting ecosystem carbon dioxide (CO 2 ) exchange under future climate change rely on relatively few real-world tests of their assumptions and outputs. Here, we demonstrate a rapid and cost-effective method to estimate CO 2 exchange from intact vegetation patches under varying atmospheric CO 2 concentrations . We find that net ecosystem CO 2 uptake (NEE) in a boreal forest rose linearly by 4.7 ± 0.2% of the current ambient rate for every 10 ppm CO 2 increase, with no detectable influence of foliar biomass, season, or nitrogen (N) fertilization. The lack of any clear short-term NEE response to fertilization in such an N-limited system is inconsistent with the instantaneous downregulation of photosynthesis formalized in many global models. Incorporating an alternative mechanism with considerable empirical support - diversion of excess carbon to storage compounds - into an existing earth system model brings the model output into closer agreement with our field measurements. A global simulation incorporating this modified model reduces a long-standing mismatch between the modeled and observed seasonal amplitude of atmospheric CO 2 . Wider application of this chamber approach would provide critical data needed to further improve modeled projections of biosphere-atmosphere CO 2 exchange in a changing climate. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Stelmach, W.; Bieganowski, A.; Kuzyakov, Y.
2016-12-01
Anaerobic digestion of organic wastes results in the production of biogas and post-fermentation sludge. Post-fermentation sludge, which is rich in nutrients and contains more easily accessible inorganic-N than comparable composts, can be used as an alternative fertilizer in organic agriculture systems. While the effects of post fermentation sludge application on crop health and productivity have been extensively studied, little is known about its effects on soil parameters and long-term soil health. Thus, the main aim of this study was to determine the effects of post-fermentation sludge fertilization on agriculture soil quality. Specifically, it examined the efficiency and sequence of sludge utilisation by microorganisms and its influence on the utilisation/stabilization of native soil organic matter (SOM).To determine changes in SOM turnover after the addition of sludge, we utilized a natural stable carbon isotope labelling approach. Sludge produced from C4 plant residues (e.g. maize) was applied to soil under C3 cropping, resulting in distinct stable isotope signatures of fertilizer and SOM. Measuring the carbon isotope composition of CO2 produced in this microcosm experiment permitted accurate determination of the proportion of CO2 fluxes arising from both C sources. The addition of post-fermentation sludge increased the CO2 emissions from the soil by 30%. δ13C analysis of the total CO2 efflux revealed that post-fermentation sludge decreased SOM decomposition by 42% compared to control. Only 34% of the post-fermentation sludge had been mineralized after two months of incubation in the soil.The collective results of our study reveal that application of post-fermentation sludge suppresses SOM decomposition, suggesting its use as a fertilizer could positively influence long-term soil quality. Finally, the success of the natural abundance microcosm labeling approach in our study supports its use as an effective method of analyzing the effects of various fertilization techniques on soil nutrient retention.
Soluble Adenylyl Cyclase of Sea Urchin Spermatozoa
Vacquier, Victor D.; Loza-Huerta, Arlet; García-Rincón, Juan; Darszon, Alberto; Beltrán, Carmen
2014-01-01
Fertilization, a key step in sexual reproduction, requires orchestrated changes in cAMP concentrations. It is notable that spermatozoa (sperm) are amongst the cell types with extremely high adenylyl cyclase (AC) activity. As production and consumption of this second messenger need to be locally regulated, the discovery of soluble AC (sAC) has broadened our understanding of how such cells deal with these requirements. In addition, because sAC is directly regulated by HCO3- it is able to translate CO2/HCO3-/pH changes into cAMP levels. Fundamental sperm functions such as maturation, motility regulation and the acrosome reaction are influenced by cAMP; this is especially true for sperm of the sea urchin (SU), an organism that has been a model in the study of fertilization for more than 130 years. Here we summarize the discovery and properties of SU sperm sAC, and discuss its involvement in sperm physiology. PMID:25064590
Gleadow, Roslyn M; Evans, John R; McCaffery, Stephanie; Cavagnaro, Timothy R
2009-11-01
Global food security in a changing climate depends on both the nutritive value of staple crops as well as their yields. Here, we examined the direct effect of atmospheric CO(2) on cassava (Manihot esculenta Cranz., manioc), a staple for 750 million people worldwide. Cassava is poor in nutrients and contains high levels of cyanogenic glycosides that break down to release toxic hydrogen cyanide when damaged. We grew cassava at three concentrations of CO(2) (C(a): 360, 550 and 710 ppm) supplied together with nutrient solution containing either 1 mM or 12 mM nitrogen. We found that total plant biomass and tuber yield (number and mass) decreased linearly with increasing C(a). In the worst-case scenario, tuber mass was reduced by an order of magnitude in plants grown at 710 ppm compared with 360 ppm CO(2). Photosynthetic parameters were consistent with the whole plant biomass data. It is proposed that since cassava stomata are highly sensitive to other environmental variables, the decrease in assimilation observed here might, in part, be a direct effect of CO(2) on stomata. Total N (used here as a proxy for protein content) and cyanogenic glycoside concentrations of the tubers were not significantly different in the plants grown at elevated CO(2). By contrast, the concentration of cyanogenic glycosides in the edible leaves nearly doubled in the highest C(a). If leaves continue to be used as a protein supplement, they will need to be more thoroughly processed in the future. With increasing population density, declining soil fertility, expansion into marginal farmland, together with the predicted increase in extreme climatic events, reliance on robust crops such as cassava will increase. The responses to CO(2) shown here point to the possibility that there could be severe food shortages in the coming decades unless CO(2) emissions are dramatically reduced, or alternative cultivars or crops are developed.
James M. Vose; Katherine J. Elliott; D.W. Johnson
1995-01-01
The evolution of carbon dioxide (CO2) from soils is due to the metabolic activity of roots, mycorrhizae, and soil micro- and macro-organisms. Although precise estimates of carbon (C) recycled to the atmosphere from belowground sources are unavailable, Musselman and Fox (1991) propose that the belowground contribution exceeds 100 Pg y-1...
EFFECTS OF ELEVATED CO2 AND N-FERTILIZATION ON SURVIVAL OF PONDEROSA PINE FINE ROOTS
We used minihizaotrons to assess the effects of elevated CO2N and season on the life-span of ponderosa pine (Pinus ponderosa Dougl. Ex Laws.) fine roots. CO2 levels were ambient air (A), ambient air + 175 ?mol mol-1 (A+175) and ambient air + 350 ?mol mol-1 (A+350). N treatments ...
USDA-ARS?s Scientific Manuscript database
Elevation of CO2 in the atmosphere will change requirements for minerals, mainly nitrogen, altering the relationship between nutrients demand and growth of the plants. We evaluated the interacting effects between CO2 concentrations (390 or 750 µL L-1) and nitrogen levels (3mM or 8mM) on the growth, ...
Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil
2017-04-10
Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO 2 (atm. CO 2 ) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO 2 concentration, and SO 4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO 2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO 2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes.
Dynamic constraints on CO2 uptake by an iron-fertilized Antarctic
NASA Technical Reports Server (NTRS)
Peng, Tsung-Hung; Broecker, Wallace S.; Oestlund, H. G.
1992-01-01
The topics covered include the following: tracer distribution and dynamics in the Antarctic Ocean; a model of Antarctic and Non-Antarctic Oceans; effects on an anthropogenically affected atmosphere; effects of seasonal iron fertilization; and implications of the South Atlantic Ventilation Experiment C-14 results.
Shi, Wei; Han, Yu; Guo, Cheng; Zhao, Xinguo; Liu, Saixi; Su, Wenhao; Wang, Yichen; Zha, Shanjie; Chai, Xueliang; Liu, Guangxu
2017-09-01
Although the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca 2+ oscillations. Therefore, the realistic effects of future ocean pCO 2 levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca 2+ assays, respectively. Results obtained indicated that ocean acidification significantly reduced the fertilization success of T. granosa, which could be accountable by (i) decreased sperm velocity hence reducing the probability for sperm-egg collisions; (ii) lowered probability of gamete fusion for each gamete collision event; and (iii) disrupted intracellular Ca 2+ oscillations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Ning; Zhao, Fang; Collatz, George
The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observedmore » increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970, suggesting that human land use and management contribute to seasonal changes in the CO2 exchange between the biosphere and the atmosphere.« less
Carbonate counter pump stimulated by natural iron fertilization in the Polar Frontal Zone
NASA Astrophysics Data System (ADS)
Salter, Ian; Schiebel, Ralf; Ziveri, Patrizia; Movellan, Aurore; Lampitt, Richard; Wolff, George A.
2014-12-01
The production of organic carbon in the ocean's surface and its subsequent downward export transfers carbon dioxide to the deep ocean. This CO2 drawdown is countered by the biological precipitation of carbonate, followed by sinking of particulate inorganic carbon, which is a source of carbon dioxide to the surface ocean, and hence the atmosphere over 100-1,000 year timescales. The net transfer of CO2 to the deep ocean is therefore dependent on the relative amount of organic and inorganic carbon in sinking particles. In the Southern Ocean, iron fertilization has been shown to increase the export of organic carbon, but it is unclear to what degree this effect is compensated by the export of inorganic carbon. Here we assess the composition of sinking particles collected from sediment traps located in the Polar Frontal Zone of the Southern Ocean. We find that in high-nutrient, low-chlorophyll regions that are characterized by naturally high iron concentrations, fluxes of both organic and inorganic carbon are higher than in regions with no iron fertilization. However, the excess flux of inorganic carbon is greater than that of organic carbon. We estimate that the production and flux of carbonate in naturally iron-fertilized waters reduces the overall amount of CO2 transferred to the deep ocean by 6-32%, compared to 1-4% at the non-fertilized site. We suggest that an increased export of organic carbon, stimulated by iron availability in the glacial sub-Antarctic oceans, may have been accompanied by a strengthened carbonate counter pump.
Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty
NASA Astrophysics Data System (ADS)
Schleussner, Carl-Friedrich; Deryng, Delphine; Müller, Christoph; Elliott, Joshua; Saeed, Fahad; Folberth, Christian; Liu, Wenfeng; Wang, Xuhui; Pugh, Thomas A. M.; Thiery, Wim; Seneviratne, Sonia I.; Rogelj, Joeri
2018-06-01
Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.
The greenhouse gas balance of European grasslands.
Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François
2015-10-01
The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers. © 2015 John Wiley & Sons Ltd.
Ecosystem-based greenhouse budgets in oil palm plantations differ with plantation age
NASA Astrophysics Data System (ADS)
Meijide, Ana; Hassler, Evelyn; Corre, Marife D.; June, Tania; Veldkamp, Edzo; Knohl, Alexander
2016-04-01
Global increase in demand of palm oil is leading to the expansion of oil palm plantations, particularly in SE Asia. Oil palm plantations in Sumatra, Indonesia, together with those in Kalimantan, are responsible for half of the world's palm oil production. Available studies point to plantations being large carbon dioxide (CO2) sinks due to the high photosynthetic rates of oil palm as a result of high fertilizer inputs, especially in large-scale plantations. However, methane (CH4) uptake in the soil of oil palm plantations is reduced and soil nitrous oxide (N2O) emissions increased right after nitrogen (N) fertilization. Greenhouse gas (GHG) budgets at the ecosystem level are still missing, and the few available information was derived from mature plantations, pointing to a lack of knowledge on the changes of these GHG budgets with plantation age. With the aim of quantifying CO2, CH4 and N2O fluxes during the non-productive and productive phases of oil palm cultivation, an eddy covariance (EC) tower was installed in a 2-year old (non-productive) oil palm plantation and was subsequently moved to a 12-year old (productive) plantation. Both sites were on Acrisol soils and were located in Jambi province, Sumatra. Chamber-based measurements of soil GHG fluxes were also carried out along the EC footprint. Net ecosystem exchange (NEE), based on EC measurement, showed that the non-productive plantation was a strong CO2 source (990 g C m-2 yr-1) whereas the productive plantation was a CO2 sink (-790 g C m-2 yr-1). For CH4 fluxes, both plantations showed similar soil CH4 uptake that led to a small carbon sink of (~1.3 g C m-2 yr-1). Soil N2O fluxes were high in the productive plantation (3.26 ± 1.73 kg N ha-1 yr-1), as measurements were carried out in a plantation with high fertilization rates. In the non-productive plantation, soil N2O fluxes were lower and were associated with fertilization events. Our results show that the global warming potential of a non-productive oil palm plantation was dominated by CO2 fluxes, whereas in a productive plantation N2O contribution to the global warming could be significant due to high N fertilizer input. Our results also highlight the need of evaluating various stages of development of oil palm cultivation when assessing their GHG budgets at a regional scale in order to support quantitative-based mitigation strategies.
NASA Astrophysics Data System (ADS)
O'Sullivan, Michael; Buermann, Wolfgang; Spracklen, Dominick; Arnold, Steve; Gloor, Manuel
2017-04-01
The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in nitrogen deposition from fossil fuel burning and linked carbon-nitrogen interactions fertilized terrestrial ecosystems, increasing carbon uptake and storage. Using the dynamic global vegetation model CLM4.5-BGC, we perform factorial analyses, separating the effects of individual drivers to changes in carbon fluxes and sinks. Globally, we find that increases in nitrogen deposition from 1960 to 2010 increased carbon uptake by 1PgC/yr. One third of this increase can be attributed to East Asia alone, with Europe also having a significant contribution. The global, post-2000 anthropogenic nitrogen deposition effect on terrestrial carbon uptake is entirely accounted for from East Asia (increase of 0.05 PgC/yr). We will also quantify the relative effects of various other drivers on carbon exchanges such as CO2 fertilization, climate change, and land-use and land-cover change. This increased nitrogen deposition has served to fertilize the biosphere in recent years, but its influence on carbon sink processes may be rather short-lived due to the short lifetime of atmospheric reactive nitrogen while the influence of increased CO2 emissions (and the CO2 fertilization effect) will last multiple decades, a 'Faustian Bargain'.
Crop yield changes induced by emissions of individual climate-altering pollutants
NASA Astrophysics Data System (ADS)
Shindell, Drew T.
2016-08-01
Climate change damages agriculture, causing deteriorating food security and increased malnutrition. Many studies have examined the role of distinct physical processes, but impacts have not been previously attributed to individual pollutants. Using a simple model incorporating process-level results from detailed models, here I show that although carbon dioxide (CO2) is the largest driver of climate change, other drivers appear to dominate agricultural yield changes. I calculate that anthropogenic emissions to date have decreased global agricultural yields by 9.5 ± 3.0%, with roughly 93% stemming from non-CO2 emissions, including methane (-5.2 ± 1.7%) and halocarbons (-1.4 ± 0.4%). The differing impacts stem from atmospheric composition responses: CO2 fertilizes crops, offsetting much of the loss induced by warming; halocarbons do not fertilize; methane leads to minimal fertilization but increases surface ozone which augments warming-induced losses. By the end of the century, strong CO2 mitigation improves agricultural yields by ˜3 ± 5%. In contrast, strong methane and hydrofluorocarbon mitigation improve yields by ˜16 ± 5% and ˜5 ± 4%, respectively. These are the first quantitative analyses to include climate, CO2 and ozone simultaneously, and hence, additional studies would be valuable. Nonetheless, as policy makers have leverage over pollutant emissions rather than isolated processes, the perspective presented here may be more useful for decision making than that in the prior work upon which this study builds. The results suggest that policies should target a broad portfolio of pollutant emissions in order to optimize mitigation of societal damages.
Fertility: purinergic receptors and the male contraceptive pill.
Dunn, P M
2000-04-20
Knockout mice lacking the P2X(1) receptor appear normal, but fail to breed. Analysis of these mutant mice clearly shows that purinergic co-transmission has a physiological role in the was deferens. These findings also raise the possibility of developing non-hormonal ways of regulating male fertility.
Were Oceanic Plateaus Instrumental for Calcareous Nannoplankton Evolution?
NASA Astrophysics Data System (ADS)
Erba, E.; Casellato, C.; Bottini, C.
2011-12-01
The history of calcareous nannoplankton shows a general increase in species richness through the Mesozoic. Fertility and chemistry of the oceans, climate and pCO2 seem instrumental for nannoplankton abundance, diversification and adaptation, but high-resolution chronology of paleobiological and geological events is crucial for the understanding of evolutionary processes relative to ecosystem perturbations. Natural variations in atmospheric CO2 are essentially triggered by igneous activity and the role of ocean crust production in the evolution of seawater composition, nutrient cycling, climate change and, consequently, in calcareous nannoplankton biodiversity, might be more relevant than generally thought. Indeed, two major steps in nannofloral Mesozoic evolution correlate with construction of gigantic oceanic plateaus, namely the Shatsky Rise (SR) (Tithonian/Berriasian boundary interval) and the Ontong Java Plateau (OJP) (Barremian/Aptian boundary interval). During the latest Jurassic calcareous nannoplankton experienced a rapid diversification and rise in abundance of several taxa including heavily calcified nannoliths with consequent major increase in biogenic calcite production. The Tithonian origination of coccoliths and nannoliths suggests ideal paleoecological conditions for calcareous nannoplankton, presumably thriving in stable, relatively oligotrophic and cool oceans under low pCO2. Recent data indicate that this speciation and calcification episode was interrupted during magnetochron CM19r, prior to massive diversification of nannoconids. In the late Barremian-early Aptian interval, the nannoconid decline and crisis are paralleled by a major nannoplankton (mainly coccolith) speciation episode. Such calcification failure and coccolith diversification might reflect disruption of the thermocline, increased fertility and warming under excess CO2 levels. These evolutionary steps show rapid speciation, but differ because nannoliths became dominant in the late Tithonian whereas suffered a major crisis in the early Aptian, although without extinctions. Can SR and OJP be used to understand evolutionary patterns of oceanic calcifiers? Was the massive emplacement of submarine and/or subaerial basalts and CO2 outgassing instrumental for directing biological innovation? Increased volcanic CO2 could induce ocean acidification and hamper nannoplankton calcification, presumably favoring production and diversification of small coccoliths and perhaps inducing extinctions. The appearance and rapid development of heavily calcified nannoliths in the late Tithonian is odd if took place during the construction of the huge SR. However, early subaerial volcanism of the vast paleoequatorial Shatsky archipelago might have turned the climate into cooler conditions and altered oceanic structure and circulation, possibly establishing a thermocline in the lower photic zone. Perhaps the marked decrease in nannolith calcification during CM 19r was triggered by the rapid eruption of SR submarine edifice, similarly to the nannoconid crisis linked to OJP volcanism. The combination of climate change, alteration of ocean chemistry, structure, circulation and fertility during formation of oceanic plateaus might explain diverse tempo and mode of nannoplankton innovation.
RISING ATMOSPHERIC CO2 AND CARBON SEQUESTRATION IN FORESTS
Rising CO2 concentrations in the Earth's atmosphere could alter Earth's climate system, but it is thought that higher concentrations may improve plant growth by way of the fertilization effect. Forests, an important part of the Earth's carbon cycle, are postulated to sequester a...
Coupling of N2O and CO2 fluxes from agriculture in Michigan
NASA Astrophysics Data System (ADS)
Cui, M.; Tang, J.; Hastings, M. G.; Gelfand, I.; Tao, L.; Sun, K.
2012-12-01
CO2 has been known to cause global warming, and N2O is the largest contributor to the greenhouse gas burden of cropping systems in the United States due to application of fertilizer. In our study, fluxes of N2O and CO2 were measured at two maize fields and one reference grassland from Kellogg Biological Station in Southwest Michigan. Here we compared two measuring systems, traditional GC method and LGR/Li-Cor system. Our initial results show that the two measuring systems are consistent (N2O slope=0.96, R2=0.96; and CO2 slope= 1.03, R2=0.86 measuring from the same chamber). Measurements done in pairs of chambers suggest great spatial variations, despite that the chambers were only 0.5 meter apart. The two systems are still comparable by averaging 8 pairs of chambers distributed within one site. Increase of CO2 fluxes were observed the second day after fertilization, but no significant change of N2O fluxes was shown. After artificial rainfall, boosting N2O fluxes and further increase in CO2 fluxes were demonstrated. Our result indicates that precipitation is necessary before a prominent N2O peak. In our LGR/Li-Cor system, CO was also measured from chambers. Interesting CO fluxes were shown in our experiment. Soil, which is usually considered as a CO sink, emits CO in some chambers during our measurement, which is probably related to the nationwide forest fires and lack of precipitation during the period.
Ekblad, Alf; Mikusinska, Anna; Ågren, Göran I; Menichetti, Lorenzo; Wallander, Håkan; Vilgalys, Rytas; Bahr, Adam; Eriksson, Ulrika
2016-08-01
Extramatrical mycelia (EMM) of ectomycorrhizal fungi are important in carbon (C) and nitrogen (N) cycling in forests, but poor knowledge about EMM biomass and necromass turnovers makes the quantification of their role problematic. We studied the impacts of elevated CO2 and N fertilization on EMM production and turnover in a Pinus taeda forest. EMM C was determined by the analysis of ergosterol (biomass), chitin (total bio- and necromass) and total organic C (TOC) of sand-filled mycelium in-growth bags. The production and turnover of EMM bio- and necromass and total C were estimated by modelling. N fertilization reduced the standing EMM biomass C to 57% and its production to 51% of the control (from 238 to 122 kg C ha(-1) yr(-1) ), whereas elevated CO2 had no detectable effects. Biomass turnover was high (˜13 yr(-1) ) and unchanged by the treatments. Necromass turnover was slow and was reduced from 1.5 yr(-1) in the control to 0.65 yr(-1) in the N-fertilized treatment. However, TOC data did not support an N effect on necromass turnover. An estimated EMM production ranging from 2.5 to 6% of net primary production stresses the importance of its inclusion in C models. A slow EMM necromass turnover indicates an importance in building up forest humus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Kinney, C.A.; Mosier, A.R.; Ferrer, I.; Furlong, E.T.; Mandernack, K.W.
2004-01-01
The effect that pesticides have on trace gas production and consumption in agricultural soils is often overlooked. Independent field and laboratory experiments were used to measure the effects that the commonly used herbicides prosulfuron and metolachlor have on trace gas fluxes (CO2, N2O, and CH4) from fertilized soil of the Colorado shortgrass steppe. Separate sample plots (1 m2) on tilled and no-till soil at the sites included the following treatments: 1) a control without fertilizer or herbicide, 2) a fertilized (NH4NO3 equivalent to 244 kg ha-1) control without herbicide, 3) and fertilized plots amended with an herbicide (prosulfuron equivalent to 0.46 kg ha-1 57% by weight active ingredient or metolachlor equivalent to 5.7 L ha-1, 82.4% by weight active ingredient). During an initial study of one year duration, measurement of gas exchange revealed that prosulfuron-amendment stimulated N2O emissions and CH4 consumption by as much as 1600% and 1300% during a single measurement, respectively. During a second set of flux measurements beginning in August 2001, more frequent weekly measurements were made during a twelve week period. From this second study an increased N2O efflux and CH4 uptake occurred after a 7-week lag period that persisted for about 5 weeks. These changes in gas flux amounted to an overall increase of 41% and 30% for N2O emission and CH4 consumption, respectively. The co-occurrence of stimulated N2O and CH4 fluxes suggests a similar cause that is related to prosulfuron degradation. Evidence suggested that prosulfuron degradation stimulated microbial activity responsible for trace gas flux. Ultimately, prosulfuron-amendment led to an ???50% reduction in the global warming potential from N2O and CH4 fluxes at this field site, which is equivalent to a reduction of the global warming potential of 0.18 mols CO2 m-2 d-1 from these gases. Metolachlor application did not significantly affect the trace gas fluxes measured. These results demonstrate the potential impact that pesticides have on trace gas fluxes from agricultural soils, which could mean that the effects of other agricultural practices have been over or under estimated. Copyright 2004 by the American Geophysical Union.
Calvo, Pamela; Watts, Dexter B; Kloepper, Joseph W; Torbert, H Allen
2016-12-01
Nitrous oxide (N 2 O) emissions are increasing at an unprecedented rate owing to the increased use of nitrogen (N) fertilizers. Thus, new innovative management tools are needed to reduce emissions. One potential approach is the use of microbial inoculants in agricultural production. In a previous incubation study, we observed reductions in N 2 O emissions when microbial-based inoculants were added to soil (no plants present) with N fertilizers under laboratory incubations. This present study evaluated the effects of microbial-based inoculants on N 2 O and carbon dioxide (CO 2 ) emissions when applied to soil planted with corn (Zea mays L.) under controlled greenhouse conditions. Inoculant treatments consisted of (i) SoilBuilder (SB), (ii) a metabolite extract of SoilBuilder (SBF), and (iii) a mixture of 4 strains of plant-growth-promoting Bacillus spp. (BM). Experiments included an unfertilized control and 3 N fertilizers: urea, urea - ammonium nitrate with 32% N (UAN-32), and calcium - ammonium nitrate with 17% N (CAN-17). Cumulative N 2 O fluxes from pots 41 days after planting showed significant reductions in N 2 O of 15% (SB), 41% (BM), and 28% (SBF) with CAN-17 fertilizer. When UAN-32 was used, reductions of 34% (SB), 35% (SBF), and 49% (BM) were obtained. However, no reductions in N 2 O emissions occurred with urea. Microbial-based inoculants did not affect total CO 2 emissions from any of the fertilized treatments or the unfertilized control. N uptake was increased by an average of 56% with microbial inoculants compared with the control (nonmicrobial-based treatments). Significant increases in plant height, SPAD chlorophyll readings, and fresh and dry shoot mass were also observed when the microbial-based treatments were applied (with and without N). Overall, results demonstrate that microbial inoculants can reduce N 2 O emissions following fertilizer application depending on the N fertilizer type used and can enhance N uptake and plant growth. Future studies are planned to evaluate the effectiveness of these microbial inoculants in field-based trials and determine the mechanisms involved in N 2 O reduction.
NASA Astrophysics Data System (ADS)
Yang, Yuting; Donohue, Randall J.; McVicar, Tim R.; Roderick, Michael L.; Beck, Hylke E.
2016-08-01
Understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water, and energy budgets under future climate change. Here we use long-term (1982-2010) precipitation (P) and runoff (Q) measurements to infer runoff coefficient (Q/P) and evapotranspiration (E) trends across 18 unimpaired tropical rainforest catchments. We complement that analysis by using satellite observations coupled with ecosystem process modeling (using both "top-down" and "bottom-up" perspectives) to examine trends in carbon uptake and relate that to the observed changes in Q/P and E. Our results show there have been only minor changes in the satellite-observed canopy leaf area over 1982-2010, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf level. Meanwhile, observed Q/P and E also remained relatively constant in the 18 catchments, implying an unchanged hydrological partitioning and thus approximately conserved transpiration under eCO2. For the same period, using a top-down model based on gas exchange theory, we predict increases in plant assimilation (A) and light use efficiency (ɛ) at the leaf level under eCO2, the magnitude of which is essentially that of eCO2 (i.e., 12% over 1982-2010). Simulations from 10 state-of-the-art bottom-up ecosystem models over the same catchments also show that the direct effect of eCO2 is to mostly increase A and ɛ with little impact on E. Our findings add to the current limited pool of knowledge regarding the long-term eCO2 impacts in tropical rainforests.
Liu, Jinxun; Vogelmann, James E.; Zhu, Zhiliang; Key, Carl H.; Sleeter, Benjamin M.; Price, D.T.; Chen, Jing M.; Cochrane, Mark A.; Eidenshink, Jeffery C.; Howard, Stephen M.; Bliss, Norman B.; Jiang, Hong
2011-01-01
Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951–2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of –27.3 Tg C) because NBP in the 1980s was very low (–5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951–2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire were the dominant driving forces for carbon balances in several specific ecoregions. From a long-term perspective, CO2fertilization plays a key role in maintaining higher NPP. However, our study shows that the increase in C sequestration by CO2 fertilization is largely offset by logging/land use change and wildland fires.
Revisiting ocean carbon sequestration by direct injection: a global carbon budget perspective
NASA Astrophysics Data System (ADS)
Reith, Fabian; Keller, David P.; Oschlies, Andreas
2016-11-01
In this study we look beyond the previously studied effects of oceanic CO2 injections on atmospheric and oceanic reservoirs and also account for carbon cycle and climate feedbacks between the atmosphere and the terrestrial biosphere. Considering these additional feedbacks is important since backfluxes from the terrestrial biosphere to the atmosphere in response to reducing atmospheric CO2 can further offset the targeted reduction. To quantify these dynamics we use an Earth system model of intermediate complexity to simulate direct injection of CO2 into the deep ocean as a means of emissions mitigation during a high CO2 emission scenario. In three sets of experiments with different injection depths, we simulate a 100-year injection period of a total of 70 Gt
López-Valdez, F; Fernández-Luqueño, F; Luna-Suárez, S; Dendooven, L
2011-12-15
Agricultural application of wastewater sludge has become the most widespread method of disposal, but the environmental effects on soil, air, and crops must be considered. The effect of wastewater sludge or urea on sunflower's (Helianthus annuus L.) growth and yield, the soil properties, and the resulting CO(2) and N(2)O emissions are still unknown. The objectives of this study were to investigate: i) the effect on soil properties of organic or inorganic fertilizer added to agricultural soil cultivated with sunflower, ii) how urea or wastewater sludge increases CO(2) and N(2)O emissions from agricultural soil over short time periods, and iii) the effect on plant characteristics and yield of urea or wastewater sludge added to agricultural soil cultivated with sunflower. The sunflower was fertilized with wastewater sludge or urea or grown in unamended soil under greenhouse conditions while plant and soil characteristics, yield, and greenhouse gas emissions were monitored. Sludge and urea modified some soil characteristics at the onset of the experiment and during the first two months but not thereafter. Some plant characteristics were improved by sludge. Urea and sludge treatments increased the yield at similar rates, while sludge-amended soil significantly increased N(2)O emissions but not CO(2) emissions compared to the other amended or unamended soils. This implies that wastewater sludge increased the biomass and/or the yield; however, from a holistic point of view, using wastewater sludge as fertilizer should be viewed with concern. Copyright © 2011 Elsevier B.V. All rights reserved.
Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla-Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo
2015-01-01
It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.
Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla- Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo
2015-01-01
It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2. PMID:25806946
Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio
2014-08-15
Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.
Santa Rosa, P; Parker, H M; Kiess, A S; McDaniel, C D
2016-10-15
Parthenogenesis, embryonic development without fertilization, resembles very early embryonic mortality in fertilized eggs. Also, parthenogenesis alters egg albumen characteristics in virgin Chinese Painted quail hens genetically selected for parthenogenesis (PV). When these PV hens are mated (PM), hatchability is reduced versus control mated (CM) hens that were not genetically selected for parthenogenesis. However, it is unclear if parthenogenesis, which occurs in PM hens, reduces hatchability due to infertility and altered albumen characteristics. Sperm-egg penetration (SEP) holes are indicative of true fertilization and may be useful in identifying if eggs from PM hens exhibit a decrease in fertility versus CM hens. Therefore, the objectives of this study were to determine if parthenogenesis in PM hens (1) decreases SEP, (2) alters albumen characteristics similar to parthenogenesis in eggs from PV hens, and (3) yields albumen characteristics similar to fertilized eggs containing early mortality. Daily, PV and PM eggs were collected, labeled, and incubated for 10 days, then broken out to determine the incidence of parthenogenesis and albumen characteristics. Also daily, fresh PM and CM quail eggs were macroscopically examined to determine if an egg was infertile with no embryonic development, parthenogenetic, or fertile. Each of these eggs was then microscopically examined for SEP. For both PV and PM incubated eggs, parthenogenesis decreased albumen pH, O2, and protein concentrations yet increased Ca(2+) and CO2 concentrations versus eggs with no development. For incubated PM eggs, albumen pH and O2 were lower, yet CO2 was higher for eggs containing parthenogens or early dead embryos versus infertile eggs. For SEP, fresh eggs classified as infertile or parthenogenetic from PM and CM hens had similar SEP holes but only one sixth as many SEP holes as eggs classified as fertilized. Eggs from CM hens had 3.5 times as many SEP holes as PM eggs. In conclusion, parthenogenesis that occurs in mated quail hens inhibits fertility and alters albumen characteristics similarly to parthenogenesis in unfertilized eggs and early embryonic mortality in fertilized eggs. Copyright © 2016 Elsevier Inc. All rights reserved.
Role of Marine Biology in Glacial-Interglacial CO2 Cycles
NASA Astrophysics Data System (ADS)
Kohfeld, Karen E.; Le Quéré, Corinne; Harrison, Sandy P.; Anderson, Robert F.
2005-04-01
It has been hypothesized that changes in the marine biological pump caused a major portion of the glacial reduction of atmospheric carbon dioxide by 80 to 100 parts per million through increased iron fertilization of marine plankton, increased ocean nutrient content or utilization, or shifts in dominant plankton types. We analyze sedimentary records of marine productivity at the peak and the middle of the last glacial cycle and show that neither changes in nutrient utilization in the Southern Ocean nor shifts in plankton dominance explain the CO2 drawdown. Iron fertilization and associated mechanisms can be responsible for no more than half the observed drawdown.
USDA-ARS?s Scientific Manuscript database
Tillage and fertilizer application methods could alter plant yield and quality of corn production. Thus, a field experiment was conducted at the Sand Mountain Research Station located in the Appalachian Plateau region of Northeast Alabama on a Hartsells fine sandy loam to evaluate tillage (conventi...
NASA Astrophysics Data System (ADS)
Lu, C.; Yu, Z.; Cao, P.; Tian, H.
2017-12-01
The Corn Belt of the Midwestern U.S. is one of the most productive systems in the world during the growing season, with gross primary production exceeding even that of the Amazon forests. Fueled by increased commodity prices in the late 2000s, the area in corn and soybean in the U.S. has reached record highs with most of the newly added cropland converted from grasslands, wetland, and Conservation Reserve Program land. Intensive management practices, such as fertilizer use, irrigation, tillage, residue removal etc., have been implemented following cropland expansion to maximize crop yield from converted marginal land or from more monoculture production. The Corn Belt has been recognized as one of the major contributors to carbon sinks in the U.S., partially because crop harvest and residue removal reduced soil respiration. In the meanwhile, 75% of the total N2O emission in the U.S. comes from agriculture, among which the Corn Belt is the major source due to nitrogen management, and has large potential of climate mitigation. However, it remains far from certain how intensive cropland expansion and management practices in this region have affected soil carbon accumulation and non-CO2 GHG emissions. In this study, by using a process-based land ecosystem model, Dynamic Land Ecosystem Model (DLEM), we investigated the impacts of nitrogen fertilizer use on soil carbon accumulation and direct N2O emissions across the U.S. Corn Belt. Surprisingly, we found N fertilizer-induced SOC storage continued shrinking after the 1980s while N2O emissions remains relatively constant. The N fertilizer use led to a net greenhouse gas release since 2000 in both the western and eastern Corn Belt, contributing to climate warming. This study implies an increasing importance of nitrogen management for both agricultural production and climate mitigation.
Comment on “Mycorrhizal association as a primary control of the CO 2 fertilization effect”
Norby, R. J.; De Kauwe, M. G.; Walker, A. P.; ...
2017-01-26
Terrer et al. (Reports, 1 July 2016, p. 72) used meta-analysis of CO 2 enrichment experiments as evidence of an interaction between mycorrhizal symbiosis and soil nitrogen availability. The comment presented here challenges their database and biomass as the response metric, and hence their recommendation that incorporation of mycorrhizae in models will improve predictions of terrestrial ecosystem responses to increasing atmospheric CO 2.
Comment on “Mycorrhizal association as a primary control of the CO 2 fertilization effect”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, R. J.; De Kauwe, M. G.; Walker, A. P.
Terrer et al. (Reports, 1 July 2016, p. 72) used meta-analysis of CO 2 enrichment experiments as evidence of an interaction between mycorrhizal symbiosis and soil nitrogen availability. The comment presented here challenges their database and biomass as the response metric, and hence their recommendation that incorporation of mycorrhizae in models will improve predictions of terrestrial ecosystem responses to increasing atmospheric CO 2.
NASA Astrophysics Data System (ADS)
Haar, K. K.; Balch, R. S.
2015-12-01
The Southwest Regional Partnership on Carbon Sequestration monitors a CO2 capture, utilization and storage project at Farnsworth field, TX. The reservoir interval is a Morrowan age fluvial sand deposited in an incised valley. The sands are between 10 to 25m thick and located about 2800m below the surface. Primary oil recovery began in 1958 and by the late 1960's secondary recovery through waterflooding was underway. In 2009, Chaparral Energy began tertiary recovery using 100% anthropogenic CO2 sourced from an ethanol and a fertilizer plant. This constitutes carbon sequestration and fulfills the DOE's initiative to determine the best approach to permanent carbon storage. One purpose of the study is to understand CO2 migration from injection wells. CO2 plume spatial distribution for this project is analyzed with the use of time-lapse 3D vertical seismic profiles centered on CO2 injection wells. They monitor raypaths traveling in a single direction compared to surface seismic surveys with raypaths traveling in both directions. 3D VSP surveys can image up to 1.5km away from the well of interest, exceeding regulatory requirements for maximum plume extent by a factor of two. To optimize the timing of repeat VSP acquisition, the sensitivity of the 3D VSP surveys to CO2 injection was analyzed to determine at what injection volumes a seismic response to the injected CO2 will be observable. Static geologic models were generated for pre-CO2 and post-CO2 reservoir states through construction of fine scale seismic based geologic models, which were then history matched via flow simulations. These generated static states of the model, where CO2 replaces oil and brine in pore spaces, allow for generation of impedance volumes which when convolved with a representative wavelet generate synthetic seismic volumes used in the sensitivity analysis. Funding for the project is provided by DOE's National Energy Technology Laboratory (NETL) under Award No. DE-FC26-05NT42591.
NASA Astrophysics Data System (ADS)
Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas
2014-05-01
The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be injected in the scope of the scheduled EGR operation. Our techno-economic modeling results considering EGR reservoir simulations demonstrate that an economic and carbon neutral operation of UCG combined with fertilizer production and CCS is feasible. The suggested approach may provide a bridging technology to tackle fertilizer and power supply shortages in Bangladesh, and in addition support further production from depleting natural gas deposits. References Kempka, T., Plötz, M.L., Hamann, J., Deowan, S.A., Azzam, R. (2010) Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 4: 2200-2205. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Energy (in print). Doi 10.1016/j.energy.2014.01.014
Soulé, Peter T; Knapp, Paul A
2006-01-01
The primary objective of this study was to determine if gradually increasing levels of atmospheric CO2, as opposed to 'step' increases commonly employed in controlled studies, have a positive impact on radial growth rates of ponderosa pine (Pinus ponderosa) in natural environments, and to determine the spatial extent and variability of this growth enhancement. We developed a series of tree-ring chronologies from minimally disturbed sites across a spectrum of environmental conditions. A series of difference of means tests were used to compare radial growth post-1950, when the impacts of rising atmospheric CO2 are best expressed, with that pre-1950. Spearman's correlation was used to relate site stress to growth-rate changes. Significant increases in radial growth rates occurred post-1950, especially during drought years, with the greatest increases generally found at the most water-limited sites. Site harshness is positively related to enhanced radial growth rates. Atmospheric CO2 fertilization is probably operative, having a positive effect on radial growth rates of ponderosa pine through increasing water-use efficiency. A CO2-driven growth enhancement may affect ponderosa pine growing under both natural and controlled conditions.
Zhang, Pan-pan; Zhou, Yu; Song, Hui; Qiao, Zhi-jun; Wang, Hai-gang; Zheng, Dian-feng; Feng, Bai-li
2015-02-01
A field experiment with two broomcorn millet varieties Longmi 8 (strong drought-resistant variety) and Jinmi 4 (drought-sensitive variety) was conducted to compare their differences in growth, field microclimate and photosynthetic capacity from anthesis to maturity under different fertility conditions. The results showed that, fertilization decreased canopy temperature, air temperature, soil temperature, illumination, but improved the relative humidity among broomcorn millet plants compared with the non-fertilization treatment. With an increase of the fertilizer level, the plant height, SPAD, LAI, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration in broomcorn millet showed an increasing trend, which of the high fertilization treatment were 9.2%, 15.1%, 56.6%, 17.8%, 24.6%, 14.2%, 29.7% higher than those of non-fertilization treatment, respectively. Compared with Jinmi 4, Longmi 8 showed a cold wet characteristic, with lower canopy temperature, air temperature, soil temperature; illumination, and higher plant height, LAI, SPAD and relative humidity during grain filling. Moreover, each photosynthetic index of Longmi 8 slowly decreased and extended the period of leaf photosynthetic function so as to accumulate more photosynthetic products.
Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions
2010-09-30
For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale wasmore » determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and conductivity sensors is suitable for process control of algae cultivation in an open pond systems. This project concluded that the Hopewell wastewater is very suitable for algal cultivation but the potential for significant CO2 sequestration from the plant stack gas emissions was minimal due to the high endogenous CO2 generation in the wastewater from the organic wastewater content. Algae cultivation was found to be promising, however, for nitrogen remediation in the Hopewell wastewater.« less
Possible Impacts of Global Warming on Hydrology of the Ogallala Aquifer Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Norman J.; Epstein, Daniel J.; Wang, Dahong
The Ogallala or High Plains aquifer provides water for about 20% of the irrigated land in the United States. About 20 km{sup 3} (16.6 million acre-feet) of water are withdrawn annually from this aquifer. In general, recharge has not compensated for withdrawals since major irrigation development began in this region in the 1940s. The mining of the Ogallala has been pictured as an analogue to climate change in that many GCMs predict a warmer and drier future for this region. We anticipate the possible impacts of climate change on the sustainability of the aquifer as a source of water formore » irrigation and other purposes in the region. We have applied HUMUS, the Hydrologic Unit Model of the U.S. to the Missouri and Arkansas-White-Red water resource regions that overlie the Ogallala. We have imposed three general circulation model (GISS, UKTR and BMRC) projections of future climate change on this region and simulated the changes that may be induced in water yields (runoff plus lateral flow) and ground water recharge. Each GCM was applied to HUMUS at three levels of global mean temperature (GMT) to represent increasing severity of climate change (a surrogate for time). HUMUS was also run at three levels of atmospheric CO2 concentration (hereafter denoted by[CO2]) in order to estimate the impacts of direct CO2 effects on photosynthesis and evapotranspiration. Since the UKTR and GISS GCMs project increased precipitation in the Missouri basin, water yields increase there. The BMRC GCM predicts sharply decreased precipitation and, hence, reduced water yields. Precipitation reductions are even greater in the Arkansas basin under BMRC as are the consequent water yield losses. GISS and UKTR climates lead to only moderate yield losses in the Arkansas. CO2-fertilization reverses these losses and yields increase slightly. CO2 fertilization increases recharge in the base (no climate change) case in both basins. Recharge is reduced under all three GCMs and severities of climate change.« less
Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui
2015-01-01
This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots. PMID:26657180
Montana Integrated Carbon to Liquids (ICTL) Demonstration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiato, Rocco A.; Sharma, Ramesh; Allen, Mark
Integrated carbon-to-liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO 2 Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO 2, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526more » targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub-bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal-Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat-camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger-scale process demonstration studies of the CHI process in combination with CCU to generate synthetic jet and diesel fuels from algae and algae fertilized crops. Site assessment and project prefeasibility studies are planned with a major EPC firm to determine the overall viability of ICTL technology commercialization with Crow coal resources in south central Montana.« less
Parker, H M; McDaniel, C D
2006-01-01
The sperm quality index (SQI) is a tool used to predict overall rooster semen quality, fertility, and hatchability. However, semen must be diluted before SQI analysis, and research has shown that the SQI is most predictive of fertility at lower semen dilutions. Therefore, the present study was undertaken to determine why the SQI is not as predictive of fertility at higher semen dilutions and whether semen diluent type alters the SQI, adenosine triphosphate (ATP) utilization, gas exchange, and ionic balance of broiler breeder sperm. Semen was diluted with saline, seminal plasma, or minimum essential medium (MEM) from 2- to 200-fold. The following parameters were measured for each diluent type at each dilution: SQI, ATP, Na+, Ca2+, K+, Cl-, CO2, and O2. To examine the rate of sperm motility, the SQI was expressed as SQI/million sperm per mL (SQI/sperm). There was an interaction between diluent type and dilution for the SQI, SQI/sperm, CO2 generated, O2 used, as well as Na+, Ca2+, and K+ internalization. For sperm diluted with saline, the SQI declined more rapidly with increasing dilution. However, SQI/sperm increased rapidly when semen was diluted with MEM or SP. Sperm diluted in SP used ATP with increasing dilution whereas sperm diluted with saline and MEM generated ATP. Neat semen contained no free O2; however, each diluent type contained abundant O2 resulting in more O2 available as semen was diluted. Sperm diluted in SP produced more CO2 and used more O2 than semen diluted in saline or MEM. For SQI/sperm, ATP and CO2 generated, as well as Na+ and Ca2+ internalization, differences between diluent types occurred when semen was diluted 50-fold and greater. In conclusion, it appears that sperm motility, ATP utilization, gas exchange, and ionic balance are altered by diluent type and rate of dilution. These alterations in semen quality are exacerbated at semen dilutions of 50-fold and greater yielding an SQI that is not indicative of sperm motility or fertility.
Greenhouse Gas Emissions from Solid and Liquid Organic Fertilizers Applied to Lettuce.
Toonsiri, Phasita; Del Grosso, Stephen J; Sukor, Arina; Davis, Jessica G
2016-11-01
Improper application of nitrogen (N) fertilizer and environmental factors can cause the loss of nitrous oxide (NO) to the environment. Different types of fertilizers with different C/N ratios may have different effects on the environment. The focus of this study was to evaluate the effects of environmental factors and four organic fertilizers (feather meal, blood meal, fish emulsion, and cyano-fertilizer) applied at different rates (0, 28, 56, and 112 kg N ha) on NO emissions and to track CO emissions from a lettuce field ( L.). The study was conducted in 2013 and 2014 and compared preplant-applied solid fertilizers (feather meal and blood meal) and multiple applications of liquid fertilizers (fish emulsion and cyano-fertilizer). Three days a week, NO and CO emissions were measured twice per day in 2013 and once per day in 2014 using a closed-static chamber, and gas samples were analyzed by gas chromatography. Preplant-applied solid fertilizers significantly increased cumulative NO emissions as compared with control, but multiple applications of liquid fertilizers did not. Emission factors for NO ranged from 0 to 0.1% for multiple applications of liquid fertilizers and 0.6 to 11% for preplant-applied solid fertilizers, which could be overestimated due to chamber placement over fertilizer bands. In 2014, solid fertilizers with higher C/N ratios (3.3-3.5) resulted in higher CO emissions than liquid fertilizers (C/N ratio, 0.9-1.5). Therefore, organic farmers should consider the use of multiple applications of liquid fertilizers as a means to reduce soil greenhouse gas emissions while maintaining high yields. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Wu, Qihua; Zhang, Shuxiang; Zhu, Ping; Huang, Shaomin; Wang, Boren; Zhao, LinPing; Xu, Minggang
2017-01-01
The phosphorus activation coefficient (PAC, the ratio of available P to total P) is an important indicator of soil P availability and the transformation of P fractions. Understanding the details of the PAC is useful to estimate soil available P status and to provide P management guidance. In this research, soils from five long-term (23 years) fertilization treatments in three croplands were selected to examine the relationships between the PAC and P fractions and to analyse the influencing factors. PAC was affected by both soil types and fertilization treatments. Compared to the unfertilized control (CK) treatment, long-term P application significantly increased the PAC, all of the inorganic P (Pi) fractions and most of the organic P (Po) fractions in all the three soils, particularly in chemical fertilizer combined with manure treatment (NPKM). The PAC was significantly correlated to all of the Pi fractions proportions (P<0.05) except for Dil. HCl-Pi and Conc. HCl-Pi. Compared with CK, the chemical P and chemical P combined with manure treatments increased the ratio of total Pi fractions to total Po fractions (Pit/Pot); furthermore, NPKM significantly increased the organic C (Co) content and decreased the Co/Pot ratio. Stepwise multiple regressions showed that PAC = 0.93 Co+0.69 Pit/Pot-0.07 Co/Pot-0.27CaCO3-3.79 (R2 = 0.924, P<0.001). In addition, the variance partitioning analysis showed that more variance of PAC is explained by soil factors (29.53%) than by P input (0.19%) and climate (0.25%) factors. Our findings demonstrate that P application increased the PAC by changing the Co content and the proportion of P fractions. Moreover, soil factors were the most important drivers of P transformations, and NPKM was optimal for improving soil fertility in Chinese croplands.
Wu, Qihua; Zhang, Shuxiang; Zhu, Ping; Huang, Shaomin; Wang, Boren; Zhao, LinPing; Xu, Minggang
2017-01-01
The phosphorus activation coefficient (PAC, the ratio of available P to total P) is an important indicator of soil P availability and the transformation of P fractions. Understanding the details of the PAC is useful to estimate soil available P status and to provide P management guidance. In this research, soils from five long-term (23 years) fertilization treatments in three croplands were selected to examine the relationships between the PAC and P fractions and to analyse the influencing factors. PAC was affected by both soil types and fertilization treatments. Compared to the unfertilized control (CK) treatment, long-term P application significantly increased the PAC, all of the inorganic P (Pi) fractions and most of the organic P (Po) fractions in all the three soils, particularly in chemical fertilizer combined with manure treatment (NPKM). The PAC was significantly correlated to all of the Pi fractions proportions (P<0.05) except for Dil. HCl-Pi and Conc. HCl-Pi. Compared with CK, the chemical P and chemical P combined with manure treatments increased the ratio of total Pi fractions to total Po fractions (Pit/Pot); furthermore, NPKM significantly increased the organic C (Co) content and decreased the Co/Pot ratio. Stepwise multiple regressions showed that PAC = 0.93 Co+0.69 Pit/Pot-0.07 Co/Pot-0.27CaCO3-3.79 (R2 = 0.924, P<0.001). In addition, the variance partitioning analysis showed that more variance of PAC is explained by soil factors (29.53%) than by P input (0.19%) and climate (0.25%) factors. Our findings demonstrate that P application increased the PAC by changing the Co content and the proportion of P fractions. Moreover, soil factors were the most important drivers of P transformations, and NPKM was optimal for improving soil fertility in Chinese croplands. PMID:28467425
Fitzgerald L. Booker; Christopher A. Maier
2001-01-01
Concentrations of total soluble phenolics, catechin, proanthocyanidins (PA), lignin and nitrogen (N) were measured in loblolly pine (Pinus taeda L.) needles exposed to either ambient CO2 concentration ([CO2]), ambient plus 175 or ambient plus 350 µmol O2 mol-1 in branch chambers...
Ward, Eric J; Oren, Ram; Kim, Hyun Seok; Kim, Dohyoung; Tor-Ngern, Pantana; Ewers, Brent E; McCarthy, Heather R; Oishi, A Christopher; Pataki, Diane E; Palmroth, Sari; Phillips, Nathan G; Schäfer, Karina V R
2018-06-27
Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases of surface runoff observed over the past century have been attributed to increasing atmospheric CO 2 concentrations resulting in reduced ET by terrestrial ecosystems. Here we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO 2 ] enrichment (ECO 2 ; +200 ppm) for over 17 years and fertilization for six years, monitored with hundreds of environmental and sap flux sensors on a half-hourly basis. These measurements were synthesized using a 1-dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET and WY. We found that ECO 2 did not create significant differences in stand T, ET or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO 2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model-data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
76 FR 65653 - New Source Performance Standards (NSPS) Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
..., PM 2.5 , PM 10 ), nitrogen oxides (NO X ), carbon monoxide (CO), lead (Pb), volatile organic... Refineries Ja 06/24/2008 (73FR35867) 12/22/2008 \\4\\ (73FR78552) (Stay) Phosphate Fertilizers--Diammonium V 08/06/1975 (40FR33155) 10/17/2000 3 4 (65FR61757) Phosphate Plants. Phosphate Fertilizers--Granular X 08...
Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.
Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen
2017-04-01
Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.
Sequestering CO2 in the Ocean: Options and Consequences
NASA Astrophysics Data System (ADS)
Rau, G. H.; Caldeira, K.
2002-12-01
The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood and weighed against those of alternative strategies, including business as usual.
Historical emissions critical for mapping decarbonization pathways
NASA Astrophysics Data System (ADS)
Majkut, J.; Kopp, R. E.; Sarmiento, J. L.; Oppenheimer, M.
2016-12-01
Policymakers have set a goal of limiting temperature increase from human influence on the climate. This motivates the identification of decarbonization pathways to stabilize atmospheric concentrations of CO2. In this context, the future behavior of CO2 sources and sinks define the CO2 emissions necessary to meet warming thresholds with specified probabilities. We adopt a simple model of the atmosphere-land-ocean carbon balance to reflect uncertainty in how natural CO2 sinks will respond to increasing atmospheric CO2 and temperature. Bayesian inversion is used to estimate the probability distributions of selected parameters of the carbon model. Prior probability distributions are chosen to reflect the behavior of CMIP5 models. We then update these prior distributions by running historical simulations of the global carbon cycle and inverting with observationally-based inventories and fluxes of anthropogenic carbon in the ocean and atmosphere. The result is a best-estimate of historical CO2 sources and sinks and a model of how CO2 sources and sinks will vary in the future under various emissions scenarios, with uncertainty. By linking the carbon model to a simple climate model, we calculate emissions pathways and carbon budgets consistent with meeting specific temperature thresholds and identify key factors that contribute to remaining uncertainty. In particular, we show how the assumed history of CO2 emissions from land use change (LUC) critically impacts estimates of the strength of the land CO2 sink via CO2 fertilization. Different estimates of historical LUC emissions taken from the literature lead to significantly different parameterizations of the carbon system. High historical CO2 emissions from LUC lead to a more robust CO2 fertilization effect, significantly lower future atmospheric CO2 concentrations, and an increased amount of CO2 that can be emitted to satisfy temperature stabilization targets. Thus, in our model, historical LUC emissions have a significant impact on allowable carbon budgets under temperture targets.
NASA Astrophysics Data System (ADS)
Bastos, A.; Ciais, P.; Zhu, D.; Maignan, F.; Wang, X.; Chevallier, F.; Ballantyne, A.
2017-12-01
Continuous atmospheric CO2 monitoring data indicate enhanced seasonal exchange in the high-latitudes in the Northern Hemisphere (above 40oN), mainly attributed to terrestrial ecosystems. Whether this enhancement is mostly explained by increased vegetation growth due to CO2 fertilization and warming, or by changes in land-use and land-management practices is still an unsettled question (e.g. Forkel et al. (2016) and Zeng et al. (2013)). Previous studies have shown that models present variable performance in capturing trends in CO2 amplitude at CO2 monitoring sites, and that Earth System Models present large spread in their estimates of such trends. Here we integrate data of atmospheric CO2 exchange in terrestrial ecosystems by a set of atmospheric CO2 inversions and a range of land-surface models to evaluate the ability of models to reproduce changes in CO2 seasonal exchange within the observation uncertainty. We then analyze the factors that explain the model spread to understand if the trend in seasonal CO2 amplitude may indeed be a useful metric to constrain future changes in terrestrial photosynthesis (Wenzel et al., 2016). We then compare model simulations with satellite and other observation-based datasets of vegetation productivity, biomass stocks and land-cover change to test the contribution of natural (CO2 fertilization, climate) and human (land-use change) factors to the increasing trend in seasonal CO2 amplitude. Forkel, Matthias, et al. "Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems." Science 351.6274 (2016): 696-699. Wenzel, Sabrina, et al. "Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2." Nature 538, no. 7626 (2016): 499-501.Zeng, Ning, et al. "Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude." Nature 515.7527 (2014): 394.
Management practices effects on soil carbon dioxide emission and carbon storage
USDA-ARS?s Scientific Manuscript database
Management practices can influence soil CO2 emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO2 flux, temperature, water, and C content at the 0 to 20 cm depth from May ...
Reconciling temporal trends in water-use efficiency from tree rings to continents
NASA Astrophysics Data System (ADS)
Poulter, B.; Frank, D. C.; Piao, S.; Ciais, P.; Fisher, J. B.
2016-12-01
The direct effects of rising atmospheric carbon dioxide (CO2) concentrations on leaf to ecosystem scale processes continue to remain elusive and difficult to quantify. Measurements of the so called "CO2 fertilization effect" based on tree rings, flux towers, and satellites, are confounded by temporal and spatial scaling issues, statistical sampling and detrending artefacts, and interactions with climatic and land-use drivers. In contrast, water-use efficiency (WUE), which integrates carbon uptake from photosynthesis (A) with water loss via transpiration (T), can be measured directly from carbon isotopes and indirectly from in situ fluxes or remote sensing models of A and T, and provide a link between observations with physiological theory. Here, we contrast recent studies of reconstructions of WUE from tree rings, with flux tower and remote sensing based observations. Despite agreement that WUE has increased over the past several decades, differences in temporal coverage, the definition of WUE, i.e., intrinsic versus inherent, and in methodology continue to cause divergence in the magnitude of the response, and put measurements at odds with theory. A deeper appreciation of the drivers behind these differences will help direct new field measurement campaigns, experimental manipulations, and space-borne observations such as the new NASA ECOSTRESS mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ofuoku, E.E.
1984-01-01
In Experiment I, adult female wasps were exposed to ozone for 0, 2, 4, 6, 8, 10, 12, 16, 24, and 27 h. The results indicated that the 27 h of ozone exposure produced 100% lethality on the first day. Exposures below 27 h progressively decreased life span with increasing length of exposure. In Experiment II A, adult virgin Habrobracon females were exposed to ozone for 0, 2, 4, 6, 8, 10, 12, 16, and 24 h to determine the effects of ozone on fecundity (egg laying ability) and fertility (egg hatching ability). The results showed that ozone significantly decreasedmore » fecundity and fertility in all meiotic stages except metaphase I. In Experiment II B, adult virgin Habrobracon females were exposed to Co-60 ..gamma.. radiation. All treated wasps showed significant progressive decreases in fecundity and fertility with increases in radiation dose. In Experiment II C, adult virgin Habrobracon females were exposed to Co-60 ..gamma.. radiation, to ozone, or to combinations thereof to determine the effects of these insults on fecundity and fertility. Together or singly ozone and radiation reduced fecundity and fertility. In Experiment III, adult virgin Habrobracon females were exposed to the conditions of Experiment II C to correlate by cytological examination of the ovarioles the effects of ionizing radiation and/or ozone on the germ cells at specific meiotic stages. Results obtained from the cytological study explain the fecundity and fertility observations.« less
Tellechea, Fernando Reynel Fundora; Martins, Marco Antônio; da Silva, Alexsandro Araujo; da Gama-Rodrigues, Emanuela Forestieri; Martins, Meire Lelis Leal
2016-09-01
This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4 × 5 factorial design to analyze CO2 release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5 × 2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO2 release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).
Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration.
Merbold, Lutz; Eugster, Werner; Stieger, Jacqueline; Zahniser, Mark; Nelson, David; Buchmann, Nina
2014-06-01
The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open-path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous-wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20-50 nmol m(-2) s(-1) compared with a <5 nmol m(-2) s(-1) background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re-sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m(-2) s(-1)). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi-species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.
2001-12-01
We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.
Hu, Shi; Mo, Xing-guo; Lin, Zhong-hui
2015-04-01
Based on the multi-model datasets of three representative concentration pathway (RCP) emission scenarios from IPCC5, the response of yield and accumulative evapotranspiration (ET) of winter wheat to climate change in the future were assessed by VIP model. The results showed that if effects of CO2 enrichment were excluded, temperature rise would lead to a reduction in the length of the growing period for wheat under the three climate change scenarios, and the wheat yield and ET presented a decrease tendency. The positive effect of atmospheric CO2 enrichment could offset most negative effect introduced by temperature rising, indicating that atmospheric CO2 enrichment would be the prime reason of the wheat yield rising in future. In 2050s, wheat yield would increase 14.8% (decrease 2.5% without CO2 fertilization) , and ET would decrease 2.1% under RCP4.5. By adoption of new crop variety with enhanced requirement on accumulative temperature, the wheat yield would increase more significantly with CO2 fertilization, but the water consumption would also increase. Therefore, cultivar breeding new irrigation techniques and agronomical management should be explored under the challenges of climate change in the future.
Jin, Zhenong; Ainsworth, Elizabeth A; Leakey, Andrew D B; Lobell, David B
2018-02-01
Elevated atmospheric CO 2 concentrations ([CO 2 ]) are expected to increase C3 crop yield through the CO 2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO 2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO 2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO 2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO 2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO 2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops. © 2017 John Wiley & Sons Ltd.
Yan, Ming; Luo, Ting; Bian, Rongjun; Cheng, Kun; Pan, Genxing; Rees, Robert
2015-06-01
Quantifying the carbon footprint (CF) for crop production can help identify key options to mitigate greenhouse gas (GHG) emissions in agriculture. In the present study, both household and aggregated farm scales were surveyed to obtain the data of rice production and farming management practices in a typical rice cultivation area of Northern Jiangxi, China. The CFs of the different rice systems including early rice, late rice, and single rice under household and aggregated farm scale were calculated. In general, early rice had the lower CF in terms of land use and grain production being 4.54 ± 0.44 t CO2-eq./ha and 0.62 ± 0.1 t CO2-eq./t grain than single rice (6.84 ± 0.79 t CO2-eq./ha and 0.80 ± 0.13 t CO2-eq./t grain) and late rice (8.72 ± 0.54 t CO2-eq./ha and 1.1 ± 0.17 t CO2-eq./t grain). The emissions from nitrogen fertilizer use accounted for 33 % of the total CF on average and the direct CH4 emissions for 57 %. The results indicated that the CF of double rice cropping under aggregated farm being 0.86 ± 0.11 t CO2-eq./t grain was lower by 25 % than that being 1.14 ± 0.25 t CO2-eq./t grain under household farm, mainly due to high nitrogen use efficiency and low methane emissions. Therefore, developing the aggregated farm scale with efficient use of agro-chemicals and farming operation for greater profitability could offer a strategy for reducing GHG emissions in China's agriculture.
Chances and challenges of forest scale CO2 enrichment
NASA Astrophysics Data System (ADS)
Körner, Christian
2016-04-01
Rising CO2 is changing the biosphere's diet. As with any dietary change, both amount and quality of food matter. Atmospheric CO2 enrichment is clearly providing a rather one-sided, C-rich diet. Hence, the reaiistic experimental simulation of its effect on the single biggest C reservoir of the biosphere, that is forest, requires experimental conditions that resemble exactly that situation. In the past, trees where most commonly exposed to elevated CO2 while provided with ample other constituents of a plant's diet (soil nutrients), yielding exaggerated growth stimulation, unlikely to reflect real world responses. So, by either selecting fertile soils, disturbing the system by fire or planting activities, offering ample soil space to isolated individuals or even adding fertilizer, almost any CO2-response can be 'designed'. The 'art' of designing future Free Air CO2 Enrichment (FACE) experiments will be to avoid exactly these pitfalls. Plants can incorporate additional C only to the extent the provision of chemical elements other than C will permit, given the stoichiometry of life. Site selection (soil fertility), degree of canopy closure, recent disturbance regime or successional stage will influence CO2 effects. It is the fundamental dilemma in CO2-enrichment research that simple, homogenous, artificial test systems offer statistical power, while systems that account for 'naturalness' and species diversity do not. Any new FACE program needs to handle that tradeoff between precision and relevance. In this presentation I will advocate a pragmatic approach that will inevitably have to lean on individual tree responses, across a wide as possible range of neighborhoods, age and growth conditions, with the statistical power depending in obtaining the best possible pre-treatment traits and responses. By illustrating the results of 15 years of FACE with 30-40 m tall forest trees, I will caution against over-optimistic ecosystem scale approaches with just ONE technology, given the sheer size such test systems would require. I rather suggest combining the best choice technology at different scales, which is not necessarily the most costly FACE approach. FACE emerged from overestimating potential bias from atmospheric conditions and greatly unerestimating the key role of soil conditions and biodiversity. Reference: Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393-411. Bader MKF, et al. (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol 101:1509-1519.
Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie
2017-08-01
The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Lei; Tang, Shuirong; He, Dongdong; Wu, Xian; Shaaban, Muhammad; Wang, Milan; Zhao, Jingsong; Khan, Imran; Zheng, Xunhua; Hu, Ronggui; Horwath, William R
2017-04-01
The conversion from rice to vegetable production widely occurs in China. However, the effects of this conversion on N 2 O emission and the underlying mechanisms are not well understood. In the present study, 12 rice paddies (R) were selected and half of them converted to vegetable fields (V) with the following treatments: rice paddies without N-fertilizer (R-CK), rice paddies with conventional N-fertilizer (R-CN), converted vegetable fields without N-fertilizer (V-CK), and converted vegetable fields with conventional N-fertilizer (V-CN) in a randomized block design with 3 replicates. N 2 O emissions were measured with static chambers from December 2012 to December 2015. Within each V-CN plot, a root exclusion subplot was established to measure soil heterotrophic respiration (CO 2 effluxes), a proxy for soil organic matter mineralization. Conversion of rice paddies to vegetable production dramatically increased N 2 O emissions. The three-year cumulative N 2 O emissions were 0.59, 1.90, 55.50 and 160.14kg N ha -1 for R-CK, R-CN, V-CK and V-CN, respectively. The annual N 2 O emissions from vegetable fields ranged between 5.99 and 113.45kg N ha -1 yr -1 , with substantially higher emissions in the first year. N 2 O fluxes from V-CN were significantly and positively related to CO 2 fluxes and inorganic N concentrations. The linear relationship between natural logarithms of N 2 O and CO 2 fluxes was stronger and the regression coefficient higher in the first year, showing the dependence of N 2 O on soil organic matter mineralization. These results suggest that soil organic matter and N mineralization contributes significantly to N 2 O emission following conversion of rice paddies to vegetable production. Copyright © 2017 Elsevier B.V. All rights reserved.
Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes
NASA Astrophysics Data System (ADS)
Yuan, Z. Y.; Chen, Han Y. H.
2015-05-01
Living organisms maintain a balance of chemical elements for optimal growth and reproduction, which plays an important role in global biogeochemical cycles. Human domination of Earth's ecosystems has led to drastic global changes, but it is unclear how these affect the stoichiometric coupling of nutrients in terrestrial plants, the most important food source on Earth. Here we use meta-analyses of 1,418 published studies to show that the ratio of terrestrial plant nitrogen (N) to phosphorus (P) decreases with elevated concentrations of CO2, increasing rainfall, and P fertilization, but increases with warming, drought, and N fertilization. Our analyses also reveal that multiple global change treatments generally result in overall additive effects of single-factor treatments and that the responses of plant nutrients and their stoichiometry are similar in direction, but often greater in controlled than in natural environments. Our results suggest a decoupling of the P biogeochemical cycle from N in terrestrial plants under global changes, which in turn may diminish the provision of ecosystem services.
Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Schmidt, Hans-Peter; Wilson, Kelpie; Kammann, Claudia
2017-04-01
Charcoal has been used to treat digestive disorder in animals since several thousand years. But only since about 2010 biochar has increasingly been used as regular feed additive in animal farming usually mixed with standard feed at approximately 1% of the daily feed intake. The use of biochar as feed additive has the potential to improve animal health, feed efficiency and the animal-stable environment; to reduce nutrient losses and GHG emissions; and to increase soil organic mater and thus soil fertility. The evaluation of more than 150 scientific papers on feeding (activated) biochar showed in most of the studies and for all investigated livestock species positive effects on parameters like toxin adsorption, digestion, blood values, feed use efficiency and livestock weight gain, meat quality and GHG emissions. The facilitation of direct electron transfers between different species of bacteria or microbial consortia via the biochar mediator in the animal digestion tract is hypothesized to be the main reason for a more energy efficient digestion and thus higher feed efficiency, for its selective probiotic effect, for reduced N-losses and eventually for less GHG emissions. While chicken, pigs, fish and other omnivore animals provoke GHG-emissions (mainly NH3, CH4, N2O) when their liquid and solid excretions decompose anaerobically, ruminants cause direct methane emissions through flatulence and burps (eructation). Preliminary studies demonstrated that feeding high temperature biochars might reduce ruminant CH4 emissions though more systematic research is needed. It is likely that microbial decomposition of manure containing digested biochar produces less ammonia, less methane and thus retain more nitrogen, as seen when manure was composted with and without biochar or when biochar is used as bedding or manure treatment additive. Laboratory adsorption trials estimated that using biochar for liquid manure treatment could safe 57,000 t NH4 and 4,600 t P2O5 fertilizer per year in California alone. It was further shown that feeding 0.3 to 1% biochar could replace antibiotic treatment in chicken and ducks, respectively. Feeding biochar could thus have an indirect effect on GHG emissions when it is able to replace regular antibiotic "feeding" that produces high indirect GHG emissions after soil application of antibiotic contaminated manure. Moreover, it was demonstrated that feeding biochar to grazing cows had positive secondary effects on soil fertility and fertilizer efficiency reducing mineral N-fertilizing requirements which could be another indirect biochar GHG mitigation effect. Considering an average C-content of fed biochar of 80% and produced at recommended temperatures above 500°C resulting in H/Corg ratios below 0.4, at least 56% of the dry weight of the fed and manure-applied biochar would persist as stable carbon in soil for at least 100 years. If the global livestock would receive 1% of their feed in form of such a biochar, a total of about 400 Mt of CO2eq or 1.2 % of the global CO2 emissions could be compensated. The apparent potential for improving animal health and nutrient efficiency, for reducing enteric methane emissions as well as GHG emissions from manure management and for sequestering carbon with soil fertility improvements makes it compelling to increase the scientific effort to investigate, measure and optimize the GHG reduction potential of biochar use in animal farming systems. The main results from literature and own experiments will be presented to illustrate and calculate this potential.
Zhang, Tao; Liu, Hongbin; Luo, Jiafa; Wang, Hongyuan; Zhai, Limei; Geng, Yucong; Zhang, Yitao; Li, Jungai; Lei, Qiuliang; Bashir, Muhammad Amjad; Wu, Shuxia; Lindsey, Stuart
2018-08-15
The impacts of manure application on soil ammonia (NH 3 ) volatilization and greenhouse gas (GHG) emissions are of interest for both agronomic and environmental reasons. However, how the swine manure addition affects greenhouse gas and N emissions in North China Plain wheat fields is still unknown. A long-term fertilization experiment was carried out on a maize-wheat rotation system in Northern China (Zea mays L-Triticum aestivum L.) from 1990 to 2017. The experiment included four treatments: (1) No fertilizer (CK), (2) single application of chemical fertilizers (NPK), (3) NPK plus 22.5t/ha swine manure (NPKM), (4) NPK plus 33.7t/ha swine manure (NPKM+). A short-term fertilization experiment was conducted from 2016 to 2017 using the same treatments in a field that had been abandoned for decades. The emissions of NH 3 and GHGs were measured during the wheat season from 2016 to 2017. Results showed that after long-term fertilization the wheat yields for NPKM treatment were 7105kg/ha, which were higher than NPK (3880kg/ha) and NPKM+ treatments (5518kg/ha). The wheat yields were similar after short-term fertilization (6098-6887kg/ha). The NH 3 -N emission factors (EF amm ) for NPKM and NPKM+ treatments (1.1 and 1.1-1.4%, respectively) were lower than NPK treatment (2.2%) in both the long and short-term fertilization treatments. In the long- and short-term experiments the nitrous oxide (N 2 O) emission factors (EF nit ) for NPKM+ treatment were 4.2% and 3.7%, respectively, which were higher than for the NPK treatment (3.5% and 2.5%, respectively) and the NPKM treatment (3.6% and 2.2%, respectively). In addition, under long and short-term fertilization, the greenhouse gas intensities for the NPKM+ treatment were 33.7 and 27.0kg CO 2 -eq/kg yield, respectively, which were higher than for the NPKM treatment (22.8 and 21.1kg CO 2 -eq/kg yield, respectively). These results imply that excessive swine manure application does not increase yield but increases GHG emissions. Copyright © 2018 Elsevier B.V. All rights reserved.
Dendooven, Luc; Gutiérrez-Oliva, Vicente F; Patiño-Zúñiga, Leonardo; Ramírez-Villanueva, Daniel A; Verhulst, Nele; Luna-Guido, Marco; Marsch, Rodolfo; Montes-Molina, Joaquín; Gutiérrez-Miceli, Federico A; Vásquez-Murrieta, Soledad; Govaerts, Bram
2012-08-01
In 1991, the 'International Maize and Wheat Improvement Center' (CIMMYT) started a field experiment in the rain fed Mexican highlands to investigate conservation agriculture (CA) as a sustainable alternative for conventional maize production practices (CT). CT techniques, characterized by deep tillage, monoculture and crop residue removal, have deteriorated soil fertility and reduced yields. CA, which combines minimum tillage, crop rotations and residue retention, restores soil fertility and increases yields. Soil organic matter increases in CA compared to CT, but increases in greenhouse gas emissions (GHG) in CA might offset the gains obtained to mitigate global warming. Therefore, CO(2), CH(4) and N(2)O emissions, soil temperature, C and water content were monitored in CA and CT treatments in 2010-2011. The cumulative GHG emitted were similar for CA and CT in both years, but the C content in the 0-60 cm layer was higher in CA (117.7 Mg C ha(-1)) than in CT (69.7 Mg C ha(-1)). The net global warming potential (GWP) of CA (considering soil C sequestration, GHG emissions, fuel use, and fertilizer and seeds production) was -7729 kg CO(2) ha(-1) y(-1) in 2008-2009 and -7892 kg CO(2) ha(-1) y(-1) in 2010-2011, whereas that of CT was 1327 and 1156 kg CO(2) ha(-1) y(-1). It was found that the contribution of CA to GWP was small compared to that of CT. Copyright © 2012 Elsevier B.V. All rights reserved.
Causes of ice age intensification across the Mid-Pleistocene Transition
Foster, Gavin L.; Rohling, Eelco J.; Sexton, Philip F.; Cherry, Soraya G.; Hasenfratz, Adam P.; Haug, Gerald H.; Martínez-García, Alfredo; Pälike, Heiko; Pancost, Richard D.; Wilson, Paul A.
2017-01-01
During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth’s orbitally paced ice age cycles intensified, lengthened from ∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets. PMID:29180424
Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.
Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F
2016-02-11
No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.
Causes of ice age intensification across the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Chalk, Thomas B.; Hain, Mathis P.; Foster, Gavin L.; Rohling, Eelco J.; Sexton, Philip F.; Badger, Marcus P. S.; Cherry, Soraya G.; Hasenfratz, Adam P.; Haug, Gerald H.; Jaccard, Samuel L.; Martínez-García, Alfredo; Pälike, Heiko; Pancost, Richard D.; Wilson, Paul A.
2017-12-01
During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth's orbitally paced ice age cycles intensified, lengthened from ˜40,000 (˜40 ky) to ˜100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ˜43 to ˜75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.
Vaudour, Emmanuelle; Cerovic, Zoran G.; Ebengo, Dav M.; Latouche, Gwendal
2018-01-01
For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, Ntot, CaCO3, iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K+, Na+, Mg2+, coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75). Predictions of SOC, Ntot, CaCO3, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68) when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field. PMID:29642640
NASA Astrophysics Data System (ADS)
Martinez-Garcia, A.; Sigman, D. M.; Anderson, R. F.; Ren, H. A.; Hodell, D. A.; Straub, M.; Jaccard, S.; Eglinton, T. I.; Haug, G. H.
2013-12-01
Based on the limitation of modern Southern Ocean phytoplankton by iron and the evidence of higher iron-bearing dust fluxes to the ocean during ice ages, it has been proposed that iron fertilization of Southern Ocean phytoplankton contributed to the reduction in atmospheric CO2 during ice ages. In the Subantarctic zone of the Atlantic Southern Ocean, glacial increases in dust flux and export production have been documented, supporting the iron fertilization hypothesis. However, these observations could be interpreted alternatively as resulting from the equatorward migration of Southern Ocean fronts during ice ages if the observed productivity rise was not accompanied by an increase in major nutrient consumption. Here, new 230Th-normalized lithogenic and opal fluxes are combined with high-resolution biomarker measurements to reconstruct millennial-scale changes in dust deposition and marine export production in the subantarctic Atlantic over the last glacial cycle. In the same record foraminifera-bound nitrogen isotopes are used to reconstruct ice age changes in surface nitrate utilization, providing a comprehensive test of the iron fertilization hypothesis. Elevation in foraminifera-bound δ15N, indicating more complete nitrate consumption, coincides with times of surface cooling and greater dust flux and export production. These observations indicate that the ice age Subantarctic was characterized by iron fertilized phytoplankton growth. The resulting strengthening of the Southern Ocean's biological pump can explain the ~40 ppm lowering of CO2 that characterizes the transitions from mid-climate states to full ice age conditions as well as the millennial-scale atmospheric CO2 fluctuations observed within the last ice age
Chris A. Maier; L.W. Kress
2000-01-01
We measured soil CO2 evolution rates with (Sff) and without (Sms) the forest floor litter and root respiration monthly in 11-year-old loblolly pine (Pinus taeda L.) plantations during the fourth year of fertilization and irrigation treatments. Values of Sff...
Soil organic carbon and biological fertility in a Mediterranean forest area (Italy)
NASA Astrophysics Data System (ADS)
Francaviglia, Rosa; Benedetti, Anna
2015-04-01
The study was performed at Castelporziano Estate, a natural ecosystem with high environmental value, and not concerned with any direct sources of pollution. However, it is situated near the city of Rome, some industrial plants, the international airport of Fiumicino, and some highways that can represent an external source of pollutants. Castelporziano lies in Central Italy at the western outskirts of Rome, about 20 km from the city centre and in front of the Tyrrhenian Sea. Soil morphology is mainly plain (30 m mean elevation) with sandy materials of alluvial nature, and only the inner part is formed of volcanic and alluvial materials with a slight elevation above the sea level (85 m). The total area is about 6000 ha, the climate is Mediterranean, total rainfall is 700 mm, and mean temperatures range from 4 ° C in winter and 30 ° C in summer. The vegetation is typically Mediterranean, mainly oaks, mixed broadleaf groves, and Mediterranean maquis along the seacoast. Areas with reforestation of pines, as well as corkwoods, pastures, and small agricultural fields are also present. Soils were sampled at five different sites: QI, forest of Quercus ilex L.; MM, Mediterranean maquis; PP, Pinus pinea L. reforestation (60 years old); MF, mixed hygrophilous back-dune forest; AR, arable land. Five soil samples from each site were collected (0-20 cm of depth), about 2 m far from each other. Soil organic carbon (SOC), total N (Ntot), microbial biomass carbon (Cmic), basal and cumulative respiration (Cbas and Ccum), the metabolic quotient (qCO2), and the mineralisation quotient (qM) were determined. The index of biological fertility (IBF), a comprehensive indicator considering SOM, Cbas, Ccum, Cmic, qCO2 and qM was also calculated for the different land uses. Five intervals of values have been set for each parameter, and a score increasing from 1 to 5 has been assigned to each interval; the algebraic sum of the score for each parameter gives the classes of biological fertility.
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-01-01
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710
Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu
2016-09-29
Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.
NASA Astrophysics Data System (ADS)
Yang, Yuting; Donohue, Randall; McVicar, Tim; Roderick, Michael; Beck, Hylke
2016-04-01
Tropical rainforests contribute to ~52% of the terrestrial biomass carbon and more than one-third of global terrestrial net primary production. Thus, understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water and energy budgets under future climate change. While the Free-air CO2 enrichment (FACE) technique has greatly advanced our understanding of how boreal and temperate ecosystems respond to eCO2, there are currently no FACE sites available in tropical rainforest ecosystems. Here we firstly examine the trend in long-term (1982-2010) satellite-observed leaf area index and fraction of vegetation light absorption and find only minor changes in these variables in tropical rainforests over years, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf-level. Following that, we investigate the long-term physiological response (i.e., leaf-level) of tropical rainforests to eCO2 from three different perspectives by: (1) analyzing long-term runoff and precipitation records in 18 unimpaired tropical rainforest catchments to provide observational evidence on the eCO2 effect from an eco-hydrological perspective; (2) developing an analytical model using gas-exchange theory to predict the effect of eCO2 from a top-down perspective; and (3) interpreting outputs from 10 process-oriented ecosystem models to examine the effect of eCO2 from a bottom-up perspective. Our results show that the observed runoff coefficient (the ratio of runoff over precipitation) and ecosystem evapotranspiration (calculated from catchment water balance) remain relatively constant in 18 unimpaired tropical catchments over 1982-2010, implying an unchanged hydrological partitioning and thus conserved transpiration under eCO2. For the same period, using 'top-down' model based on gas-exchange theory, we predict an increase in plant assimilation (A) driven directly by an enhanced light use efficiency (ɛ) at the leaf-level in response to eCO2, the magnitude of which is about the same as that of eCO2 (i.e., ~12% over 1982-2010). Simulations from ten state-of-the-art 'bottom-up' ecosystem models also confirm that in tropical rainforests, direct effect of eCO2 mainly increases A and ɛ but does not change E. Our findings add to the current limited pool of knowledge regarding the long-term eCO2 impacts in tropical rainforests and provide important scientific guidance for future ecophysiology / ecohydrology modelling and field activities conducted in the area.
NASA Astrophysics Data System (ADS)
Will, R. A.; Balch, R. S.
2015-12-01
The Southwest Partnership on Carbon Sequestration is performing seismic based characterization and monitoring activities at an active CO2 EOR project at Farnsworth Field, Texas. CO2 is anthropogenically sourced from a fertilizer and an ethanol plant. The field has 13 CO2 injectors and has sequestered 302,982 metric tonnes of CO2 since October 2013. The field site provides an excellent laboratory for testing a range of monitoring technologies in an operating CO2 flood since planned development is sequential and allows for multiple opportunities to record zero CO2 baseline data, mid-flood data, and fully flooded data. The project is comparing and contrasting several scales of seismic technologies in order to determine best practices for large scale commercial sequestration projects. Characterization efforts include an 85 km2 3D surface seismic survey, baseline and repeat 3D VSP surveys centered on injection wells, cross-well tomography baseline and repeat surveys between injector/producer pairs, and a borehole passive seismic array to monitor induced seismicity. All surveys have contributed to detailed geologic models which were then used for fluid flow and risk assessment simulations. 3D VSP and cross-well data with repeat surveys have allowed for direct comparisons of the reservoir prior to CO2 injection and at eight months into injection, with a goal of imaging the CO2 plume as it moves away from injection wells. Additional repeat surveys at regular intervals will continue to refine the plume. The goal of this work is to demonstrate seismic based technologies to monitor CO2 sequestration projects, and to contribute to best practices manuals for commercial scale CO2 sequestration projects. In this talk the seismic plan will be outlined, progress towards goals enumerated, and preliminary results from baseline and repeat seismic data will be discussed. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.
NASA Astrophysics Data System (ADS)
Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.
2012-12-01
Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.
Soil-atmosphere trace gas exchange from tropical oil palm plantations on peat
NASA Astrophysics Data System (ADS)
Arn Teh, Yit; Manning, Frances; Zin Zawawi, Norliyana; Hill, Timothy; Chocholek, Melanie; Khoon Kho, Lip
2015-04-01
Oil palm is the largest agricultural crop in the tropics, accounting for 13 % of all tropical land cover. Due to its large areal extent, oil palm cultivation may have important implications not only for terrestrial stores of C and N, but may also impact regional and global exchanges of material and energy, including fluxes of trace gases and water vapor. In particular, recent expansion of oil palm into tropical peatlands has raised concerns over enhanced soil C emissions from degradation of peat, and elevated N-gas fluxes linked to N fertilizer application. Here we report our preliminary findings on soil carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes from a long-term, multi-scale project investigating the C, N and greenhouse gas (GHG) dynamics of oil palm ecosystems established on peat soils in Sarawak, Malaysian Borneo. Flux chamber measurements indicate that soil CO2, CH4 and N2O fluxes averaged 20.0 ± 16.0 Mg CO2-C ha-1 yr-1, 37.4 ± 29.9 kg CH4-C ha-1 yr-1 and 4.7 ± 4.2 g N2O-N ha-1 yr-1, respectively. Soil CO2 fluxes were on par with other drained tropical peatlands; whereas CH4 fluxes exceeded observations from similar study sites elsewhere. Nitrous oxide fluxes were in a similar range to fluxes from other drained tropical peatlands, but lower than emissions from mineral-soil plantations by up to three orders of magnitude. Fluxes of soil CO2 and N2O were spatially stratified, and contingent upon the distribution of plants, deposited harvest residues, and soil moisture. Soil CO2 fluxes were most heavily influenced by the distribution of palms and their roots. On average, autotrophic (root) respiration accounted for approximately 78 % of total soil CO2 flux, and total soil respiration declined steeply away from palms; e.g. soil CO2 fluxes in the immediate 1 m radius around palms were up to 6 times greater than fluxes in inter-palm spaces due to higher densities of roots. Placement of harvest residues played an important - but secondary - role in modulating soil CO2 fluxes; soil respiration rates doubled in areas where harvest residues were deposited, reflecting an enhanced input of labile organic matter for decomposition. In contrast, N2O fluxes were best-predicted by the distribution of harvest residues, and were only weakly related to plant distributions or soil moisture. For example, N2O fluxes from harvest residue piles were up to twice of the overall plot-average. In contrast, N2O fluxes showed no clear pattern around palms or in inter-palm spaces; this finding is surprising because N fertilizers are applied within the 1 m radius around palms, and we expected to observe enhanced N2O fluxes in areas of greater fertilizer input. This suggests that palms may be a strong competitor for N in these ecosystems, and that fertilizer application may more closely match overall plant demand than in mineral-soil plantations. Overall, the spatial patterning of soil CO2 and N2O fluxes implies that soil biogeochemical processes are predictably distributed in space, potentially making it easier to model and constrain fluxes of these soil-derived GHGs.
Effects of cover crops incorporation and nitrogen fertilization on N2O and CO2 emissions
NASA Astrophysics Data System (ADS)
Kandel, T. P.; Gowda, P. H.; Northup, B. K.; DuPont, J.; Somenahally, A. C.; Rocateli, A.
2017-12-01
In this study, we measured N2O and CO2 fluxes from plots planted to hairy vetch (winter cover crop) and broadleaf vetch (spring cover crop) as N sources for the following crabgrass (summer forage crop) in El Reno, Oklahoma, USA. Comparisons also included 0 and 60 kg ha-1 mineral N fertilizer supplied as dry urea. No significant N2O fluxes were observed during rapid growing periods of cover crops (March-April, 2017), however, large fluxes were observed after hairy vetch incorporation. Immediately after the hairy vetch biomass incorporation, large rainfall events were recorded. The fluxes subsided gradually with drying soil condition but were enhanced after every consecutive rainfall events. A rainfall induced flux measuring up to 8.2 kg N2O ha-1 day-1 was observed after 26 days of biomass incorporation. In total, 29 kg N2O ha-1 (18 kg N ha-1) was emitted within a month after biomass incorporation from hairy vetch plots. Growth of broadleaf vetch was poor and N2O fluxes were also lower. Similarly, plots fertilized with 60 kg N ha-1 had significant fluxes of N2O but the magnitude was much lower than the hairy vetch plots. Dynamics of N2O and CO fluxes correlated strongly. The results thus indicated that although cover crops may provide many environmental/agronomic benefits such as N fixation, soil carbon built-up, weed suppression and erosion control, high N2O emissions may dwarf these benefits.
Honemann-Capito, Mona; Brechtel-Curth, Katja; Hedderich, Marie; Wodarz, Andreas
2014-01-01
Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract. PMID:25010066
Linnemannstöns, Karen; Ripp, Caroline; Honemann-Capito, Mona; Brechtel-Curth, Katja; Hedderich, Marie; Wodarz, Andreas
2014-07-01
Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract.
Cao, Yansheng; Sun, Huifeng; Liu, Yaqin; Fu, Zishi; Chen, Guifa; Zou, Guoyan; Zhou, Sheng
2017-02-01
To better understand N runoff losses from rice-wheat rotation and demonstrate the effectiveness of improved fertilizer management in reducing N runoff losses, a field study was conducted for three consecutive rice-wheat rotations. Nitrogen losses through surface runoff were measured for five treatments, including CK without N application, C200, C300 simulating the conventional practices, CO200, and CO300. Optimum N rate was applied for C200 and CO200, and 30% of chemical fertilizer was substituted with organic fertilizer for CO200 and CO300 with respect to C200 and C300, respectively. Rice season had higher runoff coefficients than wheat season. Approximately 52% of total N was lost as NH 4 + -N in rice season, ranging from 21 to 83%, and in wheat season, the proportion of NO 3 - -N in total N averaged 53% with a variation from 38 to 67%. The N treatments lost less total N in rice season (1.67-10.7 kg N ha -1 ) than in wheat season (1.72-17.1 kg N ha -1 ). These suggested that a key to controlling N runoff losses from rice-wheat rotation was to limit NO 3 - -N accumulation in wheat season. In both seasons, N runoff losses for C200 and CO300 were lower than those for C300. CO200 better cut N losses than C200 and CO300, with 64 and 57% less N in rice and wheat seasons than C300, respectively. Compared with the conventional practices, optimum N inputs integrated with co-application of organic and chemical fertilizers could reduce N runoff losses with a better N balance under rice-wheat rotation.
Improving farming practices reduces the carbon footprint of spring wheat production.
Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L; Campbell, Con A; Zentner, Robert P
2014-11-18
Wheat is one of the world's most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256 kg CO2 eq ha(-1) per year. For each kg of wheat grain produced, a net 0.027-0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production.
Improving farming practices reduces the carbon footprint of spring wheat production
NASA Astrophysics Data System (ADS)
Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L.; Campbell, Con A.; Zentner, Robert P.
2014-11-01
Wheat is one of the world’s most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256 kg CO2 eq ha-1 per year. For each kg of wheat grain produced, a net 0.027-0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production.
Improving farming practices reduces the carbon footprint of spring wheat production
Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L.; Campbell, Con A.; Zentner, Robert P.
2014-01-01
Wheat is one of the world’s most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging −256 kg CO2 eq ha−1 per year. For each kg of wheat grain produced, a net 0.027–0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production. PMID:25405548
NASA Astrophysics Data System (ADS)
Marañón-Jiménez, Sara; Serrano-Ortíz, Penelope; Vicente-Vicente, Jose Luis; Chamizo, Sonia; Kowalski, Andrew S.
2017-04-01
Olive (Olea europaea) is the dominant agriculture plantation in Spain and its main product, olive oil, is vital to the economy of Mediterranean countries. Given the extensive surface dedicated to olive plantations, olive groves can potentially sequester large amounts of carbon and contribute to mitigate climate change. Their potential for carbon sequestration will, however, largely depend on the management and irrigation practices in the olive grove. Although soil respiration is the main path of C release from the terrestrial ecosystems to the atmosphere and a suitable indicator of soil health and fertility, the interaction of agricultural management practices with irrigation regimes on soil CO2 fluxes have not been assessed yet. Here we investigate the influence of the presence of herbaceous cover, use of artificial fertilizers and their interaction with the irrigation regime on the CO2 emission from the soil to the atmosphere. For this, the three agricultural management treatments were established in replicated plots in an olive grove in the SE of Spain: presence of herbaceous cover ("H"), exclusion of herbaceous cover by using herbicides ("NH"), and exclusion of herbaceous cover along with addition of artificial fertilizers (0.55 kg m-2 year-1 of N, P, K solid fertilizer in the proportion 20:10:10, "NHF"). Within each management treatment, three irrigation regimes were also implemented in a randomized design: no-irrigation ("NO") or rain fed, full irrigation (224 l week-1 per olive tree, "MAX"), and a 50% restriction (112 l week-1 per olive tree, "MED"). Soil respiration was measured every 2-3 weeks at 1, 3, and 5 meters from each olive tree together with soil temperature and soil moisture in order to account for the spatial and seasonal variability over the year. Soil respiration was higher when herbaceous cover was present compared to the herbaceous exclusion, whereas the addition of fertilizer did not exert any significant effect. Although the different irrigation regimes did affect soil moisture, soil CO2 fluxes remained unaffected by the amount of water added. Soil moisture and temperature were actually reduced by the presence of herbaceous cover during the growing season, which suggests water competition between herbaceous plants and olives with counteracting effects on soil respiration values. Soil respiration showed high spatial heterogeneity, with values decreasing exponentially with the distance from the olive trees. These data highlight the need to account for their spatial and seasonal heterogeneity when estimating the contribution of soil respiration to atmospheric CO2 emissions and the crucial role of the agricultural management on determining the carbon sequestration potential of soil from olive groves.
Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei
2015-11-01
In this study, a semi-open-top artificial climate chamber was used to study the effect of CO2 enrichment (360 and 540 µmol · mol(-1)) and nitrogen addition (0, 150, 300 and 450 kg · hm(-2)) on cotton dry matter accumulation and distribution, nitrogen absorption and soil urease activity. The results showed that the dry matter accumulation of bud, stem, leaf and the whole plant increased significantly in the higher CO2 concentration treatment irrespective of nitrogen level. The dry matter of all the detected parts of plant with 300 kg · hm(-2) nitrogen addition was significantly higher than those with the other nitrogen levels irrespective of CO2 concentration, indicating reasonable nitrogen fertilization could significantly improve cotton dry matter accumulation. Elevated CO2 concentration had significant impact on the nitrogen absorption contents of cotton bud and stem. Compared to those under CO2 concentration of 360 µmol · mol(-1), the nitrogen contents of bud and stem both increased significantly under CO2 concentration of 540 µmol · mol(-1). The nitrogen content of cotton bud in the treatment of 300 kg · hm(-2) nitrogen was the highest among the four nitrogen fertilizer treatments. While the nitrogen contents of cotton stem in the treatments of 150 kg · hm(-2) and 300 kg · hm(-2) nitrogen levels were higher than those in the treatment of 0 kg · hm(-2) and 450 kg · hm(-2) nitrogen levels. The nitrogen content of cotton leaf was significantly influenced by the in- teraction of CO2 elevation and N addition as the nitrogen content of leaf increased in the treatments of 0, 150 and 300 kg · hm(-2) nitrogen levels under the CO2 concentration of 540 µmol · mol(-1). The nitrogen content in cotton root was significantly increased with the increase of nitrogen fertilizer level under elevated CO2 (540 µmol · mol(-1)) treatment. Overall, the cotton nitrogen absorption content under the elevated CO2 (540 µmol · mol(-1)) treatment was higher than that under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)).
Prager, Case M; Naeem, Shahid; Boelman, Natalie T; Eitel, Jan U H; Greaves, Heather E; Heskel, Mary A; Magney, Troy S; Menge, Duncan N L; Vierling, Lee A; Griffin, Kevin L
2017-04-01
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO 2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO 2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%-50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization-over an order of magnitude or more than warming-induced rates-significantly alter the capacity for tundra CO 2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.
Han, Jiangpei; Shi, Liangsheng; Wang, Yakun; Chen, Zhuowei; Wu, Laosheng
2018-05-01
Anaerobic batch experiments were conducted to study the regulatory role of endogenous iron in greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China. Fe 2+ , Fe 3+ , and NO 3 - -N dynamics and N 2 O, CH 4 , and CO 2 emissions, as well as the relationships between N fertilizer, endogenous iron, and greenhouse gas emissions were investigated. The emissions of N 2 O increased to different extents from all the test soils by N1 (260 mg N kg -1 ) application compared with N0. After 24 days of anaerobic incubation, the cumulative emissions of N 2 O from red soils in De'an (DR) were significantly higher than that from paddy soils in De'an (DP) and Qujialing (QP) under N1. However, N application enhanced CH 4 and CO 2 emissions from the red soils slightly but inhibited the emissions from paddy soils. The maximal CH 4 and CO 2 emission fluxes occurred in DP soil without N input. Pearson's correlation analysis showed that there were significant correlations (P < 0.01) between Fe 2+ and Fe 3+ , NO 3 - -N, (N 2 O + N 2 )-N concentrations in DP soil, implying that Fe 2+ oxidation was coupled with nitrate reduction accompanied by (N 2 O + N 2 )-N emissions and the endogenous iron played a regulatory role in greenhouse gas emissions mainly through the involvement in denitrification. The proportion of the electrons donated by Fe 2+ used for N 2 O production in denitrification in DP soil was approximately 37.53%. Moreover, positive correlations between Fe 2+ and CH 4 , CO 2 were found in both DR and QP soils, suggesting that endogenous iron might regulate the anaerobic decomposition of organic carbon to CH 4 and CO 2 in the two soils. Soil pH was also an important factor controlling greenhouse gas emissions by affecting endogenous iron availability and C and N transformation processes.
USDA-ARS?s Scientific Manuscript database
Field experimental data of five experiments covering a wide range Field experimental data of five experiments covering a wide range of growing conditions are assembled for wheat growth and cropping systems modeling. The data include (i) an experiment on interactive effects of elevated CO2 by water a...
Wang, Jianing; Niu, Xintao; Zheng, Lingjiao; Zheng, Chuantao; Wang, Yiding
2016-01-01
In this paper, a wireless mid-infrared spectroscopy sensor network was designed and implemented for carbon dioxide fertilization in a greenhouse environment. A mid-infrared carbon dioxide (CO2) sensor based on non-dispersive infrared (NDIR) with the functionalities of wireless communication and anti-condensation prevention was realized as the sensor node. Smart transmission power regulation was applied in the wireless sensor network, according to the Received Signal Strength Indication (RSSI), to realize high communication stability and low-power consumption deployment. Besides real-time monitoring, this system also provides a CO2 control facility for manual and automatic control through a LabVIEW platform. According to simulations and field tests, the implemented sensor node has a satisfying anti-condensation ability and reliable measurement performance on CO2 concentrations ranging from 30 ppm to 5000 ppm. As an application, based on the Fuzzy proportional, integral, and derivative (PID) algorithm realized on a LabVIEW platform, the CO2 concentration was regulated to some desired concentrations, such as 800 ppm and 1200 ppm, in 30 min with a controlled fluctuation of <±35 ppm in an acre of greenhouse. PMID:27869725
Li, Weibin; Hartmann, Henrik; Adams, Henry D; Zhang, Hongxia; Jin, Changjie; Zhao, Chuanyan; Guan, Dexin; Wang, Anzhi; Yuan, Fenghui; Wu, Jiabing
2018-06-11
Non-structural carbohydrates (NSC) play a central role in plant functioning as energy carriers and building blocks for primary and secondary metabolism. Many studies have investigated how environmental and anthropogenic changes, like increasingly frequent and severe drought episodes, elevated CO2 and atmospheric nitrogen (N) deposition, influence NSC concentrations in individual trees. However, this wealth of data has not been analyzed yet to identify general trends using a common statistical framework. A thorough understanding of tree responses to global change is required for making realistic predictions of vegetation dynamics. Here we compiled data from 57 experimental studies on 71 tree species and conducted a meta-analysis to evaluate general responses of stored soluble sugars, starch and total NSC (soluble sugars + starch) concentrations in different tree organs (foliage, above-ground wood and roots) to drought, elevated CO2 and N deposition. We found that drought significantly decreased total NSC in roots (-17.3%), but not in foliage and above-ground woody tissues (bole, branch, stem and/or twig). Elevated CO2 significantly increased total NSC in foliage (+26.2%) and roots (+12.8%), but not in above-ground wood. By contrast, total NSC significantly decreased in roots (-17.9%), increased in above-ground wood (+6.1%), but was unaffected in foliage from N fertilization. In addition, the response of NSC to three global change drivers was strongly affected by tree taxonomic type, leaf habit, tree age and treatment intensity. Our results pave the way for a better understanding of general tree function responses to drought, elevated CO2 and N fertilization. The existing data also reveal that more long-term studies on mature trees that allow testing interactions between these factors are urgently needed to provide a basis for forecasting tree responses to environmental change at the global scale.
Riya, S; Zhou, S; Kobara, Y; Sagehashi, M; Terada, A; Hosomi, M
2015-09-15
The use of liquid cattle waste (LCW) as a fertilizer for forage rice is important for material recycling because it can promote biomass production, and reduce the use of chemical fertilizer. Meanwhile, increase in emission of greenhouse gases (GHGs), especially CH4 and N2O would be concerned. We conducted a field study to determine the optimum loading rate of LCW as N to promote forage rice growth with lower GHG emissions. The LCW was applied to forage rice fields, N100, N250, N500, and N750, at four different N loading rates of 107, 258, 522, and 786 kg N ha(-1), respectively, including 50 kg N ha(-1) of basal chemical fertilizer. The above-ground biomass yields increased 14.6-18.5 t ha(-1) with increases in N loading rates. During the cultivation period, both the CH4 and N2O fluxes increased with increases in LCW loading rates. In the treatments of N100, N250, N500, and N750, the cumulative CH4 emissions during the entire period, including cultivation and fallow period were 29.6, 18.1, 54.4, and 67.5 kg C ha(-1), respectively, whereas those of N2O were -0.15, -0.02, 1.49, and 5.82 kg N ha(-1), respectively. Considering the greenhouse gas emissions and above-ground biomass, the yield-scaled CO2-equivalents (CO2-eqs) were 66.3, 35.9, 161, and 272 kg CO2 t(-1) for N100, N250, N500, and N750, respectively. These results suggest that N250 is the most appropriate LCW loading rate for promoting forage rice production with lower GHG emissions. Copyright © 2015 Elsevier Ltd. All rights reserved.
The impact of geoengineering on vegetation in experiment G1 of the GeoMIP
NASA Astrophysics Data System (ADS)
Glienke, Susanne; Irvine, Peter J.; Lawrence, Mark G.
2015-10-01
Solar Radiation Management (SRM) has been proposed as a mean to partly counteract global warming. The Geoengineering Model Intercomparison Project (GeoMIP) has simulated the climate consequences of a number of SRM techniques. Thus far, the effects on vegetation have not yet been thoroughly analyzed. Here the vegetation response to the idealized GeoMIP G1 experiment from eight fully coupled Earth system models (ESMs) is analyzed, in which a reduction of the solar constant counterbalances the radiative effects of quadrupled atmospheric CO2 concentrations (abrupt4 × CO2). For most models and regions, changes in net primary productivity (NPP) are dominated by the increase in CO2, via the CO2 fertilization effect. As SRM will reduce temperatures relative to abrupt4 × CO2, in high latitudes this will offset increases in NPP. In low latitudes, this cooling relative to the abrupt4 × CO2 simulation decreases plant respiration while having little effect on gross primary productivity, thus increasing NPP. In Central America and the Mediterranean, generally dry regions which are expected to experience increased water stress with global warming, NPP is highest in the G1 experiment for all models due to the easing of water limitations from increased water use efficiency at high-CO2 concentrations and the reduced evaporative demand in a geoengineered climate. The largest differences in the vegetation response are between models with and without a nitrogen cycle, with a much smaller CO2 fertilization effect for the former. These results suggest that until key vegetation processes are integrated into ESM predictions, the vegetation response to SRM will remain highly uncertain.
Wani, N A
2009-03-01
Experiments were conducted to study the effect of storing epididymal spermatozoa, in tris-tes- and tris-lactose egg yolk extenders, on their fertilizing ability and subsequent in vitro embryo development. Ovaries and testes were collected from a local slaughterhouse in normal saline solution (NSS) at 37 degrees C and on ice (0-1 degrees C), respectively. Cumulus oocyte complexes (COCs) aspirated from the follicles were randomly distributed to 4-well culture plates (20-25COCs/well) containing 500 microL of maturation medium and cultured at 38.5 degrees C in an atmosphere of 5% CO(2) in air for 36 h. Spermatozoa were collected from the cauda epididymides in syringes containing 2-3 mL of either tris-tes- or tris-lactose egg yolk extender. They were cooled down slowly and stored at refrigeration (4 degrees C) temperature. The spermatozoa were evaluated for motility and used for IVF of IVM oocytes on the day of collection and after 2, 4, 6 and 8 days of storage. On the day of IVF, spermatozoa were prepared by the swim up technique and both spermatozoa and oocytes were co-incubated at 38.5 degrees C in a humidified atmosphere of 5% CO(2) in air for 15-16 h. Presumptive zygotes were either fixed and stained with Hoechst 33342 for evaluation of fertilization or were cultured in 500 microL of the culture medium at 38.5 degrees C in an atmosphere of 5% CO(2), 5% O(2) and 90% N(2) in air. There was no significant difference (P>0.05) in the proportion of oocytes fertilized with spermatozoa stored in either of the two extenders for up to 8 days. The proportion of oocytes that cleaved (43-60%) and those that developed to blastocysts (14-21%) did not show any difference (P>0.05) either, when spermatozoa from different days of storage were used. First cleavage was observed as early as 16 h after IVF, early blastocysts had developed by day 4, expanded blastocysts after day 5 and hatching of blastocysts started after day 6 of culture. It may be concluded that dromedary epididymal spermatozoa survive in storage for at least 8 days in tris-lactose- and tris-tes egg yolk diluents at 4 degrees C. These spermatozoa maintain fertilizing ability and may be suitable for use in IVF and other assisted reproductive procedures.
[An attempt to explain fertility differentials in Upper Volta and in Ghana].
Coulibaly, S P; Pool, I
1975-01-01
This study examines fertility differentials in Western Africa, notably in Upper Volta and in Ghana. The relationship between social and cultural transformation and fertility rate is usually seen as a matter of cause and effect. Direct variables caused by social transformation would be education, migration, and urbanization. This is not necessarily so, at least according to the Davis-Blake paradigm, which says that there are intermediate variables which intervene between fertility rate and the social system. For West Africa such variables are of 3 distinct types: 1) those which upset the normal flow of the family, such as separation due to migration, divorce, and marriage age; 2) those which influence conception itself, such as birth control, lactation and sexual abstinence; and, 3) cultural factors, such as poligamy and monogamy, type of conjugal union, and postpartum sexual abstinence. The central point of this study is that direct variables, i.e. migration, education and urbanization, do not directly influence fertility, but they influence the so-called intermediate variables, which, in turn, cause a change in fertility patterns. It must be remembered that birth control is still practically unknown in Western Africa.
NASA Astrophysics Data System (ADS)
Merbold, L.; Decock, C.; Hörtnagl, L. J.; Fuchs, K.; Eugster, W.
2015-12-01
Here we present 3 consecutive years of EC flux measurements of N2O, CH4 and CO2) carried out in intensively managed grassland in Switzerland. Our measurements of greenhouse gas (GHG) concentrations were based on a recently developed CW-QCL absorption spectrometer to measure the concentrations of N2O and CH4 and an infrared gas analyzer to measure the concentrations of CO2 and H2O. We investigated the magnitude of trace gas emissions during a year of major disturbance (grassland restoration - including ploughing and fertilization in 2012) and the two following years representing business as usual (up to 6 harvests per year which are followed by fertilizer application, 2013 and 2014). We observed large peaks of N2O (up to 50 nmol m-2 s-1) in 2012 during thawing of the soil after the winter period and after re-sowing as well as inorganic fertilizer application at the beginning of summer. N2O emissions following harvest and fertilizer application ranged between 2 and 7 nmol m-2 s-1 and background fluxes were no larger than 1 nmol m-2 s-1. Fluxes of N2O were primarily controlled by soil water content and temperature, while management activities lead to larger variation of N2O fluxes during several days after the management event when compared to the background flux measurements. Annual flux budgets were dominated by CO2 emissions and N2O emissions contributed largely to the annual budget in 2012 but to a much lesser extend in the post-disturbance years (2013/2014). CH4 flux contribution to the annual budget was negligible. We conclude that grassland restoration results in large N2O emissions, while not leading to larger N2O emissions in subsequent years. Still, such specific time periods of enhanced N2O emissions need to be considered in decadal greenhouse gas budget estimates due to the fact that a single year can offset previous carbon and nitrogen sinks.
Yao, Zhisheng; Zheng, Xunhua; Zhang, Yanan; Liu, Chunyan; Wang, Rui; Lin, Shan; Zuo, Qiang; Butterbach-Bahl, Klaus
2017-09-12
Ground cover rice production system (GCRPS), i.e., paddy soils being covered by thin plastic films with soil moisture being maintained nearly saturated status, is a promising technology as increased yields are achieved with less irrigation water. However, increased soil aeration and temperature under GCRPS may cause pollution swapping in greenhouse gas (GHG) from CH 4 to N 2 O emissions. A 2-year experiment was performed, taking traditional rice cultivation as a reference, to assess the impacts of N-fertilizer placement methods on CH 4 , N 2 O and NO emissions and rice yields under GCRPS. Averaging across all rice seasons and N-fertilizer treatments, the GHG emissions for GCRPS were 1973 kg CO 2 -eq ha -1 (or 256 kg CO 2 -eq Mg -1 ), which is significantly lower than that of traditional cultivation (4186 kg CO 2 -eq ha -1 or 646 kg CO 2 -eq Mg -1 ). Furthermore, if urea was placed at a 10-15 cm soil depth instead of broadcasting, the yield-scaled GHG emissions from GCRPS were further reduced from 377 to 222 kg CO 2 -eq Mg -1 , as N 2 O emissions greatly decreased while yields increased. Urea deep placement also reduced yield-scaled NO emissions by 54%. Therefore, GCRPS with urea deep placement is a climate- and environment-smart management, which allows for maximal rice yields at minimal GHG and NO emissions.
Noisette, Fanny; Comtet, Thierry; Legrand, Erwann; Bordeyne, François; Davoult, Dominique; Martin, Sophie
2014-01-01
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 μatm) and at elevated levels (750 and 1400 μatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 μatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 μatm and 1400 μatm pCO2, respectively, than at 390 μatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.
Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P
2015-07-01
Crop yield, vegetative or reproductive, depends on access to an adequate supply of essential mineral nutrients. At the same time, a crop plant's growth and development, and thus yield, also depend on in situ production of plant hormones. Thus optimizing mineral nutrition and providing supplemental hormones are two mechanisms for gaining appreciable yield increases. Optimizing the mineral nutrient supply is a common and accepted agricultural practice, but the co-application of nitrogen-based fertilizers with plant hormones or plant growth regulators is relatively uncommon. Our review discusses possible uses of plant hormones (gibberellins, auxins, cytokinins, abscisic acid and ethylene) and specific growth regulators (glycine betaine and polyamines) to enhance and optimize crop yield when co-applied with nitrogen-based fertilizers. We conclude that use of growth-active gibberellins, together with a nitrogen-based fertilizer, can result in appreciable and significant additive increases in shoot dry biomass of crops, including forage crops growing under low-temperature conditions. There may also be a potential for use of an auxin or cytokinin, together with a nitrogen-based fertilizer, for obtaining additive increases in dry shoot biomass and/or reproductive yield. Further research, though, is needed to determine the potential of co-application of nitrogen-based fertilizers with abscisic acid, ethylene and other growth regulators. © 2014 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
In Experiment 1, we evaluated the effects of two lengths of progesterone exposure (CIDR; 7 vs. 14 d) prior to a modified CO-Synch protocol, with or without temporary weaning (TW) before GnRH treatments, on fertility of suckled Bos indicus Nelore cows (n = 283) and on calf performance. Timed AI (TAI)...
Laratte, Bertrand; Guillaume, Bertrand; Kim, Junbeum; Birregah, Babiga
2014-05-15
This paper aims at presenting a dynamic indicator for life cycle assessment (LCA) measuring cumulative impacts over time of greenhouse gas (GHG) emissions from fertilizers used for wheat cultivation and production. Our approach offers a dynamic indicator of global warming potential (GWP), one of the most used indicator of environmental impacts (e.g. in the Kyoto Protocol). For a case study, the wheat production in France was selected and considered by using data from official sources about fertilizer consumption and production of wheat. We propose to assess GWP environmental impact based on LCA method. The system boundary is limited to the fertilizer production for 1 ton of wheat produced (functional unit) from 1910 to 2010. As applied to wheat production in France, traditional LCA shows a maximum GWP impact of 500 kg CO2-eq for 1 ton of wheat production, whereas the GWP impact of wheat production over time with our approach to dynamic LCA and its cumulative effects increases to 18,000 kg CO2-eq for 1 ton of wheat production. In this paper, only one substance and one impact assessment indicator are presented. However, the methodology can be generalized and improved by using different substances and indicators. Copyright © 2014 Elsevier B.V. All rights reserved.
Frozen Cropland Soil in Northeast China as Source of N2O and CO2 Emissions
Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta
2014-01-01
Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November–March), when soil temperatures are below −7°C for extended periods, were 0.89–3.01 µg N m−2 h−1, and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73–5.48 µg N m−2 h−1. The cumulative N2O emissions were on average 0.27–1.39, 0.03–0.08 and 0.03–0.11 kg N2O–N ha−1 during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3–12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73–4.94, 0.13–0.20 and 0.07–0.11 Mg CO2-C ha−1 during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0–2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter. PMID:25536036
Akhtar, Muhammad
2013-01-01
In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC b/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878
Biogenic CH4 and N2O emissions overwhelm land CO2 sink in Asia: Toward a full GHG budget
NASA Astrophysics Data System (ADS)
Tian, H.
2017-12-01
The recent global assessment indicates the terrestrial biosphere as a net source of greenhouse gases to the atmosphere (Tian et al Nature 2016). The fluxes of greenhouse gases (GHG) vary by region. Both TD and BU approaches indicate that human-caused biogenic fluxes of CO2, CH4 and N2O in the biosphere of Southern Asia led to a large net climate warming effect, because the 100-year cumulative effects of CH4 and N2O emissions together exceed that of the terrestrial CO2 sink. Southern Asia has about 90% of the global rice fields and represents more than 60% of the world's nitrogen fertilizer consumption, with 64%-81% of CH4 emissions and 36%-52% of N2O emissions derived from the agriculture and waste sectors. Given the large footprint of agriculture in Southern Asia, improved fertilizer use efficiency, rice management and animal diets could substantially reduce global agricultural N2O and CH4 emissions. This study highlights the importance of including all three major GHGs in regional climate impact assessments, mitigation option and climate policy development.
Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis
2006-01-01
Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...
Modeling phosphorus losses from soils amended with cattle manures and chemical fertilizers.
Wang, Zhaozhi; Zhang, T Q; Tan, C S; Vadas, P; Qi, Z M; Wellen, C
2018-05-22
While applied manure/fertilizer is an important source of P loss in surface runoff, few models simulate the direct transfer of phosphorus (P) from soil-surface-applied manure/fertilizer to surface runoff. The SurPhos model was tested with 2008-2010 growing season daily surface runoff data from clay loam experimental plots subject to different manure/fertilizer applications. Model performance was evaluated on the basis of the coefficient of determination (R 2 ), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and the ratio of the root mean square error to the standard deviation of observed values (RSR). The model offered an acceptable performance in simulating soil labile P dynamics (R 2 = 0.75, NSE = 0.55, PBIAS = 10.43%, and RSR = 0.67) and dissolved reactive P (DRP) loss in surface runoff (R 2 ≥ 0.74 and NSE ≥ 0.69) for both solid and liquid cattle manure, as well as inorganic fertilizer. Simulated direct P loss in surface runoff from solid and liquid cattle manure accounted for 39% and 40% of total growing season DRP losses in surface runoff. To compensate for the unavailability of daily surface runoff observations under snow melt condition, the whole four years' (2008-2011) daily surface runoff predicted by EPIC (Environmental Policy Integrated Climate) was used as SurPhos input. The accuracy of simulated DRP loss in surface runoff under the different manure/fertilizer treatments was acceptable (R 2 ≥ 0.55 and NSE ≥ 0.50). For the solid cattle manure treatment, of all annual DRP losses, 19% were derived directly from the manure. Beyond offering a reliable prediction of manure/fertilizer P loss in surface runoff, SurPhos quantified different sources of DRP loss and dynamic labile P in soil, allowing a better critical assessment of different P management measures' effectiveness in mitigating DRP losses. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasselquist, Niles; Metcalfe, Daniel; Högberg, Peter
2013-04-01
Vegetation research in boreal forests has traditionally been focused on trees, with little attention given to understory vegetation. However, understory vegetation has been identified as a key driver for the functioning of boreal forests and may play an important role in the amount of carbon (C) that is entering and leaving these forested ecosystems. We conducted a large-scale 13C pulse labeling experiment to better understand how recently fixed C is allocated in the understory vegetation characteristic of boreal forests. We used transparent plastic chambers to pulse label the understory vegetation with enriched 13CO2 in the early (June) and late (August) growing seasons. This study was also replicated across a nitrogen (N) fertilization treatment to better understand the effects of N availability on C allocation patterns. We present data on the amount of 13C label found in different components of the understory vegetation (i.e. leaves, stems, lichens, mosses, rhizomes and fine roots) as well as CO2 efflux. Additionally, we provide estimates of C residence time (MRT) among the different components and examine how MRT of C is affected by seasonality and N availability. Seasonality had a large effect on how recently fixed C is allocated in understory vegetation, whereas N fertilization influenced the MRT of C in the different components of ericaceous vegetation. Moreover, there was a general trend that N additions increased the amount of 13C in CO2 efflux compared to the amount of 13C in biomass, suggesting that N fertilization may lead to an increase in the utilization of recently fixed C, whereas N-limitation promotes the storage of recently fixed C.
Trace element contaminants in mineral fertilizers used in Iran.
Latifi, Zahra; Jalali, Mohsen
2018-05-25
The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.
Comparative carbon cycle dynamics of the present and last interglacial
NASA Astrophysics Data System (ADS)
Brovkin, Victor; Brücher, Tim; Kleinen, Thomas; Zaehle, Sönke; Joos, Fortunat; Roth, Raphael; Spahni, Renato; Schmitt, Jochen; Fischer, Hubertus; Leuenberger, Markus; Stone, Emma J.; Ridgwell, Andy; Chappellaz, Jérôme; Kehrwald, Natalie; Barbante, Carlo; Blunier, Thomas; Dahl Jensen, Dorthe
2016-04-01
Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and δ13CO2 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics - shallow water CaCO3 accumulation, peat and permafrost carbon dynamics - are not well represented in the current ESMs. Global-scale modeling of these long-term carbon cycle components started only in the last decade, and uncertainty in parameterization of these mechanisms is a main limitation in the successful modeling of interglacial CO2 dynamics.
NASA Astrophysics Data System (ADS)
Wang, Weiqi; Neogi, Suvadip; Lai, Derrick Y. F.; Zeng, Congsheng; Wang, Chun; Zeng, Dongping
2017-09-01
Controlling the production and subsequent emissions of greenhouse gases (GHGs) from paddy fields is crucial to minimize the climatic impacts arising from crop production. The application of chemical or biological amendments is one possible way to limit the production of GHGs in paddy soils. Yet, few existing studies have examined the impacts of applying fertilizers originated from industrial and agricultural wastes on soil GHG production and its governing factors in subtropical paddy fields. In this study, we examined the effects of various agricultural and industrial amendments, including biochar, steel slag, shell slag, gypsum slag, and slag-derived silicate and calcium fertilizers, on the production potential of GHGs in an early paddy field in southeast China. The mean CO2 production rates from soils amended with steel slag as well as silicate and calcium fertilizers were significantly higher than those of the controls by 13.4% and 18.6%, respectively (P < 0.05). Mean soil CH4 production rates from the plots amended with steel slag, biochar, shell slag, and gypsum slag were significantly lower than those of the controls by 42.5%, 36.1%, 60.8%, and 61.8%, respectively (P < 0.05). Meanwhile, we found no significant difference in mean soil N2O production rates between the control and any of the treatments (P > 0.05). Overall, the soil production rate of CO2 was positively correlated with that of CH4 (P < 0.05), but negatively correlated with that of N2O (P < 0.05). When compared to the controls, the ratio of soil CO2:CH4 production increased significantly in the plots receiving biochar, and silicate and calcium fertilizer amendments (P < 0.05), while that of CO2:N2O production increased significantly only in the biochar-amended plots. Soil CH4:N2O production ratio decreased significantly in the plots amended with steel slag and gypsum slag, as compared to the controls (P < 0.05). Our results suggest that the application of biochar, shell slag and gypsum slag would help reduce greenhouse gas production and mitigate climate change impacts of rice cultivation, largely attributable to the reduction in methanogenesis.
Fertilizing Nature: A Tragedy of Excess in the Commons
Good, Allen G.; Beatty, Perrin H.
2011-01-01
Globally, we are applying excessive nitrogen (N) fertilizers to our agricultural crops, which ultimately causes nitrogen pollution to our ecosphere. The atmosphere is polluted by N2O and NOx gases that directly and indirectly increase atmospheric warming and climate change. Nitrogen is also leached from agricultural lands as the water-soluble form NO3 −, which increases nutrient overload in rivers, lakes, and oceans, causing “dead zones”, reducing property values and the diversity of aquatic life, and damaging our drinking water and aquatic-associated industries such as fishing and tourism. Why do some countries show reductions in fertilizer use while others show increasing use? What N fertilizer application reductions could occur, without compromising crop yields? And what are the economic and environmental benefits of using directed nutrient management strategies? PMID:21857803
NASA Astrophysics Data System (ADS)
Blagodatskaya, E.; Blagodatsky, S.; Kuzyakov, Y.
2009-04-01
The double-stranded DNA (dsDNA) content in soil can serve as a measure of microbial biomass under near steady-state conditions and quantitatively reflect the exponential microbial growth initiated by substrate addition. The yield of respired CO2 per microbial biomass unit (expressed as DNA content) could be a valuable physiological indicator reflecting state of soil microbial community. Therefore, investigations combining both analyses of DNA content and respiration of soil microorganisms under steady-state and during periods of rapid growth are needed. We studied the relationship between CO2 evolution and microbial dsDNA content in native and glucose-amended samples of root-free and rhizosphere soil under Beta vulgaris (Cambisol, loamy sand from the field experiment of the Institute of Agroecology FAL, Braunschweig, Germany). Quantity of dsDNA was determined by direct DNA isolation from soil with mechanic and enzymatic disruption of microbial cell walls with following spectrofluorimetric detection with PicoGreen (Blagodatskaya et al., 2003). Microbial biomass and the kinetic parameters of microbial growth were estimated by dynamics of the CO2 emission from soil amended with glucose and nutrients (Blagodatsky et al., 2000). The CO2 production rate was measured hourly at 22оС using an automated infrared-gas analyzer system. The overall increase in microbial biomass, DNA content, maximal specific growth rate and therefore, in the fraction of microorganisms with r-strategy were observed in rhizosphere as compared to bulk soil. The rhizosphere effect for microbial respiration, biomass and specific growth rate was more pronounced for plots with half-rate of N fertilizer compared to full N addition. The DNA content was significantly lower in bulk compared to rhizosphere soil both before and during microbial growth initiated by glucose amendment. Addition of glucose to the soil strongly increased the amount of CO2 respired per DNA unit. Without substrate addition the VCO2-to-total DNA ratios were lower than 0.1 µg CO2-C µg-1 total DNA h-1 whereas during exponential microbial growth these values increased consistently and exceeded 1 µg CO2-C µg-1 DNA h-1. Thus, the VCO2-to-total DNA ratio strongly changes along with the physiological state of soil microorganisms and can be used as valuable physiological parameter. In growing microorganisms the quantity of CO2 evolved per unit of newly formed DNA was identical in rhizosphere and root free soil and averaged for 13.5 ± 1.1 µg CO2-C µg-1 newly formed DNA. The CO2 yield per unit of newly formed DNA allows the estimation of microbial growth efficiency and validation of specific growth rates obtained during kinetic analysis of respiration curves. The study was supported by European Commission (Marie Curie IIF program, project MICROSOM) and by Alexander von Humboldt Foundation. References: Blagodatskaya EV, Blagodatskii SA, Anderson TH. 2003. Quantitative Isolation of Microbial DNA from Different Types of Soils of Natural and Agricultural Ecosystems. Microbiology 72(6):744-749. Blagodatsky SA, Heinemeyer O, Richter J. 2000. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biology and Fertility of Soils 32(1):73-81.
Coupled nutrient cycling determines tropical forest trajectory under elevated CO2.
NASA Astrophysics Data System (ADS)
Bouskill, N.; Zhu, Q.; Riley, W. J.
2017-12-01
Tropical forests have a disproportionate capacity to affect Earth's climate relative to their areal extent. Despite covering just 12 % of land surface, tropical forests account for 35 % of global net primary productivity and are among the most significant of terrestrial carbon stores. As atmospheric CO2 concentrations increase over the next century, the capacity of tropical forests to assimilate and sequester anthropogenic CO2 depends on limitation by multiple factors, including the availability of soil nutrients. Phosphorus availability has been considered to be the primary factor limiting metabolic processes within tropical forests. However, recent evidence points towards strong spatial and temporal co-limitation of tropical forests by both nitrogen and phosphorus. Here, we use the Accelerated Climate Modeling for Energy (ACME) Land Model (ALMv1-ECA-CNP) to examine how nutrient cycles interact and affect the trajectory of the tropical forest carbon sink under, (i) external nutrient input, (ii) climate (iii) elevated CO2, and (iv) a combination of 1-3. ALMv1 includes recent theoretical advances in representing belowground competition between roots, microbes and minerals for N and P uptake, explicit interactions between the nitrogen and phosphorus cycles (e.g., phosphatase production and nitrogen fixation), the dynamic internal allocation of plant N and P resources, and the integration of global datasets of plant physiological traits. We report nutrient fertilization (N, P, N+P) predictions for four sites in the tropics (El Verde, Puerto Rico, Barro Colorado Island, Panama, Manaus, Brazil and the Osa Peninsula, Coast Rica) to short-term nutrient fertilization (N, P, N+P), and benchmarking of the model against a meta-analysis of forest fertilization experiments. Subsequent simulations focus on the interaction of the carbon, nitrogen, and phosphorus cycles across the tropics with a focus on the implications of coupled nutrient cycling and the fate of the tropical forest carbon sink. Our results highlight the importance of transient CNP allocation, leaf-level stoichiometric controls on photosynthesis, and trade-offs between above and belowground plant investments.
N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels
NASA Astrophysics Data System (ADS)
Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.
2008-01-01
The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3-5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35-0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment.
Gu, Yi-Hua; Liu, Miao; Xu, Yan; Yuan, Yao; Sun, Fei; Zhang, Hui-Qin; Shi, Hui-Juan
2012-01-01
The present study was undertaken to determine the reproductive hazards of Di-(2-ethylhexyl)-phthalate (DEHP) on mouse spermatozoa and embryos in vitro and genomic changes in vivo. Direct low-level DEHP exposure (1 μg/ml) on spermatozoa and embryos was investigated by in vitro fertilization (IVF) process, culture of preimplanted embryos in DEHP-supplemented medium and embryo transfer to achieve full term development. Big Blue® transgenic mouse model was employed to evaluate the mutagenesis of testicular genome with in vivo exposure concentration of DEHP (500 mg/kg/day). Generally, DEHP-treated spermatozoa (1 μg/ml, 30 min) presented reduced fertilization ability (P<0.05) and the resultant embryos had decreased developmental potential compared to DMSO controls (P<0.05). Meanwhile, the transferred 2-cell stage embryos derived from treated spermatozoa also exhibited decreased birth rate than that of control (P<0.05). When fertilized oocytes or 2-cell stage embryos were recovered by in vivo fertilization (without treatment) and then exposed to DEHP, the subsequent development proceed to blastocysts was different, fertilized oocytes were significantly affected (P<0.05) whereas developmental progression of 2-cell stage embryos was similar to controls (P>0.05). Testes of the Big Blue® transgenic mice treated with DEHP for 4 weeks indicated an approximately 3-fold increase in genomic DNA mutation frequency compared with controls (P<0.05). These findings unveiled the hazardous effects of direct low-level exposure of DEHP on spermatozoa's fertilization ability as well as embryonic development, and proved that in vivo DEHP exposure posed mutagenic risks in the reproductive organ – at least in testes, are of great concern to human male reproductive health. PMID:23226291
Huang, Xue-Feng; Li, Yan; Gu, Yi-Hua; Liu, Miao; Xu, Yan; Yuan, Yao; Sun, Fei; Zhang, Hui-Qin; Shi, Hui-Juan
2012-01-01
The present study was undertaken to determine the reproductive hazards of Di-(2-ethylhexyl)-phthalate (DEHP) on mouse spermatozoa and embryos in vitro and genomic changes in vivo. Direct low-level DEHP exposure (1 μg/ml) on spermatozoa and embryos was investigated by in vitro fertilization (IVF) process, culture of preimplanted embryos in DEHP-supplemented medium and embryo transfer to achieve full term development. Big Blue® transgenic mouse model was employed to evaluate the mutagenesis of testicular genome with in vivo exposure concentration of DEHP (500 mg/kg/day). Generally, DEHP-treated spermatozoa (1 μg/ml, 30 min) presented reduced fertilization ability (P<0.05) and the resultant embryos had decreased developmental potential compared to DMSO controls (P<0.05). Meanwhile, the transferred 2-cell stage embryos derived from treated spermatozoa also exhibited decreased birth rate than that of control (P<0.05). When fertilized oocytes or 2-cell stage embryos were recovered by in vivo fertilization (without treatment) and then exposed to DEHP, the subsequent development proceed to blastocysts was different, fertilized oocytes were significantly affected (P<0.05) whereas developmental progression of 2-cell stage embryos was similar to controls (P>0.05). Testes of the Big Blue® transgenic mice treated with DEHP for 4 weeks indicated an approximately 3-fold increase in genomic DNA mutation frequency compared with controls (P<0.05). These findings unveiled the hazardous effects of direct low-level exposure of DEHP on spermatozoa's fertilization ability as well as embryonic development, and proved that in vivo DEHP exposure posed mutagenic risks in the reproductive organ - at least in testes, are of great concern to human male reproductive health.
NASA Astrophysics Data System (ADS)
Moser, Gerald; Brenzinger, Kristof; Gorenflo, Andre; Clough, Tim; Braker, Gesche; Müller, Christoph
2017-04-01
To reduce the emissions of greenhouse gases (CO2, CH4 & N2O) it is important to quantify main sources and identify the respective ecosystem processes. While the main sources of N2O emissions in agro-ecosystems under current conditions are well known, the influence of a projected higher level of CO2 on the main ecosystem processes responsible for N2O emissions has not been investigated in detail. A major result of the Giessen FACE in a managed temperate grassland was that a +20% CO2 level caused a positive feedback due to increased emissions of N2O to 221% related to control condition. To be able to trace the sources of additional N2O emissions a 15N tracing study was conducted. We measured the N2O emission and its 15N signature, together with the 15N signature of soil and plant samples. The results were analyzed using a 15N tracing model which quantified the main changes in N transformation rates under elevated CO2. Directly after 15N fertilizer application a much higher dynamic of N transformations was observed than in the long run. Absolute mineralisation and DNRA rates were lower under elevated CO2 in the short term but higher in the long term. During the one year study period beginning with the 15N labelling a 1.8-fold increase of N2O emissions occurred under elevated CO2. The source of increased N2O was associated with NO3- in the first weeks after 15N application. Elevated CO2 affected denitrification rates, which resulted in increased N2O emissions due to a change of gene transcription rates (nosZ/(nirK+nirS)) and resulting enzyme activity (see: Brenzinger et al.). Here we show that the reported enhanced N2O emissions for the first 8 FACE years do prevail even in the long-term (> 15 years). The effect of elevated CO2 on N2O production/emission can be explained by altered activity ratios within a stable microbial community.
Enhancement of non-CO2 radiative forcing via intensified carbon cycle feedbacks
NASA Astrophysics Data System (ADS)
MacDougall, Andrew H.; Knutti, Reto
2016-06-01
The global carbon cycle is sensitive to changes in global temperature and atmospheric CO2 concentration, with increased temperature tending to reduce the efficiency of carbon sinks and increased CO2 enhancing the efficiency of carbon sinks. The emission of non-CO2 greenhouse gases warms the Earth but does not induce the CO2 fertilization effect or increase the partial-pressure gradient between the atmosphere and the surface ocean. Here we present idealized climate model experiments that explore the indirect interaction between non-CO2 forcing and the carbon cycle. The experiments suggest that this interaction enhances the warming effect of the non-CO2 forcing by up to 25% after 150 years and that much of the warming caused by these agents lingers for over 100 years after the dissipation of the non-CO2 forcing. Overall, our results suggest that the longer emissions of non-CO2 forcing agents persists the greater effect these agents will have on global climate.
NASA Astrophysics Data System (ADS)
Fornara, Dario A.; Wasson, Elizabeth-Anne; Christie, Peter; Watson, Catherine J.
2016-09-01
Sustainable grassland intensification aims to increase plant yields while maintaining the ability of soil to act as a sink rather than sources of atmospheric CO2. High biomass yields from managed grasslands, however, can be only maintained through long-term nutrient fertilization, which can significantly affect soil carbon (C) storage and cycling. Key questions remain about (1) how long-term inorganic vs. organic fertilization influences soil C stocks, and (2) how soil C gains (or losses) contribute to the long-term C balance of managed grasslands. Using 43 years of data from a permanent grassland experiment, we show that soils not only act as significant C sinks but have not yet reached C saturation. Even unfertilized control soils showed C sequestration rates of 0.35 Mg C ha-1 yr-1 (i.e. 35 g C m-2 yr-1; 0-15 cm depth) between 1970 and 2013. High application rates of liquid manure (i.e. cattle slurry) further increased soil C sequestration to 0.86 Mg C ha-1 yr-1 (i.e. 86 g C m-2 yr-1) and a key cause of this C accrual was greater C inputs from cattle slurry. However, average coefficients of slurry-C retention in soils suggest that 85 % of C added yearly through liquid manure is lost possibly via CO2 fluxes and organic C leaching. Inorganically fertilized soils (i.e. NPK) had the lowest C-gain efficiency (i.e. unit of C gained per unit of N added) and lowest C sequestration (similar to control soils). Soils receiving cattle slurry showed higher C-gain and N-retention efficiencies compared to soils receiving NPK or pig slurry. We estimate that net rates of CO2-sequestration in the top 15 cm of the soil can offset 9-25 % of GHG (greenhouse gas) emissions from intensive management. However, because of multiple GHG sources associated with livestock farming, the net C balance of these grasslands remains positive (9-12 Mg CO2-equivalent ha-1 yr-1), thus contributing to climate change. Further C-gain efficiencies (e.g. reduced enteric fermentation and use of feed concentrates, better nutrient management) are required to make grassland intensification more sustainable.
Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years
NASA Astrophysics Data System (ADS)
Loveley, Matthew R.; Marcantonio, Franco; Wisler, Marilyn M.; Hertzberg, Jennifer E.; Schmidt, Matthew W.; Lyle, Mitchell
2017-10-01
The eastern equatorial Pacific Ocean plays a crucial role in global climate, as it is a substantial source of CO2 to the atmosphere and accounts for a significant portion of global new export productivity. Here we present a 100,000-year sediment core from the eastern equatorial Pacific, and reconstruct dust flux, export productivity and bottom-water oxygenation using excess-230Th-derived fluxes of 232Th and barium, and authigenic uranium concentrations, respectively. We find that during the last glacial period (71,000 to 41,000 years ago), increased delivery of dust to the eastern equatorial Pacific was coeval with North Atlantic Heinrich stadial events. Millennial-scale pulses of increased dust flux coincided with episodes of heightened biological productivity, suggesting that dissolution of dust released iron that promoted ocean fertilization. We also find that periods of low atmospheric CO2 concentrations were associated with suboxic conditions and increased storage of respired carbon in the deep eastern equatorial Pacific. Increases in CO2 concentrations during the deglaciation are coincident with increases in deep Pacific and Southern Ocean water oxygenation levels. We suggest that deep-ocean ventilation was a primary control on CO2 outgassing in this region, with superimposed pulses of high productivity providing a negative feedback.
Kimball, B. A. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Mauney, J. R. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); La Morte, R. L. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Guinn, G. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Nakayama, F. S. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Radin, J. W. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Lakatos, E. A. [University of Arizona, Tucson, AZ (United States); Mitchell, S. T. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Parker, L. L. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Peresta, G. J. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Nixon III, P. E. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Savoy, B. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Harris, S. M. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); MacDonald, R. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Pros, H. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Martinez, J. [US Dept. of Agriculture (USDA)., Agricultural Research Service, Phoenix, AZ (United States); Sepanski, R. J. [Univ. of Tennessee, Knoxville, TN (United States)
1992-01-01
This NDP presents data on the effects of continuous CO2 enrichment of cotton during five consecutive growing seasons, 1983 to 1987, under both optimal and limiting levels of water and nitrogen. Unlike many prior CO2-enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions with open-top chambers. Measurements were made on a variety of crop-response variables during the growing season and upon crop harvest. The initial experiment examined the effects of varying CO2 concentration only. During the following two seasons, the interactive effects of CO2 concentration and water availability were studied. During the final two seasons, the interactions among CO2 concentration, water availability, and nitrogen fertility were investigated.
NASA Astrophysics Data System (ADS)
Bhattarai, Hem Raj; Virkajärvi, Perttu; -Yli Pirilä, Pasi; Maljanen, Marja
2017-04-01
There is no doubt that nitrogen (N) fertilization has crucial role in increasing food production. However, in parallel it can cause severe impact in environment such as eutrophication, surface/groundwater pollution via nitrate (NO3-) leaching and emissions of N trace gases. Fertilization increases the emissions of nitrous oxide (N2O) which is 260 stronger greenhouse gas than carbon dioxide (CO2). It also enhances the emissions of nitric oxide (NO); an oxidized and very reactive form of nitrogen which can fluctuate the ozone (O3) concentration in atmosphere and cause acidification. The effects of N- fertilization on the emission of N2O and NO from agricultural soil are well known. However, the effects of N fertilization on nitrous acid (HONO) emissions are unknown. Few studies have shown that HONO is emitted from soil but they lack to interlink fertilization and HONO emission. HONO accounts for 17-34 % of hydroxyl (OH-) radical production? in the atmosphere, OH- radicals have vital role in atmospheric chemistry; they can cause photochemical smog, form O3, oxidize volatile organic compounds and also atmospheric methane (CH4). We formulated hypothesis that N fertilization will increase the HONO emissions as it does for N2O and NO. To study this, we took soil samples from agricultural soil receiving different amount of N-fertilizer (0, 250 and 450 kg ha-1) in eastern Finland. HONO emissions were measured by dynamic chamber technique connected with LOPAP (Quma Elektronik & Analytik GmbH), NO by NOx analyzer (Thermo scientific) and static chamber technique and gas chromatograph was used for N2O gas sampling and analysis. Several soil parameters were also measured to establish the relationship between the soil properties, fertilization rate and HONO emission. This study is important because eventually it will open up more questions regarding the forms of N loss from soils and impact of fertilization on atmospheric chemistry.
Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling
NASA Astrophysics Data System (ADS)
Allison, S. D.; Treseder, K. K.
2005-12-01
One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in substrate utilization will also affect total carbon fluxes over longer time scales.
NASA Astrophysics Data System (ADS)
Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.
2015-08-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one side, their degree of resilience to climate shocks, and on the other side, their adaptation potential when confronted with higher temperatures and changes in water availability.
Nitrogen Fertilization of Corn: Plant Biochemistry Effects and Carbon Cycle Implications
NASA Astrophysics Data System (ADS)
Gallagher, M. E.; Hockaday, W. C.; Masiello, C. A.; McSwiney, C. P.; Robertson, G. P.; Baldock, J. A.
2008-05-01
Atmospheric carbon dioxide (CO2) concentrations are rising due to anthropogenic CO2 emissions (Alley et al. 2007; Prentice et al. 2001). About half of the anthropogenic CO2 emitted during the 1990s was absorbed by the terrestrial biosphere and ocean (Prentice et al. 2001). It is possible to estimate the size of terrestrial and oceanic carbon sinks individually using atmospheric CO2 and O2 measurements (Keeling et al. 1996). To best estimate the sizes of these carbon sinks, we need to accurately know the oxidative ratio (OR) of the terrestrial biosphere (Randerson et al. 2006). OR is the ratio of the moles of O2 released per moles of CO2 consumed in gas fluxes between the terrestrial biosphere and atmosphere. Though it is likely that the net OR of the biosphere varies with ecosystem type and nutrient status, OR is assumed constant in carbon sink apportionment calculations (e.g. Prentice et al. 2001). Small shifts in OR can lead to large variations in the calculated sizes of the terrestrial biosphere and ocean carbon sinks (Randerson et al. 2006). OR likely shifts with changes in climate, nutrient status, and land use. These shifts are due, in part, to shifts in plant biochemistry. We are measuring ecosystem OR in corn agricultural ecosystems under a range of nitrogen fertilization treatments at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. We measure OR indirectly, through its relationship with organic carbon oxidation state (Cox) (Masiello et al. in press 2008). Cox can be measured through elemental analysis and, with basic knowledge of plant nitrogen use patterns, Cox values can be converted to OR values. Cox can also be measured through 13C nuclear magnetic resonance spectroscopy (NMR), which can be combined with a molecular mixing model to determine Cox, OR, and plant biochemical composition (i.e. percentage carbohydrates, lignin, lipids, and proteins) (Baldock et al. 2004). Here we present data showing the effects of varying corn ecosystem nitrogen fertilization rates (from 0 to 292 kg N/ha) on ecosystem OR and plant biochemistry.
NASA Astrophysics Data System (ADS)
Andersen, S.; Grefsrud, E. S.; Harboe, T.
2013-10-01
As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck), at pCO2 levels of 469 (ambient), 807, 1164, and 1599 μatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO2 level the first 12 h was observed in the elevated pCO2 groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO2 level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO2 group. Shell length and height were reduced by 8 and 15%, respectively, when pCO2 increased from ambient to 1599 μatm. Development of normal hinges was negatively affected by elevated pCO2 levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO2 levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO2 levels within the range of what is projected towards year 2250, although the initial drop in pCO2 level may have overestimated the effect of the highest pCO2 levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the juvenile and adult stages.
Xu, Cheng-Yuan; Griffin, Kevin L; Blazier, John C; Craig, Elizabeth C; Gilbert, Dominique S; Sritrairat, Sanpisa; Anderson, O Roger; Castaldi, Marco J; Beaumont, Larry
2009-07-01
Although post-combustion emissions from power plants are a major source of air pollution, they contain excess CO2 that could be used to fertilize commercial greenhouses and stimulate plant growth. We addressed the combined effects of ultrahigh [CO2] and acidic pollutants in flue gas on the growth of Alternanthera philoxeroides. When acidic pollutants were excluded, the biomass yield of A. philoxeroides saturated near 2000 micromol mol(-1) [CO2] with doubled biomass accumulation relative to the ambient control. The growth enhancement was maintained at 5000 micromol mol(-1) [CO2], but declined when [CO2] rose above 1%, in association with a strong photosynthetic inhibition. Although acidic components (SO2 and NO2) significantly offset the CO2 enhancement, the aboveground yield increased considerably when the concentration of pollutants was moderate (200 times dilution). Our results indicate that using excess CO2 from the power plant emissions to optimize growth in commercial green house could be viable.
Climate Change Mitigation through Enhanced Weathering in Bioenergy Crops
NASA Astrophysics Data System (ADS)
Kantola, I. B.; Masters, M. D.; Wolz, K. J.; DeLucia, E. H.
2016-12-01
Bioenergy crops are a renewable alternative to fossil fuels that reduce the net flux of CO2 to the atmosphere through carbon sequestration in plant tissues and soil. A portion of the remaining atmospheric CO2 is naturally mitigated by the chemical weathering of silica minerals, which sequester carbon as carbonates. The process of mineral weathering can be enhanced by crushing the minerals to increase surface area and applying them to agricultural soils, where warm temperatures, moisture, and plant roots and root exudates accelerate the weathering process. The carbonate byproducts of enhanced weathering are expected accumulate in soil water and reduce soil acidity, reduce nitrogen loss as N2O, and increase availability of certain soil nutrients. To determine the potential of enhanced weathering to alter the greenhouse gas balance in both annual (high disturbance, high fertilizer) and perennial (low disturbance, low fertilizer) bioenergy crops, finely ground basalt was applied to fields of maize, soybeans, and miscanthus at the University of Illinois Energy Farm. All plots showed an immediate soil temperature response at 10 cm depth, with increases of 1- 4 °C at midday. Early season CO2 and N2O fluxes mirrored soil temperature prior to canopy closure in all crops, while total N2O fluxes from miscanthus were lower than corn and soybeans in both basalt treatment and control plots. Mid-season N2O production was reduced in basalt-treated corn compared to controls. Given the increasing footprint of bioenergy crops, the ability to reduce GHG emissions in basalt-treated fields has the potential to mitigate atmospheric warming while benefitting soil fertility with the byproducts of weathering.
Mitigation of greenhouse gas emission on abandoned peatlands by growing reed canary grass
NASA Astrophysics Data System (ADS)
Järveoja, J.; Laht, J.; Soosaar, K.; Maddison, M.; Ostonen, I.; Mander, Ü.
2012-04-01
We used combined closed-chamber and plant biomass techniques to study the impact of reed canary grass (RCG, Phalaris arundinacea) cultivation on greenhouse gas (GHG) fluxes and carbon balance of an abandoned peat extraction area in Lavassaare, Estonia (N58°34'20''; E24°23'15''). Three core study sites were chosen within the abandoned peat extraction area: (I) bare peat soil (abandoned and not planted site), (II) non-fertilized Phalaris site, (III) and fertilized Phalaris site (all on drained Fibric Histosols). In addition, (IV) the natural raised bog (Fibric Histosol) and (V) the cultivated fen meadow (drained Sapric Histosol) served as reference sites. The CO2, CH4 and N2O fluxes were determined using the closed-chamber method once a month from May 2010 to December 2011. White 60 L chambers made of PVC and sealed with a water-filled ring on the soil surface were installed in 5 replicates on each site. The gas was sampled 3 times per hour in 100 mL pre-evacuated glass bottles, and in the lab the gas concentrations were measured using the Shimadzu GC-2014 (ECD, FID) gas-chromatographic system combined with a Loftfield autosampler. Measurements of groundwater level and soil temperature (10, 20, 30, and 40 cm depths) were performed simultaneously. Biomass assessments of RCG were carried out just after maximal growth of macrophytes, in early September 2010, in April 2011 just after snow melt (time of minimum aboveground biomass), and again in September 2011. Aboveground biomass samples were collected from 1×1m plots. Belowground biomass samples were collected at a depth of 25 cm in 3 replicates adjacent to each chamber using a 10×10 cm auger. Samples were analyzed for N, P and C. Our results showed high nitrous oxide emissions (up to 541 μg N2O-N m-2 h-1) from the fen meadow and high methane emissions from the natural raised bog (up to 12915 μg CH4-C m-2 h-1). The low CH4 emission from the Phalaris plots and bare soil was due to the deeper water table (up to 85 cm below ground) and high sulfur concentration in peat (up to 23 g kg-1), which probably inhibited methanogenesis. The high CO2 emission on fertilized and non-fertilized Phalaris plots in comparison to the bare peat site was probably caused by: (1) the higher plant biomass: more dissolved C coming from roots and greater amount of fine root turnover, (2) the influence of fresh plant litter on the peat mineralization on Phalaris plots, and (3) inhibited mineralization by recalcitrant C of bare peat. Our results demonstrated that as a total, the Phalaris sites acted as net carbon sinks, sequestering C in the amount of 6929.5 and 6083.5 kg CO2-C ha-1 yr-1 on the fertilized and non-fertilized plots, respectively, whereas the bare peat site acted as a carbon source (emitting 687.5 kg CO2-C ha-1 yr-1).
Liu, Shuai; Wang, Jim J; Tian, Zhou; Wang, Xudong; Harrison, Stephen
2017-07-01
Minimizing soil ammonia (NH 3 ) and nitrous oxide (N 2 O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH 3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH 3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N 2 O, carbon dioxide (CO 2 ), and methane (CH 4 ) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH 3 -N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N 2 O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH 3 -N and N 2 O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO 2 -C flux but had no effect on CH 4 -C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH 3 and N 2 O emissions in subtropical wheat production in Southern USA. Copyright © 2017. Published by Elsevier B.V.
Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.
Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong
2018-03-01
This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Augustin, Juergen; Fiedler, Sebastian; Heintze, Gawan; Rohwer, Marcus; Prescher, Anne-Katrin; Pohl, Madlen; Jurisch, Nicole; Hagemann, Ulrike
2017-04-01
In Germany, agricultural production accounts for approx. 15% of total anthropogenic greenhouse gas emissions. The cultivation of energy crops is thus considered an important option to reduce the climate impact and maintain or increase soil organic carbon (SOC) stocks. In particular, this applies to the continuously expanding cultivation of energy crops for biogas production and the associated use of residues from anaerobic digestion (digestates) as organic fertilizer. To date, there is only limited and contradicting evidence on the impacts of this management practice on the CO2 exchange as well as the change of SOC stocks. We will present results from a 4-year field study at 5 sites in Germany using identical methods to investigate the interacting effects of i) 3 N-fertilizer treatments including calcium ammonium nitrate and digestates and ii) a crop rotation of 7 energy crops like maize, sorghum, triticale, and wheat on net ecosystem CO2 exchange (NEE) and the change of SOC stocks. We used the manual chamber approach for measuring NEE as the difference between gross primary production and ecosystem respiration. The determination of SOC stock changes was based on a C budget approach, which includes the cumulated annual NEE, the C export by harvest, and the C import by application of anaerobic digestates. The CO2 exchange and the change of SOC stocks were influenced by multiple factors like crop, site, fertilization, and climate, as well as their complex interactions. A large proportion of the variability of the CO2 exchange can be attributed to interannual climatic variability. Productive crops like maize and sorghum generally feature the most intensive CO2 exchange, while less productive crops can compensate for this by means of longer cultivation times. Regardless of the extreme variability, pronounced and partly significant differences of NEE and C budgets between sites were observed. On average, SOC stocks declined over a full crop rotation, but with highly variable positive and negative C budgets. This indicates that, in most cases, neither the selected crops nor the application of anaerobic digestates were sufficient to compensate for SOC losses. Apparently, the potential of anaerobic digestates to maintain or increase SOC stocks is considerably smaller than expected. If continuous decreases of SOC stocks due to energy crop cultivation are to be avoided, additional studies on the optimization of crop rotations (selection of plants with high C input), and digestate fertilization (type of digestate, amount and application technique) are required. A continuously improved version of the methodology used in this study promises faster and more precise results than classic long-term field trials.
Sharma, Monika; Sharma, Shweta; Sharma, Vikas; Sharma, Komal; Yadav, Santosh Kumar; Dwivedi, Pankaj; Agrawal, Satish; Paliwal, Sarvesh Kumar; Dwivedi, Anil Kumar; Maikhuri, Jagdamba Prasad; Gupta, Gopal; Mishra, Prabhat Ranjan; Rawat, Ajay Kumar Singh
2017-11-01
Addressing multidrug resistant stage of breast cancer is an impediment for chemotherapy. Moreover, breast cancer chemotherapy has potential enduring confrontations i.e. related toxicity including effect on fertility of young female patients. The co-delivery of polyphenolic bio-enhancers with oleanolic acid in chitosan coated PLGA nanoparticles was designed for oral delivery with enhanced antitumor effect consecutively preserving the female fertility. The optimized oleanolic- bio-enhancer nano formulation CH-OA-B-PLGA with particle size was 342.2±3.7nm and zeta potential of 34.2±3.1mV was capable of lowering viability in MDAMB 231 cell line 16 times than OA. Further, mechanistic studies in MDAMB-231 cells revealed that CH-OA-PLGA induces apoptosis by mitochondrial membrane disruption; follows ROS mediated and caspase dependent apoptosis. The antitumor effect studied in 4-T1 induced Balb/c mice mammary tumor model displayed augmented antitumor potency by CH-OA-B-PLGA in comparison to OA. In the in vivo toxicity on Sprague-Dawley rat model, CH-OA-B-PLGA significantly displayed the safe profile and also preserves fertility in female rats. The experiment result suggests co-delivery of oleanolic acid with bio-enhancers as a breakthrough for developing safe chemotherapy for hormone independent breast cancer therapy countering the toxicity issues. Copyright © 2017. Published by Elsevier B.V.
Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A
2016-10-01
At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Augustine, David J; Blumenthal, Dana M; Springer, Tim L; LeCain, Daniel R; Gunter, Stacey A; Derner, Justin D
2018-04-01
Increasing atmospheric [CO 2 ] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO 2 (eCO 2 ) and warming affect plant tissue chemistry through multiple direct and indirect pathways, such that the cumulative outcomes of these effects are difficult to predict. Here, we report on a 7-yr study examining effects of CO 2 enrichment (to 600 ppm) and infrared warming (+1.5°C day/3°C night) under realistic field conditions on forage quality and quantity in a semiarid, mixedgrass prairie. For the three dominant forage grasses, warming effects on in vitro dry matter digestibility (IVDMD) and tissue [N] were detected only in certain years, varied from negative to positive, and were relatively minor. In contrast, eCO 2 substantially reduced IVDMD (two most abundant grasses) and [N] (all three dominant grass species) in most years, except the two wettest years. Furthermore, eCO 2 reduced IVDMD and [N] independent of warming effects. Reduced IVDMD with eCO 2 was related both to reduced [N] and increased acid detergent fiber (ADF) content of grass tissues. For the six most abundant forage species (representing 96% of total forage production), combined warming and eCO 2 increased forage production by 38% and reduced forage [N] by 13% relative to ambient climate. Although the absolute magnitude of the decline in IVDMD and [N] due to combined warming and eCO 2 may seem small (e.g., from 63.3 to 61.1% IVDMD and 1.25 to 1.04% [N] for Pascopyrum smithii), such shifts could have substantial consequences for the rate at which ruminants gain weight during the primary growing season in the largest remaining rangeland ecosystem in North America. With forage production increases, declining forage quality could potentially be mitigated by adaptively increasing stocking rates, and through management such as prescribed burning, fertilization at low rates, and legume interseeding to enhance forage quality. © 2018 by the Ecological Society of America.
The Impact of CO2-Driven Vegetation Changes on Wildfire Risk
NASA Astrophysics Data System (ADS)
Skinner, C. B.; Poulsen, C. J.
2017-12-01
While wildfires are a key component of natural ecological restoration and succession, they also pose tremendous risks to human life, health, and property. Wildfire frequency is expected to increase in many regions as the radiative effects of elevated CO2 drive warmer surface air temperatures, earlier spring snow melt, and more frequent meteorological drought. However, high CO2 concentrations will also directly impact vegetation growth and physiology, potentially altering wildfire characteristics through changes in fuel amount and surface hydrology. Depending on the biome and time of year, these vegetation-driven responses may mitigate or enhance radiative-driven wildfire changes. In this study, we use a suite of earth system models from the Coupled Model Intercomparison Project 5 with active biogeophysics and biogeochemistry to understand how the vegetation response to high CO2 (CO2 quadrupling) contributes to future changes in wildfire risk across the globe. Across the models, projected CO2 fertilization enhances aboveground biomass (about a 30% leaf area index (LAI) increase averaged across the globe) during the spring and summer months, increasing the availability of wildfire fuel across all biomes. Despite greater LAI, models robustly project widespread reductions in summer season transpiration (about -15% averaged across the globe) in response to reduced stomatal conductance from CO2 physiological forcing. Reduced transpiration warms summer season near surface temperatures and lowers relative humidity across vegetated regions of the mid-to-high latitudes, heightening the risk of wildfire occurrence. However, as transpiration goes down in response to greater plant water use efficiency, a larger fraction of soil water remains in the soil, potentially halting the spread of wildfires in some regions. Given the myriad ways in which the vegetation response to CO2 may alter wildfire risk, and the robustness of the responses across models, an explicit simulation of the wildfire response to CO2-driven vegetation change with the Community Earth System Model will be presented. The results suggest that many atmosphere-centric statistical wildfire metrics do not capture the many processes that will shape future wildfire risk in a high CO2 world and highlight the need for process-based fire modeling.
Fujiwara, Katsuyoshi; Kamoshita, Maki; Kato, Tsubasa; Ito, Junya; Kashiwazaki, Naomi
2017-01-01
The objective of this study was to evaluate fertility and full-term development of rat vitrified oocytes after in vitro fertilization (IVF) with cryopreserved sperm. Oocytes with or without surrounding cumulus cells were vitrified with 30% ethylene glycol + 0.5 mol/L sucrose + 20% fetal calf serum by using the Cryotop method. The warmed oocytes were co-cultured with sperm. Although the denuded/vitrified oocytes were not fertilized, some of the oocytes vitrified with cumulus cells were fertilized (32.7%) after IVF with fresh sperm. When IVF was performed with cryopreserved sperm, vitrified or fresh oocytes with cumulus cells were fertilized (62.9% or 41.1%, respectively). In addition, to confirm the full-term development of the vitrified oocytes with surrounding cumulus cells after IVF with cryopreserved sperm, 108 vitrified oocytes with two pronuclei (2PN) were transferred into eight pseudopregnant females, and eight pups were obtained from three recipients. The present work demonstrates that vitrified rat oocytes surrounded by cumulus cells can be fertilized in vitro with cryopreserved sperm, and that 2PN embryos derived from cryopreserved gametes can develop to term. To our knowledge, this is the first report of successful generation of rat offspring derived from vitrified oocytes that were fertilized in vitro with cryopreserved sperm. © 2016 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Zinniker, D. A.; Holmgren, C. A.; Pagani, M.
2008-12-01
Fossil packrat middens in the southwestern US contribute critical details to our understanding of past climate change and floral migrations across geography and elevation. Our presentation discusses the development of a largely unexplored molecular organic archive preserved in packrat middens from the southwestern US: the stable isotopic analysis of diet-averaged taxon specific biomarkers in both modern middens from southern Arizona and New Mexico and ancient middens from the Peloncillo Mountains of SE Arizona. The stable carbon isotope values of taxon specific makers allow estimations of changing growing season intra-leaf CO2 concentrations, carbon assimilation rates, and water use efficiency. Hydrogen isotope values aid in estimating growing season relative humidity. This more specifically reflects the extent of dry season transpiration and associated deuterium enrichment and can be seen as a simplified proxy for growing season phenology in perennial desert shrubs and trees. For southwest juniper, the derived isotopic record of phenology and growth indicates a remarkable sensitivity to changes in hydrology, temperature, and pCO2. Juniper growth rates are interpreted to have increased 70% from the Last Glacial Maximum to Holocene in response to CO2 fertilization. However, a decrease in deuterium enrichment during the Bølling Allerod and Holocene indicates that elevated temperatures and limited access to soil moisture considerably shortened juniper growing seasons during these periods. Low midden preservation rates and rare juniper macrofossils in the Early and Mid Holocene provide additional evidence of overall drying and the seasonality of shallow groundwater during these periods. Increasing midden occurrence, juniper macrofossils, and deuterium enrichment in the Late Holocene suggest that afforestation during this time period was associated with lengthening juniper growing seasons. Carbon isotopic shifts between pre-industrial and modern middens suggest a 30% increase in carbon assimilation rates in response to anthropogenic CO2. This average increase is associated with greater assimilation rate variability as juniper continues to colonize more diverse and generally drier sites. Variable but generally heavier deuterium isotope values indicate increasing growth during periods of aridity and a general lengthening of juniper growing seasons. Expansion of juniper woodlands under the influence of anthropogenic CO2 is likely to continue where water loss limits growth. Carbon assimilation rates during periods of water stress will also increase. In mesic sites other environmental factors may become limiting (e.g. nutrients, light, or competition), reducing the continuing impact of CO2 fertilization. Widespread establishment of new juniper woodlands could significantly affect the hydrology in the southwest US due to direct canopy interception of precipitation, increased runoff, increased transpirational use of deep groundwater, and amplification of the North American Monsoon through transpirational evaporation. New desert woodlands form a net carbon sink for anthropogenic CO2, but the size, stability, and continued growth of this reservoir depend on complex interactions between plants and our changing environment.
NASA Astrophysics Data System (ADS)
de Vrese, Philipp; Stacke, Tobias; Hagemann, Stefan
2018-04-01
An adapted Earth system model is used to investigate the limitations that future climate and water availability impose on the potential expansion and productivity of croplands. The model maximizes the cropland area under prevailing climate conditions and accounts for an optimized, sustainable irrigation practice, thus allowing us to consider the two-way feedback between climate and agriculture. For three greenhouse gas concentration scenarios (RCP2.6, RCP4.5, RCP8.5), we show that the total cropland area could be extended substantially throughout the 21st century, especially in South America and sub-Saharan Africa, where the rising water demand resulting from increasing temperatures can largely be met by increasing precipitation and irrigation rates. When accounting for the CO2 fertilization effect, only a few agricultural areas have to be abandoned owing to declines in productivity, while increasing temperatures allow for the expansion of croplands even into high northern latitudes. Without the CO2 fertilization effect there is no increase in the overall cropland fraction during the second half of the century but areal losses in increasingly water-stressed regions can be compensated for by an expansion in regions that were previously too cold. However, global yields are more sensitive and, without the benefits of CO2 fertilization, they may decrease when greenhouse gas concentrations exceed the RCP4.5 scenario. For certain regions the situation is even more concerning and guaranteeing food security in dry areas in Northern Africa, the Middle East and South Asia will become increasingly difficult, even for the idealized scenarios investigated in this study.
Solidus of carbonated fertile peridotite under fluid-saturated conditions
NASA Astrophysics Data System (ADS)
Falloon, Trevor J.; Green, David H.
1990-03-01
The solidus for a fertile peridotite composition ("Hawaiian pyrolite") in the presence of a CO2-H2O fluid phase has been determined from 10 to 35 kbar. The intersection of the decarbonation reaction (olivine + diopside + CO2 ←→ orthopyroxene + dolomite) with the pyrolite solidus defines the point Q‧, located at 22 kbar and 940 °C. At pressures less than Q‧, the solidus passes through a temperature maximum at 14 kbar, 1060 °C. The solidus is coincident with amphibole breakdown at pressures less than 16 kbar. At pressures above Q‧, the solidus is defined by the dissolution of crystalline carbonate into a sodic, dolomitic carbonatite melt. The solidus is at a temperature of 925 °C at ˜28 kbar. The solidus temperature above the point Q‧ is similar to the solidus determined for Hawaiian pyrolite-H2O-CO2 for small contents of H2O (<0.3 wt%) and CO2 (<5 wt%), thus indicating that the primary sodic dolomitic carbonatite melt at both solidi has a very low and limited H2O solubility. The new data clarify the roles of carbonatite melt, carbonated silicate melt, and H2O-rich fluid in mantle conditions that are relatively oxidized (fO2 ˜ MW to FMQ). In particular, a carbonatite melt + garnet lherzolite region is intersected by continental shield geothermal gradients, but such geotherms only intersect regions with carbonated silicate melt if perturbed to higher temperatures ("kinked geotherm").
Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise.
Keenan, Trevor F; Hollinger, David Y; Bohrer, Gil; Dragoni, Danilo; Munger, J William; Schmid, Hans Peter; Richardson, Andrew D
2013-07-18
Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata-small pores on the leaf surface that regulate gas exchange-to maintain a near-constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.
Carbon Balance in an Irrigated Corn Field after Inorganic Fertilizer or Manure Application
NASA Astrophysics Data System (ADS)
Lentz, R. D.; Lehrsch, G. A.
2014-12-01
Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC and IC (POC, PIC) concentrations in irrigation inflow, runoff, and percolation waters (6-7 irrigations/y); C inputs from soil amendments and crop biomass; harvested C; and gaseous C emissions from field plots cropped to silage corn (Zea mays L.) in southern Idaho. Annual treatments included: (M) 13 (y 1) and 34 Mg/ha (y 2) stockpiled dairy manure; (F) 78 (yr 1) and 195 kg N/ha (y 2) inorganic N fertilizer; or (NA) no amendment--control. The mean annual total C input into M plots averaged 16.1 Mg/ha, 1.4-times greater than that for NA (11.5 Mg/ha) or F (11.1 Mg/ha), while total C outputs for the three treatments were similar, averaging 11.8 Mg/ha. Thus, the manure plots ended each growing season with an average net gain of 3.8 Mg C/ha (a positive net C flux), while the control (-0.5 Mg C/ha) and fertilizer (-0.4 Mg C/ha) treatments finished the season with a net C loss. Atmospheric CO2 incorporated into the crop biomass contributed 96% of the mean annual C input to NA and F plots but only 68% to M plots. We conclude that nutrient amendments substantially influence the short-term carbon balance of our furrow-irrigated system. Amendments had both direct and indirect influences on individual C components, such as the losses of DIC and POC in runoff and DOC in percolation water, producing temporally complex outcomes which may depend on environmental conditions external to the field.
Testosterone, Plumage Colouration and Extra-Pair Paternity in Male North-American Barn Swallows
Eikenaar, Cas; Whitham, Megan; Komdeur, Jan; van der Velde, Marco; Moore, Ignacio T.
2011-01-01
In most monogamous bird species, circulating testosterone concentration in males is elevated around the social female's fertile period. Variation in elevated testosterone concentrations among males may have a considerable impact on fitness. For example, testosterone implants enhance behaviours important for social and extra-pair mate choice. However, little is known about the relationship between natural male testosterone concentration and sexual selection. To investigate this relationship we measured testosterone concentration and sexual signals (ventral plumage colour and tail length), and determined within and extra-pair fertilization success in male North American barn swallows (Hirundo rustica erythrogaster). Dark rusty coloured males had higher testosterone concentrations than drab males. Extra-pair paternity was common (42% and 31% of young in 2009 and 2010, respectively), but neither within- nor extra-pair fertilization success was related to male testosterone concentration. Dark rusty males were less often cuckolded, but did not have higher extra-pair or total fertilization success than drab males. Tail length did not affect within- or extra-pair fertilization success. Our findings suggest that, in North American barn swallows, male testosterone concentration does not play a significant direct role in female mate choice and sexual selection. Possibly plumage colour co-varies with a male behavioural trait, such as aggressiveness, that reduces the chance of cuckoldry. This could also explain why dark males have higher testosterone concentrations than drab males. PMID:21853105
Carbon balance of a fertile forestry-drained peatland in southern Finland
NASA Astrophysics Data System (ADS)
Lohila, Annalea; Korkiakoski, Mika; Tuovinen, Juha-Pekka; Minkkinen, Kari; Penttilä, Timo; Ojanen, Paavo; Launiainen, Samuli; Laurila, Tuomas
2016-04-01
Forestry on peatlands is a significant land use form and has been economically important during the last decades particularly in the Nordic countries. While nutrient-poor forests are generally able to maintain their carbon sink status even after drainage, the peat soil at the fertile sites is typically considered as a large carbon dioxide (CO2) source. This means that despite of high timber production capacity, the fertile peatland forests gradually lose their peat carbon store. In addition, many of the nutrient-rich sites emit considerable amount of nitrous oxide (N2O) into the atmosphere. While the current estimates of the greenhouse gas (GHG) balance of forestry-drained peatlands are largely based on soil inventories or on data combining soil GHG fluxes and tree growth litter input measurements and modelling, only few studies have utilized the high-resolution, continuous eddy covariance (EC) data to address the short-term dynamics of the net CO2 fluxes covering both the soil, forest floor vegetation and the trees. Hence, little is known about the factors which control the year-to-year variation in fluxes. Here we present a 5-year dataset of CO2 fluxes measured with the EC method above a nutrient-rich forestry-drained peatland in southern Finland. The site, drained in the beginning of 1970's, is a well growing pine forest with some spruces and birches, the tree volume and carbon fixation rate equaling 8.0 kg C m-2 and 0.273 kg C m-2 yr-1, respectively. The average summer-time water level depth is -50 cm. By combining the gap-filled half-hourly net ecosystem exchange (NEE) data, the tree growth measurements, and the measurements on dissolved organic carbon (DOC) losses and soil methane (CH4) exchange, we will in this presentation estimate the total annual loss of peat carbon of this fertile peatland forest. In addition, using the N2O flux data we will estimate the contribution of different gases to the total GHG balance. Factors controlling the carbon balance and its seasonal and inter-annual variation are discussed.
Shreffler, Karina M; Johnson, David R
2013-09-01
Prior research indicates a negative relationship between women's labor force participation and fertility at the individual level in the United States, but little is known about the reasons for this relationship beyond work hours. We employed discrete event history models using panel data from the National Survey of Families and Households ( N = 2,411) and found that the importance of career considerations mediates the work hours/fertility relationship. Further, fertility intentions and the importance of career considerations were more predictive of birth outcomes as women's work hours increase. Ultimately, our findings challenge the assumption that working more hours is the direct cause for employed women having fewer children and highlight the importance of career and fertility preferences in fertility outcomes.
John R. Butnor; Kurt H. Johnsen; Ram Oren; Gabriel G. Katul
2003-01-01
Elevated atmospheric carbon dioxide (CO2e) increases soil respiration rates in forest, grassland, agricultural and wetland systems as a result of increased growth, root biomass and enhanced biological activity of soil microorganisms. Less is known about how forest floor fluxes respond to the combined effects of elevated CO...
Pleistocene atmospheric CO2 change linked to Southern Ocean nutrient utilization
NASA Astrophysics Data System (ADS)
Ziegler, M.; Diz, P.; Hall, I. R.; Zahn, R.
2011-12-01
Biological uptake of CO2 by the ocean and its subsequent storage in the abyss is intimately linked with the global carbon cycle and constitutes a significant climatic force1. The Southern Ocean is a particularly important region because its wind-driven upwelling regime brings CO2 laden abyssal waters to the surface that exchange CO2 with the atmosphere. The Subantarctic Zone (SAZ) is a CO2 sink and also drives global primary productivity as unutilized nutrients, advected with surface waters from the south, are exported via Subantarctic Mode Water (SAMW) as preformed nutrients to the low latitudes where they fuel the biological pump in upwelling areas. Recent model estimates suggest that up to 40 ppm of the total 100 ppm atmospheric pCO2 reduction during the last ice age were driven by increased nutrient utilization in the SAZ and associated feedbacks on the deep ocean alkalinity. Micro-nutrient fertilization by iron (Fe), contained in the airborne dust flux to the SAZ, is considered to be the prime factor that stimulated this elevated photosynthetic activity thus enhancing nutrient utilization. We present a millennial-scale record of the vertical stable carbon isotope gradient between subsurface and deep water (Δδ13C) in the SAZ spanning the past 350,000 years. The Δδ13C gradient, derived from planktonic and benthic foraminifera, reflects the efficiency of biological pump and is highly correlated (rxy = -0.67 with 95% confidence interval [0.63; 0.71], n=874) with the record of dust flux preserved in Antarctic ice cores6. This strongly suggests that nutrient utilization in the SAZ was dynamically coupled to dust-induced Fe fertilization across both glacial-interglacial and faster millennial timescales. In concert with ventilation changes of the deep Southern Ocean this drove ocean-atmosphere CO2 exchange and, ultimately, atmospheric pCO2 variability during the late Pleistocene.
McCann, Nicole C; Lynch, Terrie J; Kim, Soon Ok; Duffy, Diane M
2013-12-01
Cyclooxygenase-2 (COX-2) inhibitors reduce prostaglandin synthesis and disrupt essential reproductive processes. Ultrasound studies in women demonstrated that oral COX-2 inhibitors can delay or prevent follicle collapse associated with ovulation. The goal of this study was to determine if oral administration of a COX-2 inhibitor can inhibit reproductive function with sufficient efficacy to prevent pregnancy in primates. The COX-2 inhibitor meloxicam (or vehicle) was administered orally to proven fertile female cynomolgus macaques using one emergency contraceptive model and three monthly contraceptive models. In the emergency contraceptive model, females were bred with a proven fertile male once 2±1 days before ovulation, returned to the females' home cage, and then received 5 days of meloxicam treatment. In the monthly contraceptive models, females were co-caged for breeding with a proven fertile male for a total of 5 days beginning 2±1 days before ovulation. Animals received meloxicam treatment (1) cycle days 5-22, or (2) every day, or (3) each day of the 5-day breeding period. Female were then assessed for pregnancy. The pregnancy rate with meloxicam administration using the emergency contraception model was 6.5%, significantly lower than the pregnancy rate of 33.3% when vehicle without meloxicam was administered. Pregnancy rates with the three monthly contraceptive models (75%-100%) were not consistent with preventing pregnancy. Oral COX-2 inhibitor administration can prevent pregnancy after a single instance of breeding in primates. While meloxicam may be ineffective for regular contraception, pharmacological inhibition of COX-2 may be an effective method of emergency contraception for women. COX-2 inhibitors can interfere with ovulation, but the contraceptive efficacy of drugs of this class has not been directly tested. This study, conducted in nonhuman primates, is the first to suggest that a COX-2 inhibitor may be effective as an emergency contraceptive. © 2013.
A Sustainable Biomass Industry for the North American Great Plains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Norman J.; Smith, Steven J.
2009-12-01
The North American Great Plains (hereafter NAGP) region is economically distressed and prone to severe ecological disruptions such as soil erosion. Its water resources are over-used and subject to pollution from agricultural fertilizers and chemicals, issues common to agricultural lands globally. On the other hand, the region is well suited to the production of herbaceous biomass that can be combusted directly for power or converted to liquid transportation fuels. This paper reviews the geography, history and current condition of the NAGP and offers suggestions about how the agriculture, economy and environment of this and similar regions around the world canmore » be made more sustainable and able to contribute to a reduction in CO2 emissions and consequent global warming.« less
Net carbon flux in organic and conventional olive production systems
NASA Astrophysics Data System (ADS)
Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al
2014-05-01
Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a sink for atmospheric CO2 (the negative value of Net C flux indicates that a system is a net sink for atmospheric CO2). In conclusion, this study illustrates the importance of including soil carbon sequestration associated with CO2 emissions in the evaluation process between alternatives of agricultural systems. Thus, organic olive system offers an opportunity to increase carbon sequestration compared to the conventional one although it causes higher C emissions from manure fertilization. Keywords: Net carbon flux, GHG, organic, olive, soil organic carbon
Soil greenhouse gas (GHG) emissions from smallholder crop-livestock systems in Central Kenya
NASA Astrophysics Data System (ADS)
Ortiz Gonzalo, Daniel; Vaast, Philippe; de Neergaard, Andreas; Oelofse, Myles; Albrecht, Alain; Rosenstock, Todd S.
2017-04-01
Few studies measured empirically greenhouse gas (GHG) emissions in sub-Saharan Africa. More specifically, there is no experimental data on GHG emissions from coffee systems in East Africa and estimations with GHG calculators have shown some limitations. The objectives of our study are to: 1) Quantify soil GHG fluxes in smallholder coffee-dairy farms in Central Kenya and; 2) Compare results with the GHG emissions estimated with GHG calculators. The study area is situated in Murang'a County at 1700 m.a.s.l. on the Eastern slopes of the Aberdares Range, where coffee (Coffee arabica) is cultivated within integrated crop-livestock-agroforestry systems. We carried out GHG measurements along two cropping seasons using non-flow through non-steady static chambers. Sixty rectangular frames (0.355m x 0.255m) were installed at two representative farms, including the three main cropping systems found in the area: 1) Coffee (Coffee arabica); 2) Napier grass (Pennisetum purpureum); 3) Maize intercropped with beans (Zea mays and Phaseolus vulgaris). We used the gas pooling technique to overcome spatial variability and obtain a composite sample from the two treatment chambers: fertilized and non-fertilized. The sampling was performed twice per week during the rainy season and once per week during the dry season. Fertilizer and manure applications were followed by daily measurements during seven days after application. Annual fluxes (cumulative) in coffee plots ranged from 0.8 to 2.1 kg N2O-N ha-1, 6.3 to 8.2 Mg CO2-C ha-1 and -1.3 to -0.8 kg CH4-C ha-1, with higher fluxes during the rainy seasons. Emissions of N2O and CO2 from coffee plots were 20 to 80% higher than those in maize and napier grass. We found significant higher emissions in fertilized hot-spots (45 -190 % higher around coffee bushes perimeter, within maize rows and in napier holes) than in non-fertilized locations (between trees, between rows and between holes). Though this aspect is crucial for upscaling the emissions to farm scale, it is not always accounted in empirical models. GHG calculators overestimated both background and induced soil N2O emissions from fertilizer and manure applications in the three cropping systems. Our study contributes to the generation of underlying data and emission factors (EFs) for quantifying GHG emissions in tropical farming systems.
High Resolution Modelling of Crop Response to Climate Change
NASA Astrophysics Data System (ADS)
Mirmasoudi, S. S.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.
2014-12-01
Crop production is one of the most vulnerable sectors to climatic variability and change. Increasing atmospheric CO2 concentration and other greenhouse gases are causing increases in global temperature. In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. Increasing temperatures may create heat stress for some crops regardless of soil water supply, and increasing surface O3 and other pollutants may damage crops and ecosystems. CO2 fertilization may or may not be an advantage in future. This work is part of a larger study that will address a series of questions based on a range of future climate scenarios for several watersheds in western North America. The key questions are: (1) how will snowmelt and rainfall runoff vary in future; (2) how will seasonal and inter-annual soil water supply vary, and how might that impacts food supplies; (3) how might heat stress impact (some) crops even with adequate soil water; (4) will CO2 fertilization alter crop yields; and (5) will pollution loads, particularly O3, cause meaningful changes to crop yields? The Generate Earth Systems Science (GENESYS) Spatial Hydrometeorological Model is an innovative, efficient, high-resolution model designed to assess climate driven changes in mountain snowpack derived water supplies. We will link GENESYS to the CROPWAT crop model system to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios. Literature bases studies will be utilised to develop approximate crop response functions for heat stress, CO2 fertilization and for O3 damages. The overall objective is to create modeling systems that allows meaningful assessment of agricultural productivity at a watershed scale under a range of climate scenarios.
Estimating limits for natural human embryo mortality
Jarvis, Gavin E.
2016-01-01
Natural human embryonic mortality is generally considered to be high. Values of 70% and higher are widely cited. However, it is difficult to determine accurately owing to an absence of direct data quantifying embryo loss between fertilisation and implantation. The best available data for quantifying pregnancy loss come from three published prospective studies (Wilcox, Zinaman and Wang) with daily cycle by cycle monitoring of human chorionic gonadotrophin (hCG) in women attempting to conceive. Declining conception rates cycle by cycle in these studies indicate that a proportion of the study participants were sub-fertile. Hence, estimates of fecundability and pre-implantation embryo mortality obtained from the whole study cohort will inevitably be biased. This new re-analysis of aggregate data from these studies confirms the impression that discrete fertile and sub-fertile sub-cohorts were present. The proportion of sub-fertile women in the three studies was estimated as 28.1% (Wilcox), 22.8% (Zinaman) and 6.0% (Wang). The probability of conceiving an hCG pregnancy (indicating embryo implantation) was, respectively, 43.2%, 38.1% and 46.2% among normally fertile women, and 7.6%, 2.5% and 4.7% among sub-fertile women. Pre-implantation loss is impossible to calculate directly from available data although plausible limits can be estimated. Based on this new analysis and a model for evaluating reproductive success and failure it is proposed that a plausible range for normal human embryo and fetal mortality from fertilisation to birth is 40-60%. PMID:28003878
Sakatani, Miki; Yamanaka, Kenichi; Balboula, Ahmed Z; Takenouchi, Naoki; Takahashi, Masashi
2015-01-01
Low pregnancy rates during the summer are due, in part, to reduced fertilization. Given that elevated temperature is associated with this season, we investigated the effect of heat stress during fertilization using an in vitro model. Three experiments were performed to determine the mechanism by which exposure to elevated temperature disrupts fertilization. Oocytes were fertilized for 6 hr at 38.5°C or 41.0°C or 40.0°C with non-pre-incubated sperm, or for 6 hr at 38.5°C with sperm that had been pre-incubated at 38.5°C or 41.0°C for 4 hr. In each experiment, zygotes were cultured at 38.5°C in 5% CO(2) and 5% O(2). Rates of cleavage and blasocyst formation were reduced when fertilization occurs at elevated temperatures. The percent of sperm classified as alive, using fluorescein diacetate labeling, was decreased by pre-incubation and fertilization at 40.0°C. Although no difference was observed in sperm penetration rate, polyspermy tended to be increased by heat stress during fertilization. The zona pellucidae of zygotes formed following fertilization at 40.0°C for 6 hr were more sensitive to digestion with pronase. Furthermore, these zygotes exhibited higher hydrogen peroxide levels, measured by 2,7-dihydrodichlorofluorescein diacetate staining, and showed increased transcript abundance for HSPA1A, a gene involved in the heat-shock response, but decreased transcript abundance for UCHL1, a gene involved in preventing polyspermy. Results indicate that heat stress during fertilization is lethal to sperm, and causes oxidative stress, altered transcript abundance, and a defective block to polyspermy in the zygote. Thus, an increase in polyspermy is likely one cause of the reduced competency of zygotes fertilized under elevated temperatures to develop to the blastocyst stage. © 2014 Wiley Periodicals, Inc.
El-Taher, A; Althoyaib, S S
2012-01-01
The present work deals with identifying and determining the activity levels of natural occuring radionuclides, (226)Ra and (232)Th series, their decay products and (40)K, in chemical and organic fertilizers used in Kingdom of Saudi Arabia. A total of 30 samples: 20 phosphatic fertilizers (single super-phosphate SSP and triple super-phosphate,TSP) and 10 organic fertilizers (cow, sheep and chicken) collected from markets and farms. The gamma-ray spectrometer consists of NaI(Tl) detector and its electronic circuit was used for measuring γ-ray spectra. The ranges of radioactivity levels of (226)Ra, (232)Th and (40)K in chemical fertilizers are 51.5±5.2-106.3±7.5, 5.1±1.6-9.9±3.2. and 462.6±21-607.3±14Bqkg(-1), respectively. The activities of (226)Ra, (232)Th and (40)K in natural fertilizers (cow, sheep and chicken) are lower than the activities in chemical fertilizers. The obtained data are compared with available reported data from other countries in literature. The Ra(eq) in chemical fertilizer ranges from 100.37 to 161.43Bqkg(-1) and in organic fertilizer ranges from 34.07 to 102.19Bqkg(-1), which are lower than the limit of 370Bqkg(-1) adopted from NEA-OECD (1979). The average heavy metal (Pb, Cd, Ni, Co and Cr) contents of the fertilizers marketed in the Kingdom of Saudi Arabia are also determined and within the limits of those used worldwide. Copyright © 2011 Elsevier Ltd. All rights reserved.
León, Silvia; Barroso, Alexia; Vázquez, María J.; García-Galiano, David; Manfredi-Lozano, María; Ruiz-Pino, Francisco; Heras, Violeta; Romero-Ruiz, Antonio; Roa, Juan; Schutz, Günther; Kirilov, Milen; Gaytan, Francisco; Pinilla, Leonor; Tena-Sempere, Manuel
2016-01-01
Kisspeptins, ligands of the receptor, Gpr54, are potent stimulators of puberty and fertility. Yet, whether direct kisspeptin actions on GnRH neurons are sufficient for the whole repertoire of their reproductive effects remains debatable. To dissect out direct vs. indirect effects of kisspeptins on GnRH neurons in vivo, we report herein the detailed reproductive/gonadotropic characterization of a Gpr54 null mouse line with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54−/−Tg; rescued). Despite preserved fertility, adult rescued mice displayed abnormalities in gonadal microstructure, with signs of precocious ageing in females and elevated LH levels with normal-to-low testosterone secretion in males. Gpr54−/−Tg rescued mice showed also altered gonadotropin responses to negative feedback withdrawal, while luteinizing hormone responses to various gonadotropic regulators were variably affected, with partially blunted relative (but not absolute) responses to kisspeptin-10, NMDA and the agonist of tachykinin receptors, NK2R. Our data confirm that direct effects of kisspeptins on GnRH cells are sufficient to attain fertility. Yet, such direct actions appear to be insufficient to completely preserve proper functionality of gonadotropic axis, suggesting a role of kisspeptin signaling outside GnRH cells. PMID:26755241
Li, Xuewei; Lei, Zhiwu; Qu, Jun; Li, Zhao; Zhou, Xiaowen; Zhang, Qiwu
2017-01-15
The goal of this study is aimed to develop a novel process to recycle the ferrous sulfate, the by-product of titanium dioxide industry. Zinc sulfate was added in the process of milling ferrous sulfate with calcium carbonate (CaCO 3 ). The sulfates were transformed into carbonates to serve as slow-release fertilizers by co-grinding the starting materials of FeSO 4 ·7H 2 O, ZnSO 4 ·7H 2 O, and CaCO 3 with small amounts of water in a planetary ball mill. The prepared samples were characterized by X-ray diffraction (XRD) analysis and quantitative measurements of the soluble ratios in water and 2% citric acid solution. It was found that Fe and Zn ions as sulfates were successfully combined with CaCO 3 to form the corresponding Fe and Zn carbonates respectively. After milling, the release ratios of Fe and Zn nutrients in distilled water could be controlled at 0.1% and 0.7% respectively. Meanwhile, the release ratios of them in 2% citric acid solution were almost 98% and 100%. Milling speed was the critical parameter to facilitate the transformation reaction. The proposed process, as an easy and economical route, exhibits evident advantages, namely allowing the use of widely available and low-cost CaCO 3 as well as industrial wastes of heavy metal sulfates as starting samples to prepare applicable products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Johnson, Dale W [Desert Research Inst. (DRI), Reno, NV (United States); University of Nevada, Reno, NV (United States); Ball, J. Timothy [Desert Research Inst. (DRI), Reno, NV (United States); Walker, Roger F [University of Nevada, Reno, NV (United States)
1998-03-01
This data set presents measured values of plant diameter and height, biomass of plant components, and nutrient (carbon, nitrogen, phosphorus, sulfur, potassium, calcium, magnesium, boron, copper, iron, manganese, and zinc) concentrations from a study of the effects of carbon dioxide and nitrogen fertilization on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) conducted in open-top chambers in Placerville, California, from 1991 through 1996. This data set contains values from 1991 through 1993.
A window into the future of the Earth, hidden in the jungles of Costa Rica's volcanoes
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Schwandner, F. M.; Asner, G. P.; Schimel, D.; Norby, R. J.; Keller, M.; Pavlick, R.; Braverman, A. J.; Pieri, D. C.; Diaz, J. A.; Gutierrez, M.; Duarte, E. A.; Lewicki, J. L.; Manning, C. E.; Deering, C. D.; Seibt, U.; Miller, G. R.; Drewry, D.; Chambers, J.
2017-12-01
The CO2 fertilization response of the terrestrial biosphere contributes among the largest sensitivities and uncertainties across projections of the Earth's future. The source of that uncertainty can be pinpointed to the largest fluxes in the biosphere: the tropics. Free Air CO2 Enrichment (FACE) experiments have contributed immensely to our understanding of short-term CO2 fertilization, but, outside of a small pilot study in development, have been absent in the tropics. This is largely due to numerous hurdles of not only conducting such experiments in challenging environments, but also due to the need to expand their extent considerably to encompass the enormous diversity of species-level responses, in addition to the need for multi-decadal scale responses. As such, we have remained at a critical impasse in our ability to advance understanding of the response of the tropical biosphere to increasing CO2. Recent discoveries have found a cluster of volcanoes degassing CO2 into tropical ecosystems in Costa Rica at concentrations similar to future Earth atmosphere levels. The degassing has been occurring persistently from 10s to 100s of years over 10s to 100s of square kilometers, at different levels depending on the volcano. Fortuitously, this provides a natural "experiment" across a range of conditions needed to assess a widespread and long-lived tropical ecosystem response to elevated CO2: tree species will have had time to shift in composition, traits, structure, and function. Nonetheless, due both to the challenges with assessing these changes on the ground, and heterogeneity causing problems with coarse-scale satellite remote sensing observations, this "window" into the future of the Earth has remained veiled. Here, we describe an airborne-based plan designed to uncover this gem hidden in the jungles of Costa Rica's volcanoes.
Presidential Green Chemistry Challenge: 2016 Greener Reaction Conditions Award
Presidential Green Chemistry Challenge 2016 award winner, Dow Agrosciences LLC, developed Instinct®, a technology that reduces fertilizer nitrate leaching to ground and surface waters and atmospheric nitrous oxide emissions. More corn and reduces CO2.
K. J. McFarlane; S. H. Schoenholtz; R. F. Powers
2009-01-01
Belowground C and N storage is important in maintaining forestproductivity and to CO2 sequestration. How these pools respondto management is poorly understood. We investigated effectsof repeated applications of complete fertilizer and competing...
Modification of land-atmosphere interactions by CO2 effects
NASA Astrophysics Data System (ADS)
Lemordant, Leo; Gentine, Pierre
2017-04-01
Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.
Direct nitrous oxide emissions from rapeseed in Germany
NASA Astrophysics Data System (ADS)
Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Suarez, Teresa; Stichnothe, Heinz; Flessa, Heiner
2014-05-01
The production of first generation biofuels has increased over the last decade in Germany. However, there is a strong public and scientific debate concerning ecological impact and sustainability of biofuel production. The EU Renewables Directive requires biofuels to save 35 % of GHG emissions compared to fossil fuels. Starting in 2017, 50 % mitigation of GHG emissions must be achieved. This presents challenges for production of biofuels from rapeseed, which is one of the major renewable resources used for fuel production. Field emissions of nitrous oxide (N2O) and GHG emissions during production of fertilizers contribute strongest to the GHG balance of rapeseed biofuel. Thus, the most promising GHG mitigation option is the optimization of nitrogen fertilization. Since 2012, field trials are conducted on five German research farms to quantify direct GHG emissions. The sites were selected to represent the main rapeseed production regions in Germany as well as climatic regions and soil types. Randomized plot designs were established, which allow monitoring (using manual chambers) impact of fertilization intensity on direct emissions and yield of the typical crop sequence (winter rape - winter wheat - winter barley). The effect of substituting mineral fertilizer with biogas digestate with and without addition of a nitrification inhibitor is also studied. Here we present results from the first cropping season. In 2013, annual direct N2O emissions as well as yield normalized N2O emissions from rape were low. This can be explained with the weather conditions as 2013 was characterized by a cold and long winter with snow until mid spring. As a result, emissions were smaller than predicted by the IPCC emission factors or by the Global Nitrous Oxide Calculator (GNOC). However, emissions still depend on nitrogen input.
NASA Astrophysics Data System (ADS)
Ziegler, Martin; Diz, Paula; Hall, Ian R.; Zahn, Rainer
2013-06-01
The rise in atmospheric CO2 concentrations observed at the end of glacial periods has, at least in part, been attributed to the upwelling of carbon-rich deep water in the Southern Ocean. The magnitude of outgassing of dissolved CO2, however, is influenced by the biological fixation of upwelled inorganic carbon and its transfer back to the deep sea as organic carbon. The efficiency of this biological pump is controlled by the extent of nutrient utilization, which can be stimulated by the delivery of iron by atmospheric dust particles. Changes in nutrient utilization should be reflected in the δ13C gradient between intermediate and deep waters. Here we use the δ13C values of intermediate- and bottom-dwelling foraminifera to reconstruct the carbon isotope gradient between thermocline and abyssal water in the subantarctic zone of the South Atlantic Ocean over the past 360,000 years. We find millennial-scale oscillations of the carbon isotope gradient that correspond to changes in dust flux and atmospheric CO2 concentrations as reported from Antarctic ice cores. We interpret this correlation as a relationship between the efficiency of the biological pump and fertilization by dust-borne iron. As the correlation is exponential, we suggest that the sensitivity of the biological pump to dust-borne iron fertilization may be increased when the background dust flux is low.
Zhang, Xianxian; Yin, Shan; Li, Yinsheng; Zhuang, Honglei; Li, Changsheng; Liu, Chunjiang
2014-02-15
Rice is one of the major crops of southern China and Southeast Asia. Rice paddies are one of the largest agricultural greenhouse gas (GHG) sources in this region because of the application of large quantities of nitrogen (N) fertilizers to the plants. In particular, the production of methane (CH4) is a concern. Investigating a reasonable amount of fertilizers to apply to plants is essential to maintaining high yields while reducing GHG emissions. In this study, three levels of fertilizer application [high (300 kg N/ha), moderate (210 kg N/ha), and low (150 kg N/ha)] were designed to examine the effects of variation in N fertilizer application rate on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the paddy fields in Chongming Island, Shanghai, China. The high level (300 kg N/ha) represented the typical practice adopted by the local farmers in the area. Maximum amounts of CH4 and N2O fluxes were observed upon high-level fertilizer application in the plots. Cumulative N2O emissions of 23.09, 40.10, and 71.08 mg N2O/m(2) were observed over the growing season in 2011 under the low-, moderate-, and high-level applications plots, respectively. The field data also indicated that soil temperatures at 5 and 10 cm soil depths significantly affected soil respiration; the relationship between Rs and soil temperature in this study could be described by an exponential model. Our study showed that reducing the high rate of fertilizer application is a feasible way of attenuating the global-warming potential while maintaining the optimum yield for the studied paddy fields. Copyright © 2013 Elsevier B.V. All rights reserved.
Johnson, David R.
2014-01-01
Prior research indicates a negative relationship between women’s labor force participation and fertility at the individual level in the United States, but little is known about the reasons for this relationship beyond work hours. We employed discrete event history models using panel data from the National Survey of Families and Households (N = 2,411) and found that the importance of career considerations mediates the work hours/fertility relationship. Further, fertility intentions and the importance of career considerations were more predictive of birth outcomes as women’s work hours increase. Ultimately, our findings challenge the assumption that working more hours is the direct cause for employed women having fewer children and highlight the importance of career and fertility preferences in fertility outcomes. PMID:25506189
Improving Water Use Efficiency of Lettuce (Lactuca sativa L.) Using Phosphorous Fertilizers.
Alkhader, Asad M F; Abu Rayyan, Azmi M
2013-01-01
A greenhouse pot experiment was conducted to evaluate the effect of phosphorous (P) fertilizers application to an alkaline calcareous soil on the water use efficiency (WUE) of lettuce cultivar "robinson" of iceberg type. Head fresh and dry weights, total water applied and WUE were affected significantly by the P fertilizer type and rate. P fertilizers addition induced a significant enhancement in the WUE and fresh and dry weights of the crop. A local phosphate rock (PR) applied directly was found to be inferior to the other types of P fertilizers (Mono ammonium phosphate (MAP), Single superphosphate (SSP), and Di ammonium phosphate ((DAP)). MAP fertilizer at 375 and 500 kg P2O5/ha application rates recorded the highest significant values of head fresh weight and WUE, respectively.
NASA Astrophysics Data System (ADS)
Schubert, B.; Jahren, A. H.
2017-12-01
Hundreds of chamber and field experiments have shown an increase in C3 plant biomass in response to elevated atmospheric carbon dioxide (pCO2); however, secondary water and nutrient deficits are thought to limit this response. Some have hypothesized that secondary limitation might be self-alleviating under elevated pCO2 as greater root biomass imparts enhanced access to water and nutrients. Here we present results of growth chamber experiments designed to test this hypothesis: we grew 206 Arabidopsis thaliana plants within 5 growth chambers, each set at a different level of pCO2: 390, 685, 1075, 1585, and 2175 ppmv. Within each growth chamber, soil moisture content (θm) was maintained across a spectrum: 1.50, 0.83, 0.44, and 0.38 g g-1. After 3 weeks of total growth, tissues were analyzed for both biomass and net carbon isotope discrimination (Δ13C) value. From these values, we calculated Δresidual, which represents the residual effect of water stress after subtraction of the effect of pCO2 due to photorespiration. Across the full range of moisture content, Δresidual displayed a significant 2.5‰ increase with increasing pCO2. This further implies a 0.1 unit increase in ci/ca, consistent with decreased water stress at elevated pCO2. The influence of CO2 fertilization on the alleviation of water stress was further evidenced in a positive correlation between percent biomass change and Δresidual, such that a doubling of plant biomass yielded a 1.85‰ increase in carbon isotope discrimination. In addition to providing new insight into water uptake in plants growing under elevated carbon dioxide, these data underscore the importance of separating the effects of increased pCO2 (via photorespiration) and altered ci/ca (via stomatal conductance) when considering changes in the Δ13C value of C3 land plants during the Anthropocene, or across any geological period that includes a marked change in global carbon cycling.
Douglas-fir container stock grown with fertilizer-amended media: Some preliminary results
Diane L. Haase; John Trobaugh; Robin Rose
2002-01-01
Incorporating fertilizer directly into the container growing media is a very new practice. Previously, it was believed that such a practice would result in toxicity due to direct contact with the root system and/or over fertilization. However, with the improved technology for controlled-release fertilizer, there is renewed interest in this practice. The objective of...
Influences of selected socioeconomic and demographic variables on fertility in Bangladesh.
Islam, S M; Khan, H T
1995-06-01
"The data used in this study are from the 1989 Bangladesh Fertility Survey (1989 BFS), which was conducted...by the National Institute of Population Research and Training (NIPORT)....A two-stage probability sample design was used for the survey.... It has been found that female age at marriage has a significant direct negative influence on fertility. Thus, raising the age at marriage by implementing a minimum-age marriage law is likely to lower fertility on a national scale. Duration of breast-feeding is also found to have a significant direct negative effect on fertility....Fetal loss appears to have a significant direct positive effect on fertility...which means that mothers who have experienced fetal loss are found to have higher fertility.... Maternal mortality is also high in Bangladesh. Therefore, it is essential to provide primary health care, particularly maternal and child health care, for surviving children." excerpt
NASA Astrophysics Data System (ADS)
Chen, B.; Black, T. A.; Jassal, R.; Nesic, Z.; Bruemmer, C.
2008-05-01
Nitrogen (N) additions to forest have shown variable effects on both respiration and photosynthesis. With increasing rates of anthropogenic N deposition, there is a strong need to understand the ecosystem response to N inputs. We investigated how N fertilization affects the ecosystem carbon (C) balance of a 57-year-old coast Douglas-fir stand in British Columbia, Canada, based on eddy-covariance (EC) and soil-chamber (fertilized and control plots) measurements and process-based modeling. The stand was fertilized by helicopter with urea at 200 kg N ha-1 in January 2007. A land surface model (Ecosystem Atmosphere Simulation Scheme, EASS) was combined with an ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS) and a coupled C and N subroutine was incorporated into the integrated EASS-BEPS model in this study. This half-hourly time step model was run continuously for the period from 2001 to 2007 in two scenarios: with and without fertilization. Modeled C fluxes without fertilization [net ecosystem productivity (NEP), gross primary productivity (GPP), ecosystem respiration (Re) and belowground respiration (Rs)] agreed well with EC and soil chamber measurements over diurnal, seasonal and annual time scales for 2001 to 2006; while simulated NEP, GPP, Re and Rs with fertilization reasonably followed EC and chamber measurements in 2007 (545 vs. 520, 2163 vs. 2155, 1618 vs. 1635, and 920 vs. 906 g C m-2 yr-1, respectively). Comparison of EC-determined C fluxes in 2007 with model simulations without fertilization suggests that annual Re decreased by 6.7% (1635 vs. 1752 g C m-2), gross primary productivity (GPP) increased by 6.8% (2155 vs. 2017 g C m-2), and annual NEP increased by 96.2% (520 vs. 265 g C m-2) due to fertilization. The modeled reduction in Rs (9.6%, comparing modeled values without and with fertilization: 1008 vs. 920 g C m-2 yr-1) is consistent with that measured using the soil chambers (~11.5%, comparing CO2 effluxes from control and fertilized plots measured from late summer to fall). The model also indicated that the effect of fertilization on aboveground (leaf and stem) respiration was very small. These experimental and modeling results suggest N fertilization significantly increased NEP mainly as a result of strongly reduced Rs (~10-12%) and moderately enhanced GPP (~6.8%) in the first year after fertilization.
Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K
2015-01-01
The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.
Zhang, Xuan; Ding, Jun-Shan; Liu, Yan-Ling; Gu, Yan; Han, Ke-Feng; Wu, Liang-Huan
2014-03-01
Abstract: A 2-year field experiment with a yellow-clay paddy soil in Zhejiang Province was conducted to study the effects of different planting measures combined with different fertilization practices on rice yield, soil nutrients, microbial biomass C and N and activities of urease, phosphatase, sucrase and hydrogen peroxidase at the maturity stage. Results showed that mechanical transplanting of rice with controlled release bulk blending (BB) fertilizer (BBMT) could achieve a significantly higher mean yield than traditional manual transplanting with traditional fertilizer (TFTM) and direct seeding with controlled release BB fertilizer (BBDS) by 16.3% and 27.0%, respectively. The yield by BBMT was similar to that by traditional manual transplanting with controlled release BB fertilizer (BBTM). Compared with TFTM, BBMT increased the contents of soil total-N, available N, available P and microbial biomass C, and the activities of urease, sucrase and hydrogen peroxidase by 21.5%, 13.6%, 41.2%, 27.1%, 50.0%, 22.5% and 46.2%, respectively. Therefore, BBMT, a simple high-efficiency rice cultivation method with use of a light-weighted mechanical transplanter, should be widely promoted and adopted.
Shen, Pu; Gao, Ju-sheng; Xu, Ming-gang; Li, Dong-chu; Niu, De-kui; Qin, Dao-zhu
2011-04-01
An investigation was made at a double-rice paddy field in the Qiyang Red Soil Field Experimental Station, Hunan Province, China to study the species and biomass of weeds growing in rice (Oryza sativa L.) growth season after 34-year application of sulfur (SO4(2-)) and chloride (Cl(-))-containing chemical fertilizers under the same application rates of nitrogen (N), phosphorus (P), and potassium (K). Long-term application of Cl(-)-containing chemical fertilizer resulted in the greatest species number of weeds and the highest biomass of floating weeds and wet weeds, compared with long-term application of SO4(2-) and Cl(-) +SO4(2-)-containing chemical fertilizers. In early rice growth season, the biomass of weeds after applying Cl(-)-containing chemical fertilizer was 51.4% and 17.6% higher than that after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, respectively; in late rice growth season, the increment was 144% and 242%, respectively. More floating weeds were observed after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, but few of them were found after applying Cl(-)-containing chemical fertilizer. The total dry mass of weeds and the dry mass of wet weeds were positively correlated with soil Cl(-) content (r = 0.764, P < 0.01 and r = 0.948, P < 0.01, respectively), but negatively correlated with soil SO4(2-)-S content (r = 0.849, P < 0.01 and r = 0.641, P < 0.05). Soil alkali-hydrolyzable N and available P, under the co-effects of soil SO4(2-)-S, Cl(-), and pH, had indirect effects on the total dry mass of weeds. By adopting various fertilization measures to maintain proper soil pH and alkali-hydrolyzable N and available P contents, increase soil SO42(-)-S content, and decrease soil Cl(-) content, it could be possible to effectively inhibit the growth of wet weeds and to decrease the total biomass of weeds in double-rice paddy field.
Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.
Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash
2014-10-01
This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic fertilizers. Copyright © 2014 Elsevier Inc. All rights reserved.
Brouwer, Paul; Schluepmann, Henriette; Nierop, Klaas Gj; Elderson, Janneke; Bijl, Peter K; van der Meer, Ingrid; de Visser, Willem; Reichart, Gert-Jan; Smeekens, Sjef; van der Werf, Adrie
2018-03-24
Since available arable land is limited and nitrogen fertilizers pollute the environment, cropping systems ought to be developed that do not rely on them. Here we investigate the rapidly growing, N 2 -fixing Azolla/Nostoc symbiosis for its potential productivity and chemical composition to determine its potential as protein feed. In a small production system, cultures of Azolla pinnata and Azolla filiculoides were continuously harvested for over 100 days, yielding an average productivity of 90.0-97.2 kg dry weight (DW) ha -1 d -1 . Under ambient CO 2 levels, N 2 fixation by the fern's cyanobacterial symbionts accounted for all nitrogen in the biomass. Proteins made up 176-208 g kg -1 DW (4.9 × total nitrogen), depending on species and CO 2 treatment, and contained more essential amino acids than protein from soybean. Elevated atmospheric CO 2 concentrations (800 ppm) significantly boosted biomass production by 36-47%, without decreasing protein content. Choice of species and CO 2 concentrations further affected the biomass content of lipids (79-100 g kg -1 DW) and (poly)phenols (21-69 g kg -1 DW). By continuous harvesting, high protein yields can be obtained from Azolla cultures, without the need for nitrogen fertilization. High levels of (poly)phenols likely contribute to limitations in the inclusion rate of Azolla in animal diets and need further investigation. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Romero-Perdomo, Felipe; Abril, Jorge; Camelo, Mauricio; Moreno-Galván, Andrés; Pastrana, Iván; Rojas-Tapias, Daniel; Bonilla, Ruth
The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Risky future for Mediterranean forests unless they undergo extreme carbon fertilization.
Gea-Izquierdo, Guillermo; Nicault, Antoine; Battipaglia, Giovanna; Dorado-Liñán, Isabel; Gutiérrez, Emilia; Ribas, Montserrat; Guiot, Joel
2017-07-01
Forest performance is challenged by climate change but higher atmospheric [CO 2 ] (c a ) could help trees mitigate the negative effect of enhanced water stress. Forest projections using data assimilation with mechanistic models are a valuable tool to assess forest performance. Firstly, we used dendrochronological data from 12 Mediterranean tree species (six conifers and six broadleaves) to calibrate a process-based vegetation model at 77 sites. Secondly, we conducted simulations of gross primary production (GPP) and radial growth using an ensemble of climate projections for the period 2010-2100 for the high-emission RCP8.5 and low-emission RCP2.6 scenarios. GPP and growth projections were simulated using climatic data from the two RCPs combined with (i) expected c a ; (ii) constant c a = 390 ppm, to test a purely climate-driven performance excluding compensation from carbon fertilization. The model accurately mimicked the growth trends since the 1950s when, despite increasing c a , enhanced evaporative demands precluded a global net positive effect on growth. Modeled annual growth and GPP showed similar long-term trends. Under RCP2.6 (i.e., temperatures below +2 °C with respect to preindustrial values), the forests showed resistance to future climate (as expressed by non-negative trends in growth and GPP) except for some coniferous sites. Using exponentially growing c a and climate as from RCP8.5, carbon fertilization overrode the negative effect of the highly constraining climatic conditions under that scenario. This effect was particularly evident above 500 ppm (which is already over +2 °C), which seems unrealistic and likely reflects model miss-performance at high c a above the calibration range. Thus, forest projections under RCP8.5 preventing carbon fertilization displayed very negative forest performance at the regional scale. This suggests that most of western Mediterranean forests would successfully acclimate to the coldest climate change scenario but be vulnerable to a climate warmer than +2 °C unless the trees developed an exaggerated fertilization response to [CO 2 ]. © 2017 John Wiley & Sons Ltd.
A Precision Nitrogen Management Approach to Minimize Impacts
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer is a crucial input for crop production but contributes to agriculture’s environmental footprint via CO2 emissions, N2O emissions, and eutrophication of coastal waters. The low-cost way to minimize this impact is to eliminate over-application of N. This is more difficult than it s...
Andrade, Daniel F; Pereira-Filho, Edenir Rodrigues
2016-10-11
Contaminants (Cd, Cr, and Pb) as well as minor (B, Cu, Mn, Na, and Zn) and major (Ca and Mg) elements were directly determined in solid fertilizer samples using laser-induced breakdown spectroscopy (LIBS). Factorial designs were used to define the most appropriate LIBS parameters and pellet pressure on solid fertilizers. Emission lines for all of the analytes were collected and employed 12 signal normalization modes. The best results were obtained using a laser energy of 75 mJ, a spot size of 50 μm, a pressure of 10 t/in., and a delay of 2.0 μs. Good correlation was obtained between the calibration model's prediction using the proposed LIBS method and the reference values obtained with ICP-OES. The limits of detection (LOD) for the proposed method varied from 2 mg/kg (for Cd) to 1% (for Zn).
Mugnier, Sylvie; Kervella, Morgane; Douet, Cécile; Canepa, Sylvie; Pascal, Géraldine; Deleuze, Stefan; Duchamp, Guy; Monget, Philippe; Goudet, Ghylène
2009-11-19
Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse. In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1) gametes co-incubated with equine vs porcine OEC, 2) intact cumulus-oocyte complexes vs denuded oocytes, 3) OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4) in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A) in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though osteopontin slightly increased the IVF rates. Our study shows a beneficial effect of homologous and heterologous oviduct cells on equine IVF rates, though the rates remain low. Furthers studies are necessary to identify the proteins involved. We showed that the surface plasmon resonance technique is efficient and powerful to analyze molecular interactions during fertilization.
2009-01-01
Background Oviduct epithelial cells (OEC) co-culture promotes in vitro fertilization (IVF) in human, bovine and porcine species, but no data are available from equine species. Yet, despite numerous attempts, equine IVF rates remain low. Our first aim was to verify a beneficial effect of the OEC on equine IVF. In mammals, oviductal proteins have been shown to interact with gametes and play a role in fertilization. Thus, our second aim was to identify the proteins involved in fertilization in the horse. Methods & results In the first experiment, we co-incubated fresh equine spermatozoa treated with calcium ionophore and in vitro matured equine oocytes with or without porcine OEC. We showed that the presence of OEC increases the IVF rates. In the subsequent experiments, we co-incubated equine gametes with OEC and we showed that the IVF rates were not significantly different between 1) gametes co-incubated with equine vs porcine OEC, 2) intact cumulus-oocyte complexes vs denuded oocytes, 3) OEC previously stimulated with human Chorionic Gonadotropin, Luteinizing Hormone and/or oestradiol vs non stimulated OEC, 4) in vivo vs in vitro matured oocytes. In order to identify the proteins responsible for the positive effect of OEC, we first searched for the presence of the genes encoding oviductin, osteopontin and atrial natriuretic peptide A (ANP A) in the equine genome. We showed that the genes coding for osteopontin and ANP A are present. But the one for oviductin either has become a pseudogene during evolution of horse genome or has been not well annotated in horse genome sequence. We then showed that osteopontin and ANP A proteins are present in the equine oviduct using a surface plasmon resonance biosensor, and we analyzed their expression during oestrus cycle by Western blot. Finally, we co-incubated equine gametes with or without purified osteopontin or synthesized ANP A. No significant effect of osteopontin or ANP A was observed, though osteopontin slightly increased the IVF rates. Conclusion Our study shows a beneficial effect of homologous and heterologous oviduct cells on equine IVF rates, though the rates remain low. Furthers studies are necessary to identify the proteins involved. We showed that the surface plasmon resonance technique is efficient and powerful to analyze molecular interactions during fertilization. PMID:19925651
NASA Astrophysics Data System (ADS)
Gallagher, M. E.; Masiello, C. A.; Hockaday, W. C.; McSwiney, C. P.; Robertson, G. P.
2008-12-01
One of the most effective ways to estimate the size of carbon sinks in the terrestrial biosphere and oceans is through paired measurements of atmospheric CO2 and O2 concentrations (e.g. (Keeling et al. 1996)). Successful use of this technique requires knowledge of the oxidative ratio (OR) of the terrestrial biosphere (the ratio of moles of O2 released per moles of CO2 consumed in gas fluxes between the terrestrial biosphere and atmosphere.) Historically the terrestrial biosphere's OR has been assumed to be a constant, approximately 1.1 (e.g. Prentice et al. 2001). However, small shifts in the biosphere's OR values can lead to large variations in the calculated sizes of the terrestrial biosphere and ocean carbon sinks (Randerson et al. 2006). We have recently shown that it is possible to measure the OR of biomass to at least +/- 0.01 units (Masiello et al., 2008), and that there is significant natural variability in ecosystem OR. Ecosystem OR is impacted by human activities. In this presentation, we explore the effects of one major form of anthropogenic ecosystem alteration: nitrogen fertilization. We are measuring ecosystem OR in corn agricultural ecosystems under a range of nitrogen fertilization treatments at the Kellogg Biological Station- Long Term Ecological Research Site (KBS-LTER) in Michigan. We measure OR indirectly, through its relationship with organic carbon oxidation state (Cox) (Masiello et al. 2008). Here we present data showing the effects of varying corn ecosystem nitrogen fertilization rates (from 0 to 202 kg N/ha) on ecosystem OR and the implications it will have on apportionment calculations.
Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala
2017-04-01
Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N 2 O and CO 2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.
NASA Astrophysics Data System (ADS)
Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.
2016-03-01
Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to compensate to some degree for the increases due to climate change and population growth. Both subregions would need around 35 % more water than today if they implement some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity may pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one hand, their degree of resilience to climate shocks and, on the other hand, their adaptation potential when confronted with higher temperatures and changes in water availability.
Iguchi, Akira; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro
2015-08-01
Global warming (GW) and ocean acidification (OA) have been recognized as severe threats for reef-building corals that support coral reef ecosystems, but these effects on the early life history stage of corals are relatively unknown compared with the effects on calcification of adult corals. In this study, we evaluated the effects of thermal stress and CO2-driven acidified seawater on fertilization in a reef-building coral, Acropora digitifera. The fertilization rates of A. digitifera decreased in response to thermal stress compared with those under normal seawater conditions. In contrast, the changes of fertilization rates were not evident in the acidified seawater. Generalized Linear Mixed Model (GLMM) predicted that sperm/egg crosses and temperature were explanatory variables in the best-fitted model for the fertilization data. In the best model, interactions between thermal stress and acidified seawater on the fertilization rates were not selected. Our results suggested that coral fertilization is more sensitive to future GW than OA. Taking into consideration the previous finding that sperm motility of A. digitifera was decreased by acidified seawater, the decrease in coral cover followed by that of sperm concentration might cause the interacting effects of GW and OA on coral fertilization.
Hybrid Viability and Fertility in Co-occuring Plant Species
NASA Astrophysics Data System (ADS)
Hernandez, E.; Garcia, C.; Yost, J.
2012-12-01
Similar species of plants can co-exist due to reproductive barriers that keep them from hybridizing. In the case of Lasthenia gracilis and L. californica, certain reproductive barriers allow them to co-exist at Jasper Ridge without hybridization. The two species are locally adapted to different regions of the same hillside, and have slight differences in flowering time but hybrids can be created at low rate in the green house. We tested the viability and fertility of green house produced hybrids to quantify post-zygotic reproductive isolation at Jasper Ridge. We planted 10 hybrid seeds and 10 control seeds from 11 different families. We measured the percent germination, survival to flowering and pollen fertility of the seeds. We expect lower germination, lower survival to flowering, and lower pollen viability of hybrid seeds as compared to control seeds.
NASA Technical Reports Server (NTRS)
Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.
2011-01-01
Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.
2018-01-01
The initiation of protein synthesis requires the involvement of the eukaryotic translation initiation factor (eIF) 4G to promote assembly of the factors needed to recruit a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, those in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization. Species of the Brassicaceae and the Cleomaceae also express a divergent eIFiso4G isoform, referred to as eIFiso4G2, not found elsewhere in the plant kingdom. Despite their divergence, eIF4G and eIFiso4G interact with eIF4A, eIF4B, and eIF4E isoforms needed for binding an mRNA. eIF4G and eIFiso4G also interact with the poly(A)-binding protein (PABP) which promotes ribosome recruitment to an mRNA. Increasing the complexity of such an interaction, however, Arabidopsis also expresses three PABP isoforms (PAB2, PAB4, and PAB8) in vegetative and reproductive tissues. In this study, the functional interactions among the eIF4G and the widely-expressed PABP isoforms were examined. Loss of PAB2 or PAB8 in combination with loss of eIF4G or eIFiso4G had little to no effect on growth or fertility whereas pab2 pab8 eif4g or pab2 pab8 eifiso4g1/2 mutants exhibited smaller stature and reduced fertility. Although the pab4 eifiso4g1 mutant grows normally and is fertile, pab4 eif4g or pab4 eifiso4g2 mutants could not be isolated. Even pab4/PAB4 eif4g/eIF4G heterozygous plants exhibited growth defects and low fertility. Mutant co-inheritance analysis in reciprocal crosses with wild-type plants revealed that most ovaries and pollen from pab4/PAB4 eif4g/eIF4G plants were PAB4 eif4g. Similarly, co-inheritance studies with pab4/PAB4 eifiso4g2/eIFiso4G2 plants suggested most ovaries were PAB4 eifiso4g2. These results suggest that a functional interaction between PAB4 and eIF4G and between PAB4 and eIFiso4G2 is required for growth and normal fertility. PMID:29381712
Martin, Sophie; Richier, Sophie; Pedrotti, Maria-Luiza; Dupont, Sam; Castejon, Charlotte; Gerakis, Yannis; Kerros, Marie-Emmanuelle; Oberhänsli, François; Teyssié, Jean-Louis; Jeffree, Ross; Gattuso, Jean-Pierre
2011-04-15
Ocean acidification is predicted to have significant effects on benthic calcifying invertebrates, in particular on their early developmental stages. Echinoderm larvae could be particularly vulnerable to decreased pH, with major consequences for adult populations. The objective of this study was to understand how ocean acidification would affect the initial life stages of the sea urchin Paracentrotus lividus, a common species that is widely distributed in the Mediterranean Sea and the NE Atlantic. The effects of decreased pH (elevated P(CO(2))) were investigated through physiological and molecular analyses on both embryonic and larval stages. Eggs and larvae were reared in Mediterranean seawater at six pH levels, i.e. pH(T) 8.1, 7.9, 7.7, 7.5, 7.25 and 7.0. Fertilization success, survival, growth and calcification rates were monitored over a 3 day period. The expression of genes coding for key proteins involved in development and biomineralization was also monitored. Paracentrotus lividus appears to be extremely resistant to low pH, with no effect on fertilization success or larval survival. Larval growth was slowed when exposed to low pH but with no direct impact on relative larval morphology or calcification down to pH(T) 7.25. Consequently, at a given time, larvae exposed to low pH were present at a normal but delayed larval stage. More surprisingly, candidate genes involved in development and biomineralization were upregulated by factors of up to 26 at low pH. Our results revealed plasticity at the gene expression level that allows a normal, but delayed, development under low pH conditions.
Chelsea G. Drum; Eric J. Jokela; Jason G. Vogel; Edward A. G. Schuur; Salvador Gezan
2015-01-01
In the southeastern United States, fertilization and weed control treatments, with deployment of genetically improved seedlings planting stock, are routinely used to increase aboveground productivity (Jokela and others 2004).
USDA-ARS?s Scientific Manuscript database
Agricultural land management practices account for about 50% of soil organic carbon (SOC) loss. Restoring SOC is important to soil productivity and fertility. Management strategies to rebuild SOC include addition of manure or other organic amendments, increasing root biomass from crops, leaving crop...
Environmental analysis of sunflower production with different forms of mineral nitrogen fertilizers.
Spinelli, D; Bardi, L; Fierro, A; Jez, S; Basosi, R
2013-11-15
Environmental profiles of mineral nitrogen fertilizers were used to evaluate the environmental disturbances related to their use in cultivation systems in Europe. Since the production of mineral fertilizers requires a large amount of energy, the present study of bioenergy systems is relevant in order to achieve crop yields less dependent on fossil fuels and to reduce the environmental impact due to fertilization. In this study, the suitability of the LCA methodology to analyze the environmental impact of sunflower cultivation systems with different forms of mineral nitrogen fertilizers urea and ammonium nitrate was investigated. Effects on climate change were estimated by the use of Ecoinvent 2.2 database default value for soil N2O emission factor (1%) and local emission data (0.8%) of mineral nitrogen applied to soils. LCA analysis showed a higher impact on environmental categories (human health and ecosystem quality) for the system in which urea was used as a nitrogen source. Use of urea fertilizer showed a higher impact on resource consumption due to fossil fuel consumption. Use of mineral nitrogen fertilizers showed a higher environmental burden than other inputs required for sunflower cultivation systems under study. Urea and ammonium nitrate showed, respectively, a 7.8% and 4.9% reduced impact of N2O as greenhouse gas by using direct field data of soil N2O emission factor compared to the default soil emission factor of 2006 IPCC Guidelines. Use of ammonium nitrate as mineral nitrogen fertilizer in sunflower cultivation would have a lower impact on environmental categories considered. Further environmental analysis of available technologies for fertilizer production might be also evaluated in order to reduce the environmental impacts of each fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration
NASA Astrophysics Data System (ADS)
Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian
2016-04-01
Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration; the daily average is lower at no-tillage (315-1914 mmoli m-2s-1), followed by minimum tillage (318-2395 mmoli m-2s-1) and is higher in the conventional tillage (321-2480 mmol m-2s-1). An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of long-term soil fertility. By determining the humus content after 3 years, it can be observed an increasing tendency when applying the minimum tillage (the increase was up to 0.41%) and no-tillage systems tillage (the increase was up to 0.64%). Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. The more the organic content in soil is higher the better soil aggregation is. The soil without organic content is compact. This reduces its capacity to infiltrate water, nutrients solubility and productivity, and that way it reduces the soil capacity for carbon sequestration. Acknowledgments This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change.
Evolution of the potential distribution area of french mediterranean forests under global warming
NASA Astrophysics Data System (ADS)
Gaucherel, C.; Guiot, J.; Misson, L.
2008-02-01
This work aims at understanding future spatial and temporal distributions of tree species in the Mediterranean region of France under various climates. We focused on two different species (Pinus Halepensis and Quercus Ilex) and compared their growth under the IPCC-B2 climate scenario in order to quantify significant changes between present and future. The influence of environmental factors such as atmospheric CO2 increase and topography on the tree growth has also been quantified. We modeled species growths with the help of a process-based model (MAIDEN), previously calibrated over measured ecophysiological and dendrochronological series with a Bayesian scheme. The model was fed with the ARPEGE - MeteoFrance climate model, combined with an explicit increase in CO2 atmospheric concentration. The main output of the model gives the carbon allocation in boles and thus tree production. Our results show that the MAIDEN model is correctly able to simulate pine and oak production in space and time, after detailed calibration and validation stages. Yet, these simulations, mainly based on climate, are indicative and not predictive. The comparison of simulated growth at end of 20 and 21 centuries, show a shift of the pine production optimum from about 650 to 950 m due to 2.5°K temperature increase, while no optimum has been found for oak. With the direct effect of CO2 increase taken into account, both species show a significant increase in productivity (+26 and +43% for pine and oak, respectively) at the end of the 21 century. While both species have complementary growth mechanisms, they have a good chance to extend their spatial distribution and their elevation in the Alps during the 21 century under the IPCC-B2 climate scenario. This extension is mainly due to the CO2 fertilization effect.
Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh
2014-01-01
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice. PMID:25290342
Ocean acidification affects fish spawning but not paternity at CO2 seeps.
Milazzo, Marco; Cattano, Carlo; Alonzo, Suzanne H; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A; Hall-Spencer, Jason M
2016-07-27
Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2 Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish. © 2016 The Author(s).
Ocean acidification affects fish spawning but not paternity at CO2 seeps
Cattano, Carlo; Alonzo, Suzanne H.; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A.; Hall-Spencer, Jason M.
2016-01-01
Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2. Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish. PMID:27466451
Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia
2014-01-01
Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2.
Pan, Shufen; Tian, Hanqin; Dangal, Shree R. S.; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia
2014-01-01
Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2. PMID:25401492
Simon, Luke; Lewis, Sheena E M
2011-06-01
Sperm progressive motility has been reported to be one of the key factors influencing in vitro fertilization rates. However, recent studies have shown that sperm DNA fragmentation is a more robust predictor of assisted reproductive outcomes including reduced fertilization rates, embryo quality, and pregnancy rates. This study aimed to compare the usefulness of sperm progressive motility and DNA damage as predictive tools of in vitro fertilization rates. Here, 136 couples provided 1,767 eggs with an overall fertilization rate of 64.2%. The fertilization rate in vitro correlated with both sperm progressive motility (r² = 0.236; P = 0.002) and DNA fragmentation (r² = -0.318; P < 0.001). The relative risk of a poor fertilization rate was 9.5 times higher in sperm of men with high DNA fragmentation (>40%) compared with 2.6 times in sperm with poor motility (<40%). Further, sperm DNA fragmentation gave a higher specificity (93.3%) in predicting the fertilization rate than progressive motility (77.8%). Finally, the odds ratio to determine fertilization rate (>70%) was 4.81 (1.89-12.65) using progressive motility compared with 24.18 (5.21-154.51) using DNA fragmentation. This study shows that fertilization rates are directly dependent upon both sperm progressive motility and DNA fragmentation, but sperm DNA fragmentation is a much stronger test.
Yuan, Ye; Dai, Xiaoqin; Wang, Huimin; Xu, Ming; Fu, Xiaoli; Yang, Fengting
2016-01-01
Compared with CO2, methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases in terms of their global warming potentials. Previous studies have indicated that land-use conversion has a significant impact on greenhouse gas emissions. However, little is known regarding the impact of converting rice (Oryza sativa L.) to vegetable fields, an increasing trend in land-use change in southern China, on CH4 and N2O fluxes. The effects of converting double rice cropping to vegetables on CH4 and N2O fluxes were examined using a static chamber method in southern China from July 2012 to July 2013. The results indicate that CH4 fluxes could reach 31.6 mg C m−2 h−1 under rice before land conversion. The cumulative CH4 emissions for fertilized and unfertilized rice were 348.9 and 321.0 kg C ha−1 yr−1, respectively. After the land conversion, the cumulative CH4 emissions were −0.4 and 1.4 kg C ha−1 yr−1 for the fertilized and unfertilized vegetable fields, respectively. Similarly, the cumulative N2O fluxes under rice were 1.27 and 0.56 kg N ha−1 yr−1 for the fertilized and unfertilized treatments before the land conversion and 19.2 and 8.5 kg N ha−1 yr−1, respectively, after the land conversion. By combining the global warming potentials (GWPs) of both gases, the overall land-use conversion effect was minor (P = 0.36) with fertilization, but the conversion reduced GWP by 63% when rice and vegetables were not fertilized. Increase in CH4 emissions increased GWP under rice compared with vegetables with non-fertilization, but increased N2O emissions compensated for similar GWPs with fertilization under rice and vegetables. PMID:27195497
Yuan, Ye; Dai, Xiaoqin; Wang, Huimin; Xu, Ming; Fu, Xiaoli; Yang, Fengting
2016-01-01
Compared with CO2, methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases in terms of their global warming potentials. Previous studies have indicated that land-use conversion has a significant impact on greenhouse gas emissions. However, little is known regarding the impact of converting rice (Oryza sativa L.) to vegetable fields, an increasing trend in land-use change in southern China, on CH4 and N2O fluxes. The effects of converting double rice cropping to vegetables on CH4 and N2O fluxes were examined using a static chamber method in southern China from July 2012 to July 2013. The results indicate that CH4 fluxes could reach 31.6 mg C m-2 h-1 under rice before land conversion. The cumulative CH4 emissions for fertilized and unfertilized rice were 348.9 and 321.0 kg C ha-1 yr-1, respectively. After the land conversion, the cumulative CH4 emissions were -0.4 and 1.4 kg C ha-1 yr-1 for the fertilized and unfertilized vegetable fields, respectively. Similarly, the cumulative N2O fluxes under rice were 1.27 and 0.56 kg N ha-1 yr-1 for the fertilized and unfertilized treatments before the land conversion and 19.2 and 8.5 kg N ha-1 yr-1, respectively, after the land conversion. By combining the global warming potentials (GWPs) of both gases, the overall land-use conversion effect was minor (P = 0.36) with fertilization, but the conversion reduced GWP by 63% when rice and vegetables were not fertilized. Increase in CH4 emissions increased GWP under rice compared with vegetables with non-fertilization, but increased N2O emissions compensated for similar GWPs with fertilization under rice and vegetables.
NASA Astrophysics Data System (ADS)
László Phd, M., ,, Dr.
2009-04-01
Some trace elements are dangerous because they tend to bioaccumulate in food chain. Bioaccumulation means an increase in the concentration of a chemical in a biological organism over time, compared to the chemical's concentration in they environment. Compounds accumulate in living things any time they are taken up and stored faster han they are broken down (metabolize) or extreted. Triticale is the stabilized man-made hybrid of wheat (Triticum eastivum L.) and rye (Secale cereale L.). Wheat-rye hybrids date back to 1875, it was only in 1953 that the first North American triticale breeding programme was initiated at the University Manitoba. Globally, triticale is used primary for livestock feed today. NPKCaMg fertilization effects were estimated on trace element bioavailability by Triticale in a long-term field experiment on a Haplic Luvisol (acidic sandy brown forest soil) at Nyírlugos in East-Hungary in 1998. Soil geochemical parameters were as follow: humus 0.6%, pH (H2O) 5.8, pH (KCl) 4.6, total N 32.8 mg . kg-1, AL (ammonium lactate soluble)- P2O5 43 mg . kg-1, AL-K2O 52 mg . kg-1. The experiments involved 32 NPKCaMg treatments and their combinations in 4 replications giving a total of 128 plots from 1980. N levels were 0, 50, 100, 150 kg . ha-1 . yr-1, P2O5 and K2O 0, 60, 120, 180 kg . ha-1 . yr-1, CaCO3 0, 250, 500, 1000 kg . ha-1 . yr-1 and MgCO3 doses were 0, 140, 280 kg . ha-1 . yr-1. Plot brutto size was 50 m2. The main results were as follows. Main soil chemical parameters depend on NPKCaMg treatments. Soil pH (H2O) and pH (KCl) values ranged from 4.6 to 6.3 and from 3.5 to 5.8 indicating wide range from extremely acidic to slightly acidic. Ca, Fe, Mg, Mn and Al element concentrations shown a large variability too in interaction with fertilization doses and pH values (Ca 36-594 mg . kg-1, Fe 61-90 mg . kg-1, Mg 5-42 mg . kg-1, Mn 16-36 mg . kg-1, Al 79-118 mg . kg-1). The better soil pH (H2O), pH (KCl) and Ca parameters resulted by NPKCaMg combinations [pH (H2O) 6.3, pH (KCl) 5.8, Ca 596 mg . kg-1]. Fe, Zn, B, Pb, Cr and Cd leaf+straw status was not influenced hardly by N treatments, but in case of the leaf+straw Co, concentration was significantly increasing. NP combination effects on Fe, Zn, B, Co, Pb, Cr and Cd were similar to N fertilization. Fe leafe+straw contents decreased strongly by NK effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg . kg-1 [cereal average content (CAC) 0.3-0.6 mg . kg-1]. The experimental Zn, Cr, and Cd leaf+straw values not were on higher level than the CAC. The yield ranged from 0.9 t . ha-1 to 7.9 t . ha-1 on dependence of fertilization treatments. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. Fe, Zn, B, Co, Al, Sr and Cu grain status was not influenced significantly by N and NK treatments. The NP combination effects on Fe, Zn, B, Co, Al and Cu were similar to N fertilization, but in case of the Sr, concentration was dramatically increasing. Triticale seed Zn values not were on higher level than the CAC. Fe actual transfer index (ATI)(Márton, 2004) values are shown N and NPKCaMg fertilization plus effects on Fe translocation from soils to triticale grain. The Al ATI datas were on low level. These results shown Triticale have ability to Co, Pb and Sr accumulation from soil to crop and food chain to a different degree. Key words: trace element, bioavailability, Haplic Luvisol, triticale Introduction: Triticale is the stabilized man-made hybrid of wheat (Triticum eastivum L.) and rye (Secale cereale L.). Wheat-rye hybrids date back to 1875, it was only in 1953 that the first North American triticale breeding programme was initiated at the University Manitoba. Globally, triticale is used primary for livestock feed (Oelke et al. 1989). In Mexico, which grows the crop triticale is used mostly for whole-grain triticale breads and tortillas. In the US, triticale is harvested mostly for forage but there is a small market for pancake mixes and crackers due to a savory, nutty flavor. Etanol plants will pay a premium for triticale over barley since it has more starch and no hull, making alcohol production more efficient. Germany, France, China, Poland and Hungary account for nearly 90 percent of world triticale production (Donald et al. 2001). Heavy metals are dangerous because they tend to bioaccumulate in food chain. Bioaccumulation means an increase in the concentration of a chemical in a biological organism over time, compared to the chemical`s concentration in they environment. Compounds accumulate in living things any time they are taken up and stored faster han they are broken down (metabolize) or extreted. Crops have ability to heavy metal accumulation from fertilizers such as Cd, Pb, Cu, Zn etc. to a different degree (Lee et al. 2001, Scholz and Ellerbrock 2004). The main purposes of this study was to determine the triticale toxic element upptake by the soil, triticale leaf+straw and grain element concentrations on acid sandy soil in a long-term field fertilization experiment at Nyirlugos, Hungary in 1998. Material and Methods: Field experiments were carried out on an acidic sandy brown forest soil at Nyírlugos in East-Hungary from 1962 to 2005. Soil geochemical parameters were as follow: humus 0.6%, pH (H2O) 5.8, pH (KCl) 4.6, total N 32.8 mg/kg, AL (ammonium lactate soluble)- P2O5 43 mg/kg, AL-K2O 52 mg/kg. The experiments involved 32 NPKCaMg treatments in 4 replications giving a total of 128 plots. N levels were 0, 50, 100, 150 kg/ha/yr, P2O5 and K2O 0, 60, 120, 180 kg/ha/yr, CaCO3 0, 250, 500, 1000 kg/ha/yr and MgCO3 doses were 0, 140, 280 kg/ha/yr. Plot brutto size was 50 m2. Composite soil samples consisting of 25 subsamples collected at before flowering time from the ploughed layer of each plot. The so-called "mobile" fraction was extracted by ammonium-acetate+EDTA (AAc+EDTA, Lakanen and Ervio 1971) and the heavy metal determination by ICP-AES technic. Plant leaf+straw and seed samples taken at before flowering and at harvest time. Total element content measured after microwave digestion using cc. HNO3 + cc. H2O2 by ICP-AES technic. Actual translocation indexes (ATI=plant metal c./soil metal c.) determinated by Márton 2004. Datamatrixes estimated by SPSS biometrichal method. Results: Depend on NPKCaMg treatments soil pH (H2O) and pH (KCl) values ranged from 4.6 to 6.3 and from 3.5 to 5.8 indicating wide range from extremely acidic to slightly acidic. Ca, Fe, Mg, Mn and Al element concentrations shown a large variability too in interaction with fertilization doses and pH values (Ca 36-594 mg/kg, Fe 61-90 mg/kg, Mg 5-42 mg/kg, Mn 16-36 mg/kg, Al 79-118 mg/kg). The better soil pH (H2O), pH (KCl) and Ca parameters resulted by NPKCaMg combinations [pH (H2O) 6.3, pH (KCl) 5.8, Ca 596 mg/kg]. Fe, Zn, B, Co, Pb, Cr, and Cd element contents of triticale leaf+straw before flowering time presented in Table 2. Fe, Zn, B, Pb, Cr and Cd leaf+straw status was not influenced hardly by N treatments, but in case of the leaf+straw Co, concentration was significantly increasing. NP combination effects on Fe, Zn, B, Co, Pb, Cr and Cd were similar to N fertilization. Fe leafe+straw contents decreased strongly by NK effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg/kg [cereal average content (CAC) 0.3-0.6 mg/kg. The experimental Zn, Cr, and Cd leaf+straw values not were on higher level than the CAC. The yield ranged from 0.9 t/ha to 7.9 t/ha on dependence of fertilization treatments. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. Fe, Zn, B, Co, Al, Sr and Cu grain status was not influenced significantly by N and NK treatments. The NP combination effects on Fe, Zn, B, Co, Al and Cu were similar to N fertilization, but in case of the Sr, concentration was dramatically increasing. Triticale seed Zn values not were on higher level than the CAC. Conclusions: Depend on NPKCaMg treatments soil pH (H2O) and pH (KCl) values ranged from 4.6-6.3 and 3.5-5.8 indicating wide range from extremely acidic to slightly acidic. The leaf+straw Co concentrations increased hardly by N treatment effects. NPK and NPKCaMg nutrition growing up Pb accumulation to 1.5 mg/kg [cereal average content (CAC) 0.3-0.6 mg/kg) in leaf+straw. The NPKCaMg combinations yielded more around 9 times than the non fertilized plots. The NP combination effects in case of the grain Sr concentration was dramatically increasing. These experimental results have demonstrated that triticale has a gerat ability to leaf+straw`s Co, Pb and grain`s Sr bioaccumulation. By this way Co, Pb and Sr can be enter to food chain. Acknowledgements: This study was supported by Applied Geochemistry and Geochemical Engineering School of Civil, Urban and Geosystem Engineering College of Engineering Seoul National University Seoul, Research Institute for Soil Sience and Agricultural Chemistry of the Hungarian Academy of Sciences Budapest and No.: E-2/04 Hungarian & Spanish International Project by Hungarian Technology & Sciences Foundation, Budapest. References Donald, S., Murray, McL., Trevor, S., Patricia, J. 2001. Triticale. Food and Rural Development Lacombe. Alberta Lee, C. G., Chon, H. T., Jung, M. C. 2001. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry, 16:1377-1386. Márton, L. 2004. Research report for 2004. RISSAC-HAS, Budapest Oelke, E. A., Oplinger, E. S., Brinkman M. A. 1989. Alternative field crops manual. University Minnesota, University Visconsin. St. Paul, Madison Scholz, V., Ellerbrock, R. 2004. Environment friendly and energetically efficient cultivation of energy plants on sandy soil. IAB, ZAL. Potsdam
Positive feedback between increasing atmospheric CO2 and ecosystem productivity
NASA Astrophysics Data System (ADS)
Gelfand, I.; Hamilton, S. K.; Robertson, G. P.
2009-12-01
Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the atmosphere, air temperature, and plant iWUE. This positive feedback is expressed by (a) nonparallel changes of δ13C signal of atmospheric CO2 (δa) and plant samples (δp), (b) negative correlation between the Δ and average temperatures during the growth season, although only for temperatures up to 21°C. The lack of effect at higher temperatures suggests a negative influence of growing season warming on the iWUE. These results suggest a complex feedback between atmospheric CO2 increase, plant physiology, ecosystem productivity, and soil CO2 fluxes. These complex effects support our hypothesis of a CO2 fertilization effect on plant productivity, and they raise additional questions regarding adaptation of plants to changing atmospheric CO2 and climate.
Serret, María D; Yousfi, Salima; Vicente, Rubén; Piñero, María C; Otálora-Alcón, Ginés; Del Amor, Francisco M; Araus, José L
2017-01-01
Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO 2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO 2 ] (400 and 800 μmol mol -1 ), three water regimes (control and mild and moderate water stress) and four genotypes were assayed. For each combination of genotype, [CO 2 ] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO 2 ], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO 2 ], while the lower N concentration caused by rising [CO 2 ] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ 13 C, δ 18 O, and δ 15 N) in plant matter are affected not only by water regime but also by rising [CO 2 ]. Thus, δ 18 O increased probably as response to decreases in transpiration, while the increase in δ 15 N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ 13 C explains differences in plant growth across water regimes within a given [CO 2 ], seems to be mediated through its direct relationship with N accumulation in leaves. The changes in the profile and amount of amino acids caused by water stress and high [CO 2 ] support this conclusion. However, the results do not support the use of δ 18 O as an indicator of the effect of water regime on plant growth.
Serret, María D.; Yousfi, Salima; Vicente, Rubén; Piñero, María C.; Otálora-Alcón, Ginés; del Amor, Francisco M.; Araus, José L.
2018-01-01
Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1), three water regimes (control and mild and moderate water stress) and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N) in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct relationship with N accumulation in leaves. The changes in the profile and amount of amino acids caused by water stress and high [CO2] support this conclusion. However, the results do not support the use of δ18O as an indicator of the effect of water regime on plant growth. PMID:29354140
Fertilizer and tillage management impacts on non-carbon-dioxide greenhouse gas emissions
USDA-ARS?s Scientific Manuscript database
Recent efforts have been placed on trying to establish emission estimates for greenhouse gases (GHG) from agricultural soils in the United States. This research was conducted to assess the influence of cropping systems management on nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) emissio...
USDA-ARS?s Scientific Manuscript database
Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) fluxes from agricultural landscapes may contribute significantly to regional greenhouse gas budgets due to stimulation of soil microbial activity through fertilizer application and variable soil moisture effects. In this study, measuremen...
NASA Astrophysics Data System (ADS)
El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Kolle, O.; Carrara, A.; Moreno, G.; Reichstein, M.
2017-12-01
Rain pulses play a major role for the carbon cycle in semiarid ecosystems, as they can release large amounts of stored carbon. Physical and biological processes, triggered by the availability of water start to develop on various time scales and are dependent on the amount of available water. Especially, in savanna type ecosystems with an herbaceous understory and sparsely distributed trees the response time of the two plant functional types to rain pulses might be different. We present results from an ongoing large-scale nutrient manipulation experiment (MANIP) in a Mediterranean savanna type ecosystem and its response to rain pulses. Within MANIP the footprint areas from two out of three ecosystem eddy co-variance (EC) sites were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT), the third served as the control (CT). The analysis combines EC data to determine the net ecosystem exchange, PhenoCam data to define the senescence and re-greening period, SAP-flow measurements to evaluate the response of trees to rain pulses, high frequency (1 Hz) CO2-concentration measurements to estimate the response time to of the ecosystem to rain pulses, and meteorological measurements to quantify the intensity of the rain pulses. Additionally, at NT canopy reflectance and SIF are measured continuously for trees and grasses. The combination of SIF and SAP-flow measurements allows to separate the contribution of trees to ecosystem fluxes and can be utilized to partition NEE into ecosystem respiration and gross primary productivity during the senescence period. The analyses focus on three topics; (i) utilizing high frequency dynamics of CO2 concentration to disentangle physical and biological responses to water availability; (ii) fertilization effect of respiration pulses on ecosystem fluxes; (iii) response of tree transpiration to rain pulses. CO2 concentrations show an instantaneous reaction to rain fall. Within minutes concentrations increase strongly and follow distinct patterns. The fertilization effect is not clear in terms of respiration magnitude triggered by the rain pulse but the fertilized areas show slightly more carbon uptake during daytime after a precipitation pulse. Sap-flow measurements indicate a response of the trees to the rain pulses which effect nocturnal and daytime sap velocities.
Probabilistic Change of Wheat Productivity and Water Use in China
NASA Astrophysics Data System (ADS)
Liu, Yujie; Chen, Qiaomin
2017-04-01
Impacts of climate change on agriculture are a major concern worldwide, but uncertainties of climate models and emission scenarios may hamper efforts to adapt to climate change. In this paper, a probabilistic approach is used to estimate the uncertainties and simulate impacts of global warming on wheat production and water use in the main wheat cultivation regions of China, with a global mean temperature (GMT) increase scale relative to 1961-90 values. From output of 20 climate scenarios of the Intergovernmental Panel on Climate Change Data Distribution Centre, median values of projected changes in monthly mean climate variables for representative stations are adapted. These are used to drive the Crop Environment Resource Synthesis (CERES)-Wheat model to simulate wheat production and water use under baseline and global warming scenarios, with and without consideration of carbon dioxide (CO2) fertilization effects. Results show that, because of temperature increase, projected wheat-growing periods for GMT changes of 18, 28, and 38C would shorten, with averaged median values of 3.94%, 6.90%, and 9.67%, respectively. There is a high probability of decreasing (increasing) changes in yield and water-use efficiency under higher temperature scenarios without (with) consideration of CO2 fertilization effects. Elevated CO2 concentration generally compensates for the negative effects of warming temperatures on production. Moreover, positive effects of elevated CO2 concentration on grain yield increase with warming temperatures. The findings could be critical for climate-change-driven agricultural production that ensures global food security.
NASA Astrophysics Data System (ADS)
Spann, Caroline; Spiegel, Heide; Kitzler, Barbara
2016-04-01
The application of composts as fertilizers is becoming increasingly important to achieve a closed-loop economy. However, greenhouse gas (GHG) emissions, especially N2O, from agricultural fields may increase as well. In this study different compost types and N amounts were investigated, especially in terms of their GHG fluxes. We used the closed chamber method to estimate GHG flux rates over one vegetation period from an agricultural soil fertilized with different compost types. The study was conducted on a long term compost experiment site near Linz (Austria) with a crop rotation. The soil is a loamy silt and in 2015 maize was planted. Six different compost treatments were investigated. Organic waste compost (OWC) and farmyard manure compost (FMC) was applied with nitrogen concentrations of 175 (OWC1, FYC1) and 525 kg N ha-1 (OWC3, FYC3). Two compost treatments were fertilized additionally with 80 kg N ha.1 mineral fertilizer (OWC2, FYC2). One treatment (TN) was fertilized only with mineral fertilizer (120 kg N ha-1) and one treatment was not fertilized at all (C). Additionally to the GHG flux rates, ammonium and nitrate content, microbial biomass C and N and different enzyme activities were analysed in the top soil. Nitrous oxide (N2O) was emitted over the entire vegetation period with highest fluxes from April until June, until the plants have been established sufficiently. Overall, at the FMC treatments (FYC2, FYC3) highest fluxes were measured. Compared to FMC, lower N2O emissions were measured from the OWC treatments. The combination of compost and mineral N fertilization resulted in the highest N2O emissions, especially after precipitation events. The treatments OWC1 and FYC1 were not different from the control. Methane (CH4) was mainly taken up at all treatments, but uptake rates were lower at the high N input sites (OWC3, FYC3) with no differences between the compost types. No significant differences were found in the soil respiration rates.
Photosynthetic and stomatal acclimation to elevated CO{sub 2} depends on soil type in Quercus prinus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunce, J.A.
1995-06-01
Quercus prinus (L.) seedlings grown outdoors at ambient and elevated (ambient + 350 ppm) CO{sub 2} with a fertile soil had no photosynthetic acclimation to elevated CO{sub 2} and no stomatal response to growth or measurement CO{sub 2}. In contrast, seedlings grown with soil collected from a Q. prinus stand had photosynthetic and stomatal acclimation, and stomatal conductance was sensitive to measurement CO{sub 2}. In plants grown with the native soil, light-saturated stomatal conductance measured at the growth CO{sub 2} was reduced by 54% at elevated CO{sub 2}, compared to the short-term reduction of 36%. Photosynthetic acclimation in plants grownmore » with the native soil reduced the stimulation of light-saturated photosynthesis at elevated CO{sub 2} from a factor of 1.9 to a factor of 1.3. In contrast to the dependence of photosynthetic and stomatal acclimation on soil type, the response of leaf respiration to elevated CO{sub 2} was the same for both soils. Respiration of leaves was reduced in the elevated CO{sub 2} treatment by 41 % on a leaf area basis. However, this effect was immediately reversible by altering the measurement CO{sub 2}, indicating that no acclimation of respiration occurred.« less
Changes in the microbial community during bioremediation of gasoline-contaminated soil.
Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério
We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO 2 emission from soil. CO 2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO 2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Nitrous oxide (N2O) is a greenhouse gas primarily produced in soils by denitrifying and nitrifying organisms. In terms of global warming potential (GWP), N2O has 310 times the GWP of carbon dioxide (CO2). Atmospheric N2O concentrations have increased by 18% since the industrial revolution with agr...
Evolution of China's family planning policy and fertility transition.
Lin, F
1998-06-01
This article points out the important role of family planning (FP) in controlling population growth in China. The impact of development on fertility decline is much slower. China's current FP policy promotes deferred marriage and deferred childbearing and fewer, but healthier, births. The policy promotes one child per couple. Rural couples in certain circumstances, such as if the first birth is a girl, are allowed to have a second child that is properly spaced. FP should be promoted in ethnic inhabited areas. Under this policy, fertility declined from 2.59 to 2 children/woman during the period 1987-92. In more developed areas, fertility has declined below replacement level to 1.6. FP was first promoted in the National Program for Agricultural Development in the 1950s. Birth control was promoted in densely populated areas without high minority concentrations. Fertility hovered around 6.1 during 1950-57. The Cultural Revolution halted fertility decline. The 1974 FP policy emphasized deferred marriage and deferred childbearing, and spaced (by 4-5 years) but fewer births. Fertility declined from 4.2 to 2.3 during 1974-80, in response to the government directive. Rural population declined from 4.6 to 2.5, and urban population declined from 2.0 to 1.15. The one-child policy was promoted in 1980 and became official state policy. FP became an obligation to the state. Rural areas were less compliant with the one-child policy, which led to the 1984 allowances for a second child.
Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake
Keenan, Trevor F; Prentice, I. Colin; Canadell, Josep G; Williams, Christopher A; Wang, Han; Raupach, Michael; Collatz, G. James
2016-01-01
Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly. PMID:27824333
Recent pause in the growth rate of atmospheric CO 2 due to enhanced terrestrial carbon uptake
Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; ...
2016-11-08
Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO 2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO 2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO 2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We also attribute the observed decline tomore » increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO 2 on vegetation and the slowdown in the rate of warming on global respiration. Furthermore, the pause in the atmospheric CO 2 growth rate provides further evidence of the roles of CO 2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.« less
Recent pause in the growth rate of atmospheric CO 2 due to enhanced terrestrial carbon uptake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.
Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO 2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO 2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO 2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We also attribute the observed decline tomore » increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO 2 on vegetation and the slowdown in the rate of warming on global respiration. Furthermore, the pause in the atmospheric CO 2 growth rate provides further evidence of the roles of CO 2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.« less
Biological nitrogen fixation in sugar cane: A key to energetically viable biofuel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boddey, R.M.
1995-05-01
The advantages of producing biofuels to replace fossil energy sources are derived from the fact that the energy accumulated in the biomass in captured directly from photosynthesis and is thus renewable, and that the cycle of carbon dioxide fixation by the crop, followed by burning of the fuel makes no overall contribution to atmospheric CO{sub 2} or, consequently, to global warming. However, these advantages are negated if large quantities of fossil fuels need to be used to grow or process the biofuel crop. In this regard, the Brazilian bioethanol program, based on the fermentation/distillation of sugar cane juice, is particularlymore » favorable, not only because the crop is principally hand harvested, but also because of the low nitrogen fertilizer use on sugar cane in Brazil. Recent {sup 15}N and N balance studies have shown that in some Brazilian cane varieties, high yields are possible without N fertilization because the plants are able to obtain large contributions of nitrogen from plant-associated biological N{sub 2} fixation (BNF). The N{sub 2}-fixing acid-tolerant bacterium Acetobacter diazotrophicus was first found to occur within roots, stems, and leaves of sugar cane. Subsequently, two species of Herbaspirillum also have been found to occur within the interior of all sugar cane tissues. The discovery of these, and other N{sub 2}-fixing bacteria that survive poorly in soil but thrive within plant tissue (endophytic bacteria), may account for the high BNF contributions observed in sugar cane. Further study of this system should allow the gradual elimination of N fertilizer use on sugar cane, at least in Brazil, and opens up the possibility of the extension of this efficient N{sub 2}-fixing system to cereal and other crops with consequent immense potential benefits to tropical agriculture. 44 refs., 9 figs., 4 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarmiento, Jorge L; Gnanadesikan, Anand; Gruber, Nicolas
2007-06-21
This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecologicalbiogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to anmore » increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the first three years of our project, led to several major new insights on the interaction between ocean biogeochemistry and circulation. This work, which is described in 2 the following Section II on “Large scale fertilization,” has continued to appear in the literature over the past few years, including two high visibility papers in Nature. Early on in the first three years of our project, it became clear that small "patch-scale" fertilizations over limited regions of order 100 km diameter were much more likely than large scale fertilization, and we carried out a series of idealized patch fertilization simulations reported on in Gnanadesikan et al. (2003). Based on this paper and other results we had obtained by the end of our first three-year grant, we identified a number of important issues that needed to be addressed in the second three-year period of this grant. Section III on “patch fertilization” discusses the major findings of this phase of our research, which is described in two major manuscripts that will be submitted for publication in the near future. This research makes use of new more realistic ocean ecosystem and iron cycling models than our first paper on this topic. We have several major new insights into what controls the efficiency of iron fertilization in the ocean. Section IV on “model development” summarizes a set of papers describing the progress that we made on improving the ecosystem models we use for our iron fertilization simulations.« less
Foaling rates in feral horses treated with the immunocontraceptive porcine zona pellucida
Ransom, J.I.; Roelle, J.E.; Cade, B.S.; Coates-Markle, L.; Kane, A.J.
2011-01-01
Locally abundant feral horses (Equus caballus) can rapidly deplete available resources. Fertility control agents present promising nonlethal tools for reducing their population growth rates. We tested the effect of 2 forms of the immunocontraceptive porcine zona pellucida (PZP) on foaling rates in 3 populations of feral horses in the western United States. A liquid form requiring annual boosters was administered at Little Book Cliffs Wild Horse Range, Mesa County (CO), and Pryor Mountain Wild Horse Range, Bighorn County (WY) and Carbon County (MT), and a time-release pellet form designed to produce 2 yr of infertility was administered at McCullough Peaks Herd Management Area, Park County (WY). Average foaling rates (foals born/mare-yr) from direct observation of untreated and treated female horses (mares), 2004-2008, were 60.1% (n = 153 mare-yr) versus 6.6% (n = 91 mare-yr) at Little Book Cliffs, and 62.8% (n = 129 mare-yr) versus 17.7% (n = 79 mare-yr) at Pryor Mountain, respectively. At McCullough Peaks, mean annual foaling rates from 2006 to 2008 were 75.0% (n = 48 mare-yr) for untreated mares and 31.7% (n = 101 mare-yr) for treated mares. Controlling for age of mares and pretreatment differences in fertility, PZP reduced foaling rates in all 3 herds. The pellets used at McCullough Peaks (produced by cold evaporation) were less effective than pellets used in a previous trial and produced by heat extrusion. Immunocontraception with PZP may be a useful tool in reducing fertility rates in some western United States feral horse herds, but population growth reduction will depend on timely access to mares for inoculation and the proportion of mares that can be successfully treated. ?? 2011 The Wildlife Society.
Wood ash to treat sewage sludge for agricultural use
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.K.
About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for landmore » application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.« less
Castilla, Aurora M; Dauwe, Tom; Mora, Isabel; Malone, Jim; Guitart, Raimon
2010-01-01
We examined experimentally whether fertilizers or herbicides commonly used by farmers affect mortality of the adult grain beetle Tenebrio molitor. After a period of 4 weeks in direct contact with all treatments, a higher percentage of mortality occurred in contact with nitrates than with pig manure or turkey litter. Herbicides (a mixture of glyphosate and 2,4-D: ) caused 100% mortality. Our results also indicate that more beetles escaped from the herbicides and nitrate treatments than from the others, suggesting some kind of behavioural avoidance of toxic environments. The traditional organic fertilizers appear to be less toxic than inorganic fertilizers for Tenebrio molitor.
Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions
Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta
2016-01-01
Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692
Appeltant, Ruth; Somfai, Tamás; Kikuchi, Kazuhiro; Maes, Dominiek; Van Soom, Ann
2016-04-01
Co-culture of cumulus-oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte-secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β-mercaptoethanol. Cumulus-oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co-culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus-enclosed porcine oocytes in a defined system. © 2015 Japanese Society of Animal Science.
Modification of the 137Cs, 90Sr, and 60Co transfer to wheat plantlets by NH4+ fertilizers.
Guillén, J; Muñoz-Muñoz, G; Baeza, A; Salas, A; Mocanu, N
2017-03-01
Inorganic fertilizers are used as agricultural countermeasures intended to inhibit the soil to plant transfer of radionuclides after a radioactive fallout. Two NH 4 + fertilizers, diammonium phosphate (DAP) and NPK, were applied to soil contaminated with a mixture of radionuclides to analyze whether they modify the transfer of 137 Cs, 90 Sr, and 60 Co and stable elements (K, Na, Ca, and Mg) to wheat plantlets grown under controlled laboratory conditions. DAP introduced NH 4 + in the soil, which can increase 137 Cs transfer, while NPK also introduced K + , which can decrease it. The application of DAP increased the accumulation of 137 Cs in wheat plantlets with increasing application rate, so did the 137 Cs/K in plantlets. Regarding the NPK application, the 137 Cs increased in all treatments, but at maximum rate, the available K introduced by the fertilizer was probably able to partially satisfy the nutritional requirements of the wheat plantlet and the 137 Cs decreased relative to the recommended rate. The 137 Cs/K ratio in plantlet decreased with increasing NPK rates. The transfer of 90 Sr increased with increasing DAP rate and only at the maximum NPK rate. The 60 Co transfer only increased at the maximum application rates for DAP and NPK. These modifications should be considered when using these fertilizers as agricultural countermeasures.
Palomo, M J; Mogas, T; Izquierdo, D; Paramio, M T
2010-11-01
The aims of the present study were: (1) to evaluate the influence of sperm concentration (ranging from 0.5 × 10(6) to 4 × 10(6) spermatozoa/ml) and length of the gamete co-incubation time (2, 4, 6, 8, 10, 12, 16, 20, 24 or 28 h) on in vitro fertilization (IVF), assessing the sperm penetration rate; (2) to investigate the kinetics of different semen parameters as motility, viability and acrosome status during the co-culture period; and (3) to analyse the effect of the presence of cumulus-oocytes complexes (COCs) on these parameters. To achieve these objectives, several experiments were carried out using in vitro matured oocytes from prepubertal goats. The main findings of this work are that: (1) in our conditions, the optimum sperm concentration is 4 × 10(6) sperm/ml, as this sperm:oocyte ratio (approximately 28,000) allowed us to obtain the highest penetration rate, without increasing polyspermy incidence; (2) the highest percentage of viable acrosome-reacted spermatozoa is observed between 8-12 h of gamete co-culture, while the penetration rate is maximum at 12 h of co-incubation; and (3) the presence of COCs seems to favour the acrosome reaction of free spermatozoa on IVF medium, but not significantly. In conclusion, we suggest that a gamete co-incubation for 12-14 h, with a concentration of 4 × 10(6) sperm/ml, would be sufficient to obtain the highest rate of penetration, reducing the exposure of oocytes to high levels of reactive oxygen species produced by spermatozoa, especially when a high sperm concentration is used to increase the caprine IVF outcome.
Zeng, Shu-Cai; Chen, Bei-Guang; Jiang, Cheng-Ai; Wu, Qi-Tang
2007-01-01
Growing fruit trees on the slopes of rolling hills in South China was causing serious environmental problems because of heavy application of chemical fertilizers and soil erosion. Suitable sources of fertilizers and proper rates of applications were of key importance to both crop yields and environmental protection. In this article, the impact of four fertilizers, i.e., inorganic compound fertilizer, organic compound fertilizer, pig manure compost, and peanut cake (peanut oil pressing residue), on chestnut (Castanea mollissima Blume) growth on a slope in South China, and on the total N and total P concentrations in runoff waters have been investigated during two years of study, with an orthogonal experimental design. Results show that the organic compound fertilizer and peanut cake promote the heights of young chestnut trees compared to the control. In addition, peanut cake increases single-fruit weights and organic compound fertilizer raises single-seed weights. All the fertilizers increased the concentrations of total N and total P in runoff waters, except for organic compound fertilizer, in the first year experiment. The observed mean concentrations of total N varied from 1.6 mg/L to 3.2 mg/L and P from 0.12 mg/L to 0.22 mg/L, which were increased with the amount of fertilizer applications, with no pattern of direct proportion. On the basis of these experiment results, organic compound fertilizer at 2 kg/tree and peanut cake at 1 kg/tree are recommended to maximize chestnut growth and minimize water pollution.
NASA Astrophysics Data System (ADS)
Pohl, Madlen; Hoffmann, Mathias; Hagemann, Ulrike; Jurisch, Nicole; Remus, Rainer; Sommer, Michael; Augustin, Jürgen
2016-04-01
The hummocky ground moraine landscape of north-east Germany is characterized by distinct small-scale soil heterogeneity on the one hand, and intensive energy crop cultivation on the other. Both factors are assumed to significantly influence gaseous C exchange, and thus driving the dynamics of soil organic carbon stocks in terrestrial, agricultural ecosystems. However, it is not yet clear to which extent fertilization and soil erosional status influence soil C dynamics and whether one of these factors is more relevant than the other. We present seasonal and dynamic soil C balances of biogas maize for the growing season 2011, recorded at different sites located within the CarboZALF experimental area. The sites differ regarding soils (non-eroded Albic Luvisols (Cutanic), extremely eroded Calcaric Regosol and depositional Endogleyic Colluvic Regosol,) and applied fertilizer (100% mineral N fertilizer, 50% mineral and 50% N organic fertilizer, 100% organic N fertilizer). Fertilization treatments were established on the Albic Luvisol (Cutanic). Net-CO2-exchange (NEE) and ecosystem respiration (Reco) were measured every four weeks using a dynamic flow-through non-steady-state closed manual chamber system. Gap filling was performed based on empirical temperature and PAR dependency functions to derive daily NEE values. At the same time, daily above-ground biomass production (NPP) was estimated based on biomass samples and final harvest, using a sigmoidal growth function. In a next step, dynamic soil C balances were generated as the balance of daily NEE and NPP considering the initial C input due to N fertilizers. The resulted seasonal soil C balances varied from strong C losses at the Endogleyic Colluvic Regosol (602 g C m-2) to C gains at the Calcaric Regosol (-132 g C m-2). In general, soils exerted a stronger impact on seasonal and dynamic C balances compared to differences in applied N fertilizer. There are indications that inter-annual variations in climate conditions and interactions between soil and fertilization types also seem to affect C-dynamics. Hence, long-term measurements of different fertilization treatments at characteristic soil landscape elements are needed.
NASA Astrophysics Data System (ADS)
Meier, I.; Phillips, R.
2012-12-01
The stimulatory effect of elevated atmospheric CO2 under global climate change on forest productivity has been predicted to decrease over time as pools of available N in soil become depleted, but empirical support for such progressive N limitation has been lacking. Increased N acquisition from soil depleted in inorganic nitrogen requires stimulation of the microbial processing of organic N, possibly through increasing C supply to soil by plant roots or mycorrhizal hyphae. Increases in (mycorr)rhizosphere C fluxes could stimulate microbes to produce extra-cellular enzymes that release N from SOM, feeding back from soil microsites to ecosystem-scale processes. We investigated the influence of elevated CO2 on root exudation and soil enzyme activity at the Duke Forest FACE site, USA, where loblolly pine (Pinus taeda L.) stands have been exposed to elevated CO2 for 14 years and N fertilization for five years. In each plot, root boxes containing acetate windows were installed in 2008. Two years after installation, we collected soils adjacent to root tips (the rhizosphere), hyphal tips (the hyphosphere) and bulk soil. We measured in situ root exudation rates from intact pine roots. Study objectives were to analyze (i) the influence of atmospheric CO2 on root exudation and extra-cellular enzyme activities, (ii) the influence of soil N availability in regulating these activities, and (iii) the relationship between the activities of enzymes involved in N cycling in soils and gross N transformations at soil microsites. Elevated atmospheric CO2 significantly increased the activity of β-1-4-N-acetylglucosaminidase (NAG) in the rhizosphere by almost 2.5 times (39 to 95 nmol h-1 g-1), and 1.6fold in the hyphosphere relative to ambient plots. NAG is an enzyme involved in the degradation of chitin from the cell walls of soil organisms, releasing absorbable forms of nitrogen. The activity of peroxidase, which degrades aromatic C compounds of SOM, increased significantly in the hyphosphere of stands exposed to elevated CO2. Nitrogen fertilization diminished this effect of elevated CO2 on enzyme activities at microsites. Our results show that the metabolism of microbial communities is shifted to the decomposition of organic N under elevated atmospheric CO2, presumably stimulated by N limitation and increased root C exudation.
Image processing analysis of geospatial uav orthophotos for palm oil plantation monitoring
NASA Astrophysics Data System (ADS)
Fahmi, F.; Trianda, D.; Andayani, U.; Siregar, B.
2018-03-01
Unmanned Aerial Vehicle (UAV) is one of the tools that can be used to monitor palm oil plantation remotely. With the geospatial orthophotos, it is possible to identify which part of the plantation land is fertile for planted crops, means to grow perfectly. It is also possible furthermore to identify less fertile in terms of growth but not perfect, and also part of plantation field that is not growing at all. This information can be easily known quickly with the use of UAV photos. In this study, we utilized image processing algorithm to process the orthophotos for more accurate and faster analysis. The resulting orthophotos image were processed using Matlab including classification of fertile, infertile, and dead palm oil plants by using Gray Level Co-Occurrence Matrix (GLCM) method. The GLCM method was developed based on four direction parameters with specific degrees 0°, 45°, 90°, and 135°. From the results of research conducted with 30 image samples, it was found that the accuracy of the system can be reached by using the features extracted from the matrix as parameters Contras, Correlation, Energy, and Homogeneity.
NASA Astrophysics Data System (ADS)
Wentworth, G. R.; Murphy, J. G.; Gregoire, P. K.; Cheyne, C. A. L.; Tevlin, A. G.; Hems, R.
2014-10-01
A 50-day field study was carried out in a semi-natural, non-fertilized grassland in south-western Ontario, Canada during the late summer and early autumn of 2012. The purpose was to explore surface-atmosphere exchange processes of ammonia (NH3) with a focus on bi-directional fluxes between the soil and atmosphere. Measurements of soil pH and ammonium concentration ([NH4+]) yielded the first direct quantification of soil emission potential (Γsoil = [NH4+]/[H+]) for this land type, with values ranging from 35 to 1850 (an average of 290). The soil compensation point, the atmospheric NH3 mixing ratio below which net emission from the soil will occur, exhibited both a seasonal trend and diurnal trend. Higher daytime and August compensation points were attributed to higher soil temperature. Soil-atmosphere fluxes were estimated using NH3 measurements from the Ambient Ion Monitor Ion Chromatograph (AIM-IC) and a simple resistance model. Vegetative effects were ignored due to the short canopy height and significant Γsoil. Inferred fluxes were, on average, 2.6 ± 4.5 ng m-2 s-1 in August (i.e. net emission) and -5.8 ± 3.0 ng m-2 s-1 in September (i.e. net deposition). These results are in good agreement with the only other bi-directional exchange study in a semi-natural, non-fertilized grassland. A Lagrangian dispersion model (Hybrid Single-Particle Lagrangian Integrated Trajectory - HYSPLIT) was used to calculate air parcel back-trajectories throughout the campaign and revealed that NH3 mixing ratios had no directional bias throughout the campaign, unlike the other atmospheric constituents measured. This implies that soil-atmosphere exchange over a non-fertilized grassland can significantly moderate near-surface NH3 concentrations. In addition, we provide indirect evidence that dew and fog evaporation can cause a morning increase of [NH3]g. Implications of our findings on current NH3 bi-directional exchange modelling efforts are also discussed.
Zink, V; Štípková, M; Lassen, J
2011-10-01
The aim of this study was to estimate genetic parameters for fertility traits and linear type traits in the Czech Holstein dairy cattle population. Phenotypic data regarding 12 linear type traits, measured in first lactation, and 3 fertility traits, measured in each of first and second lactation, were collected from 2005 to 2009 in the progeny testing program of the Czech-Moravian Breeders Corporation. The number of animals for each linear type trait was 59,467, except for locomotion, where 53,436 animals were recorded. The 3-generation pedigree file included 164,125 animals. (Co)variance components were estimated using AI-REML in a series of bivariate analyses, which were implemented via the DMU package. Fertility traits included days from calving to first service (CF1), days open (DO1), and days from first to last service (FL1) in first lactation, and days from calving to first service (CF2), days open (DO2), and days from first to last service (FL2) in second lactation. The number of animals with fertility data varied between traits and ranged from 18,915 to 58,686. All heritability estimates for reproduction traits were low, ranging from 0.02 to 0.04. Heritability estimates for linear type traits ranged from 0.03 for locomotion to 0.39 for stature. Estimated genetic correlations between fertility traits and linear type traits were generally neutral or positive, whereas genetic correlations between body condition score and CF1, DO1, FL1, CF2 and DO2 were mostly negative, with the greatest correlation between BCS and CF2 (-0.51). Genetic correlations with locomotion were greatest for CF1 and CF2 (-0.34 for both). Results of this study show that cows that are genetically extreme for angularity, stature, and body depth tend to perform poorly for fertility traits. At the same time, cows that are genetically predisposed for low body condition score or high locomotion score are generally inferior in fertility. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Findell, Kirsten; Berg, Alexis; Gentine, Pierre; Krasting, John; Lintner, Benjamin; Malyshev, Sergey; Santanello, Joseph; Shevliakova, Elena
2017-04-01
Recent research highlights the role of land surface processes in heat waves, droughts, and other extreme events. Here we use an earth system model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the regional impacts of historical anthropogenic land use/land cover change (LULCC) and the vegetative response to changes in atmospheric CO2 on combined extremes of temperature and humidity. A bivariate assessment allows us to consider aridity and moist enthalpy extremes, quantities central to human experience of near-surface climate conditions. We show that according to this model, conversion of forests to cropland has contributed to much of the upper central US and central Europe experiencing extreme hot, dry summers every 2-3 years instead of every 10 years. In the tropics, historical patterns of wood harvesting, shifting cultivation and regrowth of secondary vegetation have enhanced near surface moist enthalpy, leading to extensive increases in the occurrence of humid conditions throughout the tropics year round. These critical land use processes and practices are not included in many current generation land models, yet these results identify them as critical factors in the energy and water cycles of the midlatitudes and tropics. Current work is targeted at understanding how CO2 fertilization of plant growth impacts water use efficiency and surface flux partitioning, and how these changes influence temperature and humidity extremes. We use this modeling work to explore how remote sensing can be used to determine how different forest ecosystems in different climatological regimes are responding to enhanced CO2 and a warming world.
Robust features of future climate change impacts on sorghum yields in West Africa
NASA Astrophysics Data System (ADS)
Sultan, B.; Guan, K.; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.; Lobell, D. B.
2014-10-01
West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031-2060 compared to a baseline of 1961-1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16-20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate impacts on sorghum yields by about 10%, with drier regions experiencing the largest benefits, though the net impacts of climate change remain negative even after accounting for CO2.
Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cusack, D.; Silver, W.L.; Torn, M.S.
2011-04-15
Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating amore » lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.« less
Sex and the shifting biodiversity dynamics of marine animals in deep time
NASA Astrophysics Data System (ADS)
Bush, Andrew M.; Hunt, Gene; Bambach, Richard K.
2016-12-01
The fossil record of marine animals suggests that diversity-dependent processes exerted strong control on biodiversification: after the Ordovician Radiation, genus richness did not trend for hundreds of millions of years. However, diversity subsequently rose dramatically in the Cretaceous and Cenozoic (145 million years ago-present), indicating that limits on diversification can be overcome by ecological or evolutionary change. Here, we show that the Cretaceous-Cenozoic radiation was driven by increased diversification in animals that transfer sperm between adults during fertilization, whereas animals that broadcast sperm into the water column have not changed significantly in richness since the Late Ordovician (˜450 million years ago). We argue that the former group radiated in part because directed sperm transfer permits smaller population sizes and additional modes of prezygotic isolation, as has been argued previously for the coincident radiation of angiosperms. Directed sperm transfer tends to co-occur with many ecological traits, such as a predatory lifestyle. Ecological specialization likely operated synergistically with mode of fertilization in driving the diversification that began during the Mesozoic marine revolution. Plausibly, the ultimate driver of diversification was an increase in food availability, but its effects on the fauna were regulated by fundamental reproductive and ecological traits.
Sex and the shifting biodiversity dynamics of marine animals in deep time
Bush, Andrew M.; Hunt, Gene; Bambach, Richard K.
2016-01-01
The fossil record of marine animals suggests that diversity-dependent processes exerted strong control on biodiversification: after the Ordovician Radiation, genus richness did not trend for hundreds of millions of years. However, diversity subsequently rose dramatically in the Cretaceous and Cenozoic (145 million years ago–present), indicating that limits on diversification can be overcome by ecological or evolutionary change. Here, we show that the Cretaceous–Cenozoic radiation was driven by increased diversification in animals that transfer sperm between adults during fertilization, whereas animals that broadcast sperm into the water column have not changed significantly in richness since the Late Ordovician (∼450 million years ago). We argue that the former group radiated in part because directed sperm transfer permits smaller population sizes and additional modes of prezygotic isolation, as has been argued previously for the coincident radiation of angiosperms. Directed sperm transfer tends to co-occur with many ecological traits, such as a predatory lifestyle. Ecological specialization likely operated synergistically with mode of fertilization in driving the diversification that began during the Mesozoic marine revolution. Plausibly, the ultimate driver of diversification was an increase in food availability, but its effects on the fauna were regulated by fundamental reproductive and ecological traits. PMID:27821755
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Czeck, B. C.; Jahren, H.; Deenik, J. L.; Crow, S. E.; Schubert, B.; Stewart, M.
2012-12-01
Understanding the effects of increasing atmospheric carbon dioxide (CO2) concentrations on crops will be critical to assuring that sufficient food is available to the world's growing population. Previous work has shown that slightly elevated CO2 levels (CO2 = 550-700 ppm) increase the economic yield of most crops by ~33%, on average. The majority of these studies have focused on rice, wheat, and soybean; however, climate change is expected to have greatest impact on regions of the world that rely heavily on root crops, such as sweet potato (Ipomoea batatas). Sweet potato is cultivated in more than 100 developing countries; it is ranked seventh in world crop statistics and can produce more edible energy per hectare and per day than wheat, rice or cassava. In order to quantify the effect that rising CO2 levels will have on sweet potato, we grew a total of 64 sweet potato plants to maturity in large controlled growth chambers at ambient, 760, 1,140, and 1,520-ppm CO2 levels. At planting, initial measurements (of mass, length, and number of nodes) for each plant were recorded. Throughout the duration of the experiment (90 days) measurements (of stem length, and number of leaves) were recorded every 7 to 14 days. To ensure optimum growing conditions moisture content was monitored using soil tensiometers; temperature, relative humidity and CO2 concentrations were recorded every ten minutes. Half the plants were supplemented with an inorganic fertilizer and the other half with an organic fertilizer to test the effect of nutrient availability on biomass production under elevated CO2 levels. After 3 months of growth, we measured fresh and dry biomass of all above- and below-ground tissues. Results showed a substantial increase in both above- and below-ground biomass at elevated levels of CO2. For the organic treatment, a 43% increase in aboveground dry biomass at the highest CO2 concentration (1520ppm) was found; the inorganic treatment showed a 31% increase. The belowground response was appreciably greater, with a 61% increase in the organic treatment and 101% increase in the inorganic treatment. We conclude that the belowground response of root crops under elevated CO2 could have a significant impact on the food supply of developing countries as CO2 levels continue to rise. Ongoing work to quantify the nutritional status of both the leaves for animal feed and the tubers for human consumption will add insight into the quality of the enhanced biomass.
Trace gas emissions from nursery crop production using different fertilizer methods
USDA-ARS?s Scientific Manuscript database
Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...
Changes in coccolith sizes through Oceanic Anoxic Event 2: a proxy of ocean acidification?
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Erba, Elisabetta
2013-04-01
The latest Cenomanian was a time of global paleoenvironmental changes: the normal pelagic sedimentation was abruptly interrupted by an episode of ocean-wide anoxia, named Oceanic Anoxic Event 2 (OAE2). The associated C isotopic positive excursion, documented in marine carbonate and organic matter as well as in terrestrial records, is caused by a major perturbation of the carbon budget, generally related to enhanced productivity and burial of organic matter. OAE2 was perhaps triggered by the extensive submarine volcanism during the formation of the Caribbean Plateau that acted as a natural source of CO2. The environmental perturbation recorded during OAE2 can be synthesized as follows: 1. The onset of OAE2 correlates with a major volcanic episode, causing global warming, a rise in CO2 and an increase in metals. 2. A weathering spike is followed by a cooling episode and CO2 drop in the interval of C isotopic peak A, under persisting volcanic emissions. 3. At C isotopic peak B, a major volcanic peak is associated with an increase in. 4. The end of OAE2 is marked by the decrease of C isotopic values after peak C with a return to normal metal concentrations, although temperatures remain relative warm. Here we present morphometric data of four nannofossil species in the OAE2 interval from different areas. The major result is a change to tiny-dwarf coccoliths, although of different amplitude, at the OAE2 onset. The inferred warmer conditions, higher fertility and excess CO2 suggest a potential role on nannoplankton calcification. Coccolith sizes return close to normal values around the C isotopic peak A, where minimum pCO2 and a cooling phase are reconstructed. A major reduction in size is recorded around C isotopic peak B, and coeval to an increase in volcanogenic CO2 based on metal spikes. The end of the C isotopic excursion doesn't correlate with a return to coccolith normal sizes, suggesting a protraction of anomalous conditions immediately after OAE2 termination. Our results were compared to the morphometric data collected through OAE1a. During OAE1a dwarfism and malformation are restricted to the C isotopic negative shift and most profound paleoenvironmental perturbations. In the OAE2 interval dwarfism is most pronounced in the last part of the C isotopic anomaly, and coccolith malformation is negligible. Based on available data, climatic and fertility changes per se appear to be of marginal relevance to coccolith morphologies. In particular, the nannofossil record of paleo-fertility during OAE2 is not straightforward, since increases or decreases in abundance were documented in different settings. Similarly to OAE1a, we speculate that during OAE2, excess CO2 played a fundamental role in nannoplankton calcification, and that coccolith dwarfism might be a proxy of ocean acidification. In the analyzed sections, during OAE2, dwarf coccoliths occur at levels with metal peaks, perhaps also-alternatively recording a species-specific intolerance to metal toxicity.
Zhao, Hai-bo; Lin, Qi; Liu, Yi-guo; Jiang, Wen; Liu, Jian-jun; Zhai, Yan-ju
2010-10-01
Taking super high-yielding wheat cultivar Jimai 22 as test material, a field experiment was conducted to study the effects of combined application of nitrogen (N) and phosphorus (P) on the diurnal variation of photosynthesis at grain-filling stage and the grain yield of the cultivar. In treatments CK (without N and P application) and low N/P application (225 kg N x hm(-2) and 75 kg P x hm(-2)), the diurnal variation of net photosynthetic rate (Pn) was presented as double-peak curve, and there existed obvious midday depression of photosynthesis. Under reasonable application of N/P (300 kg N x hm(-2) and 150 kg P x hm(-2), treatment N2P2), the midday depression of photosynthesis weakened or even disappeared. Stomatal and non-stomatal limitations could be the causes of the midday depression. Increasing N and P supply increased the Pn, stomatal conductance (Gs), stomatal limitation value (Ls), and transpiration rate (Tr). Fertilizer P had less effects on the photosynthesis, compared with fertilizer N. When the P supply was over 150 kg x hm(-2), the increment of Pn was alleviated and even decreased. Among the fertilization treatments, treatment N2P2 had the highest Pn, Gs, and water use efficiency, being significantly different from CK. It appeared that fertilizer N had greater regulatory effect on the diurnal variation of photosynthesis, compared with fertilizer P, while the combined application of N and P had significant co-effect on the Pn, Gs, and Tr. A combined application of 300 kg N x hm(-2) and 150 kg P x hm(-2) benefited the enhancement of Pn and grain yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, P.S.; Snow, A.A.
1993-06-01
Rising atmospheric CO[sub 2] levels may lead to microevolutionary change in native plant populations. To test for within-population variation in genetic responses to elevated p(CO[sub 2]), we exposed five paternal sibships of wild radish to ambient and 2X ambient (700 [mu]bar) p(CO[sub 2]) in 3 m open top chambers for an entre growing season. Seeds were planted singly in 2.5 1 pots filled with locally derived, low fertility soil (160 plants per CO[sub 2] treatment). Net CO[sub 2] assimilation increased 25% in vegetative plants and 48% in reproductive plants growing at elevated p(CO[sub 2]). Every flower was hand-pollinated to mimicmore » natural pollination levels. Lifetime fecundity was greater in the elevated CO[sub 2] treatment, but the magnitude of this effect differed dramatically among paternal sibships: seed production increased 13% overall, yet among paternal sibships seed production varied between 0% and 50% more seeds in elevated p(CO[sub 2]) as compared to ambient. Our results suggest that natural selection can occur due to genotypic differences in the CO[sub 2] response. This process should be considered in estimates of long-term effects of elevated p(CO[sub 2]), especially with regard to anticipated increases in primary productivity.« less
Fibroblast growth factor 21 has no direct role in regulating fertility in female mice.
Singhal, Garima; Douris, Nicholas; Fish, Alan J; Zhang, Xinyao; Adams, Andrew C; Flier, Jeffrey S; Pissios, Pavlos; Maratos-Flier, Eleftheria
2016-08-01
Reproduction is an energetically expensive process. Insufficient calorie reserves, signaled to the brain through peripheral signals such as leptin, suppress fertility. Recently, fibroblast growth factor 21 (FGF21) was implicated as a signal from the liver to the hypothalamus that directly inhibits the hypothalamic-gonadotropin axis during fasting and starvation. However, FGF21 itself increases metabolic rate and can induce weight loss, which suggests that the effects of FGF21 on fertility may not be direct and may reflect changes in energy balance. To address this important question, we evaluated fertility in several mouse models with elevated FGF21 levels including ketogenic diet fed mice, fasted mice, mice treated with exogenous FGF21 and transgenic mice over-expressing FGF21. We find that ketogenic diet fed mice remain fertile despite significant elevation in serum FGF21 levels. Absence of FGF21 does not alter transient infertility induced by fasting. Centrally infused FGF21 does not suppress fertility despite its efficacy in inducing browning of inguinal white adipose tissue. Furthermore, a high fat diet (HFD) can restore fertility of female FGF21-overexpressing mice, a model of growth restriction, even in the presence of supraphysiological serum FGF21 levels. We conclude that FGF21 is not a direct physiological regulator of fertility in mice. The infertility observed in FGF21 overexpressing mice is likely driven by the increased energy expenditure and consequent excess calorie requirements resulting from high FGF21 levels.
Culture and fertility in the Nepal Himalayas: a test of a hypothesis.
Ross, J L
1984-01-01
In the Nepal Himalayas the Tibetan sociocultural system of fraternal polyandry (the form of marriage where 1 woman has 2 or more brothers as husbands) reduces aggregate fertility whereas Hindu marriage patterns appear to maximize fertility since there is very early and universally monogamous marriages. Over an 18-month period, reseach in the upper reaches of the Humla Distrist of northwestern Nepal focused upon 2 culturally distinct but geographically contiguous communities. 1 is Nepali speaking and high-caste Hindu; the other, Tibetan speaking and Buddhist. The 2 populations present a relatively unique natural laboratory in which several key factors (geographic, environmental and economic) are controlled. Population dynamics in these 2 communities are principally determined by patterns of fertility and mortality. A summary of a number of characteristics of the population dynamics of these 2 populations (e.g., age at 1st birth, birth interval, crude birth rate, completed fertility rate, general fertility rate, % children surviving), shows that they are more alike than dissimilar. Fertility levels between the Hindu and Tibetan population are virtually the same. While Tibetan fraternal polyandry does reduce aggregate fertility, the hypothesis that the Tibetans would have a substantially lower fertility rate than the Hindus is false, because the effects of fraternal polyandry are roughly balanced by the effects of post-widowhood celibacy among the Hindus. This study points up an important issue often overlooked in demographic analysis. Aggregate statistics such as the completed fertility rate, while important, can be deceptive, since very different factors can produce the same result at any given point in time. Diachronically, however, these underlying facotrs may change very differently. For example, fraternal poyandry is highly susceptiable to change because of the constant reevaluation of the opportunity costs associated with its practice. Anticipating the potential cause and directions of future change illustrates an important point. It is imperative in demographic analysis to elucidate the sociocultural factors underlying the reproductive performance of the populations. Culture and population dynamics are intimately intertwined in these communities.
Nitrous oxide fluxes from upland soils in central Hokkaido, Japan.
Mu, Zhijian; Kimura, Sonoko D; Toma, Yo; Hatano, Ryusuke
2008-01-01
Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November), for three years, in a total of 11 upland crop fields in central Hokkaido, Japan. The annual mean N2O fluxes ranged from 2.95 to 164.17 microgN/(m2 x h), with the lowest observed in a grassland and the highest in an onion field. The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall events around harvesting in autumn. No clear common factor regulating instantaneous N2O fluxes was found at any of the study sites. Instead, instantaneous N2O fluxes at different sites were affected by different soil variables. The cumulative N2O emissions during the study period within each year varied from 0.15 to 7.05 kgN/hm2 for different sites, which accounted for 0.33% to 5.09% of the applied fertilizer N. No obvious relationship was observed between cumulative N2O emission and applied fertilizer N rate (P > 0.4). However, the cumulative N2O emission was significantly correlated with gross mineralized N as estimated by CO2 emissions from bare soils divided by C/N ratios of each soil, and with soil mineral N pool (i.e., the sum of gross mineralized N and fertilizer N) (P < 0.001).
An analysis of social consequences of rapid fertility decline in China.
Liu, Z; Liu, L
1988-12-01
Rapid fertility decline in China has brought about 2 direct effects: 1) the natural increase of the population has slowed down, and 2) the age structure has changed from the young to the adult type. These 2 effects have caused a series of economic and social consequences. Rapid fertility decline increases the gross national product per capita and accelerates the improvement of people's lives. Rapid fertility decline slows population growth and speeds up the accumulation of capital and the development of the economy. Since 1981, accumulation growth has exceeded consumption growth. Fertility decline alleviates the enrollment pressure on primary and secondary schools, raises the efficiency of education funds, and promotes the popularization of education. The family planning program strengthens the maternal and child health care and the medical care systems. As the result of economic development, the people's nutritional levels are improving. The physical quality of teenagers has improved steadily. The change in the age structure will alleviate the tension of rapid population growth and benefit population control in the next century. Fertility decline forces the traditional attitude toward childbearing from "more children, more happiness" to improved quality of children. The rapid fertility decline has caused a great deal of concern both inside and outside China about the aging of the population. The labor force, however, will continue to grow for the next 60 years. At present, China's population problems are still those of population growth.
Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH.
Dorey, Narimane; Lançon, Pauline; Thorndyke, Mike; Dupont, Sam
2013-11-01
Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species-specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pHT = 8.0/pCO2 ≈ 480 μatm to pHT = 6.5/pCO2 ≈ 20 000 μatm) covering present (from pHT 8.7 to 7.6), projected near-future variability (from pHT 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pHT ≥ 7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length (BL) growth rate. Larvae raised at lowered pH and with similar BL had shorter arms and a wider body. Relative to a given BL, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pHT ≤ 6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pHT = 7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness. © 2013 John Wiley & Sons Ltd.
Mueller, Kevin E; Hobbie, Sarah E; Tilman, David; Reich, Peter B
2013-04-01
The effects of global environmental changes on soil nitrogen (N) pools and fluxes have consequences for ecosystem functions such as plant productivity and N retention. In a 13-year grassland experiment, we evaluated how elevated atmospheric carbon dioxide (CO2 ), N fertilization, and plant species richness alter soil N cycling. We focused on soil inorganic N pools, including ammonium and nitrate, and two N fluxes, net N mineralization and net nitrification. In contrast with existing hypotheses, such as progressive N limitation, and with observations from other, often shorter, studies, elevated CO2 had relatively static and small, or insignificant, effects on soil inorganic N pools and fluxes. Nitrogen fertilization had inconsistent effects on soil N transformations, but increased soil nitrate and ammonium concentrations. Plant species richness had increasingly positive effects on soil N transformations over time, likely because in diverse subplots the concentrations of N in roots increased over time. Species richness also had increasingly positive effects on concentrations of ammonium in soil, perhaps because more carbon accumulated in soils of diverse subplots, providing exchange sites for ammonium. By contrast, subplots planted with 16 species had lower soil nitrate concentrations than less diverse subplots, especially when fertilized, probably due to greater N uptake capacity of subplots with 16 species. Monocultures of different plant functional types had distinct effects on N transformations and nitrate concentrations, such that not all monocultures differed from diverse subplots in the same manner. The first few years of data would not have adequately forecast the effects of N fertilization and diversity on soil N cycling in later years; therefore, the dearth of long-term manipulations of plant species richness and N inputs is a hindrance to forecasting the state of the soil N cycle and ecosystem functions in extant plant communities. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Lemordant, Léo.; Gentine, Pierre; Stéfanon, Marc; Drobinski, Philippe; Fatichi, Simone
2016-10-01
Plant stomata couple the energy, water, and carbon cycles. We use the framework of Regional Climate Modeling to simulate the 2003 European heat wave and assess how higher levels of surface CO2 may affect such an extreme event through land-atmosphere interactions. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the heat wave impact. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels and of the coupling between the carbon and water cycles is therefore critical to forecasting seasonal climate, water cycle dynamics, and to enhance the accuracy of extreme event prediction under future climate.
Sustainable biochar to mitigate global climate change
Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen
2010-01-01
Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722
Günthardt-Goerg, Madeleine Silvia; Vollenweider, Pierre
2015-01-01
Although enhanced carbon fixation by forest trees may contribute significantly to mitigating an increase in atmospheric carbon dioxide (CO2), capacities for this vary greatly among different tree species and locations. This study compared reactions in the foliage of a deciduous and a coniferous tree species (important central European trees, beech and spruce) to an elevated supply of CO2 and evaluated the importance of the soil type and increased nitrogen deposition on foliar nutrient concentrations and cellular stress reactions. During a period of 4 years, beech (represented by trees from four different regions) and spruce saplings (eight regions), planted together on either acidic or calcareous forest soil in the experimental model ecosystem chambers, were exposed to single and combined treatments consisting of elevated carbon dioxide (+CO2, 590 versus 374 μL L−1) and elevated wet nitrogen deposition (+ND, 50 versus 5 kg ha−1 a−1). Leaf size and foliage mass of spruce were increased by +CO2 on both soil types, but those of beech by +ND on the calcareous soil only. The magnitude of the effects varied among the tree origins in both species. Moreover, the concentration of secondary compounds (proanthocyanidins) and the leaf mass per area, as a consequence of cell wall thickening, were also increased and formed important carbon sinks within the foliage. Although the species elemental concentrations differed in their response to CO2 fertilization, the +CO2 treatment effect was weakened by an acceleration of cell senescence in both species, as shown by a decrease in photosynthetic pigment and nitrogen concentration, discolouration and stress symptoms at the cell level; the latter were stronger in beech than spruce. Hence, young trees belonging to a species with different ecological niches can show contrasting responses in their foliage size, but similar responses at the cell level, upon exposure to elevated levels of CO2. The soil type and its nutrient supply largely determined the fertilization gain, especially in the case of beech trees with a narrow ecological amplitude. PMID:26092041
Hasegawa, Toshihiro; Li, Tao; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Baker, Jeffrey; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fugice, Job; Fumoto, Tamon; Gaydon, Donald; Kumar, Soora Naresh; Lafarge, Tanguy; Marcaida Iii, Manuel; Masutomi, Yuji; Nakagawa, Hiroshi; Oriol, Philippe; Ruget, Françoise; Singh, Upendra; Tang, Liang; Tao, Fulu; Wakatsuki, Hitomi; Wallach, Daniel; Wang, Yulong; Wilson, Lloyd Ted; Yang, Lianxin; Yang, Yubin; Yoshida, Hiroe; Zhang, Zhao; Zhu, Jianguo
2017-11-01
The CO 2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO 2 ] (E-[CO 2 ]) by comparison to free-air CO 2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO 2 ] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO 2 ] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO 2 ] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO 2 ] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO 2 ] × N interactions is necessary to better evaluate management practices under climate change.
Uthicke, Sven; Pecorino, Danilo; Albright, Rebecca; Negri, Andrew Peter; Cantin, Neal; Liddy, Michelle; Dworjanyn, Symon; Kamya, Pamela; Byrne, Maria; Lamare, Miles
2013-01-01
Coral reefs are marine biodiversity hotspots, but their existence is threatened by global change and local pressures such as land-runoff and overfishing. Population explosions of coral-eating crown of thorns sea stars (COTS) are a major contributor to recent decline in coral cover on the Great Barrier Reef. Here, we investigate how projected near-future ocean acidification (OA) conditions can affect early life history stages of COTS, by investigating important milestones including sperm motility, fertilisation rates, and larval development and settlement. OA (increased pCO2 to 900-1200 µatm pCO2) significantly reduced sperm motility and, to a lesser extent, velocity, which strongly reduced fertilization rates at environmentally relevant sperm concentrations. Normal development of 10 d old larvae was significantly lower under elevated pCO2 but larval size was not significantly different between treatments. Settlement of COTS larvae was significantly reduced on crustose coralline algae (known settlement inducers of COTS) that had been exposed to OA conditions for 85 d prior to settlement assays. Effect size analyses illustrated that reduced settlement may be the largest bottleneck for overall juvenile production. Results indicate that reductions in fertilisation and settlement success alone would reduce COTS population replenishment by over 50%. However, it is unlikely that this effect is sufficient to provide respite for corals from other negative anthropogenic impacts and direct stress from OA and warming on corals.
Zhu, Chen; Ling, Ning; Guo, Junjie; Wang, Min; Guo, Shiwei; Shen, Qirong
2016-01-01
The understanding of the response of arbuscular mycorrhizal fungi (AMF) community composition to fertilization is of great significance in sustainable agriculture. However, how fertilization influences AMF diversity and composition is not well-established yet. A field experiment located in northeast China in typical black soil (Chernozem) was conducted and high-throughput sequencing approach was used to investigate the effects of different fertilizations on the variation of AMF community in the rhizosphere soil of maize crop. The results showed that AMF diversity in the maize rhizosphere was significantly altered by different fertilization regimes. As revealed by redundancy analysis, the application of organic manure was the most important factor impacting AMF community composition between samples with and without organic manure, followed by N fertilizer and P fertilizer inputs. Moreover, the organic matter composition in the rhizosphere, determined by GC–MS, was significantly altered by the organic manure amendment. Many of the chemical components displayed significant relationships with the AMF community composition according to the Mantel test, among those, 2-ethylnaphthalene explained the highest percentage (54.2%) of the variation. The relative contents of 2-ethylnaphthalene and 2, 6, 10-trimethyltetradecane had a negative correlation with Glomus relative abundance, while the relative content of 3-methylbiphenyl displayed a positive correlation with Rhizophagus. The co-occurrence patterns in treatments with and without organic manure amendment were analyzed, and more hubs were detected in the network of soils with organic manure amendment. Additionally, three operational taxonomic units (OTUs) belonging to Glomerales were identified as hubs in all treatments, indicating these OTUs likely occupied broad ecological niches and were always active for mediating AMF species interaction in the maize rhizosphere. Taken together, impacts of fertilization regimes on AMF community composition were correlated with organic matter composition in maize rhizosphere soil and the application of manure could activate more AMF species to interact with other species in the maize rhizosphere. This knowledge can be valuable in regulating the symbiotic system of plants and AMF, maintaining the health and high yields of crops and providing a primary basis for rational fertilization. PMID:27899920
Bark analysis as a guide to cassava nutrition in Sierra Leone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey-Sam-Aggrey, W.; Garber, M.J.
1979-01-01
Cassava main stem barks from two experiments in which similar fertilizers were applied directly in a 2/sup 5/ confounded factorial design were analyzed and the bark nutrients used as a guide to cassava nutrition. The application of multiple regression analysis to the respective root yields and bark nutrient concentrations enable nutrient levels and optimum adjusted root yields to be derived. Differences in bark nutrient concentrations reflected soil fertility levels. Bark analysis and the application of multiple regression analysis to root yields and bark nutrients appear to be useful tools for predicting fertilizer recommendations for cassava production.
Conservation agricultural management to sequester soil organic carbon
USDA-ARS?s Scientific Manuscript database
Storing carbon (C) in soil as organic matter is not only a viable strategy to sequester CO2 from the atmosphere, but is vital for improving the quality, fertility, and functioning of soil. This presentation describes relevant management approaches to avoid land degradation and foster soil organic C ...
Ecophysiology of horse chestnut (Aesculus Hippocastanum L.) in degraded and restored urban sites
Jacek Oleksyn; Brian D. Kloeppel; Szymon Lukasiewicz; Piotr Karolewski; Peter B. Reich
2007-01-01
We explored changes in growth, phenology, net CO2 assimilation rate, water use efficiency, secondary defense compounds, substrate and foliage nutrient concentration of a degraded urban horse chestnut (Aesculus hippocastanum L.) site restored for three years using mulching (tree branches including foliage) and fertilization (...
Dynamic replacement and loss of soil carbon on eroding cropland
Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.
1999-01-01
Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun
Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH 4) and nitrous oxide (N 2O) are the two most important GHGs after carbon dioxide (CO 2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH 4 and N 2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO 2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, andmore » nitrogen fertilizer use.« less
Wroblewitz, Stefanie; Hüther, Liane; Manderscheid, Remy; Weigel, Hans-Joachim; Wätzig, Hermann; Dänicke, Sven
2014-07-16
The present study investigates effects of rising atmospheric CO2 concentration on protein composition of maize, wheat, and barley grain, especially on the fractions prolamins and glutelins. Cereals were grown at different atmospheric CO2 concentrations to simulate future climate conditions. Influences of two nitrogen fertilization levels were studied for wheat and barley. Enriched CO2 caused an increase of globulin and B-hordein of barley. In maize, the content of globulin, α-zein, and LMW polymers decreased, whereas total glutelin, zein, δ-zein, and HMW polymers rose. Different N supplies resulted in variations of barley subfractions and wheat globulin. Other environmental influences showed effects on the content of nearly all fractions and subfractions. Variations in starch-protein bodies caused by different CO2 treatments could be visualized by scanning electron microscopy. In conclusion, climate change would have impacts on structural composition of proteins and, consequently, on the nutritional value of cereals.
Ceotto, E
2005-01-01
This paper focuses on the benefits of an efficient use of animal waste from the standpoint of curbing the rise of anthropogenic carbon dioxide (CO(2)) in the atmosphere. An effective use of animal waste resources might provide a partial, but still important, contribution in reducing net CO(2) emissions. In particular: the fulfillment of nutrient requirements of crop plants growing in non-limiting conditions and thus sequestering CO(2) at their potential level; the chance of diminishing the use of fossil energy, and related CO(2) emissions, required for manufacturing industrial fertilizers; the possibility of enhancing carbon sequestration in agricultural soils by the application of farmyard manure. The future success of agriculture in providing these ecosystem services can only be achieved with a changed social awareness of the links between sustainable land use and global environmental change.
Jakobsen, Iver; Smith, Sally E; Smith, F Andrew; Watts-Williams, Stephanie J; Clausen, Signe S; Grønlund, Mette
2016-11-01
Capturing the full growth potential in crops under future elevated CO 2 (eCO 2 ) concentrations would be facilitated by improved understanding of eCO 2 effects on uptake and use of mineral nutrients. This study investigates interactions of eCO 2 , soil phosphorus (P), and arbuscular mycorrhizal (AM) symbiosis in Medicago truncatula and Brachypodium distachyon grown under the same conditions. The focus was on eCO 2 effects on vegetative growth, efficiency in acquisition and use of P, and expression of phosphate transporter (PT) genes. Growth responses to eCO 2 were positive at P sufficiency, but under low-P conditions they ranged from non-significant in M. truncatula to highly significant in B. distachyon Growth of M. truncatula was increased by AM at low P conditions at both CO 2 levels and eCO 2 ×AM interactions were sparse. Elevated CO 2 had small effects on P acquisition, but enhanced conversion of tissue P into biomass. Expression of PT genes was influenced by eCO 2 , but effects were inconsistent across genes and species. The ability of eCO 2 to partly mitigate P limitation-induced growth reductions in B. distachyon was associated with enhanced P use efficiency, and requirements for P fertilizers may not increase in such species in future CO 2 -rich climates. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Potential effects of earthworm activity on C and N dynamics in tropical paddy soil
NASA Astrophysics Data System (ADS)
John, Katharina; Zaitsev, Andrey S.; Wolters, Volkmar
2016-04-01
Earthworms are involved in key ecosystem processes and are generally considered important for sustainable crop production. However, their provision of essential ecosystem services and contribution to tropical soil carbon and nitrogen balance in rice-based agroecosystems are not yet completely understood. We carried out two microcosm experiments to quantify the impact of a tropical earthworm Pheretima sp. from the Philippines on C and N turnover in rice paddy soils. First one was conducted to understand the modulation impact of soil water saturation level and nitrogen fertilizer input intensity on C and N cycles. The second one focused on the importance of additional organic matter (rice straw) amendment on the earthworm modulation of mineralization in non-flooded conditions. We measured CO2, CH4 (Experiments 1 and 2) and N2O evolution (Experiment 2) from rice paddy soil collected at the fields of the International Rice Research Institute (Philippines). Further we analysed changes in soil C and N content as well as nutrient loss via leaching induced by earthworms (Experiment 2). Addition of earthworms resulted in the strong increase of CH4 release under flooded conditions as well as after rice straw amendment. Compared to flooded conditions, earthworms suppressed the distinct CO2 respiration maximum at intermediate soil water saturation levels. In the first few days after the experiment establishment (Experiment 1) intensive nitrogen application resulted in the suppression of CO2 emission by earthworms at non-flooded soil conditions. However, at the longer term perspective addressed in the second experiment (30 days) earthworm activity rather increased average soil respiration under intensive fertilization or rice straw amendment. The lowest N2O release rates were revealed in the microcosms with earthworm and straw treatments. The combined effect of N fertilizer and straw addition to microcosms resulted in the increased leachate volume due to earthworm bioturbation activity. The mean relative C loss with leaching was increased by earthworms under intensive fertilization and consequently resulting soil C content in the end of Experiment 2 decreased. N concentration in the leachate remained unaffected by earthworms although the remaining N content in soil with straw application and earthworm treatment was significantly higher than in the control. Our results showed that the potential role of earthworms in C-stabilization is confined to moderately irrigated soils that allow high earthworm activity. Earthworm effects on C and N release under non-flooded conditions were largely modulated by the application of N fertilizer (urea) and by the amendment of rice straw. Our findings suggest that the presence of earthworms significantly affect C and N budgets in rice paddy soil, especially in the intensively managed non-flooded fields. In the short term perspective they sequester C and N loss from soil. However, in the longer term (ca. 30 days) this sequestration effect remains significant only for nitrogen under the straw application treatment. The study was supported by ICON project within the DFG-Research Unit FOR 1701.
NASA Astrophysics Data System (ADS)
Ward, E. J.; Bell, D.; Clark, J. S.; McCarthy, H. R.; Kim, H.; domec, J.; Noormets, A.; McNulty, D.; Sun, G.; Oren, R.
2013-12-01
A network of thermal dissipation probes (TDPs) monitoring sap flux density was used to estimate leaf-specific transpiration (EL) and canopy-averaged stomatal conductance (GS) in Pinus taeda (L.) exposed to +200 ppm atmospheric CO2 levels (eCO2) and nitrogen fertilization as part of the Duke FACE study. Data from scaling half-hourly measurements from hundreds of sensors over 11 years indicated that P. taeda in eCO2 intermittently (49% of monthly values) decreased stomatal conductance relative to the control, with a mean reduction of 13% in both total EL and mean daytime GS. This intermittent response was related to changes in a hydraulic allometry index (AH), defined as sapwood area per unit leaf area per unit canopy height, which was linearly related to GS at reference conditions (GSR) during the growing season across years (R2=0.67). Overall, AH decreased a mean of 15% with eCO2 over the course of the study, due mostly to a mean 19% increase in leaf area. Throughout the southeastern U.S., other P. taeda stands have been monitored with TDPs, such as the US-NC2 Ameriflux site and four fertilizer × throughfall displacement studies recently begun as part of the PINEMAP research network in VA, GA, FL and OK. We will also discuss the challenges and benefits of using a common modeling platform to combine FACE TDP data with that from a diversity of sites and treatments to draw inferences about EL and GS responses to environmental drivers and climate change, as well as their relation to AH, across the range of P. taeda.
Santa Rosa, P; Parker, H M; Kiess, A S; McDaniel, C D
2016-01-15
Parthenogenesis is a form of embryonic development that occurs without fertilization. Recently, parthenogenesis has been reported in Chinese painted quail eggs. In Japanese quail, it has been shown that albumen pH of incubated fertile eggs is lower than that of incubated infertile eggs. However, it is unknown if alterations, similar to those in incubated fertile eggs, occur in albumen pH, gases, or ion concentrations from unfertilized eggs exhibiting parthenogenetic development. Therefore, the objective of this study was to determine if any differences in pH, gases, or ion concentrations exist between incubated unfertilized eggs exhibiting parthenogenetic development versus unfertilized eggs with no development over incubation. In this study, eggs were collected daily from Chinese painted quail hens that were separated from males at 4 weeks of age, before sexual maturity. Eggs were stored for 0 to 3 days at 20 °C and incubated at 37.5 °C for 12 days. Eggs were weighed before and after incubation to obtain percentage egg weight loss. After incubation, embryo size and albumen O2, CO2, Ca(2+), Na(+), and Cl(-) concentrations as well as pH were obtained from each incubated egg. Over incubation, albumen from unfertilized eggs exhibiting parthenogenetic development had a lower pH as well as less O2 and Cl(-), yet a higher Ca(2+) and Na(+) concentration as compared with the albumen of unfertilized eggs with no development. Also, eggs exhibiting parthenogenetic development had a higher albumen CO2 concentration as compared with eggs without development. The rate of egg weight loss was much lower in eggs exhibiting parthenogenetic development as compared with eggs without development. Also, as parthenogen size increased, there was a decrease in albumen pH, O2, and Cl(-), yet an increase in CO2 and Ca(2+). In conclusion, it appears that, over incubation, parthenogenetic development from unfertilized eggs alters the composition of albumen as compared with the albumen from unfertilized eggs with no parthenogenetic development. Published by Elsevier Inc.
Inputs of heavy metals due to agrochemical use in tobacco fields in Brazil's Southern Region.
Zoffoli, Hugo José Oliveira; do Amaral-Sobrinho, Nelson Moura Brasil; Zonta, Everaldo; Luisi, Marcus Vinícius; Marcon, Gracioso; Tolón-Becerra, Alfredo
2013-03-01
Only a few studies have assessed the joint incorporation of heavy metals into agricultural systems based on the range of agrochemicals used on a specific agricultural crop. This study was conducted to assess the heavy metals input through application of the main agrochemicals used in Brazilian tobacco fields. A total of 56 samples of different batches of 5 fertilizers, 3 substrates, 8 insecticides, 3 fungicides, 2 herbicides, and 1 growth regulator commonly used in the cultivation of tobacco in Brazil's Southern Region were collected from 3 warehouses located in the States of Rio Grande do Sul, Santa Catarina, and Paraná. The total As, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb, and Zn content of the samples was then determined and compared with the regulations of different countries and information found in the available literature. The fertilizers were identified as the primary source of heavy metals among the agrochemicals used. Application of pesticides directly to the shoots of tobacco plants contributed very little to the supply of heavy metals. The agrochemicals used in Brazilian tobacco fields provide lower inputs of the main heavy metals that are nonessential for plants than those registered in the international literature for the majority of crop fields in different regions of the world.
Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis.
Choi, Kwon-Young; Wernick, David G; Tat, Christine A; Liao, James C
2014-05-01
The non-recyclable use of nitrogen fertilizers in microbial production of fuels and chemicals remains environmentally detrimental. Conversion of protein wastes into biofuels and ammonia by engineering nitrogen flux in Escherichia coli has been demonstrated as a method to reclaim reduced-nitrogen and curb its environmental deposition. However, protein biomass requires a proteolysis process before it can be taken up and converted by any microbe. Here, we metabolically engineered Bacillus subtilis to hydrolyze polypeptides through its secreted proteases and to convert amino acids into advanced biofuels and ammonia fertilizer. Redirection of B. subtilis metabolism for amino-acid conversion required inactivation of the branched-chain amino-acid (BCAA) global regulator CodY. Additionally, the lipoamide acyltransferase (bkdB) was deleted to prevent conversion of branched-chain 2-keto acids into their acyl-CoA derivatives. With these deletions and heterologous expression of a keto-acid decarboxylase and an alcohol dehydrogenase, the final strain produced biofuels and ammonia from an amino-acid media with 18.9% and 46.6% of the maximum theoretical yield. The process was also demonstrated on several waste proteins. The results demonstrate the feasibility of direct microbial conversion of polypeptides into sustainable products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Global crop yield response to extreme heat stress under multiple climate change futures
NASA Astrophysics Data System (ADS)
Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.
2014-12-01
Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.
Global crop yield response to extreme heat stress under multiple climate change futures
NASA Astrophysics Data System (ADS)
Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel
2014-03-01
Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.
Sistani, K R; Jn-Baptiste, M; Lovanh, N; Cook, K L
2011-01-01
Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of NO, CH, and CO resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NHNO), poultry litter, and commercially available, enhanced-efficiency N fertilizers as follows: polymer-coated urea (ESN), SuperU, UAN + AgrotainPlus, and poultry litter + AgrotainPlus in a no-till corn ( L.) production system. Greenhouse gas fluxes were measured during two growing seasons using static, vented chambers. The ESN delayed the NO flux peak by 3 to 4 wk compared with other N sources. No significant differences were observed in NO emissions among the enhanced-efficiency and traditional inorganic N sources, except for ESN in 2009. Cumulative growing season NO emission from poultry litter was significantly greater than from inorganic N sources. The NO loss (2-yr average) as a percentage of N applied ranged from 0.69% for SuperU to 4.5% for poultry litter. The CH-C and CO-C emissions were impacted by environmental factors, such as temperature and moisture, more than the N source. There was no significant difference in corn yield among all N sources in both years. Site specifics and climate conditions may be responsible for the differences among the results of this study and some of the previously published studies. Our results demonstrate that N fertilizer source and climate conditions need consideration when selecting N sources to reduce GHG emissions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Effects of fertilizer placement on trace gas emissions from container-grown plant production
USDA-ARS?s Scientific Manuscript database
Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...
Effects of fertilizer placement on trace gas emissions from nursery container production
USDA-ARS?s Scientific Manuscript database
Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...
A meta-analysis of fertilizer-induced soil NO and combined NO+N2 O emissions.
Liu, Shuwei; Lin, Feng; Wu, Shuang; Ji, Cheng; Sun, Yi; Jin, Yaguo; Li, Shuqing; Li, Zhaofu; Zou, Jianwen
2017-06-01
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N 2 O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer-reviewed publications with 520 field measurements were synthesized using meta-analysis procedure to examine the N fertilizer-induced soil NO and the combined NO+N 2 O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO-N fluxes were estimated to be 4.06 kg ha -1 yr -1 , with the greatest (9.75 kg ha -1 yr -1 ) in vegetable croplands and the lowest (0.11 kg ha -1 yr -1 ) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EF NO ) and combined NO+N 2 O (EF c ) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71-1.61% and 1.81-3.35%, respectively. Forests had the greatest EF NO (2.39%). Within the croplands, the EF NO (1.71%) and EF c (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EF NO (2.93%) and EF c (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands. © 2016 John Wiley & Sons Ltd.
McGrice, Melanie; Porter, Judi
2017-01-01
(1) Background: Medical interventions including assisted reproductive technologies have improved fertility outcomes for many sub-fertile couples. Increasing research interest has investigated the effect of low carbohydrate diets, with or without energy restriction. We aimed to systematically review the published literature to determine the extent to which low carbohydrate diets can affect fertility outcomes; (2) Methods: The review protocol was registered prospectively with Prospective Register for Systematic Reviews (registration number CRD42016042669) and followed Preferred Reporting Items For Systematic Reviews and Meta-Analyses guidelines. Infertile women were the population of interest, the intervention was low carbohydrate diets (less than 45% total energy from carbohydrates), compared to usual diet (with or without co-treatments). Four databases were searched from date of commencement until April 2016; a supplementary Google scholar search was also undertaken. Title and abstract, then full text review, were undertaken independently and in duplicate. Reference lists of included studies and relevant systematic reviews were checked to ensure that all relevant studies were identified for inclusion. Quality assessment was undertaken independently by both authors using the Quality Criteria Checklist for Primary Research. Outcome measures were improved fertility outcomes defined by an improvement in reproductive hormones, ovulation rates and/or pregnancy rates; (3) Results: Seven studies fulfilled the inclusion criteria and were included in the evidence synthesis. Interventions were diverse and included a combination of low carbohydrate diets with energy deficit or other co-treatments. Study quality was rated as positive for six studies, suggesting a low risk of bias, with one study rated as neutral. Of the six studies which reported changes in reproductive hormones, five reported significant improvements post intervention; (4) Conclusion: The findings of these studies suggest that low carbohydrate diets warrant further research to determine their effect. These randomised controlled trials should consider the effect of carbohydrates (with or without energy deficit) on hormonal and fertility outcomes. PMID:28264433
Chinese culture and fertility decline.
Wu, C; Jia, S
1992-01-01
Coale has suggested that cultural factors exert a significant influence on fertility reduction; countries in the "Chinese cultural circle" would be the first to show fertility decline. In China, the view was that traditional Chinese culture contributed to increased population. This paper examines the nature of the relationship between Chinese culture and fertility. Attention was directed to a comparison of fertility rates of developing countries with strong Chinese cultural influence and of fertility within different regions of China. Discussion was followed by an explanation of the theoretical impact of Chinese culture on fertility and direct and indirect beliefs and practices that might either enhance or hinder fertility decline. Emigration to neighboring countries occurred after the Qing dynasty. Fertility after the 1950s declined markedly in Japan, Singapore, Hong Kong, South Korea, Taiwan, and mainland China: all countries within the Chinese cultural circle. Other countries within the Chinese circle which have higher fertility, yet lower fertility than other non-Chinese cultural countries, are Malaysia, Thailand, and Indonesia. Within China, regions with similar fertility patterns are identified as coastal regions, central plains, and mountainous and plateau regions. The Han ethnic group has lower fertility than that of ethnic minorities; regions with large Han populations have lower fertility. Overseas Chinese in East Asian countries also tend to have lower fertility than their host populations. Chinese culture consisted of the assimilation of other cultures over 5000 years. Fertility decline was dependent on the population's desire to limit reproduction, favorable social mechanisms, and availability of contraception: all factors related to economic development. Chinese culture affects fertility reduction by affecting reproductive views and social mechanisms directly, and indirectly through economics. Confucianism emphasizes collectivism, self-reliance, education and cultivation of moral character, and atheism. Confucian beliefs that interfere with fertility decline are the advocacy of self-sufficient livelihood, the emphasis on family and lineage, autocracy, patriarchy and feudal rule, the 5 constant virtues, contempt for labor and working people, science and technology, and a closed-door policy. Socialism hindered fertility decline by promoting population growth as a symbol of the superiority of socialism and by lack of recognition of population or environmental problems in socialist countries. The goal is to accept Westernization, reduce obstacles, develop economically, and use cultural influence positive to fertility decline.
Lesquerella seed and oil yield response to split-applied N fertilizer
USDA-ARS?s Scientific Manuscript database
Agronomic management information is critical for successfully commercial production of new crops such as lesquerella [lesquerella ferndleri Gray (Wats.)]. Response of lesquerella to six nitrogen (N) fertilizer rates under well-watered and water-stressed treatments were studied in irrigated desert co...
Neural control of breathing and CO2 homeostasis
Guyenet, P.G.; Bayliss, D.A
2015-01-01
Summary Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state-dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, “central command” and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation. PMID:26335642
NASA Astrophysics Data System (ADS)
Wang, S.
2014-12-01
Atmospheric ammonia (NH3) plays an important role in fine particle formation. Accurate estimates of ammonia can reduce uncertainties in air quality modeling. China is one of the largest countries emitting ammonia with the majority of NH3 emissions coming from the agricultural practices, such as fertilizer applications and animal operations. The current ammonia emission estimates in China are mainly based on pre-defined emission factors. Thus, there are considerable uncertainties in estimating NH3 emissions, especially in time and space distribution. For example, fertilizer applications vary in the date of application and amount by geographical regions and crop types. In this study, the NH3 emission from the agricultural fertilizer use in China of 2011 was estimated online by an agricultural fertilizer modeling system coupling a regional air-quality model and an agro-ecosystem model, which contains three main components 1) the Environmental Policy Integrated Climate (EPIC) model, 2) the meso-scale meteorology Weather Research and Forecasting (WRF) model and 3) the CMAQ air quality model with bi-directional ammonia fluxes. The EPIC output information about daily fertilizer application and soil characteristics would be the input of the CMAQ model. In order to run EPIC model, much Chinese local information is collected and processed. For example, Crop land data are computed from the MODIS land use data at 500-m resolution and crop categories at Chinese county level; the fertilizer use rate for different fertilizer types, crops and provinces are obtained from Chinese statistic materials. The system takes into consideration many influencing factors on agriculture ammonia emission, including weather, the fertilizer application method, timing, amount, and rate for specific pastures and crops. The simulated fertilizer data is compared with the NH3 emissions and fertilizer application data from other sources. The results of CMAQ modeling are also discussed and analyzed with field measurements. The estimated agricultural fertilizer NH3 emission in this study is about 3Tg in 2011. The regions with the highest emission rates are located in the North China Plain. Monthly, the peak ammonia emissions occur in April to July.
Jiang, Yanling; Xu, Zhenzhu; Zhou, Guangsheng; Liu, Tao
2016-07-12
The atmospheric CO2 concentration is rising continuously, and abnormal precipitation may occur more frequently in the future. Although the effects of elevated CO2 and drought on plants have been well reported individually, little is known about their interaction, particularly over a water status gradient. Here, we aimed to characterize the effects of elevated CO2 and a water status gradient on the growth, photosynthetic capacity, and mesophyll cell ultrastructure of a dominant grass from a degraded grassland. Elevated CO2 stimulated plant biomass to a greater extent under moderate changes in water status than under either extreme drought or over-watering conditions. Photosynthetic capacity and stomatal conductance were also enhanced by elevated CO2 under moderate drought, but inhibited with over-watering. Severe drought distorted mesophyll cell organelles, but CO2 enrichment partly alleviated this effect. Intrinsic water use efficiency (WUEi) and total biomass water use efficiency (WUEt) were increased by elevated CO2, regardless of water status. Plant structural traits were also found to be tightly associated with photosynthetic potentials. The results indicated that CO2 enrichment alleviated severe and moderate drought stress, and highlighted that CO2 fertilization's dependency on water status should be considered when projecting key species' responses to climate change in dry ecosystems.
Imran, Asma; Mirza, Muhammad S.; Shah, Tariq M.; Malik, Kauser A.; Hafeez, Fauzia Y.
2015-01-01
Pakistan is among top three chickpea producing countries but the crop is usually grown on marginal lands without irrigation and fertilizer application which significantly hampers its yield. Soil fertility and inoculation with beneficial rhizobacteria play a key role in nodulation and yield of legumes. Four kabuli and six desi chickpea genotypes were, therefore, evaluated for inoculation response with IAA-producing Ochrobactrum ciceri Ca-34T and nitrogen fixing Mesorhizobium ciceri TAL-1148 in single and co-inoculation in two soils. The soil type 1 was previously unplanted marginal soil having low organic matter, P and N contents compared to soil type 2 which was a fertile routinely legume-cultivated soil. The effect of soil fertility status was pronounced and fertile soil on average, produced 31% more nodules, 62% more biomass and 111% grain yield than marginal soil. Inoculation either with O. ciceri alone or its co-inoculation with M. ciceri produced on average higher nodules (42%), biomass (31%), grains yield (64%) and harvest index (72%) in both chickpea genotypes over non-inoculated controls in both soils. Soil 1 showed maximum relative effectiveness of Ca-34T inoculation for kabuli genotypes while soil 2 showed for desi genotypes except B8/02. Desi genotype B8/02 in soil type 1 and Pb-2008 in soil type 2 showed significant yield increase as compared to respective un-inoculated controls. Across bacterial inoculation treatments, grain yield was positively correlated to growth and yield contributing parameters (r = 0.294* to 0.838*** for desi and r = 0.388* to 0.857** for kabuli). PCA and CAT-PCA analyses clearly showed a site-specific response of genotype x bacterial inoculation. Furthermore, the inoculated bacterial strains were able to persist in the rhizosphere showing colonization on root and within nodules. Present study shows that plant growth promoting rhizobacteria (PGPR) inoculation should be integrated with national chickpea breading program in Pakistan especially for marginal soils. Furthermore, the study shows the potential of phytohormone producing strain Ca-34T as promising candidate for development of biofertilizer alongwith nodulating strains to get sustainable yield of kabuli and desi chickpea with minimum inputs at marginal land. PMID:26379638
NASA Astrophysics Data System (ADS)
Perez, T. J.; Gil, J. A.; Marquina, S.; Donoso, L. E.; Trumbore, S. E.; Tyler, S. C.
2005-12-01
Historically, the most common agricultural practice in Northern Guárico, one of Venezuelan largest cereal production regions, has been mono cropping, with extensive tillage operations that usually causes rapid soil degradation and nitrogen losses. Alternative production systems, such as non-tillage agricultural practices, have been extensively implemented during the last few years. However, studies of the nitrogen losses associated with these alternative practices are not widely available. This study was conducted at "Fundo Tierra Nueva", Guárico State (9°23'33" N, 66° 38'30" W) in a corn field under the non-tillage agricultural practice, during the growing season June-August 2005. The soils are Vertisols (Typic Haplusterts). The area has two well defined precipitation seasons: wet (May-October) and dry (November-April). The mean annual precipitation of the area is 622±97.3 mm (last 5 years). Because the irrigation of the crop depends on precipitation, the planting is scheduled during the months of highest precipitation in June-July. We measured nitrogenous gas emissions (N2O and NO), concentrations of total nitrogen (NT), NH4+ and NO3- in soil (0-100 cm) after fertilization to estimate the nitrogen losses. We also measured CO2 emissions to evaluate the relationship of microbial respiration to the emissions of nitrogenous trace gases. Soils were fertilized with 54 kgN/ha (NPK 12:24:12, nitrogen as NH4Cl) and planted simultaneously by a planting machine provided with a furrow opener where the fertilizer and seeds are incorporated between 0-10 cm depth. Thirty days later, soils were fertilized by broadcast addition of 18 kgN/ha (as ammonium nitrate). Nitrous oxide emissions were highly dependant on the water content. Prior to fertilization N2O emissions were very low. Right after fertilization the emissions increased by a factor of 5 compared to pre-fertilization levels and increased to 100 times larger after the first heavy rain. NO emissions did not increase as much as N2O emissions after the first fertilization. Right after the second fertilization both gases increased their emissions and concentrations in soil profile dramatically. These results suggest that broadcast fertilizer addition with ammonium nitrate stimulates the nitrogenous gas emissions due to enhanced nitrification and denitrification at the soil surface. Estimates of percentage of nitrogen losses and fertilizer-induced emission factors (FEI) for both gases are provided.
Li, Yongling; Cheng, Fangqin
2016-08-01
A novel slow-release potassium fertilizer (SPF) was synthesized using Pidgeon magnesium slag (PMS) and potassium carbonate, which could minimize fertilizer nutrient loss and PMS disposal problems. Orthogonal experiments were conducted to determine the optimum conditions for synthesis. The potassium (K)-bearing compounds of SPF existed mainly in the form of crystalline phases Ca1.197K0.166SiO4, K2MgSiO4, and K4CaSi3O9, and in the noncrystalline phase. The active silicon content of SPF was 2.09 times as much as that of magnesium slag, and the slow-release character of SPF met the requirement for partly slow-release fertilizer in the national standard (GB/T23348-2009). The best models for describing the K release kinetics in water and 2% citric acid were the Elovich model and the first-order model, respectively. The heavy metal contents of SPF conformed to the national standard for organic-inorganic compound fertilizers, and the leaching mass concentrations of heavy metals and Fluorine were far lower than the limit values of the identification standard for hazardous waste identification for extraction toxicity (GB5085.3-2007), and also met the class II quality standard for ground water. The environmental risk of SPF is therefore very low, but because SPF is alkaline, its effect on soil pH should be taken into account. PMS is the solid waste resulting from the production of magnesium metal by Pidgeon's reduction process. Utilization of PMS in the high-technology and high-value areas may promote the high-efficiency development of worldwide collection metallic magnesium industry and contribute to the reduction of emissions of fine dust to air. This paper presents one of the new techniques in the use of PMS as a slow-release fertilizer by adding K2CO3. The product can serve as a very cost-effective and reliable artificial fertilizer.
The Heterotrophic Bacterial Response During the Meso-scale Southern Ocean Iron Experiment (SOFeX)
NASA Astrophysics Data System (ADS)
Oliver, J. L.; Barber, R. T.; Ducklow, H. W.
2002-12-01
Previous meso-scale iron enrichments have demonstrated the stimulatory effect of iron on primary productivity and the accelerated flow of carbon into the surface ocean foodweb. In stratified waters, heterotrophic activity can work against carbon export by remineralizing POC and/or DOC back to CO2, effectively slowing the biological pump. To assess the response of heterotrophic activity to iron enrichment, we measured heterotrophic bacterial production and abundance during the Southern Ocean Iron Experiment (SOFeX). Heterotrophic bacterial processes primarily affect the latter of the two carbon export mechanisms, removal of DOC to the deep ocean. Heterotrophic bacterial production (BP), measured via tritiated thymidine (3H-TdR) and leucine (3H-Leu) incorporation, increased ~40% over the 18-d observation period in iron fertilized waters south of the Polar Front (South Patch). Also, South Patch BP was 61% higher than in the surrounding unfertilized waters. Abundance, measured by flow cytometry (FCM) and acridine orange direct counts (AODC), also increased in the South Patch from 3 to 5 x 108 cells liter-1, a 70% increase. Bacterial biomass increased from ~3.6 to 6.3 μg C liter-1, a clear indication that production rates exceeded removal rates (bactivory, viral lysis) over the course of 18 days. Biomass within the fertilized patch was 11% higher than in surrounding unfertilized waters reflecting a similar trend. This pattern is in contrast to SOIREE where no accumulation of biomass was observed. High DNA-containing (HDNA) cells detected by FCM also increased over time in iron fertilized waters from 20% to 46% relative to the total population suggesting an active subpopulation of cells that were growing faster than the removal rates. In iron fertilized waters north of the Polar Front (North Patch), BP and abundance were ~90% and 80% higher, respectively, than in unfertilized waters. Our results suggest an active bacterial population that responded to iron fertilization by utilizing newly produced DOC and/or iron and which grew at rates that exceeded removal rates. Differences in the microbial response between SOFeX and SOIREE are subtle, and may be related to differences in foodweb structure prior to and during the response to iron enrichment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarmiento, Jorge L.; Gnanadesikan, Anand; Gruber, Nicolas
2007-06-21
This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to anmore » increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1; and, December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the first three years of our project, led to several major new insights on the interaction between ocean biogeochemistry and circulation. This work, which is described in the following Section II on “Large scale fertilization,” has continued to appear in the literature over the past few years, including two high visibility papers in Nature. Early on in the first three years of our project, it became clear that small "patch-scale" fertilizations over limited regions of order 100 km diameter were much more likely than large scale fertilization, and we carried out a series of idealized patch fertilization simulations reported on in Gnanadesikan et al. (2003). Based on this paper and other results we had obtained by the end of our first three-year grant, we identified a number of important issues that needed to be addressed in the second three-year period of this grant. Section III on “patch fertilization” discusses the major findings of this phase of our research, which is described in two major manuscripts that will be submitted for publication in the near future. This research makes use of new more realistic ocean ecosystem and iron cycling models than our first paper on this topic. We have several major new insights into what controls the efficiency of iron fertilization in the ocean. Section IV on “model development” summarizes a set of papers describing the progress that we made on improving the ecosystem models we use for our iron fertilization simulations.« less
Le Bras, Anne; Hesters, Laetitia; Gallot, Vanessa; Tallet, Cathie; Tachdjian, Gerard; Frydman, Nelly
2017-10-01
Short gamete co-incubation (SGCO) consists in decreasing the duration of contact between oocytes and sperm from the standard overnight insemination (SOI) toward 2 hours. However, the effectiveness of this technique to improve in vitro fertilization and embryo transfer (IVF-ET) outcomes remains controversial. Our study was designed to evaluate the efficiency of SGCO in a poor prognosis population with a history of fragmented embryos defined by the presence of at least 50% of the embryos with more than 25% of cytoplasmic fragments. From January 2010 to January 2014, 97 couples were included in a SGCO protocol. We separated women into 2 subgroups: younger and older than 35 years. Compared to SOI, after SGCO, 2-cell stage embryos were higher in all women (p<0.001) and less fragmented in women over 35 years (p<0.05). On day 2, top quality embryos obtained and transferred were higher with SCGO than with SOI, independently of the age of the women (p<0.001). Moreover, the number of embryos with less than 25% of fragmentation was higher after SGCO than SOI (p<0.001) whereas the number of multinucleated embryos was lower (p<0.001). We observed that after fresh ET, independently of the age of the women, the clinical pregnancy rate was 3 times higher after SGCO than after SOI. However, the live-birth rate was 4 times higher with SGCO than with SOI in women above 35 years but 3 times higher with SGCO than with SOI in women younger than 35 years. The present results indicate that for a particular indication, reducing the time of oocytes and sperm co-incubation may improve IVF-ET outcomes in terms of live-birth rate. AMH: anti mullerian hormone; COC: cumulus-oocytes complex; E2: estradiol; ET: embryo transfer; FET: frozen embryo transfer; FSH: follicle stimulating hormone; GnRH: gonadotrophin releasing hormone; hCG: human chorionic gonadotropin hormone; hMG: human menopausal gonadotropin hormone; IRB: institutional review board; IVF: in vitro fertilization; IVF-ET: in vitro fertilization and embryo transfer; MNB: multinucleated blastomere; mRNA: messanger ribonucleic acid; OC: oocyte retrieval; O2: oxygen; ROS: reactive oxygen species; SGCO: short gamete co-incubation; SOI: standard overnight insemination.
Pervasive antagonistic interactions among hybrid incompatibility loci
Josway, Sarah
2017-01-01
Species barriers, expressed as hybrid inviability and sterility, are often due to epistatic interactions between divergent loci from two lineages. Theoretical models indicate that the strength, direction, and complexity of these genetic interactions can strongly affect the expression of interspecific reproductive isolation and the rates at which new species evolve. Nonetheless, empirical analyses have not quantified the frequency with which loci are involved in interactions affecting hybrid fitness, and whether these loci predominantly interact synergistically or antagonistically, or preferentially involve loci that have strong individual effects on hybrid fitness. We systematically examined the prevalence of interactions between pairs of short chromosomal regions from one species (Solanum habrochaites) co-introgressed into a heterospecific genetic background (Solanum lycopersicum), using lines containing pairwise combinations of 15 chromosomal segments from S. habrochaites in the background of S. lycopersicum (i.e., 95 double introgression lines). We compared the strength of hybrid incompatibility (either pollen sterility or seed sterility) expressed in each double introgression line to the expected additive effect of its two component single introgressions. We found that epistasis was common among co-introgressed regions. Interactions for hybrid dysfunction were substantially more prevalent in pollen fertility compared to seed fertility phenotypes, and were overwhelmingly antagonistic (i.e., double hybrids were less unfit than expected from additive single introgression effects). This pervasive antagonism is expected to attenuate the rate at which hybrid infertility accumulates among lineages over time (i.e., giving diminishing returns as more reproductive isolation loci accumulate), as well as decouple patterns of accumulation of sterility loci and hybrid incompatibility phenotypes. This decoupling effect might explain observed differences between pollen and seed fertility in their fit to theoretical predictions of the accumulation of isolation loci, including the ‘snowball’ effect. PMID:28604770
Qiu, Linjing; Hao, Mingde; Wu, Yiping
2017-01-15
Although many studies have been conducted on crop yield in rain-fed agriculture, the possible impacts of climate change on the carbon (C) dynamics of rain-fed rotation systems, particularly their direction and magnitude at the long-term scale, are still poorly understood. In this study, the sensitivity of C dynamics of a typical rotation system to elevated CO 2 and changed temperature and precipitation were first tested using the CENTURY model, based on data collected from a 30-year field experiment of a corn-wheat-wheat-millet (CWWM) rotation system in the tableland of the Loess Plateau. The possible responses of crop biomass C and soil organic C (SOC) accumulation were then evaluated under scenarios representing the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicated that elevated CO 2 and increased precipitation exerted positive effect on biomass C in CWWM rotation system, while increasing the temperature by 1°C, 2°C and 4°C had negative effects on biomass C due to opposite responses of corn and winter wheat to warming. SOC accumulation was enhanced by increased CO 2 concentration and precipitation but impaired by increased temperature. Under future RCP scenarios with dynamic CO 2 , the biomass C of corn exhibited decrease during the period of 2046-2075 under RCP4.5 and the period of 2016-2075 under RCP8.5 due to reduced precipitation and a warmer climate. In contrast, winter wheat would benefit from increased CO 2 and temperature and was projected to have larger biomass C under both RCP scenarios. Although the climate condition had large differences between RCP4.5 and RCP8.5, the projected SOC had similar trends under two scenarios due to CO 2 fertilizer effect and precipitation fluctuation. These results implied that crop biomass C and SOC accumulation in a warmer environment are strongly related to precipitation, and increase in field water storage should be emphasized in coping with future climate. Copyright © 2016 Elsevier B.V. All rights reserved.
Kourgialas, Nektarios N; Karatzas, George P; Koubouris, Georgios C
2017-03-15
Fertilizers have undoubtedly contributed to the significant increase in yields worldwide and therefore to the considerable improvement of quality of life of man and animals. Today, attention is focussed on the risks imposed by agricultural fertilizers. These effects include the dissolution and transport of excess quantities of fertilizer major- and trace-elements to the groundwater that deteriorate the quality of drinking and irrigation water. In this study, a map for the Fertilizer Water Pollution Index (FWPI) was generated for assessing the impact of agricultural fertilizers on drinking and irrigation water quality. The proposed methodology was applied to one of the most intensively cultivated with tree crops area in Crete (Greece) where potential pollutant loads are derived exclusively from agricultural activities and groundwater is the main water source. In this region of 215 km 2 , groundwater sampling data from 235 wells were collected over a 15-year time period and analyzed for the presence of anionic (ΝΟ -3 , PO -3 4 ) and cationic (K +1 , Fe +2 , Mn +2 , Zn +2 , Cu +2 , B +3 ) fertilizer trace elements. These chemicals are the components of the primary fertilizers used in local tree crop production. Eight factors/maps were considered in order to estimate the spatial distribution of groundwater contamination for each fertilizer element. The eight factors combined were used to generate the Fertilizer Water Pollution Index (FWPI) map indicating the areas with drinking/irrigation water pollution due to the high groundwater contamination caused by excessive fertilizer use. Moreover, by taking into consideration the groundwater flow direction and seepage velocity, the pathway through which groundwater supply become polluted can be predicted. The groundwater quality results show that a small part of the study area, about 8 km 2 (3.72%), is polluted or moderately polluted by the excessive use of fertilizers. Considering that in this area drinking water sources (wells) are located, this study highlights an analytic method for delineation wellhead protection zones. All these approaches were incorporated in a useful GIS decision support system that aids decision makers in the difficult task of protection groundwater resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Distribution of heavy metals from flue gas in algal bioreactor
NASA Astrophysics Data System (ADS)
Napan, Katerine
Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.